

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Glass Property-Composition Models for Support of Hanford WTP LAW Facility Operation

March 2022

John D. Vienna Alejandro Heredia-Langner Scott K. Cooley Aimee E. Holmes Dong-Sang Kim Nicholas A. Lumetta

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

> PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) email: orders@ntis.gov <https://www.ntis.gov/about> Online ordering: http://www.ntis.gov

Glass Property-Composition Models for Support of Hanford WTP LAW Facility Operation

March 2022

John D. Vienna Alejandro Heredia-Langner Scott K. Cooley Aimee E. Holmes Dong-Sang Kim Nicholas A. Lumetta

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99354

Abstract

Current plans for the River Protection Project at Hanford envision starting to vitrifying low-activity waste (LAW) by 2023 using a Direct Feed Low-Activity Waste (DFLAW) approach.¹ The Waste Treatment and Immobilization Plant (WTP) LAW Facility will be operated and controlled using a LAW glass formulation algorithm (GFA), which requires several inputs based on research and development results. LAW glass property-composition models for several product quality and processing properties are key inputs for the LAW GFA.

It is envisioned that the preliminary LAW GFA discussed by Kim and Vienna $(2012)^2$ will be used for commissioning and initial radioactive operations of the WTP LAW Facility under Bechtel National, Inc. using the DFLAW approach. Then, an updated LAW GFA will be developed for implementation by the WTP operating contractor that takes over after WTP LAW Facility commissioning. This report documents the enhanced LAW glass property-composition models developed for use in the updated LAW GFA. The properties for which models were developed include Product Consistency Test (PCT) response, Vapor Hydration Test (VHT) response, viscosity at 1150 °C, electrical conductivity at 1150 °C, melter SO₃ tolerance at 1150 °C, and K-3 refractory corrosion at 1208 °C. Table S.1 lists the tables in this report that contain the recommended models for each of these properties. The model types recommended include partial quadratic mixture (PQM) models for viscosity, electrical conductivity, melter SO₃ tolerance and K-3 corrosion, bias corrected PQM model (bcPQM) for PCT, and logistic PQM model for VHT. The fits of model and validation subsets were found to be well predicted by the recommended models.

	Model Form		Report Table Containing
		Report Table Containing	Variance-Covariance Matrix
LAW Glass Property		Recommended Model	for Recommended Model
PCT, B and Na normalized losses (g/m ²)	bcPQM	Table 3.7 (B), Table 3.11 (Na)	Table D.2, Table D.4
VHT (pass/fail)	Logistic PQM model	Table 4.6	Table D.6
Viscosity at 1150 °C (poise)	PQM model	Table 5.5	Table D.8
Electrical conductivity at 1150 °C (S/cm)	PQM model	Table 6.5	Table D.10
Melter SO ₃ tolerance (wt%)	PQM model	Table 7.5	Table D.12
K-3 refractory corrosion (inches)	PQM model	Table 8.5	Table D.14

 Table S.1. Report Tables Containing the Recommended Property-Composition Models and Their Variance-Covariance Matrices

 ¹ Tilanus SN, LM Bergman, RO Lokken, AJ Schubick, EB West, RT Jasper, SL Orcutt, TM Holh, AN Praga, MN Wells, KW Burnett, CS Smalley, JK Bernards, SD Reaksecker, and TL Waldo. 2017. *River Protection Project System Plan.* ORP-11242, Rev. 8. U.S. Department of Energy, Office of River Protection, Richland, Washington.
 ² Kim DS and JD Vienna. 2012. *Preliminary ILAW Formulation Algorithm Description*. 24590 LAW RPT-RT-04-0003, Rev. 1, ORP-56321, River Protection Project, Hanford Waste Treatment and Immobilization Plant, Richland, Washington.

Quality Assurance

This work was performed under the U.S. Department of Energy (DOE) Office of River Protection Inter-Entity Work Order # M0ORV00020 and in accordance with the Pacific Northwest National Laboratory (PNNL) Nuclear Quality Assurance Program (NQAP) Quality Assurance Manual (NQAP-2012) and associated quality assurance procedures. The NQAP is based on the requirements of NQA-1-2012, *Quality Assurance Requirements for Nuclear Facility Application*, graded on the approach presented in NQA-1-2012, Subpart 4.2.1, *Guidance on Graded Application of Nuclear Quality Assurance (NQA) Standard for Research and Development*.

The NQAP works in conjunction with PNNL's laboratory-level Quality Management Program, which is based upon the requirements as defined in the DOE Order 414.1D, *Quality Assurance*, and 10 CFR 830, *Nuclear Safety Management*, Subpart A, *Quality Assurance Requirements*. PNNL implements these requirements with a graded approach using the consensus standard ASME NQA-1-2000, *Quality Assurance Requirements for Nuclear Facility Applications*, graded on the approach presented in NQA-1-2000, Subpart 4.2, *Guidance on Graded Application of Quality Assurance (QA) Standard for Nuclear-Related Research and Development*.

This work was graded and performed to support production and operation of technology, unless otherwise noted.

Acknowledgments

The authors gratefully acknowledge the financial support provided by the U.S. Department of Energy Office of River Protection. The organization of this report and some of its text were adapted from the organization and text in Piepel et el. (2007). A special thanks to Greg Piepel (PNNL-retired) who adapted and drafted material in Sections 1, 2, 4, 6, and 7, and the appendices but chose not to be listed as a co-author because of retiring before the report was completed. Stephen Walsh (PNNL/MSU) and Xiaonan Lu (PNNL), along with the authors, performed the tedious job of checking data and calculations; for which we are greatly indebted. We also thank Renee Russell, Charmayne Lonergan, Tony Jin, and David MacPherson for PNNL internal reviews of this report. We also acknowledge Matt Wilburn for editing and formatting the report. We thank Will Eaton (PNNL) and Renee Russell (PNNL) for programmatic support during the conduct of this work. This report was also reviewed by a number of technical reviewers outside of PNNL to whom we are grateful: Pavel Hrma (ORP), Paul Bingham (SHU), Sofie Schuller (CEA).

The data used in modeling of the glass properties in this study were supplied by the Vitreous State Laboratory at the Catholic University of America (VSL), PNNL, and SRNL. We are grateful for the data and those who carefully collected and documented it. We have acknowledged the data more specifically by citing each data source where appropriate.

Finally, we are indebted to Albert Kruger (ORP) for his vision and oversight (both technical and programmatic) of this effort.

Abbreviations

3TS	three-time saturation
ANN	artificial neural network
bc	bias correction(ed)
BCa	bias corrected accelerated (method for bootstrap analysis)
bcPQM	bias corrected partial quadratic mixture
BS	batch saturation (method for measuring SO ₃ solubility)
Bub	bubbling (method for measuring SO ₃ solubility)
CCC	container centerline cooled(ing)
CI	confidence interval (two-sided)
DF	degrees of freedom
DFLAW	Direct Feed Low-Activity Waste
DOE	U.S. Department of Energy
EC	electrical conductivity
EWG	enhanced waste glass
FLM	full linear mixture
GCR	glass composition region
GFA	glass formulation algorithm
GLM	generalized linear model
GLS	generalized least squares
GPR	Gaussian process regression
HLW	high-level waste
HiNa ₂ O	high-waste-loading LAW glass with high Na ₂ O
HiSO ₃	high-waste-loading LAW glass with high SO ₃ , but not high Na_2O
ICP-OES	inductively coupled plasma-optical emission spectroscopy
ID	identification
IHLW	immobilized high-level waste
IL	inner layer
ILAW	immobilized low-activity waste
KNN	k-nearest neighbors
LAW	low-activity waste
LCI	lower confidence interval
LLR	local linear regression
LM	linear mixture
LOF	lack of fit
LP123	PNNL LAW Phases 1, 2, and 3

LP2OL	PNNL LAW Phase 2 outer layer
MAXR	maximum R ² improvement
MCC	multiple-component constraint
mf	mass fraction
MSE	mean squared error (from regression)
MT	melter tolerance
NQA	nuclear quality assurance
NQAP	nuclear quality assurance program
OL	outer layer
OLS	ordinary least squares
ORP	DOE Office of River Protection
Р	poise
Pa·s	Pascal-second
PCT	Product Consistency Test
P/F	pass/fail
PI	prediction interval
PNNL	Pacific Northwest National Laboratory
PQM	partial quadratic mixture
PvM	predicted versus measured
QA	quality assurance
QAP	Quality Assurance Plan
REFMIX	reference mixture
RLM	reduced linear mixture
%RSD	percent relative standard deviation
SCC	single-component constraint
SD	standard deviation
SR	saturation-remelt (method of measuring SO3 solubility)
SSE	sum-of-squared errors
SVM	support vector machine
UCI	upper confidence interval
VHT	Vapor Hydration Test
VFT	Vogel-Fulcher-Tammann
VSL	Vitreous State Laboratory at the Catholic University of America
WTP	Waste Treatment and Immobilization Plant
XRF	X-ray fluorescence

Symbols

А	glass surface area
β_i	coefficient for the <i>i</i> th model component
β	vector of model coefficients
b	vector of model coefficient estimates
С	bias correction cutoff estimate
С	bias correction cutoff
C_j	elemental concentration of the j^{th} element in the PCT leachate
C_3	offset for 3TS SO ₃ solubility methods in melter SO ₃ tolerance models
C_S	offset for BS and SR SO ₃ solubility methods in melter SO ₃ tolerance models
d	vector of component concentrations normalized after removing SO ₃
D	matrix of d vectors for all glasses in modeling set
D	Vapor Hydration Test response, alteration depth after 24-day test
е	random error for each point
E	preexponential term in VFT equation
3	melt electrical conductivity
E1150	melt electrical conductivity at 1150°C (S/cm)
F	temperature coefficient in VFT equation
f_j	mass fraction of the j^{th} element in the glass
g	vector of component concentrations in mass fraction
G	matrix of \mathbf{g} vectors for all glasses in modeling set
g_i	mass fraction of <i>i</i> th component in glass
g_j	mass fraction of <i>j</i> th component in glass
H_3	SO ₃ solubility method counter (1 if the method was 3TS, 0 otherwise)
H_S	SO ₃ solubility method counter (1 if the method was BS or SR, 0 otherwise)
i	used as a counter in variables that take on several values (e.g., g_i vector)
j	used as a counter in variables that take on several values (e.g., g_j vector)
Κ	a multiplier that reflects the desired confidence level and DF
k_{1208}	K-3 corrosion neck loss in 6-day test at 1208°C (inches)
L	lower limit
L_i	lower limit for <i>i</i> th glass component concentration
LV	leachate (deionized water) volume used in the PCT
η	melt viscosity
η_{1150}	melt viscosity at 1150°C (P or Pa·s)
n	number of datapoints
n_i	mass fraction of i^{th} component in glass, with SO ₃ normalized out
MSE	mean squared error
M_{SO_3}	measured mass fraction of SO ₃
Р	transformed property
PCT_B^{NL}	normalized loss (g/m ²) of boron after 7-day PCT
PCT_{Na}^{NL} PCT_{j}^{NL}	normalized loss (g/m ²) of sodium after 7-day PCT
PCT_j^{NL}	normalized loss (g/m ²) of j^{th} element after 7-day PCT, $j = B$, Na, and/or Si
-	

ρ	glass density
q	number of terms
R^2	R-squared (coefficient of determination)
R_A^2	R-squared adjusted
R_{Eval}^2	R-squared for evaluation set
R_P^2	R-squared predicted (aka press)
R_V^2	R-squared validation
r_a^{VHT}	alteration rate (g/m ² /d) by 200 °C VHT
RMSE	root mean squared error
$RMSE_{Eval}$	root mean squared error for evaluation set
$RMSE_V$	root mean squared error, validation
S	bias correction slope estimate
S_0	initial bias correction slope estimate
Δs	change in bias correction slope estimate
S	bias correction slope
S_0	initial bias correction slope
ΔS	change in bias correction slope
SO_3 -m	measured mass fraction of SO ₃ in a LAW glass
SO ₃ -sol	estimated soluble mass fraction of SO3 in a LAW glass
SO ₃ -t	target mass fraction of SO ₃ in a LAW glass
t	VHT test duration
T_0	temperature independent parameter in VFT equation
T_j	target mass fraction of the j^{th} glass component
T_K	absolute temperature in VFT equation
U	upper limit
U_i	upper limit for i^{th} glass component concentration
\mathcal{V}_{λ}	unbiased variance estimate for the term λ
V_λ	variance for the term λ
\mathbf{V}_{P}	variance-covariance matrix for property P
$W_{SO_3}^{MT}$	melter SO ₃ tolerance
χ_i	normalized mass fraction of the i^{th} glass oxide or halogen component after
	removing SO ₃ -m from glass composition
Z_i	coefficient for i^{th} glass component in multi-component concentration limit

Contents

Abstrac	et			iii
Quality	Assura	nce		iv
Acknow	wledgme	ents		v
Abbrev	iations			vi
Symbol	ls			viii
Conten	ts			X
Figures				xvi
Tables				XXV
1.0	Introdu	ction		1.1
	1.1	Glass Pro	operty-Composition Models and Associated Constraints	1.2
		1.1.1	PCT Normalized Losses of B and Na $(PCT_B^{NL}, PCT_{Na}^{NL})$ (g/m ²)	1.2
		1.1.2	VHT Alteration Rate $(\boldsymbol{r}_{\boldsymbol{a}}^{\boldsymbol{VHT}})$ (g m ⁻² d ⁻¹))	1.2
		1.1.3	Viscosity at 1150 °C (η_{1150}) (P) and Electrical Conductivity at 1150 °C (ε_{1150}) (S/cm)	1.3
		1.1.4	Melter SO ₃ Tolerance Model at 1150 °C (w_{SO3}^{MT1150}) (wt%)	1.3
		1.1.5	K-3 Refractory Corrosion Neck Loss at 1208 °C (k_{1208}) (inch)	
		1.1.6	Goal of LAW Glass Property-Composition Modeling	
		1.1.7	Property-Composition Model Validity Constraints	
2.0	LAW C	Glass Prop	erty-Composition Data for Modeling	
	2.1	LAW Gl	ass Database	2.1
	2.2	Accounti	ng for SO3 Incorporated into LAW Glass Compositions	2.3
	2.3	LAW GI	ass Data for Property Modeling	2.5
		2.3.1	Viscosity and Electrical Conductivity	2.6
		2.3.2	Product Consistency Test Response	2.9
		2.3.3	Vapor Hydration Test Response	2.9
		2.3.4	Melter SO ₃ Tolerance	2.10
		2.3.5	Data Subgroups	2.10
		2.3.6	Tabulation of All Data	2.11
	2.4		of LAW Glass Compositions Used to Evaluate Prediction Performance alidate Property-Composition Models	2.11
	2.5		mposition for Example Calculations	
3.0		Relating	Normalized PCT Boron and Sodium Losses to Composition of LAW	
	3.1	Normaliz	zed PCT Loss Data from LAW Glasses Used for Model Development, on, and Validation	

	3.1.1	Model Development Data for Normalized PCT Boron and Sodium Losses from LAW Glasses	3.1
	3.1.2	Model Validation Approach and Data for the PCT on LAW Glasses	3.19
	3.1.3	Subsets of LAW Glasses to Evaluate Prediction Performance of Models for B and Na Normalized Losses from the PCT	3.19
3.2	Model I	Forms for Boron and Sodium Normalized PCT Losses from LAW Glasses	3.20
	3.2.1	Mixture Experiment Model Forms for Normalized PCT Boron and Sodium Losses from LAW Glasses	3.20
	3.2.2	Normalization and Transformation of Boron and Sodium Losses on the PCT from LAW Glasses	3.21
3.3		y-Composition Model Results for Normalized PCT Boron Loss from Blasses	3.22
	3.3.1	Results from the 20-Component Full Linear Mixture Model for the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses	3.22
	3.3.2	Results from the 15-Component Reduced Linear Mixture Model for the Natural Logarithm of Normalized Boron Loss from the PCT on LAW Glasses	3.25
	3.3.3	Results from a Reduced Partial Quadratic Mixture Model for the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses	3.29
	3.3.4	Screening of Model Types for Predicting Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses	3.33
	3.3.5	Results from a Bias Corrected Partial Quadratic Mixture Model for the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses	3.36
3.4	· ·	y-Composition Model Results for PCT Sodium Normalized Loss from Blasses	3.43
	3.4.1	Results from the 20-Component Full Linear Mixture Model for the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.43
	3.4.2	Results from the 15-Component Reduced Linear Mixture Model for the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.46
	3.4.3	Results from a Reduced Partial Quadratic Mixture Model for the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	
	3.4.4	Screening of Model Types for Predicting Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.54
	3.4.5	Results from a Bias Corrected Partial Quadratic Mixture Model for the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.55
3.5		mended Model for the Natural Logarithm of Normalized PCT Boron and Loss from LAW Glasses	3.61
3.6	·	e Illustrating Model Predictions and Statistical Intervals for the Natural hm of Normalized PCT Boron and Sodium Loss from LAW Glasses	3.62

		3.6.1	Optimization of Glass Composition using bcPQM	3.68
	3.7		ty of the Recommended Models for Natural Logarithm of Normalized ron and Sodium Loss from LAW Glasses	3.68
4.0	Models	Relating	Vapor Hydration Test Results to LAW Glass Compositions	4.1
	4.1		ta from LAW Glasses Used for Model Development, Evaluation, and on.	4.1
		4.1.1	Model Development Data for Pass/Fail VHT on LAW Glasses	4.1
		4.1.2	Model Validation Approach and Data for the VHT on LAW Glasses	4.12
		4.1.3	Subsets of LAW Glasses to Evaluate Prediction Performance of Pass/Fail VHT Models	4.13
	4.2		forms and Accuracy Measures for the Vapor Hydration Test on LAW	4.13
		4.2.1	Mixture Experiment Model Forms for a Binary Pass/Fail VHT Response on LAW Glasses	4.14
	4.3		-Composition Model Results for a Pass/Fail VHT Response on LAW	4.15
		4.3.1	Results from the 20-Component Full Linear Mixture Logistic Model for the Pass/Fail Response for the VHT on LAW Glasses	4.15
		4.3.2	Results from the Development of a 19-Term Partial Quadratic Mixture Model for Pass/Fail VHT on LAW Glasses	4.20
		4.3.3	Recommended Model for Pass/Fail VHT on LAW Glasses	4.26
	4.4	Example	e Illustrating VHT Model Predictions and Statistical Intervals	4.27
	4.5		ty of the Recommended Model for Pass/Fail VHT Responses for ion by the WTP LAW Facility	4.29
5.0	Models	Relating	Viscosity at 1150 °C to LAW Glass Composition	5.1
	5.1	•	y at 1150 °C Data Used for Model Development, Evaluation, and on.	5.1
		5.1.1	Model Development Data for Viscosity at 1150 °C	5.1
		5.1.2	Model Validation Approach and Data for Viscosity at 1150 °C of LAW Glasses	5.11
		5.1.3	Subsets of LAW Glasses to Evaluate Prediction Performance of Models for Viscosity at 1150 °C	5.12
	5.2	Model F	forms for Viscosity at 1150 °C of LAW Glasses	5.12
		5.2.1	Mixture Experiment Model Forms for Viscosity at 1150 °C of LAW Glasses	5.12
		5.2.2	Transformation of Viscosity at 1150 °C for LAW Glasses	5.13
	5.3	Property	-Composition Model Results for Viscosity at 1150 °C of LAW Glasses	5.14
		5.3.1	Results from the 20-Component Full Linear Mixture Model for the Natural Logarithm of Viscosity at 1150 °C with LAW Glasses	5.14
		5.3.2	Results from a Reduced Linear Mixture Model for the Natural Logarithm of Viscosity at 1150 °C with LAW Glasses	5.18

		5.3.3	Results from a Reduced Partial Quadratic Mixture Model for the Natural Logarithm of Viscosity at 1150 °C with LAW Glasses	5.24
		5.3.4	Recommended Model for the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses	5.30
	5.4		e Illustrating Model Predictions and Statistical Intervals for Viscosity at	5.31
	5.5		ity of the Recommended Viscosity at 1150 °C Model for Application by P LAW Facility	5.35
6.0	Model	s Relating	g Electrical Conductivity at 1150 °C to LAW Glass Composition	6.1
	6.1		al Conductivity at 1150 °C Data Used for Model Development, ion, and Validation	6.1
		6.1.1	Model Development Data for Electrical Conductivity at 1150 °C	6.1
		6.1.2	Model Validation Approach and Data for Electrical Conductivity at 1150 °C of LAW Glasses	6.11
		6.1.3	Subsets of LAW Glasses to Evaluate Prediction Performance of Models for Electrical Conductivity at 1150 °C	6.12
	6.2	Model I	Forms for Electrical Conductivity at 1150 °C of LAW Glasses	6.12
		6.2.1	Mixture Experiment Model Forms for Electrical Conductivity at 1150 °C of LAW Glasses	6.12
		6.2.2	Transformation of Electrical Conductivity at 1150 °C for LAW Glasses	6.13
	6.3	· ·	y-Composition Model Results for Electrical Conductivity at 1150 °C of classes	6.14
		6.3.1	Results from the 20-Component Full Linear Mixture Model for the Natural Logarithm of Electrical Conductivity at 1150 °C of LAW Glasses	6.14
		6.3.2	Results from a Reduced Linear Mixture Model for Electrical Conductivity at 1150 °C for LAW Glasses	6.18
		6.3.3	Results from a Reduced Partial Quadratic Mixture Model for the Natural Logarithm of Electrical Conductivity at 1150 °C with LAW Glasses	6.24
		6.3.4	Recommended Model for the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses	6.30
	6.4		e Illustrating Model Predictions and Statistical Intervals for Electrical tivity at 1150 °C	6.31
	6.5		ity of the Recommended Electrical Conductivity at 1150 °C Model for tion by the WTP LAW Facility	6.35
7.0	Model	s Relating	g Melter SO ₃ Tolerance at 1150 °C to LAW Glass Composition	7.1
	7.1		SO ₃ Tolerance and Solubility at 1150 °C Data Used for Melter SO ₃ ce Model Development, Evaluation, and Validation	7.1
		7.1.1	Model Development Data for Melter SO ₃ Tolerance at 1150 °C	7.1
		7.1.2	Model Validation Approach and Data for Melter SO ₃ Tolerance Model at 1150 °C of LAW Glasses	7.13

	7.1.3	Subsets of LAW Glasses to Evaluate Prediction Performance of Models for Melter SO ₃ Tolerance at 1150 °C	7.13
7.2	Model l	Forms for Melter SO ₃ Tolerance at 1150 °C of LAW Glasses	7.14
	7.2.1	Mixture Experiment Model Forms for Melter SO3 Tolerance at 1150 °C of LAW Glasses	7.14
	7.2.2	Offsets for Melter SO ₃ Tolerance Model at 1150 °C for LAW Glasses	7.15
7.3	· ·	y-Composition Model Results for Melter SO ₃ Tolerance at 1150 °C of Blasses	7.16
	7.3.1	Results from the 19-Component Full Linear Mixture Model for Melter SO ₃ Tolerance at 1150 °C with LAW Glasses	7.17
	7.3.2	Results from a Reduced Linear Mixture Model for the Melter SO ₃ Tolerance at 1150 °C with LAW Glasses	7.22
	7.3.3	Results from a Reduced Partial Quadratic Mixture Model for Melter SO ₃ Tolerance at 1150 °C with LAW Glasses	7.28
	7.3.4	Recommended Model for Melter SO ₃ Tolerance at 1150 °C for LAW Glasses	7.34
7.4		e Illustrating Model Predictions and Statistical Intervals for Melter SO ₃ are at 1150 $^{\circ}$ C	7.35
7.5		ity of the Recommended Melter SO ₃ Tolerance at 1150 °C Model for the WTP LAW Facility	7.39
Mode	els Relating	g K-3 Refractory Corrosion to LAW Glass Composition	8.1
8.1		rrosion at 1208 °C Data Used for Model Development, Evaluation, and ion	8.1
	8.1.1	Model Development Data for K-3 Corrosion at 1208 °C	8.1
	8.1.2	Model Validation Approach and Data for K-3 Corrosion at 1208 °C of LAW Glasses	8.9
	8.1.3	Subsets of LAW Glasses to Evaluate Prediction Performance of Models for K-3 Corrosion at 1208 °C	8.9
8.2	Model I	Forms for K-3 Corrosion at 1208 °C of LAW Glasses	8.10
	8.2.1	Mixture Experiment Model Forms for K-3 Corrosion at 1208 °C of	
		LAW Glasses	
	8.2.2	Transformation of K-3 Corrosion at 1208 °C for LAW Glasses	8.11
8.3	· ·	y-Composition Model Results for K-3 Corrosion at 1208 °C of LAW	8.11
	8.3.1	Results from the 20-Component Full Linear Mixture Model for the Natural Logarithm of K-3 Corrosion at 1208 °C with LAW Glasses	8.11
	8.3.2	Results from a Reduced Linear Mixture Model for the Natural Logarithm of K-3 Corrosion at 1208 °C with LAW Glasses	8.16
	8.3.3	Results from a Reduced Partial Quadratic Mixture Model for the Natural Logarithm of K-3 Corrosion at 1208 °C with LAW Glasses	8.22
	8.3.4	Recommended Model for the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses	8.28

8.0

	8.4		e Illustrating Model Predictions and Statistical Intervals for K-3 on at 1208 °C	8.29
	8.5		ity of the Recommended K-3 Corrosion at 1208 °C Model for the WTP LAW Facility	8.33
9.0	Summ	ary and C	Conclusions for LAW Glass Property-Composition Models	
	9.1	Summa	ry of LAW Glass PCT Modeling	
	9.2	Summa	ry of LAW VHT Modeling	
	9.3	Summa	ry of LAW Viscosity Modeling	
	9.4	Summa	ry of LAW Electrical Conductivity Modeling	
	9.5	Summa	ry of LAW Melter SO ₃ Tolerance Modeling	
	9.6	Summa	ry of LAW K-3 Refractory Corrosion Modeling	
	9.7		ry of Model Validity Regions for Recommended LAW Glass Property	
	9.8	Compo	nent Effects on Properties	
	9.9	Additio	nal Constraints	
		9.9.1	Slow-Cooled Glass Crystallization Constraint	
		9.9.2	Melt Crystallization Constraint	
		9.9.3	Lithia and Zirconia Targets	
	9.10	Status a	nd Recommendation of Future Work	9.17
10.0	Refere	nces		10.1
Appen	dix A	Append	lix A – LAW Glass Data for Developing Property-Composition Models .	A.1
Appen	dix B		cal Methods to Develop, Evaluate, and Validate Property-Compositions I xperimental Data	
Appen	dix C	LAW C	Blass Numbers in Each of the Six Evaluation Subsets	C.1
Appen	dix D		e-Covariance Matrices Associated with the Estimated Coefficients of La y-Composition	
Appen	dix E		lix E Example Temperature and Composition Models for Viscosity and Etivity	

Figures

Figure 2.1. Measured versus Target SO ₃ Concentrations (wt%) in 589 Glasses with Independently Measured SO ₃ Concentration Data. The 54 Glasses Marked in Red Were	
Removed before Fitting Eq. (2.1). The solid curved line represents the fitted model from Eq. (2.1)	2.5
Figure 3.1. Distributions of 20 Main Components (in mass fractions) for 703 LAW Glass Compositions with Data for normalized PCT Losses of B or Na. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 (blue lines) and Phase 2 (pink lines) outer-layer studies (see Table 2.1). In cases where two limits are the same, pink lines over- plot the blue lines.	3.3
Figure 3.2. Distributions of 22 Minor Components (in mass fractions) for 703 LAW Glass Compositions with Data for normalized PCT Losses of B or Na	3.4
Figure 3.3. Distributions of 20 Main Components (in mass fractions) for 691 LAW Glass Compositions with Data for Normalized PCT Losses of B or Na that Remain after Excluding the 12 Glasses in Table 3.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 (blue lines) and Phase 2 (pink lines) outer-layer studies (see Table 2.1). In cases where two limits are the same, pink lines over-plot the blue lines	3.6
Figure 3.4. Distributions of 22 Minor Components (in mass fractions) for 691 LAW Glass Compositions with Data for Normalized PCT Losses of B or Na that Remain after Excluding the 12 Glasses in Table 3.1	3.7
Figure 3.5. Scatterplot Matrix of 20 Components (mass fractions) for 691 LAW Glasses with Data for Normalized PCT Losses (g/m ²) of B and Na that Remain after Excluding the 12 Glasses in Table 3.1	3.9
Figure 3.6. Predicted versus Measured Plot for the 690-Glass Modeling Dataset Using the 20-Component Full Linear Mixture Model on the Natural Logarithm of PCT_B^{NL} from LAW Glasses. The red lines represent the WTP contract limit of 2 g/m ² , or 0.6931 ln(g/m ²).	3.24
Figure 3.7. Response Trace Plot for the 20-Component Full Linear Mixture Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses	3.25
Figure 3.8. Predicted versus Measured Plot for the 690-Glass Modeling Dataset Using the 15- Component Reduced Linear Mixture Model on the Natural Logarithm of PCT_B^{NL} from LAW Glasses. The red lines represent the WTP contract limit of 2 g/m ² , or 0.6931 ln(g/m ²).	3.28
Figure 3.9. Response Trace Plot for the 15-Component Reduced Linear Mixture Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses	
Figure 3.10. Predicted versus Measured Plot for the 690-Glass Modeling Dataset Using the 19- Term Partial Quadratic Mixture Model on the Natural Logarithm of PCT_B^{NL} from LAW Glasses. The red lines represent the WTP contract limit of 2 g/m ² , or 0.6931 ln(g/m ²).	
Figure 3.11. Response Trace Plot for the 19-Term Partial Quadratic Mixture Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses	3.33

Figure 3.12. Predicted versus Measured Plot for a 22-term Partial Quadratic Generalized Mixture Model with Four Higher-order Terms on the Natural Logarithm of PCT _B ^{NL} from	
LAW Glasses. The red lines represent the WTP contract limit of 0.6931 ln(g/m ²). For Information Only	3.35
Figure 3.13. Standardized Residuals Plot for the 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses	3.40
Figure 3.14. Predicted versus Measured Plot for the 690-glass Modeling Dataset Using the 22- Term bcPQM Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses	3.41
Figure 3.15. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses	3.42
Figure 3.16. Response Trace Plot for 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses	3.43
Figure 3.17. Predicted versus Measured Plot for the 690-Glass Modeling Dataset Using the 20- Component Full Linear Mixture Model on the Natural Logarithm of PCT _{Na} ^{NL} from LAW Glasses. The red lines represent the WTP contract limit of 2 g/m ² , or 0.6931 ln(g/m ²).	3.45
Figure 3.18. Response Trace Plot for the 20-Component Full Linear Mixture Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	
Figure 3.19. Predicted versus Measured Plot for the 690-Glass Modeling Dataset Using the 15- Component Reduced Linear Mixture Model on the Natural Logarithm of PCT _{Na} ^{NL} from LAW Glasses. The red lines represent the WTP contract limit of 2 g/m ² , or 0.6931 ln(g/m ²).	3.49
Figure 3.20. Response Trace Plot for the 15-Component Reduced Linear Mixture Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.50
Figure 3.21. Predicted versus Measured Plot for the 690-Glass Modeling Dataset Using the 19- Term Partial Quadratic Mixture Model on the Natural Logarithm of PCT _{Na} ^{NL} from LAW Glasses. The red lines represent the WTP contract limit of 2 g/m ² , or 0.6931 ln(g/m ²).	3.53
Figure 3.22. Response Trace Plot for the 19-Term Partial Quadratic Mixture Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.54
Figure 3.23. Standardized Residuals Plot for the 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.58
Figure 3.24. Predicted versus Measured Plot for the 690-glass Modeling Dataset Using the 22- Term bcPQM Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.59
Figure 3.25. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.60
Figure 3.26. Response Trace Plot for 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.61

Figure 3.27. Distribution of Δs Values for 100,000 Samples of Glasses and Corresponding ln(PCT_B^{NL}) Values Obtained from the Available 690 Glasses Used To Model ln(PCT_B^{NL})
Figure 4.1. Distributions of 20 Main Components (in mass fractions) for 699 LAW Glass Compositions with Pass/Fail VHT Data. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 (blue lines) and Phase 2 (pink lines) outer-layer studies (see Table 2.1). In cases where two limits are the same, pink lines over plot the blue lines
Figure 4.2. Distributions of 21 Minor Components (in mass fraction) for 699 LAW Glass Compositions with Pass/Fail VHT Data. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 (blue lines) and Phase 2 (pink lines) outer-layer studies (see Table 2.1). In cases where two limits are the same, pink lines over plot the blue lines
Figure 4.3. Distributions of 20 Main Components (in mass fractions) for 686 LAW Glass Compositions with Data for Pass/Fail VHT that Remain after Excluding the 13 Glasses in Table 4.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 (blue lines) and Phase 2 (pink lines) outer-layer studies (see Table 2.1). In cases where two limits are the same, pink lines over plot the blue lines
Figure 4.4. Distributions of 21 Minor Components (in weight percent) for 686 LAW Glass Compositions with Data for Pass/Fail VHT that Remain after Excluding the 13 Glasses in Table 4.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 (blue lines) and Phase 2 (pink lines) outer-layer studies (see Table 2.1). In cases where two limits are the same, pink lines over plot the blue lines
Figure 4.5. Scatterplot Matrix of 20 Components (mass fractions) for the 686 LAW Glasses with Pass/Fail Data that Remain after Excluding the 13 Glasses in Table 4.1
Figure 4.6. Scores (y-axes) for Glasses that Pass (upper panel) and Fail (lower panel) Generated by the 20-term VHT FLM. The x-axes show glasses on an index to avoid overcrowding. The 0.3 threshold value for classification (used for illustration purposes only) is shown as a red horizontal line
Figure 4.7. Plots of the Scores Produced by the 20-term FLM for Six Sets of Glasses that Pass the Vapor Hydration Constraint. The 0.3 threshold value for classification (used for illustration purposes only) is shown as a red horizontal line
Figure 4.8. Plots of the Scores Produced by the 20-term FLM for Six Sets of Glasses that Fail the Vapor Hydration Constraint. The 0.3 threshold value for classification (used for illustration purposes only) is shown as a red horizontal line
Figure 4.9. Scores (y-axes) for Glasses that Pass (upper panel) and Fail (lower panel) Generated by the 19-term VHT PQM. The x-axes show glasses on an index to avoid overcrowding. The 0.19 value used as threshold for classification is shown as a red horizontal line
Figure 4.10. Model Scores (y-axes) Produced by the 19-term PQM Pass/Fail VHT Model for the Pass Glasses in Six Different Evaluation Sets. Glasses below the 0.19 threshold are correctly classified as Pass

Figure 4.11. Model Scores (y-axes) Produced by the 19-term PQM Pass/Fail VHT Model for the Fail Glasses in Six Different Evaluation Sets. Glasses above the 0.19 threshold are correctly classified as Fail	5
Figure 4.12. Response Trace Plot for the 19-term PQM Pass/Fail VHT Model	6
 Figure 5.1. Distributions of 20 Main Components (in mass fractions) for 549 LAW Glass Compositions with Data for Viscosity at 1150 °C. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), Phase 2 outer-layer study (pink lines), and Phase 3 study (also shown by the same pink lines), as shown in Table 2.1. In cases where two limits are the same, pink lines over plot the blue lines. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting	3
Figure 5.2. Distributions of 17 Minor Components (in mass fractions) for the 549 LAW Glass Compositions with Data for Viscosity at 1150 °C. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting	4
 Figure 5.3. Distributions of 20 Main Components (in mass fractions) for 534 LAW Glass Compositions with Data for Viscosity at 1150 °C that Remain after Excluding the 15 Glasses in Table 5.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), Phase 2 outer-layer study (pink lines), and Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, pink lines over plot the blue lines. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting	6
 Figure 5.4. Distributions of 17 Minor Components (in mass fractions) for the 534 LAW Glass Compositions with Data for Viscosity at 1150 °C that Remain after Excluding the 15 Glasses in Table 5.1. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid overplotting. 5. 	7
Figure 5.5. Scatterplot Matrix of 20 Components (mass fractions) for the 534 LAW Glasses with Viscosity at 1150°C Data that Remain after Excluding the 15 Glasses in Table 5.1	8
Figure 5.6. Predicted versus Measured Plot for the 534-Glass Modeling Dataset Using the 20-Component Full Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses. The red lines represent the WTP LAW Facility operating limits for viscosity at 1150 °C (20 to 100 poise)	6
Figure 5.7. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 20- Component Full Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses	7
Figure 5.8. Response Trace Plot for the 20-Component Full Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses	8

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 5.9. Standardized Residuals Plot for the 18-Component Reduced Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses	1
Figure 5.10. Predicted versus Measured Plot for the 534-Glass Modeling Dataset Using the 18-Component Reduced Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses. The red lines represent the WTP LAW Facility operating limits for viscosity at 1150 °C (20 to 100 poise)	2
Figure 5.11. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 18- Component Reduced Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses	3
Figure 5.12. Response Trace Plot for the 18-Component Reduced Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses	4
Figure 5.13. Standardized Residuals Plot for the 21-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses	7
Figure 5.14. Predicted versus Measured Plot for the 516-glass Modeling Dataset Using the 21- term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW glasses. The red lines represent the WTP LAW Facility operating limits for viscosity at 1150 °C (20 to 100 poise)	8
Figure 5.15. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 21-term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses	9
Figure 5.16. Response Trace Plot for 21-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses	0
Figure 5.17. Prediction Standard Deviations versus Predicted Values over the LAW Glass Compositions in the 534-Glass Modeling Dataset for the Recommended 21-term PQM Model for the Natural Logarithm of Viscosity at 1150 °C	8
 Figure 6.1. Distributions of 20 Main Components (in mass fractions) for 542 LAW Glass Compositions with Data for Electrical Conductivity at 1150 °C. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), Phase 2 outer-layer study (pink lines), and Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, pink lines over plot the blue lines. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting. 	3
Figure 6.2. Distributions of 17 Minor Components (in mass fractions) for 542 LAW Glass Compositions with Data for Electrical Conductivity at 1150 °C. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting	
 Figure 6.3. Distributions of 20 Main Components (in mass fractions) for 526 LAW Glass Compositions with Data for Electrical Conductivity at 1150 °C that Remain after Excluding the 16 Glasses in Table 6.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), Phase 2 outer-layer study (pink lines), and Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, pink lines over plot the blue lines. The x-axis represents the mass 	

fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting	6.6
Figure 6.4. Distributions of 17 Minor Components (in mass fractions) for 526 LAW Glass Compositions with Data for Electrical Conductivity at 1150 °C that Remain after Excluding the 16 Glasses in Table 6.1. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting	6.7
Figure 6.5. Scatterplot Matrix of 20 Components (mass fractions) for 526 LAW Glasses with Electrical Conductivity at 1150 °C Data that Remain after Excluding the 16 Glasses in Table 6.1	6.8
Figure 6.6. Predicted versus Measured Plot for the 526-Glass Modeling Dataset Using the 20- Component Full Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C of LAW Glasses. The red lines represent WTP LAW Facility operating limits for electrical conductivity at 1150 °C (0.105 to 0.671 S/cm).	. 6.16
Figure 6.7. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 20- Component Full Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses	6.17
Figure 6.8. Response Trace Plot for 20-Component Full Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses	6.18
Figure 6.9. Standardized Residuals Plot for the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses	6.21
Figure 6.10. Predicted versus Measured Plot for the 526-Glass Modeling Dataset Using the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses. The red lines represent the WTP LAW Facility operating limits for electrical conductivity at 1150 °C (0.105 to 0.671 S/cm).	. 6.22
Figure 6.11. Predicted versus Measured Plots for the Six Evaluation Sets Using the 11- Component Reduced Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses	. 6.23
Figure 6.12. Response Trace Plot for 11-Component Reduced Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses	6.24
Figure 6.13. Standardized Residuals Plot for the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses	. 6.27
Figure 6.14. Predicted versus Measured Plot for the 526-glass Modeling Dataset Using the 13- term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses. The red lines represent the WTP LAW Facility operating limits for electrical conductivity at 1150 °C (0.105 – 0.671 S/cm).	. 6.28
Figure 6.15. Predicted versus Measured Plots for the Six Evaluation Sets Using the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses	. 6.29

Figure 6.16. Response Trace Plot for 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses
Figure 6.17. Prediction Standard Deviations versus Predicted Values over the LAW Glass Compositions in the 518-Glass Modeling Dataset for the Recommended 13-Term PQM Model for the Natural Logarithm of Electrical Conductivity at 1150 °C
 Figure 7.1. Distributions of 20 Main Components (in mass fractions) for 601 LAW Glass Compositions with Melter SO₃ Tolerance and Solubility Measurements at 1150 °C. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), LAW Phase 2 outer-layer study (pink lines), and LAW Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, blue lines over plot the pink lines
Figure 7.2. Distributions of 16 Minor Components (in mass fractions) for the 601 LAW Glasses with Melter SO ₃ Tolerance and Solubility Values at 1150 °C7.5
 Figure 7.3. Distributions of 20 Main Components (in mass fractions) for 576 LAW Glass Compositions with Melter SO₃ Tolerance and Solubility Measurements at 1150 °C that Remain after Excluding the 25 Glasses in Table 7.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), LAW Phase 2 outer-layer study (pink lines), and LAW Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, blue lines over plot the pink lines.
Figure 7.4. Distributions of 10 Minor Components (in mass fractions) for the 576 LAW Glass Compositions with Data for Melter SO ₃ Tolerance and Solubility at 1150 °C that Remain after Excluding the 25 Glasses in Table 7.1
Figure 7.5. Scatterplot Matrix of 20 Components (mass fractions) for the 576 LAW Glasses with Melter SO ₃ Tolerance and Solubility at 1150 °C Data that Remain after Excluding the 25 Glasses in Table 7.1
Figure 7.6. Predicted versus Measured Plot for the 576-Glass Modeling Dataset Using the 19- Component Full Linear Mixture Model on Melter SO ₃ Tolerance at 1150 °C for LAW Glasses
Figure 7.7. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 19- Component Full Linear Mixture Model on the Melter SO ₃ Tolerance at 1150 °C for LAW Glasses
Figure 7.8. Response Trace Plot for the 19-Component Full Linear Mixture Model on Melter SO ₃ Tolerance at 1150 °C for LAW Glasses
Figure 7.9. Standardized Residuals Plot for the 10-Component Reduced Linear Mixture Model on Melter SO ₃ Tolerance at 1150 °C for LAW Glasses
Figure 7.10. Predicted versus Measured Plot for the 576-Glass Modeling Dataset Using the 10-Component Reduced Linear Mixture Model on Melter SO ₃ Tolerance at 1150 °C for LAW Glasses
Figure 7.11. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 10- Component Reduced Linear Mixture Model on Melter SO ₃ Tolerance at 1150 °C for LAW Glasses
Figure 7.12. Response Trace Plot for the 10-Component Reduced Linear Mixture Model on Melter SO ₃ Tolerance at 1150 °C for LAW Glasses

Figure 7.13. Standardized Residuals Plot for the 11-Term Reduced Partial Quadratic Mixture Model on Melter SO ₃ Tolerance at 1150 °C for LAW Glasses	1
Figure 7.14. Predicted versus Measured Plot for the 576-Glass Modeling Dataset Using the 11- Term Reduced Partial Quadratic Mixture Model on Melter SO ₃ Tolerance at 1150 °C for LAW Glasses	2
Figure 7.15. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 11-Term Reduced Partial Quadratic Mixture Model on Melter SO ₃ Tolerance at 1150 °C for LAW Glasses	3
Figure 7.16. Response Trace Plot for 11-Term Reduced Partial Quadratic Mixture Model on Melter SO ₃ Tolerance at 1150 °C for LAW Glasses	1
Figure 7.17. Prediction Standard Deviations versus Predicted Values over the LAW Glass Compositions in the 576-Glass Modeling Dataset for the Recommended 11-Term PQM Model for Melter SO ₃ Tolerance at 1150 °C7.40)
 Figure 8.1. Distributions of 20 Main Components (in mass fractions) for 344 LAW Glass Compositions with Data for K-3 Corrosion at 1208 °C. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), Phase 2 outer-layer study (pink lines), and Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, pink lines over plot the blue lines	3
 Figure 8.2. Distributions of 20 Main Components (in mass fractions) for 333 LAW Glass Compositions with Data for K-3 Corrosion at 1208 °C that Remain after Excluding the 11 Glasses in Table 8.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), Phase 2 outer-layer study (pink lines), and Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, pink lines over plot the blue lines. 	5
Figure 8.3. Scatterplot Matrix of 20 Components (mass fractions) for the 333 LAW Glasses with K-3 Corrosion at 1208 °C Data that Remain after Excluding the 11 Glasses in Table 8.1	5
Figure 8.4. Predicted versus Measured Plot for the 333-Glass Modeling Dataset Using the 20- Component Full Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses	4
Figure 8.5. Predicted versus Measured Plots for the Five Evaluation Subsets Using the 20- Component Full Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses	5
Figure 8.6. Response Trace Plot for the 20-Component Full Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses	5
Figure 8.7. Standardized Residuals Plot for the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses)
Figure 8.8. Predicted versus Measured Plot for the 333-Glass Modeling Dataset Using the 11- Component Reduced Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses)
Figure 8.9. Predicted versus Measured Plots for the Five Evaluation Subsets Using the 11- Component Reduced Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses	1

Figure 8.10. Response Trace Plot for the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses	.22
Figure 8.11. Standardized Residuals Plot for the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses	.25
Figure 8.12. Predicted versus Measured Plot for the 333-Glass Modeling Dataset Using the 13- Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses	.26
Figure 8.13. Predicted versus Measured Plots for the Five Evaluation Subsets Using the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses	.27
Figure 8.14. Response Trace Plot for 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses	.28
Figure 9.1. Concentrations of NaK (= $g_{Na20} + 0.66g_{K20}$) and Li ₂ O of modeling database in mass fractions	.11
Figure 9.2. Concentrations of SiO ₂ and Al ₂ O ₃ of modeling database in mass fractions9	.12
Figure 9.3. Concentrations of Na ₂ O and SiO ₂ of modeling database in mass fractions	.12

Tables

Table 2.1. Single-Component Constraints (SCCs), Multiple-Component Constraints (MCCs), and Center Points (CPs) for PNNL LAW Phase 1 Outer Layer (Ph1-OL), Phase 1 Inner Layer (Ph1-IL), Phase 2 Inner Layer (Ph2-IL), and Phase 2 Outer Layer (Ph2-OL) Studies. The Phase 3 constraints are the same as the Phase 2 OL	
Table 2.2. Summary of LAW Glass Database Showing Data Group, Report Number, Total Number of Glasses, and Number of Glasses with Values for Each Property	
Table 2.3. REFMIX Composition in Formats Used for Example Calculations and Response Trace Plots	
Table 3.1. Fourteen LAW Glasses with Non-representative Compositions Excluded from the Modeling Datasets for Normalized PCT Losses of B and Na	3.5
Table 3.2. Uncertainty in Normalized PCT Losses (g/m ²) of B for Replicate and Near-Replicate Sets of LAW Glasses	3.11
Table 3.3. Uncertainty in Normalized PCT Losses (g/m²) of Na for Replicate and Near-Replicate Sets of LAW Glasses	3.15
Table 3.4. Coefficients and Performance Summary for the 20-Component Full Linear Mixture Model on the Natural Logarithm of Normalized Boron Loss from the PCT on LAW Glasses.	3.23
Table 3.5. Coefficients and Performance Summary for the 15-Component Reduced Linear Mixture Model on the Natural Logarithm of Normalized Boron Loss from the PCT on LAW Glasses.	3.27
Table 3.6. Coefficients and Performance Summary for the 19-Term Partial Quadratic Mixture Model on the Natural Logarithm of Normalized Boron Loss from the PCT on LAW Glasses	3.31
Table 3.7. Coefficients and Performance Summary for 22-Term Bias Corrected Partial Quadratic Mixture Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses	3.39
Table 3.8. Coefficients and Performance Summary for the 20-Component Full Linear Mixture Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.44
Table 3.9. Coefficients and Performance Summary for the 15-Component Reduced Linear Mixture Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.48
Table 3.10. Coefficients and Performance Summary for the 19-Term Partial Quadratic Mixture Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	3.52
Table 3.11. Coefficients and Performance Summary for 22-Term Bias Corrected Partial Quadratic Mixture Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses	

Table 3.12. Performance Summary of Two Models for the Natural Logarithm of PCT Responses of LAW Glasses 3.62
Table 3.13. Example Glass Compositions in Formats Used with Models of Natural Logarithm of Normalized PCT Boron and Sodium Losses from LAW Glasses (mass fractions) 3.67
Table 3.14. Predicted PCTjNL, Standard Deviation, and Statistical Intervals for the ExampleGlass Compositions Used in Two Models for Natural Logarithm of NormalizedPCT Boron and Sodium Losses from LAW Glasses3.67
Table 3.15. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Final Natural Logarithm of Normalized PCT Boron and Sodium Loss Models
Table 4.1. Thirteen LAW Glasses with Non-representative Compositions Excluded from the Modeling Datasets for Pass/Fail VHT 4.5
Table 4.2. Agreement in the VHT Pass (0)/Fail (1) Response for Replicate and Near-Replicate Glasses 4.9
Table 4.3. Coefficients and Performance Summary for the 20-Component Logistic Full LinearMixture Model on the Pass/Fail VHT response on LAW Glasses Using aThreshold for Classification of 0.34.16
Table 4.4. Coefficients and Performance Summary for the 19-Component Logistic Partially Quadratic Mixture Model on the Pass/Fail VHT response on LAW Glasses Using a Threshold for Classification of 0.19
Table 4.5. REFMIX Composition in Formats Used with Models of lnP(g)1-P(g) for Predicting Pass/Fail VHT for LAW Glasses 4.28
Table 4.6. Predicted lnP(g)1-P(g) and P(g) and Confidence Interval for the REFMIXComposition Used in the Recommended 19-term Model for VHT
Table 4.7. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Final VHT Pass/Fail Models
Table 5.1. Fifteen LAW Glasses Excluded from the Modeling Dataset for Viscosity at 1150 °C (η_{1150})
Table 5.2. Uncertainty in Viscosity at 1150 °C Responses for Replicate and Near-Replicate Sets 5.10
Table 5.3. Coefficient Estimates and Performance Summary Statistics for the 20-Component FullLinear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C forLAW Glasses5.15
Table 5.4. Coefficients and Performance Summary for the 18-Component Reduced Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses 5.20
Table 5.5. Coefficients and Performance Summary for 21-Term Reduced Partial QuadraticMixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAWGlasses5.26
Table 5.6. Performance Summary of Three Models for the Natural Logarithm of Viscosity at1150 °C for LAW Glasses5.31
Table 5.7. REFMIX Composition in Formats Used with Models of Natural Logarithm of Viscosity at 1150 °C for LAW Glasses5.33
Table 5.8. Predicted Viscosity at 1150 °C, Standard Deviation, and Statistical Intervals for theREFMIX Composition Used in Two Models for Viscosity at 1150 °CS.34

Table 5.9. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Final Viscosity Models	5.37
Table 6.1. Sixteen LAW Glasses Excluded from the Modeling Dataset for Electrical Conductivity at 1150 °C (ϵ_{1150})	6.5
Table 6.2. Uncertainty in Electrical Conductivity at 1150 °C Responses for Replicate and Near-Replicate Sets	6.10
Table 6.3. Coefficients and Performance Summary for the 20-Component Full Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses	6.15
Table 6.4. Coefficients and Performance Summary for the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses	6.20
Table 6.5. Coefficients and Performance Summary for the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses	6.26
Table 6.6. Performance Summary of Three Models for the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses	6.31
Table 6.7. REFMIX Composition in Formats Used with Models of Natural Logarithm ofElectrical Conductivity at 1150 °C for LAW Glasses	6.33
Table 6.8. Predicted Electrical Conductivity at 1150 °C, Standard Deviation, and Statistical Intervals for the REFMIX Composition Used in Two Models for Electrical Conductivity at 1150 °C	6.34
Table 6.9. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Final Electrical Conductivity Models	6.38
Table 7.1. Twenty-five LAW Glasses Excluded from the Modeling Dataset for Melter SO ₃ Tolerance and Solubility at 1150 °C	7.6
Table 7.2. Uncertainty in SO ₃ Solubility at 1150 °C Responses for Replicate and Near-Replicate Sets	7.12
Table 7.3. Coefficients and Performance Summary for the 19-Component Full Linear MixtureModel on the Melter SO3 Tolerance at 1150 °C for LAW Glasses	7.18
Table 7.4. Coefficients and Performance Summary for the 10-Component Reduced LinearMixture Model on the Melter SO3 Tolerance at 1150 °C for LAW Glasses	7.23
Table 7.5. Coefficients and Performance Summary for 11-Term Reduced Partial QuadraticMixture Model on Melter SO3 Tolerance at 1150 °C for LAW Glasses	7.30
Table 7.6. Performance Summary of Three Models for Melter SO ₃ Tolerance at 1150 °C for LAW Glasses	7.35
Table 7.7. REFMIX Composition in Formats Used with Models of Melter SO ₃ Tolerance at 1150 °C for LAW Glasses	7.37
Table 7.8. Predicted Melter SO ₃ Tolerance at 1150 °C, Standard Deviation, and Statistical Intervals for the REFMIX Composition Used in Two Models for Melter SO ₃ Tolerance at 1150 °C	7.37
Table 7.9. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Final Melter SO ₃ Tolerance at 1150 °C Models	7.41

Table 8.1. Eleven LAW Glasses Excluded from the Modeling Dataset for K-3 Corrosion at 1208 °C	1
Table 8.2. Uncertainty in K-3 Corrosion at 1208 °C Responses for Replicate and Near-Replicate Sets	3
Table 8.3. Coefficients and Performance Summary for the 20-Component Full Linear MixtureModel on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses	3
Table 8.4. Coefficients and Performance Summary for the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses 8.18	3
Table 8.5. Coefficients and Performance Summary for 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses 8.24	1
Table 8.6. Performance Summary of Three Models for the Natural Logarithm of K-3 Corrosion at1208 °C for LAW Glasses8.29)
Table 8.7. REFMIX Glass Composition in Formats Used with Models of Natural Logarithm ofK-3 Corrosion at 1208 °C for LAW Glasses8.31	1
Table 8.8. Predicted K-3 Corrosion at 1208 °C, Standard Deviation, and Statistical Intervals for the REFMIX Glass Composition Used in Two Models for K-3 Corrosion at 1208 °C	2
Table 8.9. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Final Natural Logarithm K-3 Corrosion at 1208 °C Models	1
Table 9.1. Summary of Melter SO ₃ Tolerance and Solubility Data	5
Table 9.2. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Models 9.10)
Table 9.3. Component effect "slopes" for each of the recommended models taken at the REFMIX composition	1
Table 9.4. General Direction of Component Effects on Properties ^(a) (For Information Only)	1

1.0 Introduction

The U.S. Department of Energy's (DOE's) Hanford Site in Washington State is the current storage location for roughly 56 million gallons of highly radioactive wastes stored in underground tanks. The Waste Treatment and Immobilization Plant (WTP) will provide DOE with a capability to treat the waste by vitrification for subsequent disposal. The low-activity waste (LAW) fraction of the tank waste will be vitrified to form an alkali-alumino-boro-silicate immobilized low-activity waste (ILAW) product to be disposed in the Integrated Disposal Facility on the Hanford Site. The ILAW product must satisfy a variety of requirements with respect to protection of the environment before it can be accepted for disposal. Additionally, to be efficiently processed in the WTP, the LAW melts must satisfy process-related properties.

Current plans for the WTP envision vitrifying LAW prior to startup of the WTP high-level waste (HLW) Facility using a Direct Feed Low-Activity Waste (DFLAW) approach (Tilanus et al. 2017). The WTP LAW Facility will be operated and controlled using a LAW glass formulation algorithm (GFA), which requires several inputs based on research and development results, plant operations data, and analyzed compositions. Currently it is envisioned that the preliminary LAW GFA discussed by Kim and Vienna (2012) and the LAW glass property-composition models recommended in Piepel et al. (2007) will be used for commissioning and initial radioactive operations of the LAW Facility under the DFLAW approach. After commissioning and initial operations, an updated LAW GFA being developed at Pacific Northwest National Laboratory (PNNL) and using the models in this report will be implemented by the WTP operations contractor in the WTP LAW Facility.

The updated LAW GFA uses several inputs, including the (i) LAW glass formulation methods and constraints, (ii) LAW glass property constraints, (iii) LAW glass property-composition models and corresponding methods for quantifying uncertainties in model property predictions, and (iv) model validity constraints. Item (i) will be documented in the GFA report and item (ii) remains unchanged. This report documents the results for items (iii) and (iv). The LAW glass properties for which models, model uncertainties, and model validity constraints are reported here include Product Consistency Test (PCT) response, Vapor Hydration Test (VHT) response, viscosity at 1150 °C (η_{1150}), electrical conductivity (EC) at 1150 °C (ε_{1150}), melter SO₃ tolerance at 1150 °C, and K-3 refractory corrosion at 1208 °C.

LAW glass property-composition data collected to support modeling, model development, model validation, and model uncertainty results are presented in this report. They represent a significant increase in model validity range, which directly translates to the size of the processing envelope, compared to previously published models (Piepel et al. 2007).

Section 1.1 discusses the LAW glass properties for which property-composition models were developed. Section 1.1 introduces the property-composition models and associated constraints for LAW glass property-composition model development. The LAW glass property-composition data available for modeling are described in Section 2.0. Data sources are summarized in Section 2.1. Section 2.2 describes the treatment of SO₃ and renormalization in glass compositions used for modeling. The mapping of glass data to each property to be modeled is summarized in Section 2.3. Subsets of the data used to evaluate the performance of models for enhanced glass composition region (GCR) are defined in Section 2.4. Section 2.5 describes the reference glass used for example calculations and response trace plots. Models relating PCT boron and sodium normalized losses to LAW glass composition to the probability to fail the VHT constraint (alteration rate \leq 50 g/m²/day) are presented and discussed in Section 4.0. Data and models relating viscosity and EC – at 1150 °C – to LAW glass composition are presented and discussed in Sections 5.0 and 6.0, respectively. Data and models relating melter SO_3 tolerance at 1150 °C to LAW glass composition are presented and discussed in Section 7.0. Data and models relating K-3 refractory neck corrosion at 1208 °C to LAW glass composition are presented and discussed in Section 8.0. A summary and conclusions from the work to develop, evaluate, and validate the LAW glass property-composition models are presented in Section 9.0 along with recommendations for future development. The references cited in the report are listed in Section 10.0.

The mass fraction compositions and property values of all the LAW glasses used to develop propertycomposition models are presented in Appendix A. Appendix B discusses the statistical methods applied in the main body of the report. Appendix C lists the glass numbers (Glass #s) associated with each of the six evaluation subsets of data for each LAW glass property-composition model. Appendix D lists the variance-covariance matrices for selected LAW glass property-composition models, which are required to calculate uncertainties of model predictions.

1.1 Glass Property-Composition Models and Associated Constraints

LAW glass produced by the WTP LAW Facility must satisfy constraints for several product quality and processing properties. In most cases, constraints for the LAW glass properties are satisfied using property-composition models. Those LAW glass product quality and processing property constraints that are currently planned to be met using glass property-composition models are discussed below. Other constraints are not met using glass property-composition models typically because either the property does not vary sufficiently to approach the limit (e.g., density, compressive strength, etc.) or because there is insufficient data or mechanistic understanding to model (e.g., melter feed processing rate, crystallization kinetics, etc.).

1.1.1 PCT Normalized Losses of B and Na $(PCT_B^{NL}, PCT_{Na}^{NL})$ (g/m²)

WTP contract Specification 2.2.2.17.2 requires that PCT normalized losses of B (PCT_B^{NL}), Na (PCT_{Na}^{NL}), and Si (PCT_{Si}^{NL}) from quenched and container centerline cooled (CCC) glasses must be less than 2 g/m² (DOE 2000). Several references (including Piepel et al. 2007; Muller et al. 2014; Vienna et al. 2013, 2016) have shown that PCT_{Si}^{NL} values are always less than PCT_B^{NL} and/or PCT_{Na}^{NL} values. This was also found in this study; thus, it was only necessary to model PCT_B^{NL} and PCT_{Na}^{NL} as functions of LAW glass composition.

1.1.2 VHT Alteration Rate (r_a^{VHT}) (g m⁻² d⁻¹))

WTP contract Specification 2.2.2.17.3 requires that alteration rates of LAW glasses subjected to at least a 7-day VHT run at 200 °C be less than 50 g/m²/d (DOE 2000). The WTP project chose to perform 24-day VHTs for most of the data (Muller et al. 2001). However, some data do exist at 7- and 14-day durations. For LAW glasses with typical densities near the reference value of 2.65 g/cm³, the 50 g/m²/d limit translates to an alteration depth (*D*) of 453 µm during the 24-day test period (Piepel et al. 2007). In previous reports, *D* was the VHT response that was modeled (Piepel et al. 2007; Muller et al. 2014; Vienna et al. 2013, 2016) as a function of LAW glass composition. However, in this report it is the binary response of pass corresponding to $r_a^{VHT} < 50$ g/m²/d and fail corresponding to $r_a^{VHT} \ge 50$ g/m²/d that is modeled. This is due to the difficulty in predicting the r_a^{VHT} as functions of composition for the broader range of data needed for this phase of modeling.

1.1.3 Viscosity at 1150 °C (*η*₁₁₅₀) (P) and Electrical Conductivity at 1150 °C (*ε*₁₁₅₀) (S/cm)

The η_{1150} should fall between 20 and 80 P to ensure sufficient processing rate and flow of LAW glass while minimizing corrosion of melter construction materials (Perez 2006). The EC should fall between 0.1 and 0.7 S/cm over the temperature range from 1100 to 1200 °C to ensure sufficient energy can be supplied by the power source without exceeding current density limits of the power system at nominal throughput. Ideally, viscosity and EC would be modeled as functions of LAW glass composition and melt temperature. Such models would allow prediction of the viscosity and EC for different glass compositions at different melt temperatures. The statistical methods for fitting such models and quantifying prediction uncertainties, although quite complex, have been developed. However, the viscosity and EC models at a fixed temperature are simpler to develop and easier to implement to glass formulation. For this reason, it was decided to model η_{1150} and ε_{1150} , the nominal melter operating temperature, rather than to model viscosity and EC as functions of composition and melt temperature. Models for viscosity and EC at temperatures other than 1150 °C could be developed similarly if needed. The current constraints for EC are set at 1100 and 1200 °C. Since the EC constraints span \pm 50°C from modeled temperature of 1150 °C, adjusted limits for EC at 1150°C should be used as the model constraints to determine compliance. Assuming a relationship between EC and absolute temperature (T_K) of: $\ln(\epsilon) = A + B/T_K$ (where A and B are temperature independent parameters) a predicted ε_{1150} can be used to calculate EC across the temperature range. Applying the median B value of -7168 (K/ln(cm/S)), it is straight forward to estimate the limits at a fixed temperature of 1150 °C of $0.120 \le \varepsilon_{1150} \le 0.590$ S/cm.

1.1.4 Melter SO₃ Tolerance Model at 1150 °C ($w_{SO_3}^{MT1150}$) (wt%)

Melter SO₃ tolerance is the feed SO₃ concentration above which a salt phase accumulates in the melter. The wt% SO₃ in the melter feed should not exceed the melter SO₃ tolerance at the processing temperature of 1150 °C to avoid excessive corrosion of melter construction materials and increased radionuclide volatility from an accumulated salt phase (Vienna et al. 2014; Muller et al. 2015b). A preliminary constraint used to plan the Hanford cleanup mission (Vienna et al. 2013, 2016) has been that the SO₃ target concentration in melter feed (after converting to oxides/halogens) must be lower than the predicted melter SO₃ tolerance at 1150 °C. Hence, this report develops a model for melter SO₃ tolerance at 1150 °C, which is denoted $w_{SO_2}^{MT1150}$.

1.1.5 K-3 Refractory Corrosion Neck Loss at 1208 °C (*k*₁₂₀₈) (inch)

As the loading of LAW in glass increases, K-3 refractory corrosion becomes an important factor, primarily because of the increasing fraction of glasses with high alkali content. The preliminary constraint used to plan the Hanford cleanup mission (Vienna et al. 2013, 2016) has been that the neck corrosion loss must be less than 0.04 inches per 6-day test at 1208 °C as proposed by Muller et al. (2015b). Although it is challenging to relate this test time and conditions directly to melter operation, it is used since nearly 100% of data available for modeling of K-3 corrosion in typical LAW glass compositions was measured under these conditions. This report develops an enhanced version of the Muller et al. (2018) model for the neck corrosion loss of K-3 refractory, although the basis for the time, temperature, and thickness constraint has not been rigorously developed.

1.1.6 Goal of LAW Glass Property-Composition Modeling

The goal for LAW glass property-composition models is to adequately approximate the true, unknown relationships over a specified LAW GCR. Ideally, this specified GCR should be large enough to include

all LAW glass compositions that (i) may be made from Hanford LAW, and (ii) are inside, near, and somewhat past the boundaries corresponding to property constraints. The models need to be able to discriminate between LAW glass compositions that have acceptable and unacceptable values of properties, as well as adequately approximate the property-composition relationships for LAW glasses with acceptable values of properties.

Depending on the LAW glass property, it sometimes is not possible to adequately approximate the true, unknown property-composition relationship with a single model applicable over the whole LAW GCR of interest. In those cases, it is necessary for one or more properties to (i) develop different models for different subregions of the LAW GCR of interest, (ii) use more advanced property modeling approaches applicable over the whole LAW GCR of interest, or (iii) use logistic regression of constraint pass/fail data. The GCR would ideally be as broad as any compositions desired for processing of LAW in glass. However, it is ultimately limited by the data available for model fitting (the model validity range).

1.1.7 Property-Composition Model Validity Constraints

LAW glass properties are complex functions of glass composition and potentially other factors such as cooling rate and the presence and types of crystals formed on cooling. Property-composition models with mathematical forms that can adequately approximate the true unknown property-composition relationships must be fitted to experimental data to estimate the unknown model coefficients. Hence, the resulting models should only be used to predict properties of LAW glass compositions (i) within the GCR over which the property-composition data used for fitting models were collected, and (ii) for similar cooling schedules and other conditions for which data were collected.

The LAW GCR containing the compositions used for fitting property-composition models is typically specified by lower and/or upper bounds on (i) individual LAW glass components, which are referred to as single-component constraints (SCCs), and (ii) linear combinations of two or more glass components, which are referred to as multiple-component constraints (MCCs). A SCC is of the general form

$$L_i \le g_i \le U_i, \tag{1.1}$$

where L_i and U_i are respectively lower and upper bounds on the mass fraction of the *i*th component (g_i) in a LAW glass with *q* components, $\sum_{i=1}^{q} g_i = 1$. A linear MCC is of the general form

$$L \le \sum_{i=1}^{q} Z_i g_i \le U \tag{1.2}$$

where *L* and *U* are respectively the lower and upper bounds on the linear combination of component mass fractions with coefficients Z_1, \ldots, Z_q . If necessary, nonlinear functions of two or more glass components may also be used to form MCCs. The property-composition model validity constraints will generally be specified using the SCCs and MCCs, which mathematically describe the LAW GCR over which data were used to develop the property-composition models. Other conditions under which modeling data were developed (which may vary by property) must also be represented by model validity constraints. It is important to develop and explicitly specify the validity constraints for each LAW glass property model so that models will only be applied within valid GCRs by the LAW GFA and for other purposes. In addition to model validity constraints, SCCs and MCCs are also typically applied to avoid composition regions that are prone to undesirable characteristics that are not directly predicted using property-composition models. For example, constraints to limit the propensity to crystallization of the ILAW in the melter and during slow cooling in the glass container have been applied in the past (Vienna et al. 2013, 2016).

Property-composition models and statistical methods for quantifying uncertainties in model predictions will be used in the updated LAW GFA. The GFA in turn will be used to design LAW glasses and verify that associated property constraints are satisfied with sufficient confidence after accounting for uncertainties in property prediction and WTP LAW Facility operations. Hence, statistical methods for quantifying the uncertainties in predicted glass property values were developed. Glass property-composition models and uncertainty methods may also be used to support the following:

- Waste feed qualification by assessing (i) melter feed properties, (ii) decisions on pretreatment operations, and (iii) vitrification process effectiveness.
- River Protection Project mission planning and optimization, considering the waste feed delivery strategy, waste pretreatment requirements, and mission life/cost estimation.

The specific LAW glass properties for which models were developed as functions of LAW glass composition are listed and discussed in Section 2. The discussion addresses why the specific properties were chosen for modeling.

2.0 LAW Glass Property-Composition Data for Modeling

Section 2.1 briefly discusses LAW glass composition and property data compiled from the literature into an ExcelTM database for use in developing property-composition models. Section 2.2 describes how the LAW glass compositions were normalized using measured or estimated SO₃ concentrations. Section 2.3 summarizes the LAW glass property-composition data available for modeling. Section 2.4 discusses subsets of the LAW property-composition data used to evaluate the prediction performance of models for the corresponding composition subregions.

2.1 LAW Glass Database

An ExcelTM database of LAW glass property-composition data for modeling LAW glass properties as functions of composition was compiled from technical reports published by the Vitreous State Laboratory (VSL) at The Catholic University of America and PNNL. A total of 1075 LAW glass compositions were compiled. The database includes LAW glass compositions from the PNNL Phase 1, 2, and 3 statistically designed studies. Property values available for each glass from the VSL and PNNL studies were compiled in the database. In addition, a separate VSL dataset of 344 LAW glass compositions with K-3 corrosion data were extracted from Muller et al. (2018). Many but not all of these 344 glass compositions are also in the compiled database.

The LAW Phase 1 study at PNNL (Russell et al. 2017) was conducted in two parts. The first part explored the inner layer (IL) of the LAW GCR specified by the Phase 1 IL SCCs and MCCs in Table 2.1. The second part explored the outer layer (OL) of the LAW GCR specified by the Phase 1 OL SCCs and MCCs in Table 2.1. A total of 36 glasses were investigated in both parts of the LAW Phase 1 study, with the corresponding glass property values as documented by Russell et al. (2017).

The LAW Phase 2 study at PNNL (Russell et al. 2020) was conducted in two parts. The first part explored the IL of the LAW GCR specified by the Phase 2 IL SCCs and MCCs in Table 2.1. The second part explored the OL of the LAW GCR specified by the Phase 2 OL SCCs and MCCs in Table 2.1. The LAW Phase 2 IL study consisted of 17 glasses, while the LAW Phase 2 OL study consisted of 25 glasses. Some glasses in the LAW Phase 2 OL study had to have their target compositions (in the statistically selected test matrix) modified, which was discussed by Russell et al. (2020). However, even with modifications, a homogeneous version of one of the OL glasses could not be made. So, the Phase 2 study contained a total of 41 LAW glasses. Russell et al. (2020) presented and discussed the glass compositions and property data from the LAW Phase 2 IL and OL studies conducted at PNNL.

The LAW Phase 3 study at PNNL (Lonergan et al. 2020) explored the same GCR as specified by the LAW Phase 2 OL SCCs and MCCs in Table 2.1. However, to obtain a better coverage of this GCR, a space-filling experimental design approach was used to select 20 Phase 3 glasses to augment the 41 LAW Phase 2 glasses. The specifics are discussed in Section 2.1.1 of Lonergan et al. (2020). Two of the 20 glasses had replicate results, so the LAW Phase 3 study is discussed in this report as investigating 22 glasses even though there were only 20 distinct target glass compositions. The property values for these glasses are documented by Lonergan et al. (2020).

Table 2.1. Single-Component Constraints (SCCs), Multiple-Component Constraints (MCCs), and Center Points (CPs) for PNNL LAW Phase 1 Outer Layer (Ph1-OL), Phase 1 Inner Layer (Ph1-IL), Phase 2 Inner Layer (Ph2-IL), and Phase 2 Outer Layer (Ph2-OL) Studies. The Phase 3 constraints are the same as the Phase 2 OL constraints.

			Ph1	Ph1	Ph1	Ph2	Ph2	Ph2 IL	Ph2 OL	Ph2 OL	Ph2 OL
	Ph1	Ph1	IL	IL	Center	IL	IL	Center	& Ph3	& Ph3	Center
	OL Min	OL Max	Min	Max	Point	Min	Max	Point	Min	Max	Point
Component	Single-Component Constraints										
Al ₂ O ₃	0.035	0.1385	0.0625	0.115	0.09	0.075	0.1075	0.10	0.06	0.125	0.1000
B ₂ O ₃	0.06	0.1375	0.08	0.1175	0.10	0.08	0.12	0.095	0.06	0.1375	0.0950
CaO	0	0.1224	0.0275	0.09	0.055	0.02	0.08	0.05	0.02	0.11	0.0500
Cr ₂ O ₃	0.0004 ^(a)	0.0031 ^(a)	$0.0008^{(a)}$	0.0021 ^(a)	0.0014 ^(a)	0.00375	0.00525	0.0045	0.003	0.006	0.0045
Fe ₂ O ₃	0	0.015	0.005	0.0125	0.01	0.002	0.01	0.006	0	0.015	0.0060
K ₂ O	0	0.015	0.002	0.01	0.004	0.005	0.02	0.01	0	0.0575	0.0100
Li ₂ O	0	0.05	0.01	0.035	0.02	0 ^(b)					
MgO	0	0.035	0.005	0.025	0.015	0.003	0.01	0.0065	0	0.0135	0.0065
Na ₂ O	0.10	0.26	0.15	0.23	0.19	0.22	0.245	0.23	0.21	0.26	0.2300
SO ₃	0.001	0.02	0.004	0.013	0.007	0.002	0.008	0.005	0.001	0.02	0.0050
SiO ₂	0.34	0.47	0.3675	0.4325	0.3955	0.37	0.43	0.388	0.349	0.47	0.3880
SnO ₂	0	0.05	0.01	0.035	0.02	0.005	0.025	0.015	0	0.035	0.0150
V ₂ O ₅	0	0.04	0.005	0.03	0.02	0.005	0.02	0.01	0	0.04	0.0100
ZnO	0.01	0.05	0.02	0.04	0.03	0.024	0.032	0.028	0.02	0.036	0.0280
ZrO ₂	0	0.065	0.015	0.0475	0.03	0.03	0.055	0.04	0.0295	0.065	0.0400
Others	0.004	0.03	0.0075	0.02	0.0135	0.01	0.02	0.012	0	0.0269	0.0120
Expression	Multiple-Component Constraints										
NAlk ^(c)	0.15	0.265	0.195	0.25	NA	_(d)	0.25	NA	-	0.26	NA
SO ₃ solubility ^(e)	0	-	0	-	NA	0	_	NA	0	_	NA
η ₁₁₅₀ , poise ^(f)	10	100	30	70	NA	30	70	NA	10	100	NA
SnO ₂ +ZrO ₂	0.03	0.11	0.04	0.08	NA	-	—	NA	-	-	-
Al ₂ O ₃ +SnO ₂ +ZrO ₂	-	-	-	-	NA	-	0.17	NA	-	0.17	NA
NAlk-ZrO ₂ -SnO ₂ -	_	_		_	NA	_	0.15	NA	_	0.15	NIA
$\frac{\text{CaO}}{(a)}$ Cr.O. was contr			-				0.15			0.15	NA

(a) Cr_2O_3 was contained in Others for LAW Phase 1 with a fixed mass fraction of 0.104 of the total amounts of Others, but was a separate, varied component for LAW Phase 2 and Phase 3.

(b) Li₂O was set to zero for the LAW Phase 2 IL and OL studies, and the Phase 3 study.

(c) $NAlk = Na_2O + 2(Li_2O) + 0.66(K_2O)$

(d) A dash (-) denotes that there was no limit on the expression.

(e) The SO₃ solubility constraint was implemented as 0.01*SL(SO₃) – SO₃ ≥ 0, where SO₃ is the mass fraction of SO₃ in a LAW glass, and SL(SO₃) is a model prediction of melter SO₃ tolerance (in wt%) for that LAW glass. The melter SO₃ tolerance model is discussed by Vienna et al. (2014).

(f) The LAW Phase 1, Phase 2, and Phase 3 studies at PNNL used η₁₁₅₀ constraints in units of Pa·s. The units were converted to poise in this table because those are the units used by in the current GFA. The η₁₁₅₀ constraints were implemented using a model discussed by Piepel et al. (2016) for Phase 1, and a model discussed by Vienna et al. (2016) for Phase 3.

The GCR for model development is largely controlled by data availability for each specific property. Generally, the data available for each model is surveyed, and frequently it is found that a small number of glasses (one to four) significantly expand the concentration range of one or more component compared to the bulk of data. In those cases, the small number of glasses are excluded from model fitting, leaving the GCR being the range covered by most of the data. The specifics are discussed in the Sections 3.1.1, 4.1.1, 5.1.1, 6.1.1, 7.1.1, and 8.1.1 for PCT, VHT, viscosity, EC, melter SO₃ tolerance, and K-3 corrosion models, respectively.

2.2 Accounting for SO₃ Incorporated into LAW Glass Compositions

Target concentrations (mass fractions) of LAW glass components were used to determine batch and melt amounts of precursor chemicals to yield the target glass compositions. However, a portion of SO₃ may be lost due to (i) volatilization during melting of batch chemicals at 1150 °C or (ii) formation of separated sulfate salts on the melt surface. Thus, the mass fraction of SO₃ incorporated into a glass may be less than the corresponding target mass fraction of SO₃. The concentration (mass fraction) of SO₃ incorporated into the glass was measured (or estimated). The process of estimating the "measured" SO₃ for the glasses without measured SO₃ is described in the subsequent paragraphs. Then, the measured (or an estimated) SO₃ value was substituted for the target SO₃ value for each LAW glass composition. Finally, the remaining target component values were normalized so the total of the component mass fractions (including the measured or estimated SO₃ concentration) summed to 1. The normalization process increased the number of digits in glass component concentrations. The concentrations were rounded to six digits making necessary adjustments such that the sum of component concentrations would be precisely 1.000000. The choice of six digits was made to minimize the impact of rounding on glass property model fitting while maintaining a reasonable number of digits to report in data tables.

The database discussed in Section 2.1 contained 101 LAW glasses without measured SO_3 concentrations. An equation relating measured and target SO_3 concentrations was fitted using the glasses with both target and measured SO_3 values. Then, this fitted equation was used to estimate the "measured" SO_3 concentration in each of the 101 glasses. The following paragraph discusses the data used to fit this measured versus target equation.

Among the 1075 glasses in the database discussed in Section 2.1, 974 glasses had measured SO₃ concentrations, which left 101 glasses without measured SO₃ concentrations (as mentioned previously). Since all the PNNL glasses had measured SO₃ values, these were excluded from the data set to avoid any inter-lab impacts due to preparation conditions. In addition, 83 of the 836 remaining glasses with measured SO₃ involved duplicate data for various reasons (such as CCC glasses that used the same measured SO₃ as the quenched glasses). These 83 glasses with duplicate measured SO₃ values were excluded, which left 753 glasses with independently measured SO₃ for fitting an equation to relate measured SO₃ to target SO₃. However, there were 163 glasses that were tested for properties on samples that were saturated with SO₃ for SO₃ solubility measurement. The SO₃ solubility at 1150 °C results for these 163 glasses were not used to fit the SO₃ measured-target equation because the glasses were prepared with excess SO₃ did not have a SO₃ solubility value, and so a normalized composition could not be obtained. Hence, that glass was excluded, leaving 589 glasses for fitting the SO₃ measured-target equation.

Figure 2.1 shows the measured SO₃ (SO₃-m) versus target SO₃ (SO₃-t) concentrations in the 589 glasses with independently measured SO₃. Most glasses have SO₃-m values lower than the SO₃-t values because of expected volatile loss and potential loss of SO₃ from salt formation during glass preparation. A slightly higher SO₃-m than SO₃-t in some glasses is possible within testing and analytical experimental errors. However, there are glasses with significantly higher SO₃-m than SO₃-t, which may not be justified by experimental errors. This is especially so for the three glasses with (SO₃-m)/(SO₃-t) \geq 1.5. Closely examining the glasses with SO₃-m > SO₃-t resulted in the following two findings.

• The three glasses with $(SO_3-m)/(SO_3-t) \ge 1.5$ also had SO_3 -m even higher than SO_3 solubility $(w_{SO_3})^1$ at 1150 °C, which suggests that the SO_3 -m values are likely in error. In addition, the comparison of

¹ See Section 7 for details on SO₃ solubility methods and data.

 w_{SO_3} and SO₃-m for all 589 glasses found that a large fraction of glasses with SO₃-m > SO₃-t also had SO₃-m > w_{SO_3} . So, it was decided to exclude the 44 glasses with SO₃-m > w_{SO_3} (data points marked by red open circles in Figure 2.1) from the SO₃-m versus SO₃-t fit. However, it was noted that this process also removed some "normal" glasses with SO₃-m < SO₃-t.

• In data from Gan et al. (2001), 8 out of 10 glasses with measured SO₃ had SO₃-m > SO₃-t. This is unusual and suggests potential analytical bias in this set of glasses. So, it was also decided to exclude these 10 glasses (marked by red open triangles in Figure 2.1) from the SO₃-m versus SO₃-t fit.

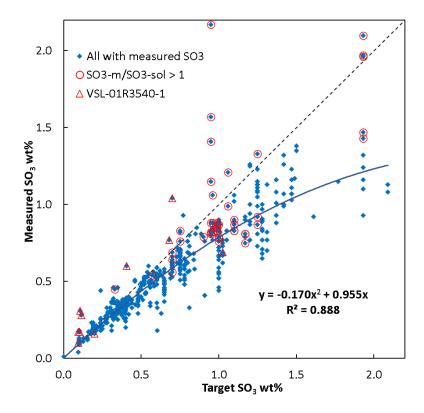
Ultimately, 535 glasses were used to fit the SO₃-m versus SO₃-t equation.

An equation relating SO_3 -m to a second-order polynomial in SO_3 -t was fit to the data using the data from the 535 glasses, resulting in

$$SO_3-m = 0.955 (SO_3-t) - 0.170 (SO_3-t)^2.$$
 (2.1)

Eq. (2.1) does not have a constant (intercept) term because SO_3 -m should be zero when SO_3 -t is zero. The fitted curve fit to 535 data points using Eq. (2.1) is shown as a blue line in Figure 2.1. The figure shows that Eq. (2.1) may tend to over-predict measured SO_3 when the target SO_3 approaches 2 wt%. However, this was judged acceptable because there were a limited number of data points with SO_3 -t > 1.5 wt% to support fitting other model forms that could rectify this issue.

