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SUMMARY

In this report, issues that must be addressed to advance the technology readiness level of phosphate glass
waste forms being developed to immobilize high-level radioactive salt waste streams are identified, the
states of understanding various technical aspects of formulation, processing, and performance are
summarized, and approaches supporting further development are recommended. Processing results in
dehalogenation of the waste salt, capture of the gaseous halide-bearing species, and immobilization of the
residual salt components in a phosphate waste form. The approach is suitable for high-level salt wastes
from electrochemical reprocessing and molten salt reactors. The technology has been demonstrated for
chloride-based salts and may also be suitable for the treatment and immobilization of fluoride-based and
iodide-bearing waste salts. Aspects of the process requiring further development are identified and
approaches recommended.
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ACRONYMS AND ABBREVIATIONS

A" alkali

ADP ammonium dihydrogen phosphate (NH4sH,PO4)

AE* alkaline earth

An** actinides (3+ valence)

ARPA-E Advanced Research Projects Agency—Energy

BS borosilicate (glass waste form)

BSE backscattered electron (SEM imaging)

CCC canister centerline cooling (cooling profile at the centerline of a 0.61-m diameter
canister)

CTE coefficient of thermal expansion

DHP diammonium hydrogen phosphate [(NH4),HPO4]

DOE Department of Energy

DPF dehalogenated phosphate forms

DWPF Defense Waste Processing Facility

EBR-II Experimental Breeder Reactor 11

EDS energy dispersive X-ray emission spectroscopy

ER electrorefiner (electrorefining)

ER(SF) electrorefiner salt simulant version 1 (electrochemical salt simulant)

ERV2 electrorefiner salt simulant version 2 (electrochemical salt simulant)

GBS glass-bonded sodalite

GBP glass-bonded perovskite

Ha halide anions

HLW high-level waste

MSR molten salt reactor

NE Office of Nuclear Energy

NL normalized release

NRC Nuclear Regulatory Commission

OR oxide (electro)reduction

RE*" or REE rare earth element

SEM scanning electron microscopy (or microscope)

TC thermocouple

TRL Technology Readiness Level

WF

waste form
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1. INTRODUCTION AND BACKGROUND

Phosphate glass-based waste forms are being developed under the auspices of the U.S. Department of
Energy (DOE) Office of Nuclear Energy’s (NE) Nuclear Technology Research and Development Program
that can be used to immobilize salt wastes from the electrochemical reprocessing of used nuclear fuel.
These waste forms are appropriate for oxide-fuel or metal-fuel (electro)reduction (OR) and electrorefining
(ER) waste salts. The reaction of chloride salt with various phosphates results in dehalogenation of the salt
waste and dissolution of the remaining salt cations in a phosphate glass. The phosphate glass is not
chemically durable and iron oxide is added to generate a waste form with acceptable chemical durability.
The halogen-bearing species in the off-gas (primarily chlorides) can be recovered for recycle or disposal.
The iron phosphate waste form may potentially be suitable for immobilizing end-of-life chloride salt wastes
from molten salt reactors (MSR) and possibly end-of-life fluoride salt wastes. The use of phosphates for
salt processing is not a new idea but has not been investigated at the level of rigor required for fully
evaluating and qualifying an approach for waste processing and waste form disposal. In this report, we
identify technology gaps that must be addressed to advance this waste processing and immobilization
approach towards a higher Technology Readiness Level (TRL) in the form of an idealized flowsheet, or
Road Map, starting from a waste stream and generating a disposable waste form.

Figure 1-1 summarizes the high-level issues and interfaces that are considered when developing a high-
level radioactive waste form. These include interrelated issues regarding waste form formulation,
production, and disposal. The Waste Composition box defines the waste stream to be immobilized and the
Matrix/Additives box defines the materials used to immobilize it. The Waste Processing method is selected
based on the immobilizing matrix and the capacity to retain radionuclides present in the waste stream within
the waste form during processing. The matrix material(s) and processing method(s) are usually selected
based on the compatibility of the waste stream with the immobilizing matrix and waste loadings that can
be achieved. The waste loading is often limited by waste stream constituents other than radionuclides of
concern or limits established by storage or disposal of the waste form. For example, Cl concentration in
the waste form may be more limiting than fission product loading. The storage, transportation, and disposal
concepts may add additional constraints on waste loading, such as those from decay heat, that can be
generally managed by loading limitations in the waste form, waste form size, and/or decay storage.

Waste Composition Matrix/Additives Waste Processing
Waste stream Immobilizing Partitioning,
compositions and |<«—| matrix materials |<—>| recycle, treatment,
key radionuclides and additives stabilization
WF Performance WF Properties WF Acceptance
Waste form WF durability, WF composition,
performancein |<—>| WF degradation, WF waste loading
a disposal facility radiation stability consistency

Figure 1-1. Simplified diagram showing aspects of waste form development with emphasis on the preprocessing.

Following the diagram in Figure 1-1 from left to right shows how waste forms are developed based on the
waste stream composition and selected immobilizing matrix, the methods developed to produce waste
forms, and the testing and modeling activities used to evaluate waste form behavior in a disposal system.
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These steps are summarized below with specific consideration for application to electrochemical salt high-
level waste streams.

Waste Streams

Generally, the physical, chemical, and radioactive characteristics of the waste stream are all considered
important when designing the waste form. Both the nominal or average characteristics and their range of
variation within the targeted stream are important. For those characteristics that strongly influence the
immobilization process or product performance either narrow variation or precise analyses are required. In
the case of halide salt wastes, characteristics such as

e decay heat;

e concentrations of total halogen, alkali, alkaline earths, rare earths, transition metals, U, Pu, and
other actinides;

e ratios of different halogens (e.g., Cl:F:I) and alkalis (e.g., Li:Na:K:Cs) and, to a lesser extent,
alkaline earths, rare earths, and transition metals;

e concentration of long-lived isotopes (e.g., [-129, CI-36, Se-79, Tc-99, Pu-242, Np-237); and

o fissile content (e.g., U-233, U-235, Pu-239, Pu-241).

are important considerations for waste form formulation and processing. Each of these will depend on the
fuel being processed and the details of the electrochemical process being performed. Example ER salt
waste streams were reported by Vienna et al. (2015). Generally, these estimates assume low fissile contents
as part of a closed fuel cycle. However, other salt waste streams may contain significant fissile materials
(e.g., end-of-life molten salt reactor fuel).

Immobilizing matrix and process

Alkali-chloride-based wastes can be immobilized either directly or in combination with salt partitioning.
Riley (2020b) summarized several of those options. Unpartitioned salt contains relatively high
concentrations of alkali-halide salts. Waste forms that are rich in alkali and halides were the natural focus
including: glass-bonded sodalites (GBS), glass-bonded perovskites (GBP), cancrinites, and tellurite glasses.
The GBS waste form is typically formed by occluding the salt waste into a porous zeolite, mixing with a
borosilicate glass frit, and sintering (either pressurelessly or under hot-isostatic pressing) together to form
a final dense product (Periera et al. 1999; Simpson et al. 2001; Priebe and Bateman 2008; Morrison and
Bateman 2010; Ebert et al. 2016; Riley et al. 2017b). By this process, the sodium from the salt waste or
borosilicate glass combines with the alumina and silica from the zeolite to form a sodalite crystal. Rare
earths, lithium, and actinides partition to the glassy phase, which completely encapsulates the sodalite
crystals. Alkali- and halide-containing perovskites were formed by precipitation from solution (either
aqueous or organic) (Scott et al. 2018). The perovskites were then densified by mixing with a glass frit and
sintering (Yang et al. 2021). The TeO,-based glasses were melted and cast into containers (Riley et al.
2012, 2017a).

Several options exist to immobilize portions of the partitioned salt waste. Riley (2020b) summarizes those
options as a function of which components are partitioned as reproduced in Figure 1-2. The options include
partitioning of alkali (A"), alkaline earths (AE®"), rare earths (RE*"), actinides (An"), and halides (Ha).
Example partitioning processes are shown in the figure. Some of the products from each of these
partitioning methods are intended to be immobilized. Generally, the immobilized waste stream differs
significantly in characteristics from the original salt stream. Therefore, both the immobilizing matrix and
process will change to match the new waste characteristics; again, examples are described by Riley (2020b).
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Partitioning process Final product(s)
a) vacuum distillation —> a) CsCl (FP) removal
I: b) melt crystallization —> b) ER electrolyte (LiCl) removal
¢) zone freezing/refining —> ¢) ER electrolyte (LiCl) removal
& a) vacuum distillation —> a) BaCl, remains
< b) reactive precipitation (A,CO,) —> b) (Ba,Sr)CO, precipitation
- a) oxidative precipitation (O,) —> a) REOCI/REO, mixtures
E:J b) reactive precipitation (A,CO,) —> b) REOCI/REO, mixtures
c) reactive distillation (A,,O,) —> <) REPO, mixtures
. a)electrorefining —> a) An° (reduced at the cathode)
:% b) vacuum distillation —> b) AnCl, can be removed
c) aqueous separations —>» ¢) actinides dissolved in a solvent
. a) phosphate process —> a) dehalogenated phosphate glass
£ b) USHYZ process —>» b) alkali-loaded Y-zeolite
c) SAP/U-SAP —> ) Li,PO, droplets in silica-rich glass

Figure 1-2. Example salt waste partitioning processes and associated final products (Riley 2020b).