Ultimately, Eq. (2.1) was used to estimate SO₃-m for the 101 glasses without measured SO₃ and the 54 glasses that had measured SO₃ but were removed from the SO₃-m versus SO₃-t fit for the reasons described previously.


Finally, normalized compositions of the LAW glasses were calculated using the equation

$$g_{j} = \frac{T_{j}}{\sum_{j \neq SO_{3}} T_{j}} (1 - M_{SO_{3}}) \quad \text{for } j \neq SO_{3}$$
$$= M_{SO_{3}} \quad \text{for } j = SO_{3}$$
(2.2)

where

- g_j = normalized concentration of the j^{th} component in the glass (mass fraction)
- T_j = target value of the j^{th} component in the glass (mass fraction)

 M_{SO_2} = measured or estimated SO₃ value for the glass (mass fraction).

Figure 2.1. Measured versus Target SO₃ Concentrations (wt%) in 589 Glasses with Independently Measured SO₃ Concentration Data. The 54 Glasses Marked in Red Were Removed before Fitting Eq. (2.1). The solid curved line represents the fitted model from Eq. (2.1).

2.3 LAW Glass Data for Property Modeling

Table 2.2 summarizes the LAW glass property-composition data available for developing propertycomposition models, including the number of LAW glasses and number of property data points from each report that were (i) compiled in the ExcelTM database, including from the PNNL LAW Phase 1, 2, and 3 studies; and (ii) the 344 glasses directly imported from Muller et al. (2018) for k_{1208} only. Initially, the k_{1208} data were also compiled in the ExcelTM database, but later it was found that Muller et al. (2018) included additional data that were not reported in previous publications. So, it was decided to use the aspublished k_{1208} data in that report for property-composition modeling. Muller et al. (2018) reported full glass compositions including measured SO₃ for all 344 glasses. Note that the PNNL LAW Phase 1, 2, and 3 studies did not involve k_{1208} testing. The properties listed in Table 2.2 (for which property-composition models were subsequently developed) include η_{1150} , ε_{1150} , PCT, VHT, $w_{SO_3}^{MT}$, and k_{1208} .

As noted in Section 2.1 and seen in Table 2.2, much of the property and composition data for LAW glasses were obtained from VSL reports. The experimental procedures used to (i) prepare and characterize the simulated LAW glasses and (ii) prepare and test glasses made from actual LAW samples are discussed in the reports listed in Table 2.2. Because the LAW glass data for property modeling were developed over many years at VSL and PNNL, sometimes using different methods and instruments, the

property data may be subject to additional sources of long-term (within-lab), short-term (within-lab), and lab-to-lab (i.e., reproducibility) uncertainties.

The following paragraphs discuss whether each property was measured directly or calculated from measured values. If applicable, the calculational process or formula for a given property is briefly discussed.

2.3.1 Viscosity and Electrical Conductivity

The η_{1150} and ε_{1150} values were calculated at 1150 °C from equations fit to viscosity and EC versus temperature data for each LAW glass. The majority of VSL reports do not provide the "original" viscosity and EC versus temperature data. Rather, most VSL reports provide the η_{1150} and ε_{1150} values obtained from fitting the temperature dependent data to the Vogel-Fulcher-Tammann (VFT) equation and calculating values of viscosity and EC at 1150 °C. The VFT equation is given by

$$\ln(\eta) \text{ or } \ln(\varepsilon) = E + \frac{F}{T_K - T_0}, \qquad (2.3)$$

where *E*, *F*, and *T*₀ are temperature independent, and composition dependent coefficients and *T_K* is the temperature in K (T(°C) + 273.15). For those LAW glasses with the original data but without reported η_{1150} and ε_{1150} values, (i) the VFT equation was fit to viscosity and EC versus temperature data and (ii) the fitted VFT equations were used to calculate estimated η_{1150} and ε_{1150} values. This latter process was performed for all PNNL data, and for some VSL data. Care was taken to include only data points that were not significantly impacted by phase changes or volatility.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

				Number of Glasses with Property Values										
				SO ₃ Solubility or Melter Tolerance										
							VH			at 1	150 °C ((wt%)		
			# of	η_{1150}	ε_{1150}	PCT	ra	(P/F)	4 15					k_{1208}
Group ^(a)	Report ^(b)	Reference	Glasses	(P)	(S/cm)	(g/m^2)	$(g/m^2/d)$	(c)	BS ^(d)	SR ^(e)	Bub ^(f)	MT ^(g)	3TS ^(h)	(in)
WTP	VSL-00R3501-1	Matlack et al. 2000	1	(i)		1								
WTP	VSL-01R3501-2	Matlack et al. 2001	4	2	2	2								
WTP	VSL-01R3560-2	Muller et al. 2001	121	58	54	69	30	33	62		3			
WTP	VSL-01R3540-1	Gan et al. 2001	15											
WTP	VSL-01R62N0-1, Rev. 2	Matlack et al. 2003	2	2	2									
WTP	VSL-03R3460-1	Muller and Pegg 2003a	122	48	48	52	48	48	66		1			
WTP	VSL-03R3460-2	Muller and Pegg 2003b	42	20	20	41	17	17	1					
WTP	VSL-03R3470-1	Muller and Pegg 2003c	6	2	2	2	4	4	2					
WTP	VSL-03R3470-2	Muller and Pegg 2003d	10	5	5	7	6	6						
WTP	VSL-03R3470-3	Muller and Pegg 2003e	2			1	2	2						
WTP	VSL-03R4470-1	Muller and Pegg 2003f	3	2	2	1	1	1						
WTP	VSL-04R4470-1	Muller et al. 2004	2			1	1	1						
WTP	VSL-04R4480-1	Rielley et al. 2004	60	21	21	60	52	57		56				
ORP	VSL-04R4960-1	Matlack et al. 2004a	17	1	1	2	3	3		14	1	1		
ORP	VSL-04R4970-1	Matlack et al. 2004b	3	3	3									
WTP	VSL-04R4980-1	Matlack et al. 2004c	1	1	1	1	1	1						
WTP	VSL-05R5460-1	Muller et al. 2005	30	2	2	26	12	12						
ORP	VSL-05R5900-1	Matlack et al. 2006b	6	6	6	6	6	6		4	4	1		
WTP	VSL-06R6480-1	Matlack et al. 2006c	8	8	8	8	8	8						
WTP	VSL-06R6480-2	Muller et al. 2006a	18	9	9	18	18	18						
WTP	VSL-06R6480-3	Muller et al. 2006b	26	14	14	25	25	26						
ORP	VSL-06R6900-1	Matlack et al. 2006b	45	36	36	40	37	44		36	15	2		
ORP	VSL-07R1130-1	Matlack et al. 2007a	78	37	37	45	65	78		41	13	4		
ORP	VSL-07R7480-1	Matlack et al. 2007b	9	9	9	9	9	9						
ORP	VSL-08R1410-1	Muller et al. 2008	56			15	55	56						
ORP	VSL-09R1510-2	Matlack et al. 2009a	50	31	31	46	44	45		40	2	3		
ORP	VSL-10R1790-1	Muller et al. 2010	32	9	9	32	27	31		30	1	2		

Table 2.2. Summary of LAW Glass Database Showing Data Group, Report Number, Total Number of Glasses, and Number of Glasses with Values for Each Property

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

				Number of Glasses with Property Values										
									SO ₃	Solubil	ity or Me	elter Tole	erance	
							VH	Т		at 1	1150 °C	(wt%)		
			# of	η_{1150}	ϵ_{1150}	PCT	r _a	(P/F)						K-3
Group ^(a)	Report ^(b)	Reference	Glasses	(P)	(S/cm)	(g/m^2)	$(g/m^2/d)$	(c)	BS ^(d)	SR ^(e)	Bub ^(f)	MT ^(g)	$3TS^{(h)}$	(in)
ORP	VSL-13R2940-1	Muller et al. 2013	20	18	20	20	18	20		20				
ORP	VSL-14R3050-1	Muller et al. 2014	22	15	20	21	20	20		20				
ORP	VSL-15R3290-1	Muller et al. 2015c	24	11	11	10	15	15		20				
ORP	VSL-16R4000-1	Muller et al. 2016	38	32	32	32	38	38		28	7			
ORP	VSL-17R4140-1	Muller et al. 2017a	19	18	18	17	19	19		14	7			
ORP	VSL-17R4230-1	Muller et al. 2017b	17	15	15	15	16	16		10	3			
ORP	VSL-17R4250-1	Matlack et al. 2017a	11	9	9	6	9	9		11				
ORP	VSL-17R4330-1	Matlack et al. 2017b	8	8	8	5	8	8		8				
ORP	PNNL-26630	Russell et al. 2017	75	36	35	72	36	36					38	
ORP	VSL-18R4360-1 ^(j)	Muller et al. 2018	9							8				
ORP	PNNL-28838, Rev. 2	Russell et al. 2020	41	41	41	41	39	41					41	
ORP	PNNL-29847	Lonergan et al. 2020	22	20	11	22	14	20					20	
ORP	VSL-18R4360-1 ^(k,l)	Muller et al. 2018												344
		Total	1075	549	542	771	703	748	131	360	57	13	99	344

Table 2.2. Summary of LAW Glass Database Showing Data Group, Report Number, Total Number of Glasses, and Number of Glasses with Values for Each Property (cont.)

(a) Grouping of datasets as either WTP or ORP (Office of River Protection) (see text for description).

(b) All reports are Rev. 0 unless otherwise noted.

(c) P/F = pass/fail.

(d) BS = batch saturation. Excess sulfate is added to raw materials batch and melted to fabricate glass while saturating glass with sulfur.

(e) SR = saturation re-melting. Pre-melted glass is mixed with excess sulfate and melted to saturate glass.

(f) Bub = bubbling. Molten glass is bubbled with SO₂ and O₂ gas mixture to saturate glass.

(g) MT = melter tolerance. Maximum target SO₃ concentration (glass basis) in the melter feed without salt segregation.

(h) 3TS = Three-time saturation. Like the saturation re-melting method but re-melted three times to fully saturate glass.

(i) Blank cells indicate no data.

(j) This row for VSL-18R4360 includes nine glasses with properties other than K-3 corrosion, although two of the nine glasses do have K-3 corrosion values.

(k) This report includes both WTP and ORP glasses and some glasses that cannot be classified because they were not reported in previous publications.

(1) This report is listed a second time with the number of glasses having K-3 corrosion values = 344.

2.3.2 Product Consistency Test Response

As explained in Section 1.2, it is only necessary to model PCT_B^{NL} and PCT_{Na}^{NL} (g/m²). All measured PCT responses were measured using PCT Method A (ASTM 2014). All LAW glasses that had measured values of one of these PCT responses had measured values of both, so the number of data points are the same. Values of PCT_i^{NL} (where j = B or Na) were calculated via

$$PCT_j^{NL} = \frac{c_j / f_j}{A/LV}, \qquad (2.4)$$

where

- c_j = elemental concentration of the *j*th element in the PCT leachate (mg/L = g/m³)
- f_i = mass fraction of the *j*th element in the glass (unitless)
- A = surface area of the crushed glass used in the PCT (m²)
- LV = volume of the leachate (deionized water) used in the PCT (m³).

A standard value of the A/LV ratio (2000 m⁻¹) is specified in the PCT method (ASTM 2014).

2.3.3 Vapor Hydration Test Response

The VHT data used in this report for modeling were collected from tests performed at 200 °C for nominal durations between 7 and 24 days. The pass/fail data were all taken from 24-day duration tests. Some of the reported numerical alteration depth data were taken from earlier times and linearly extrapolated to 24 days. However, these alteration depth/reaction rate data were ultimately not used in VHT response modeling. The VHT response modeled in this report is denoted P or F for pass or fail. VHT rate data given in this report and associated database were not directly measured, but were calculated via

$$r_a^{VHT} = \rho D / t , \qquad (2.5)$$

where

 r_a^{VHT} = mean glass alteration rate over the test duration (g/m²/d)

 ρ = glass density (g/cm³)

- D =alteration depth/thickness (µm)
- t = test duration (d).

This equation assumes that the altered layer density is not appreciably different from the density of the glass when alteration layer thickness is measured instead of remaining glass thickness. Under this assumption, for a typical density of 2.65 g/cm³, a layer thickness of 453 microns in a 24-day VHT would correspond to a mean glass alteration rate of 50 g/m²/d (Piepel et al. 2007). This value of $D \le 453 \,\mu\text{m}$ was previously used as the VHT acceptance criteria (Kim and Vienna 2012).

2.3.4 Melter SO₃ Tolerance

The objective of melter SO₃ tolerance models (discussed in Section 7.0) is to predict the maximum SO₃ concentration that can be processed in the melter without forming segregated sulfate salt, referred to as the "melter SO₃ tolerance." The segregated salt can cause potential problems associated with melter operation (Vienna et al. 2014). Vienna et al. (2014) showed that there is a good correlation between the melter SO₃ tolerance and SO₃ solubility at 1150 °C. Hence, SO₃ solubility data developed primarily from crucible scale tests can be used to predict the melter SO₃ tolerance that can only be obtained from costly melter tests. Values of SO₃ solubility or melter tolerance at 1150 °C for LAW glasses were determined using several different methods, as noted in Table 2.2. The methods are briefly described in the notes of Table 2.2, and in further detail in the reports listed in Table 2.2. Some SO₃ solubility data were extracted from figures in reports when data were not provided in a tabular format. The measured SO₃ solubility at 1150 °C values were obtained by (i) washing a LAW glass sample melted at 1150 °C, and (ii) chemical analysis via X-ray fluorescence (XRF) (for all VSL glasses) or inductively coupled plasma - optical emission spectrometry (ICP-OES) [for all PNNL glasses (Russell et al. 2017, 2020; Lonergan et al. 2020) and selected VSL glasses]. When both XRF and ICP-OES were used for some VSL samples, XRF results were used for consistency.

2.3.5 Data Subgroups

The 39 datasets with 1075 glasses in the LAW property-composition dataset (not including the additional data for k_{1208}) are classified as either WTP or ORP, as seen in Table 2.2. The WTP datasets include glass formulations with conservative waste loadings designed to ensure successful initial startup and operation of the plant. The WTP data were used to develop the models presented by Piepel et al. (2007), which did not include a model for k_{1208} . These models were used in the preliminary LAW GFA by Kim and Vienna (2012). The preliminary LAW GFA is planned to be implemented for commissioning and initial radioactive operations of the WTP LAW Facility. The ORP datasets include the glasses developed to generate the data and models needed to process the full range of LAW compositions at high waste loadings. Note that some reports that were published earlier than Piepel et al. (2007) also include ORP glasses. The dataset for k_{1208} from Muller et al. (2018) in Table 2.2 includes both WTP and ORP glasses, and there were some glasses that cannot be classified because they were not reported in any previous publications.

Figures in subsequent sections have the LAW glass compositions further identified into the following seven groups:

- WTP (lower-waste-loading glasses)
- ORP (high-waste-loading glasses, VSL studies)
- LP1.OL (high-waste-loading glasses, PNNL LAW Phase 1 outer layer)
- LP1.IL (high-waste-loading glasses, PNNL LAW Phase 1 inner layer)
- LP2.OL (high-waste-loading glasses, PNNL LAW Phase 2 outer layer)
- LP2.IL (high-waste-loading glasses, PNNL LAW Phase 2 inner layer)
- LP3 (high-waste-loading glasses, PNNL LAW Phase 3, same region for LAW Phase 2)

The WTP glasses are composed of seven sub-groups, discussed in Sections 2.1 to 2.7 of Piepel et al. (2007), but those sub-groups are not used in this report. The LP1.OL, LP1.IL, LP2.OL, LP2.IL, and LP3 groups represent five statistically designed studies conducted at PNNL from 2016 to 2020. The glass

compositional regions for LAW Phase 2 and Phase 3 (which were the same) were smaller than the glass compositional region for LAW Phase 1 (see Table 2.1). The LP1.OL, LP1.IL, LP2.OL, LP2.IL, and LP3 glasses are also ORP glasses (high waste loading) but are identified separately because they are from recent statistically designed studies for specific high-LAW-loading glass compositional regions of interest.

The LAW glass property-composition dataset includes data for actively designed glasses (by VSL) and statistically designed glasses (by PNNL and VSL). Actively designed glasses result from typical LAW glass formulation efforts with specific objectives, such as developing glass compositions for specific wastes with desired properties. Actively designed glasses sometimes occur in subsets over small composition subregions because of the iterative way a glass for a specific waste was formulated. Glass formulations early in this iterative process usually only have certain properties of primary interest measured. Then, all glass properties are measured when the final glass formulation for a specific waste is selected. Statistically designed glasses result from using statistical experimental design methods and software to well cover specified GCRs of interest.

For most LAW glass formulations, all properties were tested on glasses prepared from dry raw materials, melted in laboratory crucibles, and then quenched in air. Some CCC-treated glasses were tested for PCT and/or VHT. Those data were included in the database but were excluded from modeling. The ExcelTM database also includes a limited number of crucible glasses prepared from actual LAW samples or simulated liquid waste mixed with additive chemicals and minerals. Finally, properties were also tested on selected glasses produced from processing simulated melter feed (simulated waste plus additives) in various scaled melters.

2.3.6 Tabulation of All Data

The LAW glass property-composition dataset available for developing property-composition models of LAW glasses is summarized in Appendix A. Table A.1 lists the range of Glass #s (from 1 to 1075) associated with the data from each literature reference. Table A.2 displays the compositions of the 1075 glasses compiled from the literature, while Table A.3 lists the property values of these glasses (if they were measured) for all properties except k_{1208} . Table A.4 lists the normalized compositions of the 344 LAW glasses with k_{1208} values, which are listed in Table A.5. The glass compositions in Tables A.2 and A.4 are based on 20 components that include 19 components of potential interest for modeling and "Others" that consist of all remaining components. The LAW glass compositions in Tables A.2 and A.4 are normalized to sum to 1 using target concentrations for all components except SO₃ (which used measured or estimated concentrations, as discussed in Section 2.2). The Others component includes (i) minor components that are present in very low concentrations (CdO, NiO, PbO, etc.) and (ii) components that are present only in a very small number of glasses, although sometimes with high concentrations (La₂O₃, SrO, etc.).

2.4 Subsets of LAW Glass Compositions Used to Evaluate Prediction Performance of and Validate Property-Composition Models

In subsequent sections of this report, property-composition models are developed, evaluated, and validated for each of the LAW glass properties discussed in Section 1.1. Because these models will be used to formulate LAW glasses with higher waste loadings and operate the WTP LAW Facility for such glasses, it is important to evaluate the predictive performance of the models for various subsets of LAW glasses, especially those with higher waste loadings (i.e., higher concentrations of Na₂O or SO₃).

Six subsets of the LAW glasses used to model various properties were chosen to evaluate the predictive performance of the LAW glass property-composition models. These subsets and the notations used to denote them are briefly described below.

- WTP: Older LAW glasses with lower waste loadings that were tested by VSL, which were used by Piepel et al. (2007) for property-composition modeling. This classification was assigned when the database of 1075 LAW glasses was compiled (see Section 2.3).
- **ORP**: Newer LAW glasses with higher waste loadings that were tested by VSL. This classification was assigned when the database of 1075 LAW glasses was compiled (see Section 2.3).
- LP2OL: LAW glasses that satisfy slightly expanded (described subsequently) versions of the PNNL Phase 2 OL (and Phase 3) constraints specified in Table 2.1. Hence, this subset of evaluation glasses includes the LP2.OL, LP2.IL, and LP3 glasses, as well as any other LAW glasses that satisfy the expanded Phase 2 OL constraints. Note that the glasses in this evaluation set have high Na₂O waste loadings.
- LP123: LAW glasses from PNNL Phases 1, 2, and 3.
- HiNa₂O: LAW glasses with high concentrations of Na₂O (\geq 0.21 mf).
- **HiSO**₃: LAW glasses with high concentrations of SO₃ (≥ 0.0085 mf).

For the LP2OL evaluation set, the SCCs and MCCs for the Phase 2 OL subregion were slightly expanded to accommodate changes from target glass compositions to normalized glass compositions calculated using measured (or estimated) SO₃ values. The SCCs (lower and upper limits of the components) for these constraints (in Table 2.1) were expanded by a relative 10%. Specifically, where L_i is the lower limit and U_i is the upper limit for the *i*th component in the Phase 2 OL constraints, the expanded lower and upper limits were $0.9(L_i)$ and $1.1(U_i)$. As an example, the target range for Na₂O was 0.21 to 0.26 mf, with the expanded range 0.189 to 0.286 mf. The MCC constraints (NAlk, SO₃ solubility, SnO₂+ZrO₂, Al₂O₃+SnO₂+ZrO₂, and NAlk-ZrO₂-SnO₂-CaO) for the Phase 2 OL region listed in Table 2.1 had their limiting constant values decreased by 0.01 for lower limits and increased by 0.01 for upper limits. The limits for the η_{1150} constraints were not changed.

Finally, the numbers of LAW glasses in the six evaluation sets differ by glass property, because not all LAW glass properties were measured for every glass. Also, not all of these six subsets of evaluation glasses are distinct. That is, some glasses are in more than one evaluation set. The specific glasses in the six evaluation sets are identified in Appendix C and summarized in Sections 3.0 to 8.0, which discuss the data and models for each LAW glass property.

Ideally, glass property models would be validated by a dataset in the same composition region but that was not used to fit model parameters (called external validation). Due to the lack of data for some properties in the composition region intended for application and the highly non-linear property-composition responses, it was decided to validate the models using a model subset validation approach. Generally, this approach quantitatively validates the model form including terms selected for the model while allowing for the final model coefficients to be determined by the full set of available data appropriate for modeling a given property. The general approach is to combine all replicate glasses in a modeling subset of data then sort remaining data in order of property response values. Roughly one fifth of the data is selected by taking every fifth point for use in a validation set. The model is then fit to the replicate sets and 4/5ths of the remaining data. This model is used to predict the values for the remaining ~1/5th of the data. The removed data points are systematically changed from the 1st to 2nd to 3rd, etc. point in the set so that each non-near replicate glass is in one validation subset. The validation statistics for each validation subset are reported along with their averages.

2.5 Glass Composition for Example Calculations

Throughout the process of model development and reporting, it became necessary to define a reference glass composition. The reference mixture (REFMIX) glass was used. This reference glass composition was developed to represent an average of compositions in the glass property-composition database. Starting with the 1075 glasses listed in Appendix A, all replicate and near-replicate glasses were removed (leaving only one point for each replicate set) along with glass LAWA97S, which has no reported composition. This left 904 compositions. The average for each component concentration in the 904 glasses was taken and the composition was normalized to sum to precisely 1.000000 with six-digit rounding. Table 2.3 lists the 20-component composition of the REFMIX glass. For each recommended glass property-composition model, an example calculation was performed using the REFMIX glass composition. Additionally, property response trace plots (AKA spider plots) were generated for all property models based on the REFMIX composition.

	REFMIX Composition
Model Term	(mass fractions)
Al ₂ O ₃	0.075760
B_2O_3	0.097257
CaO	0.052514
Cl	0.003376
Cr_2O_3	0.002041
F	0.001348
Fe_2O_3	0.029727
K ₂ O	0.012064
Li ₂ O	0.014802
MgO	0.016989
Na ₂ O	0.168395
P_2O_5	0.003239
SO_3	0.005542
SiO ₂	0.424565
SnO_2	0.007587
TiO ₂	0.008034
V_2O_5	0.007499
ZnO	0.031997
ZrO_2	0.036219
Others	0.001045

Table 2.3. REFMIX Composition in Formats Used for Example Calculations and Response Trace Plots

3.0 Models Relating Normalized PCT Boron and Sodium Losses to Composition of LAW Glasses

This section documents the development, evaluation, and validation of property-composition models and corresponding uncertainty expressions for predicting the PCT_B^{NL} and PCT_{Na}^{NL} of LAW glasses. PCT values, as $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$, are modeled using a combination of full linear mixture (FLM) model, reduced linear mixture (RLM) model, partial quadratic mixture (PQM) model and ultimately bias corrected PQM model (bcPQM) as functions of LAW glass composition. Specification 2.2.2.17.2 in the WTP contract (DOE 2000) sets a 2 g/m² limit on PCT_B^{NL} , PCT_{Na}^{NL} , and PCT_{Si}^{NL} from LAW glasses. However, PCT_{Si}^{NL} was less than PCT_B^{NL} and PCT_{Na}^{NL} for all 703 of the simulated and actual LAW glasses having PCT responses of quenched samples. Because PCT_B^{NL} and PCT_{Na}^{NL} are higher than PCT_{Si}^{NL} , the WTP Project decided that only PCT_B^{NL} and PCT_{Na}^{NL} need be modeled (Piepel et al. 2007). The same reasoning is applicable here. The property-composition models and corresponding uncertainty expressions for $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ presented in this section were developed and validated using composition and normalized PCT loss data collected for simulated and actual LAW glasses having PCT responses.

The 703 quenched simulated and actual LAW glass samples available for $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ model development, evaluation, and validation are discussed in Section 3.1. Section 3.2 presents the model forms for $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ that were investigated. Sections 3.3 and 3.4, respectively, summarize the results for the PCT_B^{NL} and PCT_{Na}^{NL} model forms investigated and the model forms ultimately recommended. Section 3.5 illustrates the calculation of $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ predictions and the uncertainties in those predictions using selected models and corresponding uncertainty equations. Section 3.6 discusses the suitability of the recommended $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ models for use by the WTP LAW Facility and presents model validity ranges. Appendix B discusses the statistical methods and summary statistics used to develop, evaluate, and validate the several model forms investigated, as well as statistical equations for quantifying the uncertainties in $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ predictions.

3.1 Normalized PCT Loss Data from LAW Glasses Used for Model Development, Evaluation, and Validation

The data used to develop $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ models as functions of LAW glass composition are discussed in Section 3.1.1. The approaches and data used for evaluating and validating the models are discussed in Sections 3.1.2 and 3.1.3.

3.1.1 Model Development Data for Normalized PCT Boron and Sodium Losses from LAW Glasses

The data available for developing property-composition models for PCT_B^{NL} and PCT_{Na}^{NL} consist of composition (adjusted as described in Section 2.2) and normalized PCT loss data from 703 quenched LAW glass samples. In addition, 68 glasses listed in Appendix A have measured normalized PCT loss data on CCC samples that were not used in model development. Instead, constraints are added to avoid glasses prone to significant changes in PCT response from CCC heat treatments. These glasses and their normalized compositions based on measured (or estimates of measured) SO₃ values are discussed in Section 2.0. The corresponding PCT_B^{NL} and PCT_{Na}^{NL} values are presented in Table A.3 of Appendix A.

3.1.1.1 Assessment of Available LAW Glasses with Boron and Sodium Normalized Losses from the PCT

The database of 703 quenched glasses with PCT_B^{NL} and PCT_{Na}^{NL} values contains statistically designed as well as actively designed glasses. Some actively designed glasses are outside the composition region covered by the majority of the LAW compositions. Such glasses are not ideal for inclusion in a modeling dataset because they can be influential when fitting models to data. Hence, it was decided to (i) graphically assess the 703 simulated and actual LAW glass compositions with PCT values and (ii) remove from the modeling dataset any compositions considered to be outlying or non-representative of LAW glasses of interest for the WTP LAW Facility.

Figure 3.1 displays plots of the mass fraction values for 19 "main components" plus the Others component (the sum of all remaining components) in the 703 LAW glasses with quenched glass PCT data. These 20 components (including Others) have sufficient ranges and distributions of mass fraction values to support separate model terms if so desired. Figure 3.2 displays similar plots for the remaining "minor components." On each plot in Figure 3.1 and Figure 3.2, the x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting. The plotting symbols in Figure 3.1 and Figure 3.2 correspond to the seven groups of LAW glasses discussed in Section 2.3. For comparison purposes, the vertical lines in Figure 3.1 and Figure 3.2 represent the ranges over which the LAW glass components were varied in the PNNL (i) LAW Phase 1 outer-layer study (blue lines), (ii) Phase 2 outer-layer study (pink lines), and (iii) Phase 3 study (pink lines), as shown in Table 2.1. Phases 2 and 3 focused on LAW glasses with high Na₂O waste loadings, whereas Phase 1 explored a larger LAW GCR with higher waste loadings.

Figure 3.1 shows several of the 703 glasses have components with outlying mass fraction values compared to the remaining glasses and to the component ranges tested in the PNNL LAW Phase 1, Phase 2, and Phase 3 studies. Figure 3.2 shows what appear to be outliers for some "minor components," but the values and ranges of those components are small and hence the glass compositions were not considered to be outliers. Table 3.1 lists the 11 LAW glasses excluded from the PCT modeling dataset, and the reason each glass was excluded. One glass (LAWPH3-06) was removed from modeling of PCT_{Na}^{NL} due to a reported response of < 0.3205 g/m². One glass (LAWC14) was removed from modeling PCT_{Na}^{NL} due to an anomalous PCT_{Na}^{NL} value compared to PCT_B^{NL} and was also found to be an influential outlier in $\ln[PCT_{Na}^{NL}]$ modeling. Finally, one glass (New-OL-80309) was identified as an extreme outlier for all candidate bcPQMs, which significantly altered the bias correction slope and goodness of fit and thus was excluded from modeling dataset for both $\ln[PCT_B^{NL}]$ and $\ln[PCT_{Na}^{NL}]$. These 14 glasses were considered non-representative and were excluded from the PCT modeling dataset.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

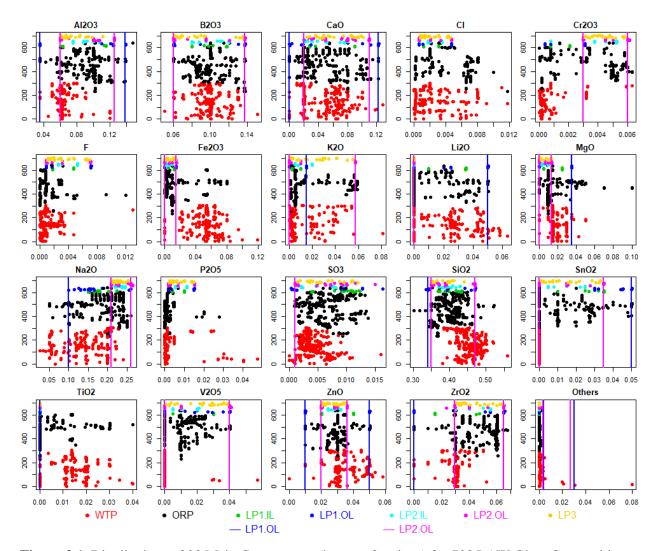


Figure 3.1. Distributions of 20 Main Components (in mass fractions) for 703 LAW Glass Compositions with Data for normalized PCT Losses of B or Na. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 (blue lines) and Phase 2 (pink lines) outer-layer studies (see Table 2.1). In cases where two limits are the same, pink lines over-plot the blue lines.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

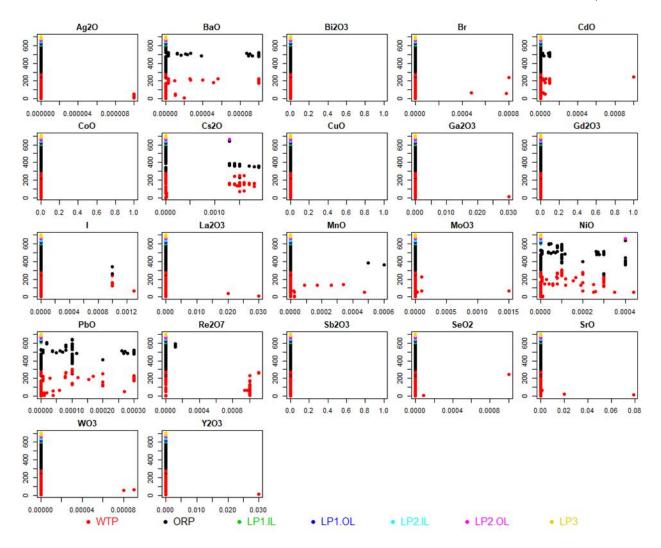


Figure 3.2. Distributions of 22 Minor Components (in mass fractions) for 703 LAW Glass Compositions with Data for normalized PCT Losses of B or Na.

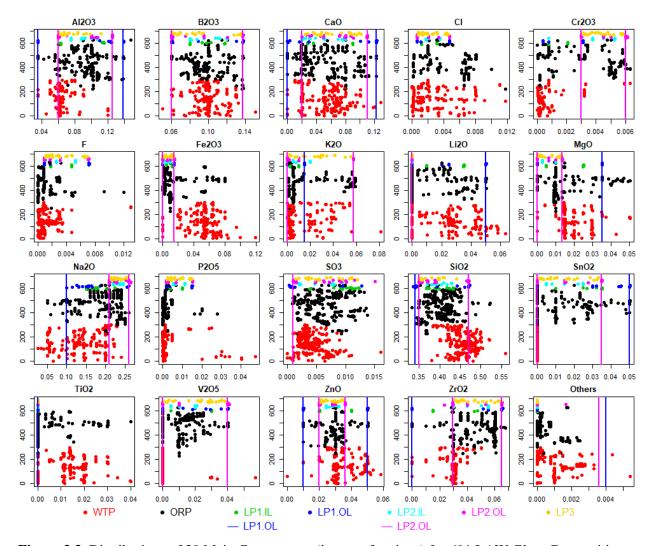

Glass#	Glass ID	Reason Glass Excluded from PCT_B^{NL} and PCT_{Na}^{NL} Modeling Datasets ^(a)
739	ORPLA28	MgO>0.06 (=0.07015) mf
740	ORPLA29	MgO>0.06 (=0.10022) mf
742	ORPLA31	MgO>0.06 (=0.07015) mf
743	ORPLA32	MgO>0.06 (=0.10022) mf
12	LAWA46	Others $> 0.02 (= 0.03103) \text{ mf}$
13	LAWA47	Others $> 0.02 (= 0.03103) \text{ mf}$
14	LAWA48	Others $> 0.02 (= 0.03103) \text{ mf}$
20	LAWA64	Others $> 0.02 (= 0.07985) \text{ mf}$
25	LAWA85	Others > $0.02 = 0.02096$ mf
26	LAWA86	Others $> 0.02 (= 0.02096) \text{ mf}$
43	LAWABP1	Others $\ge 0.02 \ (= 0.020001) \ \text{mf}$
67	LAWC14	Had an outlying PCT_{Na}^{NL} value (compared to PCT_{B}^{NL} and predicted PCT_{Na}^{NL}) and so was not used for PCT_{Na}^{NL} modeling
1059	LAWPH3-06	Had a reported PCT_B^{NL} value of < 0.3205 g/m ² and so was not used for PCT_B^{NL} modeling
977	New-OL-80309	Was identified as an extreme outlier for all candidate bcPQMs, which significantly altered the bias correction slope and goodness of fit
(a) $mf = r$	nass fraction	

 Table 3.1. Fourteen LAW Glasses with Non-representative Compositions Excluded from the Modeling

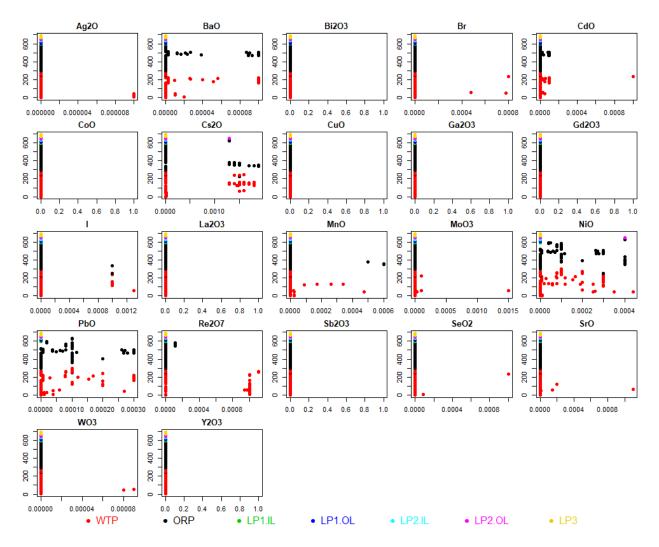
 Datasets for Normalized PCT Losses of B and Na

The combined PCT boron and sodium loss database, after removing outliers, contains 691 glasses. A total of 14 glasses are listed in Table 3.1. Thirteen glasses were removed from each of the PCT_j^{NL} modeling datasets, leaving 690 glasses available for modeling each PCT_j^{NL} . Twelve of the 14 glasses in Table 3.1 were common to both datasets (Glass#'s 12, 13, 14, 20, 25, 26, 43, 739, 740, 742, 743, and 977). Glass# 67 was removed from PCT_{Na}^{NL} dataset and not from the PCT_B^{NL} dataset while glass# 1059 was removed the PCT_B^{NL} dataset and not from the PCT_{Na}^{NL} dataset while glass# 1059 was removed the overall PCT database. Figure 3.3 and Figure 3.4 (corresponding to Figure 3.1 and Figure 3.2, respectively) show plots of component distributions after the 12 outlying and non-representative glasses were removed from the PCT dataset containing 703 glasses. Figure 3.3 shows that, for the remaining 691 LAW glasses, all 19 LAW glass "main components" have sufficient ranges and distributions of values within those ranges to support terms for modeling $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$. Figure 3.4 confirms than none of the "minor components" have sufficient ranges and distributions of values within their ranges to support model terms for those components. Based on Figure 3.3 and Figure 3.4, it was decided to use 20 components for initial PCT_B^{NL} and PCT_{Na}^{NL} modeling work. These components are Al₂O₃, B₂O₃, CaO, CI, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SO₃, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others (the sum of all remaining components); the same components used for modeling other properties.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 3.3. Distributions of 20 Main Components (in mass fractions) for 691 LAW Glass Compositions with Data for Normalized PCT Losses of B or Na that Remain after Excluding the 12 Glasses in Table 3.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 (blue lines) and Phase 2 (pink lines) outer-layer studies (see Table 2.1). In cases where two limits are the same, pink lines over-plot the blue lines.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2



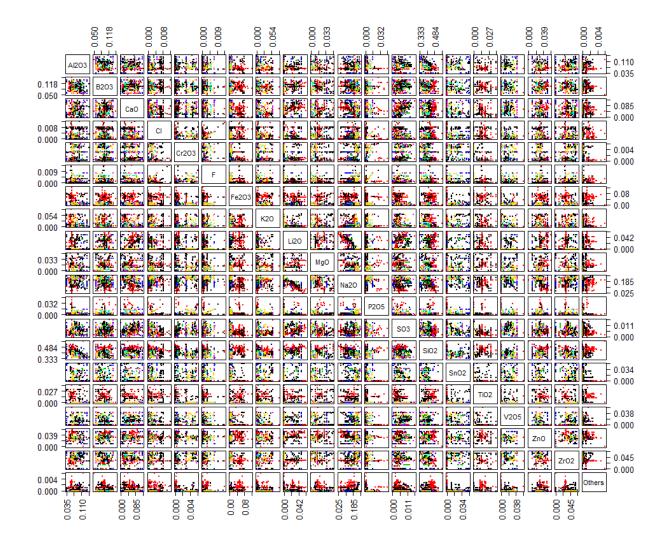

Figure 3.4. Distributions of 22 Minor Components (in mass fractions) for 691 LAW Glass Compositions with Data for Normalized PCT Losses of B or Na that Remain after Excluding the 12 Glasses in Table 3.1.

Figure 3.5 shows a scatterplot matrix of the 691 glasses remaining in the PCT modeling dataset after removing the 12 non-representative compositions. High correlations between pairs of components can create problems with accurately estimating the effect of a component on a response, so pairwise correlation coefficients were calculated. These can vary from -1.0 (perfect negative correlation) to 0 (no correlation) to 1.0 (perfect positive correlation). The only component pairs with correlations larger (in absolute value) than 0.60 were Li₂O and Na₂O, with a correlation of -0.8634, and Na₂O and SiO₂, with a correlation -0.6061. See Section 9.7 for further discussion of these highly correlated pairs. Two other pairs of components, Al₂O₃ and SiO₂, and Fe₂O₃ and TiO₂, have correlations of -0.5676 and 0.5794, respectively. High pairwise correlations can make it difficult for regression methods to properly separate the effects of the components on the response variable (e.g., PCT_{B}^{NL} or PCT_{Na}^{NL}) and inflate prediction uncertainties. Thus, these high pairwise correlations need to be kept in mind in developing and applying LAW glass property-composition models for PCT_{B}^{NL} and PCT_{Na}^{NL} .

3.1.1.2 Modeling Dataset for the PCT

Table A.3 in Appendix A lists the Glass ID, as well as PCT_B^{NL} and PCT_{Na}^{NL} values, for the 691 remaining simulated and actual LAW glasses used for model development. The PCT_B^{NL} and PCT_{Na}^{NL} values for non-representative (see Table 3.1) and CCC heat treated glasses excluded from the 691-glass modeling dataset are marked with an asterisk in Table A.3. The compositions for these 691 LAW glasses are included in Table A.2. The glass compositions are the normalized mass fractions (mf) of the 20 components previously identified as having sufficient data to support a separate model term if needed. These components are Al₂O₃, B₂O₃, CaO, Cl, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SO₃, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others. The mass fraction values of the 20 components shown in Table A.2 were normalized so that they sum to precisely 1.000000 for each of the glasses (see Section 2.2).

Section 3.2.2 discusses how the PCT_B^{NL} and PCT_{Na}^{NL} values were calculated from measured elemental releases and target glass compositions. The values of PCT_B^{NL} and PCT_{Na}^{NL} in Table A.3 for the 691 glasses in the modeling dataset range from 0.08 to 17.84 g/m² and 0.10 to 13.41 g/m², to two decimal places, respectively.

Figure 3.5. Scatterplot Matrix of 20 Components (mass fractions) for 691 LAW Glasses with Data for Normalized PCT Losses (g/m²) of B and Na that Remain after Excluding the 12 Glasses in Table 3.1

Of the 691 simulated and actual LAW glasses in the PCT modeling dataset, 40 had PCT_B^{NL} and 32 had PCT_{Na}^{NL} values that exceeded the limit of 2 g/m² given in Specification 2.2.2.17.2 of the WTP contract. It is desirable to have some glasses in the modeling dataset that have PCT_B^{NL} and PCT_{Na}^{NL} ranging from somewhat below to somewhat above the limit. This allows for more confident use of models in discerning between glasses with acceptable and unacceptable PCT_B^{NL} and PCT_{Na}^{NL} values. However, glass formulations that have PCT_B^{NL} and PCT_{Na}^{NL} values far beyond the limit may not be desirable for model development, because using such glasses could adversely affect model prediction performance for the majority of the glasses. For this reason, dropping from the modeling dataset a few glasses with the highest PCT_B^{NL} and PCT_{Na}^{NL} values was investigated. However, comparing model fits with and without these sets of glasses did not notably change the predictive performance of models for the remaining glasses. Hence, the high normalized PCT losses were outliers but not influential. This conclusion, along with the need to have glasses from the PCT losses in the modeling dataset, led to the decision not to drop any LAW glasses from the PCT modeling dataset because of "too-large" normalized PCT losses.

3.1.1.3 Replicate and Near-Replicate PCT Data on LAW Glasses

The changes to the LAW glass compositions caused by the renormalization associated with using measured (or estimates of measured) SO_3 values (see Section 2.2) resulted in some replicate glasses not having exactly equal normalized compositions. Such compositions are referred to as near-replicates. For ease of discussion, henceforth both replicates and near-replicates are referred to as replicates.

Table 3.2 lists the replicate sets of LAW glasses in the PCT modeling dataset and the corresponding PCT_B^{NL} values. Table 3.3 lists the replicate sets of LAW glasses in the PCT modeling dataset and the corresponding PCT_N^{NL} values. Table 3.2 and Table 3.3 also list estimates of (i) percent relative standard deviations (%RSDs) [calculated using PCT_B^{NL} and PCT_{Na}^{NL} values in original g/m^2 units] and (ii) standard deviations (SDs) [calculated using $ln(PCT_B^{NL})$ and $ln(PCT_{Na}^{NL})$ values in $ln(g/m^2)$ units] for each replicate set. Table 3.2 and Table 3.3 also list pooled estimates of %RSD and SD calculated over all the replicate sets. A pooled %RSD or SD combines the separate %RSD or SD estimates from each replicate set, so that a more precise combined estimate of the %RSD or SD is obtained. These pooled %RSDs and SDs include uncertainties due to fabricating glasses, performing the PCT, and chemically analyzing leachates to determine elemental (and then normalized) losses. The pooled SDs in $ln(g/m^2)$ units are 0.232 for $ln(PCT_B^{NL})$ and 0.185 for $ln(PCT_{Na}^{NL})$. The pooled %RSDs in percentage units are 22.2 for PCT_B^{NL} and 17.9 for PCT_{Na}^{NL} . The pooled SDs (0.232 and 0.185) and pooled %RSDs (22.2 and 17.9) in Table 3.2 and Table 3.3 indicate there is approximately a 20% total relative uncertainty in the PCT_B^{NL} and PCT_{Na}^{NL} values over the replicate glasses.

Replicate Set Glass #s	Replicate Glass IDs	Replicate Set PCT_B^{NL} (g/m ²)	%RSD ^(a)	SD [ln(g/m ²)]	RepSet Number
268	A88Si+15	1.240	70KSD**	SD [III(g/III)]	Nullioci
208	WVE-G-108A	0.585	50.76	0.5312	1
269	A88Si-15	0.325			
205	WVE-G-27D	0.300	5.66	0.0566	2
273	C22Si+15	0.635			
303	WVD-G-25A	0.460	22.60	0.2280	3
274	C22Si-15	0.465	22.04	0.04.60	
304	WVC-G-107B	0.285	33.94	0.3462	4
993	EWG-LAW-Centroid-1	0.402	0.71	0.0071	F
995	EWG-LAW-Centroid-2	0.398	0.71	0.0071	5
4	A100-G-115A	0.480			
123	A100-G-115A	0.485	11.24	0.1151	6
296	WVB-G-124B	0.425	11.24	0.1151	0
427	LAWA102R2	0.380			
39	LAWA102S	0.275	31.09	0.3161	8
390	LAWA102R1	0.430	51.07	0.5101	0
315	LAWA126	0.598	5.89	0.0590	12
414	AP-101 Actual	0.650	5.07	0.0570	12
280	A2-AP101(LAWA126)	0.780	22.00	0.2218	13
426	WVM-G-142C	0.570			
318	LAWA127R1	0.334	6.27	0.0628	14
319	LAWA127R2	0.365			
538 737	EWV-G-89B ORPLA26	1.060 0.920	10.00	0.1002	21
9	LAWA44	0.920			
266	LAWA44(Crucible)	0.540	26.42	0.2673	24
200	LAWA88	0.435			
389	LAWA88R1	0.815	31.75	0.3149	34
413	AW-101 Actual	0.570	51.75	0.5149	54
267	A88AP101R1	0.685			
293	WVF-G-21B	0.415	34.71	0.3544	35
227	LAWB83	0.305			
229	LAWB84	0.340			
284	B1-AZ101(LAWB83)	0.390	19.23	0.1908	40
299	WVJ-G-109D	0.245			
415	AZ-101 Actual	0.260			

Table 3.2. Uncertainty in Normalized PCT Losses (g/m ²) of B for Replicate and Near-Replicate Set	ts of
LAW Glasses	

		Replicate			
		Set			
Replicate Set		PCT_B^{NL}			RepSet
Glass #s	Replicate Glass IDs	(g/m ²)	%RSD(a)	$SD \left[ln(g/m^2) \right]$	Number
311	LAWB88	0.195			
416	AZ-102 Actual	0.200	6.45	0.0636	41
435	AZ-102 Surrogate	0.220			
270	LAWB96	0.275	3.75	0.0376	42
431	GTSD-1126	0.290	5.15	0.0370	12
442	LAWC100	0.525			
443	LAWC100R1	0.840	27.42	0.3011	43
447	WVY-G-95A	0.920			
68	LAWC15	0.329	4.37	0.0438	44
418	AN-107 Actual	0.350	4.57	0.0450	
5	C100-G-136B	0.368			
125	C100-G-136B	0.368			
248	C21REV2	0.345	4.60	0.0462	45
437	LAWC21	0.330			
438	LAWC21Rev2	0.350			
419	AN-102 Actual LC Melter	0.210	24.96	0.2522	46
420	AN-102 Actual	0.300	24.70	0.2322	40
75	LAWC22	0.518			
249	C22AN107	0.570			
271	LAWC22(Crucible)	0.480	17.09	0.1925	47
272	C22AN107	0.570	17.09	0.1925	47
279	C1-AN107(LAWC22)	0.515			
436	12S-G-85C	0.340			
260	LAWC31	0.275	9.61	0.0963	49
305	WVH-G-57B	0.240	9.01	0.0905	49
289	C2-AN102C35	0.340	2.05	0.0205	50
440	GTSD-1437	0.350	2.05	0.0205	50
456	LAWCrP1	0.276	1.77	0.0177	51
457	LAWCrP1R	0.283	1.//	0.0177	51
458	LAWCrP2	0.303	41.88	0.4318	54
459	LAWCrP2R	0.558	41.00	0.4510	54
460	LAWCrP3	0.285	19.47	0.1959	55
461	LAWCrP3R	0.376	19.47	0.1737	55
462	LAWCrP4	0.436	0.16	0.0016	56
463	LAWCrP4R	0.437	0.10	0.0010	50
451	LAWE7H	0.535	82.76	0.9480	66
624	FWV-G-63B	0.140	02.70	0.7400	00
331	LAWM1	0.075	12.86	0.1289	69
383	LAWM53	0.090	12.00	0.1207	09

Table 3.2. Uncertainty in Normalized PCT Losses (g/m²) of B for Replicate and Near-Replicate Sets of LAW Glasses, cont.

Replicate Set Glass #s	Replicate Glass IDs	Replicate Set PCT_B^{NL} (g/m^2)	%RSD(a)	SD [ln(g/m ²)]	RepSet Number
342 385	LAWM12 LAWM55	14.850 17.835	12.92	0.1295	70
365 386	LAWM35 LAWM56	5.265 7.290	22.81	0.2301	71
380 381	LAWM50 LAWM51	0.325 0.345	4.22	0.0422	72
339 384	LAWM9 LAWM54	0.105 0.185	39.01	0.4005	73
797 798	LORPM28R1 LORPM28R1	3.845 3.709	2.55	0.0255	78
846 865	ORLEC12 OWV-G-144E	0.635	19.66	0.1978	85
803 848 887	ORLEC14 QWV-G-107B	0.475 0.425	7.86	0.0786	86
850 888	ORLEC16 PWV-G-130C	0.435 0.490	8.41	0.0842	87
853 890	ORLEC19 QWV-G-29C	0.330 0.365	7.12	0.0713	88
856 891	ORLEC22 QWV-G-75B	0.280 0.310	7.19	0.0720	89
862 867	ORLEC26 OWV-G-109B	0.365 0.615	36.08	0.3689	91
863 869	ORLEC27 PWV-G-43E	0.680	48.51	0.5056	92
864 871	ORLEC28 PWV-G-93A	0.510 0.765	28.28	0.2867	93
877 903	ORLEC33 RWV-G-9C	0.740 0.720	1.94	0.0194	94
878 904	ORLEC34 RWV-G-48D	0.900 0.970	5.29	0.0530	95
893 905	ORLEC44 RWV-G-79C	0.490 0.695	24.47	0.2471	96
895 906	ORLEC46 RWV-G-120D	0.345 0.500	25.94	0.2624	97
897 907	ORLEC48R SWV-G-17A	0.275 0.315	9.59	0.0960	98
751 767	ORPLA38-1 J10-G-24B	0.730 0.875	12.78	0.1281	102
589 591	ORPLC2 ORPLC3	1.120 1.740	30.66	0.3115	106

Table 3.2. Uncertainty in Normalized PCT Losses (g/m²) of B for Replicate and Near-Replicate Sets of LAW Glasses, cont.

Replicate Set		Replicate Set PCT_B^{NL}		CD [1, (, , (,, 2)]	RepSet	
Glass #s	Replicate Glass IDs	(g/m ²)	%RSD(a)	SD $[\ln(g/m^2)]$	Number	
595	ORPLC5	0.850	16.23	0.1630	108	
620	S10-G-101B	0.675				
597	ORPLD1	0.660				
622	T10-G-16A	0.345				
997	LAW-ORP-LD1(1)	0.467	25.10	0.2357	109	
999	LAW-ORP-LD1(2)	0.424				
1035	LP2-OL-07	0.437				
732	Z10-G-60C	0.625	17.12	0.1721	110	
733	10A-G-53C	0.490	17.12	0.1721	110	
766	ORPLG27	0.665	23.50	0.2372	114	
768	I10-G-135A	0.930	25.50	0.2372	114	
1022	LP2-IL-10	0.441				
1028	LP2-IL-16	0.486	4.31	0.0429	116	
1031	LP2-OL-02	0.469	4.51	0.0429	110	
1049	LP2-OL-21	0.451				
1034	LP2-OL-05	0.160	4.29	0.0429	117	
1038	LP2-OL-10-MOD	0.170	4.27	0.0429	117	
1065	LAWPH3-12	1.360	9.60	0.0961	118	
1066	LAWPH3-12-2	1.558	9.00	0.0901	110	
1071	LAWPH3-17	0.532	7 42	0.0744	110	
1072	LAWPH3-17-2	0.591	7.43	0.0744	119	
Pooled Over 58	Replicate Sets with 78 total DF ^(b)		22.1812	0.2317		

Table 3.2. Uncertainty in Normalized PCT Loss	es (g/m ²) of B for Replicate and Near-Replicate Sets of
LAW Glasses, cont.	

(b) DF = degrees of freedom

Replicate Set		Replicate Set PCT_{Na}^{NL}			RepSet
Glass #s	Replicate Glass IDs	(g/m ²)	%RSD ^(a)	SD $[\ln(g/m^2)]$	Number
268	A88Si+15	1.000	45.27	0.4692	1
294	WVE-G-108A	0.515	+3.27	0.4072	1
269	A88Si-15	0.325	9.27	0.0929	2
295	WVE-G-27D	0.285	2.21	0.0727	2
273	C22Si+15	0.830	40.56	0.4173	3
303	WVD-G-25A	0.460	10.50	0.1175	5
274	C22Si-15	0.345	19.87	0.2000	4
304	WVC-G-107B	0.260	19107	0.2000	
993	EWG-LAW-Centroid-1	0.524	0.40	0.0040	5
995	EWG-LAW-Centroid-2	0.527	0110	0.0010	C.
4	A100-G-115A	0.458			
123	A100-G-115A	0.450	4.24	0.0429	6
296	WVB-G-124B	0.415		0.0122	Ū
427	LAWA102R2	0.440			
39	LAWA102S	0.220	35.05	0.3580	8
390	LAWA102R1	0.365			-
315	LAWA126	0.524	15.18	0.1524	12
414	AP-101 Actual	0.650			
280	A2-AP101(LAWA126)	0.560	5.24	0.0524	13
426	WVM-G-142C	0.520			
318	LAWA127R1	0.342	2.24	0.0224	14
319	LAWA127R2	0.353			
538	EWV-G-89B	0.950	14.35	0.1440	21
737	ORPLA26	0.775			
9	LAWA44	0.360	18.74	0.1885	24
266	LAWA44(Crucible)	0.470			
28	LAWA88	0.425	20.00	0 0007	24
389	LAWA88R1	0.650	20.99	0.2227	34
413	AW-101 Actual	0.590			
267	A88AP101R1	0.585	32.75	0.3336	35
293 227	WVF-G-21B LAWB83	0.365 0.265			
227					
	LAWB84	0.280	0 00	0.0021	40
284	B1-AZ101(LAWB83)	0.265	8.89	0.0921	40
299	WVJ-G-109D	0.220			
415	AZ-101 Actual	0.250			

Table 3.3. Uncertainty in Normalized PCT Losses (g/m ²) of Na for Replicate and Near-Replicate Sets	s of
LAW Glasses	

Replicate Set		Replicate Set PCT_{Na}^{NL}			RepSet
Glass #s	Replicate Glass IDs	(g/m^2)	%RSD(a)	SD $[\ln(g/m^2)]$	Number
311	LAWB88	0.160	, , , , , , , , , , , , , , , , , , ,	~~ [(8, /]	
416	AZ-102 Actual	0.160	13.32	0.1288	41
435	AZ-102 Surrogate	0.200			
270	LAWB96	0.285	1.05	0.0125	40
431	GTSD-1126	0.280	1.25	0.0125	42
442	LAWC100	0.435			
443	LAWC100R1	0.755	29.30	0.3281	43
447	WVY-G-95A	0.780			
68	LAWC15	0.336	15.71	0.1578	44
418	AN-107 Actual	0.420	15./1	0.1578	44
5	C100-G-136B	0.405			
125	C100-G-136B	0.349			
248	C21REV2	0.360	5.96	0.0577	45
437	LAWC21	0.360			
438	LAWC21Rev2	0.360			
419	AN-102 Actual LC Melter	0.260	20.87	0.2102	46
420	AN-102 Actual	0.350	20.87	0.2102	40
75	LAWC22	0.469			
249	C22AN107	0.555		0.2003	
271	LAWC22(Crucible)	0.435	18.29		47
272	C22AN107	0.555	18.29		4/
279	C1-AN107(LAWC22)	0.530			
436	12S-G-85C	0.330			
260	LAWC31	0.315	17.68	0.1777	49
305	WVH-G-57B	0.245	17.08	0.1777	49
289	C2-AN102C35	0.375	0.95	0.0095	50
440	GTSD-1437	0.370	0.95	0.0095	50
456	LAWCrP1	0.326	0.43	0.0043	51
457	LAWCrP1R	0.328	0.45	0.0045	51
458	LAWCrP2	0.328	31.89	0.3245	54
459	LAWCrP2R	0.519	51.02	0.3243	J 4
460	LAWCrP3	0.326	18.48	0.1859	55
461	LAWCrP3R	0.424	10.40	0.1059	55
462	LAWCrP4	0.409	4.68	0.0468	56
463	LAWCrP4R	0.437	- .00	0.0+00	50
451	LAWE7H	0.515	50.24	0.5253	66
624	FWV-G-63B	0.245	50.24	0.5255	00

Table 3.3. Uncertainty in Normalized PCT Losses (g/m²) of Na for Replicate and Near-Replicate Sets of
LAW Glasses, cont.

Replicate Set		Replicate Set PCT_{Na}^{NL}		SD	RepSet
Glass #s	Replicate Glass IDs	(g/m ²)	%RSD(a)	$[\ln(g/m^2)]$	Number
331	LAWM1	0.145	5.05	0.0505	69
383	LAWM53	0.135	5.05	0.0505	07
342	LAWM12	8.045	24.82	0.2508	70
385	LAWM55	11.470	21.02	0.2300	10
365	LAWM35	3.315	27.15	0.2749	71
386	LAWM56	4.890	27.15	0.2719	/ 1
380	LAWM50	0.315	9.43	0.0944	72
381	LAWM51	0.360	71.0	010711	
339	LAWM9	0.255	22.50	0.2269	73
384	LAWM54	0.185			
797	LORPM28R1	2.094	1.01	0.0101	78
798	LORPM28R1	2.124			
846	ORLEC12	0.605	0.58	0.0058	85
865	OWV-G-144E	0.610			
848	ORLEC14	0.480	1.46	0.0146	86
887	QWV-G-107B	0.490			
850 888	ORLEC16 PWV-G-130C	0.435 0.445	1.61	0.0161	87
853	ORLEC19	0.365			
835 890	QWV-G-29C	0.365	0.96	0.0096	88
856	ORLEC22	0.390			
891	QWV-G-75B	0.405	2.67	0.0267	89
862	ORLEC26	0.405			
862 867	OWV-G-109B	0.515	10.31	0.1033	91
863	ORLEC27	0.640			
869	PWV-G-43E	0.945	27.21	0.2756	92
864	ORLEC28	0.510			
871	PWV-G-93A	0.585	9.69	0.0970	93
877	ORLEC33	0.550			
903	RWV-G-9C	0.525	3.29	0.0329	94
878	ORLEC34	0.680		0.0770	~ ~
904	RWV-G-48D	0.735	5.50	0.0550	95
893	ORLEC44	0.520	10.50	0.1057	0.6
905	RWV-G-79C	0.630	13.53	0.1357	96
895	ORLEC46	0.405	20.20	0.0004	07
906	RWV-G-120D	0.540	20.20	0.2034	97

 Table 3.3. Uncertainty in Normalized PCT Losses (g/m²) of Na for Replicate and Near-Replicate Sets of LAW Glasses, cont.

Replicate Set		Replicate Set PCT _{Na} ^{NL}			RepSet
Glass #s	Replicate Glass IDs	(g/m^2)	%RSD(a)	$SD [ln(g/m^2)]$	Number
897	ORLEC48R	0.435	6.82	0.0682	98
907	SWV-G-17A	0.395	0.82	0.0082	90
751	ORPLA38-1	0.675	14.14	0.1419	102
767	J10-G-24B	0.825	14.14	0.1417	102
589	ORPLC2	1.125	9.11	0.0913	106
591	ORPLC3	1.280	9.11	0.0915	100
595	ORPLC5	0.745	14.67	0.1472	108
620	S10-G-101B	0.605	14.07	0.1472	100
597	ORPLD1	0.720			
622	T10-G-16A	0.395			
997	LAW-ORP-LD1(1)	0.596	22.15	0.2221	109
999	LAW-ORP-LD1(2)	0.517			
1035	LP2-OL-07	0.501			
732	Z10-G-60C	0.790	23.48	0.2370	110
733	10A-G-53C	0.565	23.40	0.2370	110
766	ORPLG27	0.770	19.75	0.1988	114
768	I10-G-135A	1.020	19.75	0.1900	114
1022	LP2-IL-10	0.573			
1028	LP2-IL-16	0.599	6.94	0.0691	116
1031	LP2-OL-02	0.523	0.94	0.0091	110
1049	LP2-OL-21	0.521			
1034	LP2-OL-05	0.363	7.73	0.0774	117
1038	LP2-OL-10-MOD	0.405	1.15	0.0774	117
1065	LAWPH3-12	0.960	7.99	0.0800	118
1066	LAWPH3-12-2	1.075	1.22	0.0000	110
1071	LAWPH3-17	1.713	18.11	0.1821	119
1072	LAWPH3-17-2	1.324			117
	Replicate Sets with 78 total DF ^(b)		17.88	0.1845	
(a) $%$ RSD = 100	$0 \times (Standard Deviation / Mean)$				
(b) $DF = degrees$	s of freedom				

Fable 3.3 . Uncertainty in Normalized PCT Losses (g/m ²) of Na for Replicate and Near-Replicate Set	ets of
LAW Glasses, cont.	

The magnitudes of the pooled %RSDs in Table 3.2 and Table 3.3 are approximately the same values for PCT_B^{NL} (22.18%) and PCT_{Na}^{NL} (17.88%) reported in Table 5.4 of Piepel et al. (2007). Although both datasets include a long-term source of variation, the current dataset included data collected over roughly 18 years and includes a between laboratory (The Catholic University of America, PNNL, and Savannah River National Laboratory) source of variance and also includes replicates over a significantly broader composition region.

Consistent results from Table 3.2 and Table 3.3, and those in Piepel et al. (2007), suggest that roughly 20% RSD for replicates is likely to be reflective of what could be expected in future studies. It also suggests that the lower limit of model prediction uncertainties is unlikely to be less than roughly 0.2 ($\ln[g/m^2]$) due to variation inherent in data collection.

3.1.2 Model Validation Approach and Data for the PCT on LAW Glasses

The validation approach for the PCT_B^{NL} and PCT_{Na}^{NL} models was based on splitting the two 690-glass datasets for model development into five modeling/validation subsets. The five modeling/validation splits of the 690 glasses in the PCT_B^{NL} and PCT_{Na}^{NL} modeling datasets were formed as follows.

- 1. The 58 replicate sets (136 glasses) were set aside so they would always be included in each of the five model development datasets. This was done so that replicate pairs would not be split between modeling and validation subsets, thus negating the intent to have validation glasses different than model development glasses.
- 2. The remaining 554 glasses were ordered from smallest to largest according to their values of PCT_B^{NL} and PCT_{Na}^{NL} (g/m²). The glasses were numbered 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, etc. All of the 1's formed the first model validation set, while all of the remaining points formed the first model development dataset. Similarly, all of the 2's, 3's, 4's, and 5's respectively formed the second, third, fourth, and fifth model validation sets. In each case, the remaining non-2's, non-3's, non-4's, and non-5's formed the second, third, fourth, and fifth model validation subsets do not necessarily contain the same numbers of glasses, but all the validation sets span the range of normalized PCT values in the region of interest.
- 3. The 136 replicate glasses were added to each of the split modeling subsets so that each of the five splits contains a relatively balanced number of modeling and validation glasses.

Data splitting was chosen as the validation approach because the PCT modeling dataset contains all compositions that (i) are in the LAW GCR of interest, (ii) meet quality assurance (QA) requirements, and (iii) have PCT_B^{NL} and PCT_{Na}^{NL} data. Having a separate validation dataset not used for modeling is desirable, but that desire was over-ridden by wanting PCT models developed using all appropriate data.

3.1.3 Subsets of LAW Glasses to Evaluate Prediction Performance of Models for B and Na Normalized Losses from the PCT

Section 2.4 discusses six subsets of LAW glasses for evaluating the prediction performance of LAW glass property-composition models, including subsets of glasses with higher waste loadings. The subsets, as discussed in Section 2.4, are denoted WTP, ORP, LP2OL, LP123, HiNa₂O, and HiSO₃. The normalized PCT boron loss modeling dataset of 690 LAW glasses (see Section 3.1.1) contains 289, 309, 120, 92, 232, and 110 in these six evaluation subsets, respectively. The normalized PCT sodium loss modeling dataset of 690 LAW glasses (see Section 3.1.1) contains 288, 309, 121, 93, 233, and 110 in these six evaluation subsets, respectively. The "Glass #s" of these six evaluation subsets of LAW glasses are listed in Table C.1 of Appendix C. The normalized LAW glass compositions and PCT_B^{NL} or PCT_{Na}^{NL} values for the glasses with these "Glass #s" are listed in Tables A.2 and A.3, respectively, of Appendix A. The predictive performance of $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ models as functions of LAW glass composition developed in subsequent subsections are evaluated using these subsets of data.

3.2 Model Forms for Boron and Sodium Normalized PCT Losses from LAW Glasses

Mixture models (Cornell 2002) linking LAW glass compositions to PCT_B^{NL} and PCT_{Na}^{NL} are used. Empirical models of this type use existing data to estimate coefficients in a predictive equation such that certain goodness-of-fit criteria are optimized. Section B.1 of Appendix B discusses mixture experiments and several general forms of mixture experiment models.

Section 3.2.1 discusses the forms of mixture experiment models used for PCT responses of LAW glasses. Section 3.2.2 discusses the choice between modeling unnormalized PCT releases and normalized PCT losses.

3.2.1 Mixture Experiment Model Forms for Normalized PCT Boron and Sodium Losses from LAW Glasses

Linear mixture (LM) and PQM model forms introduced in Section B.1 of Appendix B have been used in the past (e.g., Piepel et al. 2007; Muller et al. 2014) to model PCT_B^{NL} and PCT_{Na}^{NL} as functions of LAW glass composition. Hence, these model forms were chosen for modeling $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ in this report. The LM model form is given by

$$ln(PCT_B^{NL}) \text{ or } ln(PCT_{Na}^{NL}) = \sum_{i=1}^{q} \beta_i g_i + e$$
(3.1)

while the PQM model form is given by

$$ln(PCT_B^{NL}) \text{ or } ln(PCT_{Na}^{NL}) = \sum_{i=1}^q \beta_i g_i + \text{Selected } \left\{ \sum_{i=1}^q \beta_{ii} g_i^2 + \sum_{i< j}^{q-1} \sum_{j}^q \beta_{ij} g_i g_j \right\} + e$$
(3.2)

In Eqs. (3.1) and (3.2)

$ln(PCT_B^{NL})$	=	natural logarithm of the PCT_B^{NL} normalized loss (in g/m ²)
$ln(PCT_{Na}^{NL})$	=	natural logarithm of the PCT_{Na}^{NL} normalized loss (in g/m ²)
g_i	=	normalized mass fraction of the <i>i</i> th glass oxide or halogen component
		$(i = 1, 2,, q)$ such that $\sum_{i=1}^{q} g_i = 1$
eta_i	=	coefficient of the i^{th} linear blending term ($i = 1, 2,, q$)
β_{ii} and β_{ij}	=	coefficients of selected quadratic (squared) or crossproduct blending terms to be estimated from the data

e = random error for each data point.

Many statistical methods exist for the case where the *e* are independent (i.e., not correlated) and normally distributed with mean 0 and standard deviation σ . Other methods, like generalized linear models (GLMs, Myers et al. 2002), offer more flexibility and can be used when the random errors for the data belong to a member of the exponential family of distributions, which includes the case with independent and normally distributed errors. In Eq. (3.2), "Selected" means that only some of the terms in curly brackets are included in the model. The subset is selected using stepwise regression or other variable selection methods (Draper and Smith 1998; Montgomery et al. 2012). PQM models are discussed in more detail and illustrated in Piepel et al. (2002) and Smith (2005).

Numerous forms of the models represented by Eq. (3.2) were fitted to the data, always resulting in biased predictions for some portion of the available PCT_B^{NL} and PCT_{Na}^{NL} range. The region of ln (PCT_B^{NL}) and ln(PCT_{Na}^{NL}) with values within the confidence interval around 0.693 ln(g/m²) is of particular interest; therefore, it was decided to focus attention on models with good prediction properties in the region with PCT_B^{NL} and PCT_{Na}^{NL} values near or above 2 g/m² limit.

3.2.2 Normalization and Transformation of Boron and Sodium Losses on the PCT from LAW Glasses

A transformation to normalized elemental losses is widely employed in the data analysis and modeling of leaching data (Hrma et al. 1994; Gan et al. 2001). The PCT_j^{NL} values were calculated according to the formula

$$PCT_{j}^{NL} = \frac{c_{j}LV}{f_{j}A}$$
(3.3)

where c_j is the concentration of the *j*th element (B or Na) in solution (g/m³) from the 7-day PCT, *LV* is the PCT solution volume (m³), f_j is the *j*th element concentration in glass, and *A* is the glass surface area exposed to solution in the PCT (m²). For PCT values modeled in this study, a nominal *A/LV* ratio of 2000 m⁻¹ was used. Normalized mass fraction compositions of glasses were calculated as discussed in Section 2.3. As seen in Eq. (3.3), normalizing a PCT elemental response involves dividing the measured leachate concentration for a given element by the fraction of that element in glass and by the surface-areato-solution volume ratio. This results in a normalized loss value that ideally represents the grams of glass dissolved into solution per unit glass surface area. However, some glass components release faster from glass (i.e., incongruent) while others are held up in the solid alteration products on the surface. Therefore, the PCT_j^{NL} are not all equal for all elements, *j*. Differences in PCT_j^{NL} give an indication of the degree of incongruence. Past experience has suggested that PCT_B^{NL} , PCT_{Na}^{NL} , and PCT_{Li}^{NL} are generally similar in value and give the best indication of overall glass dissolution behavior (Vienna and Crum 2018, for example). Significant differences between the normalized losses of B, Na, and Li may be an indication of experimental error, as was seen for glass LAWC14, which was excluded from the PCT_{Na}^{NL} modeling dataset for that reason.

Based on preliminary modeling work for PCT responses of LAW glasses, Perez-Cardenas et al. (2003) suggested a slight preference for models based on normalized PCT elemental losses as opposed to concentrations or normalized concentrations. The fact that WTP contract Specification 2.2.2.17.2 specifies a limit (2 g/m²) in terms of normalized elemental losses was the deciding factor in the decision to model normalized PCT elemental losses in this work.

In modeling normalized PCT elemental losses, it is advantageous to model the response using a natural logarithm transformation. The advantages of this transformation include the following:

• For the 691 simulated and actual LAW glasses used for PCT modeling, the PCT_B^{NL} values range from 0.08 to 17.84 g/m² and the PCT_{Na}^{NL} values range from 0.1 to 13.41 g/m². The range (i.e., minimum to maximum values) for each normalized loss spans more than an order-of-magnitude difference. In such cases, typically the uncertainty in making glasses, performing the PCT, and analyzing the leachate leads to smaller absolute uncertainties for smaller normalized losses and larger absolute uncertainties for larger normalized losses. Hence, the ordinary least squares (OLS) regression assumption of equal variances for all response variable values (see Section B.2.1 of Appendix B) may

not hold. A logarithmic transformation on the PCT response or the use of a GLM with a log link function may help make variances of normalized PCT elemental losses approximately equal as required for OLS regression.

- Theoretical relationships between glass composition and alteration result in logarithmic corrosion rates being correlated to composition (e.g., Jantzen et al. 1995; Feng et al. 1996; Gin et al. 2020). Although a 7-day PCT is not a measure of corrosion rate, it does obtain corrosion extent at a fixed time.
- A logarithmic transformation tends to linearize the compositional dependence of leach test data and reduce the need for non-linear terms in the model form.
 - A natural logarithm transformation is preferred over a common logarithm (or other base logarithm) transformation because of the approximate relationship

$$SD [ln(y)] \cong RSD (y)$$
 (3.4)

where SD denotes standard deviation, RSD denotes relative standard deviation (i.e., the standard deviation divided by the mean), and *y* denotes PCT_B^{NL} or PCT_{Na}^{NL} . Eq. (3.4) results from applying the first-order variance propagation formula [Eq. (7-7) of Hahn and Shapiro (1967)] to the function $z = \ln(y)$. The relationship in Eq. (3.4) is very useful, in that uncertainties of the natural logarithm of the response variable *y* can be interpreted as RSDs of the untransformed response variable *y*.

For these reasons, a natural logarithm function was used on the normalized PCT losses (g/m^2) in modeling PCT_B^{NL} and PCT_{Na}^{NL} .

3.3 Property-Composition Model Results for Normalized PCT Boron Loss from LAW Glasses

This section discusses the results of fitting several different mixture models to the LAW glass ln $(PCT_B^{NL} [g/m^2])$ -composition dataset. Sections 3.3.1 and 3.3.2 present the results of modeling ln (PCT_B^{NL}) using 20-component FLM and RLM models, respectively. Section 3.3.3 presents the results of modeling ln (PCT_B^{NL}) using a PQM model based on a reduced set of 15 mixture components. Section 3.3.4 presents the result of modeling ln (PCT_B^{NL}) using a 19-term PQM model with bias correction at high PCT response values.

3.3.1 Results from the 20-Component Full Linear Mixture Model for the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses

As the initial step in PCT_B^{NL} -composition model development, a FLM model was fit to the modeling data (690 glasses) using OLS with the 20 glass components identified in Section 3.1.1. This model form was a reasonable starting point based on the previous work modeling $\ln(PCT_B^{NL})$ from LAW glasses (Hrma et al. 1994; Piepel et al. 2007) and provided a basis for appropriate model modifications.

Table 3.4 contains the results from the 20-component FLM model for $ln(PCT_B^{NL})$. Table 3.4 lists the model coefficients, standard deviations of the coefficients, and model performance summaries for the 20-component FLM model using the modeling dataset (690 LAW glasses).

The $R^2 = 0.6979$, $R^2_A = 0.6893$, and $R^2_P = 0.6719$ statistics (see Section B.3 of Appendix B) in Table 3.4 show that (i) the 20-component FLM model does not fit the $ln(PCT_B^{NL})$ data in the 690-glass modeling dataset well, (ii) there are several unneeded model terms (evidenced by the high standard errors relative to the reported coefficient estimates), and (iii) there are not any highly influential data points (confirmed in the diagnostic graphics described in Section B.3 and by the fact that the R²-predicted value is close to the R^2 -adjusted and R^2 values for this model). The RMSE = 0.4587 is significantly larger than the pooled glass batching and PCT_B^{NL} determination uncertainty (SD = 0.2317 in ln(g/m²) units) estimated from replicates in Table 3.2. This suggests that the 20-component FLM model has a statistically significant lack of fit (LOF), which is confirmed by the model LOF p-value < 0.0001 in Table 3.4. See Section B.3 for discussion of the statistical test for model LOF.

$\ln(PCT_B^{NL})$ 20-Component		Coefficient
FLM Model Term	Coefficient Estimate	Stand. Err.
Al ₂ O ₃	-18.0821	0.8798
B ₂ O ₃	12.4579	0.9161
CaO	-6.5648	0.6705
Cl	33.6608	7.7478
Cr ₂ O ₃	33.7671	10.7963
F	15.5259	11.5518
Fe ₂ O ₃	2.1789	0.9752
K ₂ O	10.0826	1.1672
Li ₂ O	25.7927	2.1412
MgO	23.3373	2.0069
Na ₂ O	12.7411	0.6304
P ₂ O ₅	-12.7348	3.4435
SO ₃	-21.5444	7.4247
SiO ₂	-7.0147	0.3746
SnO ₂	-12.6129	1.7068
TiO ₂	-20.1107	2.6617
V_2O_5	5.2029	1.8564
ZnO	-1.3986	2.0702
ZrO ₂	-2.7195	1.4352
Others(a)	-44.8943	25.7588
Modeling Data Statistics, 690	Value	
Glasses (b)		
\mathbb{R}^2	0.6979	
R ² _A	0.6893	
R ² _P	0.6719	
RMSE	0.4587	
Model LOF p-value	< 0.0001	
(a) For the 20-component FLM any components not separa(b) The model evaluation statis	tely listed.	

Table 3.4 . Coefficients and Performance Summary for the 20-Component Full Linear Mixture Model on
the Natural Logarithm of Normalized Boron Loss from the PCT on LAW Glasses.

The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

Figure 3.6 shows the predicted versus measured (PvM) plot for the 690-glass modeling dataset using the 20-component FLM model for $\ln(PCT_B^{NL})$. The plot illustrates that the 20-component FLM model significantly under-predicts PCT_B^{NL} above the limit of 2 g/m² (shown with red lines). The model also under-predicts glasses with the lowest PCT_B^{NL} values, although this is not a major concern for LAW Facility application.

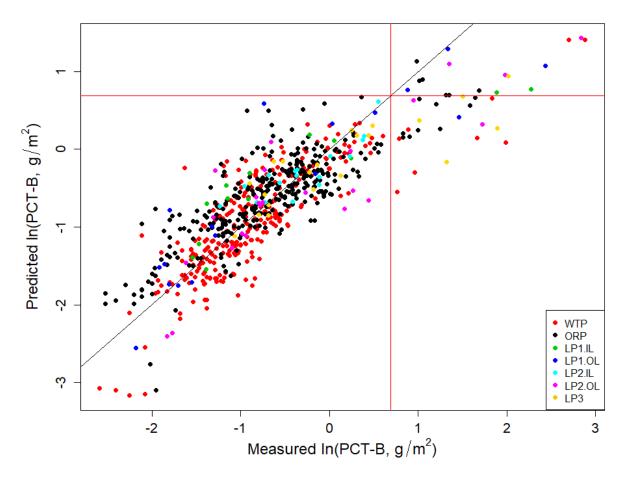
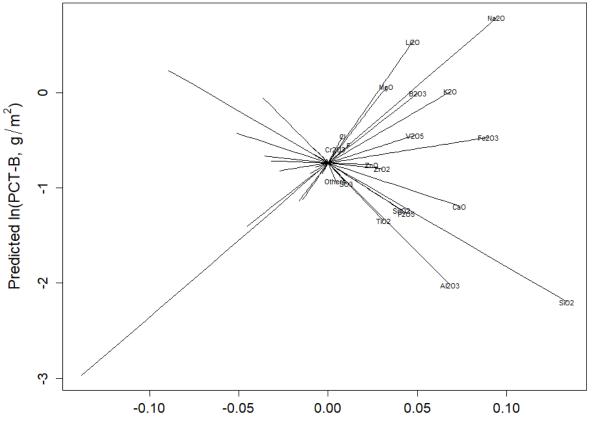



Figure 3.6. Predicted versus Measured Plot for the 690-Glass Modeling Dataset Using the 20-Component Full Linear Mixture Model on the Natural Logarithm of PCT_B^{NL} from LAW Glasses. The red lines represent the WTP contract limit of 2 g/m², or 0.6931 ln(g/m²).

The results in Table 3.4 and Figure 3.6 indicate that the 20-term FLM produces unacceptable results, particularly in the region of PCT_B^{NL} values that are of most interest to the project. The majority of glasses at or above the WTP contract limit of 2 g/m² are underpredicted by the 20-term FLM model.

The model in Table 3.4, fit to the 690-glass PCT_B^{NL} modeling dataset, provides a starting point for improvement (e.g., addition of non-linear terms). The 20-component LM model was used to produce the response trace plot (see Section B.4.1 in Appendix B) shown in Figure 3.7. The average glass composition of the 1074 glasses in the compiled database discussed in Section 2.5 was used as the REFMIX (see Section B.4.1) in response trace plots for every property. The glass composition of the REFMIX is listed in Table 2.3.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 3.7. Response Trace Plot for the 20-Component Full Linear Mixture Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses

The response trace plot in Figure 3.7 shows that Li₂O, MgO, Na₂O, B₂O₃, and K₂O are predicted to increase $\ln(PCT_B^{NL})$, while CaO, SiO₂, SnO₂, P₂O₅, Al₂O₃, and TiO₂ are predicted to decrease $\ln(PCT_B^{NL})$. The impacts of Cr₂O₃, Cl, SO₃, and Others are significantly larger than expected based on previous model attempts and knowledge of chemistry impacts on PCT responses. It is likely that the slopes associated with these terms are exaggerated due more to multicollinearity present in the data than actual component effects. To test this hypothesis, the terms Cr₂O₃, Cl, SO₃ were combined into Others in subsection 3.3.2 to determine if the fit statistics are significantly impacted. If significant impacts are identified, then further research would be required to experimentally verify those results.

Due to the poor predictive performance of the 20-term FLM in the region of interest, no further analysis of this model was carried out, focusing instead on the development of a better model.

3.3.2 Results from the 15-Component Reduced Linear Mixture Model for the Natural Logarithm of Normalized Boron Loss from the PCT on LAW Glasses

The 20-component FLM model for $\ln(PCT_B^{NL})$ presented in Section 3.3.1 contains components that do not significantly contribute to predicting $\ln(PCT_B^{NL})$ and some components with unexpectedly strong effects,

so model reduction was performed prior to selection of higher order terms. RLM models for involving fewer than the 20 components were considered. To reduce the number of terms, (i) the sequential F-test model reduction approach (see Section B.4.1 of Appendix B; Piepel and Cooley 2006) and (ii) selection based on knowledge of PCT chemical effect were used. Using the F-test method and a threshold of 0.001, SO₃, TiO₂, P₂O₅, SnO₂, and F were determined to be the least significant terms and were combined to Others. This resulted in significant and non-defensible effects of Cl and Cr₂O₃ (similar to those in the FLM model in Section 3.3.1). Cl and Cr_2O_3 have the smallest overall concentration ranges (0.0000 \leq Cl \leq 0.0117 and $0.0000 \le Cr_2O_3 \le 0.0063$, mf). Cl is also volatile to differing extents in glass, with a mean retention of roughly 70% in typical crucible melts (with a broad distribution of retention factors). Neither component is expected to have a significant effect on PCT or increase PCT responses. There is a potential for Cl to slightly decrease pH of PCT solution, thereby slightly reducing PCT responses. With such strong predicted effect of these two components, counter to previous observations, independent experimental verification is needed prior to including in the model. Additionally, the combination of SnO_2 and TiO_2 with Others caused the combined Others term to have a strong negative effect on $ln(PCT_B^{NL})$ with most other components (including SiO₂) to have positive effects. The F-test method, after forcing Cl and Cr₂O₃ into Others resulted in Cl, Cr_2O_3 , F, P_2O_5 , and SO_3 to be combined with Others resulting in a 15-term RLM model.

Table 3.5 contains the results from the 15-component RLM model for $ln(PCT_B^{NL})$. Table 3.5 lists the model coefficients, standard deviations of the coefficients, and model performance summaries for the RLM model using the modeling dataset (690 LAW glasses).

The $R^2 = 0.6732$, $R^2_A = 0.6665$, and $R^2_P = 0.6508$ statistics (see Section B.3 of Appendix B) in Table 3.5 show that the 15-component FLM model does not fit the $ln(PCT_B^{NL})$ data in the 690-glass modeling dataset well. The RMSE = 0.4752 is significantly larger than the pooled glass batching and PCT_B^{NL} determination uncertainty (SD = 0.2317 in ln(g/m²) units) estimated from replicates in Table 3.2. This suggests that the 15-component RLM model has a statistically significant LOF, which is confirmed by the model LOF p-value < 0.0001 in Table 3.5. See Section B.3 for discussion of the statistical test for model LOF.

Figure 3.8 shows the PvM plot for the 690-glass modeling dataset using the 15-component RLM model for $\ln(PCT_B^{NL})$. The plot illustrates that the 15-component RLM model significantly under-predicts PCT_B^{NL} above the limit of 2 g/m² (shown with red lines). The model also under-predicts glasses with the lowest PCT_B^{NL} values, although this is not a major concern for WTP LAW Facility application.

$\ln(PCT_B^{NL})$ 15-Component		Coefficient			
RLM Model Term	Coefficient Estimate	Stand. Err.			
Al ₂ O ₃	-17.5901	0.8971			
B ₂ O ₃	11.9640	0.9389			
CaO	-6.5749	0.6705			
Fe ₂ O ₃	2.1137	0.9616			
K ₂ O	10.4441	1.1634			
Li ₂ O	25.2325	2.1725			
MgO	23.5570	2.0666			
Na ₂ O	13.4439	0.6356			
SiO ₂	-7.4485	0.3761			
SnO ₂	-9.2257	1.6609			
TiO ₂	-16.8034	2.6512			
V ₂ O ₅	2.9369	1.8297			
ZnO	-0.8531	2.1322			
ZrO ₂	-1.4873	1.4357			
Others ^(a)	-0.0736	2.1993			
Modeling Data Statistics, 690	Value				
Glasses ^(b)					
\mathbb{R}^2	0.6732				
R ² _A	0.6665				
R ² _P	0.6508				
RMSE	0.4752				
Model LOF p-value	< 0.0001				
(a) For the 15-component FLM model, the "Others" component includes the Others component from the FLM model plus Cl. Cr2O2, F. P2O2					

 Table 3.5. Coefficients and Performance Summary for the 15-Component Reduced Linear Mixture

 Model on the Natural Logarithm of Normalized Boron Loss from the PCT on LAW Glasses.

(a) For the 15-component FLM model, the "Others" component includes the Others component from the FLM model plus Cl, Cr₂O₃, F, P₂O₅, and SO₃.

(b) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

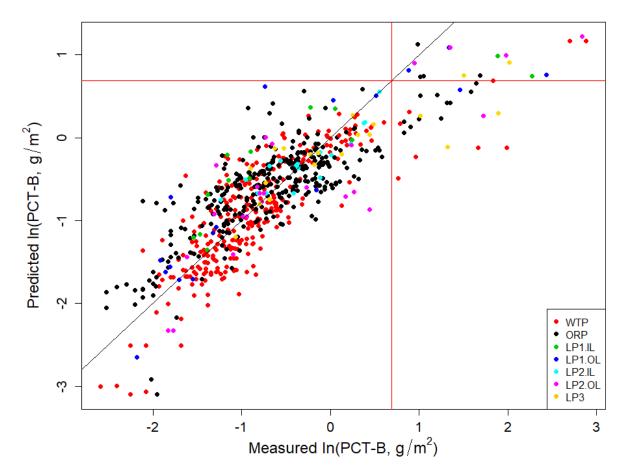
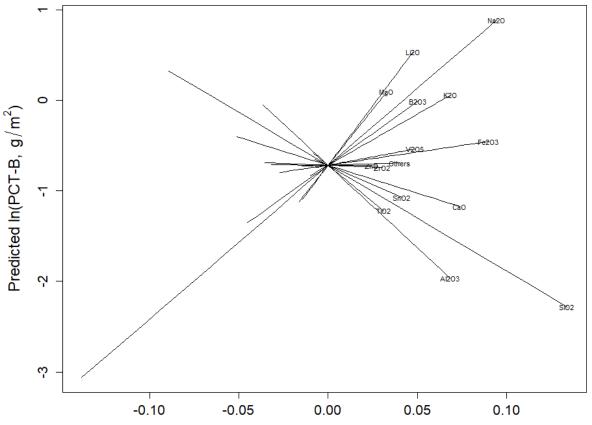



Figure 3.8. Predicted versus Measured Plot for the 690-Glass Modeling Dataset Using the 15-Component Reduced Linear Mixture Model on the Natural Logarithm of PCT_B^{NL} from LAW Glasses. The red lines represent the WTP contract limit of 2 g/m², or 0.6931 ln(g/m²).

The results in Table 3.5 and Figure 3.8 indicate that the 15-term RLM produces unacceptable results, particularly in the region of PCT_B^{NL} values that are of most interest to the project. The majority of glasses at or above the WTP contract limit of 2 g/m² are underpredicted by the 15-term RLM model.

The model in Table 3.5, fit to the 690-glass PCT_B^{NL} modeling dataset, provides a starting point for improvement (e.g., addition of non-linear terms). The 15-component RLM model was used to produce the response trace plot (see Section B.4.1 in Appendix B) shown in Figure 3.9. The average glass composition of the 1074 glasses in the compiled database discussed in Section 2.5 was used as the REFMIX (see Section B.4.1) in response trace plots for every property. The glass composition of the REFMIX is listed in Table 2.3.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 3.9. Response Trace Plot for the 15-Component Reduced Linear Mixture Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses

The response trace plot in Figure 3.9 shows that Li₂O, MgO, Na₂O, B₂O₃, and K₂O are predicted to increase $\ln(PCT_B^{NL})$ the most, while Al₂O₃, TiO₂, SiO₂, SnO₂, and CaO are predicted to decrease $\ln(PCT_B^{NL})$ the most. These agree with previous model attempts and knowledge of the chemistry of PCT responses. Due to the poor predictive performance of the 15-term RLM in the region of interest, no further analysis of this model was carried out, focusing instead on the development of a better model based on these same 15 components.

3.3.3 Results from a Reduced Partial Quadratic Mixture Model for the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses

Reduced PQM models were investigated in an effort to improve the 15-component RLM model for predicting $\ln(PCT_B^{NL})$. Past experience with developing and validating PQM models has indicated that adding too many quadratic terms tends to over-fit the model development dataset and degrade predictive performance for new glasses. So, a process of identifying as few as possible second-order terms while improving model fit statistics was performed as follows:

1. Regressions were performed to fit reduced partial quadratic models involving all possible subsets of 1, 2, 3, or 4 second-order terms.

- 2. The resulting model performance statistics (R-squared and RMSE values) were then examined to see which second-order terms were most beneficial to model performance and how many second-order terms to include.
- 3. The RMSE values from the top candidate models were plotted as a function of the number of second-order terms (0 to 4) to identify the point of diminishing returns.
- 4. The reduced PQM model with the number of terms just before the point of diminishing returns was selected as the final reduced PQM model.

The maximum R^2 improvement (MAXR) criterion (see Section B.4.2 of Appendix B) was also attempted as a means of selecting second-order terms. Both methods resulted in the same selection as "best" four second-order terms: Na₂O×SiO₂, CaO×V₂O₅, Al₂O₃×Al₂O₃, CaO×CaO.

Ultimately, a 19-term PQM model for $\ln(PCT_B^{NL})$ with 15 linear terms and 4 second-order terms (2 quadratic and 2 cross-product) was selected as including enough quadratic terms to improve the model fit, without over-fitting the model development data. Table 3.6 contains the coefficients of the 19-term PQM model for $\ln(PCT_B^{NL})$ and the coefficient standard errors. Table 3.6 also includes model fit summary statistics for the 19-term PQM model.

The R² = 0.7454, R²_A = 0.7386, and R²_P = 0.7191 statistics (see Section B.3 of Appendix B) in Table 3.6 show that the 19-component PQM model fits the $ln(PCT_B^{NL})$ data in the 690-glass modeling dataset significantly better than the FLM and RLM models. The RMSE = 0.4207 is still significantly larger than the pooled glass batching and PCT_B^{NL} determination uncertainty (SD = 0.2317 in ln(g/m²) units) estimated from replicates in Table 3.2. This suggests that the 19-component PQM model has a statistically significant LOF, which is confirmed by the model LOF p-value < 0.0001 in Table 3.6. See Section B.3 for discussion of the statistical test for model LOF.

ln(PCT-B) 19-Component		Coefficient		
PQM Model Term	Coefficient Estimate Stand. Err.			
Al_2O_3	-57.0952	5.2015		
B_2O_3	7.7336	1.0536		
CaO	4.9798	2.6276		
Fe ₂ O ₃	-1.3429	0.9721		
K ₂ O	10.4299	1.1196		
Li ₂ O	22.8298	2.0010		
MgO	20.3182	1.9193		
Na ₂ O	32.8910	2.6479		
SiO ₂	-1.5454	0.8087		
SnO ₂	-13.0083	1.5958		
TiO ₂	-14.8241	2.4431		
V_2O_5	15.8120	2.8024		
ZnO	-6.0511	2.0309		
ZrO_2	-3.0717	1.4733		
Others ^(a)	-2.9975	2.0071		
$Na_2O \times SiO_2$	-49.4262	7.1942		
$CaO imes V_2O_5$	-247.8584	43.6363		
$(Al_2O_3)^2$	214.2560	31.9372		
$(CaO)^2$	-100.1039	20.1701		
Modeling Data Statistics, 690	Value			
Glasses ^(b)				
R ²	0.7454			
R^2_A	0.7386			
R ² _P	0.7191			
RMSE	0.4207			
Model LOF p-value	< 0.0001			
 (a) For the 19-component PQM the Others component from and SO₃. (b) The model evaluation statistical stati	the FLM model plus Cl, C	r_2O_3 , F, P_2O_5 ,		

Table 3.6. Coefficients and Performance Summary for the 19-Term Partial Quadratic Mixture Model on the Natural Logarithm of Normalized Boron Loss from the PCT on LAW Glasses

(b) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

Figure 3.10 shows the PvM plot for the 690-glass modeling dataset using the 19-term PQM model for $\ln(PCT_B^{NL})$. The plot illustrates that the 19-term PQM model significantly under-predicts PCT_B^{NL} above the limit of 2 g/m² (shown with red lines). The model also under-predicts glasses with the lowest PCT_B^{NL} values, although this is not a major concern for WTP LAW Facility application.

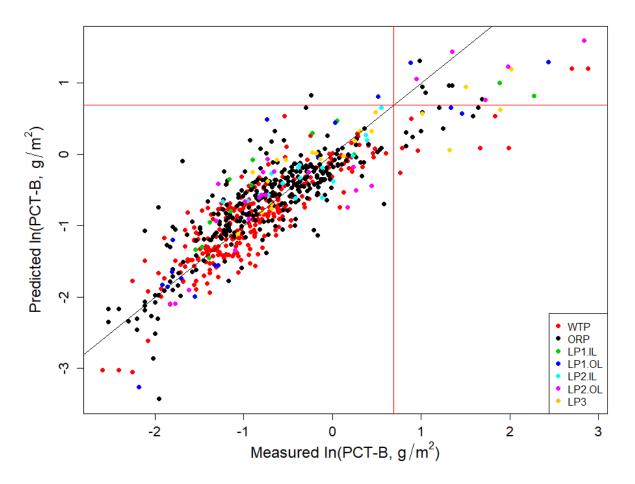
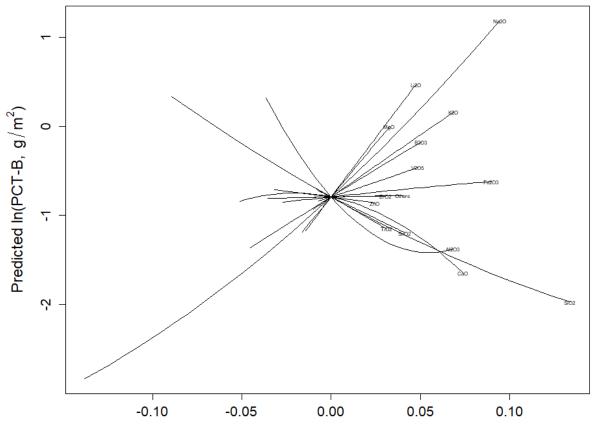



Figure 3.10. Predicted versus Measured Plot for the 690-Glass Modeling Dataset Using the 19-Term Partial Quadratic Mixture Model on the Natural Logarithm of PCT_B^{NL} from LAW Glasses. The red lines represent the WTP contract limit of 2 g/m², or 0.6931 ln(g/m²).

The results in Table 3.6 and Figure 3.10 indicate that the 19-term PQM produces unacceptable results, particularly in the region of PCT_B^{NL} values that are of most interest to the project. The majority of glasses at or above the WTP contract limit of 2 g/m² are underpredicted by the 19-term PQM model.

The 19-term PQM model was used to produce the response trace plot (see Section B.4.1 in Appendix B) shown in Figure 3.11. The average glass composition of the 1074 glasses in the compiled database discussed in Section 2.5 was used as the REFMIX (see Section B.4.1) in response trace plots for every property. The glass composition of the REFMIX is listed in Table 2.3.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 3.11. Response Trace Plot for the 19-Term Partial Quadratic Mixture Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses

The response trace plot in Figure 3.11 shows that Li₂O, MgO, Na₂O, K₂O, and B₂O₃ are predicted to increase $\ln(PCT_B^{NL})$ the most, while Al₂O₃, TiO₂, SiO₂, SnO₂, and CaO are predicted to decrease $\ln(PCT_B^{NL})$ the most. These agree with previous model attempts and knowledge of the chemistry of PCT responses. The non-linear impact of Al₂O₃ evident in Figure 3.11 is a well-documented trend (see, for example, Vienna and Crum 2018). Due to the poor predictive performance of the 19-term PQM in the region of interest, no further analysis of this model was carried out, focusing instead on the development of better models.

3.3.4 Screening of Model Types for Predicting Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses

Most waste glass properties are well represented using FLM, RLM, or PQM models over sufficiently narrow composition regions. This was found to be the case for predicting $\ln(PCT_B^{NL})$ of LAW glasses covering a narrower subset of the current 690-glass dataset. It is apparent by the bias seen at high $\ln(PCT_B^{NL})$ responses (>0.5 $\ln[g/m^2]$)) shown in Figure 3.10 that a PQM is insufficient in this case. Therefore, a brief survey of model approaches for modeling properties as non-linear functions of glass composition was undertaken. Several approaches were surveyed for predicting either $\ln(PCT_B^{NL})$ or categorical pass/fail (P/F) of the WTP contract constraint of $PCT_B^{NL} \leq 2 \text{ g/m}^2$ including:

- 1. Local linear regression (LLR)
- 2. K-nearest neighbor (KNN) (numerical or P/F)
- 3. Generalized linear models (GLM)
- 4. Gaussian process regression (GPR)
- 5. Artificial neural networks (ANN)
- 6. Decision tree (P/F)
- 7. Random forest (P/F)
- 8. Support vector machine (SVM)(P/F)
- 9. Linear and partial quadratic logistic regression (P/F)
- 10. Bias corrected PQM model (bcPQM)

Each of these methods was attempted with the same 690-glass normalized PCT boron response dataset.

LLR improved but did not fully remove the bias prediction in the high PCT_B^{NL} range. The residual bias is likely due to the sparse data in that region. Although the fit did improve, it improved at a cost of significantly larger confidence intervals.

KNN models were fitted to both $\ln(PCT_B^{NL})$ and the categorical P/F PCT data. In either case, 25% of the data was randomly selected for testing of model predictions. The model for $\ln(PCT_B^{NL})$ response used the same set of linear and higher order terms from the PQM model (Section 3.3.3) and resulted in an optimal k = 2. Both the training and testing fits were poorer than the associated PQM model (e.g., R² = 0.5685, RMSE = 0.5376) (potentially because only 75% of the data was used to fit the model). The categorical model predicted resulted in a best-fit k = 3. The typical fit resulted in a misclassification rate near 0.04 for the fit data and near 0.05 for the test data. Those values varied significantly with random seed, however, suggesting an unstable model form with these data.

GLMs, as well as traditional linear models, can be tuned to reduce the uncertainty in a specific subset of data. An attempt was made to tune a GLM to obtain the lowest RMSE for $\ln(PCT_B^{NL}) \ge 0.6$. The result was greatly improved prediction in this response range, but at the expense of non-intuitive component effects and gross underpredictions in the lower PCT_B^{NL} region (as shown in Figure 3.12).



Figure 3.12. Predicted versus Measured Plot for a 22-term Partial Quadratic Generalized Mixture Model with Four Higher-order Terms on the Natural Logarithm of PCT_B^{NL} from LAW Glasses. The red lines represent the WTP contract limit of 0.6931 ln(g/m²). For Information Only

GPR was fitted with the 15 terms associated with the RLM model (Section 3.3.2). The 15-term model did not fit the data well and produced unreasonable predictions for a considerable portion of the data. Different tuning parameters were attempted without significant success at improving the behavior of the model. Combined with the computationally expensive property prediction calculations, the GPR approach was not further pursued.

ANN models had previously been used to predict VHT response of LAW glasses (Vienna et al. 2013). An ANN model using the 15 components from the RLM model (Section 3.3.2), a single layer and a TanH transfer function was fitted to the 690-point $\ln(PCT_B^{NL})$ dataset. A good fit was obtained with the data, however, biased, underpredicted estimates at high $\ln(PCT_B^{NL})$ values were observed. The test set (randomly selected 25% of the data) was not well predicted and was also biased in the high $\ln(PCT_B^{NL})$ range. Based on the relatively poor performance for the validation set, the complicated model form, and bias, this model was not pursued further.

A single decision tree was developed to predict PCT P/F categorical data of the 690-glass dataset. The dataset was first split into a training set with randomly selected 75% of the data and the remaining 25% as a test set. Both automated and manual pruning were attempted. Each tree started with a split in Al_2O_3 concentration at 0.055706, which yielded 479 glass branches above the cutoff containing 463 passes and 16 fails. The 46 points below the cutoff contained 17 fails and 29 passes. The misclassification rate was closely matched between the training and testing set. Further splitting of the tree resulted in growing

disparity between training and testing set statistics. Automated function repeatedly converged on this single split value, with relatively poor performance. The single decision tree wasn't pursued further.

The decision tree concept was expanded to a random forest. Like the single tree, the random forest method failed to produce a predictive model that performed well for the testing (validation) set. R^2 values of 0.6440 for the training set and 0.4604 for the validation set were typical. The random forest method wasn't pursued further.

SVM classification models were fitted. The performance of the SVM was similar to the results found with the decision tree and was not pursued further.

Logistic regression of PCT P/F data resulted in relatively poor prediction with a bias to higher false negative rates (FNR = # of fail glasses classified as pass/# of fail glasses in set). A threshold probability can be adjusted to balance the FNR with false positive rates (FPR = # of pass glasses classified as fail/# of pass glasses in set), however this resulted in an unacceptably high level of conservatism (high FPR). Interestingly, of all possible second-order terms, the two found most significant using a logistic model were $Al_2O_3 \times Al_2O_3$ and CaO×CaO, as was the case for PQM models. Logistic regressions were not further pursued.

The PQM models were not successful due to a non-conservative bias at high $\ln(PCT_B^{NL})$ values (≥ 0.6). One approach previously used to correct similar biases in PCT responses of HLW glasses was to add a bias correction (bc) (Piepel et al. 2008). The application of bc to PQM predictions of $\ln(PCT_B^{NL})$ is straightforward, but requires that there are no discontinuities in prediction as the correction threshold is approached. Any prediction discontinuity would cause glass composition optimization routines to fail to converge. The bcPQM approach was compared to the other modeling approaches and ultimately adopted for use in prediction of both $\ln(PCT_B^{NL})$ (Section 3.3.5) and $\ln(PCT_{Na}^{NL})$ (Section 3.4.5).

3.3.5 Results from a Bias Corrected Partial Quadratic Mixture Model for the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses

The poor performance of the FLM and PQM models, particularly in the region of high PCT values, suggests that a method to correct prediction bias may be useful for producing usable PCT models. Bias correction methods have been investigated and applied before in the modeling of PCT (Piepel et al. 2008; Vienna and Kim 2014). The bias corrected form of the models is given by:

$$ln(\widehat{PCT}_{B}^{NL})_{BC} = \begin{cases} ln(\widehat{PCT}_{B}^{NL}) & \text{if } ln(\widehat{PCT}_{B}^{NL}) \le c \\ ln(\widehat{PCT}_{B}^{NL}) + (ln(\widehat{PCT}_{B}^{NL}) - c)s & \text{if } ln(\widehat{PCT}_{B}^{NL}) > c \end{cases}$$
(3.5)

where

 $ln(\widehat{PCT}_B^{NL}) = ln(PCT_B^{NL})$ predicted using a PQM model prior to application of bc (ln[g/m²]) c = estimated bias correction cut-off (ln[g/m²])

s = estimated bias correction slope (unitless). Due to the fitting process, s is the sum of the initial slope (s₀) and the change in slope (Δs) (i.e., $s = s_0 + \Delta s$) as described in Section 3.6.

In Eq. (3.5), the bias correction applied to the predicted $ln(\widehat{PCT}_B^{NL})$ value increases or decreases linearly from zero at the cutoff with a slope given by *s*. Values of *c* and *s* were found using two approaches: (i) fitting Eq. (3.5) to measured $ln(PCT_B^{NL})$ using the PQM reported in Section 3.3.3, or (ii) simultaneously fitting the PQM model terms with the *c* and *s* according to

$$ln(PCT_B^{NL})_{BC} = \begin{cases} \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} & \text{if } \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} \leq C \\ \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} + (\mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} - C)S & \text{if } \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} > C \end{cases} + e$$
(3.6)

where:

- β = the vector of PQM term coefficients including β_i , β_{ii} , and β_{ij} values
- \mathbf{g} = the vector of component concentrations for first order terms followed by component concentrations squared for quadratic terms and concentrations multiplied for cross-product terms (in the same order as $\boldsymbol{\beta}$)
- $C = \text{bias correction cut-off } (\ln[g/m^2])$
- S = bias correction slope (unitless). Due to the fitting process, S is the sum of the initial slope (S_0) and the change in slope (ΔS) (i.e., $S = S_0 + \Delta S$) similar to what is described in Section 3.6 (except for the parameters, rather than the estimates).
- e = random error for each data point.

Both approaches were attempted, and the second approach was ultimately adopted because it resulted in a better solution with less scatter in the data. The same first-order terms were used as in the RLM model described in Section 3.3.2. Three of the four second-order terms in the PQM model were also selected for the bcPQM model (Al₂O₃×Al₂O₃, CaO×CaO, and CaO×V₂O₅). The fourth second-order term selected in the bcPQM model was Al₂O₃×Li₂O instead of the Al₂O₃×Na₂O term selected for the PQM model. These terms are generally expected based on past PCT response modeling for LAW glasses that showed second-order terms involving Al₂O₃, CaO, Li₂O, and Na₂O (Piepel et al. 2007, Vienna et al. 2013, Vienna et al. 2016). Second order terms containing V₂O₅ are not commonly found, but Muller et al. (2014) combined V₂O₅ into others and reported two second-order terms involving Others. Table 3.7 contains the coefficients of the 22-term bcPQM model for ln(PCT_B^{NL}) and the coefficient standard errors. Table 3.7 also includes model performance statistics for the 22-term bcPQM using the (i) 690-glass modeling data, (ii) data-split modeling data (as a model validation approach), and (iii) six evaluation subsets of the modeling glasses discussed in Section 3.1.3 (as a model evaluation approach).

In Table 3.7, the $\ln(PCT_B^{NL})$ model fit statistics $R^2 = 0.7762$, $R^2_A = 0.7692$, and RMSE = 0.3954 for the 22-term bcPQM model are small improvements over the corresponding statistics for the 19-term PQM model in Table 3.6. The small difference in values between R^2 and R^2_A suggests that the $\ln(PCT_B^{NL})$ model does not have excess terms. R^2_P , reported for properties in this report, was not estimated for the $\ln(PCT_B^{NL})$ model due to software limitations.

The RMSE in Table 3.7 is an estimate of the uncertainty [in $\ln(g/m^2)$ units] in fabricating LAW glasses and useful for determining if the 22-term PCT_B^{NL} bcPQM model has a statistically significant LOF. The RMSE = 0.3954 for the bcPQM model fitted to the 690-glass modeling dataset is slightly smaller than the corresponding value for the 19-term PQM model (RMSE = 0.4207) in Table 3.6, indicating a better fit to the data by bcPQM. The RMSE value is roughly double the pooled replicate SD in $\ln(g/m^2)$ units of 0.2317 in Table 3.2. These observations suggest that the 22-term bcPQM model does have significant model LOF, which is confirmed by the LOF test p-value <0.0001 in Table 3.7. See Section B.3 of Appendix B for discussion of the statistical test for model LOF. At the bottom right of Table 3.7, the average model-fit statistics (R^2 , R^2_A , and RMSE) over the five datasplits are close to the statistics obtained from fitting the 22-term bcPQM model for $\ln(PCT_B^{NL})$ to all 690 glasses in the modeling dataset. The data-split validation statistics (R^2_V and RMSE_V) are slightly worse than the bcPQM R^2 and RMSE (i) values from fitting the model to the full dataset, and (ii) averages from fitting the model to the data-split modeling subsets. The difference can be attributed to significant outliers among the high $\ln(PCT_R^{NL})$ data which, when in the validation sets, influenced R^2_V and RMSE_V.

The statistics from evaluating the predictive performance of the 22-term reduced PQM model for $\ln(PCT_B^{NL})$ on the six evaluation subsets of modeling glasses (see Section 3.1.3) are given on the right side of Table 3.7. The R² statistics for the six evaluation subsets (0.7145 to 0.8491) are similar to the R² statistic for the whole modeling dataset (0.7762), with the HiNa₂O set having the lowest R²_{Eval} = 0.7145, which is still relatively high. The LP2OL evaluation set has the highest R²_{Eval} of 0.8491.

	U					
$\ln(PCT_B^{NL})$ 22-Term	Coefficient	Coefficient		Data Statisti	c,	
bcPQM Model Term	Estimate	Stand. Err.	690 Glasses ^(a)			Value
Al_2O_3	-29.5323	2.7881	R ²			0.776
B_2O_3	5.9849	0.5609	R ² _A			0.769
CaO	8.3534	1.2792	RMSE			0.395
Fe ₂ O ₃	0.9519	0.4879	Model I	LOF p-value		< 0.000
K ₂ O	6.7807	0.6464				
Li ₂ O	24.2726	2.0446				
MgO	13.8911	1.1780	Evaluation (# Glasses		R ² _{Eval}	RMSE _{Ev}
Na ₂ O	8.6740	0.5846	WTP (2	89)	0.7312	0.3637
SiO ₂	-4.4655	0.2632	ORP (3		0.7356	0.4108
SnO ₂	-7.6174	0.8306	LP2OL	(120)	0.7553	0.4253
TiO ₂	-8.6853	1.4078	LP123 (0.8491	0.5203
V ₂ O ₅	9.6149	1.5043	HiNa ₂ O	HiNa ₂ O (232) 0.7145		0.4020
ZnO	-2.0873	0.9961		HiSO ₃ (110) 0.7776		0.4332
ZrO ₂	0.4532	0.6662				
Others	0.0176	1.0038				
$Al_2O_3 \times Al_2O_3$	121.2960	15.4798				
Al ₂ O ₃ ×Li ₂ O	-156.1213	21.2580				
CaO×CaO	-96.9262	11.6159				
CaO×V ₂ O ₅	-147.9209	26.0555				
С	-0.7193	0.05273561				
<i>S</i> ₀	1.6836	0.18933406				
Δs	0.5869	0.1585 ^(d)				
S	2.2705 ^(e)					
Data Splitting Statistic ^(a,f)	DS1	DS2	DS3	DS4	DS5	Avera
\mathbb{R}^2	0.7987	0.7807	0.7714	0.7679	0.7906	0.7819
R ² _A	0.7911	0.7724	0.7628	0.7592	0.7827	0.7736
RMSE	0.3759	0.3912	0.3985	0.4002	0.3855	0.3903
- 0						

 Table 3.7. Coefficients and Performance Summary for 22-Term Bias Corrected Partial Quadratic Mixture Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

0.7772

0.3978

0.8234

0.3598

0.5698

0.5231

0.7053

0.4436

(b) The six sets of LAW evaluation glasses are discussed in Sections 2.4 and 3.1.3.

0.6451

0.4889

(c) For the 22-term bcPQM model, the "Others" component includes any components not separately listed.

0.7112

0.4484

(d) The standard error in Δs is described in Section 3.6

 R^2v

RMSE_V

(e) $s = s_0 + \Delta s$. The associated error for s is obtained by propagation of errors in Section 3.6.

(f) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 3.1.2 describes how the modeling dataset was split into modeling and validation subsets.

Figure 3.13 displays for the 22-term bcPQM model of $\ln(PCT_B^{NL})$ the standardized residuals plotted versus the data index (a sequential numbering of the modeling data points), with different plotting symbols representing the different groups of LAW glasses discussed in Section 2.3. Figure 3.13 shows a similar degree of scatter for all data subsets, with slightly broader scatter in WTP dataset near indices 180 to 200 and in the ORP dataset near indices 490 to 510.

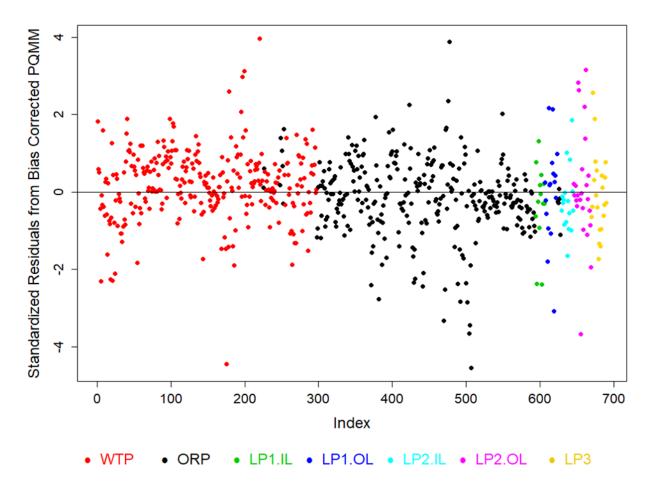


Figure 3.13. Standardized Residuals Plot for the 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses

Figure 3.14 displays the PvM plot for the 690-glass modeling dataset using the 22-term bcPQM model on $\ln(PCT_B^{NL})$. Figure 3.14 differs from the PvM plot for the 19-term PQM model in Figure 3.10 in that the higher values (> 0.6 ln[g/m²]) do not show bias. Also, there is a slightly larger scatter of predicted data about the 45° line in this same region.

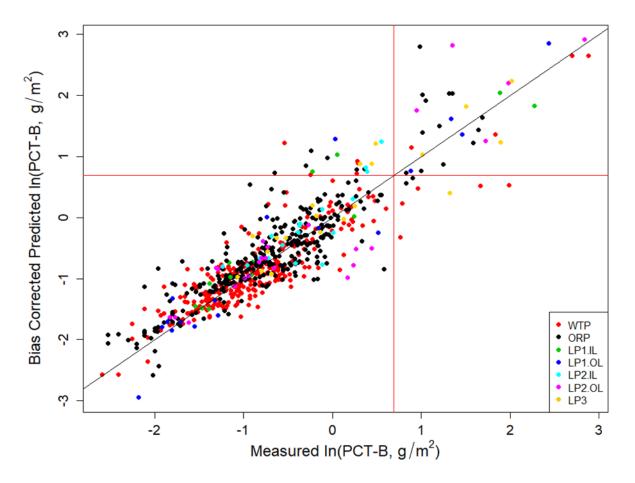


Figure 3.14. Predicted versus Measured Plot for the 690-glass Modeling Dataset Using the 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses

Figure 3.15 displays PvM plots using the 22-term bcPQM model in Table 3.7 applied to the five evaluation subsets discussed in Section 3.1.3. Each plot in the figure contains the evaluation R^2 and RMSE values for the corresponding evaluation subset. Figure 3.15 shows that the 22-term bcPQM model fit to the 690-glass modeling dataset generally predicts reasonably well for all the evaluation subsets with R^2_{Eval} values ranging 0.7145 to 0.8491.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

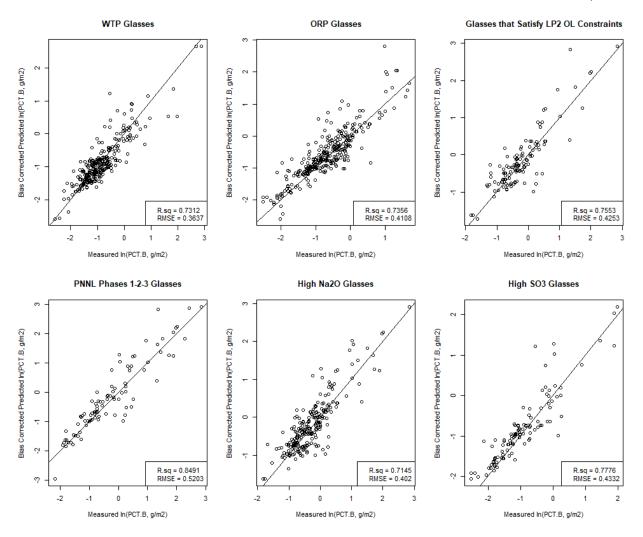


Figure 3.15. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Boron Loss from LAW Glasses

Figure 3.16 displays the response trace plot (see Section B.4.1 of Appendix B) for the 22-term bcPQM model on $\ln(PCT_B^{NL})$. Figure 3.16 shows that MgO, Li₂O, Na₂O, K₂O, and B₂O₃ are predicted to increase $\ln(PCT_B^{NL})$ the most, while Al₂O₃ and SiO₂ are predicted to decrease $\ln(PCT_B^{NL})$ the most. The impact of bias correction is clearly seen in the dramatic change in SiO₂, Al₂O₃, MgO, Li₂O, Na₂O, K₂O, and B₂O₃ effects. V₂O₅, Fe₂O₃, Others, ZrO₂, and ZnO have predicted response traces with small to negligible slopes, indicating those components are predicted to have small to negligible effects on $\ln(PCT_B^{NL})$.

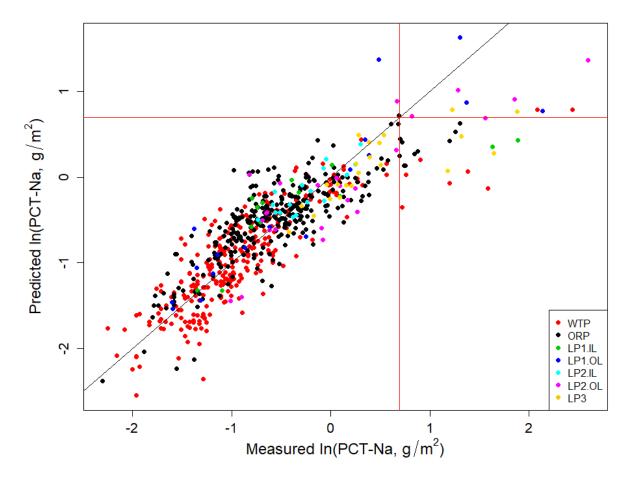
Difference in Component Normalized Mass Fraction from Centroid Composition

3.4 Property-Composition Model Results for PCT Sodium Normalized Loss from LAW Glasses

This section discusses the results of fitting several different mixture models ln $(PCT_{Na}^{NL} [g/m^2])$ to LAW glass compositions. Sections 3.4.1 and 3.4.2 present the results of modeling ln (PCT_{Na}^{NL}) using 20-component FLM and RLM models, respectively. Section 3.4.3 presents the results of modeling ln (PCT_B^{NL}) using a PQM model based on a reduced set of 15 mixture components. Section 3.4.4 presents the result of modeling ln (PCT_B^{NL}) using a 19-term PQM model with a bias correction at high PCT response values.

3.4.1 Results from the 20-Component Full Linear Mixture Model for the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

As the initial step in PCT_{Na}^{NL} -composition model development, a FLM model in the 20 components identified in Section 3.1.1 was fit to the modeling data (690 glasses) OLS to the 20 glass components. This model form was a reasonable starting point based on the previous work modeling $\ln(PCT_{Na}^{NL})$ from LAW glasses (Hrma et al. 1994; Piepel et al. 2007) and provided a basis for appropriate model modifications.


Table 3.8 contains the results from the 20-component FLM model for $ln(PCT_{Na}^{NL})$. Table 3.8 lists the model coefficients, standard deviations of the coefficients, and model performance summaries for the 20-component FLM model using the modeling dataset (690 LAW glasses).

The $R^2 = 0.7370$, $R^2_A = 0.7295$, and $R^2_P = 0.7137$ statistics (see Section B.3 of Appendix B) in Table 3.8 show that (i) the 20-component FLM model does not fit the $ln(PCT_{Na}^{NL})$ data in the 690-glass modeling dataset well, (ii) there are several unneeded model terms (evidenced by the high standard errors relative to the reported coefficient estimates), and (iii) there are not any highly influential data points (confirmed in the diagnostic graphics described in Section B.3 and by the fact that the R²-predicted value is close to the R²-adjusted and R² values for this model). The RMSE = 0.3705 is significantly larger than the pooled glass batching and PCT_{Na}^{NL} determination uncertainty (SD = 0.1845 in ln[g/m²] units) estimated from replicates in Table 3.3. This suggests that the 20-component FLM model has a statistically significant LOF, which is confirmed by the model LOF p-value < 0.0001 in Table 3.8. See Section B.3 for discussion of the statistical test for model LOF.

$\ln(PCT_{Na}^{NL})$ 20-Component		Coefficient
FLM Model Term	Coefficient Estimate	Stand. Err.
Al ₂ O ₃	-15.2197	0.7107
B_2O_3	5.0710	0.7410
CaO	-0.1461	0.5395
Cl	14.9347	6.2516
Cr_2O_3	33.4551	8.7126
F	26.0052	9.3366
Fe ₂ O ₃	-0.3571	0.7878
K ₂ O	10.3999	0.9431
Li ₂ O	24.9567	1.7308
MgO	15.9769	1.6210
Na ₂ O	13.3667	0.5093
P_2O_5	-14.2654	2.7815
SO ₃	-25.4051	5.9988
SiO ₂	-6.0002	0.3029
SnO ₂	-10.0191	1.3777
TiO ₂	-12.4034	2.1517
V ₂ O ₅	4.7078	1.5350
ZnO	-2.6238	1.6726
ZrO_2	-4.6351	1.1585
Others	-56.8364	20.8327
Modeling Data Statistics, 690	Value	
Glasses		
\mathbb{R}^2	0.7370	
R ² A	0.7295	
R ² _P	0.7137	
RMSE	0.3705	
Model LOF p-value	< 0.0001	
(a) For the 20-component FLM mo		t includes any
components not separately listed	are defined in Section B.3 of	

Table 3.8 . Coefficients and Performance Summary for the 20-Component Full Linear Mixture Model on
the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

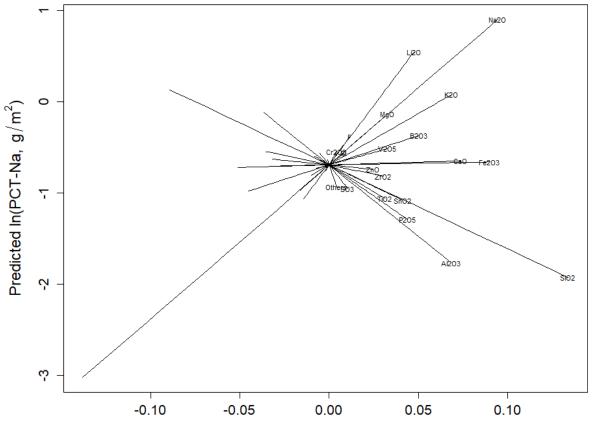

(b) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5. Figure 3.17 shows the PvM plot for the 690-glass modeling dataset using the 20-component FLM model for $\ln(PCT_{Na}^{NL})$. The plot illustrates that the 20-component FLM model significantly under-predicts PCT_{Na}^{NL} above the limit of 2 g/m² (shown with red lines). The model also under-predicts glasses with the lowest PCT_{Na}^{NL} values, although this is not a major concern for LAW Facility application.

Figure 3.17. Predicted versus Measured Plot for the 690-Glass Modeling Dataset Using the 20-Component Full Linear Mixture Model on the Natural Logarithm of PCT_{Na}^{NL} from LAW Glasses. The red lines represent the WTP contract limit of 2 g/m², or 0.6931 ln(g/m²).

The results in Table 3.8 and Figure 3.17 indicate that the 20-term FLM produces unacceptable results, particularly in the region of PCT_{Na}^{NL} values that are of most interest to the project. The majority of glasses at or above the WTP contract limit of 2 g/m² are underpredicted by the 20-term FLM model.

The model in Table 3.8, fit to the 690-glass PCT_{Na}^{NL} modeling dataset, provides a starting point for improvement (e.g., addition of non-linear terms). The 20-component FLM model was used to produce the response trace plot (see Section B.4.1 in Appendix B) shown in Figure 3.18. The average glass composition of the 1074 glasses in the compiled database discussed in Section 2.5 was used as the REFMIX (see Section B.4.1) in response trace plots for every property. The glass composition of the REFMIX is listed in Table 2.3.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 3.18. Response Trace Plot for the 20-Component Full Linear Mixture Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

The response trace plot in Figure 3.18 shows that Li₂O, Na₂O, MgO, K₂O, and B₂O₃ are predicted to increase $\ln(PCT_{Na}^{NL})$, while Al₂O₃, P₂O₅, TiO₂, SnO₂, and SiO₂, are predicted to decrease $\ln(PCT_{Na}^{NL})$. The impacts of Cr₂O₃, F, Cl, SO₃, and Others are significantly larger than expected based on previous model attempts and knowledge of the chemistry of PCT responses. It is likely that the slopes associated with these terms are exaggerated due more to peculiarities in the data than actual component effects. To test this hypothesis, the terms Cr₂O₃, F, Cl, and SO₃ were combined into Others in subsection 3.4.2 to determine if the fit statistics are significantly impacted. If significant impacts are identified, then further research would be required to experimentally verify those results.

Due to the poor predictive performance of the 20-term FLM in the region of interest, no further analysis of this model was carried out, focusing instead on the development of a better model.

3.4.2 Results from the 15-Component Reduced Linear Mixture Model for the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

The 20-component FLM model for $\ln(PCT_{Na}^{NL})$ presented in Section 3.4.1 contains components that do not significantly contribute to predicting $\ln(PCT_{Na}^{NL})$ and some components with unexpectedly strong effects, so model reduction was performed prior to selection of higher order terms. RLM models involving fewer

than the 20 components were considered. To reduce the number of terms, (i) the sequential F-test model reduction approach (see Section B.4.1 of Appendix B; Piepel and Cooley 2006) and (ii) selection based on knowledge of PCT chemical effect were used. Using the F-test method and a threshold of 0.001, SO₃, P₂O₅, TiO₂, and SnO₂ were determined to be the least significant terms and were combined to Others. This resulted in significant and non-defensible effects of Cl, Cr₂O₃, F, and Others (similar to those in the FLM model in Section 3.4.1). Cl, Cr₂O₃, and F have the smallest overall concentration ranges (0.0000 \leq Cl \leq 0.0117, 0.0000 \leq Cr₂O₃ \leq 0.0063, and 0.0000 \leq F \leq 0.0130, mf). Cl is also volatile to differing extents in glass with a mean retention of roughly 70 % in typical crucible melts (with a broad distribution of retention factors). Neither component is expected to have a significant effect on PCT responses. There is a potential for Cl and F to slightly decrease pH of PCT solution, thereby slightly reducing PCT responses. With such strong predicted effect of these three components, counter to previous observations, independent experimental verification is needed prior to including in the model. Additionally, the combination of SnO₂ and TiO₂ with Others caused the combined Others term to have a strong negative effect on $ln(PCT_{Na}^{NL})$ with most other components to have positive effects. The F-test method, after forcing Cl, Cr₂O₃, and F into Others resulted in Cl, Cr₂O₃, F, P₂O₅, and SO₃ to be combined with Others resulting in a 15-term RLM model.

Table 3.9 contains the results from the 15-component RLM model for $ln(PCT_{Na}^{NL})$. Table 3.9 lists the model coefficients, standard deviations of the coefficients, and model performance summaries for the RLM model using the modeling dataset (690 LAW glasses).

The $R^2 = 0.7110$, $R^2_A = 0.7050$, and $R^2_P = 0.6910$ statistics (see Section B.3 of Appendix B) in Table 3.9 show that the 15-component RLM model does not fit the $ln(PCT_{Na}^{NL})$ data in the 690-glass modeling dataset well. The RMSE = 0.3869 is significantly larger than the pooled glass batching and PCT_{Na}^{NL} determination uncertainty (SD = 0.1845 in ln[g/m²] units) estimated from replicates in Table 3.3. This suggests that the 15-component RLM model has a statistically significant LOF, which is confirmed by the model LOF p-value < 0.0001 in Table 3.9. See Section B.3 for discussion of the statistical test for model LOF.

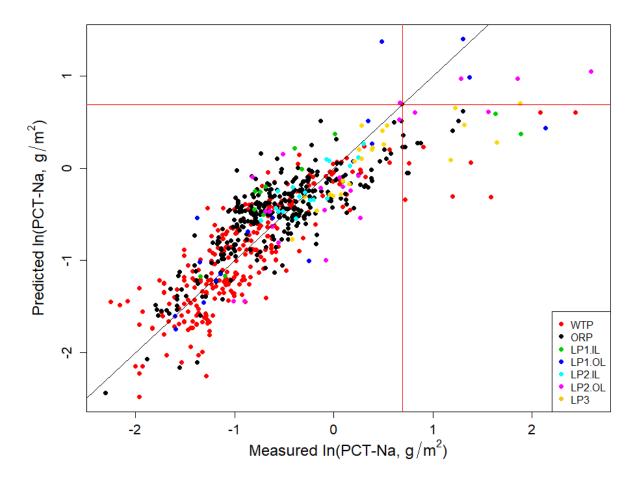

$\ln(PCT_{Na}^{NL})$ 15-Component	Coefficient	Coefficient		
RLM Model Term	Estimate	Std. Err.		
Al_2O_3	-15.0672	0.7305		
B_2O_3	4.5199	0.7657		
CaO	-0.1463	0.5439		
Fe ₂ O ₃	-0.4765	0.7830		
K ₂ O	11.2954	0.9477		
Li ₂ O	24.4653	1.7708		
MgO	15.8399	1.6825		
Na ₂ O	13.8507	0.5177		
SiO ₂	-6.3773	0.3067		
SnO ₂	-6.6824	1.3495		
TiO ₂	-10.3655	2.1608		
V ₂ O ₅	3.1413	1.5227		
ZnO	-1.8021	1.7360		
ZrO ₂	-3.5106	1.1688		
Others ^(a)	-2.0976	1.7916		
Modeling Data Statistics, 690	Value			
Glasses ^(b)				
R ²	0.7110			
R ² _A	0.7050			
R ² _P	0.6910			
RMSE	0.3869			
Model LOF p-value	< 0.0001			
(a) For the 15-component FLM	model, the "Others"	' component		
includes the Others component from the FLM model plus Cl,				
Cr_2O_3 , F, P_2O_5 , and SO_3 .				
(b) The model evaluation statist	ics are defined in Se	ction B.3 of		

 Table 3.9. Coefficients and Performance Summary for the 15-Component Reduced Linear Mixture

 Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

(b) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

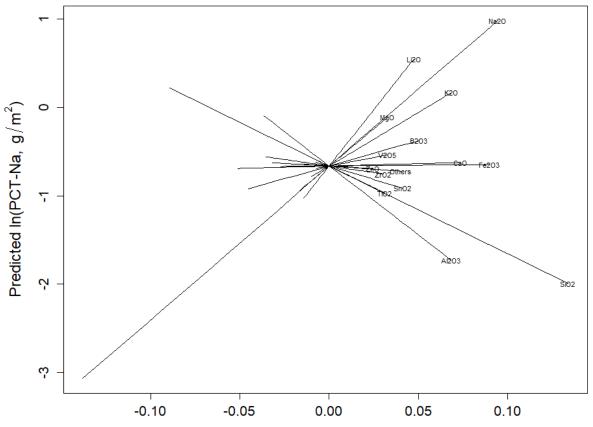

Figure 3.19 shows the PvM plot for the 690-glass modeling dataset using the 15-component RLM model for $\ln(PCT_{Na}^{NL})$. The plot illustrates that the 15-component RLM model significantly under-predicts PCT_{Na}^{NL} above the limit of 2 g/m² (shown with red lines). The model also under-predicts glasses with the lowest PCT_{Na}^{NL} values, although this is not a major concern for WTP LAW Facility application.

Figure 3.19. Predicted versus Measured Plot for the 690-Glass Modeling Dataset Using the 15-Component Reduced Linear Mixture Model on the Natural Logarithm of PCT_{Na}^{NL} from LAW Glasses. The red lines represent the WTP contract limit of 2 g/m², or 0.6931 ln(g/m²).

The results in Table 3.9 and Figure 3.19 indicate that the 15-term RLM produces unacceptable results, particularly in the region of PCT_{Na}^{NL} values that are of most interest to the project. The majority of glasses at or above the WTP contract limit of 2 g/m² are underpredicted by the 15-term RLM model.

The model in Table 3.9, fit to the 690-glass PCT_{Na}^{NL} modeling dataset, provides a starting point for improvement (e.g., addition of non-linear terms). The 15-component RLM model was used to produce the response trace plot (see Section B.4.1 in Appendix B) shown in Figure 3.20. The average glass composition of the 1074 glasses in the compiled database discussed in Section 2.5 was used as the REFMIX (see Section B.4.1) in response trace plots for every property. The glass composition of the REFMIX is listed in Table 2.3.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 3.20. Response Trace Plot for the 15-Component Reduced Linear Mixture Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

The response trace plot in Figure 3.20 shows that Li₂O, Na₂O, MgO, K₂O, and B₂O₃ are predicted to increase $\ln(PCT_{Na}^{NL})$ the most, while Al₂O₃, TiO₂, SiO₂, and SnO₂ are predicted to decrease $\ln(PCT_{Na}^{NL})$ the most. These agree with previous model attempts and knowledge of the chemistry of PCT responses. Due to the poor predictive performance of the 15-term RLM in the region of interest, no further analysis of this model was carried out, focusing instead on the development of a better model based on these same 15 components.

3.4.3 Results from a Reduced Partial Quadratic Mixture Model for the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

Reduced PQM models were investigated in an effort to improve the 15-component RLM model for predicting $\ln(PCT_{Na}^{NL})$. Past experience with developing and validating PQM models has indicated that adding too many quadratic terms tends to over-fit the model development dataset and degrade predictive performance for new glasses. So, a process of identifying as few as possible second-order terms while improving model fit statistics was performed as follows:

1. Regressions were performed to fit reduced partial quadratic models involving all possible subsets of 1, 2, 3, or 4 second-order terms.

- 2. The resulting model performance statistics (R-squared and RMSE values) were then examined to see which second-order terms were most beneficial to model performance and how many second-order terms to include.
- 3. The RMSE values from the top candidate models were plotted as a function of the number of second order terms (0 to 4) to identify where the point of diminishing returns was.
- 4. The reduced PQM model with the number of terms just before the point of diminishing returns was selected as the final reduced PQM model.

The MAXR criterion (see Section B.4.2 of Appendix B) was also attempted as a means of selecting second-order terms. Both methods resulted in the same selection as "best" four second-order terms: $Na_2O \times SiO_2$, $CaO \times V_2O_5$, $Al_2O_3 \times Al_2O_3$, and $V_2O_5 \times V_2O_5$.

Ultimately, a 19-term PQM model for $\ln(PCT_{Na}^{NL})$ with 15 linear terms and 4 second-order terms (2 quadratic and 2 cross-product) was selected as including enough quadratic terms to improve the model fit, without over-fitting the model development data. Table 3.10 contains the coefficients of the 19-term PQM model for $\ln(PCT_{Na}^{NL})$ and the coefficient standard errors. Table 3.10 also includes model fit summary statistics for the 19-term PQM model.

The $R^2 = 0.7719$, $R^2_A = 0.7658$, and $R^2_P = 0.7511$ statistics (see Section B.3 of Appendix B) in Table 3.10 show that the 19-component PQM model fits the $ln(PCT_{Na}^{NL})$ data in the 690-glass modeling dataset significantly better than the FLM and RLM models. The RMSE = 0.3448 is still significantly larger than the pooled glass batching and PCT_{Na}^{NL} determination uncertainty (SD = 0.1845 in ln[g/m²] units) estimated from replicates in Table 3.3. This suggests that the 19-component PQM model has a statistically significant LOF, which is confirmed by the model LOF p-value < 0.0001 in Table 3.10. See Section B.3 for discussion of the statistical test for model LOF.

$\ln(PCT_{Na}^{NL})$ 19-Component		Coefficient			
PQM Model Term	Coefficient Estimate Stand. Err				
Al ₂ O ₃	-39.3217	4.2228			
B_2O_3	1.5635	0.8566			
CaO	0.3470	0.8299			
Fe ₂ O ₃	-3.9415	0.8109			
K ₂ O	10.3966	0.9137			
Li ₂ O	22.5371	1.6326			
MgO	13.0612	1.5690			
Na ₂ O	29.4758	2.1037			
SiO ₂	-1.8303	0.6570			
SnO ₂	-12.0479	1.2843			
TiO ₂	-11.7384	1.9371			
V_2O_5	-10.3548	5.0034			
ZnO	-5.7262	1.6617			
ZrO ₂	-5.0914	1.1849			
Others ^(a)	-4.7843	1.6441			
Na ₂ O×SiO ₂	-39.2424	5.6951			
$CaO \times V_2O_5$	-209.2758	35.1796			
$(Al_2O_3)^2$	130.7351	25.4185			
$(V_2O_5)^2$	689.2301	129.1334			
Modeling Data Statistics, 690	Value				
Glasses ^(b)					
R ²	0.7719				
R ² _A	0.7658				
R ² _P	0.7511				
RMSE	0.3448				
Model LOF p-value	< 0.0001				
(a) For the 19-component PQM m	nodel, the "Others" compone	nt includes the			
Others component from the FL	LM model plus Cl, Cr ₂ O ₃ , F,	P_2O_5 , and SO_3 .			
(b) The model evaluation statistics are defined in Section B.3 of Appendix B.					
The model validation statistics are defined in Section B.5.					

Table 3.10. Coefficients and Performance Summary for the 19-Term Partial Quadratic Mixture Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

Figure 3.21 shows the PvM plot for the 690-glass modeling dataset using the 19-term PQM model for $\ln(PCT_{Na}^{NL})$. The plot illustrates that the 19-term PQM model significantly under-predicts PCT_{Na}^{NL} above the limit of 2 g/m² (shown with red lines).

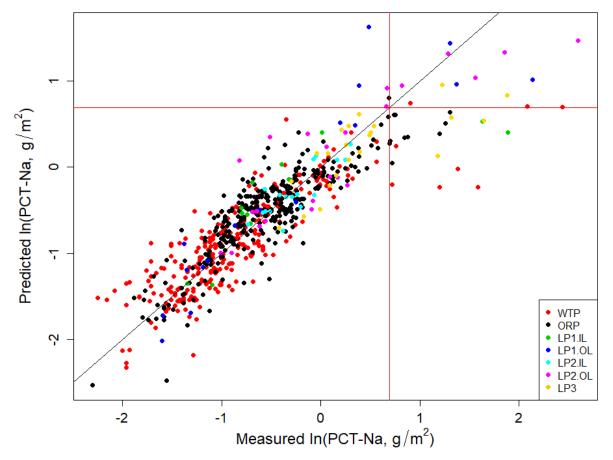
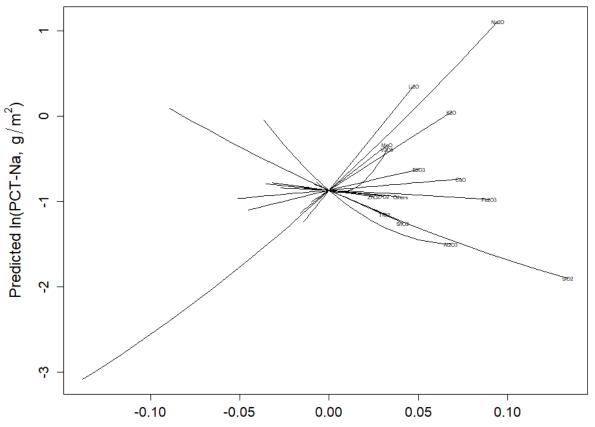



Figure 3.21. Predicted versus Measured Plot for the 690-Glass Modeling Dataset Using the 19-Term Partial Quadratic Mixture Model on the Natural Logarithm of *PCT^{NL}_{Na}* from LAW Glasses. The red lines represent the WTP contract limit of 2 g/m², or 0.6931 ln(g/m²).

The results in Table 3.10 and Figure 3.21 indicate that the 19-term PQM produces unacceptable results, particularly in the region of PCT_{Na}^{NL} values that are of most interest to the project. The majority of glasses at or above the WTP contract limit of 2 g/m² are underpredicted by the 19-term PQM model.

The 19-term PQM model was used to produce the response trace plot (see Section B.4.1 in Appendix B) shown in Figure 3.22. The average glass composition of the 1074 glasses in the compiled database discussed in Section 2.5 was used as the REFMIX (see Section B.4.1) in response trace plots for every property. The glass composition of the REFMIX is listed in Table 2.3.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 3.22. Response Trace Plot for the 19-Term Partial Quadratic Mixture Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

The response trace plot in Figure 3.22 shows that Li₂O, Na₂O, MgO, K₂O, and V₂O₅ are predicted to increase $\ln(PCT_{Na}^{NL})$ the most, while Al₂O₃, TiO₂, SiO₂, and SnO₂ are predicted to decrease $\ln(PCT_{Na}^{NL})$ the most. These agree with previous model attempts and knowledge of the chemistry of PCT responses. The non-linear impact of Al₂O₃ evident in Figure 3.22 is a well-documented trend (see, for example, Vienna and Crum 2018). A non-linear impact of V₂O₅ is also evident in Figure 3.22. Due to the poor predictive performance of the 19-term PQM in the region of interest, no further analysis of this model was carried out, focusing instead on the development of a better models.

3.4.4 Screening of Model Types for Predicting Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

Most waste glass properties are well represented using FLM, RLM, or PQM models over sufficiently narrow composition regions. This was found to be the case for predicting $\ln(PCT_{Na}^{NL})$ of LAW glasses covering a narrower subset of the current 690 glass dataset. It is apparent by the bias seen at high $\ln(PCT_{Na}^{NL})$ responses (>0.5 $\ln[g/m^2]$) shown in Figure 3.21 that PQM is insufficient in this case. Therefore, a brief survey of model approaches for modeling properties as non-linear functions of glass composition was undertaken. Several approaches were surveyed for predicting either $\ln(PCT_{Na}^{NL})$ or categorical pass/fail of the WTP contract constraint of $PCT_{Na}^{NL} \le 2 \text{ g/m}^2$ (P/F), including:

- 1. Local linear regression (LLR)
- 2. K-nearest neighbor (KNN) (numerical or P/F)
- 3. Generalized linear models (GLM)
- 4. Gaussian process regression (GPR)
- 5. Artificial neural networks (ANN)
- 6. Decision tree (P/F)
- 7. Random forest (P/F)
- 8. Support vector machine (P/F)
- 9. Linear and partial quadratic logistic regression (P/F)
- 10. Bias corrected PQM model (bcPQM)

Each of these methods was attempted with the same 690-glass normalized PCT sodium response dataset. The results of these modeling approaches match closely with those described in Section 3.3.4 for normalized PCT boron response. The outcome was that bcPQM models were further pursued for predicting $\ln(PCT_{Na}^{NL})$ of LAW glasses.

3.4.5 Results from a Bias Corrected Partial Quadratic Mixture Model for the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

The poor performance of the FLM and PQM models suggests that a method to correct prediction bias may be useful for producing usable PCT models. Bias correction methods have been investigated and applied before in the modeling of PCT (Piepel et al. 2008; Vienna and Kim 2014). The bias corrected form of the models is given by

$$ln(\widehat{PCT}_{Na}^{NL})_{BC} = \begin{cases} ln(\widehat{PCT}_{Na}^{NL}) & \text{if } ln(\widehat{PCT}_{Na}^{NL}) \le c \\ ln(\widehat{PCT}_{Na}^{NL}) + (ln(\widehat{PCT}_{Na}^{NL}) - c)s & \text{if } ln(\widehat{PCT}_{Na}^{NL}) > c \end{cases}$$
(3.7)

where

 $ln(\widehat{PCT}_{Na}^{NL}) = ln(PCT_{Na}^{NL})$ predicted using PQM model prior to application of bc (ln[g/m²])

- c = estimated bias correction cut-off (ln[g/m²])
- s = estimated bias correction slope (unitless). Due to the fitting process, s is the sum of the initial slope (s₀) and the change in slope (Δs) (i.e., $s = s_0 + \Delta s$) as described in Section 3.6.

In Eq. (3.7), the bias correction applied to the predicted $ln(\widehat{PCT}_{Na}^{NL})$ value increases or decreases linearly from zero at the cutoff with a slope given by *s*. Values of *c* and *s* (estimates of *C* and *S* respectively) were found using two approaches: (i) fitting Eq. (3.7) to measure $ln(PCT_{Na}^{NL})$ using the PQM reported in Section 3.4.3, or (ii) simultaneously fitting the PQM model terms with the *c* and *s* according to

$$ln(PCT_{Na}^{NL})_{BC} = \begin{cases} \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} & \text{if } \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} \leq C \\ \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} + (\mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} - C)S & \text{if } \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} > C \end{cases} + e$$
(3.8)

where

- β = the vector of PQM term coefficients including β_i , β_{ii} , and β_{ij} values
- \mathbf{g} = the vector of component concentrations for first order terms followed by component concentrations squared for quadratic terms and concentrations multiplied for cross-product terms (in the same order as $\boldsymbol{\beta}$)
- $C = \text{bias correction cut-off } (\ln[g/m^2])$
- S = bias correction slope ((unitless). Due to the fitting process, S is the sum of the initial slope (S₀) and the change in slope (ΔS) (i.e., $S = S_0 + \Delta S$) similar to what is described in Section 3.6 (except for the parameters, rather than the estimates).
- e = random error for each data point.

Both approaches were attempted, and the second approach was ultimately adopted because it resulted in a more optimal solution with less scatter in the data. The same first-order terms were used as in the RLM model described in Section 3.4.2. However, some of the second-order terms differed; best model fit results were obtained with Al₂O₃×Al₂O₃, CaO×CaO, Al₂O₃×Na₂O, and CaO×V₂O₅ (e.g., CaO×CaO replaced V₂O₅×V₂O₅). These terms are generally expected based on past PCT response modeling for LAW glasses that showed second-order terms involving Al₂O₃, CaO, Li₂O, and Na₂O (Piepel et al. 2007, Vienna et al. 2013, Vienna et al. 2016). Second order terms containing V₂O₅ are not commonly found, but Muller et al. (2014) combined V₂O₅ into others and reported two second-order terms involving Others. Table 3.11 contains the coefficients of the 22-term bcPQM model for ln(*PCT*^{NL}_{Na}) and the coefficient standard errors. Table 3.11 also includes model performance statistics for the 22-term bcPQM using the (i) 690-glass modeling data, (ii) data-split modeling data (as a model validation approach), and (iii) six evaluation subsets of the modeling glasses discussed in Section 3.1.3 (as a model evaluation approach).

In Table 3.11, the $\ln(PCT_{Na}^{NL})$ model fit statistics $R^2 = 0.7621$, $R^2_A = 0.7546$, and RMSE = 0.3529 for the 22-term bcPQM model are a small reduction over the corresponding statistics for the 19-term PQM model in Table 3.10. The small decrease in values from R^2 to R^2_A suggests that the $\ln(PCT_{Na}^{NL})$ model does not have excess terms. R^2_P , reported for other properties in this report, was not estimated for the $\ln(PCT_{Na}^{NL})$ model due to software limitations.

The RMSE in Table 3.11 is an estimate of the uncertainty [in $ln(g/m^2)$ units] in fabricating LAW glasses and determining PCT_{Na}^{NL} if the 22-term bcPQM model does not have statistically significant LOF. The RMSE = 0.3529 for the bcPQM model fitted to the 690-glass modeling dataset is slightly larger than the corresponding value for the 19-term PQM model (RMSE = 0.3448) in Table 3.10, indicating a poorer fit to the data by bcPQM. The RMSE value is roughly double the pooled replicate SD in $ln(g/m^2)$ units of 0.1845 in Table 3.3. These observations suggest that the 22-term bcPQM model does have a significant model LOF, which is confirmed by the LOF test p-value <0.0001 in Table 3.11. See Section B.3 of Appendix B for discussion of the statistical test for model LOF.

At the bottom right of Table 3.11, the average model-fit statistics (\mathbb{R}^2 , \mathbb{R}^2_A , and RMSE) over the five datasplits are close to the statistics obtained from fitting the 22-term bcPQM model for $\ln(PCT_{Na}^{NL})$ to all 690 glasses in the modeling dataset. The data-split validation statistics (\mathbb{R}^2_V and RMSE_V) are slightly worse than the \mathbb{R}^2 and RMSE values from fitting the model to the full dataset. The difference can be attributed to significant outliers among the high $\ln(PCT_{Na}^{NL})$ data, which, when in the validation sets, influenced \mathbb{R}^2_V and RMSE_V.

The statistics from evaluating the predictive performance of the 22-term bias corrected reduced PQM model for $\ln(PCT_{Na}^{NL})$ on the six evaluation subsets of modeling glasses (see Section 3.1.3) are given on

the right side of Table 3.11. The R² statistics for five of the six evaluation subsets (0.7166 to 0.8022) are similar to the R² statistic for the whole modeling dataset (0.7621) The exception is the WTP evaluation subset, with $R^{2}_{Eval} = 0.6756$, which is relatively low. The new models in this report are intended to predict well for LAW glasses with higher waste loadings, and still predict acceptably well for glasses with lower waste loadings (the older WTP glasses).

 Table 3.11. Coefficients and Performance Summary for 22-Term Bias Corrected Partial Quadratic

 Mixture Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW

 Glasses

ln(PCT _{Na} ^{NL}) 22-Term	Coefficient	Coefficient	Modeling	Data Statisti	c,	
bcPQM Model Term	Estimate	Stand. Err.	690 Glasse	s ^(a)		Value
Al ₂ O ₃	-31.8140	2.4885	R^2			0.7621
B_2O_3	3.2631	0.3738	R ² _A			0.7546
CaO	5.5241	1.0402	RMSE			0.3529
Fe ₂ O ₃	-0.0973	0.3951	Model L	OF p-value		< 0.0001
K ₂ O	7.6834	0.5886		•		
Li ₂ O	13.4028	1.1441				
MgO	8.8211	0.8748	Evaluation (# Glasses)		R ² Eval	RMSE _{Eval}
Na ₂ O	6.1643	0.6263	WTP (2	88)	0.6756	0.3432
SiO ₂	-3.1590	0.2218	ORP (30		0.7674	0.3195
SnO ₂	-5.3964	0.6736	LP2OL	· ·	0.7442	0.4191
TiO ₂	-3.5008	1.0960	LP123 (0.8022	0.5441
V ₂ O ₅	8.6155	1.2230	HiNa ₂ O	,	0.7166	0.3903
ZnO	-1.1891	0.7800	HiSO ₃ (· · ·	0.7855	0.3978
ZrO ₂	-0.4027	0.4953	``````````````````````````````````````			
Others	0.7336	0.8105				
Al ₂ O ₃ ×Al ₂ O ₃	85.1327	13.3262				
CaO×CaO	-41.0621	8.8831				
$CaO \times V_2O_5$	-106.4057	19.0477				
Al ₂ O ₃ ×Na ₂ O	44.4157	6.4474				
С	-0.5891	0.04210215				
<i>S0</i>	1.9108	0.20861944				
Δs	0.9457	0.2373 ^(d)				
S	2.8565 ^(e)					
Data Splitting Statistic ^(a,f)	DS1	DS2	DS3	DS4	DS5	Average
R ²	0.7711	0.7725	0.7697	0.7380	0.7735	0.7650
R ² _A	0.7625	0.7639	0.7610	0.7282	0.7649	0.7561
RMSE	0.3468	0.3447	0.3459	0.3669	0.3464	0.3502
R ² v	0.7131	0.7547	0.6990	0.8019	0.6128	0.7163
RMSE _V	0.3823	0.3587	0.4027	0.3346	0.4340	0.3824

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

(b) The six sets of LAW evaluation glasses are discussed in Sections 2.4 and 3.1.3.

(c) For the 22-term bcPQM model, the "Others" component includes any components not separately listed.

(d) The standard error in Δs is described in Section 3.6

(e) $s = s_0 + \Delta s$. The associated error for s is obtained by propagation of errors in Section 3.6.

(f) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling

and validation sets. Section 3.1.2 describes how the modeling dataset was split into modeling and validation subsets.

Figure 3.23 displays, for the 22-term bcPQM model of $\ln(PCT_{Na}^{NL})$, the standardized residuals plotted versus the data index (a sequential numbering of the modeling data points), with different plotting symbols representing the different groups of LAW glasses discussed in Section 2.3. Figure 3.23 shows similar scatter for all data subsets.

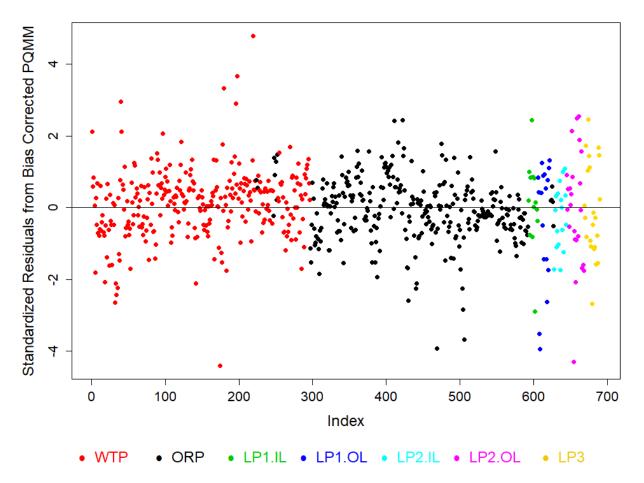


Figure 3.23. Standardized Residuals Plot for the 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

Figure 3.24 displays the PvM plot for the 690-glass modeling dataset using the 22-term bcPQM model on $\ln(PCT_{Na}^{NL})$. Figure 3.24 differs from the PvM plot for the 19-term PQM model in Figure 3.19 in that the higher values (> 0.6 $\ln[g/m^2]$), which do not show bias, show slightly larger scatter of predicted data about the 45° line in this same region.

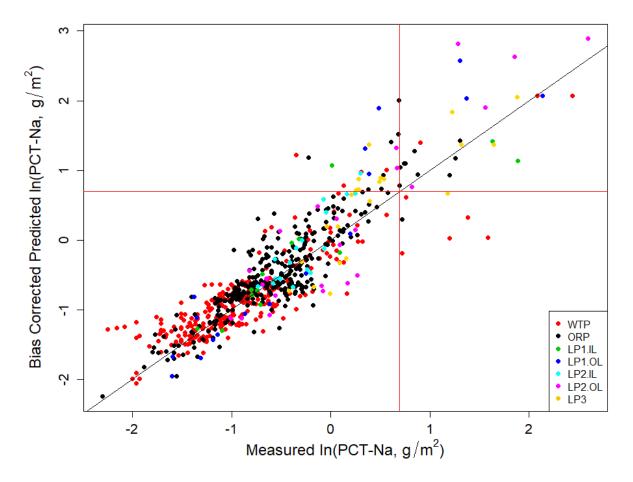
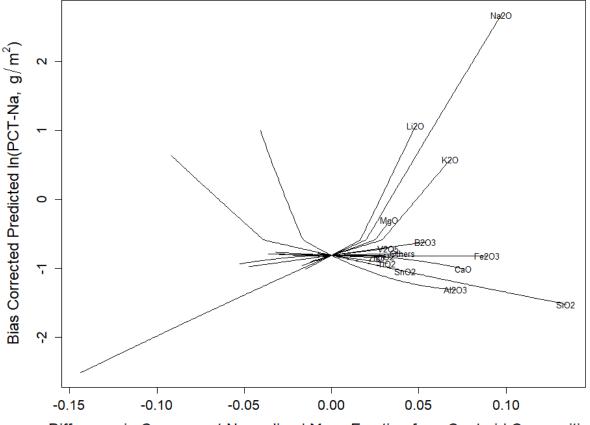


Figure 3.24. Predicted versus Measured Plot for the 690-glass Modeling Dataset Using the 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses


Figure 3.25 displays PvM plots using the 22-term bcPQM model in Table 3.11 applied to the five evaluation subsets discussed in Section 3.1.3. Each plot in the figure contains the evaluation R² and RMSE values for the corresponding evaluation subset. Figure 3.25 shows that the 22-term bcPQM model fit to the 690-glass modeling dataset generally predicts reasonably well for all six evaluation subsets.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 3.25. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

Figure 3.26 displays the response trace plot (see Section B.4.1 of Appendix B) for the 22-term bcPQM model on $\ln(PCT_{Na}^{NL})$. Figure 3.26 shows that Li₂O, Na₂O, MgO, and K₂O are predicted to increase $\ln(PCT_{Na}^{NL})$ the most, while Al₂O₃ and SiO₂ are predicted to decrease $\ln(PCT_{Na}^{NL})$ the most. The impact of bias correction is clearly seen in the dramatic change in SiO₂, Al₂O₃, Li₂O, Na₂O, MgO, and K₂O effects. B₂O₃, V₂O₅, Fe₂O₃, Others, CaO, ZrO₂, and ZnO have predicted response traces with small to negligible slopes, indicating those components are predicted to have small to negligible effects on $\ln(PCT_{Na}^{NL})$.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 3.26. Response Trace Plot for 22-Term bcPQM Model on the Natural Logarithm of Normalized PCT Sodium Loss from LAW Glasses

3.5 Recommended Model for the Natural Logarithm of Normalized PCT Boron and Sodium Loss from LAW Glasses

Of the eight models reported to predict natural logarithm of normalized PCT boron and sodium loss, the PQM and bcPQM models fit the data and were validated the best. Table 3.12 summarizes the model evaluation and validation results for the PQM and bcPQM models for predicting $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ from LAW glasses. Only the bcPQM models did not display a significant bias at high PCT responses (> 0.5 $\ln(g/m^2)$). The bcPQM models also displayed the highest fit and validation statistics (with the exception of PQM for $\ln(PCT_{Na}^{NL})$). Therefore, the bcPQM models are recommended for predicting $\ln(PCT_{Na}^{NL})$ and $\ln(PCT_{Na}^{NL})$ of LAW glasses.

Model Fit to 690	PC	T-B	PCT-Na			
Glasses ^(a)	PQM	bcPQM	PQM	bcPQM		
Section	3.3.3	3.3.5	3.4.3	3.4.5		
Summary Table	3.6	3.7	3.10	3.11		
R ²	0.7454	0.7762	0.7719	0.7621		
R ² _A	0.7386	0.7692	0.7658	0.7546		
RMSE	0.4207	0.3954	0.3448	0.3529		
LOF p-value	< 0.0001	< 0.0001	< 0.0001	< 0.0001		
Linear Terms	15	15	15	15		
	Al ₂ O ₃ ×Al ₂ O ₃ ,	Al ₂ O ₃ ×Al ₂ O ₃ ,	Al ₂ O ₃ ×Al ₂ O ₃ ,	Al ₂ O ₃ ×Al ₂ O ₃ ,		
Selected Quadratic	CaO×CaO,	CaO×CaO,	$V_2O_5 \times V_2O_5$,	CaO×CaO,		
Terms in Model	$CaO \times V_2O_5$,	CaO×V ₂ O ₅ ,	CaO×V ₂ O ₅ ,	$CaO \times V_2O_5$,		
	Na ₂ O×SiO ₃	Al ₂ O ₃ ×Li ₂ O	Na ₂ O×SiO ₂	Al ₂ O ₃ ×Na ₂ O		
# Data	690	690	690	690		
# Model Parameters	19	22	19	22		
Validation Summary Stati	stics Averaged Ov	er 5 Data-Splitting	g Sets for bcPQM	only ^(a)		
\mathbb{R}^2		0.7819		0.7650		
R ² _A		0.7736		0.7561		
RMSE		0.3903		0.3502		
		0.7052		0.7162		
R^2v		0.7053		0.7163		
		0.7053		0.3824		
R ² v RMSEv Summary Statistics for Fiv	 ve Evaluation Subs	0.4436	 es for bcPQM onl	0.3824		
RMSEv Summary Statistics for Fiv Evaluation Set	 ve Evaluation Subs bcPQM R ² _{Eval}	0.4436	 es for bcPQM onl bcPQM R ² _{Eval}	0.3824		
RMSE _V Summary Statistics for Fiv Evaluation Set (# Glasses) ^(b)		0.4436 ets of LAW Glass bcPQM		0.3824 y ^(b)		
RMSE _V Summary Statistics for Fiv Evaluation Set (# Glasses) ^(b) WTP (B:289, Na:288)	bcPQM R ² _{Eval}	0.4436 sets of LAW Glass bcPQM RMSE _{Eval}	$bcPQM R^{2}_{Eval}$	0.3824 y ^(b) bcPQM RMSE _{Ev}		
RMSE _V Summary Statistics for Fiv Evaluation Set (# Glasses) ^(b) WTP (B:289, Na:288) ORP (309)	bcPQM R ² _{Eval}	0.4436 ets of LAW Glass bcPQM RMSE _{Eval} 0.3637	bcPQM R ² _{Eval}	0.3824 y ^(b) bcPQM RMSE _{Ev} 0.3432		
RMSE _V Summary Statistics for Fiv Evaluation Set (# Glasses) ^(b) WTP (B:289, Na:288) ORP (309) LP2OL (B:120, Na:121)	bcPQM R ² _{Eval} 0.7312 0.7356	$\begin{array}{r} 0.4436\\ \hline \\ \text{sets of LAW Glass}\\ \hline \\ \text{bcPQM}\\ \hline \\ \hline \\ \text{RMSE}_{\text{Eval}}\\ \hline \\ 0.3637\\ \hline \\ 0.4108 \end{array}$	bcPQM R ² _{Eval} 0.6756 0.7674	0.3824 y ^(b) bcPQM RMSE _{Ev} 0.3432 0.3195		
	bcPQM R ² _{Eval} 0.7312 0.7356 0.7553	$\begin{array}{r} 0.4436\\ \hline \\ \hline \\ bcPQM\\ \hline \\ \hline \\ RMSE_{Eval}\\ \hline \\ 0.3637\\ \hline \\ 0.4108\\ \hline \\ 0.4253 \end{array}$	bcPQM R ² _{Eval} 0.6756 0.7674 0.7442	$ \begin{array}{r} 0.3824 \\ \underline{y^{(b)}} \\ bcPQM RMSE_{Ev} \\ 0.3432 \\ 0.3195 \\ 0.4191 \\ \end{array} $		

 Table 3.12. Performance Summary of Two Models for the Natural Logarithm of PCT Responses of LAW Glasses

(a) Model valuation statistics are defined in Section B.5 of Appendix B.

(b) The model evaluation statistics are defined in Section B.3 of Appendix B.

3.6 Example Illustrating Model Predictions and Statistical Intervals for the Natural Logarithm of Normalized PCT Boron and Sodium Loss from LAW Glasses

This section contains examples to illustrate using the recommended 22-term bcPQM models (Sections 3.3.5 and 3.4.5) to obtain predicted PCT_B^{NL} and PCT_{Na}^{NL} values, respectively, and corresponding 90% simultaneous upper confidence intervals (SUCIs) for a specific LAW glass composition as described in Section B.6 of Appendix B. The 90% confidence levels associated with SUCIs were chosen for illustration purposes only.¹ The WTP LAW Facility can use an appropriate confidence level depending on the use of the $ln(PCT_i^{NL})$ -composition models and the type of statistical uncertainty expression.

The common glass composition selected for example calculations for all properties in this report (denoted REFMIX) is listed in Table 2.3. Because the bcPQM models were recommended for predicting

¹ Currently, the WTP LAW Facility uses SUCI's with 90% confidence levels (Kim and Vienna 2012).

normalized PCT responses and the REFMIX composition is below the bias correction cutoff, a second glass above the cutoff was also selected for example calculations. The 20-component compositions (mass fractions) for PCT_B^{NL} and PCT_{Na}^{NL} modeling are given in Table 3.13. To apply the 22-term bcPQM models for $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ to the glass composition, the mass fractions of the 20 components must be converted to mass fractions (that sum to 1.0) of the 15 LAW glass components contained in both models. This involves adding the mass fractions of the 5 of 20 components not contained in the models (Cl, Cr₂O₃, F, P₂O₅, and SO₃) to the mass fraction of Others (one of the original 20 components) to obtain a new Others (one of the reduced sets of 15 components). Mass fractions of the relevant components are then multiplied to obtain the second-order terms of the 22-term reduced bcPQM models. Table 3.13 contains the compositions of the glasses prepared for use in the $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ models for LAW glasses.