The focus of this document is on the process of dehalogenation (i.e., Ha™ partitioning) followed by
immobilization of the residual waste stream in iron phosphate glass. A generalized process flow diagram
for treating a chloride-based ER salt using this process is shown in Figure 1-3. This diagram identifies the
additives, processing conditions, intermediate products, off-gases, and secondary waste streams generated
during the process. Note that chloride-based salt wastes will likely contain small amounts of other halides
as impurities or dissolved fuel constituents that will be present in the off-gas. Figure 1-3 also shows the
use of ammonium dihydrogen phosphate (ADP) and the optional recovery and recycle of NH4Cl to generate
UCl;. Similar diagrams can be generated for other additives and salt compositions including fluoride salts.

|e|ectrochemica| salts |

(T <600°C) ! (dehal ti
: phosphates | 222 23n=Hen
{|HCI, HiY Iy,
{|H,0, NH,| :
intermediate | N NH (),
phosphate glass | : b
(to ER)

(T> 1000°C) GFCs (e.g., Fe,0s)

. high chemical
iron phosphate glass WF ij:?abl.c“;T'ca
I:I reactant or waste waste form
intermediate stream option

Figure 1-3. Proposed general process flow diagram when reacting ADP with chloride salts (Riley et al. 2020c).

The Waste Processing box in Figure 1-1 indicates control of the production process to generate waste forms
with sufficiently consistent physical, radiological, and chemical properties. Secondary wastes must be
successfully managed during the process through recycle, treatment, and/or immobilization. The physical
and radiological properties of the waste form must be controlled for accountancy, handling, transport,
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temporary storage, and disposal purposes and chemical properties must be controlled to ensure adequate
durability in the disposal facility.

Performance, Durability, and Consistency

Waste form consistency is achieved by first appropriately controlling waste loading and matrix material
composition, then controlling processing conditions that may include temperature ranges, gas composition
and flow rates, pressures, durations, and cooling rates, depending on the matrix material and waste
composition. If the durability of the waste form is deemed to be inadequate, changes to the immobilizing
matrix, waste loading, or processing method or conditions must be modified. The generation of secondary
waste streams during processing is an important issue for the dehalogenation processes addressed in this
report but are not shown in the diagram. If those waste streams are to be disposed, they would serve as the
waste stream in the top left-hand box and an appropriate matrix and process identified.

The WF Performance box in Figure 1-1 addresses the predicted behavior of the waste form in a disposal
facility and is used to determine the required waste form durability. Degradation of the matrix used to
immobilize radionuclides in the waste stream will occur during disposal for geologic time periods when
contacted by groundwater and the radionuclides may be transported by diffusive and convective processes.
The dispersal of radionuclides released from a degrading waste form will depend on solubilities, colloid
formation, sorption to engineered and natural materials, etc. The performance of the disposal system is
regulated to ensure that the release to the biosphere is acceptably low, and the efficiency of natural and
engineered barriers (including waste forms) will provide the required containment. Models are being
developed to predict waste form degradation rates under the range of conditions anticipated in disposal
facilities. Those models provide source terms for radionuclide release that are used in simulations of
disposal facility performance conducted to ensure regulatory limits are met throughout the regulated service
life. Most models are based on a mechanistic understanding of how the immobilizing matrix degrades and
how radionuclides are released. This provides confidence in the calculated degradation kinetics and
radionuclide release rates in different disposal environments.

The role of the waste forms in disposal facility design and performance assessment is based on the modeled
degradation kinetics and the inventory of radionuclides in the waste forms that are disposed. These establish
the acceptance criteria for disposal and required combination of waste form chemical durability and waste
loading (both from migration and heat source requirements). Those criteria then establish threshold values
for waste form characteristics (WF Properties in Figure 1-1) that can be used to demonstrate the consistency
and acceptability of all waste form products that are produced (WF Acceptance in Figure 1-1). Those
characteristics can be used to determine acceptable ranges of processing conditions.

Summary

The diagram in Figure 1-1 shows how waste forms are developed based on the waste stream composition
and selected immobilizing matrix, the methods developed to produce waste forms, and the testing activities
used to evaluate waste form behavior in a disposal system. Following the diagram from right to left shows
how analyses of disposal system behavior and waste form degradation under disposal conditions are used
to determine the required chemical durability of the waste form and waste loading restrictions. Those
requirements are used to determine acceptable waste loading and processing conditions that can be used to
generate consistently acceptable waste forms. For an established waste form, controlling formulation and
processing conditions ensures that consistently acceptable waste forms are generated. Tests with the
consistent waste form can provide a mechanistic model to predict waste form degradation and radionuclide
release. A disposal system is engineered considering barrier properties of the natural system and engineered
barriers including backfill, metallic waste containers, and engineered waste forms. The design and
performance of repository systems in generic natural systems and safety assessments are being addressed
within the DOE Spent Fuel and Waste Disposition campaign. Work done during the development of waste
forms and waste form degradation models provides insights used to assess facility designs, inform
regulators, and establish acceptance requirements for waste form durability and other characteristics.
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This general approach is being followed to develop and evaluate iron phosphate waste forms. A significant
amount of work has been conducted to identify candidate processes and immobilization forms for
anticipated ER and OR salt stream, but significant effort is needed to address processing and disposal issues
before a baseline waste form, process, and performance source-term can be determined.

The perceived advantages of the phosphate process are described hereafter. First, it can be used to
dehalogenate the salt to enable the recovery and recycle of economically valuable isotopes (e.g., *’Cl, 'Li).
Second, it facilitates production of waste forms with high waste loadings that are suitable for disposal (e.g.,
fluorine removal opens up more waste form options for fluoride salts). Third, the phosphate waste form
can be produced using existing technologies designed for large-scale production (off-gas systems, Joule-
heated melters).

Some perceived disadvantages to phosphate glass waste forms pertain to the relative immaturity of this
technology. First, phosphate glasses are known to chemically attack refractories and their low viscosity
makes vitrification challenging. Second, very few composition-property models exist for phosphate
glasses, making glass property predictions more difficult for glasses made with different waste streams.
Third, common glass properties are more sensitive to minor changes in the composition of phosphate
glasses than borosilicate glasses. For example, small changes in the Fe:P molar ratio can have a significant
impact on the chemical durability of the final waste form (Ma et al. 2017).

On August 4" and August 11™ of 2020, the authors hosted a virtual Round Table Workshop to discuss the
state of knowledge regarding the phosphate process for immobilizing salt wastes and to identify and assess
the remaining technical gaps in several areas. The Round Table Workshop included invited participants
from national laboratories, universities, industry, and representatives from DOE-NE and Advanced
Research Projects Agency—Energy (ARPA-E). The agenda and participants are provided in Appendix A.
The agenda included key issues identified by the organizers for which several experts from national
laboratories, universities, and industry were invited to make prepared presentations. Discussions held after
each presentation were used to assess the current states of various topic areas relevant to phosphate glass
waste forms, assess the current state of technology in these areas, identify remaining research gaps in these
areas, and suggest possible ways to close those gaps. The following issues were addressed:

e Radionuclides and chemical constraints
e Immobilizing matrix materials
e  Waste form material production (lab scale development)

o Chemical reactions

o Off-gas hazards, capture, and recycle

o One-step vs two-step processing
e  Waste form attributes

o Crystalline phase content

o Chemical and physical robustness

o Thermal and radiological stability

o Waste loading
e  Waste form product production (full scale production)

o Waste form product consistency and regulatory acceptability
Production complexity and remote operations
Security and safeguards
Material balance and secondary wastes
Production rates and throughput
o Intermediate storage and transport

O O O O

e Performance in disposal system
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o Performance tests and degradation modeling

The status and results of these discussions are summarized in Table 1-1. The following sections address
each bullet point listed above in greater detail based on existing data, information presented during the
Round Table Workshop, and follow-on review of the literature.
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2. WASTE COMPOSITIONS

The waste streams that are being considered for iron phosphate waste forms include OR and ER waste salts
from electrochemical reprocessing as well as chloride- and fluoride-based salts that are being evaluated by
developers for use in different MSR designs. As an example, a representative ER waste salt composition
for once-through processing of 300 driver rods of Experimental Breeder Reactor II (EBR-II) sodium-
bonded U-15Zr fuel is provided in Table 2-1 (Ebert 2005). Simplified compositions ER(SF) (version 1) and
ERV2 (version 2) that have been used to make prototype iron phosphate materials are provided in Table
2-2. Those prototype materials were made to study the efficacy of the process for chloride salt waste
streams, the distributions of surrogate radionuclides in the waste form, and the waste form degradation
behavior.

Table 2-1. Composition of 300 driver salt.

Salt Mass% Salt Mass% Salt Mass%
BaCl, 1.20 LaCl; 1.22 RbCl 0.33
CeCl; 2.33 LiCI-KCI | 69.82 SmCl; | 0.69
CsCl 2.51 NaCl 14.95 SrCl, 1.00
EuCl; 0.05 NdCls 3.90 YCl; 0.70
KI 0.15 PrCl; 1.15

Table 2-2. Compositions of ER(SF) (Riley 2017) and ERV2 (Ebert et al. 2017) salt simulants (mass%, based on
measured values from chemical analysis of the as-made salts).