For each of the two bcPQM models, initial predicted $\ln(PCT_j^{NL}, g/m^2)$ values are obtained by multiplying the composition in the format needed for that model by the coefficients for that model, then summing the results. That is, the initial values are calculated by

$$\ln(\widehat{PCT}_{j}^{NL}) = \mathbf{g}^{\mathsf{T}}\mathbf{b}$$
(3.9)

where **g** is the composition of the example glass formatted to match the terms in a given model (from Table 3.13), the superscript T represents a vector transpose, and **b** is the vector of coefficients for a given model. The initial $\ln(\widehat{PCT}_j^{NL})$ values for the two example glasses using the two bcPQM models are listed in the second column of Table 3.14. The initial $\ln(\widehat{PCT}_j^{NL})$ values in $\ln(g/m^2)$ units are easily converted to \widehat{PCT}_i^{NL} values (g/m²) by exponentiation.

The standard deviation of $\ln(\widehat{PCT}_i^{NL})$ values are given by

$$SD_{\ln(\widehat{PCT}_{j}^{NL})} = \sqrt{V_{\ln(\widehat{PCT}_{j}^{NL})}} = \sqrt{MSE_{\ln(\widehat{PCT}_{j}^{NL})}\mathbf{g}^{\mathrm{T}}(\mathbf{G}^{\mathrm{T}}\mathbf{G})^{-1}\mathbf{g}}$$
(3.10)

where

$$V_{\ln(\widehat{PCT}_{j}^{NL})} = \text{the variance of } \ln(PCT_{j}^{NL}) = SD_{\ln(\widehat{PCT}_{j}^{NL})}^{2}$$

$$MSE_{\ln(\widehat{PCT}_{j}^{NL})} = \text{mean-squared error of associated with a given model}$$

$$MSE_{\ln(\widehat{PCT}_{j}^{NL})}(\mathbf{G}^{T}\mathbf{G})^{-1} = \text{the variance-covariance matrix of the model (also denoted as V)}$$

$$\mathbf{g} = \text{the vector of values for the PCT model consisting of the individual mass fractions of the components expanded to the appropriate model form.}$$

The $SD_{\ln(\widehat{PCT}_{j}^{NL})}$ values are listed in the third column of Table 3.14. For $\ln(\widehat{PCT}^{NL})$ values above the cutoff (*c*), a bias correction (bc) is added according to Eqs. (3.6) and (3.8). The variance-covariance matrices, given by $\mathbf{V} = MSE_{\ln(\widehat{PCT}_{j}^{NL})}(\mathbf{G}^{T}\mathbf{G})^{-1}$, are listed in Tables D.1 and D.2 for $\ln(PCT_{B}^{NL})$ and $\ln(PCT_{Na}^{NL})$, respectively.

The bias corrected value is given in the fourth column of Table 3.14 by adding the bc (bias correction) to $ln(\widehat{PCT}_{j}^{NL})$ yielding the final (bias corrected) prediction of $ln(PCT_{j}^{NL})$ in the fourth column of Table 3.14.

The standard deviation of bcPQM model prediction is calculated using a propagation of errors approach. The formula to obtain predicted PCT responses for $\mathbf{g}^{T}\mathbf{b} > c$ (according to Eqs. (3.6) and (3.8)) is

$$ln(PCT_j^{NL})_{BC} = \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} + (\mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} - C)S + e$$
(3.11)

Since *S* was developed using a two-part process $S = S_0 + \Delta S$, this becomes:

$$ln(PCT_j^{NL})_{BC} = \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} + (\mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} - C)(S_0 + \Delta S) + e.$$
(3.12)

Expanding Equation (3.12) yields:

$$ln(PCT_j^{NL})_{BC} = \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} + \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} \cdot \boldsymbol{S}_0 + \mathbf{g}^{\mathrm{T}}\boldsymbol{\beta} \cdot \Delta \boldsymbol{S} - \boldsymbol{C} \cdot \boldsymbol{S}_0 - \boldsymbol{C} \cdot \Delta \boldsymbol{S} + \boldsymbol{e}$$
(3.13)

where

- β = the vector of PQM term coefficients including β_i , β_{ii} , and β_{ij} values
- \mathbf{g} = the vector of component concentrations for first order terms followed by component concentrations squared for quadratic terms and concentrations multiplied for cross-product terms (in the same order as $\boldsymbol{\beta}$)
- C = bias correction cut-off (ln[g/m²])
- S = bias correction slope ((unitless). Due to the fitting process, S is the sum of the initial slope (S₀) and the change in slope (ΔS) (i.e., $S = S_0 + \Delta S$).
- S_0 = initial bias correction slope (unitless)
- ΔS = change in slope (unitless)
 - e = random error for each data point.

This expression involves four product terms. The variance formula for a product $x \cdot y$ is $V(x \cdot y) = X^2V(y) + Y^2V(x) + V(x)V(y)$; where X is the true but unknown expected value of x, Y is the true but unknown expected value of y, V(x) is the true but unknown variance of x, and V(y) is the true but unknown variance of y. However, when this formula is implemented using estimates of V(x) and V(y), the results are biased. An unbiased version of this formula is available (Goodman 1960); $\hat{V}(x \cdot y) = x^2v(y) + y^2v(x) - v(x)v(y)$; where v(x) is an unbiased estimator of V(x) and v(y) is an unbiased estimator of V(y). This variance estimation formula was used for each of the four product terms in the expression used to calculate $\ln(PCT_i^{NL})$ values for cases in which $\ln(PCT_i^{NL}) > c$:

$$\widehat{V}_{\ln\left(\widehat{PCT_{j}^{NL}}\right)} = \widehat{SD}\left(\widehat{PCT_{j}^{NL}}\right)^{2}$$

$$= v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} + (\mathbf{g}^{\mathsf{T}}\mathbf{b})^{2}v_{S_{0}} + s_{0}^{2}v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} - v_{S_{0}}v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} + (\mathbf{g}^{\mathsf{T}}\mathbf{b})^{2}v_{\Delta s} + \Delta s^{2}v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} - v_{\Delta s}v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} + c^{2}v_{S_{0}} + s_{0}^{2}v_{c} - v_{c}v_{S_{0}} + \Delta s^{2}v_{c} + c^{2}v_{\Delta s} - v_{c}v_{\Delta s}$$

$$(3.14)$$

where $v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}}$ is given in Equation (3.10), v_c is the square of the standard error of c given in Tables 3.7 and 3.11, and v_{s_0} is the square of the standard error of s_0 given in Tables 3.7 and 3.11. A bootstrap method was used to estimate $v_{\Delta s}$. The process of estimating the standard error of Δs consists of sampling, with replacement, 690 composition and $\ln(PCT_B^{NL})$ data from the 690 glasses available for PCT B modeling. Each new sample of glass compositions and $\ln(PCT_B^{NL})$ values are used to calculate a value for Δs . This process is repeated many times to obtain a bias corrected and accelerated (BCa) bootstrap distribution of Δs estimates.

The standard error for Δs can be estimated as the standard deviation of the resampled Δs data. As an example, consider the data for Δs obtained from randomly resampling, with replacement, data and calculating Δs for each new sample 100,000 times. This process produces the distribution for Δs shown in Figure 3.27.

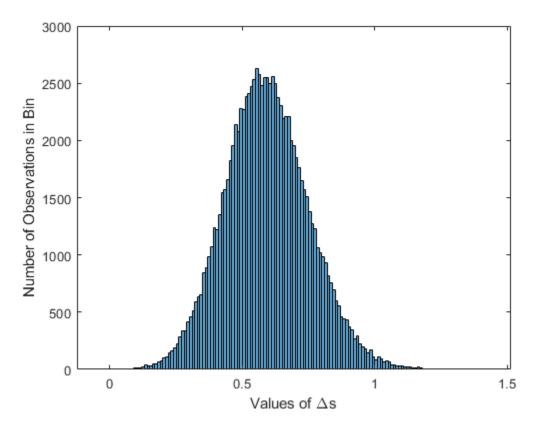


Figure 3.27. Distribution of Δs Values for 100,000 Samples of Glasses and Corresponding $\ln(PCT_B^{NL})$ Values Obtained from the Available 690 Glasses Used To Model $\ln(PCT_B^{NL})$

The distribution in Figure 3.27 appears symmetrically distributed around the mean value of 0.5933. The original Δs value calculated with JMP[®] is 0.5869. The estimated standard error of Δs obtained as the standard deviation (SD_{Δs}) of the 100,000 bootstrapped samples shown in Figure 3.27 is 0.1585. This is the estimated standard error of Δs .

The BCa bootstrap method is the preferred technique when using resampled data because it tends to produce good estimates for a variety of statistics. It automatically corrects for skewness in the sampled distribution and it is invariant to transformations. The same BCa was applied to $\ln(PCT_{Na}^{NL})$ data, resulting

in an approximation for Δs of 0.9590, a $SD_{\Delta s} = 0.2373$. The original Δs value for $\ln(PCT_{Na}^{NL})$, calculated with JMP[®], is 0.9457.

The variances from Eqn. (3.14) – v_c , v_{S_0} , and $v_{\Delta s}$ – are obtained by squaring the standard errors for their associated terms found in Tables 3.7 and 3.11 for $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$, respectively.

The calculated standard deviations of the final predicted $\ln(PCT_j^{NL})$ (that is, $SD_{\ln(PCT_j^{NL})}$) when $\mathbf{g}^{\mathbf{T}}\mathbf{b} > c$ are given in the fifth column of Table 3.14.

The general form of the equation for calculating the simultaneous upper confidence interval (SUCI) is

$$SUCI = \ln(\widehat{PCT_j^{NL}}) + K \cdot SD_{\ln(\widehat{PCT_j^{NL}})}$$
(3.15)

where *K* is a multiplier that reflects the desired confidence level as well as the available degrees of freedom. As explained in Appendix B, a one-sided (upper) Working-Hotelling SUCI was used for our example calculations. For this approach, the multiplier *K* in the SUCI formula having a confidence level of $100(1-\alpha)\%$ is given by

$$K = \sqrt{qF_{1-2\alpha}(q, n-q)} \tag{3.16}$$

where *n* is the number of glasses used to generate the final bcPQM model, and *q* is the number of parameters estimated for the final bcPQM model. For the bcPQM models in this report, q = p + 3 (=22) for all glasses (whether a bias correction was needed or not). This is because the final bcPQM model coefficients (**b**), the estimated bias correction cutoff (*c*), and the estimated initial bias correction slope (*s*₀) were all determined together via a non-linear optimization routine in JMP[®]. The estimated delta slope (Δs) was determined separately via a bootstrap simulation including all data.¹

Eq. (3.15) can be applied to obtain SUCI with a confidence level given by $(1-\alpha)$, where α is a small value like 0.1, for a 90% confidence level. The sixth column in Table 3.14 lists $SUCI_{\alpha}^{PCT}$ for each of the example glasses for both $\ln(PCT_B^{NL})$ and $\ln(PCT_{N\alpha}^{NL})$. Exponentiation of $SUCI_{\alpha}^{PCT}$ yields the SUCI on the median PCT_j^{NL} (listed in the seventh column of Table 3.14). For the example in Table 3.14, n = 690, q = 22, and thus the F-statistic value needed in Eq. (3.16) is 1.247741. The resulting K multiplier for Eqs. (3.15) and (3.16) is 5.239303. The values for the F-statistic and K multiplier are the same for calculations involving both PCT models described in Table 3.14. The following cell formula can be used to obtain the F-statistic value with Excel: =F.INV(0.8,22,690-22).

¹ Note that from the Piepel et al. (2008), Equation C.38 showed a different value for q when working with glasses requiring a bias correction versus those that do not. In particular, that report used q = p = the number of model coefficients for glasses that did not require a bias correction, and q = p + 1 for glasses that did require a bias correction. The '+1' was to account for the bias correction slope which was the only additional parameter needed to conduct the bias correction for that work. But for that work, the coefficients of the PQM model used were determined together via regression and the bias correction slope was determined separately. So, it was appropriate to use q = p + 1 in the K multiplier for glasses requiring bias correction in the that study.

						,
Glass		REFMIX ^(a)			LAWA42	
Τ	20-	19-Term	19-Term	20-	19-Term	19-Term
Term	Component	PCT_B^{NL}	PCT_{Na}^{NL}	Component	PCT_B^{NL}	PCT_{Na}^{NL}
Al ₂ O ₃	0.075760	0.075760	0.075760	0.062034	0.062034	0.062034
B_2O_3	0.097257	0.097257	0.097257	0.090336	0.090336	0.090336
CaO	0.052514	0.052514	0.052514	0.024042	0.024042	0.024042
Cl	0.003376	NA ^(b)	NA	0.005790	NA	NA
Cr_2O_3	0.002041	NA	NA	0.000170	NA	NA
F	0.001348	NA	NA	0.000360	NA	NA
Fe ₂ O ₃	0.029727	0.029727	0.029727	0.084106	0.084106	0.084106
K ₂ O	0.012064	0.012064	0.012064	0.031012	0.031012	0.031012
Li ₂ O	0.014802	0.014802	0.014802	0.000010	0.000010	0.000010
MgO	0.016989	0.016989	0.016989	0.024022	0.024022	0.024022
Na ₂ O	0.168395	0.168395	0.168395	0.200014	0.200014	0.200014
P_2O_5	0.003239	NA	NA	0.000780	NA	NA
SO ₃	0.005542	NA	NA	0.000956	NA	NA
SiO ₂	0.424565	0.424565	0.424565	0.380026	0.380026	0.380026
SnO ₂	0.007587	0.007587	0.007587	0.000000	0.000000	0.000000
TiO ₂	0.008034	0.008034	0.008034	0.024022	0.024022	0.024022
V_2O_5	0.007499	0.007499	0.007499	0.000000	0.000000	0.000000
ZnO	0.031997	0.031997	0.031997	0.036043	0.036043	0.036043
ZrO_2	0.036219	0.036219	0.036219	0.036073	0.036073	0.036073
Others	0.001045	0.016591	0.016591	0.000204	0.008260	0.008260
$Al_2O_3 \! \times \! Al_2O_3$	NA	0.00573958	0.00573958	NA	0.00384822	0.0038482
Al ₂ O ₃ ×Li ₂ O	NA	0.00112140	NA	NA	0.00000062	NA
CaO×CaO	NA	0.00275772	0.00275772	NA	0.00057802	0.0005780
$CaO \times V_2O_5$	NA	0.00039380	0.00039380	NA	0.00000000	0.0000000
Al ₂ O ₃ ×Na ₂ O	NA	NA	0.01275761	NA	NA	0.0124076
$\begin{array}{c} CaO \!\times\! V_2O_5 \\ Al_2O_3 \!\times\! Na_2O \end{array}$	NA NA	0.00039380	0.00039380 0.01275761	NA	0.00000000	0.00000

 Table 3.13. Example Glass Compositions in Formats Used with Models of Natural Logarithm of Normalized PCT Boron and Sodium Losses from LAW Glasses (mass fractions)

(a) The composition in mass fractions is from Table 2.3

(b) NA = not applicable, because the model doesn't contain the term.

Table 3.14 . Predicted PCT_B^{NL} and PCT_{Na}^{NL} , Standard Deviation, and Statistical Intervals for the Example
Glass Compositions Used in Two Recommended Models for Natural Logarithm of
Normalized PCT Losses from LAW Glasses

	Initial	Standard Deviation	Bias Corr.	Std. Dev. of BC	90% SUCI ^(c)	90% SUCI ^(c)
bcPQM Models	$\ln(\widehat{PCT}_i^{NL})$	of $\ln(\widehat{PCT}_i^{NL})$	$\ln(\widehat{PCT}_{i}^{NL})$	$\ln(\widehat{PCT}_i^{NL})$	$\ln(\widehat{PCT_{l}^{NL}})$	$\widehat{PCT_{I}^{NL}}$
for $\ln(PCT_j^{NL})^{(a)}$	$[\ln(g/m^2)]$	$[\ln(g/m^2)]$	$[\ln(g/m^2)]$	$[\ln(g/m^2)]$	$[\ln(g/m^2)]$	[g/m ²]
22-Term $\ln(PCT_B^{NL})$						
REFMIX	-0.8565	0.0250	NA	NA	-0.7256	0.4840
LAWA42	-0.2851	NA	0.7009	0.2410	1.9635	7.1244
22-Term $\ln(PCT_{Na}^{NL})$						
REFMIX	-0.8127	0.0227	NA	NA	-0.6940	0.4996
LAWA42	-0.3518	NA	0.3259	0.2616	1.6967	5.4560

(a) The two bcPQM models in this column are given in Table 3.7 and Table 3.11 for $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$, respectively.

(b) The standard deviation is for the $\ln(PCT_j^{NL})$ prediction considered to be the mean of such values for the example glass.

(c) SUCI = simultaneous upper confidence interval (see Section B.6 of Appendix B).

3.6.1 Optimization of Glass Composition using bcPQM

As previously mentioned, the form of the bias correction equation (Eqn. 3.12) maintains continuity between the predicted PCT responses above and below the cutoff value (c). However, for $\mathbf{g}^{\mathrm{T}}\mathbf{b} > c$ there are more uncertainty components as shown in Equation (3.14). The additional variance terms cause a discontinuity in $V_{\ln(\widehat{PCT}_{j}^{NL})}$. This discontinuity creates challenges when attempting to optimize a glass composition with PCT responses near the cutoff values. To facilitate glass optimization, a sigmoid function can be used to generate a smooth approximation for $V_{\ln(\widehat{PCT}_{j}^{NL})}$ across the cutoff:

$$V_{\ln(\overline{PCT}_{j}^{NL})} \cong v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} + \frac{X}{1 + e^{-k(\mathbf{g}^{\mathsf{T}}\mathbf{b} - c)}}$$

$$X = (\mathbf{g}^{\mathsf{T}}\mathbf{b})^{2}v_{S_{0}} + s_{0}^{2}v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} - v_{S_{0}}v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} + (\mathbf{g}^{\mathsf{T}}\mathbf{b})^{2}v_{\Delta s} + \Delta s^{2}v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} - v_{\Delta s}v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} + c^{2}v_{S_{0}}$$

$$+ s_{0}^{2}v_{c} - v_{c}v_{S_{0}} + \Delta s^{2}v_{c} + c^{2}v_{\Delta s} - v_{c}v_{\Delta s}$$

$$(3.17)$$

where X combines the additional variance terms and k is a constant related to the steepness of the sigmoid curve and should be selected based on the optimization routine selected (typically by trial and error).

3.7 Suitability of the Recommended Models for Natural Logarithm of Normalized PCT Boron and Sodium Loss from LAW Glasses

The 22-term bcPQM models discussed in Sections 3.3.5 and 3.4.5 are recommended as the best of the currently available models for predicting $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ of LAW glasses. These models yield unbiased predictions near the WTP contract limit of 2 g/m² (~0.693 ln[g/m²]). Although these models have statistically significant LOFs, they predict $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ values of LAW glasses within the range of prediction uncertainty. Therefore, they are suitable for implementation in the WTP LAW Facility.

The ranges of single-component concentrations in the 691-glass dataset used for modeling normalized PCT boron and sodium losses from LAW glasses is listed in Table 3.15. These ranges can be used to determine model validity ranges.

	20-com	nponent	15-con	nponent
Component	Min	Max	Min	Max
Al ₂ O ₃	0.034972	0.147521	0.034972	0.147521
B_2O_3	0.050009	0.151474	0.050009	0.151474
CaO	0	0.128136	0	0.128136
Cl	0	0.011722	NA ^(a)	NA
Cr_2O_3	0	0.006304	NA	NA
F	0	0.013007	NA	NA
Fe ₂ O ₃	0	0.119838	0	0.119838
K ₂ O	0	0.08093	0	0.08093
Li ₂ O	0	0.063294	0	0.063294
MgO	0	0.050222	0	0.050222
Na ₂ O	0.024707	0.265729	0.024707	0.265729
P_2O_5	0	0.047523	NA	NA
SO ₃	0	0.016	NA	NA
SiO ₂	0.332925	0.559206	0.332925	0.559206
SnO ₂	0	0.050299	0	0.050299
TiO ₂	0	0.040048	0	0.040048
V_2O_5	0	0.057118	0	0.057118
ZnO	0	0.058152	0	0.058152
ZrO_2	0	0.067534	0	0.067534
Others ^(b)	0	0.005421	0.00149	0.057991

 Table 3.15. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Final Natural Logarithm of Normalized PCT Boron and Sodium Loss Models

(a) NA = not applicable or component not included as term.

(b) Note: Others for the 15-components are composed of all

the NA components as well as Others for the 20 components.

4.0 Models Relating Vapor Hydration Test Results to LAW Glass Compositions

This section documents the development, evaluation, and validation of LAW glasses propertycomposition models and corresponding uncertainty expressions for predicting pass/fail VHT results (e.g., fail is classified as $r_a^{VHT} \ge 50$ g/m²/d). Pass/fail labels for glasses based on their VHT values are modeled using a logistic model, a GLM with a logit link and a binomial distribution for the response, as a function of LAW glass composition.

The VHT response for LAW glasses is a numerical value measuring the thickness of a corroded layer on a test glass coupon under high-temperature and high-humidity conditions for a specified amount of time (Buechele et al. 2002; Jiricka et al. 2001). However, the variety of test conditions, and the length of time covered by the LAW glass data used in this work, resulted in inconsistent values for measured thicknesses, making the resulting comprehensive dataset, with thickness as the response, unsuitable for modeling. The reported thickness for each glass can be transformed into a pass/fail binary response that can be modeled as a function of glass composition. The property-composition models and corresponding uncertainty expressions for a pass/fail VHT presented in this section were developed and validated using composition and VHT data collected for simulated and actual LAW glasses having VHT responses.

The 699 simulated and actual LAW glasses available for VHT model development, evaluation, and validation remaining after eliminating 89 CCC glasses are discussed in Section 4.1. Section 4.2 presents the model forms for pass/fail VHT that were investigated. Section 4.3 summarizes the results for VHT model forms investigated and the model forms ultimately recommended. Section 4.4 illustrates the calculation of pass/fail VHT predictions and the uncertainties in those predictions using selected models and corresponding uncertainty equations. Section 4.5 discusses the suitability of the recommended pass/fail VHT models for use by the WTP LAW Facility. Appendix B discusses the statistical methods and summary statistics used to develop, evaluate, and validate the several model forms investigated, as well as statistical equations for quantifying the uncertainties in pass/fail VHT predictions.

4.1 VHT Data from LAW Glasses Used for Model Development, Evaluation, and Validation

The data used to develop pass/fail VHT models as functions of LAW glass composition are discussed in Section 4.1.1. The approaches and data used for evaluating and validating the models are discussed in Sections 4.1.2 and 4.1.3, respectively.

4.1.1 Model Development Data for Pass/Fail VHT on LAW Glasses

The data available for developing property-composition models for the pass/fail VHT response consists of composition and pass/fail VHT responses from 699 quenched LAW glass samples. These glasses and their normalized compositions based on measured (or estimated) SO₃ values are discussed in Section 2.0. The corresponding pass/fail VHT values are presented in Table A.3 of Appendix A. A pass/fail determination was made by assessing the 24-day VHT glass alteration layer thickness. A pass (0) was assigned if the alteration thickness was < 453 µm and a fail (1) if \geq 453 µm or if the glass was fully dissolved. For glasses that were tested for multiple times, the 24-day results were used.

4.1.1.1 Assessment of Available LAW Glasses with Pass/Fail VHT data

The database of 699 glasses with pass/fail VHT values contains statistically designed as well as actively designed glasses. Some actively designed glasses are outside the composition region covered by the majority of the LAW compositions. Such glasses are not ideal for inclusion in a modeling dataset because they can be influential when fitting models to data. Hence, it was decided to (i) graphically assess the 699 simulated and actual LAW glass compositions with pass/fail VHT values and (ii) remove from the modeling dataset any compositions considered to be outlying or non-representative of glasses of interest for the WTP LAW Facility.

Figure 4.1 displays plots of the mass fraction values for 19 "main components" plus the Others component (the sum of all remaining components) in the 699 LAW glasses with VHT data. These 20 components (including Others) have sufficient ranges and distributions of mass fraction values to support separate model terms if so desired. Figure 4.2 displays similar plots for the remaining "minor components." On each plot in Figure 4.1 and Figure 4.2, the x-axis represents the mass fraction values of LAW glass components. The y-axis shows an index value representing each LAW Glass #, which aids in spreading out the data points to avoid over-plotting. The plotting symbols in Figure 4.1 and Figure 4.2 correspond to the six groups of LAW glasses discussed in Section 2.3. For comparison purposes, the vertical lines in Figure 4.1 and Figure 4.2 represent the ranges over which the LAW glass components were varied in the PNNL (i) LAW Phase 1 outer-layer study (blue lines), (ii) Phase 2 outer-layer study (pink lines), and (iii) Phase 3 study (pink lines), as shown in Table 2.1. The PNNL Phases 2 and 3 focused on LAW glasses with high Na₂O waste loadings, whereas Phase 1 explored a larger LAW GCR with higher waste loadings.

Figure 4.1 shows that several of the 699 glasses have components with outlying mass fraction values compared to the remaining glasses and to the component ranges studied in the PNNL LAW Phase 1, Phase 2, and Phase 3 studies (e.g., MgO). Figure 4.2 shows what appear to be outliers for some "minor components," but the values and ranges of those components are small and hence the glass compositions were not considered to be outliers (e.g., NiO). Table 4.1 lists the 13 LAW glasses excluded from the pass/fail VHT modeling dataset, and the reason each glass was excluded.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

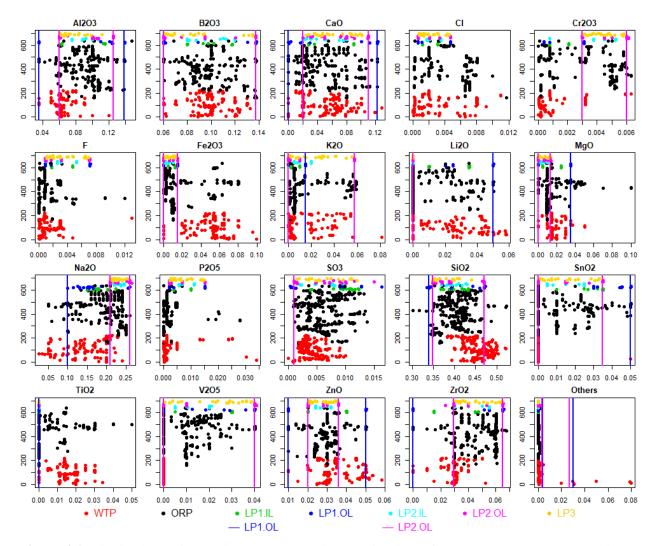


Figure 4.1. Distributions of 20 Main Components (in mass fractions) for 699 LAW Glass Compositions with Pass/Fail VHT Data. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 (blue lines) and Phase 2 (pink lines) outer-layer studies (see Table 2.1). In cases where two limits are the same, pink lines over plot the blue lines.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

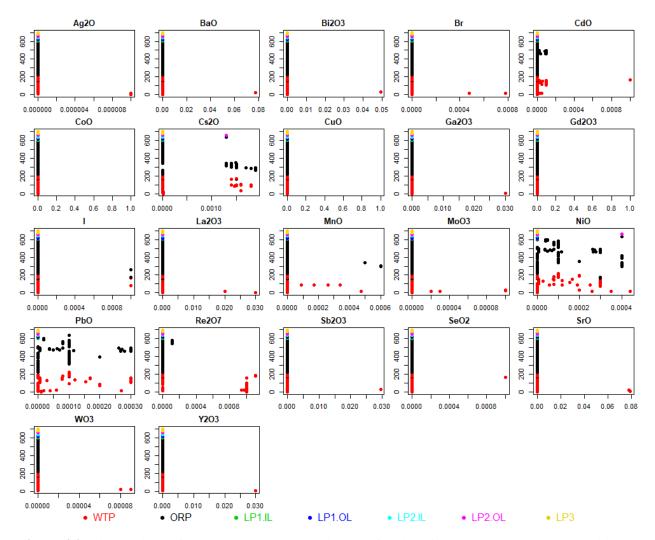


Figure 4.2. Distributions of 21 Minor Components (in mass fraction) for 699 LAW Glass Compositions with Pass/Fail VHT Data. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 (blue lines) and Phase 2 (pink lines) outer-layer studies (see Table 2.1). In cases where two limits are the same, pink lines over plot the blue lines.

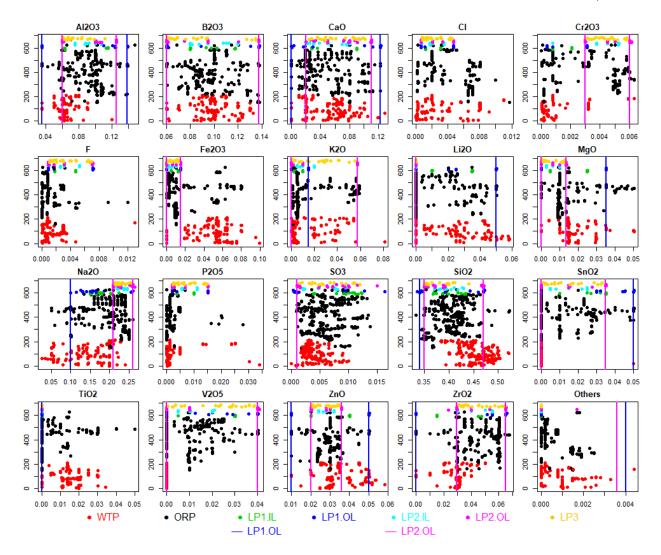

Glass ID	Glass #	Reason Glass Excluded from VHT Modeling Datasets ^(a)
ORPLA28	739	MgO > 0.06 (=0.070146) mf
ORPLA29	740	MgO > 0.06 (=0.100218) mf
ORPLA31	742	MgO > 0.06 (=0.070146) mf
ORPLA32	743	MgO > 0.06 (=0.100218) mf
LAWA46	12	Others $> 0.019 (= 0.031025) \text{ mf}$
LAWA47	13	Others $> 0.019 (= 0.031025) \text{ mf}$
LAWA48	14	Others $> 0.019 (= 0.031025) \text{ mf}$
LAWA64	20	Others $> 0.019 (= 0.079852) \text{ mf}$
LAWABP1	43	Others $> 0.019 (= 0.020001) \text{ mf}$
LAWA54	90	Others $> 0.019 (= 0.078579) \text{ mf}$
LAWA55	91	Others > 0.019 (=0.078630) mf
LAWA58	94	Others > 0.019 (=0.049942) mf
LAWA59	95	Others > 0.019 (=0.029906) mf
(a) $mf = ma$	ss fraction	

 Table 4.1. Thirteen LAW Glasses with Non-representative Compositions Excluded from the Modeling

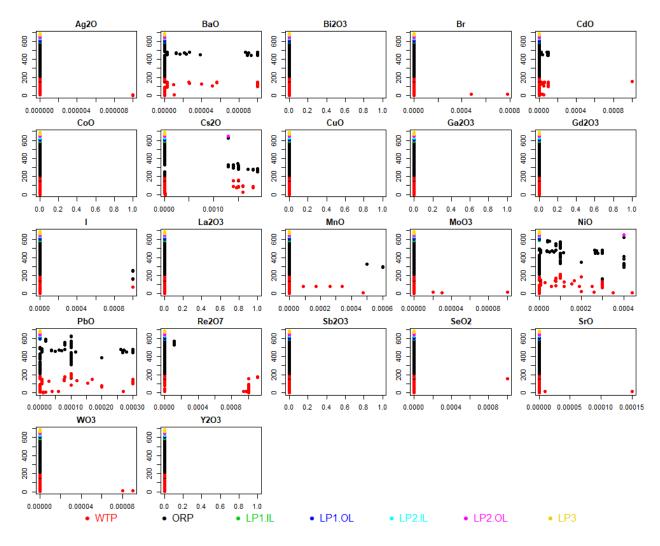

 Datasets for Pass/Fail VHT

Figure 4.3 and Figure 4.4 (corresponding to Figure 4.1 and Figure 4.2, respectively) show plots of component distributions after the 13 outlying and non-representative glasses were removed from the VHT dataset containing 699 glasses. Figure 4.3 shows that for the remaining 686 LAW glasses all 19 LAW glass "main components" have sufficient ranges and distributions of values within those ranges to support terms for modeling VHT. Figure 4.4 confirms than none of the "minor components" have sufficient ranges and distributions of values within their ranges to support model terms for those components. Based on Figure 4.3 and Figure 4.4, it was decided to use 20 components for initial pass/fail VHT modeling work. These components were Al₂O₃, B₂O₃, CaO, Cl, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SO₃, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others (the sum of all remaining components). These are the same 20 components for all models except for melter SO₃ tolerance.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 4.3. Distributions of 20 Main Components (in mass fractions) for 686 LAW Glass Compositions with Data for Pass/Fail VHT that Remain after Excluding the 13 Glasses in Table 4.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 (blue lines) and Phase 2 (pink lines) outer-layer studies (see Table 2.1). In cases where two limits are the same, pink lines over plot the blue lines.

Figure 4.4. Distributions of 21 Minor Components (in weight percent) for 686 LAW Glass Compositions with Data for Pass/Fail VHT that Remain after Excluding the 13 Glasses in Table 4.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 (blue lines) and Phase 2 (pink lines) outer-layer studies (see Table 2.1). In cases where two limits are the same, pink lines over plot the blue lines.

Figure 4.5 shows a scatterplot matrix of the 686 glasses remaining in the VHT modeling dataset after removing the 13 non-representative compositions. High correlations in the predictors make parameter values difficult to estimate and result in inflated prediction uncertainties, so pairwise correlation coefficients were calculated. These can vary from -1.0 (perfect negative correlation) to 0 (no linear correlation) to 1.0 (perfect positive correlation). The only component pair with correlation larger (in absolute value) than 0.60 was Li₂O and Na₂O with a correlation of -0.8588. See Section 9.7 for further information on these highly correlated component concentrations.

		0.060 0.112		0.008		0.000		0.000		0.000		0.000		0.333 0.459		0.000		0.010 0.042		0.003	
,	AI2O3				e dik	.						.			1 20	.	.		1		- 0.110 - 0.035
0.112		B2O3	×.			. -	1		a star		-					*			1	.	0.035
0.000	×.		CaO		6) 1		* *	ii) -			fag	N in			1	.	11. 1				0.085
			Sec.	CI	× 34	.	<u>.</u>				<u>.</u>	<u>/</u>			67 A	d.		da.		in.	
				<u>8</u>	Cr2O3	2						<u>.</u>				 сірі.		×.			0.004 0.000
	<u>.</u>	1	<u>.</u>	<u></u>		F		<u>.</u>	يتعد	Mise-		<u>/</u>		<u> 1</u>		.	8. AN	<u>Ж.</u>	1	w	_
	2.2. Arter	2	1	<u>,</u>			Fe203	Ċ.			1		.					24	÷.		<u>-</u> 0.066 - 0.000
0.000								K20		and the second s		<u>.</u>			<u> </u>	<u>.</u>			<u>.</u>		
-								<u>.</u>	Li20	<u> </u>	%			<u>.</u>			5			<u>iy</u> -	- 0.039 - 0.000
0.033				inter Rieter	: <mark></mark>	<u>.</u>	44 - 			MgO	<u>- 22</u>	22 ¹¹ 83 1					900-1900 1900 - 1		1.00	in the second se	- 0.185
				9 1				<u> </u>	7944. 		Na2O	1				1	340				- 0.025
0.000			1000 C	dia.		<u>~</u>	Čerie .	ања Слас	نوریا	Saine Milita		P2O5					1000 C			·	- 0.011
0.459										0.41	National State	$\frac{1}{2}$	S03								- 0.000
0.333	6 . 22							8005 817						3102	SnO2			₩. 		1	- 0.034
0.033	80. 8			ini.							- 10	<u>.</u>	<u>.</u>			TiO2		میں تکھر ا		jer.	0.000
	<u>.</u>					<u>.</u>	••••••••••••••••••••••••••••••••••••••										V205			in i	0.027
0.042		1			- 1 - 1 - 1 - 1 - 1 - 1		%		158		1				Sec.	*	ر. اربور ان	ZnO		ţ <u>i.</u>	- 0.000
				2				<u>.</u>			-44	<u>.</u>			382 .			7	Zr02		0.045
0.003	İ.	- 1	÷.	i in the second s				ini.		<u>í</u>					<u>i</u>	<u>.</u>				Others	- 0.000
9-000.0 95000			0.000		0.00		0:00		00000		0.025		0.000		0.000		0.000		0.000		
0	ó		o o		o o		o o		o o		o o		o o		o o		o o		o o		

Figure 4.5. Scatterplot Matrix of 20 Components (mass fractions) for the 686 LAW Glasses with Pass/Fail Data that Remain after Excluding the 13 Glasses in Table 4.1

High pairwise correlations can make it difficult for regression methods to properly separate the effects of the components on the response variable. Thus, the high pairwise correlation between Li_2O and Na_2O needs to be kept in mind in developing and applying LAW glass property-composition models for the pass/fail VHT response.

4.1.1.2 Modeling Dataset for the Pass/Fail VHT Response

Table A.4 in Appendix A lists the Glass IDs, as well as pass/fail VHT values, for the 686 remaining simulated LAW glasses used for model development. The VHT values for non-representative glasses excluded from the 686-glass modeling dataset (see Table 4.1) are marked with an asterisk in Table A.3. The compositions for these 686 LAW glasses are included in Table A.2. The glass compositions are the normalized mass fractions of the 20 components previously identified as having sufficient data to support a separate model term if needed.

4.1.1.3 Replicate and Near-Replicate VHT Data on LAW Glasses

The changes to the LAW glass compositions caused by the renormalization associated with using measured (or estimated) SO₃ values (see Section 2.2) resulted in some replicate glasses not having exactly equal normalized compositions. Such compositions are near-replicates. For ease of discussion, henceforth both replicates and near-replicates are referred to as replicates.

Table 4.2 lists the replicate sets of LAW glasses in the VHT modeling dataset and the corresponding pass/fail VHT values. Table 4.2 also lists whether the glasses within a replicate set consistently have a single value (either pass or fail).

Replicate		Replicate Set VHT	Agreement in	Replicate Se
Set Glass #s	1	Pass (0)/Fail (1)	Replicate Set	#
993	EWG-LAW-Centroid-1	0	Yes	5
995	EWG-LAW-Centroid-2	0	105	5
636	LAWA137	0	Yes	17
637	LAWA137	0	105	17
285	LAWA137 (A3-AN104)	0		
632	LAWA137 (A3-AN104)	0	Yes	18
633	LAWA137 (A3-AN104)	0		
397	LAWA161	0	Yes	19
398	LAWA161	0	105	19
516	LAWA187S1	0	Yes	20
517	LAWA187S1	0	res	20
538	LAWA187S2	1		
539	LAWA187S2	1	Yes	21
737	LAWA187S2	1		
541	LAWA187S3	1	Na	22
543	LAWA187S3	0	No	22
28	LAWA88	0	V	34
389	LAWA88	0	Yes	34
227	LAWB83	0		
229	LAWB83	0	Yes	40
284	LAWB83	0		
430	LAWB96	0	X 7	10
431	LAWB96	0	Yes	42
442	LAWC100	0		
443	LAWC100	0	Yes	43
447	LAWC100	0		
125	LAWC21	0	X7	
437	LAWC21	0	Yes	45
75	LAWC22	0		
249	LAWC22	0	• •	
272	LAWC22	0	Yes	47
279	LAWC22	0		
456	LAWCrP1	0		
457	LAWCrP1	ů 0	Yes	51

Table 4.2. Agreement in the VHT Pass (0)/Fail (1) Response for Replicate and Near-Replicate Glasses

cont.				
638	LAWCrP11	0	Yes	52
639	LAWCrP11	0	103	52
642	LAWCrP12	0	Yes	53
643	LAWCrP12	0	105	55
458	LAWCrP2	0	Yes	54
459	LAWCrP2	0	103	54
460	LAWCrP3	0	Yes	55
461	LAWCrP3	0	105	35
462	LAWCrP4	0	Yes	56
463	LAWCrP4	0	105	20
668	LAWE18	1	Yes	57
669	LAWE18	1	105	57
670	LAWE19	0		
671	LAWE19	0	Yes	58
672	LAWE19	0		
673	LAWE20	1	Yes	59
674	LAWE20	1		
675	LAWE21	0	Yes	60
676	LAWE21	0		
677	LAWE22	0	Yes	61
678	LAWE22	0		
679	LAWE23	0	Yes	62
680	LAWE23	0		
681	LAWE24	1	No	63
682	LAWE24	0		
683	LAWE25	0	No	64
684	LAWE25	1		
685	LAWE26	0	No	65
686	LAWE26	1		
451	LAWE7H	0	Yes	66
624	LAWE7H	0		
652 653	LAWE9HCr1	0	Yes	67
654	LAWE9HCr1	0		
655	LAWE9HCr2	0 0	Yes	68
331	LAWE9HCr2 LAWM1	0		
		*	Yes	69
383 342	LAWM1 LAWM12	0 1		
342 385	LAWM12 LAWM12	1	Yes	70
365	LAWM12 LAWM35	0		
386	LAWM35 LAWM35	0	Yes	71
380	LAWM55 LAWM50	0		
380	LAWM50 LAWM50	0	Yes	72
339	LAWM9	0		
339	LAWM9 LAWM9	0	Yes	73
846	ORLEC12	0		
840 865	ORLEC12 ORLEC12	0	Yes	85
865	ORLEC12 ORLEC12	0	103	05
000	UNLLU12	v		

 Table 4.2. Agreement in the VHT Pass (0)/Fail (1) Response for Replicate and Near-Replicate Glasses, cont.

cont.				
848	ORLEC14	0	Yes	86
887	ORLEC14	0	105	80
850	ORLEC16	0		
888	ORLEC16	0	Yes	87
889	ORLEC16	0		
853	ORLEC19	0	Vaa	00
890	ORLEC19	0	Yes	88
856	ORLEC22	0	Yes	89
891	ORLEC22	0	168	09
859	ORLEC25	1		
860	ORLEC25	1	Yes	90
861	ORLEC25	1		
862	ORLEC26	0		
867	ORLEC26	0	Yes	91
868	ORLEC26	0		
863	ORLEC27	0		
869	ORLEC27	1	No	92
870	ORLEC27	0		
864	ORLEC28	0		
871	ORLEC28	0	Yes	93
872	ORLEC28	0		
877	ORLEC33	0	Yes	94
903	ORLEC33	0	105	24
878	ORLEC34	0	Yes	95
904	ORLEC34	0	103	95
893	ORLEC44	0	Yes	96
905	ORLEC44	0	105	70
895	ORLEC46	0	Yes	97
906	ORLEC46	0	105	21
897	ORLEC48R	0		
907	ORLEC48R	0	Yes	98
908	ORLEC48R	0		
616	ORPLA15	1	Yes	100
617	ORPLA15	1	2.00	100
618	ORPLB4	1	Yes	105
619	ORPLB4	1		
589	ORPLC2	1	Yes	106
591	ORPLC2	1		~~
590	ORPLC2S4	1	Yes	107
592	ORPLC2S4	1		
595	ORPLC5	0		100
620	ORPLC5	0	Yes	108
621	ORPLC5	0		
597	ORPLD1	0		
622	ORPLD1	0	N.	100
997	ORPLD1	0	Yes	109
999 1025	ORPLD1	0		
1035	ORPLD1	0		

 Table 4.2. Agreement in the VHT Pass (0)/Fail (1) Response for Replicate and Near-Replicate Glasses, cont.

766	ORPLG27	0	No	114
768	ORPLG27	1	INO	114
1022	LP2.Centroid	1		
1028	LP2.Centroid	0	No	116
1031	LP2.Centroid	0	INO	110
1049	LP2.Centroid	0		
1034	LP2.OL.Rep	0	Yes	117
1038	LP2.OL.Rep	0	168	117
1	of replicate sets with consistent		88.14	1%
(pass or fai	l) results		00.1	

 Table 4.2. Agreement in the VHT Pass (0)/Fail (1) Response for Replicate and Near-Replicate Glasses, cont.

The results in Table 4.2 show that, of the 138 glasses in 59 replicate sets, there is agreement (all observations in a particular set of replicates being either fail or pass) in 121, or 87.68% of the glasses in replicate sets with multiple glasses. Table 4.2 also shows that slightly over 88% (52 out of 59) of the sets have glasses with consistent (all pass or all fail) observations. This is an indication that the pass/fail response is reliable across a variety of glasses.

4.1.2 Model Validation Approach and Data for the VHT on LAW Glasses

The validation approach for the pass/fail VHT model was based on splitting the 686-glass dataset for model development into five modeling/validation subsets. The five modeling/validation splits of the 686 glasses in the VHT modeling dataset were formed as follows.

- The 59 replicate sets with multiple glasses (138 glasses) were set aside so they would always be included in each of the five model development datasets. This was done so that glasses in replicate sets would not be split between modeling and validation subsets, thus negating the intent to have validation glasses different than model development glasses.
- The remaining 548 glasses were ordered from smallest to largest according to their VHT values (g/m²/d). The ordered glasses were numbered 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, etc. All of the 1's formed the first model validation set, while all of the remaining points formed the first model development dataset. Similarly, all of the 2's, 3's, 4's, and 5's respectively formed the second, third, fourth, and fifth model validation sets. In each case, the remaining non-2's, non-3's, non-4's, and non-5's formed the second, third, fourth, and fifth model development datasets.
- The 138 replicate glasses were added to each of the split modeling subsets so that each of the five splits contained a balanced number of 548 glasses for modeling and 109 or 110 glasses for validation.

Data splitting was chosen as the validation approach because the VHT modeling dataset contains all compositions that (i) are in the LAW glass composition region of interest, (ii) meet QA requirements, and (iii) have pass/fail VHT data. Having a separate validation dataset not used for modeling is desirable, but that desire was over-ridden by wanting the VHT models developed using all appropriate data including the data near the pass/fail boundary (which is relatively sparse).

4.1.3 Subsets of LAW Glasses to Evaluate Prediction Performance of Pass/Fail VHT Models

Section 2.4 discusses six subsets of LAW glasses for evaluating the prediction performance of LAW glass property-composition models, including subsets of glasses with higher waste loadings. The subsets, as discussed in Section 2.4, are denoted WTP, ORP, LP2OL, LP123, HiNa₂O, and HiSO₃. The VHT modeling dataset of 686 LAW glasses (see Section 4.1.1) contains 202, 392, 134, 92, 285, and 108 glasses with pass/fail VHT values in these six evaluation subsets, respectively. The "Glass #s" of these six evaluation subsets of LAW glasses are listed in Table C.2 in Appendix C. The normalized LAW glass compositions and pass/fail values for the glasses with these "Glass #s" are listed in Tables A.2 and A.3, respectively, of Appendix A.

4.2 Model Forms and Accuracy Measures for the Vapor Hydration Test on LAW Glasses

Mixture models (Cornell 2002) are used to relate LAW glass compositions to the pass/fail VHT response. Empirical models of this type use existing data to estimate coefficients in a predictive equation such that certain goodness-of-fit criteria are optimized. Section B.1 of Appendix B discusses mixture experiments and several general forms of mixture experiment models.

Because of the binary nature of the VHT response, a logistic model was used to relate the binary (pass/fail) VHT response to the composition of glasses in the modeling set. A logistic model takes as input the composition of a glass and produces a *score*, a number between 0 and 1, that can be used to classify it as a pass or fail for VHT. The score represents a threshold for classification, where glasses with scores at or above a selected threshold are predicted as "fail" and those with scores below the threshold are classified as "pass."

Different models may produce different scores for a given glass composition, and different thresholds can be used to decide whether a glass is classified as "fail" or "pass." The objective addressed in this section is to select a model with foundations in glass science and a threshold that produces an optimal rate of classification. The optimal rate of classification can include practical considerations such as minimizing the number of "fail" VHT glasses that are classified as "pass," maximizing overall accuracy (number of glasses correctly classified/total number of glasses predicted), or other considerations.

For the models developed in this work, higher scores are associated with "fail" glasses and lower scores are associated with "pass" glasses. This distinction is arbitrary, and the opposite could have been chosen by changing the labeling of the VHT response.

The accuracy measures of interest for the pass/fail VHT models are the overall accuracy

Glasses correctly classified Total number of glasses in set

the false negative rate (FNR)

Fail glasses classified as Pass # Fail glasses in set and the false positive rate (FPR)

Pass glasses classified as Fail # Pass glasses in set

Other accuracy measures, such as true-positive and true-negative rates can also be calculated, but the overall accuracy, FNR and FPR sufficiently convey the quality of predictive models for this work. The optimality criterion used to select a threshold for classification is seeking a model with the highest overall accuracy constrained on maintaining FNR at or below 0.1. This FNR value was selected to maintain a 90% accuracy rate in predicting fail VHT glasses similar to that maintained in the WTP baseline GFA (Kim and Vienna 2012).

Section 4.2.1 contains the development of logistic models in the context of mixture experiments for predicting the pass/fail VHT response of LAW glasses.

4.2.1 Mixture Experiment Model Forms for a Binary Pass/Fail VHT Response on LAW Glasses

FLM and PQM model forms introduced in Section B.1 of Appendix B have been used in the past (e.g., Piepel et al. 2007; Muller et al. 2014) to model glass properties as functions of LAW glass composition. For this work, a GLM (Myers et al. 2002) using a binomial distribution for the response and a logit function to link the mixture portion of the data to the mean of the pass/fail VHT response are used. The logistic model form is given by

$$ln\left(\frac{P(\mathbf{g})}{1-P(\mathbf{g})}\right) = \sum_{i=1}^{q} \beta_i g_i + e \tag{4.1}$$

while the PQM model form is given by

$$ln(\frac{P(\mathbf{g})}{1-P(\mathbf{g})}) = \sum_{i=1}^{q} \beta_i g_i + \text{Selected} \left\{ \sum_{i=1}^{q} \beta_{ii} g_i^2 + \sum_{i=1}^{q-1} \sum_{j=1}^{q} \beta_{ij} g_i g_j \right\} + e$$
(4.2)

In Eqs. (4.1) and (4.2)

 $P(\mathbf{g}) =$ probability in a Bernoulli trial for the normalized glass composition given by \mathbf{g}_i $g_i =$ normalized mass fraction of the *i*th glass oxide or halogen component (i = 1, 2, ..., q) such that $\sum_{i=1}^{q} g_i = 1$

$$\beta_i$$
 = coefficient of the *i*th linear blending term (*i* = 1, 2, ..., *q*)
 β_{ii} and β_{ij} = coefficients of selected quadratic (squared or crossproduct) blending terms to be
estimated from the data

e = random error for each data point.

The logistic models employed here, one in the family of GLMs (Myers et al. 2002), are useful for creating predictive equations when the response is binary. In a logistic model, the linear portion of the model, the right-hand side portion of Eq. (4.2), is related to the response using a link function such as the logit function shown as the left-hand side of Eq. (4.1). In Eq. (4.2), "Selected" means that only some of the terms in curly brackets are included in the model. The subset is selected using stepwise regression or a

different variable selection method (Draper and Smith 1998; Montgomery et al. 2012). PQM models are discussed in more detail and illustrated by Piepel et al. (2002) and Smith (2005).

Model selection for the pass/fail VHT response using a logistic PQM involves incorporating different combinations of glass components as linear, two-factor interactions and pure quadratic terms, and searching for an appropriate threshold that optimizes overall classification accuracy while maintaining the desired false negative rate.

4.3 Property-Composition Model Results for a Pass/Fail VHT Response on LAW Glasses

This section discusses the results of fitting several different mixture experiment models using a logistic equation to relate the pass/fail VHT response to LAW glass compositions. Section 4.3.1 presents the results of modeling the binary VHT response using a 20-component FLM model and a logit link. Section 4.3.2 presents results of modeling the binary VHT response using a logistic PQM model with a logit link function based on a reduced set of 16 mixture components. Then, Section 4.3.3 recommends a logistic model for future use and evaluation.

4.3.1 Results from the 20-Component Full Linear Mixture Logistic Model for the Pass/Fail Response for the VHT on LAW Glasses

As the initial step in model development for the pass/fail VHT response, an FLM model in the 20 components identified in Section 4.1.1 was fit to the modeling data (686 glasses) using a GLM and a logit function linking the pass/fail VHT response to the 20 glass components. This model form was a reasonable starting point based on previous work modeling other responses for LAW glasses (Piepel et al. 2007) and provided a basis for appropriate model modifications.

Table 4.3 contains the results from the 20-component FLM logistic model for the pass/fail VHT. Table 4.4 lists the model coefficients, standard deviations of the coefficients, and model performance summaries for the (i) 20-component logistic FLM model using the modeling dataset (686 LAW glasses), (ii) evaluation of model predictions for the six evaluation subsets (see Section 4.1.3), and (iii) the data splitting validation subsets labeled DS1, DS2, DS3, DS4, and DS5 (see Section 4.1.2) and a threshold for classification selected as 0.3 for illustration purposes because it resulted in a reasonably good performance. This threshold means that glasses with score values equal to or greater than the selected threshold are classified as fail and classified as pass otherwise. Table 4.3 also shows average performance statistics for the five validation sets.

Table 4.3 . Coefficients and Performance Summary for the 20-Component Logistic Full Linear Mixture
Model on the Pass/Fail VHT response on LAW Glasses Using a Threshold for Classification
of 0.3

$ln(\frac{P(\mathbf{g})}{1-P(\mathbf{g})})$		
20-Component FLM Model Term	Coefficient Estimate	Coefficient Stand. Err.
Al ₂ O ₃	-41.3243	8.5361
B_2O_3	-8.0741	7.2244
CaO	-54.3502	8.0095
Cl	106.0113	63.6601
Cr ₂ O ₃	-81.9437	94.7179
F	-85.6558	100.6878
Fe ₂ O ₃	-33.8841	12.1827
		10 50 60
K ₂ O	113.5594	12.5968
Li ₂ O	191.76	28.5713
MgO	33.0593	19.1647
Na ₂ O	103.765	11.3361
P ₂ O ₅	26.1474	53.1005
SO ₃	77.1368	66.3941
SiO ₂	-33.0163	4.3556
SnO ₂ TiO ₂	-57.2678 -105.693	15.6566 28.3877
V ₂ O ₅	24.0616	16.6005
ZnO	-46.9714	20.4829
ZrO ₂	-114.124	15.3502
Others ^(c)	932.0578	227.8075
Data Splitting Statistic ^(a,d)	DS1	DS2
Overall Accuracy	0.8300	0.8500
False Positive Rate	0.1867	0.1579
False Negative Rate	0.1200	0.1250

(a) The model evaluation statistics are defined in Section 4.2.

(b) The six sets of LAW evaluation glasses are discussed in Section 2.4 and Section 4.1.3.

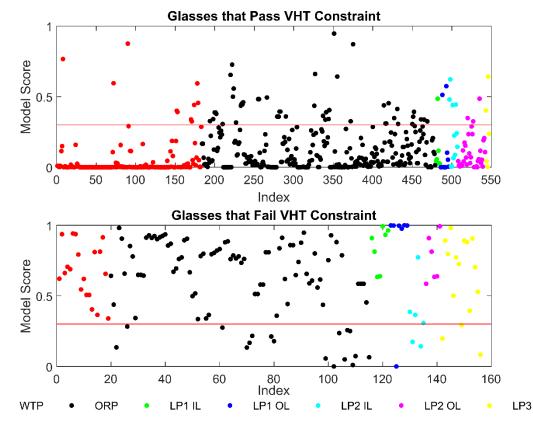
(c) For the 20-component FLM model, the "Others" component includes any components not separately listed.

(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 4.1.2 describes how the modeling dataset was split into modeling and validation subsets.

(e) False positive rate

(f) False negative rate

(g) The logistic lack-of-fit (LOF) test uses the statistic $\chi^2 = \sum_{i=1}^{m} \frac{(y_i - n_i \hat{P}_i)^2}{n\hat{P}_i(1-\hat{P}_i)}$, where y_i is the observed pass/fail response, \hat{P}_i is the model-predicted score, $n_i = 1$ in this work and *m* is the number of observations. If the pass/fail VHT response can be adequately modeled using a logistic model of the type developed in this work, this statistic is asymptotically distributed as χ^2_{m-p} , where *p* is the number of model parameters. A *p*-value for this statistic less than or equal to 0.05 indicates significant LOF.


The overall accuracy statistics in Table 4.3 indicate that the 20-component FLM model produces fairly good results for the 686-glass modeling dataset using the 0.3 threshold for classification. The overall accuracy, FPR, and FNR are also fairly good for the evaluation and validation sets. The worst overall accuracy of 0.7935 occurs for the LP123 evaluation set, while the best accuracy (0.9505) was for the

WTP evaluation set. Table 4.3 also indicates that the FLM does not have significant LOF. Figure 4.6 graphically demonstrates the model performance with a majority of fail glasses above the threshold and a majority of pass glasses below the threshold.

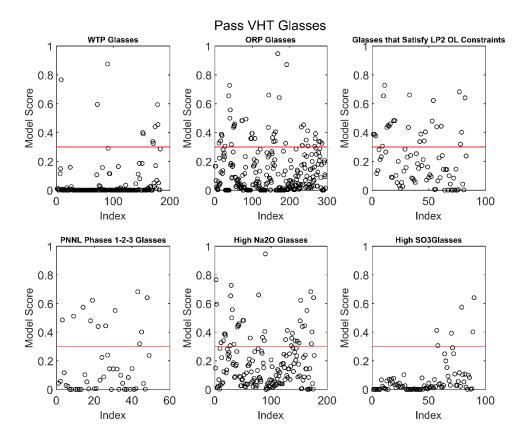

False positive and false negative rates are not too large for the FLM, which is also an indication that the model structure is highly consistent with the data. However, the FNR is in most cases above the desired target of 0.1. Results in Table 4.3 apply only to the combination of FLM and threshold selected, and different accuracy statistics will be found if a different classification threshold is employed.

Figure 4.7 and Figure 4.8 show that, for the 0.3 threshold used as an illustration for classification, the FLM produces results where, in general, glasses that fail have higher scores and glasses that pass have lower ones.

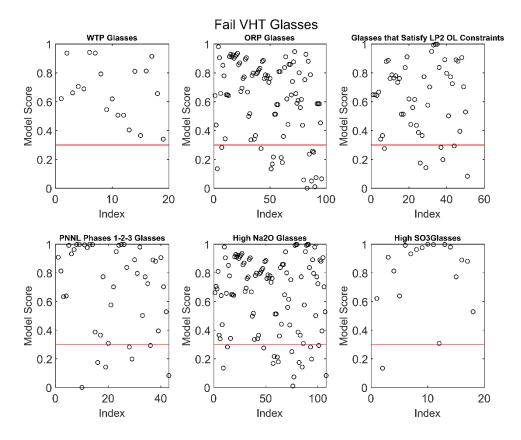

Results in Table 4.3, Figure 4.6, Figure 4.7, and Figure 4.8 indicate that the FLM with a threshold for classification of 0.3 is a reasonably good classifier. Results in Table 4.3 do not take into consideration uncertainty in model predictions. To account for uncertainty in model scores, confidence intervals can be computed for each observation. Confidence intervals can be used to help decide if a glass should be classified as pass, fail, or "uncertain." Instead of comparing the score value directly to the threshold to make a classification, the limits of a confidence interval can be used. Intervals that do not overlap the threshold can be more clearly classified as the class assigned by the model than those whose confidence intervals are on both sides of the threshold.

Figure 4.6. Scores (y-axes) for Glasses that Pass (upper panel) and Fail (lower panel) Generated by the 20-term VHT FLM. The x-axes show glasses on an index to avoid overcrowding. The 0.3 threshold value for classification (used for illustration purposes only) is shown as a red horizontal line.

Figure 4.7. Plots of the Scores Produced by the 20-term FLM for Six Sets of Glasses that Pass the Vapor Hydration Constraint. The 0.3 threshold value for classification (used for illustration purposes only) is shown as a red horizontal line.

Figure 4.8. Plots of the Scores Produced by the 20-term FLM for Six Sets of Glasses that Fail the Vapor Hydration Constraint. The 0.3 threshold value for classification (used for illustration purposes only) is shown as a red horizontal line.

A classification strategy for VHT needs to involve selecting a combination of models and thresholds where the FNR achieves the desired value of 0.1 after taking into consideration the calculated confidence intervals. Conditional on achieving the desired FNR, the classification strategy should also minimize the FPR. This means that given two model/threshold options that satisfy the FNR target, the one giving the lowest FPR should be selected.

Results in Table 4.3 indicate that the 20-term FLM does not in general achieve the targeted FNR, even without considering confidence intervals. Achieving the desired FNR while considering the uncertainty in score values brought in by including confidence intervals will result in lower overall accuracy for the selected model. This suggests that models should be sought with improved performance. Based on previous experience, addition of non-linear terms to the model should be pursued to build a model that achieves the target FNR while remaining as accurate, overall, as possible.

4.3.2 Results from the Development of a 19-Term Partial Quadratic Mixture Model for Pass/Fail VHT on LAW Glasses

The full 20-component FLM model for the pass/fail VHT response presented in Section 4.3.1 does not in general produce the desired FNR, even without considering prediction uncertainty, so searching for a different model was the next step of the model development.

The first step in the search for alternative models consists of reducing the number of terms in the purely linear portion of the model. This is achieved by incorporating components that may not significantly affect the pass/fail VHT response into the "Others" term. Components that can be incorporated into the Others term in the model are any among Cl, Cr₂O₃, F, Fe₂O₃, SO₃, and ZnO that have been previously shown to have relatively small effects on VHT (Piepel et al. 2007; Vienna et al. 2013, 2016).

Next, performance of models with different combinations of two- and three-factor interaction, purely quadratic terms, and different thresholds for classification were evaluated, using different components incorporated into the Others term. This process produced a large number of models, which were sorted by FNR values as a function of classification threshold.

A model with Cl, Cr₂O₃, Fe₂O₃, and SO₃ incorporated into the Others term, two two-factor interactions $(Li_2O \times Na_2O \text{ and } TiO_2 \times ZrO_2)$ plus one purely quadratic term $(Li_2O \times Li_2O)$, produced acceptable results using a threshold of 0.19. These terms are generally expected based on past VHT response modeling for LAW glasses that showed second-order terms involving Li₂O, Na₂O and ZrO₂ (Piepel et al. 2007, Vienna et al. 2013, Vienna et al. 2016). Second order terms containing TiO₂ are not commonly found and warrant further investigation. Performance of this model is shown graphically in Figure 4.9 and Figure 4.10 and has the parameters and performance shown in Table 4.4.

Table 4.4. Coefficients and Performance Summary for the 19-Component Logistic Partial	y Quadratic
Mixture Model on the Pass/Fail VHT response on LAW Glasses Using a Thresh	hold for
Classification of 0.19	
$P(\sigma)$	

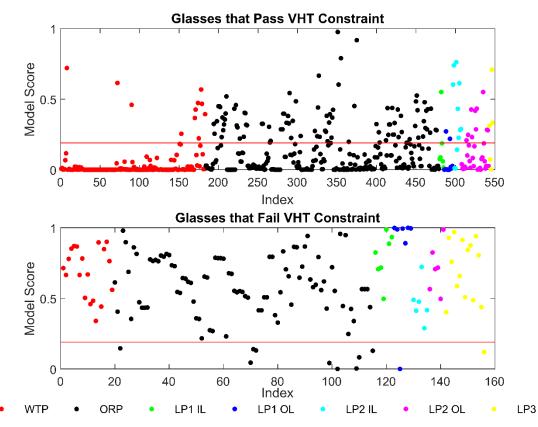
$ln(\frac{P(\mathbf{g})}{1-P(\mathbf{g})})$						
19-Component PQM Model Term	Coefficient Estimate	Coefficient Stand. Err.		Modeling Data Statist 686 Glasses ^(a)	Modeling Data Statistic, 686 Glasses ^(a)	
Al ₂ O ₃	-33.2908	7.8647	Overall A	Overall Accuracy Rate	Overall Accuracy Rate	Overall Accuracy Rate
B_2O_3	-10.2672	6.8058	False Pos	False Positive Rate	False Positive Rate	False Positive Rate
CaO	-57.3456	8.1289	False Neg	False Negative Rate	False Negative Rate	False Negative Rate
F	47.6668	94.4440	Model LC	Model LOF p-value ^(g)	Model LOF p-value ^(g)	Model LOF p-value ^(g)
K ₂ O	97.7116	11.4808				
Li ₂ O	435.0046	133.7388	_			
MgO	30.6084	18.7840		Evaluation Set (# Glasses) ^(b)		
-	108.6944	12.0704				
Na ₂ O P ₂ O ₅	-42.4271	49.1953		WTP (202) ORP (392)	. ,	
SiO ₂	-42.4271 -34.1488	49.1933		LP2OL (134)		
SnO ₂	-59.3127	13.0947		LP123 (92)		
TiO ₂	-72.6017	50.4728		HiNa ₂ O (285)		. ,
V ₂ O ₅	20.7981	15.1745		HiSO ₃ (108)		
ZnO	-48.7954	19.8328	111503	111503 (108)	111503 (108) 0.9107	111503 (108) 0.9107 0.0889
ZrO ₂	-102.7010	16.0042				
Others	-20.9574	11.4096				
$Li_2O \times Na_2O$	-983.3257	451.7071				
$TiO_2 \times ZrO_2$	-1488.9830	1093.0960				
$Li_2O \times Li_2O$	-2124.0889	1671.6355				
Data Splitting Statistic ^(a,d)		DS2	DS3			
Overall Accuracy	0.7700	0.7800	0.8100			
False Positive Rate	0.2800	0.2500	0.2267			
False Negative Rate	0.0800	0.1250	0.0800	0.0800 0.0400	0.0800 0.0400 0.07	0.0800 0.0400 0.0741

(a) The model evaluation statistics are defined in Section 4.2.

(b) The six sets of LAW evaluation glasses are discussed in Section 2.4 and Section 4.1.3.

(c) For the 16-component PQM model, the "Others" component includes any components not separately listed. This is equivalent to the "Others" component in the 20-component FLM model plus the concentrations of Cl, Cr₂O₃, Fe₂O₃, and SO₃

(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 4.1.2 describes how the modeling dataset was split into modeling and validation subsets.


- (e) False Positive Rate
- (f) False Negative Rate

(g) The logistic lack-of-fit (LOF) test uses the statistic $\chi^2 = \sum_{i=1}^{m} \frac{(y_i - n_i \hat{P}_i)^2}{n \hat{P}_i (1 - \hat{P}_i)}$, where y_i is the observed pass/fail response, \hat{P}_i is the model-predicted score, $n_i = 1$ in this work and *m* is the number of observations. If the pass/fail VHT response can be adequately modeled using a logistic model of the type developed in this work, $t\chi^2_{m-p}$ where *p* is the number of model parameters. A *p*-value for this statistic less than or equal to 0.05 indicates significant LOF.

Results in Table 4.4 show that the 19-term PQM generally achieves an FNR close to or below the target of 0.1 except for the DS2 validation set. The threshold score used for classifying a glass as fail using the model in Table 4.4 is very low (0.19) as a result of trying to maintain an overall FNR close to 0.1 after

incorporating the uncertainty produced by considering 90% CIs into the model predictions. Table 4.4 also indicates that the 19-term PQM does not have significant LOF.

Performance of the 19-term PQM model for the pass/fail VHT response is shown graphically in Figure 4.9, Figure 4.10, and Figure 4.11.

Figure 4.9. Scores (y-axes) for Glasses that Pass (upper panel) and Fail (lower panel) Generated by the 19-term VHT PQM. The x-axes show glasses on an index to avoid overcrowding. The 0.19 value used as threshold for classification is shown as a red horizontal line.

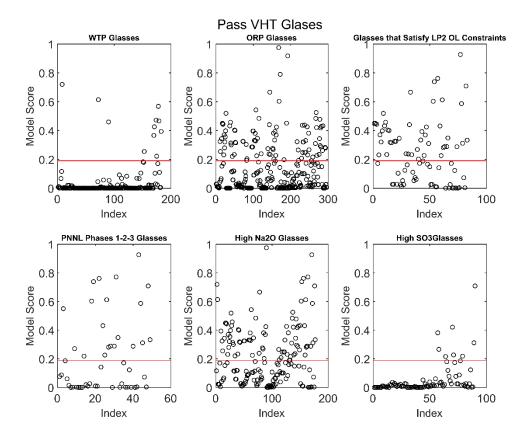
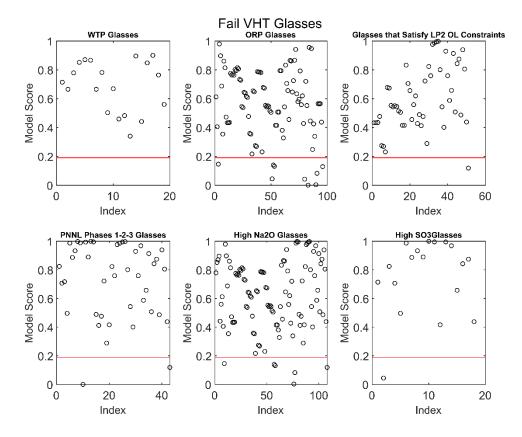



Figure 4.10. Model Scores (y-axes) Produced by the 19-term PQM Pass/Fail VHT Model for the Pass Glasses in Six Different Evaluation Sets. Glasses below the 0.19 threshold are correctly classified as Pass.

Figure 4.11. Model Scores (y-axes) Produced by the 19-term PQM Pass/Fail VHT Model for the Fail Glasses in Six Different Evaluation Sets. Glasses above the 0.19 threshold are correctly classified as Fail.

The plots in Figure 4.9, Figure 4.10, and Figure 4.11 show that very few fail glasses are classified as pass, which is a desired objective. This reduction in wrongly classified fail glasses comes at the expense of an increased rate of misclassification for pass glasses, which is necessary so that the desired FNR, considering prediction uncertainty, can be achieved. The model with parameters shown in Table 4.4 has one of the highest classification thresholds for achieving the desired FNR, ensuring that it simultaneously minimizes misclassification of pass glasses. Figure 4.12 shows the response trace plot for the 19-term PQM VHT model.

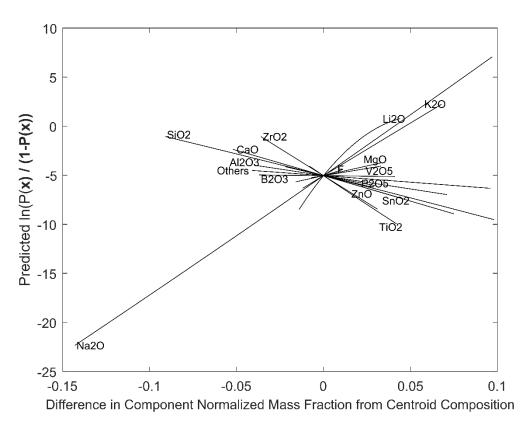


Figure 4.12. Response Trace Plot for the 19-term PQM Pass/Fail VHT Model

The response trace plot in Figure 4.12 shows that Li₂O, Na₂O, and K₂O have the largest effect on increasing the probability of VHT failure. Ti₂O, ZrO₂, SnO₂, and SiO₂ have the largest effects on decreasing the probability of VHT failure, with most of the other components exhibiting relatively small effect. The curvature produced by the Li₂O term is evident in Figure 4.12.

The PQM model in Table 4.4 has a two-factor interaction between Li_2O and Na_2O , two highly correlated compounds. The PQM also has a quadratic term involving Li_2O , which is also highly correlated with Na_2O (correlation value -0.8057). Such high correlations in the predictors make parameter values difficult to estimate and result in inflated prediction uncertainties (Montgomery et al. 2012). However, predictions obtained under conditions of high multicollinearity can still be accurate, provided they are made in the region where the multicollinearity holds.

4.3.3 Recommended Model for Pass/Fail VHT on LAW Glasses

Based on the results in Table 4.3 and Table 4.4 and discussions in Sections 4.3.1 and 4.3.2, the 19-term reduced PQM model (listed in Table 4.4) with a threshold for classification of 0.19 is recommended for predicting the pass/fail VHT response of LAW glasses.

Other model-threshold combinations can be used that produce similar results to those presented in this document for the recommended model. Varying the threshold selected for classification while maintaining the recommended model is the simplest way to alter prediction performance if project requirements change.

4.4 Example Illustrating VHT Model Predictions and Statistical Intervals

This section contains examples to illustrate using the recommended 19-term PQM model (Section 4.3.2) to obtain predicted pass/fail VHT values, and corresponding 90% CIs for a specific LAW glass composition as described in Section B.6 of Appendix B. The confidence level associated with 90% CIs was chosen for illustration purposes only. The WTP LAW facility can use an appropriate confidence level depending on the use of the VHT-composition model and the type of statistical uncertainty expression.

The glass composition used in this example is denoted REFMIX, as listed in Table 2.3. The 20component composition of REFMIX for VHT modeling is given in Table 4.5 in mass fraction format. To apply the recommended VHT model to this composition, the mass fractions of the 20 components must be converted to mass fractions (that sum to 1.0) of the 16 LAW glass components contained in the recommended pass/fail VHT model. This involves adding to the mass fraction of Others (denoted Others₂₀ for the 20-component case) the mass fractions of the 4 of 20 components not contained in the recommended VHT model. This produces a new Others mass fraction, denoted Others₁₆. Mass fractions of the relevant components are then multiplied to obtain the quadratic terms of the PQM models. Table 4.5 contains the composition of REFMIX prepared for use in the VHT model for LAW glasses.

For each of the presented VHT models, predicted pass/fail VHT values are obtained by multiplying the composition in the format needed for that model by the coefficients for that model, then summing the results. That is, the predicted values are calculated by first calculating

$$\hat{\mathbf{y}}(\mathbf{g}) = \mathbf{g}^{\mathrm{T}}\mathbf{b} \tag{4.3}$$

where **g** is the composition of REFMIX formatted to match the terms in a given model (from Table 4.6), the superscript T represents a matrix transpose (or vector transpose in this case), and **b** is the vector of coefficients for a given model. The predicted score and pass/fail values for REFMIX using the VHT models are listed in the second column of Table 4.5. The predicted pass/fail score values are calculated by first computing

$$\widehat{P(\mathbf{g})} = \exp\left(\mathbf{g}^{\mathrm{T}}\mathbf{b}\right) / (1 + \exp\left(\mathbf{g}^{\mathrm{T}}\mathbf{b}\right))$$
(4.4)

where $\widehat{P(\mathbf{g})}$ is the model-estimated score for the glass. The predicted score is then compared to the selected threshold of 0.19. Values equal or greater than the threshold classify the glass as fail. The glass is classified as pass otherwise.

Because of the monotonic relationship between the logit link and the linear portion of the model, a twosided interval on $\mathbf{g}^{T}\mathbf{b}$ with (1- α) ×100% confidence level is given by Myers et al. (2002):

$$\mathbf{g}^{\mathrm{T}}\mathbf{b} \pm z_{\alpha/2} \sqrt{\mathbf{g}^{\mathrm{T}} (\mathbf{G}^{\mathrm{T}} \mathbf{V} \mathbf{G})^{-1} \mathbf{g}}$$
(4.5)

where $(\mathbf{G}^{\mathrm{T}}\mathbf{V}\mathbf{G})^{-1}$ is the variance-covariance matrix of glass compositions, $z_{\alpha/2}$ is the value of a standard normal distribution that leaves an area of $\alpha/2$ to its right. For the example calculations presented in Table 4.6, the *z*-statistic value needed for Eq. (4.5) with α =0.10 is 1.644854. The following cell formula can be used to obtain the *z*-statistic value with Excel: =NORM.INV(0.95,0,1). As discussed in Section B.6.5 of Appendix B, these confidence intervals rely on the fact that $\mathbf{g}^{\mathrm{T}}\mathbf{b}$ is asymptotically normally distributed. An estimate on the confidence interval of the model score can be obtained by transforming the resulting values from Eq. (4.5) in the way shown in Eq. (4.4). A two-sided confidence interval on the model score is a conservative estimate of the FNR needed because observations can cross the threshold used for classification from below (glasses with scores predicting them as pass, but where the upper limit of the confidence interval crosses into the fail side of the threshold), or from above (glasses with scores predicting them as fail, but where the lower limit of the confidence interval crosses into the pass side of the threshold). In Eq. (4.5), matrix G is formed from the data matrix used in the regression that generated a given VHT model. Matrix G has the number of rows in the VHT modeling dataset (686) and the number of columns corresponding to the number of terms in a given VHT model. Each column is calculated according to the corresponding term in the model using the LAW glass compositions in the VHT modeling dataset.

To obtain a 90% lower confidence interval (LCI) on the mean VHT score, only the '-' of the '±' in Eq. (4.5) is used, using z_{α} with $\alpha = 0.10$. Using the LCI essentially makes "fail" VHT glasses less likely to end up in the uncertain zone and makes the LCI an optimistic estimate for the FNR of this glass property.

Table 4.5. REFMIX	Composition i	n Formats Used w	ith Models of $ln\left(\frac{1}{1-\overline{P(\mathbf{g})}}\right)$ for P	redicting Pass/Fa
	LAW Glasses			
			REFMIX	
			Composition	
			(mass fractions)	
		REFMIX	to Use in 19-Component	
		Composition ^(a)	$\widehat{\mathbf{D}(a)}$	
	Model Term	(mass fractions)	PQM Model for $ln\left(\frac{P(\mathbf{g})}{1-\widehat{P(\mathbf{g})}}\right)^{(b)}$	
	Al ₂ O ₃	0.075760	0.075760	
	B_2O_3	0.097257	0.097257	
	CaO	0.052514	0.052514	
	Cl	0.003376	NA	
	Cr_2O_3	0.002041	NA	
	F	0.001348	0.001348	
	Fe_2O_3	0.029727	NA	
	K ₂ O	0.012064	0.012064	
	Li ₂ O	0.014802	0.014802	
	MgO	0.016989	0.016989	
	Na ₂ O	0.168395	0.168395	
	P_2O_5	0.003239	0.003239	
	SO_3	0.005542	NA	
	SiO ₂	0.424565	0.424565	
	SnO ₂	0.007587	0.007587	
	TiO ₂	0.008034	0.008034	
	V_2O_5	0.007499	0.007499	
	ZnO	0.031997	0.031997	
	ZrO_2	0.036219	0.036219	

Table 4.5 REEMIX Composition in Formate Used with Models of $I_{m}\left(\widehat{P(g)}\right)$ for Disdicting Decomposition

(a) The composition in mass fractions is from Table 2.3.

0.001045

NA

NA

NA

(b) See Table 4.4.

Others

 $(Li_2O)^2$

 $Li_2O \times Na_2O$

 $TiO_2 \times ZrO_2$

(c) NA = not applicable because the model does not contain this term

0.041731

0.00249258

0.00029098

0.00021910

Table 4.6. Predicted $ln\left(\frac{\widehat{P(g)}}{1-\widehat{P(g)}}\right)$ and $\widehat{P(g)}$ and Confidence Interval for the REFMIX Composition Used in the Recommended 19-term Model for VHT

Model for $ln\left(\frac{\widehat{P(\mathbf{g})}}{1-\widehat{P(\mathbf{g})}}\right)^{(a)}$	Predicted $ln\left(\frac{\widehat{P(\mathbf{g})}}{1-\widehat{P(\mathbf{g})}}\right)$	Predicted $\widehat{P(\mathbf{g})}$	90% CI ^(b) on Mean $ln\left(\frac{\widehat{P(\mathbf{g})}}{1-\widehat{P(\mathbf{g})}}\right)$	90% CI ^(b) on Mean $\widehat{P(\mathbf{g})}$	
19-Term PQM Model	-5.045 ^(c)	0.006/Pass ^(c)	(-6.129, -3.961)	(0.002, 0.019)	

(a) The model in this column is given in Table 4.4 (19-term PQM model).

(b) CI = two-sided confidence interval (see Section B.6 of Appendix B).

(c) All calculations were performed using the REFMIX glass composition, model coefficients, and variance-covariance matrix values given in tables of this report. The calculated $ln\left(\frac{\widehat{P(g)}}{1-\widehat{P(g)}}\right)$ values were rounded to three decimal places in this table.

4.5 Suitability of the Recommended Model for Pass/Fail VHT Responses for Application by the WTP LAW Facility

The 19-term model and threshold for predicting pass/fail discussed in Section 4.3.2 is recommended for use by the WTP LAW Facility as the best model currently available for predicting pass/fail VHT from LAW glasses with higher waste loadings. This model yields predictions of pass/fail VHT that achieve an FNR $\leq 10\%$ while simultaneously maximizing overall accuracy. The selected model does not show significant LOF and generally has uniform performance across evaluation and validation datasets.

The VHT models presented in this document rely on the selection of a threshold for classifying a glass as pass or fail that satisfies the FNR constraint. Relaxing or modifying the FNR constraint can lead to the selection of different models that may improve overall accuracy by reducing the FPR while not increasing the FNR beyond a reasonable value.

The range of single component concentrations in the 686-glass dataset used for modeling is listed in Table 4.7 and discussed in Section 9.7. These ranges can be used to determine model validity ranges.

	20-com	ponent	16-com	ponent
Component	Min	Max	Min	Max
Al ₂ O ₃	0.034972	0.147521	0.034972	0.147521
B_2O_3	0.059952	0.138294	0.059952	0.138294
CaO	0.000000	0.128136	0.000000	0.128136
Cl	0.000000	0.011701	NA ^(a)	NA
Cr_2O_3	0.000000	0.006304	NA	NA
F	0.000000	0.013007	0.000000	0.013007
Fe ₂ O ₃	0.000000	0.099815	NA	NA
K ₂ O	0.000000	0.080930	0.000000	0.080930
Li ₂ O	0.000000	0.058246	0.000000	0.058246
MgO	0.000000	0.050222	0.000000	0.050222
Na ₂ O	0.024707	0.265729	0.024707	0.265729
P_2O_5	0.000000	0.034072	0.000000	0.034072
SO_3	0.000000	0.016290	NA	NA
SiO ₂	0.332925	0.522624	0.332925	0.522624
SnO ₂	0.000000	0.050299	0.000000	0.050299
TiO ₂	0.000000	0.050058	0.000000	0.050058
V_2O_5	0.000000	0.040885	0.000000	0.040885
ZnO	0.009980	0.058152	0.009980	0.058152
ZrO_2	0.000000	0.067534	0.000000	0.067534
Others ^(b)	0.000000	0.004401	0.001600	0.108458

 Table 4.7. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Final VHT Pass/Fail Models

(a) NA = not applicable or component not included as term.

(b) Note: Others for the 16-components are composed of all the NA

components as well as Others for the 20 components.

5.0 Models Relating Viscosity at 1150 °C to LAW Glass Composition

This section documents the development, evaluation, and validation of LAW glass property-composition models and corresponding uncertainty expressions for predicting the $ln(\eta_{1150})$ as a function of LAW glass composition. The property-composition models and corresponding uncertainty expressions for $ln(\eta_{1150})$ presented in this section were developed, evaluated, and validated using compositions and η_{1150} values for simulated LAW glasses. Viscosity was not measured on any of the LAW glasses made from actual waste samples, and therefore they were not included.

Section 5.1 discusses the LAW glasses available and used for $ln(\eta_{1150})$ -composition model development, evaluation, and validation. Section 5.2 presents the models for $ln(\eta_{1150})$ that were investigated. Section 5.3 summarizes the results for the selected linear and quadratic mixture model forms for $ln(\eta_{1150})$ and identifies the recommended model. Section 5.4 illustrates the calculation of η_{1150} predictions and the uncertainties in those predictions using selected $ln(\eta_{1150})$ models and corresponding uncertainty equations. Section 5.5 discusses the suitability of the recommended $ln(\eta_{1150})$ model for use by the WTP LAW Facility. Appendix B discusses the statistical methods and summary statistics used to develop, evaluate, and validate the several $ln(\eta_{1150})$ model forms investigated, as well as statistical models/equations used for quantifying the uncertainties in $ln(\eta_{1150})$ model predictions.

5.1 Viscosity at 1150 °C Data Used for Model Development, Evaluation, and Validation

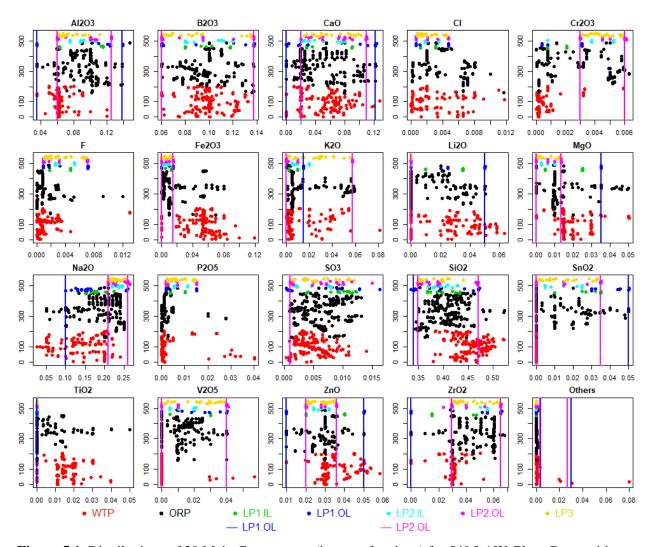
The data available and used for developing $ln(\eta_{1150})$ models as functions of LAW glass composition are discussed in Section 5.1.1. The approaches and data used for validating and evaluating the models are discussed in Sections 5.1.2 and 5.1.3, respectively.

5.1.1 Model Development Data for Viscosity at 1150 °C

The data available for developing $ln(\eta_{1150})$ -composition models consist of composition and η_{1150} values from 549 LAW glasses (see Table 2.2). These glasses and their normalized compositions based on measured (or estimated) SO₃ values are discussed in Section 2.0. The corresponding η_{1150} values are presented in Table A.3 of Appendix A.

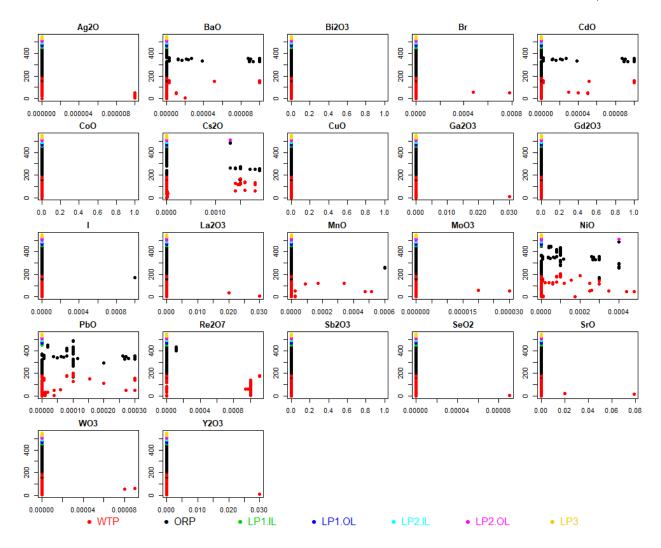
5.1.1.1 Assessment of Available Glasses with Data for Viscosity at 1150 °C

The database of 549 glasses with η_{1150} results contains statistically designed as well as actively designed LAW glasses. Some actively designed glasses are outside the composition region covered by the majority of the LAW compositions. Such glasses are not ideal for inclusion in a modeling dataset because they can be influential when fitting models to data. Hence, it was decided to (i) graphically assess the 549 available LAW glass compositions with η_{1150} values and (ii) remove from the modeling dataset any compositions considered to be outlying (with respect to the composition region covered by most available data). Reasons for removing glasses from the assessment are described subsequently.


Figure 5.1 displays plots of the mass fractions for 19 "main components" plus the Others component (defined as the sum of all remaining components) in the 549 LAW glasses with η_{1150} data. These 20 components (including Others) have sufficient ranges and distributions of mass fraction values to support

separate model terms if desired. Figure 5.2 displays similar plots for the remaining "minor components." On each plot in Figure 5.1 and Figure 5.2, the x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting. The plotting symbols in Figure 5.1 and Figure 5.2 correspond to the six groups of LAW glasses discussed in Section 2.3. For comparison purposes, the vertical lines in Figure 5.1 represent the ranges over which the LAW glass components were varied in the PNNL (i) LAW Phase 1 outer-layer study (blue lines), (ii) LAW Phase 2 outer-layer study (pink lines), and (iii) LAW Phase 3 study (pink lines, the same as LAW Phase 2 outer-layer study), as shown in Table 2.1. Phases 2 and 3 focused on LAW glasses with high Na₂O waste loadings, whereas Phase 1 explored a larger LAW GCR with higher waste loadings including higher SO₃.

Figure 5.1 shows that several of the 549 LAW glasses have "main components" (e.g., F) with outlying mass fraction values compared to the remaining glasses and to the component ranges in the PNNL LAW Phase 1, Phase 2, and Phase 3 studies. Figure 5.2 shows what appear to be outliers for some "minor components," (e.g., SrO), but the values and ranges of those components are small and hence the glasses were not considered to be outliers and were retained. Table 5.1 lists the 15 LAW glasses excluded from the η_{1150} modeling dataset and the reason each glass was excluded. Finally, none of the 10 outlying glasses excluded from the viscosity modeling work by Piepel et al. (2007) are excluded in Table 5.1. None of those glasses appear as outliers in Figure 5.1, because of the larger compositional region covered by the current η_{1150} modeling dataset. Also, none of those glasses were identified as outliers by statistical modeling diagnostics.


Figure 5.3 and Figure 5.4 (corresponding to Figure 5.1 and Figure 5.2, respectively) show plots of component distributions after the 15 outlying glasses were removed from the η_{1150} dataset containing 549 glasses. Figure 5.3 shows that for the remaining 534 LAW glasses, all 19 LAW glass "main components" have sufficient ranges and distributions of values within those ranges to support terms for modeling η_{1150} . Figure 5.4 confirms that none of the "minor components" have sufficient ranges and distributions of values within their ranges to support model terms for those components. Based on Figure 5.3 and Figure 5.4, it was decided to use 20 components for initial η_{1150} modeling work. These components were Al₂O₃, B₂O₃, CaO, Cl, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SO₃, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others (the sum of all remaining components) and were the same as those used for initial modeling of all other properties (except for melter SO₃ tolerance, which normalized out SO₃).

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 5.1. Distributions of 20 Main Components (in mass fractions) for 549 LAW Glass Compositions with Data for Viscosity at 1150 °C. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), Phase 2 outer-layer study (pink lines), and Phase 3 study (also shown by the same pink lines), as shown in Table 2.1. In cases where two limits are the same, pink lines over plot the blue lines. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

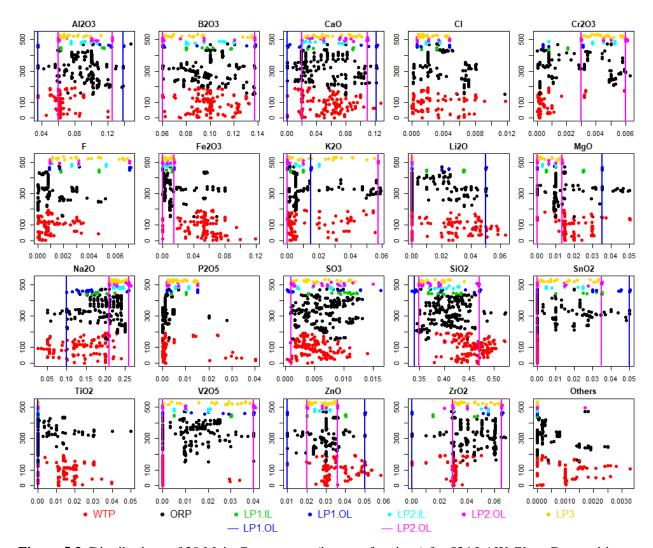
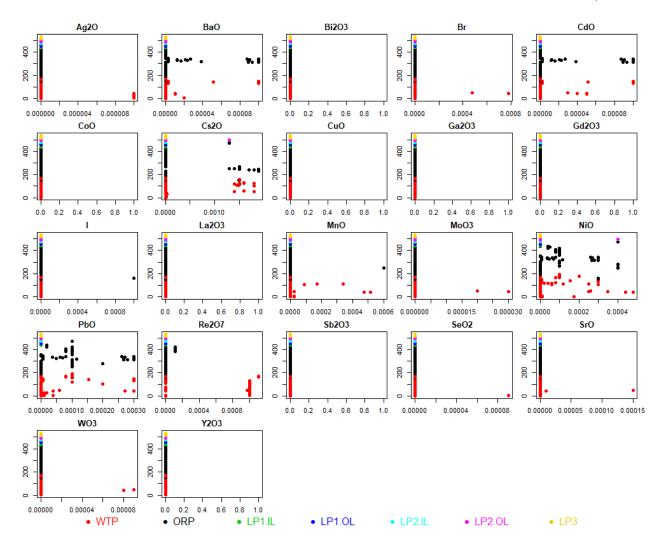


Figure 5.2. Distributions of 17 Minor Components (in mass fractions) for the 549 LAW Glass Compositions with Data for Viscosity at 1150 °C. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting.

Glass #	Glass ID	Reason Glass Excluded from η_{1150} Modeling Dataset
450	DWV-G-51B	$F > 0.0091 \ (= 0.013) \ mf^{(a)}$
453	BWV-G-142B	F > 0.0091 (= 0.013006) mf
626	FWV-G-108B	F > 0.0091 (= 0.012001) mf
628	GWV-G-36D	F > 0.0091 (= 0.009306) mf
629	GWV-G-65A	F > 0.0091 (= 0.009303) mf
80	LAWC25	$K_2O > 0.06 \ (= 0.080927) \ mf$
67	LAWC14	$V_2O_5 > 0.05 \ (= 0.057118) \ mf$
12	LAWA46	Others $> 0.02 \ (= 0.031024) \ mf$
13	LAWA47	Others $> 0.02 \ (= 0.031024) \ mf$
14	LAWA48	Others > 0.02 (= 0.031024) mf
20	LAWA64	Others $> 0.02 \ (= 0.079852) \ mf$
25	LAWA85	Others $> 0.02 \ (= 0.020963) \ mf$
43	LAWABP1	Others $> 0.02 \ (= 0.020001) \ mf$
327	LA44PNCC	Container-centerline-cooled glass
57	LAWB42S	Identified as outlier in model development work
(a) $mf = 1$	mass fraction	


Table 5.1. Fifteen LAW Glasses Excluded from the Modeling Dataset for Viscosity at 1150 °C (η_{1150})

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 5.3. Distributions of 20 Main Components (in mass fractions) for 534 LAW Glass Compositions with Data for Viscosity at 1150 °C that Remain after Excluding the 15 Glasses in Table 5.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), Phase 2 outer-layer study (pink lines), and Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, pink lines over plot the blue lines. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 5.4. Distributions of 17 Minor Components (in mass fractions) for the 534 LAW Glass Compositions with Data for Viscosity at 1150 °C that Remain after Excluding the 15 Glasses in Table 5.1. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting.

Figure 5.5 shows a scatterplot matrix of the 534 glasses remaining in the η_{1150} modeling dataset after removing the 15 outlying glasses. High correlations between some pairs of components are evident, so pairwise correlation coefficients were calculated. These can vary from -1.0 (perfect negative correlation) to 0 (no correlation) to 1.0 (perfect positive correlation). There were two component pairs with correlations equal to or larger than 0.60 (in absolute value): Na₂O and Li₂O (-0.876) and Na₂O and SiO₂ (-0.600). Such high pairwise correlations, especially the one for the Na₂O and Li₂O relationship, can make it difficult for regression methods to properly separate the effects of correlated components on the response variable (e.g., η_{1150}). Further, such high correlations in the predictors make parameter values difficult to estimate and result in inflated prediction uncertainties. Thus, these high pairwise correlations need to be kept in mind when developing and interpreting LAW glass property-composition models for η_{1150} . See Section 9.7 for further discussion of highly correlated component concentrations.

	0.060 0.112		0.008		0.005		0.000		0.033		0.000		0.335 0.460		0.000		0.010 0.042		0.000
AI20	3			t <mark>in</mark>								1 .		1 45					0.110
0.112	B2O3			4		* *	<u>.</u>	×.						<u>.</u>	* -		*		der:
		CaO								4 4 4	N.~:			3 ,	<u>.</u>				0.085
0.008			сі	- <u> </u>				<u>``</u>			<u></u>	<u>.</u>		100 110		84444 875 - St	**		0.004
0.005			<u> </u>	Cr2O3	F		<u>kata in</u>		- 1		<u>е</u>		<u></u>		<u>نمین.</u>				0.000
0.000			1945 - 1958 -			Fe2O3	ini. Tit	 - 72:											0.08
0.039							K20								<u> </u>				0.00
0.000		1	<u>6</u> .				<u>.</u> .	Li20	<u>(</u>)	×.	5 A.	<u>æ</u>	1	1	<u>k</u> :	1F		1	0.042
0.033		<u> </u>				.		- <u></u>	MgO	144			<u>.</u>		Nie		<i>4</i> 44		il.
0.027			42				<u>187</u>			Na2O	1			1.70					0.185 0.025
0.027	i birina (Charachtean (<u>.</u>	्र देशको		inin. Mari			مندي. د اولا	 1105	P205	S03				2000 2000	ini. Mari		0.011 0.000
0.460							enere Maria				ales. Alesta	303	SiO2	196. 248					0.011 0.000
0.335			1										* *		д.:		<u>.</u>		0.034
0.033					<u>.</u>		ter To	in the	ġ.	<u>.</u>		<u>ب أ</u>	1		TiO2		-	÷	<u></u>
34																V205	<u>«</u>		0.027
0.042				. ×				199 A.S.	8	350 - 128				**	ж.		ZnO	<u> </u>	0.045
0.002						<u> </u>							*** **	8 6			and a second	ZrO2	0.000 Others
				0.000		0.00		0.000		0.025	2	0:00		0.034	.	0.000		0.000	olicis
0.0		0.0		0.0		00		0.0		0.1		0.0		0.0		0.0		0.0	
• \	VTP	•	0	RP	•	l I	.P1.II	_	•	LP1.	OL	•	LP2	IL	•	LP2	.OL	•	LP3

Figure 5.5. Scatterplot Matrix of 20 Components (mass fractions) for the 534 LAW Glasses with Viscosity at 1150°C Data that Remain after Excluding the 15 Glasses in Table 5.1

5.1.1.2 Viscosity at 1150 °C Modeling Dataset

Table A.3 in Appendix A lists the Glass #s, Glass IDs, and η_{1150} values for the 534 remaining simulated LAW glasses used for η_{1150} model development. The η_{1150} values for the 15 glasses excluded as outliers from the 549-glass modeling dataset (see Table 5.1) are marked with an asterisk in Table A.3. The compositions for these 534 LAW glasses are included in Table A.2. The glass compositions in Table A.2 are the normalized mass fractions (mf) of the 20 components previously identified as having sufficient data to support a separate model term if needed. The LAW glass compositions in Table A.2 were normalized so that the total mass fractions of all 20 components for each glass equaled precisely 1.000000 as discussed in Section 2.2.

Section 2.3 discusses how the η_{1150} values in Table A.3 were obtained from viscosity versus temperature data. The values of η_{1150} in Table A.3 for the 534 glasses in the modeling dataset range from 4.70 to 259.69 poise.

5.1.1.3 Replicate and Near-Replicate Data for Viscosity at 1150 °C

Changes to the LAW glass compositions caused by the renormalization associated with using measured (or estimated) SO_3 values (see Section 2.2) resulted in some replicate glasses not having exactly equal normalized compositions. Such compositions are near-replicates. For ease of discussion, henceforth both replicates and near-replicates are referred to as replicates.

Table 5.2 lists the replicate sets of LAW glasses in the η_{1150} modeling dataset and the corresponding η_{1150} values. Table 5.2 also lists estimates of (i) %RSDs [calculated using η_{1150} values in original poise units] and (ii) SDs [calculated using $\ln(\eta_{1150})$ values in $\ln(\rho_{0150})$ units] for each replicate set. The %RSD values for 21 of the 28 replicate sets range from 0% to 14.79%, with the %RSD values for the other 7 replicate sets ranging from 22.63% to 48.38%. The four replicate sets (Glass # 456-457, 458-459, 460-461, and 462-463 pairs) of the seven sets with higher %RSD values exhibited a consistent trend between η_{1150} , ε_{1150} , and r_a^{VHT} , that is, the replicate glasses had lower η_{1150} , higher ε_{1150} and higher r_a^{VHT} values than the original glasses. This trend agrees with the observation that all four replicate glasses had higher measured Na₂O concentration than the original glasses. However, this trend may not be enough to justify excluding these four replicate sets. No reasons for the higher %RSD values for the remaining three replicate sets could be found in the data-source reports. Hence, it was assumed that periodically there may be larger uncertainties in batching and melting glasses and determining glass properties including η_{1150} .

Table 5.2 also lists pooled estimates of %RSDs and SDs calculated over all replicate sets. A pooled %RSD or SD combines the separate %RSD or SD estimates from each replicate set, so that a more precise combined estimate of %RSD or SD is obtained. These pooled %RSDs and SDs include uncertainties due to fabricating glasses, determining SO₃ measured or estimated values, and the process of determining η_{1150} values. The magnitudes of the pooled SD = 0.1655 [in ln(poise) units] and pooled %RSD = 16.26 [in percentage relative to ln(poise) units] in Table 5.2 indicate there is approximately a 16% total relative uncertainty in the η_{1150} values over the replicate glasses. The pooled estimates of replicate uncertainty for η_{1150} in Table 5.2 are used subsequently to assess LOF of the various ln(η_{1150}) models considered.

Replicate Set		Replicate Set		SD
Glass #s	Replicate Set Glass IDs	η ₁₁₅₀ (poise) Values	%RSD ^(a)	[ln(poise)
993	EWG-LAW-Centroid-1	28.25	1.77	0.0177
995	EWG-LAW-Centroid-2	27.55	1.//	0.0177
9	LAWA44	69	2.02	0.0202
326	LAWA44R10	71	2.02	0.0202
227	LAWB83	54		
229	LAWB84	51	2.90	0.0291
284	B1-AZ101(LAWB83)	53		
442	LAWC100	32		
443	LAWC100R1	25	14.79	0.1425
447	WVY-G-95A	25		
75	LAWC22	39		
272	C22AN107	44	8.39	0.0854
279	C1-AN107(LAWC22)	46		
456	LAWCrP1	87	22.63	0.2282
457	LAWCrP1R	63	22.03	0.2202
458	LAWCrP2	66	26.76	0.2708
459	LAWCrP2R	45	20170	0.2700
460	LAWCrP3	95	36.53	0.3737
461	LAWCrP3R	56	50.55	0.5757
462	LAWCrP4	67	27.78	0.2814
463	LAWCrP4R	45		0.2011
451	LAWE7H	21	29.35	0.2978
624	FWV-G-63B	32	_,	
331	LAWM1	36	30.74	0.3124
383	LAWM53	56		
365	LAWM35	25	48.38	0.5041
386	LAWM56	51		
846	ORLEC12	60	11.47	0.1149
865	OWV-G-144E	51		
848	ORLEC14	66	7.92	0.0793
887	QWV-G-107B	59		
850	ORLEC16	77	9.82	0.0984
888	PWV-G-130C	67		
853	ORLEC19	76	4.81	0.0481
890	QWV-G-29C	71		
856	ORLEC22	34	4.29	0.0429
891	QWV-G-75B ORLEC26	32		
862 867		62 56	7.19	0.0720
867 863	OWV-G-109B	56		
863 860	ORLEC27	61 50	14.01	0.1406
869	PWV-G-43E	50		
864 871	ORLEC28	65 55	11.79	0.1181
871	PWV-G-93A	55		
877	ORLEC33	58	0.00	0.00
903	RWV-G-9C	58		
878	ORLEC34	55	6.73	0.0674
904	RWV-G-48D	50		

Table 5.2. Uncertainty in Viscosity at 1150 °C Responses for Replicate and Near-Replicate Sets

Replicate								
Set		Replicate Set		SD				
Glass #s	Replicate Set Glass IDs	η1150 (poise) Values	%RSD	[ln(poise)]				
893	ORLEC44	36	1.94	0.0194				
905	RWV-G-79C	37	1.94	0.0194				
895	ORLEC46	27	0.00	0.0000				
906	RWV-G-120D	27	0.00	0.0000				
897	ORLEC48R	24	2.89	0.0289				
907	SWV-G-17A	25	2.89	0.0289				
597	ORPLD1	33						
997	LAW-ORP-LD1(1)	29.37	5.63	0.0550				
999	LAW-ORP-LD1(2)	29.46	5.05	0.0550				
1035	LP2-OL-07	30.01						
1022	LP2-IL-10	47.13						
1028	LP2-IL-16	43.53	9.84	0.0964				
1031	LP2-OL-02	52.56	9.64	0.0904				
1049	LP2-OL-21	42.41						
1034	LP2-OL-05	66.51	3.46	0.0346				
1038	LP2-OL-10-MOD	63.33	5.40	0.0340				
Pooled Ove	er All 28 Replicate Sets with	h 35 total DF ^(b)	16.26	0.1655				
(a) $\%$ RSD = 100 × (Standard Deviation / Mean).								
(b) $DF = de$	grees of freedom.							

Table 5.2. Uncertainty in Viscosity at 1150 °C Responses for Replicate and Near-Replicate Sets, cont.

5.1.2 Model Validation Approach and Data for Viscosity at 1150 °C of LAW Glasses

The validation approach for η_{1150} models was based on splitting the 534-glass dataset for model development into five modeling/validation subsets. Of the 534 model-development glasses, 63 were in 28 replicate sets. The five modeling/validation splits of the 534 glasses in the η_{1150} modeling dataset were formed as follows.

- The 63 replicate glasses in 28 replicate sets were set aside so they would always be included in each of the five model development datasets. This was done so that replicate sets would not be split between modeling and validation subsets, thus negating the intent to have validation glasses different than model development glasses.
- The remaining 471 glasses were ordered from smallest to largest according to their η_{1150} values (poise). The 471 glasses were numbered 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, etc. All of the 1's formed the first model validation set, while all of the remaining points formed the first model development dataset. Similarly, all of the 2's, 3's, 4's, and 5's respectively formed the second, third, fourth, and fifth model validation sets In each case, the remaining non-2's, non-3's, non-4's, and non-5's formed the second, third, fourth, and fifth model development datasets respectively. Because 471 is not evenly divisible by 5, the five modeling and validation subsets did not all contain the same numbers of glasses. One of the five splits contained 95 glasses for validation and 376 glasses for modeling. The other four splits contained 94 glasses for validation and 377 for modeling. Note that these numbers of glasses in the modeling subsets do not yet include the 63 replicates.
- The 63 replicate glasses were added to each of the split modeling subsets. Including the replicates, one split contained 439 glasses for modeling and 95 for validation, while the other four splits contained 440 glasses for modeling and 94 for validation.

Data splitting was chosen as the validation approach because the η_{1150} modeling dataset contains all compositions that (i) are in the LAW GCR of interest, (ii) meet QA requirements, and (iii) have η_{1150} data. Having a separate validation dataset not used for modeling is desirable, but that desire was over-ridden by wanting η_{1150} models to be developed using all appropriate data.

5.1.3 Subsets of LAW Glasses to Evaluate Prediction Performance of Models for Viscosity at 1150 °C

Section 2.4 discusses six subsets of LAW glasses for evaluating the prediction performance of LAW glass property-composition models, including subsets of glasses with higher waste loadings. The subsets, as discussed in Section 2.4, are denoted WTP, ORP, LP2OL, LP123, HiNa₂O, and HiSO₃. The η_{1150} modeling dataset of 534 LAW glasses (see Section 5.1.1) contains 182, 260, 102, 92, 200, and 104 glasses with η_{1150} values in these six evaluation subsets, respectively. Note that glasses can be in more than one of these evaluation sets. The "Glass #s" of these six evaluation subsets of LAW glasses are listed in Table C.3 of Appendix C; normalized LAW glass compositions and η_{1150} values for the glasses with these "Glass #s" are listed in Tables A.2 and A.3, respectively, of Appendix A.

Model performance/prediction summary statistics denoted R^2_{Eval} and $RMSE_{Eval}$ (see Section B.3 of Appendix B), as well as predicted versus measured plots (see Section B.3), are subsequently used to assess the prediction performance of the η_{1150} models (presented in later subsections) for the six evaluation subsets listed in Table C.3 of Appendix C.

5.2 Model Forms for Viscosity at 1150 °C of LAW Glasses

Ideally, a property-composition model for η_{1150} would use known mechanisms of η_{1150} as a function of LAW glass composition. However, no such mechanisms are known. Empirical models for η_{1150} with coefficients estimated from model development data have been shown in the past to perform well. The empirical model forms used are from the general class of *mixture experiment models* (Cornell 2002), which includes models linear in composition as well as non-linear in composition. Section B.1 of Appendix B discusses mixture experiments and several general forms of mixture experiment models.

Section 5.2.1 discusses the forms of mixture experiment models used for η_{1150} of LAW glasses. Section 5.2.2 discusses using natural-log-transformed η_{1150} values as the response variable for η_{1150} modeling.

5.2.1 Mixture Experiment Model Forms for Viscosity at 1150 °C of LAW Glasses

The LM and PQM model forms introduced in Section B.1 of Appendix B were chosen for use in modeling $ln(\eta_{1150})$ as a function of LAW glass composition. These models have been used in the past (e.g., Piepel et al. 2007; Muller et al. 2014) to model the compositional dependence of $ln(\eta)$ -composition-temperature models. However, the present work considered LM and PQM models for $ln(\eta_{1150})$ as functions of LAW glass composition. The LM model form is given by

$$\ln(\eta_{1150}) = \sum_{i=1}^{q} \beta_i g_i + e$$
(5.1)

while the PQM model form is given by

$$ln(\eta_{1150}) = \sum_{i=1}^{q} \beta_i g_i + \text{Selected} \left\{ \sum_{i=1}^{q} \beta_{ii} g_i^2 + \sum_{i=1}^{q-1} \sum_{j=1}^{q} \beta_{ij} g_i g_j \right\} + e$$
(5.2)

where in Eqs. (5.1) and (5.2)

 $ln(\eta_{1150}) = natural logarithm of \eta_{1150}$ (in poise)

 g_i = normalized mass fraction of the *i*th glass oxide or halogen component

$$(i = 1, 2, ..., q)$$
, such that $\sum_{i=1}^{q} g_i = 1$

 β_i = coefficient of the *i*th linear blending term (*i* = 1, 2, ..., *q*)

 β_{ii} and $\beta_{ij} =$ coefficients of selected quadratic (squared or crossproduct) blending terms to be estimated from the data

e = random error for each data point.

Many statistical methods exist for the case where the *E* is statistically independent (i.e., not correlated) and normally distributed with mean 0 and standard deviation σ . In Eq. (5.2), "Selected" denotes that only some of the terms in curly brackets are included in the model. The subset is selected using stepwise regression or other variable selection methods (Draper and Smith 1998; Montgomery et al. 2012). PQM models are discussed in more detail and illustrated by Piepel et al. (2002) and Smith (2005).

Cornell (2002) discusses many other empirical mixture model forms that could have been considered for η_{1150} -composition modeling. However, these other mixture model forms were not investigated because the special blending effects of components associated with those models were judged not to apply for η_{1150} . The model forms in Eqs. (5.1) and (5.2) are widely used in many application areas (including waste glass property modeling) and often predict the response very well.

5.2.2 Transformation of Viscosity at 1150 °C for LAW Glasses

In modeling η_{1150} , it is advantageous to use the natural logarithm transformation of the η_{1150} values. The advantages of this transformation include the following:

- The η_{1150} values for the 534 LAW glasses in the η_{1150} modeling dataset range from 4.70 to 259.69 poise. This range is significantly more than one order of magnitude. In such cases, typically the uncertainty in making glasses and determining η_{1150} leads to smaller absolute uncertainties for smaller η_{1150} values and larger absolute uncertainties for larger η_{1150} values. Hence, the OLS regression assumption of equal variances for all response variable values (see Section B.2.1 of Appendix B) is violated. After a logarithmic transformation, variances of η_{1150} values tend to be approximately equal as required for OLS regression.
- A logarithmic transformation tends to linearize the compositional dependence of η_{1150} data and reduce the need for non-linear terms in the model form.
- A natural logarithm transformation is preferred over a common logarithm (or other base logarithm) transformation because of the approximate relationship

$$SD [ln(y)] \cong RSD (y)$$
 (5.3)

where SD denotes standard deviation, RSD denotes relative standard deviation (i.e., the standard deviation divided by the mean), and *y* denotes η_{1150} . Eq. (5.3) results from applying the first-order variance propagation formula [Eq. (7-7) of Hahn and Shapiro (1967)] to the function $z = \ln(y)$. The relationship in Eq. (5.3) is very useful, in that uncertainties of the natural logarithm of the response variable *y* can be interpreted as approximate RSDs of the untransformed response variable *y*.

For these reasons, the natural logarithmic transformation was employed for all η_{1150} model forms.

5.3 Property-Composition Model Results for Viscosity at 1150 °C of LAW Glasses

This section discusses the results of fitting several different mixture experiment models using natural logarithms of η_{1150} (poise) as functions of LAW glass compositions. Section 5.3.1 presents the results of modeling $\ln(\eta_{1150})$ using a 20-component FLM model. Sections 5.3.2 and 5.3.3 present the results of modeling $\ln(\eta_{1150})$ using an RLM and PQM models based on a reduced set of mixture components. Finally, Section 5.3.4 compares the results from the three models and recommends a $\ln(\eta_{1150})$ model for future use and evaluation.

5.3.1 Results from the 20-Component Full Linear Mixture Model for the Natural Logarithm of Viscosity at 1150 °C with LAW Glasses

As the initial step in $ln(\eta_{1150})$ -composition model development, a FLM model with the 20 components identified in Section 5.1.1.1 was fit to the modeling data (534 LAW glasses). Table 5.3 contains the results for the 20-component FLM model of $ln(\eta_{1150})$. Table 5.3 lists the estimated model coefficients, standard errors-deviations of the coefficients (i.e., the standard deviation of the coefficients), and model fit summary statistics for the 20-component FLM of $ln(\eta_{1150})$ model using the viscosity modeling dataset (534 LAW glasses). Table 5.3 also contains the results from the (i) data-splitting validation approach (see Section 5.1.2), and (ii) evaluation of model predictions for the six evaluation subsets (see Section 5.1.3). In the data-splitting validation portion of the results at the bottom of Table 5.3, the columns are labeled DS1, DS2, DS3, DS4, and DS5 to denote the five modeling/validation splits of the data as described in Section 5.1.2. The last column of this part of Table 5.3 shows the averages for the different statistics over the five splits.

The $R^2 = 0.9429$, $R^2_A = 0.9408$, and $R^2_P = 0.9367$ statistics (see Section B.3 of Appendix B) in Table 5.3 show that (i) the 20-component FLM model fits the $ln(\eta_{1150})$ data in the 534-glass modeling dataset quite well, (ii) there are not a large number of unneeded model terms (evidenced by the small standard errors relative to the reported coefficient estimates and by the fact that the R²-adjusted value is very close to the R² value for this model), and (iii) there are not any highly influential data points (confirmed in the diagnostic graphics described in Section B.3 and by the fact that the R²-predicted value is close to the R²-adjusted and R² values for this model). The RMSE = 0.1375 is smaller than the pooled glass batching and η_{1150} determination uncertainty (SD = 0.1655 in ln(poise) units) estimated from replicates in Table 5.2. This suggests that the 20-component FLM model does not have a statistically significant LOF, which is confirmed by the model LOF p-value = 0.9641 in Table 5.3. See Section B.3 for discussion of the statistical test for model LOF.

At the bottom right of Table 5.3, the average model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE) over the five data-split validation sets are close to the statistics obtained from fitting the 20-component FLM model for $ln(\eta_{1150})$ to all 534 glasses in the modeling dataset. The data-split validation statistics (R^2_V and RMSE_V) are also relatively close to the R^2 and RMSE (i) values from fitting the model to the full dataset, and (ii)

averages from fitting the model to the data-split modeling subsets. This indicates that the 20-component FLM model maintains its predictive performance for data not used to fit the model.

ln(η ₁₁₅₀) 20-Component	Coefficient	Coefficient	٦	Modeling I	Modeling Data Statist	Modeling Data Statistic,
FLM Model Term	Estimate	Stand. Err.			534 Glasses ^(a)	
Al ₂ O ₃	14.5193	0.2980		\mathbb{R}^2	\mathbb{R}^2	R ²
B_2O_3	-5.4984	0.3032		R ² _A	R ² A	R ² _A
CaO	-5.3544	0.2174		R ² _P	R ² _P	R ² _P
Cl	16.2018	2.8450		RMSE	RMSE	RMSE
Cr_2O_3	-8.8081	3.7163		Model L	Model LOF p-value	Model LOF p-value
F	-15.4524	4.5598				
Ea O	1 2669	0.3338		Evaluation	Evaluation Set	Evaluation Set
Fe ₂ O ₃	1.3668	0.5558		(# Glasses)	(# Glasses) ^(b)	(# Glasses) ^(b) R ² _{Eval}
K ₂ O	-2.1876	0.4030		WTP (18	WTP (182)	WTP (182) 0.8569
Li ₂ O	-30.0761	0.7601		ORP (26	ORP (260)	ORP (260) 0.9571
MgO	-1.7309	0.7054		LP2OL (LP2OL (102)	LP2OL (102) 0.9515
Na ₂ O	-7.2036	0.2312		LP123 (9	LP123 (92)	LP123 (92) 0.9437
P_2O_5	11.0895	1.2958		HiNa ₂ O	HiNa ₂ O (200)	HiNa ₂ O (200) 0.9438
SO ₃	6.4926	2.4104		HiSO ₃ (1	HiSO ₃ (104)	HiSO ₃ (104) 0.9375
SiO ₂	11.2176	0.1274				
SnO ₂	7.2550	0.5668				
TiO ₂	-0.9824	0.8528				
V_2O_5	-1.1043	0.6253				
ZnO	-1.1794	0.7184				
ZrO_2	8.7008	0.4739				
Others ^(c)	37.0390	10.2775				
Data Splitting Statistic ^{(a,d}	¹⁾ DS1	DS2		DS3	DS3 DS4	DS3 DS4 DS5

 Table 5.3. Coefficient Estimates and Performance Summary Statistics for the 20-Component Full Linear

 Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

Data Splitting Statistic ^(a,d)	DS1	DS2	DS3	DS4	DS5	Average
\mathbb{R}^2	0.9399	0.9416	0.9451	0.9402	0.9449	0.9424
R ² _A	0.9372	0.9390	0.9427	0.9375	0.9424	0.9398
R ² _P	0.9317	0.9336	0.9379	0.9325	0.9373	0.9346
RMSE	0.1365	0.1414	0.1325	0.1400	0.1370	0.1375
R ² v	0.9457	0.9465	0.9300	0.9503	0.9273	0.9399
RMSEv	0.1464	0.1209	0.1631	0.1306	0.1443	0.1411

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

(b) The six sets of LAW evaluation glasses are discussed in Section 2.4 and Section 5.1.3.

(c) For the 20-component FLM model, the "Others" component includes any components not separately listed.

(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 5.1.2 describes how the modeling dataset was split into modeling and validation subsets.

The statistics from evaluating the predictive performance of the 20-component FLM model for $ln(\eta_{1150})$ on the six evaluation subsets of modeling glasses (see Section 5.1.3) are given on the right side of Table 5.3. The R² statistics for five of the six evaluation subsets (0.9375 to 0.9571) are close to the R² statistic for the whole modeling dataset (0.9429). The exception is the WTP evaluation subset, with R² = 0.8569, which is still relatively high. The new models in this report are intended/expected to predict well for LAW glasses with higher waste loadings, and still predict acceptably well for glasses with lower waste loadings (the older WTP glasses).

Figure 5.6 shows the PvM plot for the 534-glass modeling dataset using the 20-component FLM model for $ln(\eta_{1150})$. The plot illustrates that the 20-component FLM model predicts $ln(\eta_{1150})$ quite well, but with a slight tendency to under-predict (i) above $ln(\eta_{1150}) \sim 4.65$ ($\eta_{1150} \sim 104.58$ poise) and (ii) possibly below $ln(\eta_{1150}) \sim 2.10$ ($\eta_{1150} \sim 8.17$ poise). However, the model predicts without bias within the WTP LAW Facility operating limits for η_{1150} (20 to 100 poise), shown by the red lines in Figure 5.6.

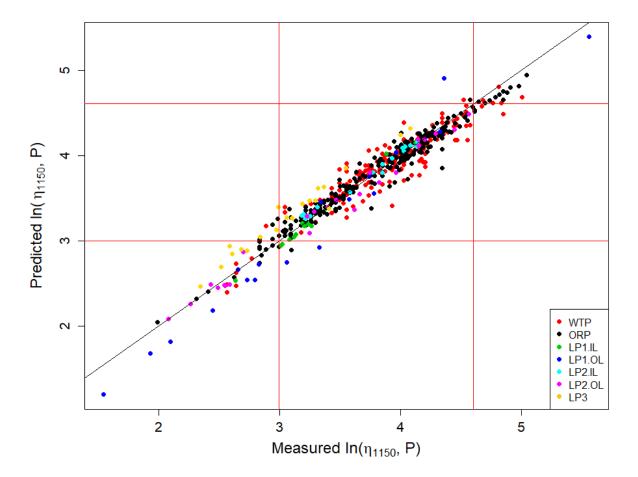


Figure 5.6. Predicted versus Measured Plot for the 534-Glass Modeling Dataset Using the 20-Component Full Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses. The red lines represent the WTP LAW Facility operating limits for viscosity at 1150 °C (20 to 100 poise).

Figure 5.7 displays PvM plots using the 20-component FLM model for $ln(\eta_{1150})$ in Table 5.3 applied to the six evaluation subsets discussed in Section 5.1.3. Each plot in the figure contains the evaluation R² and RMSE values for the corresponding evaluation subset. Figure 5.7 shows that the 20-component FLM model for $ln(\eta_{1150})$ fit to the 534-glass modeling dataset generally predicts very well for the six evaluation subsets. In particular, the model predicts very well for the evaluation subsets containing glasses with higher waste loadings (LP2OL, LP123, HiNa₂O, and HSO₃). The plot for the WTP evaluation set (which contains older data for glasses with lower waste loadings) shows more scatter, resulting in an evaluation R² that is not as large as for the other evaluation sets. This is understandable and acceptable, since the new models presented in this report need to predict well for glasses with higher-waste loadings.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

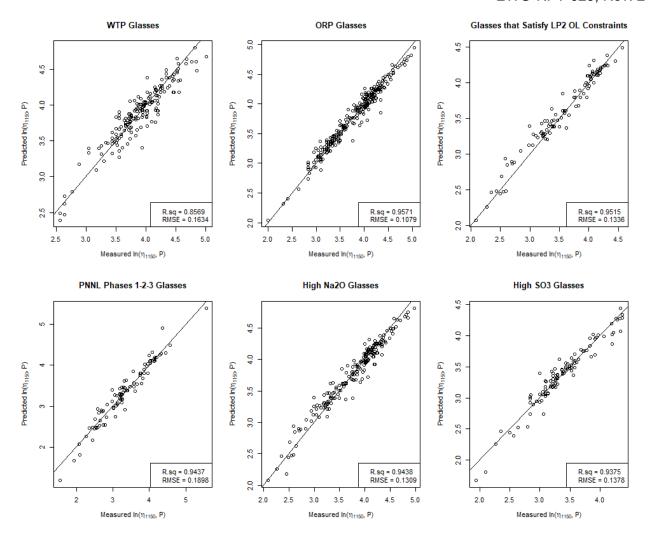
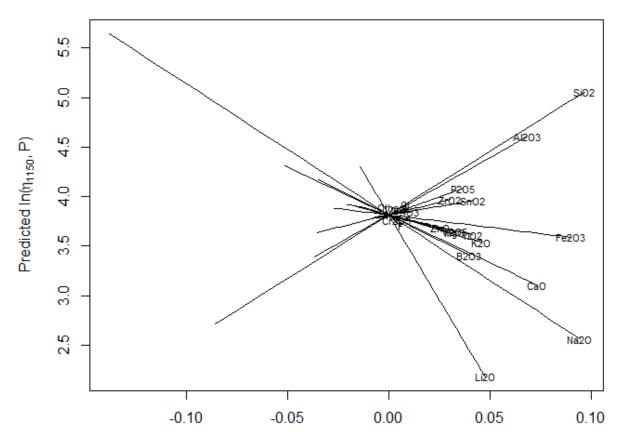



Figure 5.7. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 20-Component Full Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

The model in Table 5.3 fits the 534-glass modeling dataset well enough, with no statistically significant LOF, to provide guidance for reducing the FLM model [i.e., removing separate terms for components that do not significantly influence $ln(\eta_{1150})$]. Hence, the 20-component FLM model was used to produce the response trace plot (see Section B.4.1 in Appendix B) shown in Figure 5.8. The average glass composition of the 1074 glasses in the compiled database discussed in Section 2.5 was used as the REFMIX (see Section B.4.1) in response trace plots for every property. The glass composition of the REFMIX is listed in Table 2.3.

The response trace plot in Figure 5.8 shows (based on the sign and magnitude of the slopes of the respective traces) that Li₂O, Na₂O, CaO, B₂O₃, and K₂O are predicted to decrease $ln(\eta_{1150})$ the most, while SiO₂, Al₂O₃, and P₂O₅, are predicted to increase $ln(\eta_{1150})$ the most. The remaining components have predicted response traces with small to negligible slopes, indicating those components are predicted to have small to negligible effects on $ln(\eta_{1150})$.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 5.8. Response Trace Plot for the 20-Component Full Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

5.3.2 Results from a Reduced Linear Mixture Model for the Natural Logarithm of Viscosity at 1150 °C with LAW Glasses

The 20-component FLM model for $ln(\eta_{1150})$ presented in Section 5.3.1 may contain components that do not significantly contribute to predicting $ln(\eta_{1150})$, so model reduction, while still maintaining goodness of fit and predictive ability, was the next step of the model development approach. Thus, RLM models for $ln(\eta_{1150})$ involving fewer than the 20 components were considered. The sequential F-test model reduction approach (see Section B.4.1 of Appendix B; Piepel and Cooley 2006) was used.

5.3.2.1 Numerical Results for the 18-Component Reduced Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

The RLM model for $ln(\eta_{1150})$ was obtained using the backward-elimination F-test method discussed in Section B.4.1 of Appendix B. Glass scientists provided inputs on LAW glass components that should be retained in the model, and the method determined whether the remaining components should be kept as separate linear terms or combined into Others. The resulting RLM model for $ln(\eta_{1150})$ contained terms for 18 components: Al₂O₃, B₂O₃, CaO, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SiO₂, SnO₂, TiO₂, V_2O_5 , ZnO, ZrO₂, and Others. So, Cl, and SO₃ were combined into Others. Note that the resulting Others is 1 minus the sum of all remaining components, and thus differs from the Others in the 20-component FLM model discussed in Section 5.3.1. Table 5.4 contains the results for the 18-component RLM model of $ln(\eta_{1150})$. Table 5.4 lists the model coefficients, standard deviations of the coefficients, and model fit statistics for the 18-component RLM model using the modeling dataset (534 LAW glasses). Table 5.4 also contains the results from the (i) data-splitting validation approach (see Section 5.1.2), and (ii) evaluation of model predictions for the six evaluation subsets (see Section 5.1.3). In the data-splitting validation portion of the results at the bottom of Table 5.4, the columns are labeled DS1, DS2, DS3, DS4, and DS5 to denote the five modeling/validation splits of the data as described in Section 5.1.2. The last column of this part of Table 5.4 shows the averages for the different statistics over the five splits.

The $R^2 = 0.9410$, $R^2_A = 0.9390$, and $R^2_P = 0.9350$ statistics (see Section B.3 of Appendix B) in Table 5.4 show that (i) the 18-component RLM model fits the $\ln(\eta_{1150})$ data in the 534-glass modeling dataset quite well, (ii) there are not a large number of unneeded model terms, and (iii) there are no highly influential data points. The RMSE = 0.1395 is smaller than the pooled glass batching and η_{1150} determination uncertainty (SD = 0.1655 in ln(poise) units) estimated from replicates in Table 5.2.

This suggests that the 18-component RLM model does not have a statistically significant LOF, which is confirmed by the model LOF p-value = 0.9510 in Table 5.4. See Section B.3 for discussion of the statistical test for modeling LOF.

At the bottom right of Table 5.4, the average model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE) over the five data-splits are close to the statistics obtained from fitting the 18-component RLM model for ln(η_{1150}) to all 534 glasses in the modeling dataset. The data-split validation statistics (R^2_V and RMSE_V) are also relatively close to the R^2 and RMSE (i) values from fitting the model to the full dataset, and (ii) averages from fitting the model to the data-split modeling subsets. This indicates that the 18-component RLM model for ln(η_{1150}) maintains its predictive performance for data not used to fit the model.

ln(η ₁₁₅₀) 18-Component	Coefficient	Coefficient				Modeling Data Statistic,
LM Model Term	Estimate	Stand. Err.	534 Gla	sse	sses ^(a)	sses ^(a)
Al_2O_3	14.5774	0.3005	\mathbb{R}^2			
B_2O_3	-5.5973	0.3066	R ² _A			
CaO	-5.5234	0.2167	R ² _P			
Cr_2O_3	-8.4860	3.7659	RMSE			
F	-12.2861	4.5537	Model I	LOF	p-value	p-value
Fe ₂ O ₃	1.7297	0.3268				
K ₂ O	-2.4149	0.4049	Evaluation			
K ₂ O	-2.4149	0.4049	(# Glasses) ^(b)		R ² Eval
Li ₂ O	-30.5381	0.7621	WTP (1	82)		0.8589
MgO	-1.3605	0.7087	ORP (2	60)		0.9552
Na ₂ O	-7.2055	0.2331	LP2OL	(102)		0.9437
P_2O_5	10.5192	1.2863	LP123 (LP123 (92)		0.9385
SiO ₂	11.2259	0.1260	HiNa ₂ O (200)		0.9372	
SnO ₂	7.3765	0.5646	HiSO ₃ (HiSO ₃ (104)		0.9368
TiO ₂	-0.6572	0.8463				
V_2O_5	-1.6274	0.6214				
ZnO	-1.3903	0.7267				
ZrO ₂	8.8836	0.4782				
Others ^(c)	11.8195	1.9263				
Data Splitting Statistic ^(a,d)	DS1	DS2	DS3	DS4		DS5
R ²	0.9383	0.9394	0.9437	0.9374		0.9437
R^2_A	0.9358	0.9369	0.9415	0.9348		0.9414
R^2_P	0.9303	0.9316	0.9370	0.9295		0.9365
RMSE	0.1380	0.1437	0.1339	0.1430		0.1381
R ² v	0.9425	0.9466	0.9263	0.9530		0.9220
RMSE _V	0.1506	0.1208	0.1673	0.1270		0.1495

Table 5.4. Coefficients and Performance Summary for the 18-Component Reduced Linear MixtureModel on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

(b) The six sets of LAW evaluation glasses are discussed in Section 2.4 and Section 5.1.3.

(c) For the 18-component RLM model, the "Others" component includes any components not separately listed.

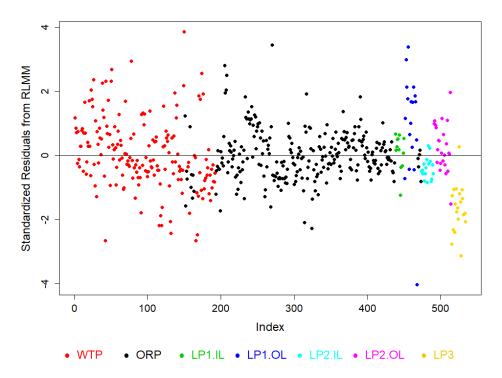
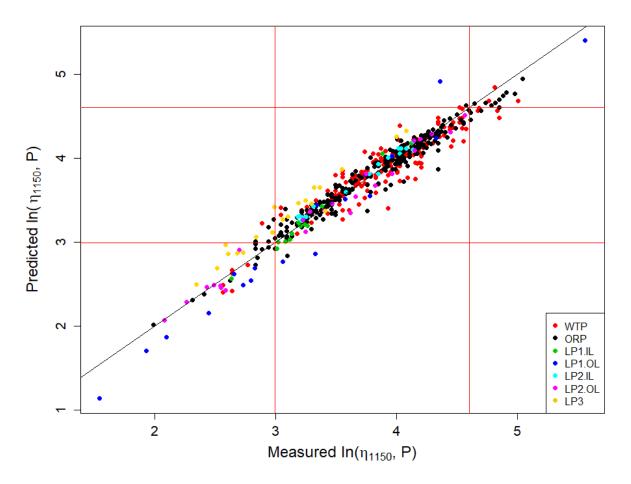
(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 5.1.2 describes how the modeling dataset was split into modeling and validation subsets.

The statistics from evaluating the predictive performance of the 18-component RLM model for $ln(\eta_{1150})$ on the six evaluation subsets of modeling glasses (see Section 5.1.3) are given on the right side of Table 5.4. The R² statistics for five of the six evaluation subsets (0.9368 to 0.9552) are close to the R² statistic for the whole modeling dataset (0.9410). The exception is the WTP evaluation subset, with R² = 0.8589, which is still relatively high. The new models in this report are intended to predict well for LAW glasses with higher waste loadings, and still predict acceptably well for glasses with lower waste loadings (the older WTP glasses).

5.3.2.2 Graphical Results for the 18-Component Reduced Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

Diagnostic plots for the 18-component RLM model (not included in this report) support the assumption of normally distributed errors in the $ln(\eta_{1150})$ data (see Section B.3 of Appendix B). Figure 5.9 displays the 18-component RLM model of the $ln(\eta_{1150})$ standardized residuals plotted versus the data index (a sequential numbering of the modeling data points), with different plotting symbols representing the different groups of LAW glasses discussed in Section 2.3. Figure 5.9 yields the following observations:

- The WTP and LP1.OL (PNNL Phase 1 outer layer) datasets have a wider scatter of standardized residuals, indicating a wider range of $ln(\eta_{1150})$ model prediction uncertainty. This is likely a result of the WTP and LP1.OL glasses spanning wider subregions of LAW glass compositions.
- The 18-component RLM model (i) tends to under-predict $ln(\eta_{1150})$ [corresponding to positive standardized residuals] for the LP2.OL glasses, and (ii) over-predicts $ln(\eta_{1150})$ [corresponding to negative standardized residuals] for the LP3 glasses. The PNNL LP2.OL and LP3 studies were investigated and no reason for biased η_{1150} values was found. The differences in standardized residuals for these two studies may be a result of longer-term random uncertainty.
- Three glasses have standardized residuals near 4 in absolute value. Although outlying, these data points did not have a major impact on the 18-component RLM model for $ln(\eta_{1150})$ and hence were retained in the modeling dataset.

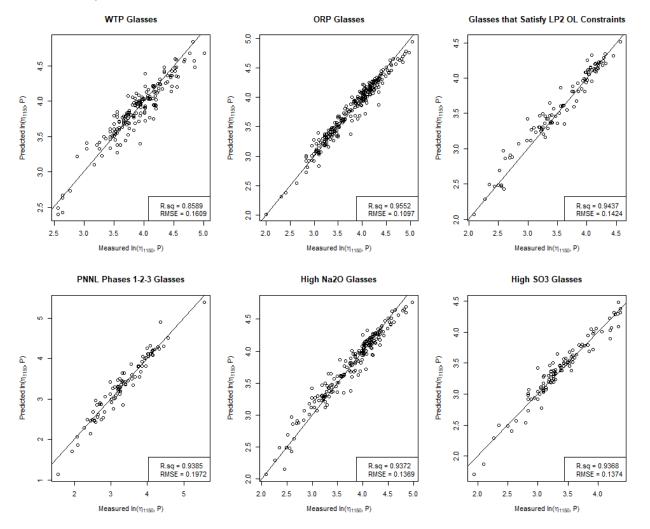
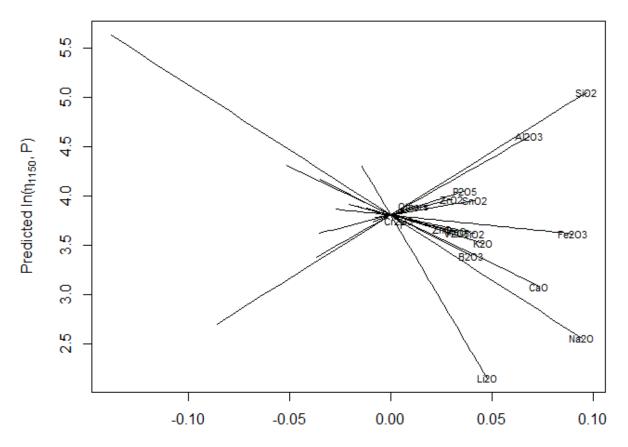

Figure 5.9. Standardized Residuals Plot for the 18-Component Reduced Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

Figure 5.10 displays the PvM plot for the 534-glass modeling dataset using the 18-component RLM model for $ln(\eta_{1150})$. Figure 5.10 is nearly identical to the PvM plot for the 20-component FLM model in Figure 5.6. Hence, as in Figure 5.6, Figure 5.10 illustrates that the 18-component RLM model predicts $ln(\eta_{1150})$ quite well, but with a slight tendency to under-predict (i) above $ln(\eta_{1150}) \sim 4.65 (\eta_{1150} \sim 104.58 \text{ poise})$ and (ii) possibly below $ln(\eta_{1150}) \sim 2.10 (\eta_{1150} \sim 8.17 \text{ poise})$. However, the model predicts without bias within the WTP LAW Facility operating limits for η_{1150} (20 to 100 poise), shown by the red lines in Figure 5.10.

Figure 5.10. Predicted versus Measured Plot for the 534-Glass Modeling Dataset Using the 18-Component Reduced Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses. The red lines represent the WTP LAW Facility operating limits for viscosity at 1150 °C (20 to 100 poise).


Figure 5.11 displays PvM plots using the 18-component RLM model for $ln(\eta_{1150})$ in Table 5.4 applied to the six evaluation subsets discussed in Section 5.1.3. Each plot in the figure contains the evaluation R² and RMSE values for the corresponding evaluation subset. Figure 5.11 shows that the 18-component RLM model for $ln(\eta_{1150})$ fit to the 534-glass modeling dataset generally predicts very well for the six evaluation subsets. In particular, the model predicts very well for the evaluation subsets containing glasses with higher waste loadings (LP2OL, LP123, HiNa₂O, and HiSO₃). The plot for the WTP evaluation set (which contains older data for glasses with lower waste loadings) shows more scatter, thus resulting in an evaluation R² that is not as large as for the other evaluation sets. This is understandable and

acceptable, since the new models presented in this report need to predict well for glasses with higher waste loadings.

Figure 5.11. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 18-Component Reduced Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

Figure 5.12 displays the response trace plot (see Section B.4.1 in Appendix B) for the 18-component RLM model of $ln(\eta_{1150})$. The glass composition of the REFMIX (see Section B.4.1) used is listed in Table 2.3. Figure 5.12 shows that Li₂O, Na₂O, CaO, B₂O₃, and K₂O are predicted to decrease $ln(\eta_{1150})$ the most, while SiO₂, Al₂O₃, and P₂O₅ are predicted to increase $ln(\eta_{1150})$ the most. The remaining components have predicted response traces with small to negligible slopes, indicating those components are predicted to have small to negligible effects on $ln(\eta_{1150})$.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 5.12. Response Trace Plot for the 18-Component Reduced Linear Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

5.3.3 Results from a Reduced Partial Quadratic Mixture Model for the Natural Logarithm of Viscosity at 1150 °C with LAW Glasses

Reduced PQM models (see Section 5.2.1) were investigated in an effort to improve on the 18-component RLM model for $ln(\eta_{1150})$. For example, the tendency for under-prediction from the FLM and RLM for viscosity, as observed in Figure 5.6 and Figure 5.10, might suggest some quadratic trend that second-order model terms would address. Previous experience with developing and validating PQM models has indicated that adding too many quadratic terms tends to over-fit the model development dataset and degrade predictive performance for new glasses. Therefore, the components that could form quadratic terms were limited to those with strong linear effects and a glass science basis. So, a process of identifying as few as possible second-order terms while improving model fit statistics was performed as follows:

- 1. Regressions were performed to fit reduced partial quadratic models involving all possible subsets of 1, 2, 3, or 4 second-order terms.
- 2. The resulting model summary/performance statistics (R² and RMSE values) were then examined to see which second-order terms were most beneficial to model performance and how many second-order terms to include.

- 3. The RMSE values from the top candidate models were plotted as a function of the number of second-order terms (0 to 4) to identify where the point of diminishing returns was.
- 4. The reduced PQM model with the number of terms just before the point of diminishing returns was selected as the final reduced PQM model.

The MAXR criterion (a selection approach aimed at maximizing R², see Section B.4.2 of Appendix B) was also attempted as a means of selecting second-order terms. However, the terms selected by that method were not always intuitively obvious and the performance was not substantively better than the chosen approach.

Ultimately, a 21-term PQM model for $ln(\eta_{1150})$ with 18 linear terms (from the RLM) and 3 quadratic terms (Al₂O₃ × Na₂O, (Li₂O)², and Li₂O × Na₂O) was selected as including enough quadratic terms to improve the model fit, without over-fitting the model development data. These terms are generally expected based on past viscosity response modeling for LAW glasses that showed Li₂O × Li₂O (Piepel et al. 2007). Interactions between Al₂O₃ and Na₂O are expected due to the charge balancing of 4-coordinated Al₂O₃ that is primarily due to Na₂O and between Li₂O and Na₂O due to the mixed alkali effect. Table 5.5 contains the coefficients of the 21-term PQM model for $ln(\eta_{1150})$ and the coefficient standard deviations. Table 5.5 also includes model performance statistics for the 21-term PQM model using the (i) 534-glass modeling data, (ii) data-split modeling data (as a model validation approach), and (iii) six evaluation subsets of modeling glasses discussed in Section 5.1.3 (as a model evaluation approach).

5.3.3.1 Numerical Results for the 21-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Viscosity at 1150 °C

In Table 5.5, the $ln(\eta_{1150})$ model fit statistics $R^2 = 0.9487$, $R^2_A = 0.9467$, $R^2_P = 0.9426$, and RMSE = 0.1304 for the 21-term PQM model are small improvements over the corresponding statistics for the 18-component RLM model in Table 5.4. The small decrease in values from R^2_A to R^2_P suggests that the $ln(\eta_{1150})$, modeling dataset does not have any highly influential data points for the 21-term reduced PQM model. In any case, $R^2_P = 0.9426$ provides an estimate of the fraction of variation in $ln(\eta_{1150})$ values for future datasets over the same GCR that might be accounted for by this 21-term reduced PQM model.

The RMSE in Table 5.5 is an estimate of the uncertainty [in $ln(\eta_{1150})$ units] in fabricating simulated LAW glasses and determining η_{1150} if the 21-term reduced PQM model for $ln(\eta_{1150})$ does not have statistically significant LOF. The RMSE = 0.1304 for the reduced PQM model fitted to the 534-glass modeling dataset is smaller than the corresponding value for the 18-component RLM model (RMSE = 0.1375) in Table 5.4, indicating a better fit to the data by PQM. The RMSE value is also smaller than the pooled replicate SD in ln(poise) units of 0.1655 in Table 5.2. These observations suggest that the 21-term reduced PQM model for $ln(\eta_{1150})$ does not have model LOF, which is confirmed by the LOF test p-value = 0.9903 in Table 5.5. See Section B.3 of Appendix B for discussion of the statistical test for model LOF.

At the bottom right of Table 5.5, the average model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE) over the five data-splits are close to the statistics obtained from fitting the 21-term reduced PQM model for ln(η_{1150}) to all 534 glasses in the modeling dataset. The data-split validation statistics (R^2_V and RMSE_V) are also relatively close to the R^2 and RMSE (i) values from fitting the model to the full dataset, and (ii) averages from fitting the model to the data-split modeling subsets. This indicates that the 21-term reduced PQM model maintains its predictive performance for data not used to fit the model.

The statistics from evaluating the predictive performance of the 21-term reduced PQM model for $ln(\eta_{1150})$ on the six evaluation subsets of modeling glasses (see Section 5.1.3) are given on the right side of Table

5.5. The R² statistics for five of the six evaluation subsets (0.9504 to 0.9640) are greater than the R² statistic for the whole modeling dataset (0.9487). The exception is the WTP evaluation subset, with $R^2 = 0.8658$, which is still relatively high. The new models in this report are intended to predict well for LAW glasses with higher waste loadings, and still predict acceptably well for glasses with lower waste loadings (the older WTP glasses).

	U		2			
ln(η ₁₁₅₀) 21-Term PQM Model Term	Coefficient Estimate	Coefficient Stand. Err.	Modeling 534 Glasse	Data Statisti S ^(a)	ic,	Va
Al ₂ O ₃	10.4974	0.8471	R ²	0		0.9
B_2O_3	-5.4755	0.2910	R ² A			0.9
CaO	-4.6710	0.2256	R ² P			0.9
Cr ₂ O ₃	-6.4633	3.5965	RMSE			0.1
F	-13.1106	4.3218		OF p-value		0.9
Fe ₂ O ₃	2.2898	0.3165		Joi p (ulue		
K ₂ O	-2.0094	0.3983	Evaluation (# Glasses		R ² _{Eval}	RMS
Li ₂ O	-53.7860	3.2603	WTP (1	82)	0.8658	0.15
MgO	-0.5599	0.6714	ORP (20	/	0.9640	0.09
Na ₂ O	-10.3153	0.4506	LP2OL	,	0.9579	0.13
P_2O_5	11.2378	1.2104	LP123 (92)	0.9509	0.17
SiO ₂	12.1422	0.1609	HiNa ₂ O	(200)	0.9506	0.12
SnO ₂	7.6387	0.5316	HiSO ₃ (104)	0.9504	0.12
TiO ₂	-0.3143	0.7932				
V ₂ O ₅	-1.1041	0.5891				
ZnO	-0.9600	0.6866				
ZrO_2	9.7255	0.4649				
Others ^(c)	10.8166	1.8174				
$Al_2O_3 \times Na_2O$	28.5242	4.9642				
$(Li_2O)^2$	265.7235	38.4830				
$Li_2O \times Na_2O$	80.3767	11.4996				
				201		
Data Splitting Statistic ^(a,d)		DS2	DS3	DS4	DS5	Ave
\mathbb{R}^2	0.9433	0.9473	0.9522	0.9466	0.9503	0.9
D 2	0.0406	0.0449	0.0400	0.0440	0.0470	0.0

 Table 5.5. Coefficients and Performance Summary for 21-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

Data Splitting Statistic ^(a,d)	DS1	DS2	DS3	DS4	DS5	Average
R ²	0.9433	0.9473	0.9522	0.9466	0.9503	0.9479
R ² _A	0.9406	0.9448	0.9499	0.9440	0.9479	0.9455
R ² _P	0.9344	0.9395	0.9457	0.9389	0.9429	0.9403
RMSE	0.1327	0.1345	0.1238	0.1325	0.1302	0.1308
R ² V	0.9607	0.9523	0.9322	0.9530	0.9355	0.9467
RMSEv	0.1245	0.1141	0.1605	0.1270	0.1360	0.1324

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

(b) The six sets of LAW evaluation glasses are discussed in Section 2.4 and Section 5.1.3.

(c) For the 21-component reduced PQM model, the "Others" component includes any components not separately listed.

(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 5.1.2 describes how the modeling dataset was split into modeling and validation subsets.

5.3.3.2 Graphical Results for the 21-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

Diagnostic plots for the 21-term reduced PQM model (not included in this report) support the assumption of normally distributed errors in the $ln(\eta_{1150})$ data (see Section B.3 of Appendix B). Figure 5.13 displays the standardized residuals of the 21-term reduced PQM model of $ln(\eta_{1150})$ plotted versus the data index (a sequential numbering of the modeling data points), with different plotting symbols representing the different groups of LAW glasses discussed in Section 2.3. Figure 5.13 is very similar to Figure 5.9, so the observations on Figure 5.13 are the same as discussed in Section 5.3.2.2 for Figure 5.9.

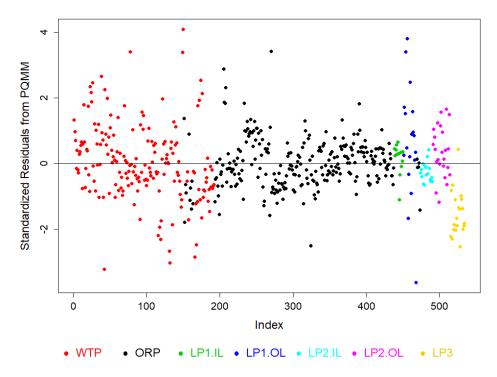
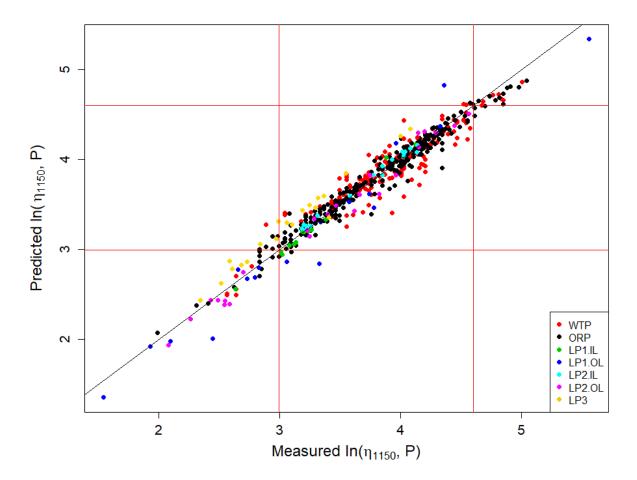



Figure 5.13. Standardized Residuals Plot for the 21-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

Figure 5.14 displays the PvM plot for the 534-glass modeling dataset using the 21-term reduced PQM model for $ln(\eta_{1150})$. Figure 5.14 is nearly identical to the PvM plot for the 18-component RLM model in Figure 5.10. Hence, as in Figure 5.10, Figure 5.14 illustrates that the 21-term reduced PQM model predicts $ln(\eta_{1150})$ quite well, but with a slight tendency to under-predict (i) above $ln(\eta_{1150}) \sim 4.60$ ($\eta_{1150} \sim 99.17$ poise) and (ii) possibly below $ln(\eta_{1150}) \sim 2.10$ ($\eta_{1150} \sim 8.17$ poise). However, the model predicts with little bias within the WTP LAW Facility operating limits for η_{1150} (20 to 100 poise), shown by the red lines in Figure 5.14.

Figure 5.14. Predicted versus Measured Plot for the 516-glass Modeling Dataset Using the 21-term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW glasses. The red lines represent the WTP LAW Facility operating limits for viscosity at 1150 °C (20 to 100 poise).

Figure 5.15 displays PvM plots using the 21-term reduced PQM model for $ln(\eta_{1150})$ in Table 5.5 applied to the six evaluation subsets discussed in Section 5.1.3. Each plot in the figure contains the evaluation R^2 and RMSE values for the corresponding evaluation subset. Figure 5.15 shows that the 21-term reduced PQM model for $ln(\eta_{1150})$ fit to the 534-glass modeling dataset generally predicts very well for the six evaluation subsets. In particular, the model predicts very well for the evaluation subsets containing glasses with higher waste loadings (LP2OL, LP123, HiNa₂O, and HiSO₃). The plot for the WTP evaluation set (which contains older data for glasses with lower waste loadings) shows more scatter, resulting in an evaluation R^2 that is not as large as for the other evaluation sets. This is understandable and acceptable, since the new models presented in this report need to predict well for glasses with higher waste loadings.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

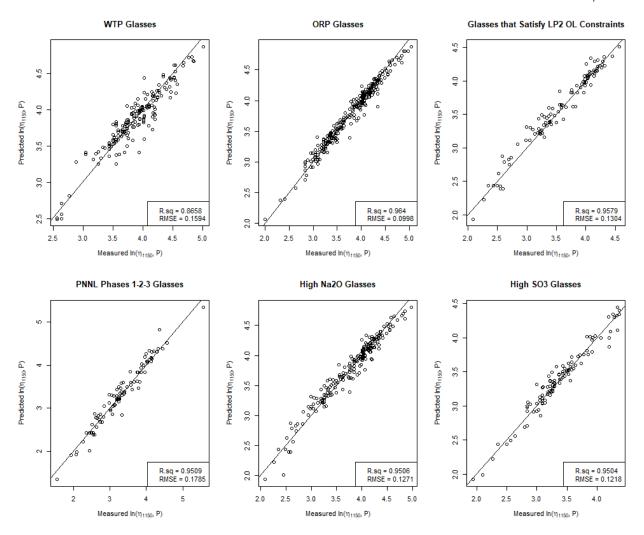
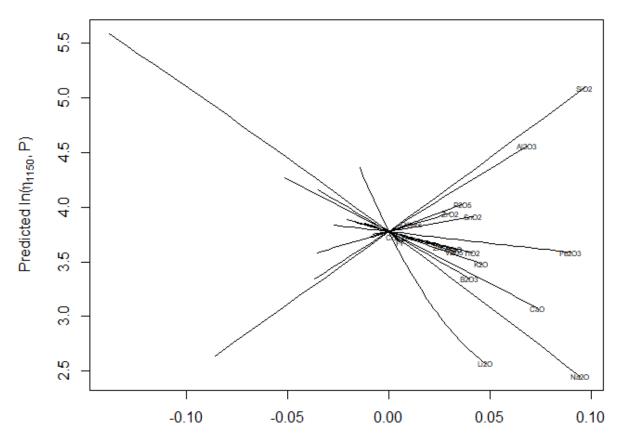



Figure 5.15. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 21-term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

Figure 5.16 displays the response trace plot (see Section B.4.1 of Appendix B) for the 21-term reduced PQM model for $ln(\eta_{1150})$. Figure 5.16 shows that Li₂O, Na₂O, CaO, B₂O₃, and K₂O are predicted to decrease $ln(\eta_{1150})$ the most, while SiO₂, Al₂O₃, and P₂O₅ are predicted to increase $ln(\eta_{1150})$ the most. The remaining components have predicted response traces with small to negligible slopes, indicating those components are predicted to have small to negligible effects on $ln(\eta_{1150})$.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 5.16. Response Trace Plot for 21-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

5.3.4 Recommended Model for the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

Table 5.6 summarizes the following primary $ln(\eta_{1150})$ model evaluation and validation results for the 20-component FLM model, the 18-component RLM model, and the 21-term reduced PQM model from Table 5.3, Table 5.4, and Table 5.5, respectively:

- Model goodness-of-fit for the $ln(\eta_{1150})$ -composition modeling data of 534 simulated LAW glasses
- Model validation using the data-splitting approach
- Model evaluation for six subsets of the 534-glass modeling dataset

Based on the summarized results in Table 5.6 and discussions in Sections 5.3.1 to 5.3.3, the 21-term reduced PQM model (listed in Table 5.5) is recommended for predicting $ln(\eta_{1150})$ of LAW glasses. As a baseline for comparison, the 18-component RLM model (listed in Table 5.3) will be used.

Selected Quadratic Terms in Model # Model Terms Summar Evaluation Set	20-Compo FLM Mo 0.9429 0.9400 0.9360	odel 9		nponent Model		educed PQM ommended)	
R ² R ² _A R ² _P RMSE LOF p-value Linear Terms Selected Quadratic Terms in Model # Model Terms Summar Evaluation Set	FLM Mo 0.9429 0.9408	odel 9					
R ² _A R ² _P RMSE LOF p-value Linear Terms Selected Quadratic Terms in Model # Model Terms Summar Evaluation Set	0.9408		0.9	410			
R ² P RMSE LOF p-value Linear Terms Selected Quadratic Terms in Model # Model Terms Summar Evaluation Set		8		410	0.9487		
RMSE LOF p-value Linear Terms Selected Quadratic Terms in Model # Model Terms Summar Evaluation Set	0.936	0.9408		390	0.9467		
LOF p-value Linear Terms Selected Quadratic Terms in Model # Model Terms Summar Evaluation Set		7	0.9	350	0.9	426	
Linear Terms Selected Quadratic Terms in Model # Model Terms Summar Evaluation Set	0.1375		0.1	395	0.1	304	
Selected Quadratic Terms in Model # Model Terms Summar Evaluation Set	0.964	1	0.9	510	0.9	903	
in Model # Model Terms Summar Evaluation Set	20 (See Table 5.3)		18 (See 7	Table 5.4)	18 (See 7	Table 5.5)	
in Model # Model Terms Summar Evaluation Set					Al_2O_3	\times Na ₂ O	
# Model Terms Summar Evaluation Set	NA		NA		$(Li_2O)^2$		
Summar Evaluation Set					$Li_2O \times Na_2O$		
Evaluation Set	20		1	8	2	21	
	y Statistics f	or Six Evalua	tion Subsets	of LAW Glasses	s ^(a)		
(# Glasses) ^(b)	R^{2}_{Eval}	RMSE _{Eval}	R^{2}_{Eval}	RMSE _{Eval}	R^{2}_{Eval}	RMSE _{Eval}	
WTP (182) 0	.8569	0.1634	0.8589	0.1609	0.8658	0.1594	
ORP (260) 0	.9571	0.1079	0.9552	0.1097	0.9640	0.0998	
LP2OL (102) 0	.9515	0.1336	0.9437	0.1424	0.9579	0.1304	
LP123 (92) 0	.9437	0.1898	0.9385	0.1972	0.9509	0.1785	
	.9438	0.1309	0.9372	0.1369	0.9506	0.1271	
HiSO ₃ (104) 0	.9375	0.1378	0.9368	0.1374	0.9504	0.1218	
	Summary S	tatistics Avera	aged Over 5	Data-Splitting S	ets ^(b)		
\mathbb{R}^2	0.942	4	0.9	405	0.9	479	
R ² _A	0.939	8	0.9	381	0.9	455	
R ² _P	0.934	6	0.9	330	0.9	403	
RMSE	0.137	5	0.1	393	0.1	308	
R^2v					0.9467		
RMSEv	0.939	9	0.9	381	0.9	40/	

Table 5.6. Performance Summary of Three Models for the Natural Logarithm of Viscosity at 1150 °C for LAW Glasses

(b) Model validation statistics are defined in Section B.5 of Appendix B.

5.4 Example Illustrating Model Predictions and Statistical Intervals for Viscosity at 1150 °C

This section contains examples that illustrate the application of the recommended 21-term PQM model for $\ln(\eta_{1150})$ in Table 5.5 to the REFMIX glass composition listed in Table 2.3 to obtain predicted η_{1150} values and two-sided statistical intervals. Formulas for two-sided 90% CIs and two-sided 90% prediction intervals (PIs) are discussed in Section B.6 of Appendix B. Two-sided intervals are illustrated because η_{1150} will have lower and upper operating limits during the WTP LAW Facility operation. For comparison purposes, the same results are presented for the 18-component RLM model in Table 5.4 (although it was not a recommended model). The 90% CIs and 90% PIs were chosen for illustration purposes only. The WTP LAW Facility can use an appropriate confidence level depending on the use of the $ln(n_{1150})$ composition model and the type of statistical interval (uncertainty expression) desired.

The glass composition used in this example is denoted REFMIX, as listed in Table 2.3. The 20-component composition (mass fractions) of REFMIX for η_{1150} modeling is given in Table 5.7. To apply the 21-term reduced PQM and 18-component RLM models for $ln(\eta_{1150})$ to the REFMIX composition, the mass fractions of the 20 components must be converted to mass fractions (that sum to 1.0) of the 18 LAW glass components contained in both models. This involves adding the mass fractions of the 2 of 20 components (Cl and SO₃) not contained in the $ln(\eta_{1150})$ RLM and reduced PQM models to the mass fraction of the Others component of the original 20 components, thereby producing the Others component for the reduced set of 18 components. Mass fractions of the relevant components are then multiplied to obtain the three quadratic terms of the 21-term reduced PQM model. Table 5.7 contains the composition of REFMIX prepared for use in the two $ln(\eta_{1150})$ models for LAW glasses.

For each of the two $ln(\eta_{1150})$ models, predicted $ln(\eta_{1150}, poise)$ values are obtained by multiplying the composition in the format needed for that model by the coefficients for that model, then summing the results. That is, the predicted values are calculated by

$$\hat{y}(\mathbf{g}) = \mathbf{g}^{\mathrm{T}}\mathbf{b} \tag{5.4}$$

where **g** is the composition of REFMIX formatted to match the terms in a given model (from Table 5.7), the superscript T represents a vector transpose, and **b** is the vector of coefficient estimates for a given model. The predicted $ln(\eta_{1150})$ values for REFMIX using the two $ln(\eta_{1150})$ models are listed in the second column of Table 5.8. The predicted $ln(\eta_{1150})$ values in ln(poise) units are easily converted to η_{1150} values (poise) by exponentiation. The third column of Table 5.8 contains the predicted η_{1150} values (poise). When used with CIs as discussed in Section B.6 of Appendix B, these back-transformed η_{1150} predictions in poise should be considered estimates of the true median (not the true mean) of the distribution of η_{1150} values that would result if viscosity measurements at 1150 °C were repeated multiple times on separately batched and melted samples of the REFMIX glass composition. When used with PIs, the back-transformed η_{1150} predictions should be considered estimates of individual test results for the REFMIX glass composition.

The predicted η_{1150} values for REFMIX in Table 5.8 are 44.86 poise for the 18-component RLM model and 43.74 poise for the recommended 21-term reduced PQM model. Statistical confidence intervals and prediction intervals for these predictions are discussed next.

		REFMIX	REFMIX Composition (mass fractions)	
		Composition		
		(mass fractions)		
	REFMIX Composition ^(a)	to Use in 18-Component	to Use in 21-Term	
Model Term	(mass fractions)	RLM Model for $\ln(\eta_{1150})^{(b)}$	PQM Model for $ln(\eta_{1150})^{(1)}$	
Al_2O_3	0.075760	0.075761	0.075761	
B_2O_3	0.097257	0.097257	0.097257	
CaO	0.052514	0.052514	0.052514	
Cl	0.003376	NA ^(d)	NA	
Cr ₂ O ₃	0.002041	0.002041	0.002041	
F	0.001348	0.001349	0.001349	
Fe_2O_3	0.029727	0.029727	0.029727	
K ₂ O	0.012064	0.012064	0.012064	
Li ₂ O	0.014802	0.014802	0.014802	
MgO	0.016989	0.016989	0.016989	
Na ₂ O	0.168395	0.168395	0.168395	
P_2O_5	0.003239	0.003239	0.003239	
SO ₃	0.005542	NA	NA	
SiO ₂	0.424565	0.424565	0.424565	
SnO ₂	0.007587	0.007587	0.007587	
TiO ₂	0.008034	0.008034	0.008034	
V_2O_5	0.007499	0.007499	0.007499	
ZnO	0.031997	0.031997	0.031997	
ZrO ₂	0.036219	0.036219	0.036219	
Others	0.001045	0.009963	0.009963	
Al ₂ O ₃ ×Na ₂ O	NA	NA	0.01275761	
$(Li_2O)^2$	NA	NA	0.00021910	
Li ₂ O×Na ₂ O	NA	NA	0.00249258	

Table 5.7. REFMIX Composition in Formats Used with Models of Natural Logarithm of Viscosity at1150 °C for LAW Glasses

(a) The composition in mass fractions is from Table 2.3.

(b) See Table 5.4.

(c) See Table 5.5.

(d) NA = not applicable, because the model does not contain this term.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Model for $\ln(\eta_{1150})^{(a)}$	Predicted $ln(\widehat{\eta_{1150}})$ [ln(poise)]	Predicted $\widehat{\eta_{1150}}$ [poise]	Standard Deviation of Predicted $\ln(\eta_{1150})^{(b)}$ [ln(poise)]	90% CI ^(c) on Mean $ln(\widehat{\eta_{1150}})$ [ln(poise)]	90% CI ^(c) on Median $\widehat{\eta_{1150}}$ [poise]	90% PI ^(c) on Individual $ln(\widehat{\eta_{1150}})$ [ln(poise)]	90% $PI^{(c)}$ on Individual $\widehat{\eta_{1150}}$ [poise]
21-Term PQM Model	3.778 ^(d)	43.74 ^(d)	0.0111	(3.760, 3.796)	(42.94, 44.54)	(3.562, 3.994)	(35.25, 54.27)
18-Comp. RLM Model	3.804	44.86	0.0068	(3.792, 3.815)	(44.36, 45.36)	(3.573, 4.034)	(35.64, 56.47)

Table 5.8. Predicted Viscosity at 1150 °C, Standard Deviation, and Statistical Intervals for the REFMIX Composition Used in Two Models for Viscosity at 1150 °C

(a) The two $ln(\eta_{1150})$ models in this column are given in Table 5.5 (21-term PQM model) and Table 5.4 (18-component RLM model), respectively.

(b) The standard deviation is for the $ln(\eta_{1150})$ prediction considered to be the mean from many such results for the REFMIX glass.

(c) CI = two-sided confidence interval, PI = two-sided prediction interval (see Section B.6 of Appendix B).