Additive | ER(SF) | ERV2
LiCl 33.09 | 32.32
KCl 40.52 | 38.68
NaCl 9.88 9.00
CsCl 5.18 -
Csl - 7.00
KI 3.09 -
SrCl, 3.13 3.00
YCl3 1.55 -
LaCls 1.55 -
CeCls 0.002 | 5.00
NdCls 2.01 5.00

Molten salt reactors are being designed to use various mixtures of chloride fuel salts (e.g., NaCl, ZrCly,
UCI/UCL, PuCls) or fluoride fuel salts (e.g., LiF, BeF,, ZrFs4, UF4, ThF4); most compositions remain
proprietary so examples are not provided in this report.
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3. IMMOBILIZING MATRICES AND ADDITIVES

Alkali phosphate glasses are not sufficiently durable to serve as waste forms and stabilizing reagents must
be added. Several additives have been shown to be effective in increasing chemical durability as measured
in standard immersion tests, including PbO, Fe;Os, and AL,O; (Ma et al. 2017; Rajaram and Day 1986;
Sales and Boatner 1984). The use of PbO is not appropriate for waste forms due to the inherent toxicity and
Fe,O; has been used in most studies, including proof-of-principle tests. The addition of Fe,Os is economical
and effective.

The chemical durability of phosphate glasses varies several orders of magnitude depending on glass
composition. Based on several studies, it is clear that optimizing the chemical durability of iron phosphate
glasses can be achieved by starting with O:P molar ratios of ~3.4-3.5 and high Fe:P molar ratios (see Figure
3-1 and Figure 3-2) (Day and Ray 2013; Ma et al. 2017; Zhang et al. 2011).

(@) ro, P,0, PO, (b)
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Figure 3-1. (a) Summary of dissolution rate (chemical durability) of phosphate glasses as a function of O:P
ratio (Day and Ray 2013). (b) Summary of iron phosphate glass dissolution behavior for different Fe:P molar

ratios at a fixed O:P of 3.40+0.03 (Ma et al. 2017).
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Figure 3-2. Glass-forming region (arrow region) for the Fe(POs);-Fe20s binary system according to (Zhang et

al. 2011).
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Another aspect of glass composition to consider is the choice of the source chemicals during batching. For
instance, the choice of phosphate precursor(s) [e.g., H3POs, NH4H2PO4, (NH4)HPO4] used during
phosphate glass synthesis can affect the properties of the melt as well as the final glass. Figure 3-3 shows
the impact on Fe?" and Fe*" in the glass when using H;PO4 vs NH4sH,PO,, where H3PO, results in a more
oxidized glass (i.e., higher Fe’"/Fe,) (Bai et al. 2020). Additionally, glass-forming additives can drastically
change the properties of the final glass (e.g., Fe;O3, Al,O3).
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Figure 3-3. Summary of Mdssbauer spectroscopy of 15Cs20-yMo0O3-(28.75-y)Fe203-56.25P205 glasses showing
Fe?* and Fe** in glasses with similar targeted composition batched with either (a) H3PO4 (5% Fe*') or (b)
NHsH2PO4 (53% Fe**) (Bai et al. 2020). The doublet between 0 and 1 mm/s denotes the Fe* region.
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4. WASTE PROCESSING
4.1 Chemical Reactions

Some of the chemical reactions are known for mixing phosphates with various salts, but these studies have
mainly focused on chloride salts. More work is needed to fully evaluate reactions with fluoride salts.

The phosphate glass waste forms evaluated for immobilizing ER salt wastes were made by reacting H3POs,
NH4H>PO4, or (NH4),HPO4 with the salts of interest at elevated temperatures. This process results in
dehalogenation wherein the cations are retained in phosphate glass and halides come off the melt as a
volatile byproduct at temperatures below 600°C. Examples of reactions for individual salt constituents
using NH4H,>PO4 provided by Donze et al. (2000) and by using H;PO4 provided by Siemer (2012) are shown
in Reactions (4-1) and (4-2) below, respectively (M denotes a 1+, 2+, or 3+ metal).

2 NH;H,PO4 + 2 MCl — MyO*P2Os(giassy + 2 NHyCligy + 2 HaO(g) (4-1a)
2 NH4H,PO4 + MCl, — MO*P2Os(gtass) + 2 NHyClig) + 2 HaO() (4-1b)

6 NH;H,PO, + 2 MCls — M>03¢3 P2Os(gtass) + 6 NHiCligyy + 6 HxOg) (4-1c)
2 HsPO4 + 2 MC1 — MO#P>Osgiass) + 2 HClig) + 2 HyOg) (4-2a)

2 HsPOy4 + MCl, — MO*P20s(giass) + 2 HCl() + 2 HaO(g) (4-2b)

6 HsPOy4 + 2 MCls — M>033 P2Os(giass) + 6 HClg) + 6 HaO(g) (4-2¢)

The resulting products from these reactions are phosphate glasses or glass ceramics and the cations
associated with the phosphate (e.g., H', NH4") as well as any associated H,O are removed as off-gas
products that can be collected or scrubbed and neutralized. The resulting phosphate product can then be
treated in a subsequent vitrification step where other components are added to aid in achieving suitable
glass properties, e.g., Fe,Os3 to improve chemical durability.

Thermodynamic calculations of the Gibb’s free energy of formations (AG;) for different ammonium halides
as well as hydrohalic acids reveal trends with more spontaneous reactions occurring for lighter halides vs
heavier halides where formation favorability decreases as NH4F > NH4Cl > NH4Br > NH4l and HF > HCl
> HBr > HI as shown in Figure 4-1. Also, the favorability for the formation of each compound increase
(i.e., AG; decreases) with increases in the reaction temperature. Based on these reactions and the
thermodynamic data, it expected that the same processes developed for the chloride salt simulants would
translate well towards other salts like fluorides.

For fluoride salts, similar reactions are expected as are shown below in Reaction (4-3) for NH4sH>PO, as the
phosphate reactant and Reactions (4-4) for Hi:PO4 as the phosphate reactant. It is known, however, that
NH4F decomposes around 100°C.

2 NHyH2PO4 + 2 MF — My0#P2O0sgiass) + 2 NH4F gy + 2 HyOg) (4-3a)
2 NH4H2PO4 + MF; — MO#P2Os(gass) + 2 NHsF g + 2 HaO() (4-3b)

6 NH4H2PO4 + 2 MFs — My03#3 P20s(giase) + 6 NHyF gy + 6 H2O¢g) (4-3c)
2 HsPO4 + 2 MF — My0+P2Os(giass) + 2 HF () + 2 HaO(g) (4-4a)

2 H3PO, + MF; — MO#P,Os(giass) + 2 HF g + 2 HyO(g) (4-4b)

6 HsPO4 + 2 MF3; — M>03e3 PzOs(glass) +6 HF(g) +6 HzO(g) (4-4C)
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Figure 4-1. Summary of AG° as a function of temperature for (a) ammonium halide salts (i.e., NH4F, NH4Cl,
NH4Br, and NHul) from (Riley et al. 2020c¢) and (b) halide acids (i.e., HF, HCI1, HBr, and HI) calculated by using
HSC software (v9.9.0.1).

4.2 Off-Gas Hazards, Capture, and Recycle

Dehalogenation reactions discussed in this report generate off-gas products that require management. More
work is needed to better understand the specific off-gas hazards, methods for capture and/or neutralization,
and potential recycle of gaseous byproducts coming off the melt during dehalogenation (e.g., NH4Cl). The
specific pieces of data that are needed in this area include the following (described below in more detail):

e reaction rates for dehalogenation, i.e., ideal heat-treatment schedule for achieving full
dehalogenation including both temperatures and times;

e precursor composition that allows for full dehalogenation while maximizing waste loading and
other glass properties such as chemical durability, e.g., O:P molar ratio, Fe:P molar ratio; and

e cffects of the heat treatment process (e.g., heating rates, dwell temperatures) and reactants on the
production of acidic gases. In some cases, acidic byproducts have been observed when using ADP
as the phosphate precursor suggesting reaction pathways other than those presented in Reaction
(4-1).

While the dehalogenation approach works for chloride-based salts, it has not yet been thoroughly evaluated
for other halide salts, i.e., F, Br, I. Thus, more data is needed with these other salt systems to fully evaluate
the applicability of these techniques for dehalogenating these other salt wastes. In some cases, the halides
could be recovered and recycled, when in other cases (e.g., F, ), recycle is likely not beneficial. Table 4-1
provides a summary of the potential value in recycle of the halogens and the expected radioactivity of
different halogens. Some of these halides can be recovered and recycled, while others do not need to be
recycled. However, in all cases, removing the halides opens more waste form possibilities with these salt
streams.

Fluoride salts would be applicable for molten salt reactor waste streams and should be considered with the
dehalogenation approach. Additionally, it is possible that this process could be used to remove I or Br from
salt mixtures or pure streams. In the case of '*I, this is important because this is a major long-term dose
contributor to a repository dose requirement due to the long half-life (¢1,2) of 1.57x10” y. However, one of
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the most important benefits of dehalogenation is the ability to use this approach for *’Cl recovery. It is
likely that the chloride salts in an MSR will be enriched in *’Cl to minimize the neutron activation of natural
33Cl to *Cl, which is a long-lived (12 = 3.01x10° y) radioisotope posing issues for waste form disposal in
a geological repository.

Table 4-1. Options for various halides present in salt waste streams.

Species | Value in recycle Radioactive
F No No

Cl Yes® CCl) Maybe®

Br No Yes

I No Yes

@If chlorine is present in these salts as 3’Cl, value can be obtained through recycle.
®1f chlorine is present as 3°Cl, some 3°Cl might be present through neutron activation.

Halide salts can be somewhat soluble in phosphate melts under certain conditions such as in alkali-rich
silicophosphate melts (Tsai and Greenblatt 1988). However, they are only sparingly soluble in iron
phosphate melts and tend to decompose during vitrification as the halide or halide compounds formed
through reaction with phosphate precursors are released as gases above the melt. Once this dehalogenation
process occurs, if these reactions are performed in air, it is common that the cations associated with the
initial halides (e.g., Na* from NaCl) are converted to oxides and incorporated into the glass network as such
(Mesko et al. 2000; Kim and Day 2003). It is unclear how these reactions would proceed in the absence of
air or Ox(g).

Figure 4-2 provides a conceptual process flow diagram for potential off-gas products generated in different
scenarios when reacting chloride salts with H3;POs4, NH4H,PO4, or (NH4),HPOs. Depending on the
compositions of the reactants, different processing temperatures will be required, and a range of off-gas
products are expected. Table 4-2 provides a partial list of potential off-gas products generated during
reactions between halide salts and phosphate precursors along with melting and boiling temperatures of
pure species, e.g., HsPOs, NH4H,PO4, or (NH4):HPOs,.

H,0, trace otherse, Ar sweep gas -
to cell or cell gas treatment dry or wet LiOH, KOH H,0, Cl wastes

scrub; evaporate, oxidize, (> to waste forms
adsorption as needed and disposal

cool to T ~ 250-300°C; filter,
collect NH,Cl(s); transport
to U chlorination

separate H,O

NH.Clg, H,0,
NH,H,PO, others Ar sweep
(NH,),HPO,

purified Ar sweep gas

discharge to cell or L (Li,K)Cl to ER

cell gas treatment system

does H,0
interfere with
U chlorination

produce (Li,K)CI
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T>338°C NH,CI
o Ll
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Figure 4-2. Conceptual process flow diagram for treating chloride salts with phosphates showing different
off-gas products based on decisions (in red) made during the processing (courtesy of Nicholas Soelberg of Idaho
National Laboratory and Stephanie Bruffey of Oak Ridge National Laboratory).
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Table 4-2. Summary of melting temperatures (7m) and boiling temperatures (7v) for halogens, hydrohalic
acids, and ammonium halides. Note that (a) = triple point, (b) = decomposition temperature, and (c) =
sublimation point.

Chemical T (°C) Ty (°C)
F> -219.67® | -188.12
Cl -101.5 -34.04
Br, 7.2 58.8
I 113.7 184.4
HF -83.36 20
HCI -114.17 -85
HBr -86.80 -66.38
HI -50.76 -35.55
NH.F 238 -
NH,Cl1 520.1®® 338
NH,Br 542® 396
NH,I 551® 405

4.2.1 Reaction Rates for Effective Dehalogenation

Effective dehalogenation is not only full removal of the halides in the starting salt mixtures, but also
preventing volatile losses of the salt cations into the off-gas system. To achieve successful dehalogenation,
several parameters require optimization including (1) the temperature of the reactions, (2) heating rates,
and (3) the molar ratio of phosphate precursors to halide present in the salt. These types of parameters
should be evaluated so that a range of optimum parameters can be established. These reactions are
producing off-gas products, so heating at too fast of a rate could result in excessive bubbling and volatile
losses of critical salt cation component from the salt into the gas-phase.

4.2.2 Optimizing Precursor Compositions for Achieving Optimum Product

It is important to select the precursor composition so that the fully dehalogenated product will have the
ideal properties. The reason that this in the off-gas section is because one of the critical parameters here is
the H:CI or NH4:CI molar ratios in the starting material, which should be H > CI or NH4>Cl to make sure
that enough cations are present to react with the halides. If the concentration of H" or NH4" cations in the
starting mixture are lower than the halides, it is likely that some halides will remain in the glass. From a
previous study, it was shown that residual halides in iron phosphate glasses can lead to significantly reduced
chemical durability in the final glass product. Other parameters that can be adjusted in the starting mixture
include the O:P molar ratio and the Fe:P molar ratio.

423 Effects of the Heat Treatment Process and Reactants on Off-Gas
Products

The off-gas products and evolution rates from reacting halide salts with phosphate precursors will be
different depending on several factors including the heating rate, dwell temperatures, dwell times, and the
phosphate precursor selection. The use of ammonium-containing phosphates [e.g., NH4H2POs,
(NHa4)2HPO4] will result in ammonium halide off-gas products (e.g., NH4Cl) while using H3PO4 will result
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in hydrohalic acids (e.g., HCI). These different products will require different capture mechanisms and
treatment systems for recovery, recycle, and or treatment for disposal.

4.3 One-Step vs Two-Step Process for Dehalogenation and
Vitrification

To date, the most effective method for full dehalogenation and vitrification of chloride salts has been a two-
step process in which the salts are dehalogenated through a gentle heating process (7 < 600°C) followed by
adding Fe,>Os and a separate vitrification step (7'~ 1050°C). To further simplify this approach, exploration
of one-step processes should be explored to react salt wastes where the dehalogenation and vitrification
steps can be combined in a way that does not require cooling to room temperature between the two steps.

In scoping experiments to evaluate a one-step process, the mixture of a chloride salt simulant ER(SF), ADP,
and Fe,O3 did not melt at 7 < 600°C (Riley et al. 2020c). Rather, the mixture was a porous sintered mass
resembling a pumice stone with large open pores. Also, the condensate was visibly yellow due to the
presence of I and Fe, which were observed in this material during analysis with scanning electron
microscopy and energy dispersive spectroscopy (see Figure 4-3). If the glass-forming additives (e.g.,
Fe,03) are included in the batching process for the initial dechlorination heat treatment process, it will be
difficult to balance a full dechlorination reaction with the chloride salts while minimizing volatile losses of
additional components in the glass (e.g., P, Fe) and fission products from the salt (e.g., Cs). A comparison
of the details from the one-step and two-step processes is provided in Table 4-3.

Figure 4-3. (a) Pictures of the condensates collected using (yellow) the one-step process where Fe:O3 was
included in the batch during dechlorination and (white) the two-step process with no Fe:Os present; the two-
step process yielded a higher-purity NH4Cl salt. (b) Pseudocolored scanning electron micrograph showing
impurity crystals in the yellow condensate from the one-step process (these crystals contained N-P-CI-K-Fe-I-
Cs).
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Table 4-3. Summary between scoping tests to evaluate differences between one-step and two-step processes for
performing dehalogenation and vitrification for making phosphate waste forms from salt wastes.

Details One-step process Two-step process
Addition of Fe,O3 Before dehalogenation After dehalogenation
Dehalogenation process . Mixture creates a

(T <600°) Mixture does not melt homogeneous melt

Yellow and contaminated | White and very pure

Off-gas condensate with P, K, Fe, I NH.CI

Some options for accomplishing this could be including other additives in the initial formulation such as
higher alkali, transition metals, or other intermediates (e.g., Al,O3). Each additive included in the glass
composition will change the properties of the final form. It is straight forward to formulate a durable waste
form for a large variety of borosilicate glasses due to a large database of composition-property data and
models (Vienna et al. 2002). However, doing this same thing with phosphate glasses is difficult because
this type of database does not exist for phosphate waste forms and the waste streams will vary.

4.4 Large Scale Production

Various aspects of these processes need to be considered when discussing a full-scale operation. One aspect
that requires consideration is the water generated during decomposition of NH4H>PO,4. This could pose
issues for hot cell environments. Additionally, the more steps required for a given process, the more
difficult that process will likely be to implement in a radiological facility.

4.5 Process Complexity

Full-scale production requires facilities to store and mix reagents and waste, perform dehalogenation and
capture off-gas for treatment and possibly storage for recycle, adding a stabilizing agent such as Fe;O; to
the phosphate glass intermediate material and vitrifying, then sealing the final iron phosphate waste form
in a canister for storage to cool prior to transporting to a disposal facility. The operations must provide
adequate throughput rates using remote operations and possibly robotics. The overall complexity of the
process should be less than that developed for glass-bonded sodalite waste forms that are the current
baseline waste forms for ER and OR waste salts and similar to that used to vitrify tank wastes at the Defense
Waste Processing Facility (DWPF) at the Savannah River Site. Implementing the production processes
represented in the flow diagram in Figure 1-3 and off-gas treatment options outlined in Figure 4-2 will be
challenging and simplifications such as one-pot production of the final waste form will make the approach
more practical.