(d) All calculations were performed using the REFMIX glass composition, model coefficients, and variance-covariance matrix values given in tables of this report. The calculated ln(poise) values were rounded to three decimal places in this table. The poise values were calculated by exponentiating the ln(poise) values before rounding, then rounding the resulting values to two decimal places in this table.

Eq. (B.21a) in Appendix B can be used to calculate a two-sided 90% CI for the true mean of $ln(\eta_{1150})$ values for the REFMIX glass composition with each of the $ln(\eta_{1150})$ models. Similarly, Eq. (B.22a) can be used to calculate a two-sided 90% PI for an individual test value of $ln(\eta_{1150})$ for the REFMIX glass composition with each of the $ln(\eta_{1150})$ models. In the notation of these equations:

- $100(1-\alpha)\% = 90\%$, so that $\alpha = 0.10$ for a 90% CI in Eq. (B.21a) and a 90% PI in Eq. (B.22a).
- The vector **g** contains entries corresponding to the terms in a given $ln(\eta_{1150})$ model, which are calculated using the composition of REFMIX in Table 5.7.
- Matrix **G** is formed from the data matrix used in the regression that generated a given $ln(\eta_{1150})$ model. Matrix **G** has the number of rows in the η_{1150} modeling dataset (534 glasses) and the number of columns corresponding to the number of terms in a given $ln(\eta_{1150})$ model. Each column is calculated according to the corresponding term in the model using the LAW normalized glass composition in the η_{1150} modeling dataset.

To calculate a two-sided 100(1 – α)% CI, the quantity margin-of-error $t_{1-\alpha/2,n-p}\sqrt{MSE_{OLS}\mathbf{g}^{T}(\mathbf{G}^{T}\mathbf{G})^{-1}\mathbf{g}}$ is subtracted from and added to the predicted $\ln(\eta_{1150})$ [denoted \hat{y} (g)], as indicated by Eq. (B.21a). To calculate a two-sided 100(1 – α)% PI, the quantity $t_{1-\alpha/2,n-p}\sqrt{MSE_{OLS}\left(1+\mathbf{g}^{T}(\mathbf{G}^{T}\mathbf{G})^{-1}\mathbf{g}\right)}$ is subtracted from and added to the predicted $\ln(\eta_{1150})$ [denoted \hat{y} (g)], as indicated by Eq. (B.22a). The $_{MSE_{OLS}(\mathbf{G}^{T}\mathbf{G})^{-1}}$ portion of these expressions is an estimate of the variance-covariance matrix for the estimated model coefficients, as discussed near the end of Section B.6 of Appendix B, and $t_{1-\alpha/2,n-p}$ is the Students-t statistic corresponding to the intended confidence level with *n*-*p* degrees of freedom. For the example calculations presented in Table 5.8, the Students-t statistic value needed for both the CI and PI formulas describing the 18-component RLM model is 1.647812. This is based on n=534 and p=18. The following cell formula can be used to obtain the t-statistic value with Excel: =T.INV(0.95,534-18). For the CI and PI calculations associated with the 21-term PQM model described in Table 5.8, the Students-t statistic is 1.647829=T.INV(0.95,534-21). The variance-covariance matrices for the 18-component RLM model and the recommended 21-term PQM model are respectively listed in Tables D.8 and D.9 of Appendix D. The quantity $\sqrt{MSE_{OIS}g^{T}(G^{T}G)^{-1}g}$ is the estimated standard deviation of a model prediction (for a given composition vector *a* expressed in a given model form); the value for each model is given in the fourth column of Table 5.7.

The 90% CIs and 90% PIs for the true mean and individual test result, respectively, of $ln(\eta_{1150})$ in units of ln(poise) for the REFMIX composition based on the two $ln(\eta_{1150})$ models are given in the fifth and seventh columns of Table 5.7. Exponentiating the resulting 90% CIs for the mean $ln(\eta_{1150})$ values in ln(poise) units yields 90% CIs for the median η_{1150} (poise) (Montgomery and Peck 1992). These values are in the sixth column of Table 5.8. Exponentiating the 90% PIs for individual $ln(\eta_{1150})$ test results in ln(poise) units yields 90% PIs on individual η_{1150} test results (poise) for REFMIX. These values are in the seventh column of Table 5.7.

5.5 Suitability of the Recommended Viscosity at 1150 °C Model for Application by the WTP LAW Facility

The 21-term PQM model for $ln(\eta_{1150})$ discussed in Section 5.3.3 is recommended for use by the WTP LAW Facility as the best model currently available for predicting η_{1150} for LAW glasses. This model yields unbiased predictions of η_{1150} over the WTP LAW Facility operating limits (20 to 100 poise) for η_{1150} values, both for the whole modeling dataset (see Figure 5.14) and for various subsets of the data,

including subsets of glasses with high waste loadings (see Figure 5.15). The recommended 21-term PQM model does not have a statistically significant LOF, so that a η_{1150} prediction within and somewhat outside the operating limits should be within the uncertainty of what would be obtained by batching and melting a LAW glass, measuring viscosity at several temperatures for the LAW glass, and determining the estimated value of η_{1150} for the LAW glass (as discussed in Section 2.3).

The magnitudes of uncertainties in η_{1150} model predictions should be small enough that they will not unduly restrict the formulation and processing of LAW glasses in the WTP LAW Facility. Figure 5.17 displays the ln(η_{1150}) prediction standard deviations versus predicted values [both in ln(poise) units] for the LAW glass compositions in the η_{1150} modeling dataset. The ln(η_{1150}) prediction standard deviations for the η_{1150} modeling dataset of 534 LAW glasses range from approximately 0.01 to 0.055 ln(poise) for the recommended 21-term PQM model. Note that predicted standard deviations will be larger for LAW glass compositions as their distance from glasses in the η_{1150} modeling dataset increases. Also, the total uncertainty in predictions with the recommended 21-term PQM model will depend on the type of statistical interval used (see Section B.6 of Appendix B).

Work to assess the impact of LAW glass composition and model uncertainties for the recommended $ln(\eta_{1150})$ model (Sections 5.3.3 and 5.3.4) on satisfying the WTP LAW Facility processing requirements for LAW glasses must be performed in the future. The impacts of these uncertainties on glass formulation and processability are planned to be addressed as part of the second iteration of the LAW GFA development work. The first iteration of that work (Kim and Vienna 2012) used a viscosity model from Piepel et al. (2007). A more recent evaluation, performed by Gervasio et al. (2018), used a preliminary viscosity model from Vienna et al. (2016).

The range of single component concentrations in the 534-glass dataset used for modeling is listed in Table 5.9 and discussed in Section 9.7. These ranges can be used to determine model validity ranges.

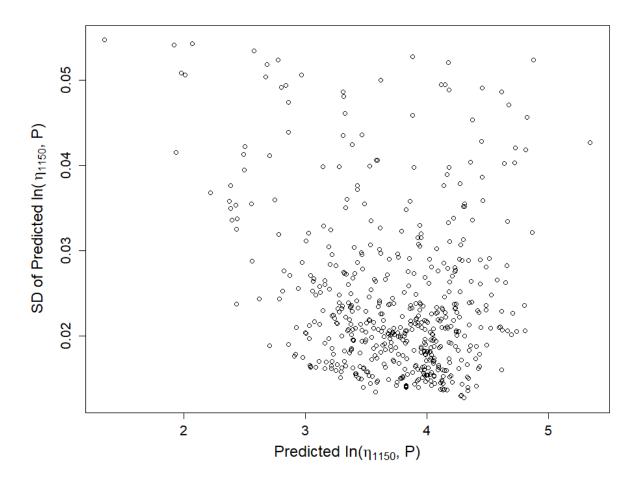

	20-com	nponent	18-com	ponent
Component	Min	Max	Min	Max
Al ₂ O ₃	0.034972	0.147521	0.034972	0.147521
B_2O_3	0.059952	0.138294	0.059952	0.138294
CaO	0.000000	0.127789	0.000000	0.127789
Cl	0.000000	0.011722	NA ^(a)	NA
Cr_2O_3	0.000000	0.006303	0.000000	0.006303
F	0.000000	0.007197	0.000000	0.007197
Fe ₂ O ₃	0.000000	0.119838	0.000000	0.119838
K ₂ O	0.000000	0.058846	0.000000	0.058846
Li ₂ O	0.000000	0.063294	0.000000	0.063294
MgO	0.000000	0.050182	0.000000	0.050182
Na ₂ O	0.024707	0.265729	0.024707	0.265729
P_2O_5	0.000000	0.040256	0.000000	0.040256
SO ₃	0.000360	0.016290	NA	NA
SiO ₂	0.335164	0.522624	0.335164	0.522624
SnO ₂	0.000000	0.050299	0.000000	0.050299
TiO ₂	0.000000	0.050058	0.000000	0.050058
V_2O_5	0.000000	0.040885	0.000000	0.040885
ZnO	0.009992	0.058152	0.009992	0.058152
ZrO_2	0.000000	0.067534	0.000000	0.067534
Others ^(b)	0.000000	0.003296	0.000963	0.021612

 Table 5.9. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Final Viscosity Models

(a) NA = not applicable or component not included as term.

(b) Note: Others for the 18-components are composed of all the NA

components as well as Others for the 20 components.

Figure 5.17. Prediction Standard Deviations versus Predicted Values over the LAW Glass Compositions in the 534-Glass Modeling Dataset for the Recommended 21-term PQM Model for the Natural Logarithm of Viscosity at 1150 °C

6.0 Models Relating Electrical Conductivity at 1150 °C to LAW Glass Composition

This section documents the development, evaluation, and validation of LAW glass property-composition models and corresponding uncertainty expressions for predicting the ε_{1150} in the form of $ln(\varepsilon_{1150})$ modeled as a function of LAW glass composition. The property-composition models and corresponding uncertainty expressions for $ln(\varepsilon_{1150})$ presented in this section were developed, evaluated, and validated using compositions and ε_{1150} values for simulated LAW glasses.

Section 6.1 discusses the LAW glasses available and used for $\ln(\epsilon_{1150})$ -composition model development, evaluation, and validation. Section 6.2 presents the model forms for $\ln(\epsilon_{1150})$ that were investigated. Section 6.3 summarizes the results for the selected linear and quadratic mixture model forms for $\ln(\epsilon_{1150})$ and identifies the recommended model. Section 6.4 illustrates the calculation of ϵ_{1150} predictions and the uncertainties in those predictions using selected $\ln(\epsilon_{1150})$ models and corresponding uncertainty equations. Section 6.5 discusses the suitability of the recommended $\ln(\epsilon_{1150})$ model for use by the WTP LAW Facility. Appendix B discusses the statistical methods and summary statistics used to develop, evaluate, and validate the several $\ln(\epsilon_{1150})$ model forms investigated, as well as statistical equations for quantifying the uncertainties in $\ln(\epsilon_{1150})$ model predictions.

6.1 Electrical Conductivity at 1150 °C Data Used for Model Development, Evaluation, and Validation

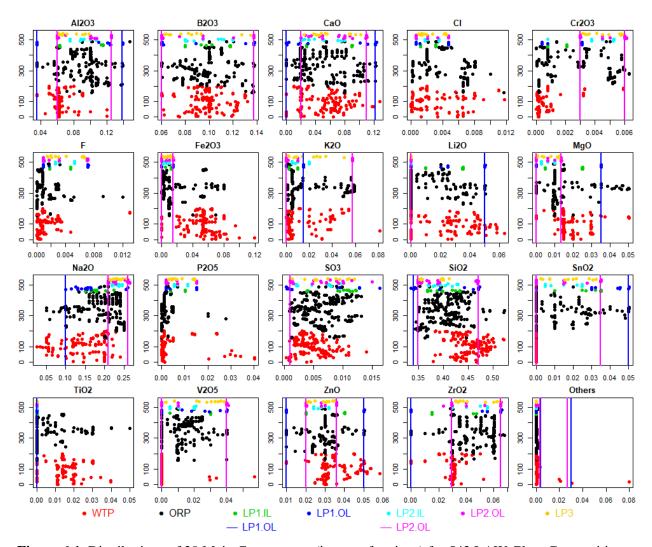
The data available and used for developing $ln(\varepsilon_{1150})$ models as functions of LAW glass composition are discussed in Section 6.1.1. The approaches and data used for validating and evaluating the models are discussed in Sections 6.1.2 and 6.1.3, respectively.

6.1.1 Model Development Data for Electrical Conductivity at 1150 °C

The data available for developing $ln(\epsilon_{1150})$ -composition models consist of composition and ϵ_{1150} values from 542 LAW glasses (see Table 2.2). These glasses and their normalized compositions based on measured (or estimated) SO₃ values are discussed in Section 2.0. The corresponding ϵ_{1150} values are presented in Table A.3 of Appendix A.

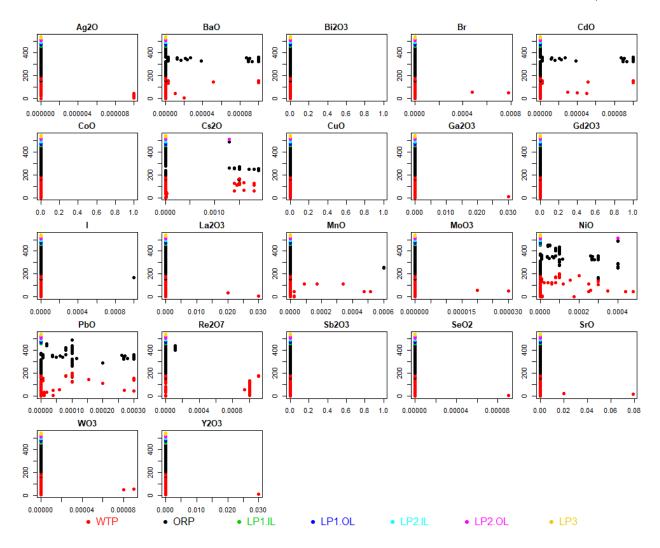
6.1.1.1 Assessment of Available Glasses with Data for Electrical Conductivity at 1150 °C

The dataset of 542 glasses with ε_{1150} results contains statistically designed as well as actively designed LAW glasses. Some actively designed glasses are outside the composition region covered by the majority of the LAW compositions. Such glasses are not ideal for inclusion in a modeling dataset because they can be influential when fitting models to data. Hence, it was decided to (i) graphically assess the 542 available LAW glass compositions with ε_{1150} values and (ii) remove from the modeling dataset any compositions considered to be outlying or non-representative of LAW glasses of interest for the WTP LAW Facility.


Figure 6.1 displays plots of the mass fractions for 19 "main components" plus the Others component (the sum of all remaining components) in the 542 LAW glasses with ϵ_{1150} data. These 20 components (including Others) have sufficient ranges and distributions of mass fraction values to support separate model terms if so desired. Figure 6.2 displays similar plots for the remaining "minor components." On

each plot in Figure 6.1 and Figure 6.2, the x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting. The plotting symbols in Figure 6.1 and Figure 6.2 correspond to the six groups of LAW glasses discussed in Section 2.3. For comparison purposes, the vertical lines in Figure 6.1 and Figure 6.2 represent the ranges over which the LAW glass components were varied in the PNNL (i) LAW Phase 1 outer-layer study (blue lines), (ii) LAW Phase 2 outer-layer study (pink lines), and (iii) LAW Phase 3 study (pink lines, the same as LAW Phase 2 outer-layer study), as shown in Table 2.1. Phases 2 and 3 focused on LAW glasses with high Na₂O waste loadings, whereas Phase 1 explored a larger LAW GCR with higher waste loadings.

Figure 6.1 shows that several of the 542 LAW glasses have "main components" with outlying mass fraction values (e.g., F) compared to the remaining glasses and to the component ranges in the PNNL LAW Phase 1, Phase 2, and Phase 3 studies. Figure 6.2 shows what appear to be outliers for some "minor components" (e.g., La₂O₃), but the values and ranges of those components are small and hence the glass compositions were not considered to be outliers. Table 6.1 lists the 16 LAW glasses excluded from the ε_{1150} modeling dataset. Finally, none of the 10 outlying glasses excluded from the EC modeling work by Piepel et al. (2007) are excluded in Table 6.1. None of those glasses appear as outliers in Figure 6.1, because of the Table 6.1 data included in the current ε_{1150} modeling dataset. Also, none of those glasses were identified as outliers by statistical modeling diagnostics.


Figure 6.3 and Figure 6.4 (corresponding to Figure 6.1 and Figure 6.2, respectively) show plots of component distributions after the 16 outlying glasses were removed from the ε_{1150} dataset containing 542 glasses. Figure 6.3 shows that for the remaining 526 LAW glasses, all 19 LAW glass "main components" have sufficient ranges and distributions of values within those ranges to support terms for modeling ε_{1150} . Figure 6.4 confirms that none of the "minor components" have sufficient ranges and distributions of values within their ranges to support model terms for those components. Based on Figure 6.3 and Figure 6.4, it was decided to use 20 components for initial ε_{1150} modeling work. These components are Al₂O₃, B₂O₃, CaO, Cl, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SO₃, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others (the sum of all remaining components). These are the same 20 components for initial modeling of all other properties (except for melter SO₃ tolerance, which normalized out SO₃).

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 6.1. Distributions of 20 Main Components (in mass fractions) for 542 LAW Glass Compositions with Data for Electrical Conductivity at 1150 °C. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), Phase 2 outer-layer study (pink lines), and Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, pink lines over plot the blue lines. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

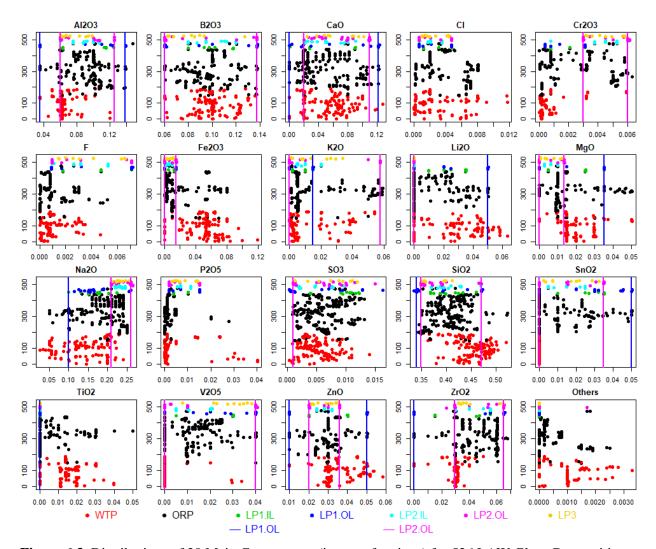
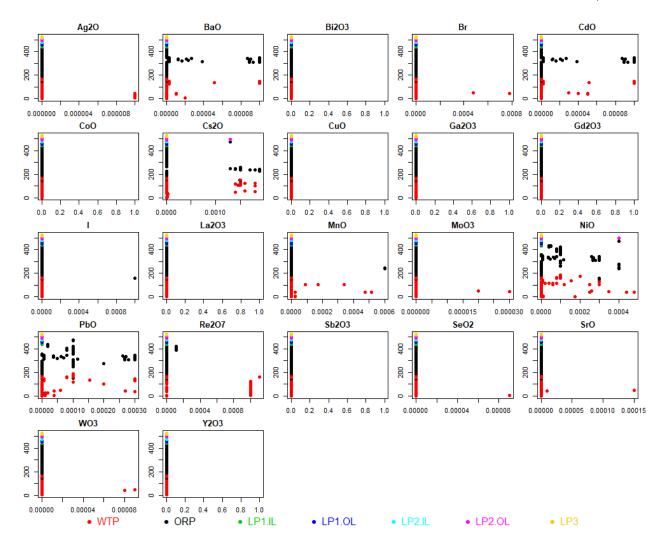


Figure 6.2. Distributions of 17 Minor Components (in mass fractions) for 542 LAW Glass Compositions with Data for Electrical Conductivity at 1150 °C. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting.

Glass #	Glass ID	Reason Glass Excluded from ε_{1150} Modeling Dataset
450	DWV-G-51B	$F > 0.0091 \ (= 0.013) \ mf^{(a)}$
453	BWV-G-142B	F > 0.0091 (= 0.013006) mf
626	FWV-G-108B	F > 0.0091 (= 0.012001) mf
628	GWV-G-36D	F > 0.0091 (= 0.009306) mf
629	GWV-G-65A	F > 0.0091 (= 0.009303) mf
80	LAWC25	$K_2O > 0.06 \ (= 0.080927) \ mf$
67	LAWC14	$V_2O_5 > 0.05 \ (= 0.057118) \ mf$
12	LAWA46	Others > $0.02 = 0.031024$ mf
13	LAWA47	Others > $0.02 = 0.031024$ mf
14	LAWA48	Others > $0.02 = 0.031024$ mf
20	LAWA64	Others > $0.02 = 0.079852$ mf
25	LAWA85	Others $> 0.02 \ (= 0.020963) \ \text{mf}$
43	LAWABP1	Others $> 0.02 (= 0.020001) \text{ mf}$
327	LA44PNCC	CCC glass
337	LAWM7	Identified as outlier in model development work
339	LAWM9	Identified as outlier in model development work
(a) $mf = 1$	mass fraction	


Table 6.1. Sixteen LAW Glasses Excluded from the Modeling Dataset for Electrical Conductivity at1150 °C (ϵ_{1150})

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 6.3. Distributions of 20 Main Components (in mass fractions) for 526 LAW Glass Compositions with Data for Electrical Conductivity at 1150 °C that Remain after Excluding the 16 Glasses in Table 6.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), Phase 2 outer-layer study (pink lines), and Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, pink lines over plot the blue lines. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 6.4. Distributions of 17 Minor Components (in mass fractions) for 526 LAW Glass Compositions with Data for Electrical Conductivity at 1150 °C that Remain after Excluding the 16 Glasses in Table 6.1. The x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting.

Figure 6.5 shows a scatterplot matrix of the 526 glasses remaining in the ϵ_{1150} modeling dataset after removing the 16 outlying compositions. High correlations between some pairs of components are evident, so pairwise correlation coefficients were calculated. These can vary from -1.0 (perfect negative correlation) to 0 (no correlation) to 1.0 (perfect positive correlation). The only component pair with correlation larger (in absolute value) than 0.60 was Na₂O and Li₂O with correlation -0.878. Such high correlations in the predictors make parameter values difficult to estimate and result in inflated prediction uncertainties. Thus, this high pairwise correlation needs to be kept in mind when developing and interpreting LAW glass property-composition models for ϵ_{1150} . See Section 9.7 for further discussion on treatment of highly correlated component concentrations.

	0.060 0.112		0.00		0.005		0.000		0.000		0.000 0.027		0.335 0.460		0.000		0.010 0.042		0.000 0.002	
A120				r ti						17		11 .		1 <u>4</u>	• ** •	.		1	ji.	0.110
0.112		2				.	Notes	X		7 %					% :-		*		<mark>ا</mark> نې	0.035
0.000		CaO	.		6 . 1	1	أيفي	×.		4	.		2	<u>.</u>	.	27.		2		0.085
0.008			CI	. 22	<u>.</u>	Â.		<u>ia:</u>		-	<u>.</u>				di.		<u>.</u>		1. j.	
			<u> </u>	Cr2O3	23	inerie		-		*****									13	0.004
0.005		<u>.</u>		1. 23 1. 1	F	, نائية				- <u>8</u>	К.,					14. AN	<u>.</u> 			0.08
0.039					<u>.</u>	Fe2O3					1997. 1			<u></u>	200 - 100 100	<u>ونا در ا</u>		<u>.</u> 		0.00
0.000							к20	Li20		Lieta Nacional	<mark>айнын</mark> Колдонул		265. 1782	<u>1.500</u>	2. 27	ini si			بينا د	0.042
0.033						a. Ma	1000 1000		MgO	- 14 - 14 - 14	с. С. Л.		<u></u>		185. 1961 -		نگ معن	1	allan.	0.000
0.000			149				<u>1</u> 87			Na2O				- C.					1	0.185
0.027			-					 		·	P205									0.025
0.000						λá.		Mé		i de	<u>ц</u> а,	S03			.	1	1	1	ie.	0.011
0.460			8	k i		** *	<mark>i</mark> d.	*	* *	1	a de la compañía de l Compañía de la compañía			њġ.	X .:	1	1	1		0.000
		%	e	1	ð., <u>,</u>		<mark>(</mark>), (2	<u>.</u>			<u>.</u>	3 **	SnO2	.		X.	12	<u>1</u> ,	0.034
0.033				<u>.</u>	<u>.</u>	×.	ar i ta	and -	<u>.</u>	- 14	<u></u> .	ik.	×	<u>is :</u>	TiO2		-	÷.	Č.e.	_
34										1						V205	<u>.</u>	1	<u>.</u>	0.027
0.042			2000								.			12 6	*	sy ċ	ZnO	<u>.</u> 151	.	0.045
0.002	است مستما لم		2-1-1- 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		24 - A 1 - A		s Sector Sector							15	**	1	4	ZrO2		0.045
0.000					<u> </u>				<u>.</u>	2 V 0			<u>ě</u>				Š.		Others	
0.035	5	0.000		0.000		0.00		0.000		0.025		0.000		0.000		0.000		0.000		

Figure 6.5. Scatterplot Matrix of 20 Components (mass fractions) for 526 LAW Glasses with Electrical Conductivity at 1150 °C Data that Remain after Excluding the 16 Glasses in Table 6.1

6.1.1.2 Electrical Conductivity at 1150 °C Modeling Dataset

Table A.3 in Appendix A lists the Glass #s, Glass IDs, and ε_{1150} values for the 526 remaining simulated LAW glasses used for ε_{1150} model development. The ε_{1150} values for the 16 glasses excluded as outliers from the 526-glass modeling dataset (see Table 6.1) are marked with an asterisk in Table A.3. The compositions for these 526 LAW glasses are included in Table A.2. The glass compositions in Table A.2 are the normalized mass fractions of the 20 components previously identified as having sufficient data to support a separate model term if needed. The LAW glass compositions in Table A.2 were normalized so that the total mass fractions of all 20 components for each glass equaled precisely 1.000000 as discussed in Section 2.2.

Section 2.3 discusses how the ε_{1150} values in Table A.3 were obtained from ε_{1150} versus temperature data. The values of ε_{1150} in Table A.3 for the 526 glasses in the modeling dataset range from 0.130 to 0.789 S/cm.

6.1.1.3 Replicate and Near-Replicate Data for Electrical Conductivity at 1150 °C

The changes to the LAW glass compositions caused by the renormalization associated with using measured (or estimated) SO₃ values (see Section 2.2) resulted in some replicate glasses not having exactly equal normalized compositions. Such compositions are near-replicates. For ease of discussion, henceforth both replicates and near-replicates are referred to as replicates.

Table 6.2 lists the replicate sets of LAW glasses in the ε_{1150} modeling dataset and the corresponding ε_{1150} values. Table 6.2 also lists estimates of (i) %RSDs [calculated using ε_{1150} values in original S/cm units] and (ii) SDs [calculated using $\ln(\varepsilon_{1150})$ values in $\ln(S/cm)$ units] for each replicate set. The %RSD values for 21 of the 28 replicate sets range from 0.75% to 18.64%, with the %RSD values for the other 7 replicate sets ranging from 24.75% to 62.83%. As discussed in Section 5.1.1.3, although four replicate sets (Glass # 456-457, 458-459, 460-461, and 462-463 pairs) exhibited a consistent trend between the ε_{1150} and measured Na₂O concentration, it was determined that this trend may not be enough to justify excluding these four replicate sets. No reasons for the higher %RSD values for the remaining three replicate sets could be found in the data-source reports. Hence, it was assumed that periodically there may be larger uncertainties in batching and melting glasses and determining ε_{1150} .

Table 6.2 also lists pooled estimates of %RSDs and SDs calculated over all replicate sets. A pooled %RSD or SD combines the separate %RSD or SD estimates from each replicate set, so that a more precise combined estimate of the %RSD or SD is obtained. These pooled %RSDs and SDs include uncertainties due to fabricating glasses, determining SO₃ measured or estimated values, and the process of determining ϵ_{1150} values. The magnitudes of the pooled SD = 0.2006 [calculated in ln(S/cm) units] and %RSD = 19.95 [calculated in S/cm units] in Table 6.2 indicate roughly a 20% total relative uncertainty in the ϵ_{1150} values over the replicate glasses. The pooled estimates of replicate uncertainty for ϵ_{1150} in Table 6.2 are used subsequently to assess LOF of the various ln(ϵ_{1150}) models considered.

Replicate Set		Replicate Set		SD
Glass #s	Replicate Set Glass IDs	ϵ_{1150} (S/cm) Values	%RSD ^(a)	[ln(S/cm)]
993	EWG-LAW-Centroid-1	0.388	2.86	0.0286
995	EWG-LAW-Centroid-2	0.404	2.00	0.0200
9	LAWA44	0.516	40.10	0.4123
326	LAWA44R10	0.288	+0.10	0.4125
227	LAWB83	0.233		
229	LAWB84	0.230	7.21	0.0734
284	B1-AZ101(LAWB83)	0.200		
442	LAWC100	0.290		
443	LAWC100R1	0.330	9.45	0.0962
447	WVY-G-95A	0.350		
75	LAWC22	0.448		
272	C22AN107	0.340	18.64	0.1793
279	C1-AN107(LAWC22)	0.320		
456	LAWCrP1	0.294	39.76	0.4086
457	LAWCrP1R	0.524	57.10	0.1000
458	LAWCrP2	0.381	37.70	0.3864
459	LAWCrP2R	0.658	57.70	0.2001
460	LAWCrP3	0.339	29.67	0.3012
461	LAWCrP3R	0.519	27.07	0.3012
462	LAWCrP4	0.363	45.20	0.4684
463	LAWCrP4R	0.704	10.20	0.1001
451	LAWE7H	0.400	2.15	0.0215
624	FWV-G-63B	0.388	2.110	0.0210
331	LAWM1	0.162	62.83	0.6753
383	LAWM53	0.421		
365	LAWM35	0.304	24.75	0.2501
386	LAWM56	0.433		
846	ORLEC12	0.431	3.83	0.0383
865	OWV-G-144E	0.455		
848	ORLEC14	0.567	0.75	0.0075
887	QWV-G-107B	0.561		
850	ORLEC16	0.531	1.97	0.0197
888	PWV-G-130C	0.546		
853	ORLEC19	0.350	11.85	0.1187
890	QWV-G-29C	0.414		
856	ORLEC22	0.393	6.85	0.0685
891	QWV-G-75B	0.433		
862 867	ORLEC26 OWV-G-109B	0.514 0.455	8.61	0.0862
867		0.435		
863 869	ORLEC27 PWV-G-43E	0.431	1.78	0.0178
869	ORLEC28	0.442		
804 871	PWV-G-93A	0.483	3.59	0.0359
871	ORLEC33	0.401		
877 903	RWV-G-9C	0.533	6.98	0.0698
878	ORLEC34	0.333		
878 904	RWV-G-48D	0.477 0.487	1.47	0.0147

 Table 6.2. Uncertainty in Electrical Conductivity at 1150 °C Responses for Replicate and Near-Replicate Sets

Replicate Set		Replicate Set		SD					
Glass #s	Replicate Set Glass IDs	ϵ_{1150} (S/cm) Values	%RSD ^(a)	[ln(S/cm)]					
893	ORLEC44	0.432	8.03	0.0904					
905	RWV-G-79C	0.484	8.05	0.0804					
895	ORLEC46	0.456	0.78	0.0078					
906	RWV-G-120D	0.451	0.78	0.0078					
897	ORLEC48R	0.423	3.42	0.0342					
907	SWV-G-17A	0.403	5.42	0.0342					
597	ORPLD1	0.347							
997	LAW-ORP-LD1(1)	0.340	8.35	0.0825					
999	LAW-ORP-LD1(2)	0.407	0.55	0.0823					
1035	LP2-OL-07	0.377							
1022	LP2-IL-10	0.523							
1028	LP2-IL-16	0.562	8.23	0.0825					
1031	LP2-OL-02	0.462	0.23	0.0825					
1049	LP2-OL-21	0.498							
1034	LP2-OL-05	0.357	2.34	0.0234					
1038	LP2-OL-10-MOD	0.369	2.34	0.0234					
Pooled Over All 28 Replicate Sets with 35 total DF ^(b) 19.95 0.									
(a) $\%$ RSD = 100 × (Standard Deviation / Mean).									
(b) DF =									

Table 6.2. Uncertainty in Electrical Conductivity at 1150 °C Responses for Replicate and
Near-Replicate Sets (cont.)

6.1.2 Model Validation Approach and Data for Electrical Conductivity at 1150 °C of LAW Glasses

The validation approach for ε_{1150} modeling was based on splitting the 526-glass dataset for model development into five modeling/validation subsets. Of the 526 model development glasses, 63 were in 28 replicate sets. The five modeling/validation splits of the 526 glasses in the ε_{1150} modeling dataset were formed as follows.

- The 63 replicate glasses in 28 replicate sets were set aside so they would always be included in each of the five model development datasets. This was done so that replicate sets would not be split between modeling and validation subsets, thus negating the intent to have validation glasses different than model development glasses.
- The remaining 463 glasses were ordered from smallest to largest according to their ε_{1150} values (S/cm). The 463 glasses were numbered 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, etc. All of the 1's formed the first model validation set, while all of the remaining points formed the first model development dataset. Similarly, all of the 2's, 3's, 4's, and 5's respectively formed the second, third, fourth, and fifth model validation sets. In each case, the remaining non-2's, non-3's, non-4's, and non-5's formed the second, third, fourth, and fifth model development datasets. Because 463 is not evenly divisible by 5, the five modeling and validation subsets did not all contain the same numbers of glasses. Three of the five splits contained 93 glasses for validation and 370 glasses for modeling. The other two splits contained 92 glasses in the modeling subsets do not yet include the 63 replicates.
- The 63 replicate glasses were added to each of the split modeling subsets. Including the replicates, three splits contained 433 glasses for modeling and 93 for validation, while the other two splits contained 434 glasses for modeling and 92 for validation.

Data splitting was chosen as the validation approach because the ε_{1150} modeling dataset contains all compositions that (i) are in the LAW GCR of interest, (ii) meet QA requirements, and (iii) have ε_{1150} data. Having a separate validation dataset not used for modeling is desirable, but that desire was over-ridden by wanting ε_{1150} models developed using all appropriate data.

6.1.3 Subsets of LAW Glasses to Evaluate Prediction Performance of Models for Electrical Conductivity at 1150 °C

Section 2.4 discusses six subsets of LAW glasses for evaluating the prediction performance of LAW glass property-composition models, including subsets of glasses with higher waste loadings. The subsets, as discussed in Section 2.4, are denoted WTP, ORP, LP2OL, LP123, HiNa₂O, and HiSO₃. The ε_{1150} modeling dataset of 526 LAW glasses (see Section 5.1.1) contains 177, 267, 93, 82, 191, and 101 glasses with ε_{1150} values in these six evaluation subsets, respectively. The "Glass #s" of these six evaluation subsets of LAW glasses are listed in Table C.4 of Appendix C. The normalized LAW glass compositions and ε_{1150} values for the glasses with these "Glass #s" are listed in Tables A.2 and A.3, respectively, of Appendix A.

Summary statistics denoted R_{Eval}^2 and $RMSE_{Eval}$ (see Section B.3 of Appendix B), as well as predicted versus measured plots (see Section B.3), are subsequently used to assess the prediction performance of the ε_{1150} models (presented in later subsections) for the six evaluation subsets listed in Table C.4 of Appendix C.

6.2 Model Forms for Electrical Conductivity at 1150 °C of LAW Glasses

Ideally, a property-composition model for ε_{1150} would use known mechanisms of ε_{1150} as a function of LAW glass composition. However, no such mechanisms are known. Empirical models for ε_{1150} with coefficients estimated from model development data have been shown in the past to perform well. The empirical model forms used are from the general class of *mixture experiment models* (Cornell 2002), which includes models linear in composition as well as non-linear in composition. Section B.1 of Appendix B discusses mixture experiments and several general forms of mixture experiment models.

Section 6.2.1 discusses the forms of mixture experiment models used for ε_{1150} of LAW glasses. Section 6.2.2 discusses using natural-log transformed ε_{1150} values as the response variable for ε_{1150} modeling.

6.2.1 Mixture Experiment Model Forms for Electrical Conductivity at 1150 °C of LAW Glasses

The LM and PQM model forms introduced in Section B.1 of Appendix B were chosen for use in modeling $ln(\epsilon_{1150})$ as a function of LAW glass composition. These models have been used in the past (Piepel et al. 2007; Muller et al. 2014) to model the compositional dependence of $ln(\epsilon)$ -composition-temperature models. However, the present work considered LM and PQM models for $ln(\epsilon_{1150})$ as functions of LAW glass composition. The LM model form is given by

$$\ln\left(\varepsilon_{1150}\right) = \sum_{i=1}^{q} \beta_i g_i + e \tag{6.1}$$

while the PQM model form is given by

$$ln(\varepsilon_{1150}) = \sum_{i=1}^{q} \beta_i g_i + \text{Selected} \left\{ \sum_{i=1}^{q} \beta_{ii} g_i^2 + \sum_{i=1}^{q-1} \sum_{j=1}^{q} \beta_{ij} g_i g_j \right\} + e$$
(6.2)

where in Eqs. (6.1) and (6.2):

 $ln(\epsilon_{1150}) = natural logarithm of \epsilon_{1150} (in S/cm)$

 g_i = normalized mass fraction of the *i*th glass oxide or halogen component

$$(i = 1, 2, ..., q)$$
, such that $\sum_{i=1}^{q} g_i = 1$

 β_i = coefficient of the *i*th linear blending term (*i* = 1, 2, ..., *q*)

$$\beta_{ii}$$
 and β_{ij} = coefficients of selected quadratic (squared or crossproduct) blending terms to be estimated from the data

e = random error for each data point

Many statistical methods exist for the case where the *E* are statistically independent (i.e., not correlated) and normally distributed with mean 0 and standard deviation σ . In Eq. (6.2), "Selected" means that only some of the terms in curly brackets are included in the model. The subset is selected using stepwise regression or other variable selection methods (Draper and Smith 1998; Montgomery et al. 2012). PQM models are discussed in more detail and illustrated by Piepel et al. (2002) and Smith (2005).

Cornell (2002) discusses many other empirical mixture model forms that could have been considered for ε_{1150} -composition modeling. However, these other mixture model forms were not investigated because the special blending effects of components associated with those models were judged not to apply for ε_{1150} . The model forms in Eqs. (6.1) and (6.2) are widely used in many application areas (including waste glass property modeling) and often predict the response very well.

6.2.2 Transformation of Electrical Conductivity at 1150 °C for LAW Glasses

In modeling ε_{1150} , it is advantageous to use the natural logarithm transformation of the ε_{1150} values. The advantages of this transformation include the following:

- The ε_{1150} values for the 526 LAW glasses in the ε_{1150} modeling dataset range from 0.130 to 0.789 S/cm. This range is not one full order of magnitude, but still the uncertainty in making glasses and determining ε_{1150} leads to smaller absolute uncertainties for smaller ε_{1150} values and larger absolute uncertainties for larger ε_{1150} values. Hence, the OLS regression assumption of equal variances for all response variable values (see Section B.2.1 of Appendix B) is violated. After a logarithmic transformation, variances of ε_{1150} tend to be approximately equal as required for OLS regression.
- A logarithmic transformation tends to linearize the compositional dependence of ε_{1150} data and reduce the need for non-linear terms in the model form.
- A natural logarithm transformation is preferred over a common logarithm (or other base logarithm) transformation because of the approximate relationship

$$SD [ln(y)] \cong RSD (y)$$
 (6.3)

where SD denotes standard deviation, RSD denotes relative standard deviation (i.e., the standard deviation divided by the mean), and *y* denotes ε_{1150} . Eq. (6.3) results from applying the first-order variance propagation formula [Eq. (7-7) of Hahn and Shapiro (1967)] to the function $z = \ln(y)$. The relationship in Eq. (6.3) is very useful, in that uncertainties of the natural logarithm of the response variable *y* can be interpreted as approximate RSDs of the untransformed response variable *y*.

For these reasons, the natural logarithmic transformation was employed for all ε_{1150} model forms.

6.3 Property-Composition Model Results for Electrical Conductivity at 1150 °C of LAW Glasses

This section discusses the results of fitting several different mixture experiment models using natural logarithms of ϵ_{1150} (S/cm) as functions of LAW glass compositions. Section 6.3.1 presents the results of modeling $\ln(\epsilon_{1150})$ using a 20-component FLM model. Sections 6.3.2 and 6.3.3 present the results of modeling $\ln(\epsilon_{1150})$ using RLM and PQM models based on a reduced set of mixture components. Finally, Section 6.3.4 compares the results from the three models and recommends a $\ln(\epsilon_{1150})$ model for future use and evaluation.

6.3.1 Results from the 20-Component Full Linear Mixture Model for the Natural Logarithm of Electrical Conductivity at 1150 °C of LAW Glasses

As the initial step in $\ln(\epsilon_{1150})$ -composition model development, an FLM model with the 20 components identified in Section 6.1.1 was fit to the modeling data (526 LAW glasses). Table 6.3 contains the results for the 20-component FLM model of $\ln(\epsilon_{1150})$. Table 6.3 lists the estimated model coefficients, standard deviation errors of the coefficients (i.e., the standard deviation of the coefficients), and model fit summary statistics for the 20-component FLM model on $\ln(\epsilon_{1150})$ using the modeling dataset (526 LAW glasses). Table 6.3 also contains the results from the (i) data-splitting validation approach (see Section 6.1.2), and (ii) evaluation of model predictions for the six evaluation subsets (see Section 6.1.3). In the data-splitting validation portion of the results at the bottom of Table 6.3, the columns are labeled DS1, DS2, DS3, DS4, and DS5 to denote the five modeling/validation splits of the data as described in Section 6.1.2. The last column of this part of Table 6.3 shows the averages for the different statistics over the five splits.

The $R^2 = 0.8359$, $R^2_A = 0.8298$, and $R^2_P = 0.8182$ statistics (see Section B.3 of Appendix B) in Table 6.3 show that (i) the 20-component FLM model fits the $ln(\epsilon_{1150})$ data in the 526-glass modeling dataset reasonably well, (ii) there are not a large number of unneeded model terms, and (iii) there are not any highly influential data points (confirmed in the diagnostic graphics described in Section B.3). The RMSE = 0.1417 is smaller than the pooled glass batching and ϵ_{1150} determination uncertainty [SD = 0.2066 in ln(S/cm) units] estimated from replicates in Table 6.2. This suggests that the 20-component FLM model does not have a statistically significant LOF, which is confirmed by the model LOF p-value > 0.9999 in Table 6.3. See Section B.3 for discussion of the statistical test for model LOF.

At the bottom right of Table 6.3, the average model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE) over the five data-split validation sets are close to the statistics obtained from fitting the 20-component FLM model for $ln(\epsilon_{1150})$ to all 526 glasses in the modeling dataset. The data-split validation statistics (R^2_V and RMSE_V) are also relatively close to the R^2 and RMSE (i) values from fitting the model to the full dataset, and

(ii) averages from fitting the model to the data-split modeling subsets. This indicates that the 20-component FLM model maintains its predictive performance for data not used to fit the model.

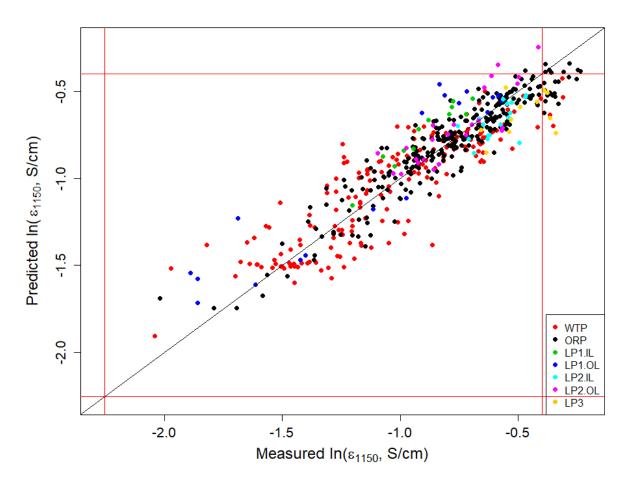
ln(ε ₁₁₅₀) 20-Component	Coefficient	Coefficient	N	Iodeling	Iodeling Data Statisti	Iodeling Data Statistic,
FLM Model Term	Estimate	Stand. Err.	526 Gla	sse	sses ^(a)	sses ^(a)
Al ₂ O ₃	-3.4665	0.2923	\mathbb{R}^2			
B_2O_3	-3.0511	0.3198	R^2_A			
CaO	-3.4203	0.2228	R ² _P			
Cl	-2.5182	2.9297	RMSE			
Cr_2O_3	7.8412	3.8548	Model I	LOF p	-value	-value
F	-16.8531	4.7818				
Fe ₂ O ₃	-0.9435	0.3308	Evaluation			
re ₂ O ₃	-0.9433	0.5508	(# Glasses) ^(b)		R ² _{Eval}
K ₂ O	-0.5211	0.4190	WTP (1	77)		0.6876
Li ₂ O	15.4252	0.7680	ORP (2	67)		0.8535
MgO	-3.9090	0.7187	LP2OL	(93)		0.3498
Na ₂ O	6.8513	0.2315	LP123 ((82)		0.6881
P_2O_5	-2.3760	1.3379	HiNa ₂ O	(191)		0.1924
SO ₃	0.4282	2.5079	HiSO ₃ (101)		0.6768
SiO ₂	-2.9632	0.1341				
SnO ₂	-4.4727	0.5660				
TiO ₂	-1.3880	0.8712				
V_2O_5	-2.4194	0.6215				
ZnO	-2.4630	0.7218				
ZrO ₂	-1.9047	0.4791				
Others ^(c)	21.2636	10.6379				
Data Splitting Statistic ^(a,d)	DS1	DS2	DS3	DS4		DS5
\mathbb{R}^2	0.8249	0.8357	0.8331	0.8254		0.8439
D ²	0.01.00	0.000	0.00 - 1	0.04 - 4	0	0.0.10

Table 6.3. Coefficients and Performance Summary for the 20-Component Full Linear Mixture Model onthe Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

Data Splitting Statistic ^(a,d)	DS1	DS2	DS3	DS4	DS5	Average
\mathbb{R}^2	0.8249	0.8357	0.8331	0.8254	0.8439	0.8326
R ² _A	0.8168	0.8282	0.8254	0.8174	0.8368	0.8249
R ² _P	0.7999	0.8137	0.8120	0.8022	0.8230	0.8102
RMSE	0.1455	0.1412	0.1408	0.1454	0.1414	0.1429
R ² v	0.8716	0.8305	0.8380	0.8767	0.7715	0.8377
RMSEv	0.1287	0.1461	0.1500	0.1255	0.1486	0.1398

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

(b) The six sets of LAW evaluation glasses are discussed in Section 2.4 and Section 6.1.3.


(c) For the 20-component FLM model, the "Others" component includes any components not separately listed.

(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 6.1.2 describes how the modeling dataset was split into modeling and validation subsets.

The statistics from evaluating the predictive performance of the 20-component FLM model for $ln(\epsilon_{1150})$ on the six evaluation subsets of modeling glasses (see Section 6.1.3) are given on the right side of Table 6.3. Four of the six evaluation subsets (HiSO₃, WTP, LP123, and ORP) have R²_{Eval} statistics ranging from 0.6768 to 0.8535. These values are from notably below to slightly above the R² statistic for the whole modeling dataset (0.8359). The other two evaluation subsets (LP2OL and HiNa₂O) have R²_{Eval} values of 0.3498 and 0.1924, respectively, which are substantially below 0.8359. The R²_{Eval} values that are moderately to substantially lower than the R² for the whole modeling dataset are because ϵ_{1150} depends

very heavily on the mass fractions of Na₂O and Li₂O in a LAW glass composition. Hence, the less variation in mass fractions of Na₂O and Li₂O there is in an evaluation subset, the less dependent $ln(\epsilon_{1150})$ will be on the mass fractions of Na₂O and Li₂O. This statement is discussed further in Section 6.3.3.

Figure 6.6 shows the PvM plot for the 526-glass modeling dataset using the 20-component FLM model on $ln(\epsilon_{1150})$. The plot illustrates that the 20-component FLM model predicts $ln(\epsilon_{1150})$ fairly well with notable scatter, but with tendencies to (i) under-predict below $ln(\epsilon_{1150}) \sim -1.50$ ($\epsilon_{1150} \sim 0.223$ S/cm) and (ii) over-predict above $ln(\epsilon_{1150}) \sim -0.40$ ($\eta_{1150} \sim 0.670$ S/cm). The tendency of this model to over-predict low ϵ_{1150} values is within the WTP LAW Facility operating limits shown by the red lines in Figure 6.6, which is nominally undesirable. This topic is further discussed in Sections 6.3.2, 6.3.3, 6.4, and 6.5.

Figure 6.6. Predicted versus Measured Plot for the 526-Glass Modeling Dataset Using the 20-Component Full Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C of LAW Glasses. The red lines represent WTP LAW Facility operating limits for electrical conductivity at 1150 °C (0.105 to 0.671 S/cm).

Figure 6.7 displays PvM plots using the 20-component FLM model for $ln(\epsilon_{1150})$ in Table 6.3 applied to the six evaluation subsets discussed in Section 6.1.3. Each plot in the figure contains the evaluation R^2 and RMSE values for the corresponding evaluation subset. Figure 6.7 shows that the 20-component FLM model for $ln(\epsilon_{1150})$ fit to the 526-glass modeling dataset predicts with different amounts of scatter and sometimes ranges of under- or over-prediction in the PvM plots for the six evaluation subsets. In particular, the model predicts with the tightest scatter for the ORP evaluation set, though there is some tendency to under-predict the largest ln(ϵ_{1150}) values. Figure 6.7 shows that the largest scatter (and thus smallest R^2_{Eval} values) occurs for the HiNa₂O and LP2OL evaluation sets. As noted previously, these evaluation sets contain only high-Na₂O glasses, which reduces the R^2_{Eval} values. The prediction performances for the six evaluation sets using the model that is ultimately recommended are discussed in more detail in Section 6.5.

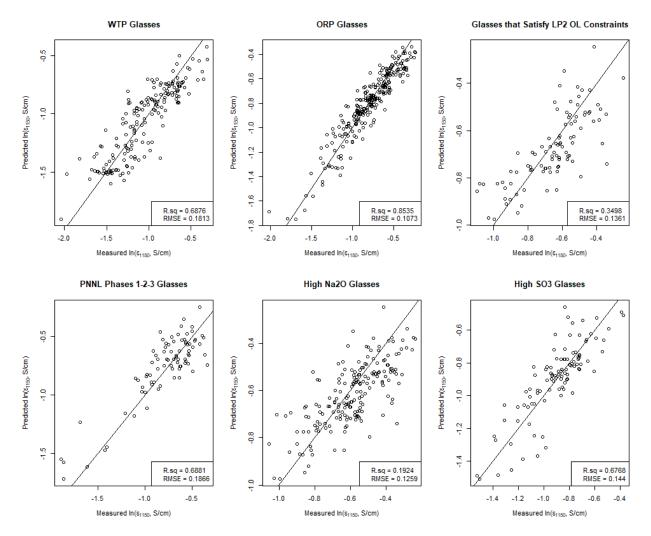
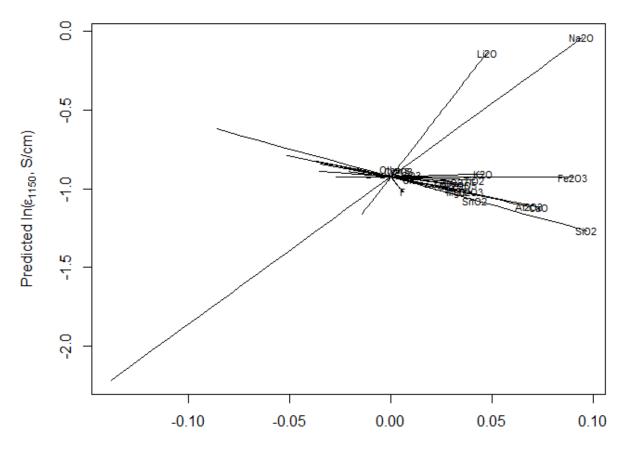



Figure 6.7. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 20-Component Full Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

The model in Table 6.3 fits the 526-glass modeling dataset well enough, with no statistically significant LOF, to provide guidance for reducing the FLM model [i.e., removing separate terms for components that do not significantly influence $ln(\epsilon_{1150})$]. Hence, the 20-component FLM model was used to produce the response trace plot (see Section B.4.1 in Appendix B shown in Figure 6.8. The average glass composition of the 1074 glasses in the compiled database discussed in Section 2.3 was used as the REFMIX (see Section B.4.1) in response trace plots for every modeled property. The glass composition of the REFMIX is listed in Table 2.3.

The response trace plot shown in Figure 6.8 shows that Li₂O and Na₂O are predicted to have the strongest effects of any component, with both predicted to increase $ln(\epsilon_{1150})$. The components SiO₂, Al₂O₃, CaO, and SnO₂ are predicted to have much smaller decreasing effects on $ln(\epsilon_{1150})$. The component F is predicted to have the steepest decreasing effect on $ln(\epsilon_{1150})$, but over a small range. Hence, the predicted effect of F may not be real. The remaining components have predicted response traces with small to negligible slopes, indicating those components are predicted to have small to negligible effects on $ln(\epsilon_{1150})$.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 6.8. Response Trace Plot for 20-Component Full Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

6.3.2 Results from a Reduced Linear Mixture Model for Electrical Conductivity at 1150 °C for LAW Glasses

The 20-component FLM model for $\ln(\epsilon_{1150})$ presented in Section 6.3.1 likely contains components that do not significantly contribute to predicting $\ln(\epsilon_{1150})$, so model component reduction was the next step of the model development approach. Thus, RLM models for $\ln(\epsilon_{1150})$ involving fewer than the 20 components were considered. The sequential F-test model reduction approach (see Section B.5.1 of Appendix B; Piepel and Cooley 2006) was used.

6.3.2.1 Numerical Results for the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

The RLM model for $ln(\epsilon_{1150})$ was obtained using the backward-elimination, F-test method discussed in Section B.4.1 of Appendix B. Glass scientists provided inputs on LAW glass components that should be retained in the model, and the method determined whether the remaining components should be kept as separate linear terms or combined into Others. The resulting RLM model for $ln(\epsilon_{1150})$ contained terms for 11 components: Al₂O₃, B₂O₃, CaO, K₂O, Li₂O, MgO, Na₂O, SiO₂, SnO₂, V₂O₅, and Others. So, Cl, Cr₂O₃, F, Fe₂O₃, P₂O₅, SO₃, TiO₂, ZnO, and ZrO₂ were combined into the Others component. Note that the resulting Others component is 1 minus the sum of all remaining components, and thus differs from the Others in the 20-component FLM model discussed in Section 6.3.1.

Table 6.4 contains the results for the 11-component RLM model of $ln(\epsilon_{1150})$. Table 6.4 lists the model coefficients, standard deviations of the coefficients, and model fit statistics for the 11-component RLM model using the modeling dataset (526 LAW glasses). Table 6.4 also contains the results from the (i) data-splitting validation approach (see Section 6.1.2), and (ii) evaluation of model predictions for the six evaluation subsets (see Section 6.1.3). In the data-splitting validation portion of the results at the bottom of Table 6.4, the columns are labeled DS1, DS2, DS3, DS4, and DS5 to denote the five modeling/validation splits of the data as described in Section 6.1.2. The last column of this part of Table 6.4 shows the averages for the different statistics over the five splits.

The $R^2 = 0.8267$, $R^2_A = 0.8233$, and $R^2_P = 0.8159$ statistics (see Section B.3 of Appendix B) in Table 6.4 show that (i) the 11-component RLM model fits the $ln(\epsilon_{1150})$ data in the 526-glass modeling dataset reasonably well, (ii) there are not a large number of unneeded model terms, and (iii) there are not any highly influential data points. The RMSE = 0.1444 is smaller than the pooled glass batching and ϵ_{1150} determination uncertainty (SD = 0.2066 in ln(S/cm) units) estimated from replicates in Table 6.2. This suggests that the 11-component RLM model does not have a statistically significant LOF, which is confirmed by the model LOF p-value = 0.9999 in Table 6.4. See Section B.3 for discussion of the statistical test for model LOF.

At the bottom right of Table 6.4, the average model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE) over the five data-splits are close to the statistics obtained from fitting the 11-component RLM model for $ln(\epsilon_{1150})$ to all 526 glasses in the modeling dataset. The data-split validation statistics (R^2_V and RMSE_V) are also relatively close to the R^2 and RMSE (i) values from fitting the model to the full dataset, and (ii) averages from fitting the model to the data-split modeling subsets. This indicates that the 11-component RLM model for $ln(\epsilon_{1150})$ maintains its predictive performance for data not used to fit the model.

ln(ε ₁₁₅₀) 11-Component	Coefficient	Coefficient	Modeling	Data Statisti	c,	
RLM Model Term	Estimate	Stand. Err.	526 Glasse	s ^(a)		Value
Al ₂ O ₃	-3.4135	0.2862	R ²			0.8267
B ₂ O ₃	-3.1506	0.3162	R^2_A			0.8233
CaO	-3.4901	0.2132	R^2_P			0.8159
K ₂ O	-0.5435	0.4073	RMSE			0.1444
Li ₂ O	15.1955	0.7544	Model L	OF p-value		0.9999
MgO	-4.1430	0.7050				
	6 7 4 2 5	0.0151	Evaluation	n Set		
Na ₂ O	6.7435	0.2151	(# Glasses)	(b)	R ² Eval	RMSE _{Eval}
SiO ₂	-2.9087	0.1264	WTP (1	77)	0.6843	0.1755
SnO ₂	-4.7892	0.5266	ORP (26	57)	0.8372	0.1100
V ₂ O ₅	-3.0055	0.5913	LP2OL	(93)	0.4420	0.1185
Others ^(c)	-1.4542	0.2358	LP123 (82)	0.6096	0.1887
			HiNa ₂ O	(191)	0.0798	0.1243
			HiSO ₃ (101)	0.6737	0.1416
Data Suliting Statistic(2.d)	DC1	DG2	DC2	DC4	D65	A
Data Splitting Statistic ^(a,d)		DS2	DS3	DS4	DS5	Average
R ²	0.8154	0.8259	0.8248	0.8167	0.8321	0.8230
R ² _A	0.8111	0.8217	0.8206	0.8124	0.8281	0.8188
R ² _P	0.8009	0.8125	0.8120	0.8030	0.8190	0.8095
RMSE	0.1477	0.1439	0.1427	0.1474	0.1451	0.1454
R ² v	0.8680	0.8273	0.8278	0.8652	0.7831	0.8343
RMSEv	0.1305	0.1475	0.1546	0.1313	0.1448	0.1417

 Table 6.4. Coefficients and Performance Summary for the 11-Component Reduced Linear Mixture

 Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

(b) The six sets of LAW evaluation glasses are discussed in Section 2.4 and Section 6.1.3.

(c) For the 11-component RLM model, the "Others" component includes any components not separately listed.

(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 6.1.2 describes how the modeling dataset was split into modeling and validation subsets.

The statistics from evaluating the predictive performance of the 11-component RLM model for $ln(\epsilon_{1150})$ on the six evaluation subsets of modeling glasses (see Section 6.1.3) are given on the right side of Table 6.4. Four of the six evaluation subsets (HiSO₃, WTP, LP123, and ORP) have R²_{Eval} statistics ranging from 0.6096 to 0.8372. These values are from notably below to slightly above the R² statistic for the whole modeling dataset (0.8267). The other two evaluation subsets (LP2OL and HiNa₂O) have R²_{Eval} values of 0.4420 and 0.0798, respectively, which are substantially below 0.8267. The R²_{Eval} values that are moderately to substantially lower than the R² for the whole modeling dataset are because ϵ_{1150} depends very heavily on the mass fraction of Na₂O and Li₂O there is in an evaluation subset, the less dependent ln(ϵ_{1150}) will be on the mass fractions of Na₂O and Li₂O. This statement is discussed further in Section 6.3.3.

6.3.2.2 Graphical Results for the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

Diagnostic plots for the 11-component RLM model (not included in this report) support the assumption of normally distributed errors in the $ln(\epsilon_{1150})$ data (see Section B.3 of Appendix B). Figure 6.9 displays the standardized residuals for the 11-component RLM model of the $ln(\epsilon_{1150})$ plotted versus the data index (a

sequential numbering of the modeling data points) with different plotting symbols representing the different groups of LAW glasses discussed in Section 2.3. Figure 6.9 yields the following observations:

- The WTP and LP1.OL (PNNL Phase 1 outer layer) datasets have a wider scatter of standardized residuals, indicating a wider range of $ln(\epsilon_{1150})$ model prediction uncertainty. This is likely a result of the WTP and LP1.OL glasses spanning wider subregions of LAW glass compositions.
- The 11-component RLM model (i) tends to over-predict $ln(\epsilon_{1150})$ [corresponding to negative standardized residuals] for the LP1.OL and LP2.OL glasses, and (ii) under-predicts $ln(\epsilon_{1150})$ [corresponding to positive standardized residuals] for the LP3 glasses. The PNNL LP2.OL and LP3 studies were investigated and no reason for biased ϵ_{1150} values was found. The differences in standardized residuals for these two studies may be a result of longer-term random uncertainty.
- Two glasses have standardized residuals near –4. Although outlying, these data points did not have a major impact on the 11-component RLM model for $ln(\epsilon_{1150})$ and hence were retained in the modeling dataset.

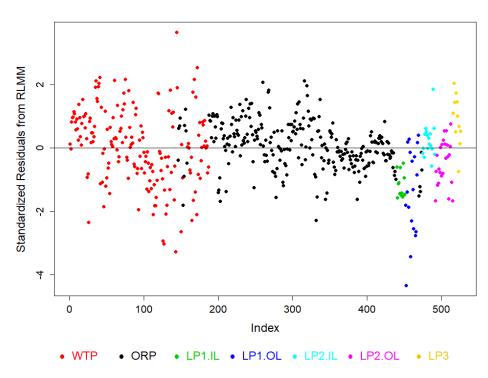
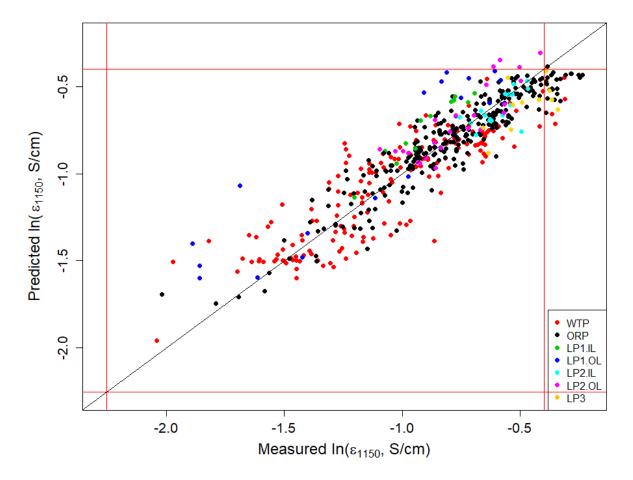



Figure 6.9. Standardized Residuals Plot for the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

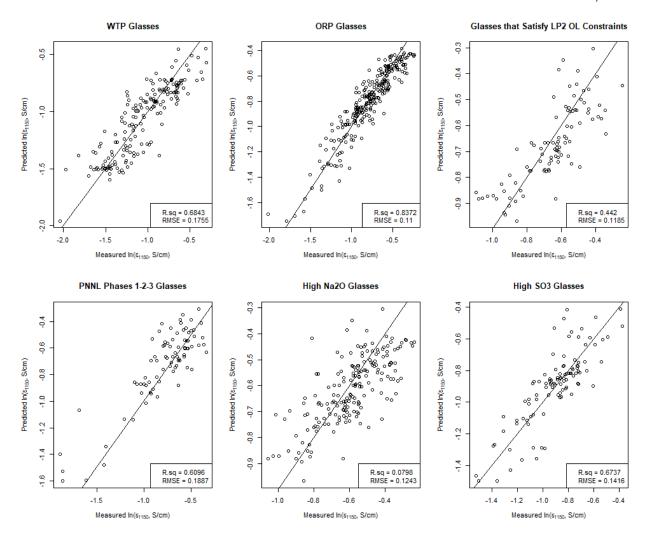

Figure 6.10 displays the PvM plot for the 526-glass modeling dataset using the 11-component RLM model for $ln(\epsilon_{1150})$. The plot illustrates that the 11-component RLM model predicts $ln(\epsilon_{1150})$ fairly well with notable scatter, but with tendencies to (i) over-predict below $ln(\epsilon_{1150}) \sim -1.50$ ($\epsilon_{1150} \sim 0.223$ S/cm) and (ii) under-predict above $ln(\epsilon_{1150}) \sim -0.40$ ($\eta_{1150} \sim 0.670$ S/cm). The tendency of this model to over-predict low ϵ_{1150} values is within the WTP LAW Facility operating limits shown by the red lines in Figure 6.6, which is nominally undesirable. The tendency to underpredict high values occurs above the upper WTP LAW Facility operating limit. This topic is further discussed in Sections 6.3.3, 6.4, and 6.5.

Figure 6.10. Predicted versus Measured Plot for the 526-Glass Modeling Dataset Using the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses. The red lines represent the WTP LAW Facility operating limits for electrical conductivity at 1150 °C (0.105 to 0.671 S/cm).

Figure 6.11 displays PvM plots using the 11-component RLM model for $ln(\epsilon_{1150})$ in Table 6.4 applied to the six evaluation subsets discussed in Section 6.1.3. Each plot in the figure contains the evaluation R^2 and RMSE values for the corresponding evaluation subset. Figure 6.11 shows that the 11-component RLM model for $ln(\epsilon_{1150})$ fit to the 526-glass modeling dataset predicts with different amounts of scatter and sometimes ranges of under- or over-prediction in the PvM plots for the six evaluation subsets. In particular, the model predicts with the tightest scatter for the ORP evaluation set, though there is some tendency to under-predict the largest $ln(\epsilon_{1150})$ values. Figure 6.11 shows that the largest scatter (and thus smallest R^2_{Eval} values) occurs for the HiNa₂O and LP2OL evaluation sets. As noted previously, these evaluation sets contain only high-Na₂O glasses, which reduces the R^2_{Eval} values. The prediction performances for the six evaluation sets using the model that is ultimately recommended are discussed in more detail in Section 6.5.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 6.11. Predicted versus Measured Plots for the Six Evaluation Sets Using the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

Figure 6.12 displays the response trace plot (see Section B.4.1 in Appendix B) for the 11-component RLM model for $ln(\epsilon_{1150})$. The glass composition of the REFMIX (see Section B.4.1) used is listed in Table 2.3. Figure 6.12 (for the 11-component RLM model) is similar to Figure 6.8 (for the 20-component FLM model), except that nine components no longer have response traces because they were included in Others. Figure 6.12 shows that Li₂O and Na₂O are predicted to have the strongest effects of any component, with both predicted to increase $ln(\epsilon_{1150})$. The components SiO₂, Al₂O₃, CaO, and SnO₂ are predicted to have much smaller decreasing effects on $ln(\epsilon_{1150})$. The component F was predicted to have the steepest decreasing effect on $ln(\epsilon_{1150})$ over a small range in Figure 6.8, but F no longer has a response trace in Figure 6.12 after being combined into Others. The remaining components (K₂O, Others, V₂O₅, B₂O₃, and MgO) have predicted response traces with small to negligible slopes, indicating those components are predicted to have small to negligible effects on $ln(\epsilon_{1150})$.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 6.12. Response Trace Plot for 11-Component Reduced Linear Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

6.3.3 Results from a Reduced Partial Quadratic Mixture Model for the Natural Logarithm of Electrical Conductivity at 1150 °C with LAW Glasses

Reduced PQM models (see Section 6.2.1) were investigated in an effort to improve on the 11-component RLM model for $ln(\epsilon_{1150})$. Previous experience with developing and validating PQM models has indicated that adding too many quadratic terms tends to over-fit the model development dataset and degrade predictive performance for new glasses. Therefore, the components that could form quadratic terms were limited to those with strong linear effects and a glass science basis. So, a process of identifying as few as possible second-order terms while improving model fit statistics was performed as follows:

- 1. Regressions were performed to fit reduced partial quadratic models involving all possible subsets of 1, 2, 3, or 4 second-order terms.
- 2. The resulting model summary/performance statistics (R² and RMSE values) were then examined to see which second-order terms were most beneficial to model performance and how many second-order terms to include.

- 3. The RMSE values from the top candidate models were plotted as a function of the number of second-order terms (0 to 4) to identify where the point of diminishing returns was.
- 4. The reduced PQM model with the number of terms just before the point of diminishing returns was selected as the final reduced PQM model.

The MAXR criterion (see Section B.4.2 of Appendix B) was also attempted as a means of selecting second-order terms. However, the terms selected by that method were not always intuitively obvious and the performance was not substantively better than the chosen approach.

Ultimately, a 13-term PQM model for $ln(\epsilon_{1150})$ with 11 linear terms and 2 quadratic terms (Li₂O × Na₂O and Na₂O × Na₂O) was selected as including enough quadratic terms to improve the model fit, without over-fitting the model development data. These terms are generally expected based on past viscosity response modeling for LAW glasses that showed second-order terms including Li₂O and Na₂O (Piepel et al. 2007). The first of these terms is associated with the mixed alkali effect. Table 6.5 contains the coefficients of the 13-term PQM model for $ln(\epsilon_{1150})$ and the coefficient standard deviations. Table 6.5 also includes model performance statistics for the 13-term PQM model using the (i) 526-glass modeling dataset, (ii) data-split modeling data (as a model validation approach), and (iii) six evaluation subsets of modeling glasses discussed in Section 6.1.3 (as a model evaluation approach).

6.3.3.1 Numerical Results for the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C

In Table 6.5, the $ln(\epsilon_{1150})$ model evaluation statistics $R^2 = 0.8563$, $R^2_A = 0.8529$, $R^2_P = 0.8461$, and RMSE = 0.1318 for the 13-term PQM model are small improvements over the corresponding statistics for the 11-component RLM model in Table 6.4. The small drop in values from R^2_A to R^2_P suggests that the $ln(\epsilon_{1150})$ modeling dataset does not have any highly influential data points for the 13-term reduced PQM model. In any case, $R^2_P = 0.8461$ provides an estimate of the fraction of variation in $ln(\epsilon_{1150})$ values for future datasets over the same GCR that might be accounted for by this 13-term reduced PQM model.

The RMSE in Table 6.5 is an estimate of the uncertainty [in ln(S/cm) units] in fabricating simulated LAW glasses and determining ε_{1150} if the 13-term reduced PQM model does not have statistically significant LOF. The RMSE = 0.1318 for the reduced PQM model fitted to the 526-glass modeling dataset is smaller than the corresponding value for the 11-component RLM model (RMSE = 0.1444) in Table 6.4, indicating a better fit to the data by PQM. The RMSE value is also smaller than the pooled replicate SD in ln(poise) units of 0.2066 in Table 6.2. These observations suggest that the 13-term reduced PQM model for ln(ε_{1150}) does not have model LOF, which is confirmed by the LOF test p-value > 0.9999 in Table 6.5. See Section B.3 of Appendix B for discussion of the statistical test for model LOF.

At the bottom right of Table 6.5, the average model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE) over the five data-splits are close to the statistics obtained from fitting the 13-term reduced PQM model for ln(ϵ_{1150}) to all 526 glasses in the modeling dataset. The data-split validation statistics (R^2_V and RMSE_V) are also relatively close to the R^2 and RMSE (i) values from fitting the model to the full dataset, and (ii) averages from fitting the model to the data-split modeling subsets. This indicates that the 13-term reduced PQM model maintains its predictive performance for data not used to fit the model.

The statistics from evaluating the predictive performance of the 13-term reduced PQM model for $ln(\epsilon_{1150})$ on the six evaluation subsets of modeling glasses (see Section 6.1.3) are given on the right side of Table 6.5. Four of the six evaluation subsets (HiSO₃, WTP, LP123, and ORP) have R^2_{Eval} statistics ranging from 0.7455 to 0.8497. These values are from notably below to slightly above the R^2 statistic for the whole

modeling dataset (0.8563). The other two evaluation subsets (LP2OL and HiNa₂O) have R^2_{Eval} values of 0.4528 and -0.0013, respectively. The R^2_{Eval} values that are moderately to substantially lower than the R^2 for the whole modeling dataset are because ε_{1150} depends very heavily on the mass fractions of Na₂O and Li₂O in a LAW glass composition. Hence, the less variation in mass fractions of Na₂O and Li₂O there is in an evaluation subset, the less dependent ln(ε_{1150}) will be on the mass fractions of other components for glasses in that evaluation subset, which reduces the R^2_{Eval} values.

ln(ε ₁₁₅₀) 13-Term PQM Model Term	Coefficient Estimate	Coefficient Stand. Err.	Modeling 526 Glass	Data Statist es ^(a)	ic,	Value
Al ₂ O ₃	-4.4821	0.2916	\mathbb{R}^2			0.8563
B_2O_3	-3.7135	0.3355	R^2_A			0.8529
CaO	-4.2790	0.2349	R ² _P			0.8461
K ₂ O	-1.4916	0.4351	RMSE			0.1318
Li ₂ O	34.1609	2.4870	Model I	LOF p-value		>0.9999
MgO	-4.5173	0.6444	-			
Na ₂ O	14.4633	1.5225		Evaluation Set (# Glasses) ^(b) R ² _{Eval}		
SiO ₂	-3.9157	0.1976	WTP (1	WTP (177)		0.1566
SnO ₂	-5.3792	0.4898	ORP (2	,	0.8497	0.1108
V_2O_5	-2.8106	0.5615	LP2OL	LP2OL (93)		0.1134
Others ^(c)	-2.4484	0.2665	LP123 ((82)	0.7457	0.1598
$Li_2O \times Na_2O$	-136.2023	17.1208	HiNa ₂ O	(191)	-0.0013 ^(d)	0.1203
$(Na_2O)^2$	-19.7143	4.3633	HiSO ₃ (101)	0.6857	0.1262
Data Splitting Statistic ^(a,e)	DS1	DS2	DS3	DS4	DS5	Average
\mathbb{R}^2	0.8425	0.8548	0.8540	0.8477	0.8585	0.8515
R ² _A	0.8380	0.8506	0.8498	0.8434	0.8545	0.8472
R^{2}_{P}	0.8283	0.8417	0.8424	0.8345	0.8462	0.8386
RMSE	0.1368	0.1317	0.1306	0.1306 0.1347		0.1335
R^2v	0.9093	0.8598	0.8581	0.8882	0.8360	0.8703
RMSEv	0.1082	0.1329	0.1404	0.1196	0.1259	0.1254

 Table 6.5. Coefficients and Performance Summary for the 13-Term Reduced Partial Quadratic Mixture

 Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

(b) The six sets of LAW evaluation glasses are discussed in Section 2.4 and Section 6.1.3.

(c) For the 13-term reduced PQM model, the Others component includes any components not separately listed.

(d) A negative R^2_{Eval} value occurs when the model predicts the property values for glasses in the evaluation set less well than a "constant" model.

(e) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 6.1.2 describes how the modeling dataset was split into modeling and validation subsets.

6.3.3.2 Graphical Results for the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C

Diagnostic plots for the 13-term reduced PQM model (not included in this report) support the assumption of normally distributed errors in the $\ln(\epsilon_{1150})$ data (see Section B.3 of Appendix B). Figure 6.13 displays the standardized residuals for the 13-term reduced PQM model of $\ln(\epsilon_{1150})$ plotted versus the data index (a

sequential numbering of the modeling data points) with different plotting symbols representing the different groups of LAW glasses discussed in Section 2.3. Figure 6.9 yields the following observations:

- The WTP and LP1.OL (PNNL Phase 1 outer layer) datasets have a wider scatter of standardized residuals, indicating a wider range of $ln(\epsilon_{1150})$ model prediction uncertainty. This is likely a result of the WTP and LP1.OL glasses spanning wider subregions of LAW glass compositions.
- The 13-term reduced PQM model (i) tends to over-predict $ln(\epsilon_{1150})$ [corresponding to negative standardized residuals] for the LP1.OL and LP2.OL glasses, and (ii) under-predicts $ln(\epsilon_{1150})$ [corresponding to positive standardized residuals] for the LP3 glasses. The PNNL LP2.OL and LP3 studies were investigated and no reason for biased ϵ_{1150} values was found. The differences in standardized residuals for these two studies may be a result of longer-term random uncertainty.
- Three glasses have standardized residuals near 4 in absolute value. Although outlying, these data points did not have a major impact on the 13-term reduced PQM model for $\ln(\epsilon_{1150})$ and hence were retained in the modeling dataset.

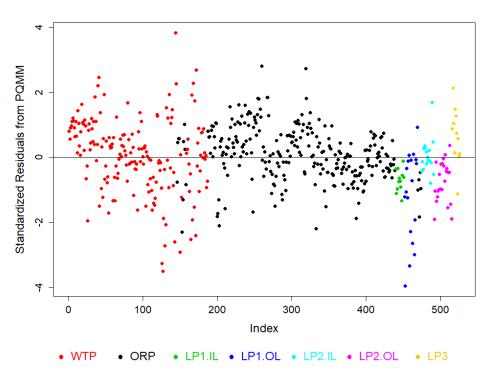
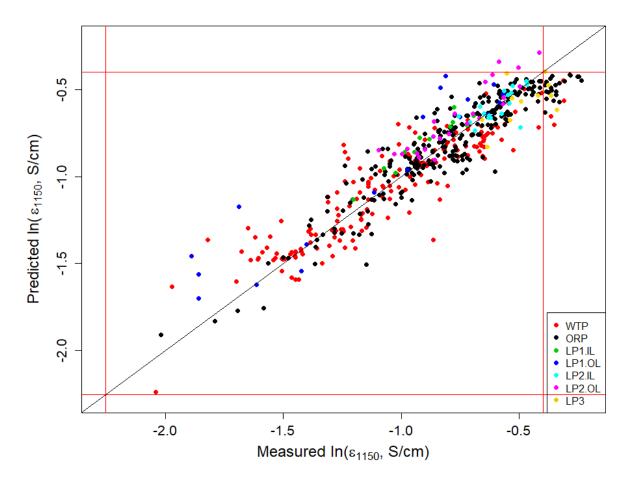



Figure 6.13. Standardized Residuals Plot for the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

Figure 6.14 displays the PvM plot for the 526-glass modeling dataset using the 13-term reduced PQM model on $ln(\epsilon_{1150})$. The plot illustrates that the 13-term reduced PQM model predicts $ln(\epsilon_{1150})$ fairly well with notable scatter, but with tendencies to (i) over-predict below $ln(\epsilon_{1150}) \sim -1.50$ ($\epsilon_{1150} \sim 0.223$ S/cm) and (ii) under-predict above $ln(\epsilon_{1150}) \sim -0.40$ ($\eta_{1150} \sim 0.670$ S/cm). The tendency of this model to over-predict low ϵ_{1150} values is within the WTP LAW Facility operating limits shown by the red lines in Figure 6.14, and this would be the case even after accounting for model prediction uncertainty. However, the tendency to over-predict low ϵ_{1150} values will not cause an issue in operating the WTP LAW Facility. The tendency to underpredict high values above the upper WTP LAW Facility operating limit could result in judging LAW glasses to meet the upper WTP LAW Facility operating limit when they do not. However,

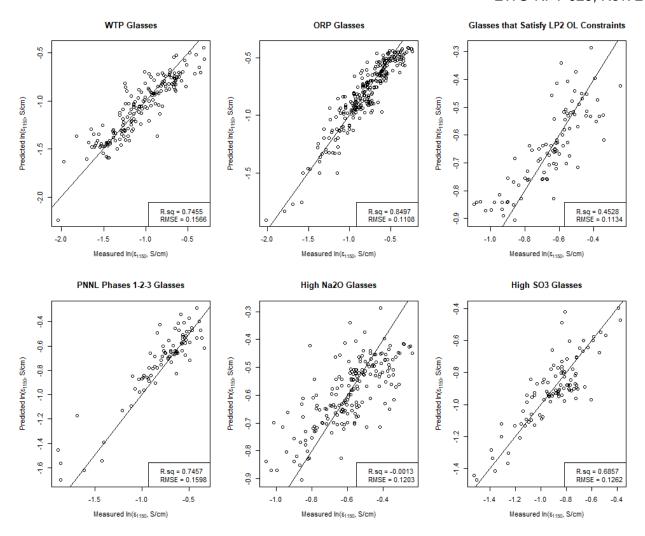
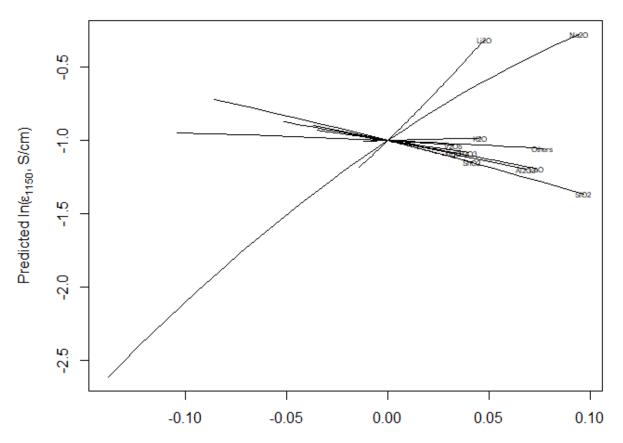

the WTP LAW Facility will be operated so that no adverse effect of high EC will be experienced (although at the potential cost of lower throughput).

Figure 6.14. Predicted versus Measured Plot for the 526-glass Modeling Dataset Using the 13-term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses. The red lines represent the WTP LAW Facility operating limits for electrical conductivity at 1150 °C (0.105 – 0.671 S/cm).