4.6 Security and Safeguards

All waste forms should be evaluated from the perspectives of accountability and safeguards. This means
that all separations activities and immobilization processes require consideration in ways that material could
be diverted for nefarious purposes. Approaches developed for fuel reprocessing and production of vitrified
waste forms from radioactive tank wastes can likely be directly applied to processes used to produce iron
phosphate waste forms. Methods for labeling and tracking waste canisters during storage, transport, and
disposal developed for other waste from production facilities will be applicable.
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4.7 Material Balance and Secondary Wastes

Most radionuclides in the waste salt are retained in the phosphate glass formed during the dehalogenation
step at moderate temperatures and the iron phosphate waste form produced by adding Fe,Os and vitrifying
at a higher temperature. Depending on the composition of the waste salt, the off-gas stream generated
during dehalogenation may be subjected to several processes to recover NH4Cl, HCL, or other volatilized
species for recycle or remove hazardous species such as HF for further treatment.

4.8 Safety Considerations

Reactions between chloride salts and the phosphate precursors H3POs, NH4H>PO4, or (NH4),HPO4 will
result in the production of toxic gases including NH3) and HCl,). These can likely be mitigated using
submerged bed scrubbers on the off-gas line coming from the melters processing these materials.
Processing fluoride-based salts will likely result in the production of HF ), which is very hazardous and
corrosive to glassware commonly employed in off-gas systems. This will need to be taken into
consideration when processing fluoride salts. Reactions for iodine-based salts are likely similar to those of
chloride-based salts when combining with H;POs. However, when combining nitrogen compounds with
iodine vapors, it is possible to form NHals or NI3, both of which are contact explosives. Thus, if iodine-
containing salts are present within the salt streams being investigated, the safety hazards of these potential
byproducts need be considered.

4.9 Production Rates and Throughput

Many of the reactions discussed in this report have only been demonstrated on a small scale. Scaling up
these processes, in particular the dechlorination reactions, could indicate some issues that require further
study, such as incomplete dehalogenation of the initial salt waste stream. Accelerating the dechlorination
reaction in scoping studies resulted in splattering of the melt and volatility of some of the salt cations that
should be retained in the final glass waste form. These operations will require optimization to achieve
maximizing waste processing throughput.
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5. WASTE FORM PROPERTIES
5.1 Crystalline Phase Content

Developmental iron phosphate materials made with different relative amounts of phosphate, salt, and iron
oxide resulted in materials with different crystal contents, primarily alkali iron phosphates with dendritic
structures. For example, Figure 5-1 shows the microstructures of materials DPF5-280 made with 40.1
mol% P,05-26.3 mol% Fe;03-33.6 mol% salt cations and DPF5-336 made with 43.5 mol% P,0s-28.5 mol
% Fe203-28.0 mol% salt cation oxides. Material DPF5-280 was an essentially homogeneous glass and
Material DPF5-336 contained a significant quantity of crystalline phases. The waste constituents of concern
(primarily Cs, Sr, and rare earth elements in these materials) report to the glass phase. The Fe;O; is added
to improve the durability of the glass phase, but excessive amounts lead to the formation of crystalline
phases that decrease the amount of glass available to sequester the radionuclides from the salt.

(a) (b)

Figure 5-1. Microstructures of (a) Material DPF5 280 and (b) Material DPFS5 336.

While certain lab-scale samples of waste form options might appear acceptable when made by melt
quenching, the typical waste form production process involves either pouring a melt into a canister or using
an in-can vitrification technology and, in both cases, the melt slowly cools within the canister. Slow cooling
of a melt can result in crystallization with detrimental effects on the final waste form composition and
performance. For example, the melt can undergo phase transitions where unwanted crystalline materials
precipitate leading to a residual glass of lower durability than desired. Because most radionuclides will be
contained in the glass phase, waste form performance is determined by the chemical durability of the iron
phosphate glass that encapsulates the crystalline phases.

Initial data on slow-cooling of DPF-5 (Riley 2020a) iron phosphate glass containing ER salt cations has
shown that a wide variety of different phosphate phases can form during slow cooling. The slow-cooling
temperature profile for canister centerline cooling (CCC) is shown in Figure 5-2, which is based off the
centerline cooling profile for a standard 0.61-m diameter HLW canister.
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Figure 5-2. Summary of CCC treatment profile compared to what types of cooling rates can be achieved in a
typical box furnace (Riley 2020a).

For these experiments, ERV2 salt was dehalogenated with NH4H,PO4 at temperatures up to 600°C, then
Fe,O; was added and the mixture vitrified at 1050°C. Following vitrification, the melt was quenched onto
an Inconel pour plate. Once cooled, the glass was ground to a powder within a tungsten carbide milling
chamber. Portions of this powder were added to a quartz crucible and an alumina crucible and both were
heated through the profile shown in Figure 5-2. Following the heat treatment process, the samples were

cross sectioned, and pictures of these cross sections are shown in Figure 5-3. Both samples showed regions
of blackish and reddish colored phases.

(a) fused quartz (b) alumina

5mm

Figure 5-3. Pictures of cross-sectioned DPF5S samples following CCC treatments in (a) a fused quartz crucible
and (b) an alumina crucible (Riley 2020a).

Both samples had regions of crystals rich in rare earth elements (REEs) at the base of the samples, which
are shown in Figure 5-4 and Figure 5-5 for quartz and alumina crucibles, respectively. However, the layer
thicknesses varied extensively between the different experiments with a value of 133£15 um for the
experiment in the alumina crucible and 805+£97 um for the experiment in the fused quartz crucible. It is
also worth noting that the morphologies of the crystals were quite different between the samples where the
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experiment run in fused quartz had thin plate-like crystals and the experiment run in alumina showed more
rectangularly shaped crystals. This is possibly due to the formation of oxyapatite-type crystals when SiO,
was present.

This type of crystal settling is commonly observed when vitrified HLW is slow-cooled where spinel crystals
are found on the bottom of cross-sectioned samples from crucible studies or even glass canisters (Rankin
et al. 1982). This precipitation process can lead to settling of the crystals, if their density is higher than that
of the melt, and these crystals can clog the melter pour spout (Jantzen 1982).

crucible base

— 100pm JEOL 7/29/2020 10pm JEOL 7/29/2020
15.0kV SWDCOMFO SEM WD 10.0mm 14:06:09 15.0kV SWDCOMFO SEM WD 10.0mm 14:07:48

Figure 5-4. SEM collage of the base of cross-sectioned iron phosphate glass waste forms that were CCC-cooled
in a quartz crucible, shown at different magnifications (Riley 2020a). These micrographs show the
accumulation of REOx-concentrated crystals.

L 100pm JEOL 7/29/2020 L 10pm JEOL 7/29/2020
15.0kv SWDCOMPO SEM WD 10.0mm 13:30:14 15.0kv SWDCOMPO SEM WD 10.0mm 13:19:53

Figure 5-5. SEM collage of the base of cross-sectioned iron phosphate glass waste forms that were CCC-cooled
in an alumina crucible, shown at different magnifications (Riley 2020a). These micrographs show the
accumulation of REO.-concentrated crystals.

A summary of the EDS elemental map on the sample made in the alumina crucible is shown in Figure 5-6.
This shows elemental distributions and how they changed across the different phases observed. Additional
analysis was performed on this EDS map to look at spot chemistry of different regions and this information
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is shown in Figure 5-7. Based on the comparison shown in Figure 5-7, it is clear that the compositions of
many of the different phases were very similar in chemical composition with minor fluctuations in
components including Al, K, Na, Sr, and Cs. The high-RE phase is one that stands out as being very
different from the rest of the phases compositionally with values as high as 23.3 at% total RE cations. It
should also be noted that these values do not include O or Li, based on limitations of the analytical
technique. The Li distribution could affect the appearance of these phases in the SEM due to the very low
atomic number, which would add a lot of contrast since all SEM micrographs were captured using
backscattered electrons. Additional work could be done to track Li in these samples using a different
analytical technique such as nano secondary ion mass spectrometry.

P-Fe-K-Al-Na-Sr-Cs-O P-Fe-Na-Cs-Sr-O

Y R

P-Fe-Al-K-Na-Sr-Cs-O
P-Fe-K-Al-Na-Sr-Cs-O
P-Fe-K-Na-Al-Sr-Cs-0
P-Fe-K-Al-Na-Cs-Sr-O

Fe-Ce-Nd-Sr-Na-Cs-Al-0<

a0 w3t Wvn i > 4 X ey T [ e e ERETYCRTR |

Figure 5-6. SEM-EDS collage taken at 850x of the DPF5-FY20-CCC2 sample run in an alumina crucible
showing the backscattered electron (BSE) micrograph, the overlay map, and the elemental distribution maps
(Riley 2020a). The top image shows the phase map with the most abundant species shown in descending order.
The term FY denotes the fiscal year in which these samples were made.



Road Map for Developing Iron Phosphate Waste Forms for Salt Wastes

February 26, 2021 23
50 — [ Regions 1,2
_ }I [ Regions 3-5
Regions 6-8
T [ Regions 9-11
X @ Regions 12-14
L 40— 21 Regions 15-17
2 B Regions 21-23
H i
® &= f!
& 30—
L
- -
©
£
S 20—
v
s
° -
v
R I J
o |BEEOEES ﬁﬁ Wﬁ = _
N | A ! P K | Fe Sr s ' ce ' nd

Figure 5-7. Summary of EDS compositions measured at different regions from Figure 5-6 including averages
and standard deviation (£10) (Riley 2020a).