Figure 6.15 displays PvM plots using the 13-term reduced PQM model for $ln(\epsilon_{1150})$ in Table 6.5 applied to the six evaluation subsets discussed in Section 6.1.3. Each plot in the figure contains the evaluation R^2 and RMSE values for the corresponding evaluation subset. Figure 6.15 shows that the 13-term RLM model for $ln(\epsilon_{1150})$ fit to the 526-glass modeling dataset predicts with different amounts of scatter and sometimes ranges of under- or over-prediction in the PvM plots for the six evaluation subsets. In particular, the model predicts with the tightest scatter for the ORP evaluation set, though there is some tendency to under-predict the largest $ln(\epsilon_{1150})$ values. Figure 6.15 shows that the largest scatter (and thus smallest R^2_{Eval} values) occurs for the HiNa₂O and LP2OL evaluation sets. As noted previously, these evaluation sets contain only high-Na₂O glasses, which reduces the R^2_{Eval} values. The prediction performances for the six evaluation sets using the model that is ultimately recommended are discussed in more detail in Section 6.5.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 6.15. Predicted versus Measured Plots for the Six Evaluation Sets Using the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

Figure 6.16 displays the response trace plot (see Section B.4.1 of Appendix B) for the 13-term reduced PQM model for $ln(\epsilon_{1150})$. The glass composition of the REFMIX (see Section B.4.1) used is listed in Table 2.3. Figure 6.16 shows that Li₂O and Na₂O are predicted to have the strongest effects of any component, with both predicted to increase $ln(\epsilon_{1150})$. The components SiO₂, Al₂O₃, CaO, and SnO₂ are predicted to have much smaller decreasing effects on $ln(\epsilon_{1150})$. The remaining components (K₂O, Others, V₂O₅, B₂O₃, and MgO) have predicted response traces with small to negligible slopes, indicating those components are predicted to have small to negligible effects on $ln(\epsilon_{1150})$.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 6.16. Response Trace Plot for 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

6.3.4 Recommended Model for the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

Table 6.6 summarizes the primary $ln(\epsilon_{1150})$ model evaluation and validation results for the 20-component FLM model, the 11-component RLM model, and the 13-term reduced PQM model from Table 6.3 to Table 6.5, respectively, as follows:

- Model goodness-of-fit for the $ln(\epsilon_{1150})$ -composition modeling data of 526 simulated LAW glasses
- Model validation using the data-splitting approach
- Model evaluation for six subsets of the 526-glass modeling dataset

Based on the summarized results in Table 6.6 and discussions in Sections 6.3.1 to 6.3.3, the 13-term reduced PQM model (listed in Table 6.5) is recommended for predicting $ln(\epsilon_{1150})$ of LAW glasses. As a baseline for comparison, the 11-component RLM model (listed in Table 6.4) will be used.

	$\ln(\varepsilon_{1150})$ Model							
Summary Statistics from	20-Cor	nponent	11-Con	nponent	13-Term Re	duced PQM		
Model Fit to 526 Glasses ^(a)	FLM Model		RLM	Model	Model (Recommended)			
\mathbb{R}^2	0.8	359	0.8	267	0.8563			
R ² _A	0.8	298	0.8	233	0.8	529		
R ² _P	0.8	182	0.8	159	0.84	461		
RMSE		417		444	0.13			
LOF p-value		9999	***	999	>0.9			
Linear Terms	20 (See 7	Table 6.3)	11 (See]	Table 6.4)		Table 6.5)		
Selected Quadratic Terms	N	IA	N	IA	$Li_2O \times$			
in Model						$(O)^2$		
# Model Terms		20		.1	13			
Summary Statistics for Six Evaluation Subsets of LAW Glasses ^(a)								
Evaluation Set								
(# Glasses) ^(b)	R^{2}_{Eval}	$RMSE_{Eval}$	R ² _{Eval}	RMSE _{Eval}	R^{2}_{Eval}	RMSE _{Eval}		
WTP (177)	0.6876	0.1813	0.6843	0.1755	0.7455	0.1566		
ORP (267)	0.8535	0.1073	0.8372	0.1100	0.8497	0.1108		
LP2OL (93)	0.3498	0.1361	0.4420	0.1185	0.4528	0.1134		
LP123 (82)	0.6881	0.1866	0.6096	0.1887	0.7457	0.1598		
HiNa ₂ O (191)	0.1924	0.1259	0.0798	0.1243	-0.0013 ^(c)	0.1203		
HiSO ₃ (101)	0.6768	0.1440	0.6737	0.1416	0.6857 0.1262			
		y Statistics Ave						
R ²		326		230	0.8			
R^2_A	0.8249			188	0.8472			
R ² _P		102		095	0.8386			
RMSE	0.1429			454	0.1335			
R ² v		377		343	0.8703			
RMSEv	0.1	398	0.1	417	0.1254			

 Table 6.6. Performance Summary of Three Models for the Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

(a) The model evaluation statistics are defined in Section B.3 of Appendix B.

(b) Model validation statistics are defined in Section B.5 of Appendix B.

(c) A negative R^{2}_{Eval} value occurs when the model predicts the property values for glasses in the evaluation set less well than a "constant" model.

6.4 Example Illustrating Model Predictions and Statistical Intervals for Electrical Conductivity at 1150 °C

This section contains examples that illustrate the application of the recommended 13-term PQM model for $ln(\epsilon_{1150})$ in Table 6.5 to the REFMIX glass composition listed in Table 2.3 to obtain predicted ϵ_{1150} values and two-sided statistical intervals. Formulas for two-sided 90% CIs and two-sided 90% PIs are discussed in Section B.6 of Appendix B. Two-sided intervals are illustrated because ϵ_{1150} will have lower and upper operating limits during the WTP LAW Facility operation. For comparison purposes, the same results are presented for the 11-component RLM model in Table 6.4 (although it was not a recommended model). The 90% CIs and 90% PIs were chosen for illustration purposes only. The WTP LAW Facility

can use an appropriate confidence level depending on the use of the $ln(\epsilon_{1150})$ -composition model and the type of statistical interval (uncertainty expression) desired.

The glass composition used in this example is denoted REFMIX, as listed in Table 2.3. The 20-component composition (mass fractions) of REFMIX for ε_{1150} modeling is given in Table 6.7. To apply the 13-term reduced PQM and 11-component RLM models for $\ln(\varepsilon_{1150})$ to the REFMIX composition, the mass fractions of the 20 components must be converted to mass fractions (that sum to 1.0) of the 11 LAW glass components contained in both models. This involves adding the mass fractions of the 9 of 20 components not contained in the RLM and reduced PQM $\ln(\varepsilon_{1150})$ models to the mass fraction of Others (one of the original 20 components) to obtain a new Others component (one of the reduced sets of 11 components). Mass fractions of the relevant components are then multiplied to obtain the two quadratic terms of the 13-term PQM model. Table 6.7 contains the composition of REFMIX prepared for use in the two $\ln(\varepsilon_{1150})$ models for LAW glasses.

For each of the two $ln(\epsilon_{1150})$ models, predicted $ln(\epsilon_{1150}, S/cm)$ values are obtained by multiplying the composition in the format needed for that model by the coefficients for that model, then summing the results. That is, the predicted values are calculated by

$$\hat{y}(\mathbf{g}) = \mathbf{g}^{\mathrm{T}} \mathbf{b} \tag{6.4}$$

where **g** is the composition of REFMIX formatted to match the terms in a given model (from Table 6.7), the superscript T represents a matrix transpose (or vector transpose in this case), and **b** is the vector of coefficients for a given model. The predicted $ln(\epsilon_{1150})$ values for REFMIX using the two $ln(\epsilon_{1150})$ models are listed in the second column of Table 6.8. The predicted $ln(\epsilon_{1150})$ values in ln(S/cm) units are easily converted to ϵ_{1150} values (S/cm) by exponentiation. The third column of Table 6.8 contains the predicted ϵ_{1150} values (S/cm). When used with CIs, as discussed in Section B.6 of Appendix B, these back-transformed ϵ_{1150} values in S/cm should be considered estimates of the true median (not the true mean) of the distribution of ϵ_{1150} values that would result if EC measurements at 1150 °C were repeated multiple times on separately batched and melted samples of the REFMIX glass composition. When used with PIs, the back-transformed ϵ_{1150} predictions should be considered estimates of individual test results for the REFMIX glass composition.

The predicted ε_{1150} values for REFMIX in Table 6.8 are 0.392 S/cm for the 11-component RLM model and 0.367 S/cm for the recommended 13-term PQM model. Statistical confidence intervals and prediction intervals for these predictions are discussed next.

		REFMIX	REFMIX
		Composition	Composition
		(mass fractions)	(mass fractions)
	REFMIX Composition ^(a)	to Use in 11-Component	to Use in 13-Term
Model Term	(mass fractions)	RLM Model for $ln(\epsilon_{1150})^{(b)}$	PQM Model for $ln(\epsilon_{1150})^{(c)}$
Al ₂ O ₃	0.075760	0.075761	0.075761
B_2O_3	0.097257	0.097257	0.097257
CaO	0.052514	0.052514	0.052514
Cl	0.003376	NA	NA
Cr_2O_3	0.002041	NA	NA
F	0.001348	NA	NA
Fe_2O_3	0.029727	NA	NA
K ₂ O	0.012064	0.012064	0.012064
Li ₂ O	0.014802	0.014802	0.014802
MgO	0.016989	0.016989	0.016989
Na ₂ O	0.168395	0.168395	0.168395
P_2O_5	0.003239	NA	NA
SO ₃	0.005542	NA	NA
SiO_2	0.424565	0.424565	0.424565
SnO_2	0.007587	0.007587	0.007587
TiO ₂	0.008034	NA	NA
V_2O_5	0.007499	0.007499	0.007499
ZnO	0.031997	NA	NA
ZrO_2	0.036219	NA	NA
Others	0.001045	0.122568	0.122568
Li ₂ O×Na ₂ O	NA	NA	0.00249258
$(Na_2O)^2$	NA	NA	0.02835688

 Table 6.7. REFMIX Composition in Formats Used with Models of Natural Logarithm of Electrical Conductivity at 1150 °C for LAW Glasses

(a) The composition in mass fractions is from Table 2.3.

(b) See Table 6.4

(c) See Table 6.5

(d) NA = not applicable, because the model does not contain this term.

Table 6.8. Predicted Electrical Conductivity at 1150 °C, Standard Deviation, and Statistical Intervals for the REFMIX Composition Used in TwoModels for Electrical Conductivity at 1150 °C

	Predicted	Predicted	Standard Deviation of	90% CI ^(c) on Mean	90% CI ^(c) on Median	90% PI ^(c) on Individual	90% PI ^(c) on Individual
	$ln(\widehat{\varepsilon_{1150}})$	$\widehat{\varepsilon_{1150}}$	Predicted $ln(\widehat{\varepsilon_{1150}})^{b}$	$ln(\widehat{\varepsilon_{1150}})$	$\widehat{\mathcal{E}_{1150}}$	$ln(\widehat{\varepsilon_{1150}})$	$\widehat{\mathcal{E}_{1150}}$
$ln(\varepsilon_{1150})^{(a)}$	[ln(S/cm)]	[S/cm]	$[\ln(S/cm)]$	$[\ln(S/cm)]$	[S/cm]	$[\ln(S/cm)]$	[S/cm]
13-Term PQM Model	-1.0019 ^(d)	0.367 ^(d)	0.00958	(-1.0177, -0.9861)	(0.361, 0.373)	(-1.2196, -0.7843)	(0.295, 0.456)
11-Comp. RLM Model	-0.9368	0.392	0.00657	(-0.9476, -0.9260)	(0.388, 0.396)	(-1.1750, -0.6986)	(0.309, 0.497)

(a) The two $\ln(\epsilon_{1150})$ models in this column are given in Table 6.5 (13-term PQM model) and Table 6.4 (11-component RLM model), respectively.

(b) The standard deviation is for the $ln(\epsilon_{1150})$ prediction considered to be the mean from many such results for the REFMIX glass.

(c) CI = two-sided confidence interval, PI = two-sided prediction interval (see Section B.6 of Appendix B).

(d) All calculations were performed using the REFMIX glass composition, model coefficients, and variance-covariance matrix values given in tables of this report. The calculated ln(S/cm) values were rounded to four decimal places in this table. The S/cm values were calculated by exponentiating the ln(S/cm) values before rounding, then rounding the resulting values to three decimal places in this table.

Eq. (B.21a) in Appendix B can be used to calculate a two-sided 90% CI for the true mean of $ln(\epsilon_{1150})$ values for the REFMIX glass composition with each of the $ln(\epsilon_{1150})$ models. Similarly, Eq. (B.22a) can be used to calculate a two-sided 90% PI for an individual test value of $ln(\epsilon_{1150})$ for the REFMIX glass composition with each of the $ln(\epsilon_{1150})$ models. In the notation of these equations:

- $100(1-\alpha)\% = 90\%$, so that $\alpha = 0.10$ for a 90% CI in Eq. (B.21a) and a 90% PI in Eq. (B.22a).
- The vector **g** contains entries corresponding to the terms in a given $ln(\varepsilon_{1150})$ model, which are calculated using the composition of REFMIX in Table 6.7.
- Matrix **G** is formed from the data matrix used in the regression that generated a given $ln(\epsilon_{1150})$ model. Matrix **G** has the number of rows in the ϵ_{1150} modeling dataset (526 glasses) and the number of columns corresponding to the number of terms in a given $ln(\epsilon_{1150})$ model. Each column is calculated according to the corresponding term in the model using the LAW normalized glass composition in the ϵ_{1150} modeling dataset.

To calculate a two-sided $100(1 - \alpha)$ % CI, the quantity margin-of-error $t_{1-\frac{\alpha}{2},n-p}\sqrt{MSE_{OLS}\mathbf{g}^{\mathrm{T}}(\mathbf{G}^{\mathrm{T}}\mathbf{G})^{-1}\mathbf{g}}$ is subtracted from and added to the predicted $\ln(\varepsilon_{1150})$ [denoted $\hat{y}(\mathbf{g})$] described above, as indicated by Eq. (B.21a). To calculate a two-sided $100(1 - \alpha)$ % PI, the quantity $t_{1-\frac{\alpha}{2},n-p}\sqrt{MSE_{OLS}\mathbf{g}^{\mathrm{T}}(\mathbf{G}^{\mathrm{T}}\mathbf{G})^{-1}\mathbf{g}}$ is subtracted from and added to the predicted $\ln(\varepsilon_{1150})$ [denoted $\hat{y}(\mathbf{g})$], as indicated by Eq. (B.22a). The $MSE_{OLS}(\mathbf{G}^{\mathrm{T}}\mathbf{G})^{-1}$ portion of these expressions is an estimate of the variance-covariance matrix for the estimated model coefficients, as discussed near the end of Section B.6 of Appendix B. For the example calculations presented in Table 6.8, the Students-*t* statistic value needed for both the CI and PI formulas describing the 11-component RLM model is 1.647818. This is based on *n*=526 and *p*=11. The following cell formula can be used to obtain the *t*-statistic value with Excel: =T.INV(0.95,526-11). For the CI and PI calculations associated with the 13-term PQM model described in Table 6.8, the Students-*t* statistic is 1.647829=T.INV(0.95,526-13). The variance-covariance matrices for the 11-component RLM model and the recommended 13-term PQM model are respectively listed in Tables D.10 and D.11 of Appendix D. The quantity $\sqrt{MSE_{OLS}\mathbf{g}^{\mathrm{T}}(\mathbf{G}^{\mathrm{T}}\mathbf{G})^{-1}\mathbf{g}}$ is the standard deviation of a model prediction (for a given composition vector \mathbf{g} expressed in a given model form); the value for each model is given in the fourth column of Table 6.8.

The 90% CIs and 90% PIs for the true mean and individual test result, respectively, of $ln(\epsilon_{1150})$ in units of ln(S/cm) for the REFMIX composition based on the two $ln(\epsilon_{1150})$ models are given in the fifth and seventh columns of Table 6.8. Exponentiating the resulting 90% CIs for the mean $ln(\epsilon_{1150})$ values in ln(S/cm) units yields 90% CIs for the median ϵ_{1150} (S/cm). These values are in the sixth column of Table 6.8. Exponentiating the (ϵ_{1150}) test results in ln(S/cm) units yields 90% PIs for individual $ln(\epsilon_{1150})$ test results in ln(S/cm) units yields 90% PIs on individual ϵ_{1150} test results (S/cm) for REFMIX. These values are in the seventh column of Table 6.8.

6.5 Suitability of the Recommended Electrical Conductivity at 1150 °C Model for Application by the WTP LAW Facility

The 13-term PQM model for $ln(\epsilon_{1150})$ discussed in Section 6.3.3 is recommended for use by the WTP LAW Facility as the best model currently available for predicting ϵ_{1150} for LAW glasses. This model yields mostly unbiased predictions of ϵ_{1150} over the WTP LAW Facility operating limits (0.105 to 0.671 S/cm) of ϵ_{1150} values, both for the whole modeling dataset (see Figure 6.14) and for various subsets of the data, including subsets of glasses with high waste loadings (see Figure 6.15). These figures show some tendencies to under-predict the highest ϵ_{1150} values for some LAW glass compositions, but this often occurs beyond the upper limit of the operating range for the WTP LAW Facility. There are also

tendencies to over-predict the lowest ε_{1150} values, which had limited data for model development. The WTP LAW Facility is not expected to formulate LAW glass compositions with such low ε_{1150} values, so one option is to set a larger lower limit for the operating range of ε_{1150} .

The recommended 13-term PQM model does not have a statistically significant LOF. Hence, a ε_{1150} prediction should be within the uncertainty of what would be obtained by batching and melting a LAW glass, measuring EC at several temperatures for the LAW glass, and determining the estimated value of ε_{1150} for the LAW glass (as discussed in Section 2.3).

The magnitudes of uncertainties in ε_{1150} model predictions are moderate in size but should not unduly restrict the formulation and processing of LAW glasses in the WTP LAW Facility. Figure 6.17 displays the ln(ε_{1150}) prediction standard deviations versus predicted values [both in ln(S/cm) units] for the LAW glass compositions in the ε_{1150} modeling dataset. The ln(ε_{1150}) prediction standard deviations for the ε_{1150} modeling dataset of 526 LAW glasses range from approximately 0.01 to 0.05 ln(S/cm) for the recommended 13-term PQM model. Note that prediction standard deviations will be larger for LAW glass compositions as their distance from glasses in the ε_{1150} modeling dataset increases. Also, the total uncertainty in predictions with the recommended 13-term PQM model will depend on the type of statistical interval used (see Section B.6 of Appendix B).

Work to assess the impact of LAW glass composition and model uncertainties for the recommended $ln(\epsilon_{1150})$ model (Sections 6.3.3 and 6.3.4) on satisfying the WTP LAW Facility's processing requirements for LAW glasses must be addressed in the future. The impacts of these uncertainties on glass formulation and processability are planned to be addressed as part of the second iteration of the LAW GFA development work. The first iteration of that work (Kim and Vienna 2012) used an EC model from Piepel et al. (2007). A more recent evaluation, performed by Gervasio et al. (2018), used a preliminary EC model from Vienna et al. (2016).

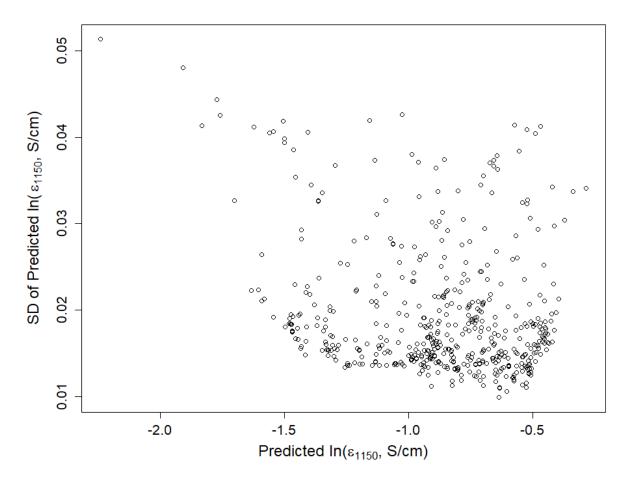


Figure 6.17. Prediction Standard Deviations versus Predicted Values over the LAW Glass Compositions in the 518-Glass Modeling Dataset for the Recommended 13-Term PQM Model for the Natural Logarithm of Electrical Conductivity at 1150 °C

The range of single component concentrations in the 526-glass dataset used for modeling is listed in Table 6.9 and discussed in Section 9.7. These ranges can be used to determine model validity ranges.

	20-com	ponent	13-con	ponent
Component	Min	Max	Min	Max
Al ₂ O ₃	0.034972	0.147521	0.034972	0.147521
B_2O_3	0.059952	0.138294	0.059952	0.138294
CaO	0.000000	0.127789	0.000000	0.127789
Cl	0.000000	0.011722	NA ^(a)	NA
Cr_2O_3	0.000000	0.006303	NA	NA
F	0.000000	0.007197	NA	NA
Fe ₂ O ₃	0.000000	0.119838	NA	NA
K ₂ O	0.000000	0.059085	0.000000	0.059085
Li ₂ O	0.000000	0.063294	0.000000	0.063294
MgO	0.000000	0.050222	0.000000	0.050222
Na ₂ O	0.024707	0.265729	0.024707	0.265729
P_2O_5	0.000000	0.040256	NA	NA
SO ₃	0.000360	0.016290	NA	NA
SiO ₂	0.335164	0.522624	0.335164	0.522624
SnO_2	0.000000	0.050299	0.000000	0.050299
TiO ₂	0.000000	0.050058	NA	NA
V_2O_5	0.000000	0.040885	0.000000	0.040885
ZnO	0.009992	0.058152	NA	NA
ZrO_2	0.000000	0.067534	NA	NA
Others ^(b)	0.000000	0.003296	0.015168	0.203562

 Table 6.9. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Final Electrical Conductivity Models

(a) NA = not applicable or component not included as term.

(b) Note: Others for the 13-components are composed of all

the NA components as well as Others for the 20 components.

7.0 Models Relating Melter SO₃ Tolerance at 1150 °C to LAW Glass Composition

This section documents the development, evaluation, and validation of LAW glass property-composition models and corresponding expressions of uncertainty for predicting melter SO₃ tolerance modeled as a function of LAW glass composition. The property-composition models and corresponding expressions of uncertainty for melter SO₃ tolerance presented in this section were developed, evaluated, and validated using compositions and melter SO₃ tolerance and solubility values for simulated LAW glasses.

Section 7.1 discusses the LAW glasses available and used for melter SO₃ tolerance model development, evaluation, and validation. Section 7.2 presents the models for melter SO₃ tolerance that were investigated. Section 7.3 summarizes the results for the selected linear and quadratic mixture model forms for melter SO₃ tolerance and identifies the recommended model. Section 7.4 illustrates the calculation of melter SO₃ tolerance predictions and the uncertainties in those predictions using selected melter SO₃ tolerance models and corresponding uncertainty equations. Section 7.5 discusses the suitability of the recommended melter SO₃ tolerance model for use by the WTP LAW Facility. Appendix B discusses the statistical methods and summary statistics used to develop, evaluate, and validate the several melter SO₃ tolerance model forms investigated, as well as statistical models/equations used for quantifying the uncertainties in melter SO₃ tolerance model predictions.

7.1 Melter SO₃ Tolerance and Solubility at 1150 °C Data Used for Melter SO₃ Tolerance Model Development, Evaluation, and Validation

The data available and used for developing melter SO_3 tolerance models as functions of LAW glass composition are discussed in Section 7.1.1. The approaches and data used for evaluating and validating the models are discussed in Sections 7.1.2 and 7.1.3.

7.1.1 Model Development Data for Melter SO₃ Tolerance at 1150 °C

The data available for developing melter SO₃ tolerance-composition models consist of composition and melter SO₃ tolerance and solubility values from 601 LAW glasses (see Table 2.2). Note that some glasses have more than one measurement by different methods and there are 660 melter SO₃ tolerance and solubility measurements that are accounted for by the 601 LAW glasses in the table. These glasses and their normalized compositions based on measured (or estimated) SO₃ values are discussed in Section 2.0. The corresponding melter SO₃ tolerance and SO₃ solubility values are presented in Table A.3 of Appendix A.

As shown in Table 2.2 and Table A.3, four different methods – batch saturation (BS), saturation remelting (SR), bubbling (Bub), and three-time saturation (3TS) – were used to measure crucible-scale SO₃ solubility in glass. Because the SO₃ solubility in glass is one of the two major factors that determine the melter SO₃ tolerance of a specific glass (SO₃ solubility – thermodynamic equilibrium; and dissolution rate – kinetics), a reasonable proportionality between melter SO₃ tolerance and SO₃ solubility is expected. When the amount of sulfate salts added to the glass is beyond what the glass can hold (the glass saturation point), so that sulfate salts form on the glass, this is considered the melter tolerance point. Therefore, melter tolerance can be measured by determining how much sulfate can be contained within the glass. However, the extent of SO_3 saturation in a final glass depends on the SO_3 solubility measurement method/technique employed.

There is a very minor difference between BS and SR methods: Excess sulfate is added to the glass raw materials in BS method, while it is added to a pre-melted glass in SR method. This minor difference is not expected to affect the saturated SO₃ concentration in a final glass. Vienna et al. (2014) found a reasonable match between the melter SO₃ tolerance and solubility by the Bub method; however, it was shown that a constant offset is needed between the melter SO₃ tolerance and solubility by BS or SR method. Jin et al. (2019) argued that the reason for this offset is because the BS or SR method that applies only one time melting with excess sulfate does not fully saturate the glass. The Bub method can fully saturate the glass, but it requires significantly more experimental time and effort. Recently, Jin et al. (2019) developed a simple and inexpensive 3TS method that uses three-time re-melting of glass mixed with excess sulfate to ensure near equilibrium saturation of SO₃. Although both the Bub and 3TS methods are designed to fully saturate the glass, they involve different loss or addition of other glass components during SO₃ saturation process, which makes it necessary to use an offset between them and increases the uncertainties of SO₃ solubility data (Skidmore et al. 2019).

7.1.1.1 Assessment of Available Glasses with Data for Melter SO $_3$ Tolerance and Solubility at 1150 °C

The database of 601 glasses with melter SO_3 tolerance and solubility results contains statistically designed as well as actively designed LAW glasses. Some actively designed glasses are outside the composition region covered by the majority of the LAW glass compositions. Such glasses are not ideal for inclusion in a modeling dataset because they can be influential when fitting models to data. Hence, it was decided to (i) graphically assess the 601 available LAW glass compositions with melter SO_3 tolerance and solubility values and (ii) remove from the modeling dataset any compositions considered to be outlying or nonrepresentative of LAW glasses of interest for the WTP LAW Facility. Reasons for excluding glasses are reported in Table 7.1.

Figure 7.1 displays plots of the mass fractions for 19 "main components" plus the Others component (defined as the sum of all remaining components) in the 601 LAW glasses with melter SO₃ tolerance and solubility data. These 20 components (including Others) have sufficient ranges and distributions of mass fraction values to support separate model terms if so desired. Figure 7.2 displays similar plots for the remaining "minor components." On each plot in Figure 7.1 and Figure 7.2, the x-axis represents the mass fraction values of a LAW glass component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting. The plotting symbols in Figure 7.1 and Figure 7.2 correspond to the seven groups of LAW glasses discussed in Section 2.3. For comparison purposes, the vertical lines in Figure 7.1 and Figure 7.3 represent the ranges over which the LAW glass components were varied in the PNNL (i) LAW Phase 1 outer-layer study (blue lines), (ii) LAW Phase 2 outer-layer study (pink lines), and (iii) LAW Phase 3 study (pink lines), as shown in Table 2.1. LAW Phases 2 and 3 focused on glasses with high Na₂O waste loadings, whereas Phase 1 explored a larger GCR with higher waste loadings.

Figure 7.1 shows several of the 601 LAW glasses have "main components" with outlying mass fraction values compared to the remaining glasses and to the component ranges in the PNNL LAW Phase 1, Phase 2, and Phase 3 studies (e.g., Cr_2O_3). Figure 7.2 shows what appear to be outliers for some "minor components," but the values and ranges of those components are small and hence the glass compositions were not considered to be outliers (e.g., PbO). Table 7.1 lists the 25 LAW glasses excluded from the melter SO₃ tolerance and SO₃ solubility modeling dataset and the reason each glass was excluded.

Figure 7.3 and Figure 7.4 (corresponding to Figure 7.1 and Figure 7.2, respectively) show plots of component distributions after the 25 outlying glasses were removed from the melter SO₃ tolerance and solubility dataset containing 601 LAW glasses. Figure 7.3 shows that for the remaining 576 LAW glasses, all 19 LAW glass "main components" have sufficient ranges and distributions of values within those ranges to support terms for modeling melter SO₃ tolerance. Figure 7.4 confirms than none of the "minor components" have sufficient ranges and distributions of values within their ranges to support model terms for those components. Based on Figure 7.3 and Figure 7.4, it was decided to use 19 components for initial melter SO₃ tolerance modeling work (measured SO₃ was removed). These components were Al₂O₃, B₂O₃, CaO, Cl, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others (the sum of all remaining components except SO₃) and were the same as those used for initial modeling of all other properties (except for melter SO₃ tolerance normalized out measured SO₃).

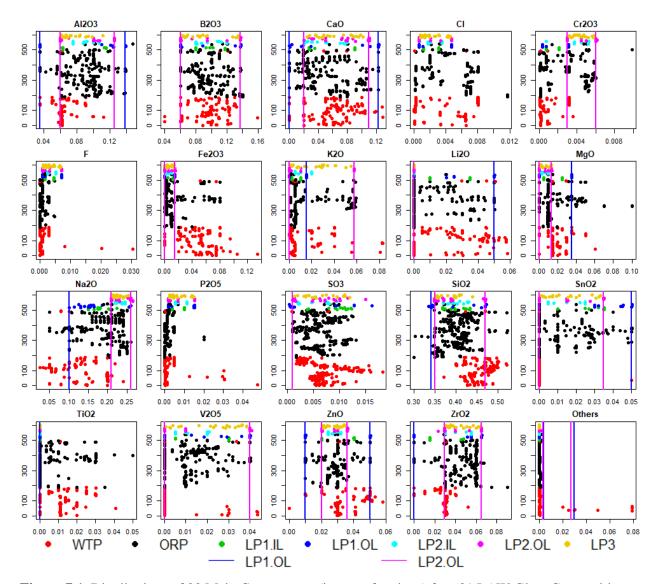


Figure 7.1. Distributions of 20 Main Components (in mass fractions) for 601 LAW Glass Compositions with Melter SO₃ Tolerance and Solubility Measurements at 1150 °C. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), LAW Phase 2 outer-layer study (pink lines), and LAW Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, blue lines over plot the pink lines.

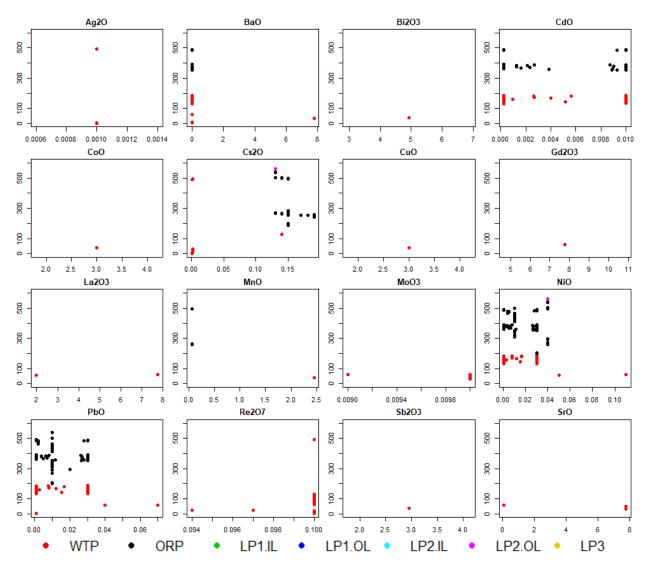


Figure 7.2. Distributions of 16 Minor Components (in mass fractions) for the 601 LAW Glasses with Melter SO₃ Tolerance and Solubility Values at 1150 °C.

Glass #		Reason Glass Excluded from Melter SO ₃ Tolerance and Solubility Modeling
	Glass ID	Datasets ^(a)
81	LAWC25S	$K_2O > 0.07 (= 0.080670) \text{ mf}$
90	LAWA54	Others $> 0.019 (0.078579) \text{ mf}$
91	LAWA55	Others $> 0.019 (0.078630) \text{ mf}$
94	LAWA58	Others > 0.019 (0.049942) mf
95	LAWA59	Others > 0.019 (0.029906) mf
96	LAWA61	Others $> 0.019 (0.024981) \text{ mf}$
97	LAWA62	Others $> 0.019 (0.030415) \text{ mf}$
98	LAWA63	Others $> 0.019 (0.030430) \text{ mf}$
99	LAWA65	MgO > 0.06 (0.060380) mf
106	LAWA72	Others > 0.019 (0.078721) mf
115	LAWABPS	Others $> 0.019 (0.019928) \text{ mf}$
118	LAWA91	Others > 0.019 (0.078713) mf
119	LAWA92	Others $> 0.019 (0.078709) \text{ mf}$
167	LAWA120S1	$K_2O > 0.07 \ (0.082850) \ mf$
168	LAWA120S2	$K_2O > 0.07 \ (0.082775) \ mf$
169	LAWA121S1	$K_2O > 0.07 \ (0.082841) \ mf$
170	LAWA121S2	$K_2O > 0.07 \ (0.082742) \ mf$
739	ORPLA28	MgO > 0.06 (0.070146) mf
740	ORPLA29	MgO > 0.06 (0.100218) mf
742	ORPLA31	MgO > 0.06 (0.070146) mf
743	ORPLA32	MgO > 0.06 (0.100218) mf
727	ORPLG9CrS4	$Cr_2O_3 > 0.008 \ (0.009864) \ mf$
100	LAWA66	Identified as outlier in preliminary modeling work
197	LAWB67S4	Identified as outlier in preliminary modeling work
959	New-OL-14844	Identified as outlier in preliminary modeling work
(a) $mf = r$	nass fraction	

Table 7.1. Twenty-five LAW Glasses Excluded from the Modeling Dataset for Melter SO₃ Tolerance and Solubility at 1150 °C

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

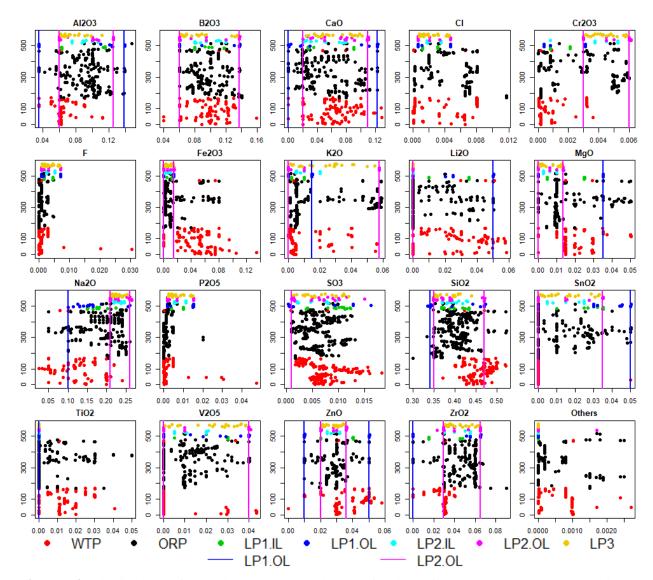
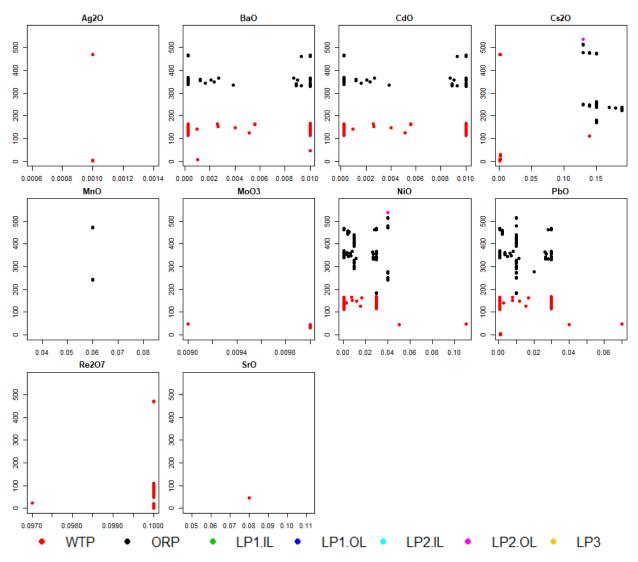



Figure 7.3. Distributions of 20 Main Components (in mass fractions) for 576 LAW Glass Compositions with Melter SO₃ Tolerance and Solubility Measurements at 1150 °C that Remain after Excluding the 25 Glasses in Table 7.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), LAW Phase 2 outer-layer study (pink lines), and LAW Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, blue lines over plot the pink lines.

Figure 7.4. Distributions of 10 Minor Components (in mass fractions) for the 576 LAW Glass Compositions with Data for Melter SO₃ Tolerance and Solubility at 1150 °C that Remain after Excluding the 25 Glasses in Table 7.1

Figure 7.5 shows a scatterplot matrix of the 576 glasses remaining in the melter SO₃ tolerance and solubility modeling dataset after removing the 25 outlying glass compositions. Based on preliminary modeling work and the work of Vienna et al. (2014) and Skidmore et al. (2019), it was decided that melter SO₃ tolerance would be modeled by applying offsets for some of the SO₃ solubility at 1150 °C measurements. It was decided that BS and SR would be combined for one offset, 3TS would have another offset, and Bub and MT would be combined without an offset – namely, that it would be the model of interest. For each different offset model, the correlation among the components was assessed. High correlations between some pairs of components are evident, so pairwise correlation to 1.0 (perfect positive correlation). For the BS and SR offset model, there were 468 SO₃ solubility measurements, and the component pairs with correlations larger (in absolute value) than 0.60 were Al₂O₃ and SiO₂ with correlation of -0.616 and Li₂O and Na₂O with correlation of -0.835. Such high correlations in the predictors make parameter values difficult to estimate and result in inflated prediction uncertainties. Thus,

this high pairwise correlation needs to be kept in mind when developing and interpreting LAW glass property-composition models for melter SO₃ tolerance. For the Bub and MT model, there were only 69 melter SO₃ tolerance and solubility measurements, so the Pearson correlations are less stable and only those larger than 0.80 in magnitude are mentioned here. For the Bub and MT no offset model, the only component pair with correlations larger (in absolute value) than 0.80 was Li₂O and Na₂O with correlation of -0.925. Thus, this high pairwise correlation needs to be kept in mind when developing and interpreting LAW glass property-composition models for melter SO₃ tolerance.

Further, such high correlations in the predictors make parameter values difficult to estimate and result in inflated prediction uncertainties. For the 3TS offset model, there were only 98 SO₃ solubility measurements, so the Pearson correlations are less stable and only those larger than 0.80 in magnitude are mentioned here. For the 3TS offset model, the component pairs with correlations larger (in absolute value) than 0.80 were Cl and F with correlation of 0.962, Cl and P₂O₅ with correlation of 0.954, and F and P₂O₅ with a correlation of 1.00. Because of this, although F and P₂O₅ are not strongly correlated in the other offset models, it is recommended that neither component be included in the RLM model for the melter SO₃ tolerance model. Such high pairwise correlations can make it difficult for regression methods to properly separate the effects of Cl and F (and Cl and P₂O₅) on the response variable (e.g., melter SO₃ tolerance). Thus, this high pairwise correlation needs to be kept in mind when developing and interpreting LAW glass property-composition models for melter SO₃ tolerance.

Finally, the correlations for the model as a whole, including glasses for each SO₃ solubility or melter tolerance measurement methods and the offsets for BS and SR, and 3TS were examined. This was essentially the independent variables matrix for the Full Linear Mixture (FLM) model discussed in Section 7.3.1 below. As 576 glasses (representing a total of 635 measurements as some glasses had multiple methods applied) were included, only those Pearson correlations with absolute values larger than 0.60 are mentioned here. Looking first at the components, only Li₂O and Na₂O with a correlation of - 0.818 was larger in absolute value than 0.60 which agrees with the BS and SR, and Bub and MT subsets discussed above. See Section 9.7 for further discussion on treatment of the Li₂O:Na₂O correlations. In addition, the BS and SR offset and 3TS offset had a correlation of -0.715. This high correlation is largely because not all glasses were measured by all methods.

	0000 48004	2	0000		0000 0000	2			00000	8	0.000		00.000		00000		00000	2	00000	
AI203		1		. <mark>17</mark>	.		.	<u>.</u>	\$ 2				%		3.4. ·			8	.	8:148 8:835
8:18				14	.	*	Singer	• • • • • • • • • • • • • • • • • • •		*	.			8 2	\$ 1			1	₿ŧ.	- 0 128
0.012		CaO			· · .	<u>.</u>				<u> </u>	Ne -	* ?		<u>66</u>						- 8:086 - 8:086 - 8:000
			CI	<u> / %</u>	V · · ·	<u>82.</u>					21.				<u>.</u>	8.65. Ref. 1			<u> </u>	- 0.006
8-83 = -			<u>}</u>	Cr2O3	Ē	.	<u>.</u>			-	<u> </u>							<u>.</u>	<u>.</u>	8:886 8:886 8:886
	ا معدد التي منابع التي التي	مر ونواحد مر ونواحد			F	Fe203	estatio Autor	initia. Si contest	<u>مشتقط</u>	in the second	21 	- 1923. - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923		<u>2002 -</u>		Second Second	::::::: !:::::::::::::::::::::::::::::	initia.		- 8:135
						16203	к20		<mark>. 48</mark> []						25					: 8:888
8:868			1210-1 1		<u>.</u>	1990 - 19900 - 19900 - 19900 - 1990 - 19900 - 1990 - 1990 - 1990 - 1990		Li20	1994 - 1994 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994	×				1997 1997	inni 1		Plane			- 8:858 - 8:858 - 8:818
		45			<u> </u>		<u></u>		MgO						a			1	920	
4		1	14	<u>7</u> 7	i (***			Postal	1 47,	Na2O	1			** 0	4				R.	8-266 - 185
		-	<u></u>		, i	<u>.</u>	Maria				P2O5		326				: 10			
0.523					<u>.</u>	%	Kiri		id,		<mark>v</mark> et e	S03			.	<u> (195</u>	N		.	- 8:818 - 8:886 - 8:886
8:523 8:360 8:360				14		<u> </u>	V 644				<u>8</u> 11 - 1		SiO2	3-0	2 11 -	.		8	U ti	- 0.050
8.859		<u> .</u>					· · · · ·	:			<u>.</u>							<u>1</u>	1	- 8:834 - 8:817 - 8:000
				4 4 - 10 -	••	_		ièr:	<u>.</u> */		<u>.</u>				TiO2			×.	<u>84</u> 1	- 8·8 44
											<u>.</u>					V205	ZnO	<u>1</u> 14	et e s	8:874
8:838 -													÷				2.10 		р Царана Правила	8.89
			en a e gra								·							- 19 - 19 - 19	Others	· 8:88
	- <u> </u>	8486	9	8888	 3	8486		8588		2006 2006 1111	8	8625		05200		8282		8888	B B	
		0000		0000	5	0000	5))		5	0000							-	
• V	VTP	•	0	RP	•	LF	°1.IL	•	LF	P1.0	L •	LI	P2.IL	•	L	P2.0)L 🔸	L	.P3	

Figure 7.5. Scatterplot Matrix of 20 Components (mass fractions) for the 576 LAW Glasses with Melter SO₃ Tolerance and Solubility at 1150 °C Data that Remain after Excluding the 25 Glasses in Table 7.1

7.1.1.2 Melter SO₃ Tolerance and Solubility at 1150 °C Dataset Used for Modeling

Table A.3 in Appendix A lists the Glass #s, Glass IDs, and SO₃ solubility and melter tolerance values for the 576 remaining simulated LAW glasses used for melter SO₃ tolerance model development. The SO₃ solubility and melter tolerance values for the 25 glasses excluded as outliers from the 601-glass modeling dataset (see Table 7.1) are marked with an asterisk in Table A.3. The compositions for these 576 LAW glasses are included in Table A.2. The glass compositions in Table A.2 are the normalized mass fractions of the 20 components previously identified as having sufficient data to support a separate model term if needed. The LAW glass compositions in Table A.2 were normalized so that the total mass fractions of all 20 components for each glass equaled precisely 1.000000 as discussed in Section 2.2.

The values of melter SO_3 tolerance and solubility in Table A.3 for the 576 glasses in the modeling dataset range from 0.150 to 2.603 wt%.

7.1.1.3 Replicate and Near-Replicate Data for Melter SO $_3$ Tolerance and Solubility at 1150 °C

The changes to the LAW glass compositions caused by the renormalization associated with using measured (or estimated) SO₃ values (see Section 2.2) resulted in some replicate glasses not having exactly equal normalized compositions. Such compositions are near-replicates. For ease of discussion, henceforth both replicates and near-replicates are referred to as replicates.

Table 7.2 lists the replicate sets of LAW glasses in the SO₃ solubility modeling dataset and the corresponding melter SO₃ tolerance and solubility values. Table 7.2 also lists estimates of (i) %RSDs [calculated using SO₃ solubility values in wt%] and (ii) SDs [calculated using SO₃ solubility values in wt% units] for each replicate set. While the %RSD values are presented, it was determined that no transformation of the response variable was necessary, so only the pooled SD (and not the %RSD) should be used. When multiple melter SO₃ tolerance and solubility values are given, the %RSD and SD are computed within a melter SO₃ tolerance and solubility method given in parentheses in the table. The %RSD values for 22 replicate sets range from 0.81% to 35.36%. The SDs ranged from 0.0071 to 0.2440, with most of the larger SDs being associated with the 3TS method.

Table 7.2 also lists pooled estimates of SDs calculated over all replicate sets. A pooled SD combines the separate SD estimates from each replicate set so that a more precise combined estimate of SD is obtained. These pooled SDs include uncertainties due to fabricating glasses, determining SO₃ measured or estimated values, and the process of determining melter SO₃ tolerance and solubility values. The magnitudes of the pooled SD = 0.1067 [in wt% units] in Table 7.2 indicate there is approximately a 0.1067 wt% uncertainty in the melter SO₃ tolerance and solubility measurements over the replicate glasses. The pooled estimates of replicate uncertainty for melter SO₃ tolerance and solubility in Table 7.2 are used subsequently to assess LOF of the various melter SO₃ tolerance models considered.

Replicate Set Glass #s	Replicate Set Glass IDs	Rep. Set BS	Rep. Set SR	Rep. Set Bub	Rep. Set MT	Rep. Set 3TS	%RSD ^(a)	SD
164	LAWA118S2	0.62						
165	LAWA119S1	0.69					7.56	0.0495
10	LAWA44S	0.55					5.34 ^(BS)	0.0283 ^(BS)
144	LAWA44S1	0.51		0.60			5.54	0.0205
331	LAWM1		0.87				0.04	
383	LAWM53		0.88				0.81	0.0071
342	LAWM12		0.77				2.50	0.0000
385	LAWM55		0.81				3.58	0.0283
365	LAWM35		0.41				25.46	0.1273
386 380	LAWM56		0.59 0.57					
380 381	LAWM50 LAWM51		0.57				1.23	0.0071
339	LAWM9		0.38					
384	LAWM54		0.44				14.14	0.0566
769	LORPM1		0.30					
1003	LORPM1R1		0.73				9.07	0.0707
778	LORPM10R1		1.47					
1007	LORPM10R1-repeat		1.54				3.29	0.0495
779	LORPM11		0.15					
1008	LORPM11-repeat		0.15				35.36	0.0707
786	LORPM18		0.25					
1009	LORPM18-repeat		0.52				25.71	0.1131
808	LORPM38		0.42					
1010	LORPM38R1		0.50				12.30	0.0566
772	LORPM4R1		0.82				1.00	0.0424
1004	LORPM4R2		0.88				4.99	0.0424
810	LORPM40		0.31				20.01	0.1101
1011	LORPM40R1		0.47				29.01	0.1131
777	LORPM9		0.31				0.57	0.0202
1006	LORPM9		0.35				8.57	0.0283
590	ORPLC2S4		0.68				5.40	0.0354
592	ORPLC3S4		0.63				3.40	0.0554
983	New-OL-108249Mod					1.295		
985 985	New-OL-					1.293	1.55	0.0198
905	108249Mod(PNNL)					1.207		
986	New-OL-116208Mod					1.271		
988	New-OL-					1.464	9.98	0.1365
	116208Mod(PNNL)					1.404		
597	ORPLD1				1.10			
997	LAW-ORP-LD1(1)					1.253	14.61 ^(3TS)	0.2046 ^(3TS)
999	LAW-ORP-LD1(2)					1.314	1 1101	0.2010
1035	LP2-OL-07					1.634		
930	New-IL-1721					1.647	2.90	0.0488
932	New-IL-1721(PNNL)					1.716		
1022	LP2-IL-10					1.337		
1028	LP2-IL-16					1.338	10.65	0.1304
1031	LP2-OL-02					1.098		
1049	LP2-OL-21					1.127		
1034	LP2-OL-05					1.427	19.45	0.2440
1038	LP2-OL-10-MOD All 22 Replicate Sets With	25 T-4	I DE(b)			1.082		
	' All 22 Replicate Sets With	125 Fota	IDF®				14.60	0.1067

Table 7.2. Uncertainty in SO₃ Solubility at 1150 °C Responses for Replicate and Near-Replicate Sets

7.1.2 Model Validation Approach and Data for Melter SO₃ Tolerance Model at 1150 °C of LAW Glasses

The validation approach for melter SO_3 tolerance models was based on splitting the 576-glass dataset for model development into five modeling/validation subsets. Of the 576 model-development glasses, 48 were in 22 replicate sets. The five modeling/validation splits of the 576 glasses in the melter SO_3 tolerance and solubility modeling dataset were formed as follows:

- The 48 replicate glasses in 22 replicate sets were set aside so they would always be included in each of the five model development datasets. This was done so that replicate sets would not be split between modeling and validation subsets, thus negating the intent to have validation glasses different than model development glasses.
- The remaining 528 glasses were ordered from smallest to largest according to their melter SO₃ tolerance and solubility values (wt%). If there were multiple values for one glass, the SO₃ solubility measurements were prioritized (taken first) in the following order: MT, Bub, 3TS, SR, and BS. The 528 glasses were numbered 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, etc. All of the 1's formed the first model validation set, while all of the remaining points formed the first model development dataset. Similarly, all of the 2's, 3's, 4's, and 5's respectively formed the second, third, fourth, and fifth model validation sets. In each case, the remaining non-2's, non-3's, non-4's, and non-5's formed the second, third, fourth, and fifth model development datasets. Because 528 is not evenly divisible by 5, the five modeling and validation subsets did not all contain the same numbers of glasses. Three of the five splits contained 106 glasses for validation and 422 glasses for modeling. Note that these numbers of glasses in the modeling subsets do not yet include the 48 replicates.
- The 48 replicate glasses were added to each of the split modeling subsets. Including the replicates, three of the five splits contained 470 glasses for modeling and 106 for validation, while the other two splits contained 471 glasses for modeling and 105 for validation.

Data splitting was chosen as the validation approach because the melter SO₃ tolerance and solubility modeling dataset contains all compositions that (i) are in the LAW GCR of interest, (ii) meet QA requirements, and (iii) have melter SO₃ tolerance and solubility data. Having a separate validation dataset not used for modeling is desirable, but that desire was overridden by wanting melter SO₃ tolerance models developed using all appropriate data.

7.1.3 Subsets of LAW Glasses to Evaluate Prediction Performance of Models for Melter SO₃ Tolerance at 1150 °C

Section 2.4 discusses six subsets of LAW glasses for evaluating the prediction performance of LAW glass property-composition models, including subsets of glasses with higher waste loadings. The subsets, as discussed in Section 2.4, are denoted WTP, ORP, LP2OL, LP123, HiNa₂O, and HiSO₃. The melter SO₃ tolerance modeling dataset of 576 LAW glasses (see Section 7.1.1) contains 171, 311, 115, 94, 223, and 135 glasses with melter SO₃ tolerance and solubility values in these six evaluation subsets, respectively. The Glass #s of these six evaluation subsets of LAW glasses are listed in Table C.5 of Appendix C. The normalized LAW glass compositions and melter SO₃ tolerance and solubility values for the glasses with these Glass #s are listed in Tables A.2 and A.3, respectively, of Appendix A.

Model performance/prediction statistics denoted R_{Eval}^2 and $RMSE_{Eval}$ (see Section B.3 of Appendix B), as well as predicted versus measured plots (see Section B.3), are subsequently used to assess the prediction performance of the melter SO₃ tolerance models (presented in later subsections) for the six evaluation subsets listed in Table C.5 of Appendix C.

7.2 Model Forms for Melter SO₃ Tolerance at 1150 °C of LAW Glasses

The empirical model forms used are from the general class of *mixture experiment models* (Cornell 2002), which includes models linear in composition as well as non-linear in composition. Section B.1 of Appendix B discusses mixture experiments and several general forms of mixture experiment models.

Section 7.2.1 discusses the forms of mixture experiment models used for melter SO_3 tolerance of LAW glasses. Section 7.2.2 discusses use of melter SO_3 tolerance and solubility values as the response variable for melter SO_3 tolerance modeling with offsets for some of the different SO_3 solubility methods.

7.2.1 Mixture Experiment Model Forms for Melter SO₃ Tolerance at 1150 °C of LAW Glasses

The LM and PQM model forms introduced in Section B.1 of Appendix B were chosen for use in modeling melter SO_3 tolerance as a function of LAW glass composition. Compositions were normalized after removing SO_3 content so that SO_3 content formed a true independent parameter. This approach (LM and PQM of normalized compositions) was used in the past (e.g., Vienna et al. 2014; Muller et al. 2014) to model the compositional dependence of melter SO_3 tolerance-composition or SO_3 solubility-composition models. The following equation was used to normalize the compositions.

$$x_i = \frac{g_i}{1 - g_{SO_3}}$$
(7.1)

where g_i is the *i*th component mass fraction in glass and x_i is the *i*th component so that the normalized concentrations of all components (*i* = 1, ..., *q*) except SO₃ sum to 1.

The LM model form is given by

$$w_{SO_3}^{MT} = \sum_{i=1}^{q} \beta_i x_i + e$$
(7.2)

while the PQM model form is given by

$$w_{SO_3}^{MT} = \sum_{i=1}^{q} \beta_i x_i + \text{Selected} \left\{ \sum_{i=1}^{q} \beta_{ii} x_i^2 + \sum_{i=1}^{q} \sum_{j=1}^{q} \beta_{ij} x_i x_j \right\} + e$$
(7.3)

where in Eqs. (7.2) and (7.3)

 $W_{SO_2}^{MT}$ = melter SO₃ tolerance

 x_i = normalized mass fraction of the *i*th glass oxide or halogen component

$$(i = 1, 2, ..., q)$$
 except measured SO₃, such that $\sum_{i=1}^{q} x_i = 1$

$$\beta_i$$
 = coefficient of the *i*th linear blending term (*i* = 1, 2, ..., *q*)

 β_{ii} and $\beta_{ij} =$ coefficients of selected quadratic (squared or crossproduct) blending terms to be estimated from the data

e = random error for each data point.

Many statistical methods exist for the case where the *E* are statistically independent (i.e., not correlated) and normally distributed with mean 0 and standard deviation σ . In Eq. (7.3), "Selected" means that only some of the terms in curly brackets are included in the model. The subset is selected using stepwise regression or other variable selection methods (Draper and Smith 1998; Montgomery et al. 2012). PQM models are discussed in more detail and illustrated by Piepel et al. (2002) and Smith (2005).

Cornell (2002) discusses many other empirical mixture model forms that could have been considered for melter SO_3 tolerance-composition modeling. However, these other mixture model forms were not investigated because the special blending effects of components associated with those models were judged not to apply for melter SO_3 tolerance. The model forms in Eqs. (7.2) and (7.3) are widely used in many application areas (including waste glass property modeling) and usually predict the response very well.

7.2.2 Offsets for Melter SO₃ Tolerance Model at 1150 °C for LAW Glasses

In modeling melter SO₃ tolerance, it is advantageous to use the SO₃ solubility values from other methods. However, in previous work (Vienna et al. 2014) it was ascertained that SO₃ solubility measurements from other methods such as BS, SR, Bub, and 3TS sometimes require the use of offsets. The advantage of using these offsets, where appropriate, is that it allows the use of all the melter SO₃ tolerance and solubility measurements instead of only the much more limited melter SO₃ tolerance dataset, which in this case only had 13 observations.

Based on preliminary modeling and previous work (Vienna et al. 2014; Skidmore et al. 2019), it was determined that (i) the BS and SR SO₃ solubility data could be combined into one offset, (ii) MT and Bub SO₃ solubility data could be combined into the main model without any offset, and (iii) 3TS SO₃ solubility data would form the second offset.

The LM model form is then given by

$$w_{SO_3}^{MT} = w_{SO_3} = C_S H_S + C_3 H_3 + \sum_{i=1}^q \beta_i x_i + e$$
(7.4)

while the PQM model form is given by

$$w_{SO_3}^{MT} = C_S H_S + C_3 H_3 + \sum_{i=1}^q \beta_i x_i + \text{Selected} \left\{ \sum_{i=1}^q \beta_{ii} x_i^2 + \sum_{i=1}^{q-1} \sum_{j=1}^q \beta_{ij} x_i x_j \right\} + e.$$
(7.5)

In Eqs. (7.4) and (7.5)

 $w_{SO_2}^{MT}$ = melter SO₃ tolerance and solubility measurements

 $H_{\rm S} = 1$ if the SO₃ solubility method was BS or SR, 0 otherwise

- $H_3 = 1$ if the SO₃ solubility method was 3TS, 0 otherwise
- x_i = normalized mass fraction of the *i*th glass oxide or halogen component

$$(i = 1, 2, ..., q)$$
 except measured SO₃, such that $\sum_{i=1}^{q} x_i = 1$

- C_S = first offset, or coefficient for BS and SR SO₃ solubility methods
- C_3 = second offset, or coefficient for 3TS SO₃ solubility methods
- β_i = coefficient of the *i*th linear blending term (*i* = 1, 2, ..., *q*)
- β_{ii} and β_{ij} = coefficients of selected quadratic (squared or crossproduct) blending terms to be estimated from the data
 - e = random error for each data point.

Notice that without the offsets (or when the melter SO_3 tolerance method is used), the model forms in Eqs. (7.4) and (7.5) reduce to the melter SO_3 tolerance model given in Eqs. (7.2) and (7.3), respectively.

7.3 Property-Composition Model Results for Melter SO₃ Tolerance at 1150 °C of LAW Glasses

This section discusses the results of fitting several different mixture experiment models using melter SO₃ tolerance and solubility data from five methods (BS, SR, Bub, MT, and 3TS) as functions of LAW glass compositions normalized after the removal of measured SO₃. Section 7.3.1 presents the results of modeling melter SO₃ tolerance using a 19-component FLM model. Sections 7.3.2 and 7.3.3 present the results of modeling melter SO₃ tolerance using RLM and PQM models based on a reduced set of mixture components. Finally, Section 7.3.4 compares the results from the three models and recommends a melter SO₃ tolerance model for future use and evaluation.

7.3.1 Results from the 19-Component Full Linear Mixture Model for Melter SO₃ Tolerance at 1150 °C with LAW Glasses

As the initial step for developing an FLM melter SO₃ tolerance-composition model, the 20 components identified in Section 7.1.1.1 were renormalized with measured SO₃ removed and were fit to the modeling data (576 LAW glasses). Table 7.3 contains the results for the 19-component FLM model of melter SO₃ tolerance. Table 7.3 lists the model coefficients, standard deviations of the coefficients, and model fit statistics for the 19-component FLM model on melter SO₃ tolerance with appropriate indicator vectors for the SO₃ method using the modeling dataset (576 LAW glasses). Table 7.3 also contains the results from the (i) data-splitting validation approach (see Section 7.1.2), and (ii) evaluation of model predictions for the six evaluation subsets (see Section 7.1.3). In the data-splitting validation portion of the results at the bottom of Table 7.3, the columns are labeled DS1, DS2, DS3, DS4, and DS5 to denote the five modeling/validation splits of the data as described in Section 7.1.2. The last column of this part of Table 7.3 shows the averages for the different statistics over the five splits.

The $R^2 = 0.8281$, $R^2_A = 0.8225$, and $R^2_P = 0.8125$ statistics (see Section B.3 of Appendix B) in Table 7.3 show that (i) the 19-component FLM model fits the melter SO₃ tolerance and solubility data in the 576-glass modeling dataset well, (ii) there are not a large number of unneeded model terms, and (iii) there are not any highly influential data points. The RMSE = 0.1769 is larger than the pooled glass batching and melter SO₃ tolerance and solubility determination uncertainty (SD = 0.1067 in wt% units) estimated from replicates in Table 7.2. This suggests that the 19-component FLM model does have a statistically significant LOF, which is confirmed by the model LOF p-value < 0.002 in Table 7.3. See Section B.3 for discussion of the statistical test for model LOF. This p-value indicates that the model LOF is significant at more than the 99.8% confidence level. This indicates that a model with additional term(s) may be necessary. However, the FLM model includes all reasonable linear terms. Addition of higher order terms (quadratic and two-way interactions) to a reduced liner model is investigated further in Section 7.3.3.

At the bottom right of Table 7.3, the average model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE) over the five data-splits are very close to the statistics obtained from fitting the 19-component FLM model for melter SO₃ tolerance to all 576 glasses in the modeling dataset. This indicates that the model, despite its statistically significant LOF, maintains its performance for data not used to fit the model. The data-split validation statistics (R^2_V and RMSE_V) are also relatively close to the R^2 and RMSE (i) values from fitting the model to the full dataset, and (ii) averages from fitting the model to the data-split modeling subsets. The data-split validation statistics (R^2_V and RMSE_V) indicate that the 19-component FLM model mostly maintains its performance for data not used to fit the model.

Melter SO ₃ Tolerance					
with Offsets					
19-Component	Coefficient	Coefficient	0	0	Modeling Data Statistic,
FLM Model Term	Estimate	Stand. Err.		576 Glasses ^(a)	
BS or SR offset	-0.2041	0.0243	R ²		
3TS offset	0.4233	0.0341	R ² _A		
Al ₂ O ₃	-2.2987	0.3316	R ² P		
B_2O_3	2.7737	0.3307	RMSE		
CaO	4.7158	0.2430	Model I	Model LOF p-value	Model LOF p-value ^(e)
Cl	-15.9895	3.0354			
Cr_2O_3	2.2991	4.2240	Evaluation	Evaluation Set	Evaluation Set
			(# Glasses	(# Glasses) ^(b)	(# Glasses) ^(b) R ² _{Eval}
F	2.2255	4.0808	WTP (1	WTP (171)	WTP (171) 0.5883
Fe ₂ O ₃	-1.8939	0.3573	ORP (3	ORP (311)	ORP (311) 0.8273
K ₂ O	0.6084	0.4803	LP2OL	LP2OL (115)	LP2OL (115) 0.8721
Li ₂ O	10.6810	0.7434	LP123 (LP123 (94)	LP123 (94) 0.5343
MgO	0.2821	0.7399	HiNa ₂ O	HiNa ₂ O (223)	HiNa ₂ O (223) 0.8777
Na ₂ O	2.8286	0.2420	HiSO ₃ (HiSO ₃ (135)	HiSO ₃ (135) 0.5556
P_2O_5	-0.7042	2.1628			
SiO ₂	0.1730	0.1470			
SnO ₂	-4.9273	0.6516			
TiO ₂	1.0214	0.9376			
V_2O_5	5.6346	0.6418			
ZnO	1.5752	0.8026			
ZrO_2	-1.8679	0.5176			
Others ^(c)	-23.3768	12.8549			
Data Splitting Statistic	(a,d) DS1	DS2	DS3	DS3 DS4	DS3 DS4 DS5
R ²	0.8105	0 8496	0.8392		

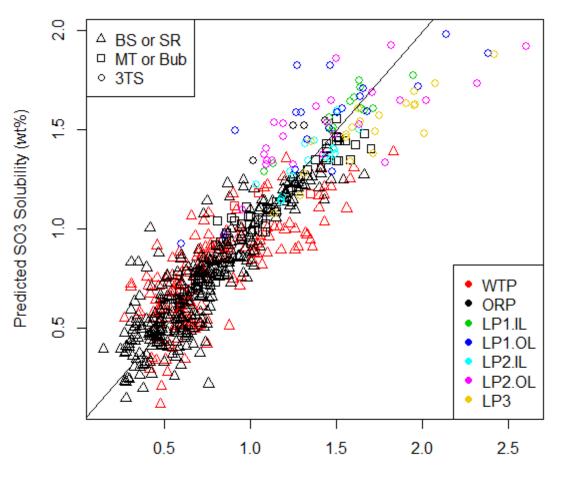
Table 7.3. Coefficients and Performance Summary for the 19-Component Full Linear Mixture Model onthe Melter SO3 Tolerance at 1150 °C for LAW Glasses

Data Splitting Statistic ^(a,d)	DS1	DS2	DS3	DS4	DS5	Average
R ²	0.8105	0.8496	0.8392	0.7977	0.7525	0.8099
R ² _A	0.7701	0.8195	0.8073	0.7532	0.7004	0.7701
R ² _P	0.5807	0.7506	0.6847	0.6380	0.4319	0.6172
RMSE	0.2036	0.1789	0.1892	0.2023	0.2284	0.2005
R ² v	0.8290	0.8221	0.8229	0.8330	0.8348	0.8283
RMSE _V	0.1840	0.1626	0.1721	0.1823	0.2067	0.1816

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

(b) The six sets of LAW evaluation glasses are discussed in Section 2.4 and Section 7.1.3.

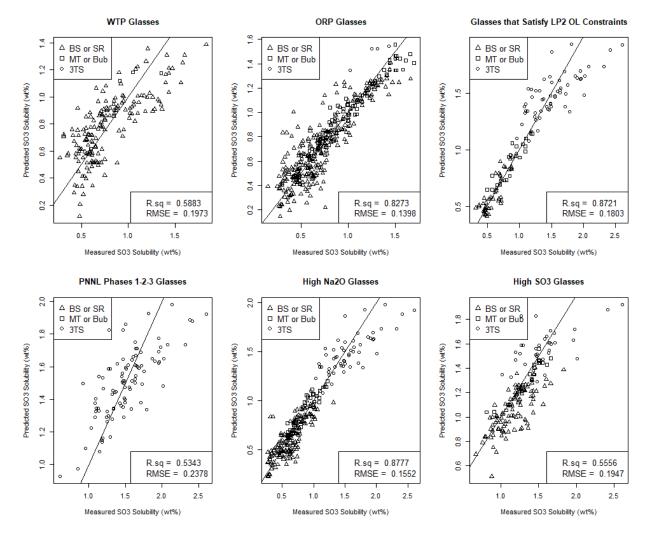
(c) For the 19-component FLM model, the "Others" component includes any components not separately listed except for SO₃.


(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 7.1.2 describes how the modeling dataset was split into modeling and validation subsets.

(e) A CCP for the appropriate LOF test in this case is currently being worked on.

The statistics from evaluating the predictive performance of the 19-component FLM model for melter SO₃ tolerance on the six evaluation subsets of modeling glasses (see Section 7.1.3) are given on the right side of Table 7.3. The R² statistics for three of the six evaluation subsets (0.8273 to 0.8777) are close to or better than the R² statistic for the whole modeling dataset (0.8281). The exceptions are (i) the WTP evaluation subset, with R² = 0.5883; (ii) the LP123 evaluation subset, with R² = 0.5343; and (iii) HiSO₃, with R² = 0.5556; all of which are still above the worst R²_P (= 0.4319) for the data splitting statistics. The

 R^{2}_{Eval} values that are moderately to substantially lower than the R^{2} for the whole modeling dataset are because melter SO₃ tolerance and solubility depends very heavily on the mass fractions of Cl, Li₂O, Fe₂O₃, and ZrO₂ in a LAW glass composition. Hence, the less variation in mass fractions of Cl, Li₂O, Fe₂O₃, and ZrO₂ there is in an evaluation subset, the less dependent melter SO₃ tolerance and solubility will be on the mass fractions of other components for glasses in that evaluation subset, which reduces the R^{2}_{Eval} values.


Figure 7.6 shows the PvM plot for the 576-glass modeling dataset using the 19-component FLM model for melter SO₃ tolerance. The plot illustrates that the 19-component FLM model predicts melter SO₃ tolerance fits well, but with a tendency to under-predict (i) above 1.8 wt% melter SO₃ tolerance and (ii) possibly below 0.7 wt% melter SO₃ tolerance. Note that the under-predictions mainly have to do with the BS, SR, or 3TS SO₃ solubility method data, and the MT and Bub methods data are much tighter around the line, indicating a better fit for these methods, although there is some under-prediction of MT and Bub methods above 1.2 wt% melter SO₃ tolerance. The underprediction will result in conservative estimates of melter SO₃ tolerance and, although non-ideal, can still be useful in the WTP LAW Facility operation.

Measured SO3 Solubility (wt%)

Figure 7.6. Predicted versus Measured Plot for the 576-Glass Modeling Dataset Using the 19-Component Full Linear Mixture Model on Melter SO₃ Tolerance at 1150 °C for LAW Glasses

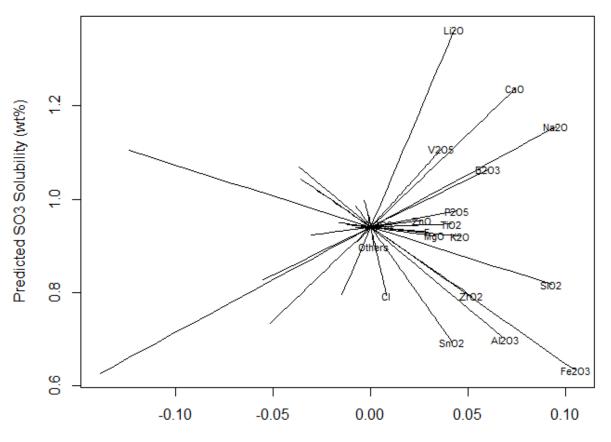

Figure 7.7 displays PvM plots using the 19-component FLM model for melter SO₃ tolerance in Table 7.3 applied to the six evaluation subsets discussed in Section 7.1.3. Each plot in the figure contains the evaluation R² and RMSE values for the corresponding evaluation subset. Figure 7.7 shows that the 19-component FLM model for melter SO₃ tolerance fit to the 576-glass modeling dataset generally predicts well for three of the six evaluation subsets. In particular, the model predicts well for some of the evaluation subsets containing glasses with higher waste loadings (LP2OL and HiNa₂O). However, some of the evaluation subsets containing glasses with higher waste loadings (LP123 and HiSO₃) do not fit as well. The 3TS method has greater variability than the other methods, likely explaining the worse fit for the LP123 glasses, which were all 3TS measurements. Similarly, most of the data explaining the worse fit for the HiSO₃ evaluation set may be due to the 3TS method SO₃ solubility data. The plot for the WTP evaluation set (which contains older data for glasses with lower waste loadings) shows more scatter, resulting in an evaluation R² that is not as large as for the other evaluation sets. This is understandable and acceptable, since the new models presented in this report need to predict well for glasses with higher-waste loadings.

Figure 7.7. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 19-Component Full Linear Mixture Model on the Melter SO₃ Tolerance at 1150 °C for LAW Glasses

The model in Table 7.3 does not fit the 576-glass modeling dataset well enough, as there is a statistically significant LOF (p-value = 0.0001), indicating that adding terms to the model, such as developing a PQM model (or a model with quadratic terms), may fit the modeling dataset better. However, there are no more linear terms that can be added to the FLM model (they can only be removed), so to provide guidance for reducing the FLM model (i.e., removing separate terms for components that do not significantly influence melter SO₃ tolerance), the 19-component FLM model was used to produce the response trace plot (see Section B.4.1 in Appendix B) shown in Figure 7.8. The average glass composition of the 1074 glasses in the compiled database discussed in Section 2.3 was used as the REFMIX (see Section B.4.1) in response trace plots for every property. The glass composition of the REFMIX is listed in Table 2.3; however, SO₃ was normalized out of the composition to agree with what was done for the model.

The response trace plot in Figure 7.8 shows that Cl, SnO_2 , Al_2O_3 , Fe_2O_3 , ZrO_2 , and SiO_2 are predicted to increase melter SO_3 tolerance the most, while Li_2O , V_2O_5 , CaO, Na_2O , B_2O_3 , and P_2O_5 are predicted to decrease melter SO_3 tolerance the most. The remaining components have predicted response traces with small to negligible slopes, indicating that those components are predicted to have small to negligible effects on melter SO_3 tolerance.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 7.8. Response Trace Plot for the 19-Component Full Linear Mixture Model on Melter SO₃ Tolerance at 1150 °C for LAW Glasses

7.3.2 Results from a Reduced Linear Mixture Model for the Melter SO₃ Tolerance at 1150 °C with LAW Glasses

The 19-component FLM model for melter SO₃ tolerance presented in Section 5.3.1 likely contains components that do not significantly contribute to predicting melter SO₃ tolerance, so model reduction was the next step of the model development approach. Thus, RLM models for melter SO₃ tolerance involving fewer than the 19 components were considered. The sequential F-test model reduction approach (see Section B.4.1 of Appendix B; Piepel and Cooley 2006) was used.

7.3.2.1 Numerical Results for the 10-Component Reduced Linear Mixture Model on the Melter SO₃ Tolerance at 1150 $^{\circ}$ C for LAW Glasses

The RLM model for melter SO₃ tolerance was obtained using a combination of (i) glass scientist expertise looking at the slope terms and (ii) the backward-elimination, F-test method discussed in Section B.4.1 of Appendix B. Glass scientists provided inputs on LAW glass components that should be retained in the model, and the method determined whether the remaining components should be kept as separate linear terms or combined into Others. The resulting RLM model for melter SO₃ tolerance contained terms for 10 components: Al₂O₃, B₂O₃, CaO, Cl, Li₂O, Na₂O, P₂O₅, SiO₂, V₂O₅, and Others. Note that Others is the sum of all remaining components except SO₃, and thus differs from the Others in the 19-component FLM model discussed in Section 7.3.1.

Table 7.4 contains the results for the 10-component RLM model of melter SO₃ tolerance. Table 7.4 lists the model coefficients, standard deviations of the coefficients, and model fit statistics for the 10-component RLM model using the modeling dataset (576 LAW glasses). Table 7.4 also contains the results from the (i) data-splitting validation approach (see Section 7.1.2), and (ii) evaluation of model predictions for the six evaluation subsets (see Section 7.1.3). In the data-splitting validation portion of the results at the bottom of Table 7.4, the columns are labeled DS1, DS2, DS3, DS4, and DS5 to denote the five modeling/validation splits of the data as described in Section 7.1.2. The last column of this part of Table 7.4 shows the averages for the different statistics over the five splits.

The $R^2 = 0.8073$, $R^2_A = 0.8038$, and $R^2_P = 0.7965$ statistics (see Section B.3 of Appendix B) in Table 7.4 show that (i) the 10-component RLM model fits the melter SO₃ tolerance and solubility data in the 576-glass modeling dataset well, (ii) there are not a large number of unneeded model terms, and (iii) there are not any highly influential data points. The RMSE = 0.1860 is larger than the pooled glass batching melter SO₃ tolerance and solubility determination uncertainty (SD = 0.1067 in wt% units) estimated from replicates in Table 7.2. This suggests that the 10-component RLM model does have a statistically significant LOF, which is confirmed by the model LOF p-value < 0.002 in Table 7.4. This p-value indicates that the model LOF is significant at more than the 99.8% confidence level. This indicates that a model with additional term(s) may be necessary. Additions of higher order terms (quadratic and two-way interactions) to a reduced liner model is investigated further in Section 7.3.3. See Section B.3 for discussion of the statistical test for model LOF.

Melter SO ₃ Tolerance						
10-Component	Coefficient	Coefficient		g Data Statisti	c,	T 7 1
RLM Model Term	Estimate	Stand. Err.	576 Glas	ses ^(a)		Value
BS or SR offset	-0.2026	0.0252	\mathbb{R}^2			0.8073
3TS offset	0.3999	0.0336	R^2_A			0.8038
Al ₂ O ₃	-2.1233	0.3433	R ² _P			0.7965
B_2O_3	2.8670	0.3339	RMSE			0.1860
CaO	4.8693	0.2465	Model	LOF p-value(e	2)	< 0.002
Cl	-16.3356	2.8852				
Li ₂ O	9.4777	0.7230	Evaluation (# Glasse		R ² _{Eval}	RMSE _{Eval}
Na ₂ O	2.3261	0.2165	WTP (0.5819	0.1988
P ₂ O ₅	0.6116	2.0905	ORP (311)	0.7943	0.1525
SiO ₂	0.4894	0.1367	LP2OI	L (115)	0.8550	0.1920
V ₂ O ₅	5.4924	0.6632	LP123	(94)	0.4593	0.2563
Others ^(c)	-1.0916	0.1856	HiNa ₂	O (223)	0.8551	0.1689
			HiSO3	(135)	0.4776	0.2111
Data Splitting Statistic ^(a,d)	DS1	DS2	DS3	DS4	DS5	Average
R ²	0.8096	0.8348	0.8075	0.7862	0.7861	0.8048
R ² _A	0.7892	0.8181	0.7883	0.7627	0.7635	0.7844
R ² _P	0.7239	0.7766	0.7224	0.6990	0.7002	0.7244
RMSE	0.1949	0.1795	0.1983	0.1983	0.2029	0.1948
R ² v	0.8044	0.8000	0.8056	0.8103	0.8104	0.8061
RMSE _V	0.1845	0.1704	0.1883	0.1874	0.1921	0.1845

Table 7.4. Coefficients and Performance Summary for the 10-Component Reduced Linear Mixture
Model on the Melter SO ₃ Tolerance at 1150 °C for LAW Glasses

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

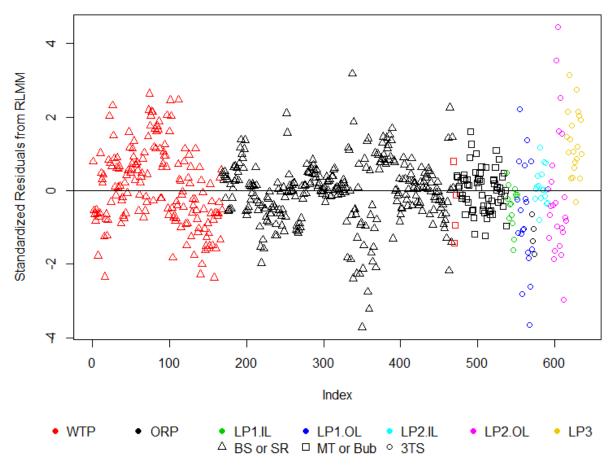
(b) The six sets of LAW evaluation glasses are discussed in Section 2.4 and Section 7.1.3.

(c) For the 10-component RLM model, the "Others" component includes any components not separately listed except for SO₃.

(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 7.1.2 describes how the modeling dataset was split into modeling and validation subsets.

(e) A CCP for the appropriate LOF test in this case is currently being worked on.

At the bottom right of Table 7.4, the average model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE) over the five data-splits are close to (although a little less than) the statistics obtained from fitting the 10-component RLM model for melter SO₃ tolerance to all 576 glasses in the modeling dataset. This indicates that the model, despite its statistically significant LOF, maintains its performance for data not used to fit the model. The data-split validation statistics (R^2_V and RMSE_V) are also relatively close to the R^2 and RMSE (i) values from fitting the model to the full dataset, and (ii) averages from fitting the model to the datasplit modeling subsets. This indicates that the 10-component RLM model for melter SO₃ tolerance mostly maintains its predictive performance for data not used to fit the model.


The statistics from evaluating the predictive performance of the 10-component RLM model for melter SO_3 tolerance on the six evaluation subsets of modeling glasses (see Section 7.1.3) are given on the right side of Table 7.4. The R² statistics for three of the six evaluation subsets (0.7943 to 0.8551) are close to the R² statistic for the whole modeling dataset (0.8073). These values are from notably below to slightly above the R² statistics for the whole modeling dataset (0.8073). The exceptions are (i) the WTP

evaluation subset, with $R^2 = 0.5819$; (ii) the LP123 evaluation subset, with $R^2 = 0.4593$; and (iii) the HiSO₃ evaluation subset, with $R^2 = 0.4776$; all of which are relatively low. The R^2_{Eval} values that are moderately to substantially lower than the R^2 for the whole modeling dataset are because melter SO₃ tolerance depends very heavily on the mass fractions of Cl, Li₂O, Al₂O₃, and CaO in a LAW glass composition. Hence, the less variation in mass fractions of Cl, Li₂O, Al₂O₃, and CaO there is in an evaluation subset, the less dependent melter SO₃ tolerance will be on the mass fractions of other components for glasses in that evaluation subset, which reduces the R^2_{Eval} values.

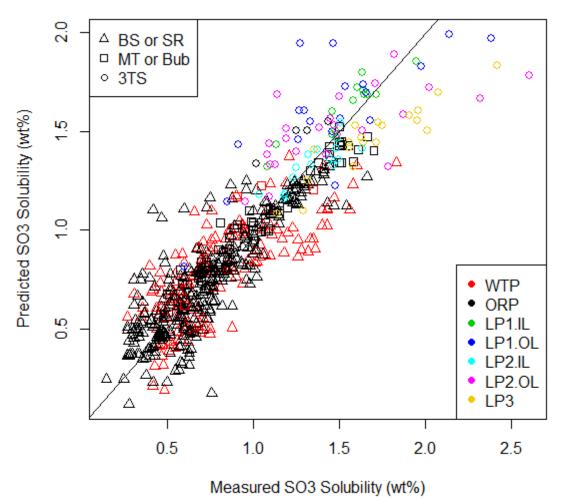
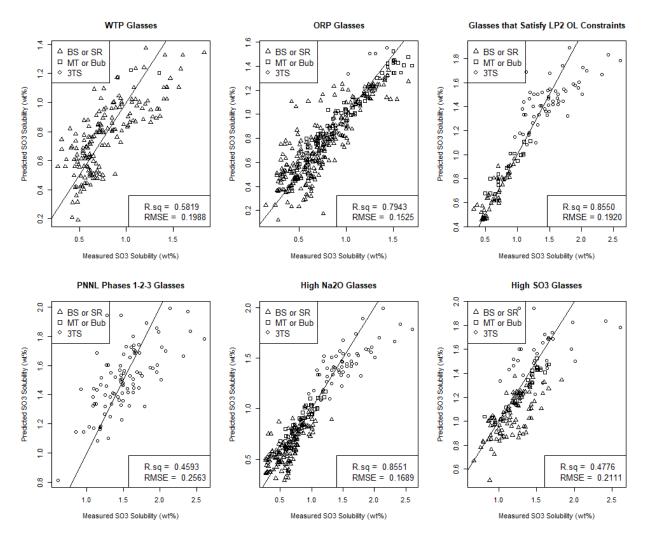
7.3.2.2 Graphical Results for the 10-Component Reduced Linear Mixture Model on Melter SO₃ Tolerance at 1150 °C for LAW Glasses

While the RLM model exhibits significant LOF, it does have adequate performance, as indicated by the model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE). Therefore, diagnostic plots for the 10-component RLM model (not included in this report) were investigated and support the assumption of normally distributed errors in the melter SO₃ tolerance and solubility data (see Section B.3 of Appendix B). Figure 7.9 displays for the 10-component RLM model of melter SO₃ tolerance the standardized residuals plotted versus the data index (a sequential numbering of the modeling data points for each melter SO₃ tolerance and solubility – 635 points because of multiple measurements on some of the glasses) with different plotting symbols representing the different groups of LAW glasses discussed in Section 2.3. Figure 7.9 yields the following observations:

- The LP3 (PNNL Phase 3) datasets have a narrower scatter of standardized residuals, indicating a narrower range of melter SO₃ tolerance model prediction uncertainty. This is likely because these glasses span narrower subregions of LAW glass compositions.
- The 10-component RLM model tends to under-predict melter SO₃ tolerance (corresponding to positive standardized residuals) for the LP3 glasses. The PNNL LP3 studies were investigated and no reason for biased SO₃ 3TS values was found. The differences in standardized residuals for this study may be a result of longer-term random uncertainty.
- One glass has standardized residual over 4. Although outlying, this data point did not have a major impact on the 10-component RLM model for melter SO₃ tolerance and hence was retained in the modeling dataset.