5.2 Chemical and Physical Robustness

The chemical durability and degradation behavior of developmental iron phosphate waste forms have been
measured by using ASTM-International test methods C1308, C1220, and C1285 with minor modifications
(ASTM 2014; ASTM 2017b; ASTM 2017a). The ASTM C1308 method is conducted with monolithic
specimens in demineralized water at a low solid surface area-to-water volume ratio and the entire solution
is replaced daily to maintain dilute conditions. These tests are used to measure the kinetic dissolution rate
based on the release of soluble constituents Li, Cs, and P. The ASTM C1220 test is conducted under similar
conditions except the solution is not replaced. Small samples are taken to measure the accumulation of Li,
Cs, and P over time to detect saturation effects. The ASTM C128S5 test is conducted with crushed material
to achieve a higher solid surface area-to-water volume ratio to enhance saturation effects. Reacted
specimens are examined after each test to detect preferential dissolution of different constituent phases and
secondary phases generated during the test.

To date, the physical robustness of the prototype materials has not been quantified, but differences in the
brittleness, the extent of cracking, release from casting crucibles, and resistance to polishing have been
noted when preparing materials for corrosion tests. As with other vitrified waste forms, these characteristics
are sensitive to processing and annealing procedures that have not yet been optimized for these materials.

The results of corrosion tests indicate the crystalline and glassy phases dissolve by surface dissolution
mechanisms similar to borosilicate glasses. The dissolution rates of crystalline and glassy phases slow as
dissolved constituents accumulate in the ASTM C1220 and ASTM C1285 test solutions but remain constant
when solutions are maintained highly dilute in the ASTM C1308 tests. The affinity-based degradation
model developed for borosilicate waste glasses will likely be appropriate for modelling the iron phosphate
waste forms. However, two important aspects of borosilicate glass dissolution may not be relevant to the
degradation of iron phosphate glass—the formation of surface alteration layers and secondary phases. The
limited solubility of silica polymorphs results in the formation of highly porous clay-like layers on the glass
surface and zeolites can precipitate from highly concentrated solutions (Vienna et al. 2013). The formation
of both affect the dissolution rate of borosilicate glasses. Tests conducted with iron phosphate glass and
glass-ceramic materials have not shown either surface layers or rate-affecting secondary phases to form,
although tests may not have been conducted for sufficiently long durations to show these effects. Many
phosphate compounds are sparingly soluble in water, but they might not form layers that affect glass
dissolution or be coupled to the glass dissolution kinetics in a way the affects the dissolution rate. This
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would greatly simplify the iron phosphate glass dissolution model used in repository performance
simulations.

5.3 Thermal and Radiological Stability

More work is needed to better understand the effects of thermal and radiological stability for phosphate
glasses. Some data is available for these types of properties, but more in-depth analyses are needed.

The high waste loadings and high fission product loadings that can be achieved in iron phosphate waste
loadings will result in high decay heats being generated by fission products within the waste form. This will
affect the stability of the waste form itself and heat transferred to the storage and disposal facilities. These
evaluations should be considered for a variety of possible waste streams. One of the primary issues that
decay heat introduces into the qualification of a glass waste form is that, if the decay heat prohibits the
waste form from rapidly cooling through critical phase transition temperatures (e.g., the glass transition
temperature or Ty), this can lead to unwanted crystallization and, therefore, a lower chemical durability than
desired. Heat loading calculations also take several other material properties into consideration such as the
thermal diffusivity (a; defined in Equation (5-1)], thermal conductivity (k), specific heat capacity (c,), and
density (p), all of which will depend on the glass formulations and waste loadings. These intrinsic
properties affect the rate at which decay heat can be transferred out of the waste form into the waste package
and dissipated into the repository environment. In most engineered disposal facilities, the use of bentonite
backfill material will impose thermal limits on disposed waste.

a =k/(p~cp) (5-1)

Radiation damage in a waste from can be manifested through the occurrence of several things including
relaxation processes, diffusion processes, phase separation, devitrification, amorphization of crystalline
phases, volume changes, cracking, as well as gas accumulation, bubble formation, and/or void formation.
Specifically, very few studies have been done to evaluate the radiation stability of phosphate glasses and
none have been directed at the types of compositions to be expected from treating or immobilizing salt
streams from electrochemical reprocessing or molten salt reactors.

In iron phosphate glasses specifically, a few different studies have been conducted looking at radiation
stability under different exposures from ion exposure (e.g., Kr', Ag’, helium) to electron exposure (under
transmission electron microscopy). Observations of glasses during post-irradiation analysis revealed
bubbles, nanoparticle formation, phase separation, Fe redox changes, as well as depolymerization and other
structural and chemical changes in the glasses.

Dube et al. (2016) evaluated radiation damage in iron phosphate glasses with the composition of 60 mol%
P,0s and 40 mol% Fe>O; using either helium ions to simulate radiolysis and ballistic damage effects o
decay from actinides. They discovered that “blisters” of ~ 1 um were observed at helium energy of 30 keV
(see Figure 5-8). Irradiation from 2 MeV bismuth ions showed that network depolymerization occurred in
the form of breakage of Fe—O—P and P-O-P bonds. It is unclear how these types of effects would alter
other glass properties such as the chemical durability.
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Figure 5-8. SEM micrographs of iron phosphate glasses showing (left) as-made and (right) after He ion
irradiation on a pre-damaged specimen (Dube et al. 2016).

In a separate study by Gandy et al. (2015), analysis of 60 mol% P,Os and 40 mol% Fe,O3 glasses irradiated
with 2 MeV Kr' or Ag" ions showed additional damage to the glasses. To assess the progress of damage,
X-ray absorption spectroscopy was performed looking at the Fe K-edge. Here, radiation-induced damage
was observed in the form of (1) Fe*" reduction to Fe*', (2) increases in average Fe—O distances, and (3)
changes in local structure around the Fe** and Fe** ions.

5.4 Waste Loading and Durability

Two important aspects of waste form development are finding ways to maximize the waste loading and
reduce the overall waste form volume. Both of these need to be considered when formulating and
optimizing phosphate glass waste form compositions. More work is needed to determine these limits for
phosphate glasses using a variety of additives.

Increasing waste loading in a waste form has several advantages including a lower overall waste form
volume and potentially lowering costs for disposal in a repository. A comparison of waste form volume
starting from a given amount of salt is shown in Figure 5-9 for glass-bonded sodalite, lead tellurite glass,
and iron phosphate glasses; this comparison shows the benefit of research in the area of advanced waste
forms. The plot is shown with salt cation loadings on the x-axis because the phosphate glasses do not
contain any salt halides due to dehalogenation prior to vitrification. The y-axis is included to show how
the waste form volumes change to immobilize a given starting mass of salt.
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Figure 5-9. Summary of waste form volume as a function of salt cation loadings comparing glass-bonded
sodalite with tellurite glass and iron phosphate glasses (Riley 2019b; Riley 2020b). The inset picture shows the
difference in waste form volume to treat and immobilize the same starting mass of salt for GBS-CWF (S1) and
iron phosphate glass (P1).

The waste loading within a given waste form is dependent on several factors. Depending on the waste
composition, the overall waste loading will vary in each waste form matrix and this needs to be evaluated.
The amounts of salt and Fe,Os added to produce the iron phosphate waste form both affect the waste
loading. The amount of salt directly increases the amounts of radionuclides retained in the waste form and
the amount of Fe,O; increases the mass and volume of the final waste form that immobilizes the
radionuclides. It is desired to maximize the amount of salt waste and minimize the amount of Fe,O3; added
to stabilize the waste form.

For initial and follow-on studies with iron phosphate glasses for these applications, several observations
and recommendations lead to the formulation and production of several prototype waste forms for testing
that are shown on the ternary diagram in Figure 5-10. Tests with glasses DPF-1 through DPF-6 were
conducted in fiscal year (FY) 2018 and most of that work is documented in reports (Ebert et al. 2018; Ebert
and Fortner 2019; Ebert and Fortner 2020; Stariha and Ebert 2020), memorandums to DOE-NE (Riley
2017; Riley 2018; Riley 2019a; Riley 2019b), and a journal article (Riley et al. 2020¢). From those studies,
the glasses with the best chemical durabilities were chosen for further study in FY2019 and FY2020 that
included DPF-3 and DPF-5 where a glasses based on DPF-3 were made with varying Fe:P molar ratios
(fixed salt loading) and glasses based on DPF-5 were made with varying salt loadings (fixed Fe:P molar
ratios).
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Figure 5-10. Phase diagram of the FY2018 and FY2019 glass matrices. Note that “salt loading” denotes salt
cation oxide loading (e.g., while NdCl; is present in the original ERV?2 salt, the Nd20Os concentration in the final
iron phosphate glass waste form was used to calculate the salt loading).

The first series of developmental materials DPF-1 through DPF-6 were formulated to evaluate the effects
of the CI/P and Fe/P ratios in the mixed reagents on the phase formation and chemical durability of the
final waste form. The formulations are summarized in Table 5-1: DPF-1 was made using the ratios
recommended in the literature; DPF-2 had a lower Fe content and DPF-3 had a higher Fe content; DPF-4
had a higher salt content and DPF-5 and DPF-6 had lower salt contents. Note that separate materials
DPF-4a and DPF-4b were made using NH4H>PO4 and (NH4)HPO. to assess the effects on the
dehalogenation efficiency and waste form durability. Use of the different reagents generates more or less
NH4CI and water.

Table 5-1. As-batched reagents in developmental materials, in grams. Included are the molar ratios of CI/P
and Fe/P.

Sample Mass, g Mole ratio
ID ERV Salt | NH{H,PO, | Fe;O; | CIP | Fe/P
DPF-1 11.8772 21.9954 10.1179 | 0.988 | 0.662
DPF-2 | 12.3169 24.1944 7.4784 | 0.931 | 0.445
DPEF-3 10.5578 20.6752 12.7573 | 0.934 | 0.889
DPF-4a | 13.1972 20.6754 10.1177 | 1.167 | 0.705
DPF-4b | 12.3382 22.1929® | 94599 | 1.167 | 0.705
DPE-5 8.7987 24.1955 10.9977 | 0.665 | 0.655
DPF-6 5.9388 26.0645 11.9877 | 0.417 | 0.662
@Mass (NH4),HPO4 or DHP
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Figure 5-11 shows the results of ASTM C1308 tests conducted with the six developmental DPF materials.
Tests were conducted at 90°C in demineralized water at a specimen surface area-to-water volume ratio of
approximately 5 m™'. The test solution was exchanged with fresh demineralized water every 24 hours to
maintain dilute conditions. The solution concentrations measured in each recovered test solution were
normalized to the surface area and elemental concentration in the DPF material to calculate the normalized
elemental mass loss. The results based on cesium are shown in Figure 5-11 to indicate dissolution of the
glassy phase and the results based on phosphorous represent dissolution of the glassy and crystalline phases
(Ebert et al. 2018). The normalized release values of cesium [i.e., NL(Cs)] for the test with DPF-4a
exceeded the range shown in the plot. Other major salt waste constituents show the same behavior as
cesium. The linearity in the plotted results indicates both the glassy and crystalline phases dissolve by
surface dissolution and the higher values of NL(Cs) and NL(P) in the test with DPF-4a (results for DPF-4b
were identical) indicates material is much less durable than the others. The high y-intercepts of the
regression fits may indicate the element was not effectively incorporated into the waste form or is present
in a highly soluble phase. Material DPF-4 was formulated with an amount of salt that exceeded the
stoichiometry of the dehalogenation reactions given in Equations (4-1a)—(4-1c). The salt constituents are
most effectively immobilized in DPF-3 and DPF-5.
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Figure 5-11. Results of ASTM C1308 tests with developmental DPF materials based on (a) cesium and (b)
phosphorous.

A second series of prototype waste forms were made to better quantify the effects of the reagent ratios by
varying the iron contents in DPF-3 and varying the salt cation contents in DPF-5; the variations are shown
by the red and green lines in Figure 5-10. The values for the symbols on the plot in Figure 5-10 represent
the Fe:P ratio or the mass fraction of salt cations in the materials. Figure 5-12 shows the results of tests
with the DPF-3 and DPF-5 series of materials based on NL(Cs). Materials DPF3-033 and DPF3-043 were
non-durable and the NL(Cs) values were much higher than the scale of Figure 5-12a (values were
approximately 100 and 400 g m™ after the first test interval, respectively).
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Figure 5-12. Results of ASTM C1308 tests with prototype DPF materials made with (a) various iron contents
and (b) various salt contents.

Materials DPF3-033 and DPF3-043 had visible phase separation of glassy and crystalline phases, as shown
in Figure 5-13a, and material DPF3-100 had an abundance of iron laths, as shown by the SEM
photomicrograph in Figure 5-13b. In contrast, the crystals formed in materials made with intermediate
amounts of added Fe,Os were more uniformly distributed throughout the glassy phase (see Figure 5-1b).
Furthermore, material DPF3-100 made with the highest iron content was brittle and adding either too little
or excessive Fe;O3; may be detrimental to waste form durability. These tests indicate waste forms with
salt:phosphate ratios in the region between DPF5-388 and DPF5-280 in the ternary diagram in Figure 5-10
and the Fe, O3 contents in those materials will have similar chemical durabilities and are recommended for
further consideration. Higher salt contents cannot be completely dehalogenated (based on currently known
data) and higher Fe,O3 contents decrease the waste loading without improving the durability.

@) (b)

Figure 5-13. (a) Photograph of DPF3-034 specimen and (b) SEM photomicrograph of DPF3-100 surface after
ASTM C1308 test.

Modified ASTM C1285 tests were conducted to assess the effect of solution saturation on the dissolution
rates. Figure 5-14 shows results of tests with several prototype materials based on the releases of cesium
and phosphorous. Results for material DPF3-043 were higher than the scale of the plots (near 5 g m?) and
are not shown, but the releases from other materials are similar and increase slightly during the tests.
Cesium is only present in the glassy phase but phosphorous is present in both the glassy and crystalline
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phases. The slightly higher NL(Cs) values indicate that the glassy phase dissolves faster than the crystalline
phases in the ASTM C1285 tests. More extensive testing to assess and quantify the effect of solution
saturation on the degradation rate is needed to support long-term modeling and performance in a disposal
system.

1 T T T T 1 T T T T
[ 8 DPF3-033 i [ 8 DPF3-033

L DPF3-043 ] L DPF3-043 ]
0.8 -1 & DpPF3-100 * ¢ 0.8 | & DPF3-100 ]
L ® DPF5-280 'Y O L ® DPF5-280 ]
I € DPF5-336 * O & 1 I € DPF5-336 1
06 N 06 ]
NLGs), “°F . & o 1 NLP), °f :
-2 - o o 1 2 r 1
am- o4 # o 1 9mM g4t i
[ ° o @1 [ o ]
L () i L Q 4
02 L e ° b ] 0.2 | 8 s ? ? § .
i ° ] [ 'y ]

0 1 1 1 1 0 1 | 1 1

0 10 20 30 40 0 10 20 30 40

Time, d Time, d
(@) (b)

Figure 5-14. Results of ASTM C1285 tests with prototype DPF materials made with different iron and salt
contents (a) NL(Cs) and (b) NL(P).
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6. WASTE FORM PRODUCT CONSISTENCY

A waste form must meet regulatory requirements addressing physical, chemical, and radiological attributes
and be shown to perform acceptably in an engineered disposal facility. That is, the phases containing
radionuclides must remain sufficiently durable under anticipated environmental conditions to adequately
retain radionuclides throughout the service life of the repository. The degradation of most waste forms
occurs through contact with groundwater and the degradation rate depends on the waste form composition.
Confidence in waste form performance is provided by understanding the relationship between the
composition and the degradation rate.

After a waste form material is accepted for disposal, the performance of waste forms made for disposal is
ensured by careful control of the composition and processing conditions to provide product consistency.
Therefore, it is important to determine acceptable ranges of composition and processing limits to ensure all
waste forms that are produced for disposal meet regulatory requirements and will perform acceptably. All
waste forms will not be identical because waste stream compositions will vary, but the chemical durability
of all waste forms must meet an accepted threshold. An adequate understanding of the relationships
between composition, processing conditions, degradation behavior, and other properties in possible
disposal environments is required to establish production control limits that will provide consistently
durable waste forms. The composition of the waste form is controlled during production based on
knowledge of the waste stream composition and batching of waste, immobilizing materials, and additives.
The phases generated in the waste form can be controlled through the batching and processing conditions.
In the case of iron phosphate waste forms, the amounts of crystalline phases that form must be controlled,
and it is likely that the cooling profile of full-size waste forms will be an important factor. The
correspondence between the phase composition of the waste form and processing conditions must be
established during waste form development.

The chemical durability of iron phosphate waste forms is expected to be controlled primarily by the
durability of the glass phase, which will contain most or all of the radionuclides. The durability can be
measured using the ASTM C1285 product consistency test, but the results will be affected by the crystalline
content (ASTM 2014). The production controls can be used as evidence that the crystal content is
acceptable if the relationships are established as part of waste form development. Product consistency tests
with borosilicate glass include analyses of B and Si added as the immobilizing matrix in addition to soluble
alkali metals from the waste. For iron phosphate waste forms, analyses of phosphorus and lithium can be
used to represent the combined durability of the iron phosphate glass and phosphate crystalline phases. The
P is provided by the immobilizing matrix and Li is provided by the waste, and both elements are present in
both phases. The correspondence between the test results and the phase composition of the waste form
must be established during waste form development.
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7. PERFORMANCE IN A DISPOSAL SYSTEM

The HLW disposal systems are designed to mitigate contamination of the adjacent biosphere by the
disposed waste during regulated periods of several hundred thousand years. This is done by utilizing natural
geological and engineered barriers to first minimize contact of disposed waste by groundwater and then
retard the migration of radionuclides released from engineered waste forms as they corrode. A mechanistic
understanding of degradation and transport processes provides confidence in models used to predict waste
form performance over the geological time scale pertinent to waste disposal. Laboratory tests cannot be
run to empirically extrapolate responses over long times. Instead, tests are conducted to understand
mechanistic aspects of material degradation processes and how they are affected by environmental
conditions such as temperature, solution pH, and redox conditions. Several experimental parameters can
be adjusted to accelerate waste form degradation behavior, such as running tests at elevated temperatures
(e.g., 290°C), but it is important to understand how accelerating test conditions change the mechanism.
Furthermore, different test methods and models will be appropriate for different waste materials. The
ASTM International standard C1174 (ASTM 2020) provides guidance for using various testing approaches
to develop reliable models for material degradation over long durations, including accelerating methods.
That guide should be consulted before designing studies to develop a long-term degradation model for a
reference waste form material.

The ASTM C1174 standard recommends types of tests needed to quantify waste form performance but
does not identify specific tests methods because those will depend on the material of interest. Many
standard test methods have been developed and different methods highlight different aspects of corrosion
behavior. It is important to understand how the test response relates to the mechanism of the material being
tested and the environment that is represented. Similar test methods are appropriate for glasses and
crystalline materials relevant to the iron phosphate waste form, as described in Section 5.2. Disposal
systems are engineered to prevent water from contacting the waste forms, but most test methods are water-
dominated systems. The commonly used ASTM C1285 product consistency test (ASTM 2014) uses
crushed material to establish a high surface area-to-solution volume ratio and generate a highly concentrated
solution within a short test duration. The original objective of the method was to generate a saturated
solution to measure the effective solubility of different waste forms. The test response does not provide a
useful measure of the dissolution kinetics of the test material but has been used extensively (and incorrectly)
for that purpose. The method does provide a valuable measure of dissolution under saturated solutions but
is not very sensitive to the material composition. Test methods such as ASTM C1308 (ASTM 2017b) that
maintain dilute solutions to eliminate saturation effects provide a reliable measure of the dissolution kinetics
that is sensitive to the material composition. Other aspects addressed in ASTM C1174 include separate test
series to quantify the effects of waste form composition, the disposal environment, interaction of co-located
materials and waste forms.

Other aspects of waste disposal are being addressed within the DOE Spent Fuel and Waste Disposal
Campaign, within which generic contaminant transport models are being developed that link radionuclide
release rates from directly disposed waste and engineered waste forms to regulated dose limits at repository
boundaries with the biosphere. Those models provide the range environmental scenarios under which waste
forms degrade to provide radionuclide source terms needed for contaminant transport models. The
environmental conditions may serve as inputs to the degradation model, such as temperature, pH, and
dissolved chloride. The interface between waste form development and repository facility development
will become important when the waste form characteristics become finalized. That interface will also
inform specifications of waste form durability and consistency requirements.

The canistered waste will remain thermally hot for a long time due to high levels of heat-generating
radionuclides and will probably need to be stored for many years before cooling sufficiently for transport
and disposal. The waste will probably be thermally hotter than HLW glass and require storage facilities
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with active heat removal systems. The thermal limits for disposal or safe interim storage could establish
maximum waste loadings for waste forms.

For now, and for the foreseeable future, engineered waste forms and directly disposable spent nuclear fuel
are being stored near where they are generated in the U.S., including long-term dry storage of nuclear fuel
and remote storage of HLW glass. Monitored retrievable storage near the final disposal site was
recommended by the Blue Ribbon Panel in January 2012 and methods have been developed to assess
storage and transport of commercial and government-owned spent nuclear fuel (SRNL 2016), HLW, and
greater-than-Class C waste. The established requirements and practices for HLW will be relevant to iron
phosphate waste forms.
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8. SUMMARY AND CONCLUSIONS

Initial work to develop an iron phosphate waste form to dehalogenate and immobilize salt wastes from
pyrochemical treatment of used nuclear fuels has been completed within the DOE fuel cycle program based
on a fairly extensive literature review. Based on the results of these studies and input from technical experts
from the national labs, universities, and industry during a 2-day virtual Round Table Workshop, this report
identifies issues to be addressed and some recommended approaches for aspects starting from identifying
waste streams to be immobilized for which the waste form may be suitable, technical bases for optimizing
waste form formulation and possible processing methods, establishing durability requirements for
acceptable performance and measuring durabilities with laboratory tests that also support the development
of degradation models used to optimize formulations and predict radionuclide source terms for transport
models. The development of durable waste forms includes interfacing with researchers developing
separation methods that affect waste stream compositions, researchers developing engineered disposal
systems, and regulators monitoring accountancy during production, storage, and disposal and establishing
acceptance criteria for transporting and disposing the waste forms.

The initial considerations of production and disposal aspects summarized in this report indicate a pathway
to the successful utilization of iron phosphate waste forms and a roadmap for the research needed to advance
the TRL of all steps in the process towards implementation. For some of these production and disposal
aspects, a lot of literature is available on the topics such as methods for dehalogenating chloride salts as
well as glass formulation for optimizing chemical durability of phosphate glasses. However, little is known
regarding other aspects, such as if the phosphate reactions given in Equations 4-1 through 4-4 would
proceed effectively for fluoride salt wastes in an MSR waste stream. Overall, utilizing established
phosphate technology holds promise for treating a wide range of halide salt waste streams to produce waste
forms for disposal in a HLW repository and would be suitable for recycling *’C1 and/or "Li.
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Table Al. Participants in the Round Table Workshop in August 2020.

Hosts

Brian Riley
(PNNL)

William Ebert
(ANL)

Sponsors

Stephen Kung
(DOE-NE)

Kimberly Gray
(DOE-NE)

Christina Leggett
(DOE-NE)

National Laboratories

Stephanie Bruffey
(ORNL)

Robert Finch
(SNL)

Jeff Fortner
(ANL)

Steve Herrmann
(INL)

James King
(INL)

Morgan Kropp
(INL)

Ken Marsden
(INL)

Joanna McFarlane
(ORNL)

Nick Soelberg
(INL)

Sarah Stariha
(ANL)

Kevin Tolman
(INL)

John Vienna
(PNNL)

Mark Williamson
(ANL)

Jim Willet
(ANL)

Universities

Richard Brow
(Missouri S&T)

Krista Carlson
(Univ. Utah)

Delbert Day
(Missouri S&T)

Levi Gardner
(Univ. Utah)

Mike Simpson
(Univ. Utah)

Ming Tang
(Clemson Univ.)

Other participants

Ted Day
(MO-SCI Corp.)

CW Kim
(MO-SCI Corp.)

Darryl Siemer
(INL — retired)

Robert Ledoux
(ARPA-E)

Table A2. Topics for discussion at the Round Table Workshop.

Topic Description

1 Current process (PNNL-ANL-INL)

2 Phosphate glass history

3 Phosphate glass as a waste form

4 Phosphate glass chemical durability

5 Phosphate glass radiation stability

6 Electrochemical separations — salt waste chemistry
7 Alternative electrochemical waste forms
8 Off-gas perspective

9 Full-scale operations perspective (echem)
10 Accountancy & safeguards perspective
11 Waste disposal perspective

12 Advantages of phosphate process
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Table A3. Agenda for Day-1 of the Round Table Workshop on August 4, 2020.

Time Topic . Ao
(PDT) # Topic Description Presenter(s)
8:00 — Opening remarks and welcome B. Riley, W. Ebert
305 1) Introduction tq PNNL-ANL-INL phosphate process B. Riley

(general overview)

S. Herrmann, M.
8:25 @) UCI; production using NH4Cl Kropp,
K. Tolman

8:45 2) Phosphate glass history T. Day, CW Kim
9:05 2 Phosphate glass history (US-DOE side) J. Vienna

Phosphate composition-structure-properties (emphasis on
9:25 “) glass chemical durability) R. Brow
9:55 Break
10:00 (3) Phosphate glass as a waste form T. Day, CW Kim
10:40 (3) Phosphate glass (simplified approach) D. Siemer
11:00  (4) Phosphate glass microstructure and chemical durability W. Ebert

(Fe-P-O)
11:30 (5 Radiation stability M. Tang
11:55 Closing remarks B. Riley, W. Ebert
12:00 Adjourn
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Table A4. Agenda for Day-2 of the Round Table Workshop on August 11, 2020.

gg;) ;#l"opic Topic Description Presenter(s)

8:00 — Opening remarks and welcome B. Riley, W. Ebert

805 6) E\l}z‘i/ri(:‘:il)emical separations perspective (general J. King, K. Marsden
8:35 @) Baseline ACWF W. Ebert

9:00 7 Alternative waste forms for salt streams (SAP) B. Riley

9:20 @) Alternative waste forms for salt streams (USHYZ) IM%?;?S:;F Carlson,
9:40 ) Off-gas perspective (focus on this process) IS\I ziﬁfggj' McFarlane,
10:10 Break

10:15  (9) Full-scale operations perspective M. Williamson

10:45  (10) Accountancy and safeguards perspective R. Finch

11:.05 (1) Waste disposal perspective W. Ebert

11:30  (12) Advantages of phosphate process B. Riley, S. Herrmann
11:50 Closing remarks B. Riley, W. Ebert
11:55 Adjourn
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