Figure 7.9. Standardized Residuals Plot for the 10-Component Reduced Linear Mixture Model on Melter SO₃ Tolerance at 1150 °C for LAW Glasses

Figure 7.10 displays the PvM plot for the 576-glass modeling dataset using the 10-component RLM model on melter SO₃ tolerance. Figure 7.10 is nearly identical to the PvM plot for the 19-component FLM model in Figure 7.6. Hence, as in Figure 7.6, Figure 7.10 illustrates that the 10-component RLM model predicts melter SO₃ tolerance well, but with a tendency to under-predict (i) above 1.8 wt% melter SO₃ tolerance and (ii) possibly below 0.8 wt% melter SO₃ tolerance. The underprediction will result in conservative estimates of melter SO₃ tolerance and, although non-ideal, can still be useful in the WTP LAW Facility operation.

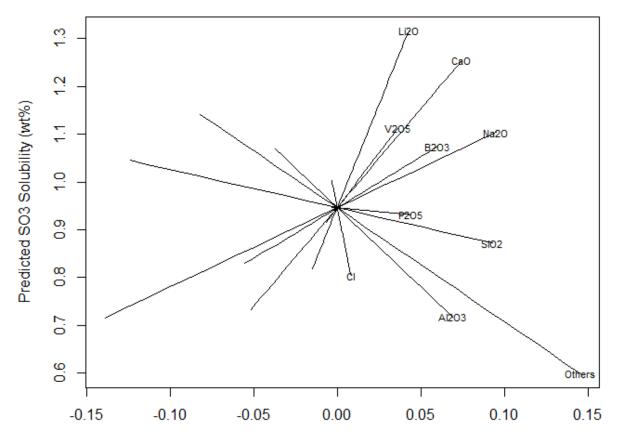

Figure 7.10. Predicted versus Measured Plot for the 576-Glass Modeling Dataset Using the 10-Component Reduced Linear Mixture Model on Melter SO₃ Tolerance at 1150 °C for LAW Glasses

Figure 7.11 displays PvM plots using the 10-component RLM model for melter SO₃ tolerance in Table 7.4 applied to the six evaluation subsets discussed in Section 7.1.3. Each plot in the figure contains the evaluation R² and RMSE values for the corresponding evaluation subset. Figure 7.11 shows that the 10-component RLM model for melter SO₃ tolerance fit to the 576-glass modeling dataset generally predicts well for three of the six evaluation subsets. In particular, the model predicts well for two of the evaluation subsets containing glasses with higher waste loadings (LP2OL and HiNa₂O). The model also predicts well for the ORP evaluation subset. The plot for the WTP (which contains older data for glasses with lower waste loadings), LP123, and HiSO₃ evaluation sets show more scatter, resulting in an evaluation R² that is not as large as for the other evaluation sets. However, most of the scatter in the LP123 and HiSO₃ evaluation sets is due to the 3TS SO₃ solubility data having greater variability. Despite this greater variability, the models will be used to predict melter tolerance that has better performance across these evaluation sets.

Figure 7.11. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 10-Component Reduced Linear Mixture Model on Melter SO₃ Tolerance at 1150 °C for LAW Glasses

Figure 7.12 displays the response trace plot (see Section B.4.1 in Appendix B) for the 10-component RLM model of melter SO₃ tolerance. The glass composition of the REFMIX (see Section B.4.1) used is listed in Table 2.3. Figure 7.12 shows that Cl, Al_2O_3 SiO₂, and Others are predicted to increase melter SO₃ tolerance the most, while Li₂O, V₂O₅, CaO, B₂O₃, and Na₂O, are predicted to decrease melter SO₃ tolerance the most. The remaining components have predicted response traces with small to negligible slopes, indicating that those components are predicted to have small to negligible effects on melter SO₃ tolerance.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 7.12. Response Trace Plot for the 10-Component Reduced Linear Mixture Model on Melter SO₃ Tolerance at 1150 °C for LAW Glasses

7.3.3 Results from a Reduced Partial Quadratic Mixture Model for Melter SO₃ Tolerance at 1150 °C with LAW Glasses

Reduced PQM models (see Section 7.2.1) were investigated in an effort to improve the 10-component RLM model for melter SO₃ tolerance presented in Section 7.3.2. Reduced PQM models were generated using the MAXR criterion (see Section B.4.2 of Appendix B) and plots of RMSE versus the number of quadratic terms to select a small number of quadratic (crossproduct and/or squared) terms to augment the 10 linear terms from the RLM model. Also, the components that could form quadratic terms were limited to those with strong linear effects and a glass science basis. Ultimately, an 11-term PQM model for melter SO₃ tolerance with 10 linear terms and 1 quadratic term (Na₂O × Li₂O) was selected as including enough quadratic terms to improve the model fit, without over-fitting the model development data. This term is generally expected based on past sulfur solubility modeling for LAW glasses that showed Li₂O × Li₂O (Vienna et al. 2014). Interactions between Li₂O and Na₂O are expected due to the mixed alkali effect. Table 7.5 contains the coefficients of the 11-term PQM model for melter SO₃ tolerance and the coefficient standard deviations. Table 7.5 also includes model performance statistics for the 11-term PQM model using the (i) 576-glass modeling data, (ii) data-split modeling data (as a model validation approach), and (iii) six evaluation subsets of modeling glasses discussed in Section 7.1.3 (as a model evaluation approach).

7.3.3.1 Numerical Results for the 11-Term Reduced Partial Quadratic Mixture Model on Melter SO₃ Tolerance at 1150 $^{\circ}$ C

In Table 7.5, the melter SO₃ tolerance model fit statistics $R^2 = 0.8303$, $R^2_A = 0.8270$, $R^2_P = 0.8190$, and RMSE = 0.1747 for the 11-term PQM model are small improvements over the corresponding statistics for the 10-component RLM model in Table 7.4. The small drop in values from R^2_A to R^2_P suggests that the melter SO₃ tolerance modeling dataset does not have any highly influential data points for the 11-term reduced PQM model. In any case, $R^2_P = 0.8190$ provides an estimate of the fraction of variation in melter SO₃ tolerance values for future datasets over the same GCR that might be accounted for by this 11-term reduced PQM model.

The RMSE in Table 7.5 is an estimate of the uncertainty (in wt% units) in fabricating simulated LAW glasses and determining melter SO₃ tolerance if the 11-term reduced PQM model for melter SO₃ tolerance does have statistically significant LOF. The RMSE = 0.1747 for the reduced PQM model fitted to the 576-glass modeling dataset is smaller than the corresponding value for the 10-component RLM model (RMSE = 0.1860) in Table 7.4. The RMSE value is larger than the pooled replicate SD in wt% units of 0.1067 in Table 7.2. These observations suggest that the 11-term reduced PQM model for melter SO₃ tolerance does have model LOF, which is confirmed by the LOF test p-value < 0.002 in Table 7.5. This p-value indicates that the model LOF is significant at more than the 99.8% confidence level. This indicates that a model with additional term(s) may be necessary; however, additional partial quadratic terms did not appear to improve the model much in terms of the model fit statistics. Future work is planned to see if the model fit can be improved. See Section B.3 of Appendix B for discussion of the statistical test for model LOF.

At the bottom right of Table 7.5, the average model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE) over the five data-splits are close to the statistics obtained from fitting the 11-term reduced PQM model for melter SO₃ tolerance to all 576 glasses in the modeling dataset. This indicates that the model, despite its statistically significant LOF, maintains its performance for data not used to fit the model. The data-split validation statistics (R^2_V and RMSE_V) are also relatively close to the R^2 and RMSE (i) values from fitting the model to the full dataset, and (ii) averages from fitting the model to the data-split modeling subsets. This indicates that the 11-term reduced PQM model maintains its performance for data not used to fit the model.

The statistics from evaluating the predictive performance of the 11-term reduced PQM model for melter SO₃ tolerance on the six evaluation subsets of modeling glasses (see Section 2.4) are given on the right side of Table 7.5. The R² statistics for two of the six evaluation subsets (0.8636 to 0.8656) are greater than the R² statistic for the whole modeling dataset (0.8303). The exceptions are (i) the WTP evaluation subset, with R² = 0.7239; (ii) the ORP evaluation subset, with R² = 0.7754; (iii) LP123 evaluation subset, with R² = 0.5515; and (iv) the HiSO₃ evaluation subset, with R² = 0.6081; all of which are a little low but better than the RLM model. The R²_{Eval} values that are moderately to substantially lower than the R² for the whole modeling dataset are because melter SO₃ tolerance and solubility depends very heavily on the mass fractions of Cl, Li₂O, Al₂O₃, and CaO in a LAW glass composition. Hence, the less variation in mass fractions of Cl, Li₂O, Al₂O₃, and CaO there is in an evaluation subset, the less dependent melter SO₃ tolerance will be on the mass fractions of other components for glasses in that evaluation subset, which reduces the R²_{Eval} values.

Melter SO ₃ Tolerance						
1-Term PQM Model Term	Coefficient Estimate	Coefficient Stand. Err.			Modeling Data Statisti 576 Glasses ^(a)	Modeling Data Statistic, 576 Glasses ^(a)
S or SR offset	-0.2030	0.0237	R ²			
3TS offset	0.3938	0.0237	R ² A			
Al ₂ O ₃	-2.5573	0.3258	R^2_P			
B_2O_3	3.0315	0.3141	RMSE			
CaO	4.8032	0.2316		LO	F p-value ^{(e}	F p-value ^(e)
Cl	-17.7273	2.7139				
L: O	10 2020	1.2761	Evaluatio	n Set		
Li ₂ O	19.3989	1.2701	(# Glasses	s) ^(b)		R ² _{Eval}
Na ₂ O	3.0912	0.2197	WTP (1	171)		0.7239
P ₂ O ₅	2.1968	1.9709	ORP (3	511)		0.7754
SiO ₂	0.2258	0.1316	LP2OL	· /		0.8656
V ₂ O ₅	6.2143	0.6278	LP123	. ,		0.5515
Others ^(c)	-1.2757	0.1754	HiNa ₂ C	· /		0.8636
$Li_2O \times Na_2O$	-77.5811	8.4488	HiSO ₃	(135)	_	0.6081
Data Splitting Statistic ^(a,d)		DS2	DS3	DS4		DS5
R ²	0.8315	0.8591	0.8345	0.7933		0.8077
R ² _A	0.8117	0.8434	0.8163	0.7682		0.7853
R ² _P	0.7399	0.8011	0.7562	0.6674		0.7088
RMSE	0.1842	0.1666	0.1847	0.1960		0.1933
R ² V	0.8275	0.8229	0.8272	0.8360		0.8345
RMSEv	0.1735	0.1574	0.1746	0.1843		0.1822

 Table 7.5. Coefficients and Performance Summary for 11-Term Reduced Partial Quadratic Mixture Model on Melter SO3 Tolerance at 1150 °C for LAW Glasses

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

(b) The six sets of LAW evaluation glasses are discussed in Section 2.4 and Section 7.1.3.

(c) For the 11-component reduced PQM model, the "Others" component includes any components not separately listed except for SO₃.

(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 7.1.2 describes how the modeling dataset was split into modeling and validation subsets.

(e) A CCP for the appropriate LOF test in this case is currently being worked on.

7.3.3.2 Graphical Results for the 11-Term Reduced Partial Quadratic Mixture Model on Melter SO₃ Tolerance at 1150 °C for LAW Glasses

Diagnostic plots for the 11-term reduced PQM model (not included in this report) support the assumption of normally distributed errors in the melter SO₃ tolerance and solubility data (see Section B.3 of Appendix B). Figure 7.13 displays for the 11-term reduced PQM model of melter SO₃ tolerance the standardized residuals plotted versus the data index (a sequential numbering of the melter SO₃ tolerance and solubility modeling data points – 635 points) with different plotting symbols representing the different groups of LAW glasses discussed in Section 2.3. Figure 7.13 is very similar to Figure 7.9, so the observations on Figure 7.13 are the same as discussed in Section 7.3.2.2 for Figure 7.9 (although there is now a point < -4 in standardized residual).

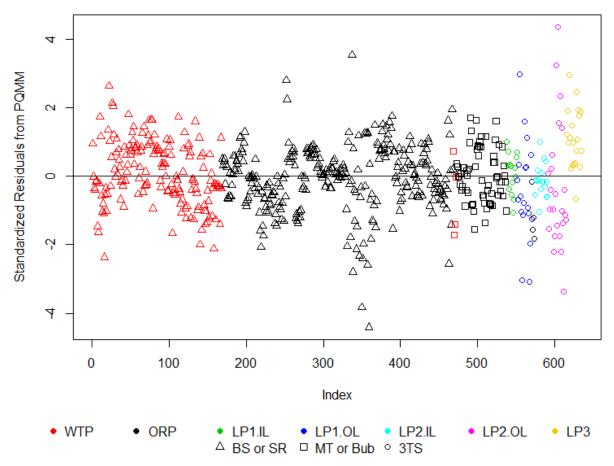
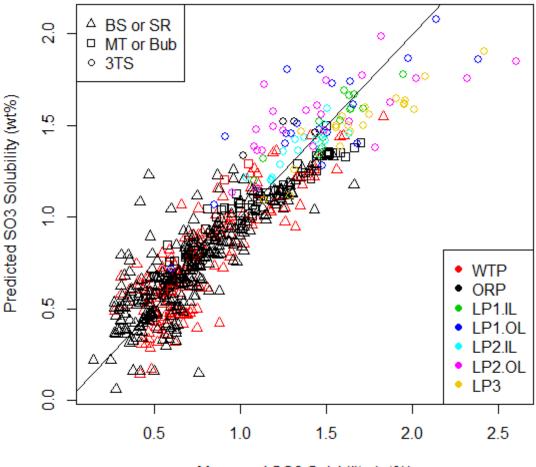
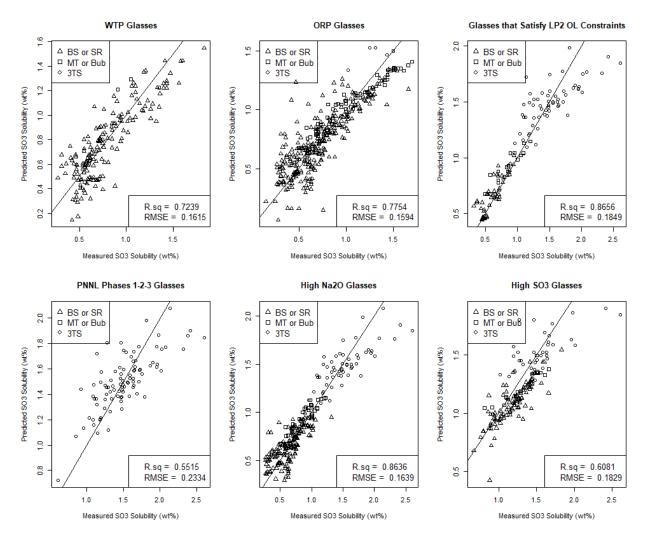



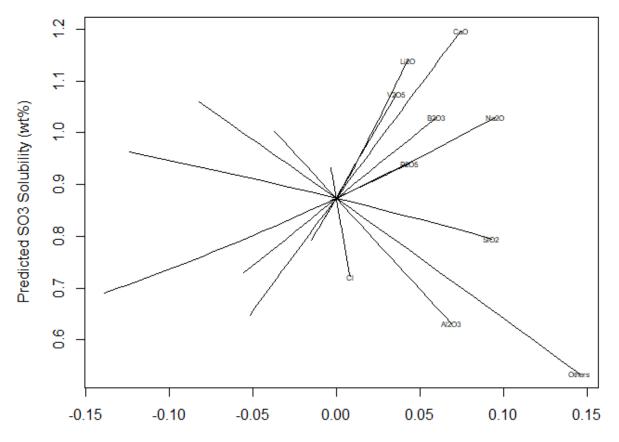
Figure 7.13. Standardized Residuals Plot for the 11-Term Reduced Partial Quadratic Mixture Model on Melter SO₃ Tolerance at 1150 °C for LAW Glasses

Figure 7.14 displays the PvM plot for the 576-glass modeling dataset using the 11-term reduced PQM model on melter SO₃ tolerance. Figure 7.14 is nearly identical to the PvM plot for the 10-component RLM model in Figure 7.10. Hence, as in Figure 7.10, Figure 7.14 illustrates that the 11-term reduced PQM model predicts melter SO₃ tolerance well, but with a tendency to under-predict (i) above 1.8 wt% melter SO₃ tolerance and (ii) possibly below 0.8 wt% melter SO₃ tolerance. The underprediction will result in conservative estimates of melter SO₃ tolerance and, although non-ideal, can still be useful in the WTP LAW Facility operation.



Measured SO3 Solubility (wt%)

Figure 7.14. Predicted versus Measured Plot for the 576-Glass Modeling Dataset Using the 11-Term Reduced Partial Quadratic Mixture Model on Melter SO₃ Tolerance at 1150 °C for LAW Glasses


Figure 7.15 displays PvM plots using the 11-term reduced PQM model for melter SO₃ tolerance in Table 7.5 applied to the six evaluation subsets discussed in Section 7.1.3. Each plot in the figure contains the evaluation R² and RMSE values for the corresponding evaluation subset. Figure 7.15 shows that the 11-term reduced PQM model for melter SO₃ tolerance fit to the 576-glass modeling dataset generally predicts well for four of the six evaluation subsets. In particular, the model predicts well for two of the evaluation subsets containing glasses with higher waste loadings (LP2OL and HiNa₂O), and not so well for two of the other evaluation subsets containing glasses with higher waste loadings (LP123 and HiSO₃). The plot for the WTP, LP123, and HiSO₃ evaluation sets shows more scatter, resulting in evaluation R² values that are not as large as for the other evaluation sets. For the LP123 and HiSO₃, the greater scatter is largely due to the 3TS SO₃ solubility data having greater variability. Despite this greater variability, this model has better performance across these evaluation sets compared to FLM and RLM models.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 7.15. Predicted versus Measured Plots for the Six Evaluation Subsets Using the 11-Term Reduced Partial Quadratic Mixture Model on Melter SO₃ Tolerance at 1150 °C for LAW Glasses

Figure 7.16 displays the response trace plot (see Section B.4.1 of Appendix B) for the 11-term reduced PQM model on melter SO₃ tolerance. Figure 7.16 shows that Cl, Al₂O₃, Others, and SiO₂ are predicted to increase melter SO₃ tolerance the most, while Li₂O, V₂O₅, Na₂O, CaO, B₂O₃, Na₂O, and P₂O₅ are predicted to decrease melter SO₃ tolerance the most. It is unexpected that Others has such a large effect in the response trace plot. It is believed that this has more to do with the choice of REFMIX than an actual effect, as the Others coefficient (given the standard error) was not as large as for other terms in Table 7.5.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 7.16. Response Trace Plot for 11-Term Reduced Partial Quadratic Mixture Model on Melter SO₃ Tolerance at 1150 °C for LAW Glasses

7.3.4 Recommended Model for Melter SO₃ Tolerance at 1150 °C for LAW Glasses

Table 7.6 summarizes the primary melter SO₃ tolerance model evaluation and validation results for the 19-component FLM model, the 10-component RLM model, and the 11-term reduced PQM model from Table 7.3, and Table 7.5, respectively, for the following:

- Model goodness-of-fit for the melter SO₃ tolerance-composition modeling data of 576 simulated LAW glasses
- Model validation using the data-splitting approach
- Model evaluation for six subsets of the 576-glass modeling dataset

Based on the summarized results in Table 7.6 and discussions in Sections 7.3.1 to 7.3.3, the 11-term reduced PQM model (listed in Table 7.5) is recommended for predicting melter SO₃ tolerance of LAW glasses. As a baseline for comparison, the 10-component RLM model (listed in Table 7.4) will be used.

	Melter SO ₃ Tolerance Model						
Summary Statistics from	19-Co	mponent		10-Component		educed PQM	
Model Fit to 576 Glasses ^(a)		Model		RLM Model		commended)	
$\overline{\mathbb{R}^2}$	0.8281		0.8	3073	,	3303	
R ² _A	0.8225			038		3270	
R ² _P	0.8	3125	0.7	'965	0.8	8190	
RMSE	0.1	769	0.1	860	0.1	747	
LOF p-value	< 0	0.002	< 0	.002	< 0	0.002	
Linear Terms	19 (See '	Table 7.3)	10 (See 7	Table 7.4)	10 (See '	Table 7.5)	
Selected Quadratic Terms	N	JA	N	JA	Li ₂ O	\times Na ₂ O	
in Model							
# Model Terms	19		10		11		
Sum	mary Statisti	cs for Six Evalu	ation Subsets	of LAW Glasse	es ^(a)		
Evaluation Set							
(# Glasses) ^(b)	R^{2}_{Eval}	RMSE _{Eval}	R^{2}_{Eval}	RMSE _{Eval}	R^{2}_{Eval}	RMSE _{Eval}	
WTP (171)	0.5883	0.1973	0.5819	0.1988	0.7239	0.1615	
ORP (311)	0.8273	0.1398	0.7943	0.1525	0.7754	0.1594	
LP2OL (115)	0.8721	0.1803	0.8550	0.1920	0.8656	0.1849	
LP123 (94)	0.5343	0.2378	0.4593	0.2563	0.5515	0.2334	
HiNa ₂ O (223)	0.8777	0.1552	0.8551	0.1689	0.8636	0.1639	
HiSO ₃ (135)	0.5556	0.1947	0.4776	0.2111	0.6081	0.1829	
	tion Summar	y Statistics Ave	raged Over 5	Data-Splitting S	Sets ^(b)		
R ²	0.8099		0.8048		0.8252		
R ² _A	0.7701		0.7844		0.8050		
R ² _P	0.6172		0.7244		0.7347		
RMSE	0.2	2005	0.1948		0.1850		
R ² v	0.8	3283	0.8	0.8061		0.8296	
RMSEv	0.1	816	0.1	.845	0.1744		

Table 7.6. Performance Summary of Three Models for Melter SO₃ Tolerance at 1150 °C for LAW Glasses

(a) The model evaluation statistics are defined in Section B.3 of Appendix B.

(b) Model validation statistics are defined in Section B.5 of Appendix B.

7.4 Example Illustrating Model Predictions and Statistical Intervals for Melter SO₃ Tolerance at 1150 °C

This section contains examples that illustrate application of the recommended 11-term PQM model for melter SO₃ tolerance in Table 7.5 to the REFMIX glass composition listed in Table 2.3 to obtain predicted melter SO₃ tolerance values and one-sided statistical intervals. Formulas for one-sided 90% CIs and one-sided 90% PIs are discussed in Section B.6 of Appendix B. One-sided intervals are illustrated because melter SO₃ tolerance will have upper operating limits during WTP LAW Facility operation. For comparison purposes, the same results are presented for the 10-component RLM model in Table 7.4 (although it is not a recommended model). The 90% CIs and 90% PIs were chosen for illustration purposes only. The WTP LAW Facility can use an appropriate confidence level depending on the use of the melter SO₃ tolerance-composition model and the type of statistical interval (uncertainty expression) desired.

The glass composition used in this example is denoted REFMIX, as listed in Table 2.3. The 19-component composition (mass fractions) of REFMIX for melter SO₃ tolerance modeling is given in Table 7.7 after normalizing out SO₃. To apply the 11-term reduced PQM model and 10-component RLM model for melter SO₃ tolerance to the REFMIX composition, the mass fractions of the 19 components

must be converted to mass fractions (that sum to 1.0) of the 10 LAW glass components contained in both models. This involves adding the mass fractions of the 9 of 19 components not contained in the melter SO_3 tolerance models to the mass fraction of Others (one of the original 19 components) to obtain Others (one of the reduced sets of 10 components). Mass fractions of the relevant components are then multiplied to obtain the one quadratic term of the 11-term reduced PQM model. Table 7.7 contains the composition of REFMIX prepared for use in the two melter SO_3 tolerance models for LAW glasses.

For each of the two melter SO₃ tolerance models, predicted melter SO₃ tolerance wt% values are obtained by multiplying the composition in the format needed for that model by the coefficients for that model, then summing the results. That is, the predicted values are calculated by

$$\hat{\mathbf{y}}(\mathbf{d}) = \mathbf{d}^{\mathrm{T}}\mathbf{b} \,. \tag{7.6}$$

where **d** is the composition of REFMIX formatted to match the terms in a given model (from Table 7.4 or Table 7.5 as appropriate, with 0's in **d** corresponding to the offsets because we are interested in predicting melter SO₃ tolerance), the superscript T represents a vector transpose, and **b** is the vector of coefficients for a given model. The predicted melter SO₃ tolerance values for REFMIX using the two melter SO₃ tolerance models are listed in the second column of Table 7.8.

The predicted melter SO_3 tolerance values for REFMIX in Table 7.8 are 0.946 wt% for the 10-component RLM model and 0.874 wt% for the recommended 11-term reduced PQM model. Statistical confidence intervals and prediction intervals for these predictions are discussed next.

		REFMIX	REFMIX
		Composition	Composition
		(mass fractions) to Use in	(mass fractions) to Use in
	REFMIX Composition ^(a)	10-Component RLM Model	11-Term PQM Model
Model Term	(mass fractions)	for melter SO ₃ tolerance ^(b)	for melter SO ₃ tolerance ^(c)
Al ₂ O ₃	0.076182	0.076182	0.076182
B_2O_3	0.097799	0.097799	0.097799
CaO	0.052807	0.052807	0.052807
Cl	0.003395	0.003395	0.003395
Cr_2O_3	0.002052	NA	NA
F	0.001356	NA	NA
Fe_2O_3	0.029893	NA	NA
K ₂ O	0.012131	NA	NA
Li ₂ O	0.014884	0.014884	0.014884
MgO	0.017084	NA	NA
Na ₂ O	0.169333	0.169334	0.169334
P_2O_5	0.003257	0.003257	0.003257
SiO ₂	0.426931	0.426931	0.426931
SnO ₂	0.007629	NA	NA
TiO ₂	0.008079	NA	NA
V_2O_5	0.007541	0.007541	0.007541
ZnO	0.032175	NA	NA
ZrO_2	0.036421	NA	NA
Others	0.001051	0.147870	0.147870
$Li_2O\times Na_2O$	NA	NA	0.00252037

Table 7.7. REFMIX Composition in Formats Used with Models of Melter SO3 Tolerance at 1150 °C for	
LAW Glasses	

(a) The composition in mass fractions is from Table 2.3 after normalizing out measured SO₃.

(b) See Table 7.4

(c) See Table 7.5.

(d) NA = not applicable, because the model does not contain this term.

Table 7.8. Predicted Melter SO₃ Tolerance at 1150 °C, Standard Deviation, and Statistical Intervals for the REFMIX Composition Used in Two Models for Melter SO₃ Tolerance at 1150 °C

Model for Melter SO ₃ Tolerance ^(a)	Predicted Melter SO ₃ Tolerance (wt%)	Standard Deviation of Predicted Melter SO ₃ Tolerance ^(b) (wt%)	90% upper CI ^(c) on Mean Melter SO ₃ Tolerance (wt%)	90% upper PI ^(c) on Individual Melter SO ₃ Tolerance (wt%)
11-Term PQM Model	0.874	0.024	0.904	1.100
10-Comp. RLM Model	0.946	0.024	0.977	1.187

(a) The two melter SO₃ tolerance models in this column are given in Table 7.5 (11-term PQM model) and (10-component RLM model), respectively.

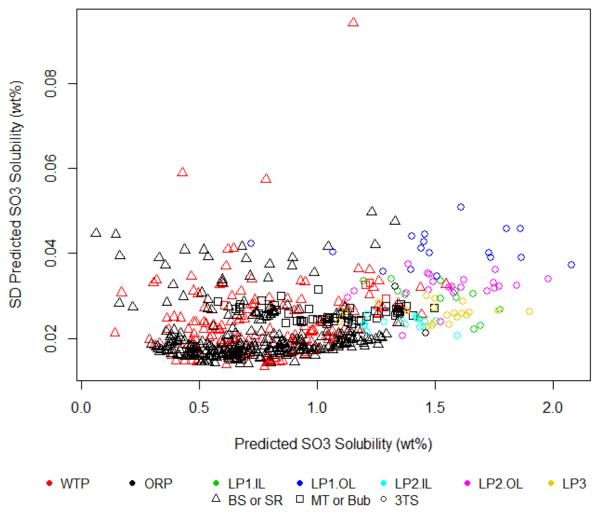
(b) The standard deviation is for the melter SO₃ tolerance prediction considered to be the mean from many such results for the REFMIX glass.

(c) CI = one-sided upper confidence interval, PI = one-sided upper prediction interval (see Section B.6 of Appendix B).

(d) All calculations were performed using the REFMIX glass composition, model coefficients, and variancecovariance matrix values given in tables of this report. The calculated melter SO₃ tolerance values were rounded to three decimal places in this table. Eq. (B.19a) can be used to calculate a one-sided 90% CI for the true mean of melter SO₃ tolerance values for the REFMIX glass composition with each of the melter SO₃ tolerance models. Similarly, based on the discussion in Section B.6.3, modifying Eq. (B.22a) by replacing " \mp " with "+" and replacing $t_{1-\alpha/2,n-p}$ with $t_{1-\alpha,n-p}$ can be used to calculate a one-sided 90% PI for an individual test value of melter SO₃ tolerance models. In the notation of these equations:

- $100(1-\alpha)\% = 90\%$, so that $\alpha = 0.10$ for a 90% CI in Eq. (B.19a) and a one-sided 90% PI based on the discussion following Eq. (B.22b) that describes the modified version of Eq. (B.22a).
- The vector **d** contains entries corresponding to the terms in a given melter SO_3 tolerance model, which are calculated using the composition of REFMIX in Table 7.7 with 0's for the BS or SR offset term and 3TS offset term.
- Matrix **D** is formed from the data matrix used in the regression that generated a given melter SO₃ tolerance model. Matrix **D** has the number of rows in the SO₃ modeling dataset (576 glasses, which equates to 635 melter SO₃ tolerance and solubility measurements so the number of rows is 635) and the number of columns corresponding to the number of terms in a given melter SO₃ tolerance model. Each column is calculated according to the corresponding term in the model using two indicator columns (where for the first column it is 1 if the SO₃ solubility measurement came from the BS or SR method, 0 otherwise, and for the second column it is 1 if the SO₃ solubility measurement came from the melter SO₃ tolerance and solubility measurement.

To calculate a one-sided $100(1-\alpha)\%$ CI, the quantity $t_{1-\alpha,n-p}\sqrt{\mathbf{d}^T[(\mathbf{D}^T\mathbf{D})^{-1}MSE_{OLS}]\mathbf{d}}$ is added to the predicted melter SO₃ tolerance [denoted \hat{y} (**d**)], as indicated by Eq. (B.19a). To calculate a one-sided $100(1-\alpha)$ % PI, the quantity $t_{1-\alpha,n-p}\sqrt{MSE_{OLS}(1+\mathbf{d}^T(\mathbf{D}^T\mathbf{D})^{-1}\mathbf{d})}$ is added to the predicted melter SO₃ tolerance [denoted \hat{y} (**d**)], as indicated by the modification of Eq. (B.22a) mentioned on page B.17 in the text just following Eq. (B.22b). The $MSE_{OIS}(\mathbf{D}^T\mathbf{D})^{-1}$ portion of these expressions is an estimate of the variance-covariance matrix for the estimated model coefficients, as discussed near the end of Section B.6 of Appendix B. For the example calculations presented in Table 7.8, the Students-t statistic value needed for both the one-sided upper CI and PI formulas describing the 10-component RLM model is 1.283049. This is based on n=576 and p=10. The following cell formula can be used to obtain the *t*-statistic value with Excel: =T.INV(0.90,576-10). For the UCI and UPI calculations associated with the 11-term PQM model described in Table 7.8, the Students-t statistic is 1.283052=T.INV(0.90,576-11). The variancecovariance matrices for the 10-component RLM model and the recommended 11-term PQM model are respectively listed in Tables D.8 and D.9 of Appendix D. The quantity $\sqrt{MSE_{OLS}\mathbf{d}^T(\mathbf{D}^T\mathbf{D})^{-1}\mathbf{d}}$ is the standard deviation of a model prediction (for a given composition vector *a* expressed in a given model form); the value for each model is given in the third column of Table 7.8. Using **D** instead of **G** in these equations as the offset terms are part of the data, not only the glass compositions themselves (\mathbf{G}) .


The 90% CIs and 90% PIs for the true mean and individual test result, respectively, of melter SO_3 tolerance in units of wt% for the REFMIX composition based on the two melter SO_3 tolerance models are given in the fourth and fifth columns of Table 7.8.

7.5 Suitability of the Recommended Melter SO₃ Tolerance at 1150 °C Model for Application by the WTP LAW Facility

The 11-term PQM model for melter SO₃ tolerance discussed in Section 7.3.3 is recommended for use by the WTP LAW Facility as the best model currently available for predicting melter SO₃ tolerance for LAW glasses. This model yields unbiased predictions of melter SO₃ tolerance over the full range of measured values with moderate scatter and some under-prediction at or above 1.8 wt% SO₃ solubility (see Figure 7.14). One reason for the moderate scatter and some non-linearity is the significant LOF of the recommended melter SO₃ tolerance model. Despite this LOF, the model maintains good performance for data not included in the model, as seen in the data splitting model statistics being close to the overall model statistics in Table 7.5. It is recommended that this model be revisited in the future to better address this LOF. Two of the evaluation subsets containing glasses with higher waste loadings (LP123 and HiSO₃) did not perform all that well; however, part of the reason for this is that the 3TS SO₃ solubility method had greater variability (see Figure 7.15). The other four evaluation sets (WTP, ORP, LP2OL, and HiNa₂O) performed well. The recommended 11-term POM model does have a statistically significant LOF, so that a melter SO₃ tolerance prediction within and somewhat outside the operating limits may not be within the uncertainty of what would be obtained by batching and melting a LAW glass, measuring melter SO₃ tolerance at 1150 °C for the LAW glass, and determining the estimated value of melter SO₃ tolerance for the LAW glass (as discussed in Section 2.3). It's clear that 3TS results show larger scatter and are underpredicted by the model. However, it was not determined if there would be a LOF for models excluding 3TS data. That approach wasn't pursued because of the significant increase in SO₃ solubility afforded by including the 3TS data. There was a high (in absolute value) correlation between Li₂O and Na_2O of -0.818 and this may make some of the coefficient estimates not as interpretable as they would be otherwise. There was also a relatively high correlation between the offset indicators for BS and SR, and 3TS of -0.715 likely because MT and Bub were chosen as the reference (to have an offset of 0). This may have the effect of making the ratio of the coefficient estimates divided by the standard errors for the offset terms smaller than if a different reference was used. But these ratios were already quite large in absolute value (> 8) and show that the offset terms are highly significant. Although high correlation among predictors may make precise estimation of model parameters more difficult, predictions of new observations should still behave similarly to those available as long as they remain within the same space as the data used to fit the model (model validity ranges are summarized in Section 9.7).

Because of LOF of the recommended melter SO₃ tolerance models, prediction uncertainties for the models are moderate. Figure 7.17 displays the melter SO₃ tolerance prediction standard deviations versus predicted values (both in wt% units) for the LAW glass compositions in the melter SO₃ tolerance modeling dataset. The melter SO₃ tolerance prediction standard deviations for the melter SO₃ tolerance modeling dataset of 576 LAW glasses range from approximately 0.013 to 0.095 wt% for the recommended 11-term PQM model (range from approximately 0.013 to 0.60 wt% for all but LAWB36S WTP glass). Note that prediction standard deviations will be larger for LAW glass compositions as their distance from glasses in the melter SO₃ tolerance modeling dataset increases. Also, the total uncertainty in predictions with the recommended 11-term PQM model will depend on the type of statistical interval used (see Section B.6 of Appendix B).

Work to assess the impact of LAW glass composition and model uncertainties for the recommended melter SO₃ tolerance model (Sections 7.3.3 and 7.3.4) on satisfying the WTP LAW Facility processing requirements for LAW glasses must be performed in the future.

Figure 7.17. Prediction Standard Deviations versus Predicted Values over the LAW Glass Compositions in the 576-Glass Modeling Dataset for the Recommended 11-Term PQM Model for Melter SO₃ Tolerance at 1150 °C

The range of single component concentrations in the 576-glass dataset used for modeling is listed in Table 7.9. These ranges can be used to determine model validity ranges.

	20-com	ponent	19-com	ponent ^(b)	10-com	10-component ^(b)	
Component	Min	Max	Min	Max	Min	Max	
Al_2O_3	0.034972	0.147521	0.035031	0.148855	0.035031	0.148855	
B_2O_3	0.039670	0.159702	0.039891	0.160569	0.039891	0.160569	
CaO	0.000000	0.128509	0.000000	0.129356	0.000000	0.129356	
Cl	0.000000	0.011701	0.000000	0.011722	0.000000	0.011722	
Cr_2O_3	0.000000	0.006131	0.000000	0.006170	NA	NA	
F	0.000000	0.030446	0.000000	0.030590	NA	NA	
Fe ₂ O ₃	0.000000	0.134737	0.000000	0.135441	NA	NA	
K ₂ O	0.000000	0.059085	0.000000	0.059394	NA	NA	
Li ₂ O	0.000000	0.058352	0.000000	0.058977	0.000000	0.058977	
MgO	0.000000	0.050222	0.000000	0.050505	NA	NA	
Na ₂ O	0.024493	0.265729	0.024831	0.267422	0.024831	0.267422	
P_2O_5	0.000000	0.047463	0.000000	0.047880	0.000000	0.047880	
SO ₃	0.000360	0.018300	NA	NA	NA	NA	
SiO ₂	0.300014	0.522624	0.300541	0.525253	0.300541	0.525253	
SnO_2	0.000000	0.050299	0.000000	0.050756	NA	NA	
TiO ₂	0.000000	0.050058	0.000000	0.050353	NA	NA	
V ₂ O ₅	0.000000	0.043668	0.000000	0.043937	0.000000	0.043937	
ZnO	0.000000	0.057806	0.000000	0.058645	NA	NA	
ZrO_2	0.000000	0.090004	0.000000	0.090162	NA	NA	
Others ^(c)	0.000000	0.002707	0.000000	0.002720	0.065266	0.298376	

 Table 7.9. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Final Melter

 SO3 Tolerance at 1150 °C Models

(a) NA = not applicable, because the model does not contain this term.

(b) 19-component and 10-component ranges were calculated after normalizing without measured SO₃.

(c) Note: Others for the 10-components are composed of all the NA components except for measured SO₃ as well as Others for the 19-components.

8.0 Models Relating K-3 Refractory Corrosion to LAW Glass Composition

This section documents the development, evaluation, and validation of property-composition models and corresponding uncertainty expressions for predicting the 6-day K-3 refractory neck corrosion at 1208 °C (k_{1208}) of LAW glasses. Actually, $\ln(k_{1208})$ is modeled as a function of LAW glass composition, as discussed subsequently. The property-composition models and corresponding uncertainty expressions for $\ln(k_{1208})$ presented in this section were developed, evaluated, and validated using compositions and k_{1208} values for simulated LAW glasses.

Section 8.1 discusses the LAW glasses available and used for $\ln(k_{1208})$ -composition model development, evaluation, and validation. Section 8.2 presents the model forms for $\ln(k_{1208})$ that were investigated. Section 8.3 summarizes the results for the selected linear and quadratic mixture model forms for $\ln(k_{1208})$ and identifies the recommended model. Section 8.4 illustrates the calculation of k_{1208} predictions and the uncertainties in those predictions using selected $\ln(k_{1208})$ models and corresponding uncertainty equations. Section 8.5 discusses the suitability of the recommended $\ln(k_{1208})$ model for use by the WTP LAW Facility. Appendix B discusses the statistical methods and summary statistics used to develop, evaluate, and validate the several $\ln(k_{1208})$ model forms investigated, as well as statistical equations for quantifying the uncertainties in $\ln(k_{1208})$ model predictions.

8.1 K-3 Corrosion at 1208 °C Data Used for Model Development, Evaluation, and Validation

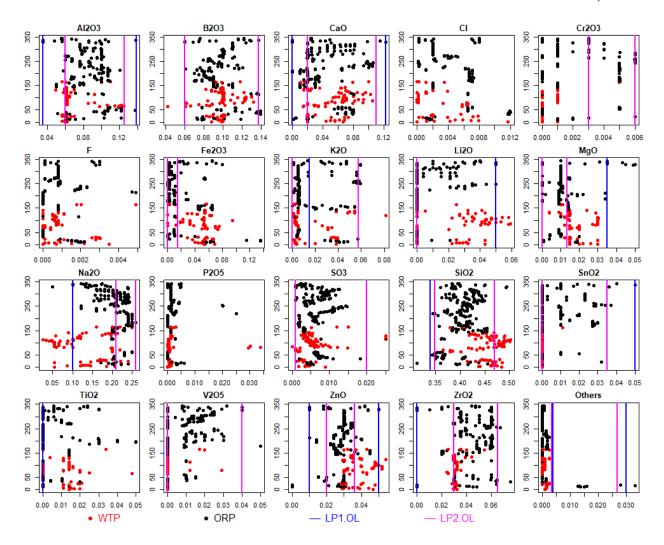
The data available and used for developing $\ln(k_{1208})$ models as functions of LAW glass composition are discussed in Section 8.1.1. The approaches and data used for validating and evaluating the models are discussed in Sections 8.1.2 and 8.1.3, respectively.

8.1.1 Model Development Data for K-3 Corrosion at 1208 °C

The data available for developing $ln(k_{1208})$ -composition models consist of composition and k_{1208} values from 344 LAW glasses (see Table 2.2). These glasses and their normalized compositions based on measured (or estimated) SO₃ values are discussed in Section 2.0 and listed in Table A.4 of Appendix A. The corresponding k_{1208} values are presented in Table A.5.

8.1.1.1 Assessment of Available Glasses with Data for K-3 Corrosion at 1208 °C

The database of 344 glasses with k_{1208} results contains statistically designed as well as actively designed LAW glasses. Some actively designed glasses are outside the composition region covered by most of the LAW compositions. Such glasses are not ideal for inclusion in a modeling dataset because they can be influential when fitting models to data. Hence, it was decided to (i) graphically assess the 344 available LAW glass compositions with k_{1208} values and (ii) remove from the modeling dataset any compositions considered to be outlying or non-representative of LAW glasses of interest for the WTP LAW Facility.


Figure 8.1 displays plots of the mass fractions for 19 "main components" plus the Others component (the sum of all remaining components) in the 344 LAW glasses with k_{1208} data. These 20 components (including Others) have sufficient ranges and distributions of mass fraction values to support separate model terms if so desired. In Figure 8.1, the x-axis represents the mass fraction values of a LAW glass

component. The y-axis shows an index value representing each LAW glass composition, which aids in spreading out the data points to avoid over-plotting. The plotting symbols in Figure 8.1 correspond to the six groups of LAW glasses discussed in Section 2.3. For comparison purposes, the vertical lines in Figure 8.1 represent the ranges over which the LAW glass components were varied in the PNNL (i) LAW Phase 1 outer-layer study (blue lines), (ii) LAW Phase 2 outer-layer study (pink lines), and (iii) LAW Phase 3 study (pink lines), as shown in Table 2.1. Phases 2 and 3 focused on LAW glasses with high Na₂O waste loadings, whereas Phase 1 explored a larger LAW GCR with higher waste loadings.

Figure 8.1 shows that some of the 344 LAW glasses have "main components" with outlying mass fraction values compared to the remaining glasses and to the component ranges in the PNNL LAW Phase 1 (e.g., MgO), Phase 2, and Phase 3 studies. Table 8.1 lists the 11 LAW glasses excluded from the k_{1208} modeling dataset and the reason each glass was excluded.

Figure 8.2 show plots of component distributions after the 11 outlying glasses were removed from the k_{1208} dataset containing 344 glasses. Figure 8.2 shows for the remaining 333 LAW glasses that all 19 LAW glass "main components" have sufficient ranges and distributions of values within those ranges to support terms for modeling k_{1208} . Based on Figure 8.2, it was decided to use 20 components for initial k_{1208} modeling work. These components are Al₂O₃, B₂O₃, CaO, Cl, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SO₃, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others (the sum of all remaining components). Note that these are the same 20 components chosen for initial modeling work for all other properties except melter SO₃ tolerance.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Figure 8.1. Distributions of 20 Main Components (in mass fractions) for 344 LAW Glass Compositions with Data for K-3 Corrosion at 1208 °C. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), Phase 2 outer-layer study (pink lines), and Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, pink lines over plot the blue lines.

Glass #	Glass ID	Reason Glass Excluded from k_{1208} Modeling Dataset ^(a)
k022	AY102D2-01	Others $> 0.02 \ (= 0.0332) \ \text{mf}$
k023	AY102D2-05	Others $> 0.02 (= 0.0332)$ mf
k024	AY102D2-06	Others > $0.02 = 0.0279$ mf
k128	LAWC25S	$K_2O > 0.065 \ (= 0.081) \ mf$
k255	ORPLA20HV	$V_2O_5 > 0.04 \ (= 0.05) \ mf$
k079	LAWA44PNCC	Container-centerline-cooled glass
k080	LAWA44PNCC-repeat	Container-centerline-cooled glass
k093	LAWB67	Outlier in response < 0.003 (= 0.001) inch
k189	LORPM4R2	Outlier in response < 0.003 (= 0.001) inch
k174	LORPM11	Outlier in response < 0.003 (= 0.001) inch
k187	LORPM38	Outlier in response < 0.003 (= 0.001) inch
(a) $mf = r$	mass fraction.	

Table 8.1. Eleven LAW Glasses Excluded from the Modeling Dataset for K-3 Corrosion at 1208 °C

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

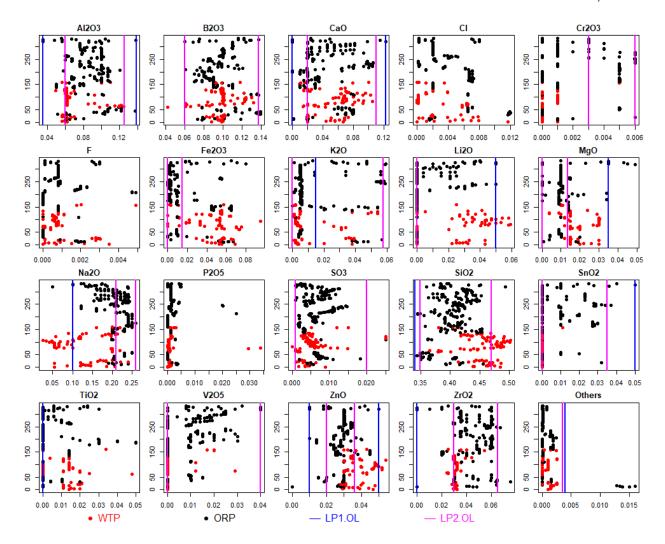
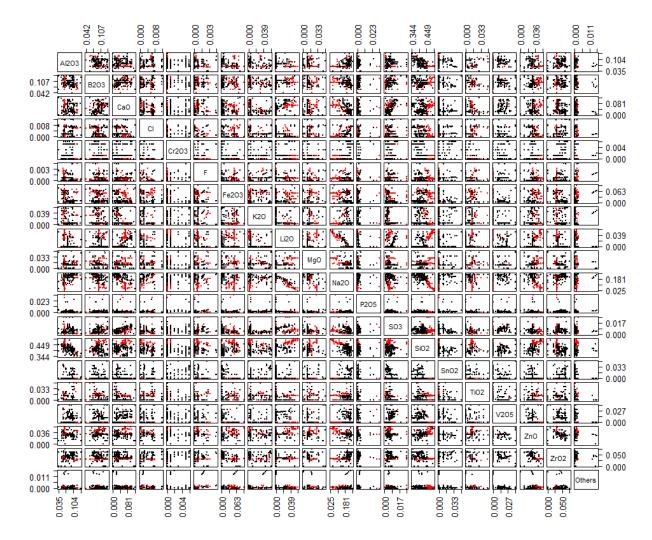



Figure 8.2. Distributions of 20 Main Components (in mass fractions) for 333 LAW Glass Compositions with Data for K-3 Corrosion at 1208 °C that Remain after Excluding the 11 Glasses in Table 8.1. The vertical lines (when present) represent the lower and upper limits for each component from the PNNL LAW Phase 1 outer-layer study (blue lines), Phase 2 outer-layer study (pink lines), and Phase 3 study (pink lines), as shown in Table 2.1. In cases where two limits are the same, pink lines over plot the blue lines.

Figure 8.3 shows a scatterplot matrix of the 333 glasses remaining in the k_{1208} modeling dataset after removing the 11 outlying compositions. High correlations between some pairs of components are evident, so pairwise correlation coefficients were calculated. These can vary from -1.0 (perfect negative correlation) to 0 (no correlation) to 1.0 (perfect positive correlation). There were four component pairs with correlations larger (in absolute value) than 0.60: Na₂O and Li₂O (-0.917), Al₂O₃ and SiO₂ (-0.6968), Na₂O and MgO (-0.614), and Na₂O and SiO₂ (-0.690). Such high pairwise correlations, especially the one for Na₂O-Li₂O, can make it difficult for regression methods to properly estimate the effects of correlated components on the response variable (e.g., k_{1208}). Further, such high correlations in the predictors make parameter values difficult to estimate and result in inflated prediction uncertainties. Thus, these high pairwise correlations need to be kept in mind when developing and interpreting LAW

glass property-composition models for k_{1208} . See Section 9.7 for further detail on treatment of highly correlated component concentrations.

Figure 8.3. Scatterplot Matrix of 20 Components (mass fractions) for the 333 LAW Glasses with K-3 Corrosion at 1208 °C Data that Remain after Excluding the 11 Glasses in Table 8.1

8.1.1.2 K-3 Corrosion at 1208 °C Modeling Dataset

Table A.4 in Appendix A lists the Glass #s, Glass IDs, and k_{1208} values for the 333 remaining simulated LAW glasses used for k_{1208} model development. The k_{1208} values for the 11 glasses excluded as outliers from the 344-glass modeling dataset (see Table 8.1) are marked with an asterisk in Table A.5. The compositions for these 333 LAW glasses are included in Table A.4. The glass compositions in Table A.4 are the normalized mass fractions (mf) of the 20 components previously identified as having sufficient data to support a separate model term if needed. The normalized LAW glass compositions in Table A.4 were obtained as discussed in Section 2.2. Specifically, starting with the target mass fractions for all 20 components, the measured (or estimated) SO₃ mass fractions (see Section 2.2) were substituted for the target SO₃ mass fractions, and the mass fractions of the remaining 19 components were normalized so the total mass fractions of all 20 components for each glass equaled precisely 1.000000.

The values of k_{1208} in Table A.5 for the 333 glasses in the modeling dataset range from 0.003 to 0.145 inch.

8.1.1.3 Replicate and Near-Replicate Data for K-3 Corrosion at 1208 °C

The changes to the LAW glass compositions caused by the renormalization associated with using measured (or estimated) SO₃ values (see Section 2.2) resulted in some replicate glasses not having exactly equal normalized compositions. Such compositions are near-replicates. For ease of discussion, henceforth both replicates and near-replicates are referred to as replicates.

Table 8.2 lists the replicate sets of LAW glasses in the k_{1208} modeling dataset and the corresponding k_{1208} values. Table 8.2 also lists estimates of (i) %RSDs [calculated using k_{1208} values in original inch units] and (ii) SDs [calculated using $\ln(k_{1208})$ values in $\ln(inch)$ units] for each replicate set. The %RSD values for 17 of the 24 replicate sets range from 5.16% to 32.64%; one set had a 1.99 %RSD while the %RSD values for the other 6 replicate sets ranged from 40.41% to 60.61%. No reasons for these higher %RSD values for the 6 replicate sets could be found in the data-source reports. Hence, it was assumed that periodically there may be larger uncertainties in batching and melting glasses and determining k_{1208} . Table 8.2 also lists pooled estimates of %RSDs and SDs calculated over all replicate sets. A pooled %RSD or SD combines the separate %RSD or SD estimates from each replicate set, so that a more precise combined estimate of %RSD or SD is obtained. These pooled %RSDs and SDs include uncertainties due to fabricating glasses, and the process of determining k_{1208} values. The magnitudes of the pooled SD = 0.3311 [in ln(inch) units] and pooled %RSD = 30.27 [in percentage relative to $\ln(k_{1208})$ units] in Table 8.2 indicate there is a total relative uncertainty of approximately 30% in the k_{1208} values over the replicate glasses. The pooled estimates of replicate uncertainty for k_{1208} in Table 8.2 are used subsequently to assess LOF of the various $\ln(k_{1208})$ models considered.

Replicate Set		Replicate Set k_{1208} (inch)		SD
		· ,		
Glass #s	Replicate Set Glass IDs	Values	%RSD ^(a)	[ln(in)
k025	B1-AZ101	0.0065		
k092	LAWB65	0.0030	43.40	0.5434
k107	LAWB83	0.0095	43.40	0.5454
k108	LAWB84	0.0095		
k002	A2-AP101	0.0255		
k031	LAWA126	0.0140	29.03	0.3206
k032	LAWA126R3	0.0230		
k040	LAWA152S2	0.0240	22.33	0.2252
k051	LAWA168S2	0.0330	22.33	0.2252
k044	LAWA160S2	0.0155	42.90	0.4430
k050	LAWA167S2	0.0290	42.70	0.4450
k059	LAWA187	0.0327	47.71	0.4966
k060	LAWA187R1	0.0660	47.71	0.4700
k078	LAWA44-3	0.0190		
k081	LAWA44R11	0.0250	19.28	0.1941
k079	LAWA44PNCC ^(b)	0.0135 ^(b)	19.20	0.1941
k080	LAWA44PNCC-repeat ^(b)	0.0095 ^(b)		
k098	LAWB72	0.0075	32.64	0.3323
k105	LAWB81	0.0120	52.04	0.5525
k131	LAWC31	0.0175	1.99	0.0199
k132	LAWC31R2	0.0180	1.99	0.0199
k254	ORPLA20	0.0330	12.68	0.1271
k256	ORPLA20R1	0.0395	12.00	0.1271
k267	ORPLA43	0.0230		
k268	ORPLA43R1-1	0.0345	28.31	0.3019
k269	ORPLA43R1-2	0.0415		
k272	ORPLA46	0.0470	14.06	0.1411
k273	ORPLA46-Repeat	0.0385	14.00	0.1411
k313	ORPLE4	0.0865	5.50	0.0550
k314	ORPLE4-Repeat 2010	0.0935	5.50	0.0550
k319	ORPLF10	0.0090	40.41	0.4156
k320	ORPLF10-Repeat	0.0050	40.41	0.4150
k321	ORPLF13	0.0125	21.57	0.2174
k322	ORPLF14	0.0170	21.57	0.2174
k324	ORPLF7	0.0100	47.14	0.4901
k325	ORPLF7-Repeat	0.0200	47.14	0.4701
k028	I10-G-130B	0.0240	24.38	0.2463
k333	ORPLG27	0.0340	24.50	0.2403
k335	ORPLG6	0.0225	11.54	0.1157
k336	ORPLG7	0.0265	11.54	0.1157
k013	AP105DLAW6	0.0200	32.64	0.3323
k015	AP105DLAW8	0.0320	52.04	0.5525
k197	ORLEC13	0.0110	60.61	0.6479
k210	ORLEC26	0.0275	00.01	0.0477
k222	ORLEC37	0.0300	12.86	0.1289
k229	ORLEC43	0.0250	12.00	0.1207
k223	ORLEC38	0.0405	10.30	0.1032
k230	ORLEC44	0.0350	10.50	0.1032
k227	ORLEC41	0.0395	6.56	0.0656
k233	ORLEC47	0.0360	0.50	0.0050
k228	ORLEC42	0.0355	5.16	0.0516
k234	ORLEC48R	0.0330	5.10	0.0310
k235	ORLEC49	0.0210	12.30	0 1 2 2 2
k236	ORLEC49-Repeat	0.0250	12.50	0.1233
k189	LORPM4R2-Repeat	0.0030	NA	NA
k190	LORPM4R2 ^(b)	0.0010 ^(b)	INA	INA
Decled Over	All 24 Replicate Sets with 28 total	DF ^(c)	30.27	0.3311

Table 8.2. Uncertainty in K-3 Corrosion at 1208 °C Responses for Replicate and Near-Replicate Sets

(a) %RSD = 100 × (Standard Deviation / Mean).

(b) Outlier data points excluded from modeling and from replicate set pooled standard deviations.(c) DF = degrees of freedom.

8.1.2 Model Validation Approach and Data for K-3 Corrosion at 1208 °C of LAW Glasses

The validation approach for k_{1208} models was based on splitting the 333-glass dataset for model development into five modeling/validation subsets. Of the 333 model-development glasses, 52 were in 24 replicate sets. The five modeling/validation splits of the 333 glasses in the k_{1208} modeling dataset were formed as follows:

- The 52 replicate glasses in 24 replicate sets were set aside so they would always be included in each of the five model development datasets. This was done so that replicate sets would not be split between modeling and validation subsets, thus negating the intent to have validation glasses different than model development glasses.
- The remaining 281 glasses were ordered from smallest to largest according to their k_{1208} values (inch). The 281 glasses were numbered 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, etc. All of the 1's formed the first model validation set, while all of the remaining points formed the first model development dataset. Similarly, all of the 2's, 3's, 4's, and 5's respectively formed the second, third, fourth, and fifth model validation sets. In each case, the remaining non-2's, non-3's, non-4's, and non-5's formed the second, third, fourth, and fifth model development datasets. Because 281 is not evenly divisible by 5, the five modeling and validation subsets did not all contain the same numbers of glasses. One of the five splits contained 57 glasses for validation and 224 glasses for modeling. The other four splits contained 56 glasses for validation and 225 for modeling. Note that these numbers of glasses in the modeling subsets do not yet include the 52 replicates.
- The 52 replicate glasses were added to each of the split modeling subsets. Including the replicates, one split contained 276 glasses for modeling and 57 for validation, while the other four splits contained 277 glasses for modeling and 56 for validation.

Data splitting was chosen as the validation approach because the k_{1208} modeling dataset contains all compositions that (i) are in the LAW GCR of interest, (ii) meet QA requirements, and (iii) have k_{1208} data. Having a separate validation dataset not used for modeling is desirable, but it was necessary to develop k_{1208} models using all appropriate data.

8.1.3 Subsets of LAW Glasses to Evaluate Prediction Performance of Models for K-3 Corrosion at 1208 °C

Section 2.4 discusses six subsets of LAW glasses for evaluating the prediction performance of LAW glass property-composition models, including subsets of glasses with higher waste loadings. The subsets, as discussed in Section 2.4, are denoted WTP, ORP, LP2OL, LP123, HiNa₂O, and HiSO₃. The k_{1208} modeling dataset of 333 LAW glasses (see Section 8.1.1) contains 98, 235, 40, 0, 136, and 65 glasses with k_{1208} values in these six evaluation subsets, respectively. The "Glass #s" of these six evaluation subsets of LAW glasses are listed in Table C.6 of Appendix C. The normalized LAW glass compositions and k_{1208} values for the glasses with these "Glass #s" are listed in Tables A.4 and A.5, respectively, of Appendix A.

Model performance/prediction summary statistics denoted R_{Eval}^2 and $RMSE_{Eval}$ (see Section B.3 of Appendix B), as well as predicted versus measured plots (see Section B.3), are subsequently used to assess the prediction performance of the k_{1208} models (presented in later subsections) for the five evaluation subsets listed in Table C.6 of Appendix C.

8.2 Model Forms for K-3 Corrosion at 1208 °C of LAW Glasses

Ideally, a property-composition model for k_{1208} would use known mechanisms of k_{1208} as a function of LAW glass composition. However, no such mechanisms are known. Empirical models for k_{1208} with coefficients estimated from model development data have been shown in the past to perform well. The empirical model forms used are from the general class of *mixture experiment models* (Cornell 2002), which includes models linear in composition as well as non-linear in composition. Section B.1 of Appendix B discusses mixture experiments and several general forms of mixture experiment models.

Section 8.2.1 discusses the forms of mixture experiment models used for k_{1208} of LAW glasses. Section 8.2.2 discusses the use of natural-log-transformed k_{1208} values as the response variable for k_{1208} modeling.

8.2.1 Mixture Experiment Model Forms for K-3 Corrosion at 1208 °C of LAW Glasses

The LM and PQM model forms introduced in Section B.1 of Appendix B were chosen for use in modeling $\ln(k_{1208})$ as a function of LAW glass composition. These models have been used in the past (e.g., Muller et al. 2018) to model the compositional dependence of $\ln(k_{1208})$ -composition. The LM model form is given by

$$\ln(k_{1208}) = \sum_{i=1}^{q} \beta_i g_i + e$$
(8.1)

while the PQM model form is given by

$$\ln(k_{1208}) = \sum_{i=1}^{q} \beta_i g_i + \text{Selected} \left\{ \sum_{i=1}^{q} \beta_{ii} g_i^2 + \sum_{i(8.2)$$

where in Eqs.(8.1) and (8.2):

 $\begin{array}{ll} \ln(k_{1208}) &= & \text{natural logarithm of } k_{1208} \text{ (in inches)} \\ g_i &= & \text{normalized mass fraction of the } i^{\text{th}} \text{ glass oxide or halogen component} \end{array}$

$$(i = 1, 2, ..., q)$$
, such that $\sum_{i=1}^{q} g_i = 1$

 β_i = coefficient of the *i*th linear blending term (*i* = 1, 2, ..., *q*)

 β_{ii} and $\beta_{ij} =$ coefficients of selected quadratic (squared or crossproduct) blending terms to be estimated from the data

e = random error for each data point.

Many statistical methods exist for the case where the *e* is statistically independent (i.e., not correlated) and normally distributed with mean 0 and standard deviation σ . In Eq. (8.2), "Selected" means that only some of the terms in curly brackets are included in the model. The subset is selected using stepwise regression or other variable selection methods (Draper and Smith 1998; Montgomery et al. 2012). PQM models are discussed in more detail and illustrated by Piepel et al. (2002) and Smith (2005).

Cornell (2002) discusses many other empirical mixture model forms that could have been considered for k_{1208} -composition modeling. However, these other mixture model forms were not investigated because the

special blending effects of components associated with those models were judged not to apply for k_{1208} . The model forms in Eqs. (8.1) and (8.2) are widely used in many application areas (including waste glass property modeling) and often predict the response very well.

8.2.2 Transformation of K-3 Corrosion at 1208 °C for LAW Glasses

In modeling k_{1208} , it is advantageous to use the natural logarithm transformation of the k_{1208} values. The advantages of this transformation include the following:

- The k_{1208} values for the 333 LAW glasses in the k_{1208} modeling dataset range from 0.003 to 0.145 inch. This range is significantly more than one order of magnitude. In such cases, typically the uncertainty in making glasses and determining k_{1208} leads to smaller absolute uncertainties for smaller k_{1208} values and larger absolute uncertainties for larger k_{1208} values. Hence, the OLS regression assumption of equal variances for all response variable values (see Section B.2.1 of Appendix B) is violated. After a logarithmic transformation, variances of k_{1208} values tend to be approximately equal as required for OLS regression.
- A logarithmic transformation tends to linearize the compositional dependence of k_{1208} data and reduce the need for non-linear terms in the model form.
- A natural logarithm transformation is preferred over a common logarithm (or other base logarithm) transformation because of the approximate relationship

$$SD [ln(y)] \cong RSD (y)$$
 (8.3)

where SD denotes standard deviation, RSD denotes relative standard deviation (i.e., the standard deviation divided by the mean), and *y* denotes k_{1208} . Eq. (8.3) results from applying the first-order variance propagation formula [Eq. (7-7) of Hahn and Shapiro (1967)] to the function $z = \ln(y)$. The relationship in Eq. (8.3) is very useful, in that uncertainties of the natural logarithm of the response variable *y* can be interpreted as approximate RSDs of the untransformed response variable *y*.

For these reasons, the natural logarithmic transformation was employed for all k_{1208} model forms.

8.3 Property-Composition Model Results for K-3 Corrosion at 1208 °C of LAW Glasses

This section discusses the results of fitting several different mixture experiment models using natural logarithms of k_{1208} (inch) as functions of LAW glass compositions. Section 8.3.1 presents the results of modeling $\ln(k_{1208})$ using a 20-component LM model. Sections 8.3.2 and 8.3.3 present the results of modeling $\ln(k_{1208})$ using LM and PQM models based on a reduced set of mixture components. Finally, Section 8.3.4 compares the results from the three models and recommends a $\ln(k_{1208})$ model for future use and evaluation.

8.3.1 Results from the 20-Component Full Linear Mixture Model for the Natural Logarithm of K-3 Corrosion at 1208 °C with LAW Glasses

As the initial step in $\ln(k_{1208})$ -composition model development, a FLM model in the 20 components identified in Section 8.1.1.1 was fit to the modeling data (333 LAW glasses). Table 8.3 contains the results for the 20-component FLM model of $\ln(k_{1208})$. Table 8.3 lists the model coefficients, standard deviations of the coefficients, and model fit statistics for the 20-component FLM model on $\ln(k_{1208})$ using the modeling dataset (333 LAW glasses). Table 8.3 also contains the results from the (i) data-splitting

validation approach (see Section 8.1.2), and (ii) evaluation of model predictions for the five evaluation subsets (see Section 8.1.3). In the data-splitting validation portion of the results at the bottom of Table 8.3, the columns are labeled DS1, DS2, DS3, DS4, and DS5 to denote the five modeling/validation splits of the data as described in Section 8.1.2. The last column of this part of Table 8.3 shows the averages for the different statistics over the five splits.

The $R^2 = 0.8162$, $R^2_A = 0.8050$, and $R^2_P = 0.7875$ statistics (see Section B.3 of Appendix B) in Table 8.3 show that (i) the 20-component FLM model fits the $ln(k_{1208})$ data in the 333-glass modeling dataset reasonably well, (ii) there are not a large number of unneeded model terms, and (iii) there are not any highly influential data points. The RMSE = 0.3305 is slightly smaller than the pooled glass batching and k_{1208} determination uncertainty [SD = 0.3311 in ln(inch) units] estimated from replicates in Table 8.3. The model LOF p-value = 0.5361 in Table 8.3 does not indicate that the 20-component FLM model has a significant LOF. However, the fact that the RMSE and pooled SD are noticeably higher than similar values for viscosity and EC, combined with the fact that the 20-component FLM model does involve relatively high random error and has the potential for some degree of model LOF. See Section B.3 for discussion of the statistical test for model LOF.

At the bottom right of Table 8.3, the average model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE) over the five data-splits are close to the statistics obtained from fitting the 20-component FLM model for $ln(k_{1208})$ to all 333 glasses in the modeling dataset. The data-split validation statistics (R^2_V and RMSE_V) are also relatively close to the R^2 and RMSE (i) values from fitting the model to the full dataset, and (ii) averages from fitting the model to the data-split modeling subsets. This indicates that the 20-component FLM model maintains its predictive performance for data not used to fit the model.

	garrann or n		. 12	00 0101		
In (<i>k</i> ₁₂₀₈) 20-Component	Coefficient	Coefficient				Modeling Data Statistic,
LM Model Term	Estimate	Stand. Err.	-		333 Glasses ^(a)	
Al ₂ O ₃	-22.0645	1.3325		R^2		
B_2O_3	-3.5622	1.1660		R^2_A		
CaO	8.6463	1.0901		R ² _P	-	-
Cl	-30.7667	9.0089		RMSE		
Cr ₂ O ₃	-96.6545	12.8159		Model I	Model LOF p-value	Model LOF p-value
F	6.8661	26.3477				
Es O	0.1346	1.3399		Evaluation	Evaluation Set	Evaluation Set
Fe ₂ O ₃	0.1540	1.5599		(# Glasses	(# Glasses) ^(b)	(# Glasses) ^(b) R ² _{Eval}
K ₂ O	5.8944	1.4174		WTP (9	WTP (98)	WTP (98) 0.8399
Li ₂ O	47.1575	3.5501		ORP (2	ORP (235)	ORP (235) 0.5774
MgO	-5.6774	3.2280		LP2OL	LP2OL (40)	LP2OL (40) -0.6198
Na ₂ O	22.3786	1.0641		LP123 (LP123 (0)	LP123 (0) NA
P_2O_5	-12.0946	5.9963		HiNa ₂ O	HiNa ₂ O (136)	HiNa ₂ O (136) 0.3865
SO ₃	-13.3407	5.9777		HiSO ₃ (HiSO ₃ (65)	HiSO ₃ (65) 0.7163
SiO ₂	-12.8906	0.5359				
SnO ₂	-1.0459	2.9400				
TiO ₂	-2.9130	2.3023				
V ₂ O ₅	-23.5116	2.8286				
ZnO	-9.7077	3.0036				
ZrO ₂	-7.8000	2.1744				
Others ^(c)	-2.1388	10.7755				
Data Splitting Statistic ^(a,d)	DS1	DS2		DS3	DS3 DS4	DS3 DS4 DS5
R^2	0.8215	0.8220		0.8071		
D ²	0.0002	0.0000		0.7020		

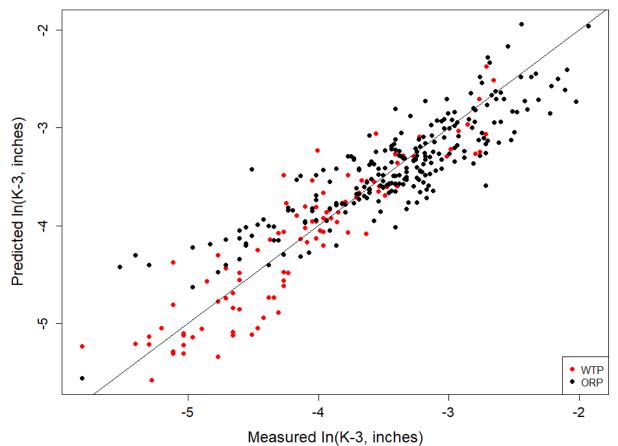
Table 8.3. Coefficients and Performance Summary for the 20-Component Full Linear Mixture Model onthe Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

Data Splitting Statistic ^(a,d)	DS1	DS2	DS3	DS4	DS5	Average
R ²	0.8215	0.8220	0.8071	0.8245	0.8092	0.8169
R ² _A	0.8083	0.8088	0.7928	0.8115	0.7951	0.8033
R ² _P	0.7889	0.7876	0.7694	0.7890	0.7691	0.7808
RMSE	0.3299	0.3302	0.3387	0.3217	0.3340	0.3309
R ² v	0.7533	0.7655	0.8435	0.7285	0.8338	0.7849
RMSEv	0.3595	0.3442	0.3034	0.3965	0.3254	0.3458

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

(b) The six sets of LAW evaluation glasses are discussed in Section 2.4. Five of these sets are applicable to k_{1208} models as described in Section 8.1.3.

(c) For the 20-component FLM model, the "Others" component includes any components not separately listed.


(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 8.1.2 describes how the modeling dataset was split into modeling and validation subsets.

The statistics from evaluating the predictive performance of the 20-component FLM model for $ln(k_{1208})$ on the five applicable evaluation subsets of modeling glasses (see Section 8.1.3) are given on the right side of Table 8.3. The R² statistics for two of the five evaluation subsets (0.7163 and 0.8399) are close to the R^2 statistic for the whole modeling dataset (0.8162). However, the remaining three evaluation sets resulted in significantly lower R^2_{Eval} values (-0.6198¹, 0.3865, and 0.5774). The new models in this report are intended to predict well for LAW glasses with higher waste loadings, and still predict acceptably well

¹ Note: R^2 value can be negative as it is given (in Equation B.15a) as: $R^2 = 1$ - *SSE/SSPE*. In those cases where the sum of squares error is large compared to the sum of squares pure error, then SSE/SSPE > 1 and $R^2 < 0$. This is one sign of a poor fit.

for glasses with lower waste loadings (the older WTP glasses). The low R^2_{Eval} values and the significantly reduced model validity region for the k_{1208} model (compared to other models in this report) suggest that further data and modeling are required before directly applying this constraint in formulation of glasses for the WTP LAW Facility. We therefore recommend this model be used for indication only.

Figure 8.4 shows the PvM plot for the 333-glass modeling dataset using the 20-component FLM model for $\ln(k_{1208})$. The plot illustrates that the 20-component FLM model predicts $\ln(k_{1208})$ reasonably well, with only a slight tendency to under-predict high values and over predict low values.

Figure 8.4. Predicted versus Measured Plot for the 333-Glass Modeling Dataset Using the 20-Component Full Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW

Figure 8.5 displays PvM plots using the 20-component FLM model for $ln(k_{1208})$ in Table 8.3 applied to the five evaluation subsets discussed in Section 8.1.3. Each plot in the figure contains the evaluation R² and RMSE values for the corresponding evaluation subset. Figure 8.5 shows that the 20-component FLM model for $ln(k_{1208})$ fit to the 333-glass modeling dataset generally predicts reasonably well for the WTP and HiSO₃ evaluation subsets. The fits to the ORP and HiNa₂O subsets show more scatter with perhaps a slight bias for the ORP subset. The model did not well predict to the LP2OL subset.

Glasses

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

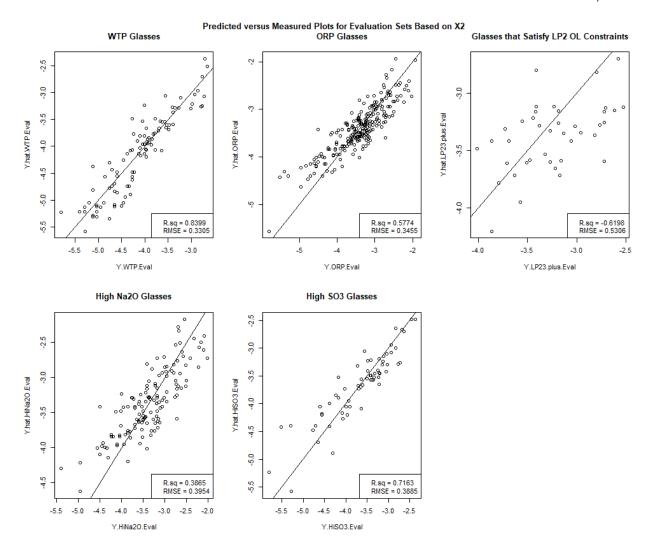
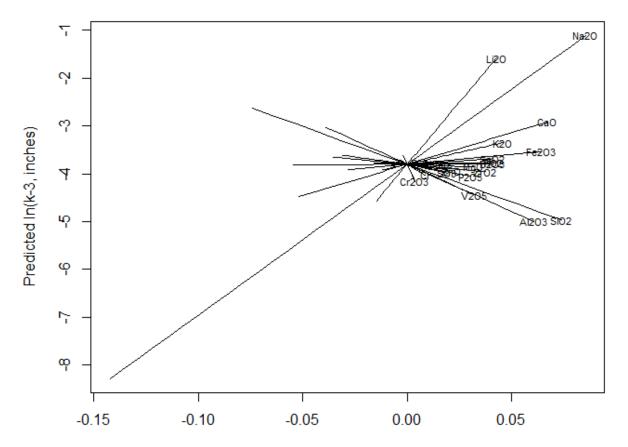



Figure 8.5. Predicted versus Measured Plots for the Five Evaluation Subsets Using the 20-Component Full Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

The model in Table 8.3, fit to the 333-glass modeling dataset, provides a starting point for reducing the LM model [i.e., removing separate terms for components that do not significantly influence $\ln(k_{1208})$]. Hence, the 20-component LM model was used to produce the response trace plot (see Section B.4.1 in Appendix B) shown in Figure 8.6. The average glass composition of the 1074 glasses in the compiled database discussed in Section 2.3 was used as the REFMIX (see Section B.4.1) in response trace plots for every property. The glass composition of the REFMIX is listed in Table 2.3.

The response trace plot in Figure 8.6 shows that Li₂O, Na₂O, CaO, and K₂O are predicted to increase $ln(k_{1208})$ the most, while Cr₂O₃, Cl, V₂O₅, Al₂O₃, and SiO₂ are predicted to decrease $ln(k_{1208})$ the most. The remaining components have predicted response traces with small to negligible slopes, indicating that those components are predicted to have small to negligible effects on $ln(k_{1208})$.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 8.6. Response Trace Plot for the 20-Component Full Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

8.3.2 Results from a Reduced Linear Mixture Model for the Natural Logarithm of K-3 Corrosion at 1208 °C with LAW Glasses

The 20-component FLM model for $\ln(k_{1208})$ presented in Section 8.3.1 likely contains components that do not significantly contribute to predicting $\ln(k_{1208})$, so model reduction was the next step of the model development approach. Thus, LM models for $\ln(k_{1208})$ involving fewer than the 20 components were considered. The sequential F-test model reduction approach (see Section B.4.1 of Appendix B; Piepel and Cooley 2006) was used.

8.3.2.1 Numerical Results for the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

The RLM model for $\ln(k_{1208})$, using the F-test approach and a significance level of 0.001 while forcing B₂O₃ and K₂O in as model terms, contained terms for 11 components: Al₂O₃, B₂O₃, CaO, Cr₂O₃, K₂O, Li₂O, Na₂O, SiO₂, V₂O₅, ZrO₂, and Others. Note that Others is the sum of all remaining components, and thus differs from the Others in the 20-component LM model discussed in Section 8.3.1. Table 8.4 contains the results for the 11-component RLM model of $\ln(k_{1208})$. Table 8.4 lists the model coefficients, standard deviations of the coefficients, and model fit statistics for the 11-component RLM model using

the modeling dataset (333 LAW glasses). Table 8.4 also contains the results from the (i) data-splitting validation approach (see Section 8.1.2), and (ii) evaluation of model predictions for the five evaluation subsets (see Section 8.1.3). In the data-splitting validation portion of the results at the bottom of Table 8.4, the columns are labeled DS1, DS2, DS3, DS4, and DS5 to denote the five modeling/validation splits of the data as described in Section 8.1.2. The last column of this part of Table 8.4 shows the averages for the different statistics over the five splits.

The $R^2 = 0.8001$, $R^2_A = 0.7939$, and $R^2_P = 0.7837$ statistics (see Section B.3 of Appendix B) in Table 8.4 show that (i) the 11-component RLM model fits the $ln(k_{1208})$ data in the 333-glass modeling dataset reasonably well, (ii) there are not a large number of unneeded model terms, and (iii) there are not any highly influential data points. The RMSE = 0.3397 is slightly larger than the pooled glass batching and k_{1208} determination uncertainty [SD = 0.3311 in ln(inch) units] estimated from replicates in Table 8.2. The model LOF p-value = 0.4510 in Table 8.4 does not indicate that the 11-component RLM model has a significant LOF. However, the fact that the RMSE and pooled SD are noticeably higher than similar values for viscosity and EC, combined with the fact that the 11-component RLM model does involve relatively high random error and has the potential for some degree of model LOF. See Section B.3 for discussion of the statistical test for model LOF.

At the bottom right of Table 8.4, the average model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE) over the five data-splits are close to the statistics obtained from fitting the 11-component RLM model for $ln(k_{1208})$ to all 333 glasses in the modeling dataset. The data-split validation statistics (R^2_V and RMSE_V) are also relatively close to the R^2 and RMSE (i) values from fitting the model to the full dataset, and (ii) averages from fitting the model to the data-split modeling subsets. This indicates that the model does not have statistically significant LOF and maintains its performance for data not used to fit the model.

In (<i>k</i> ₁₂₀₈) 11-Component	Coefficient	Coefficient	Modeling	Data Statisti	ic,	
LM Model Term	Estimate	Stand. Err.	333 Glass			Value
Al ₂ O ₃	-23.6166	1.1934	\mathbb{R}^2			0.8001
B_2O_3	-4.9660	1.1254	R^2_A			0.7939
CaO	6.9274	0.9471	R ² _P			0.7837
Cr ₂ O ₃	-91.2882	10.6679	RMSE			0.3397
K ₂ O	7.7892	1.3435	Model	LOF p-value		0.4510
Li ₂ O	51.0712	3.3918				
Na ₂ O	23.0767	0.9806	Evaluatio (# Glasses		R ² _{Eval}	RMSE _{Eva}
SiO ₂	-12.8612	0.4783	WTP (9		0.8340	0.3196
V ₂ O ₅	-25.9092	2.5140	ORP (2		0.5075	0.3150
ZrO ₂	-10.9683	1.9626	LP2OL	,	-0.4899	0.4520
Others ^(c)	-3.5945	0.8602	LP123	· /	NA	NA
			HiNa ₂ C	0 (136)	0.3723	0.3830
			HiSO ₃ (0.6737	0.3743
Data Splitting Statistic ^(a,d)	DS1	DS2	DS3	DS4	DS5	Averag
\mathbb{R}^2	0.8067	0.8029	0.7889	0.8080	0.7941	0.8001
R ² _A	0.7994	0.7955	0.7810	0.8008	0.7864	0.7926
R ² _P	0.7873	0.7825	0.7678	0.7890	0.7740	0.7801
RMSE	0.3374	0.3415	0.3483	0.3308	0.3410	0.3398
R ² v	0.7486	0.7736	0.8406	0.7311	0.8162	0.7820
RMSEv	0.3629	0.3382	0.3062	0.3946	0.3422	0.3488

 Table 8.4. Coefficients and Performance Summary for the 11-Component Reduced Linear Mixture

 Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.

(b) The six sets of LAW evaluation glasses are discussed in Section 2.4 and Section 8.1.3.

(c) For the 11-component RLM model, the "Others" component includes any components not separately listed.

(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 8.1.2 describes how the modeling dataset was split into modeling and validation subsets.

The statistics from evaluating the predictive performance of the 11-component RLM model for $ln(k_{1208})$ on the five applicable evaluation subsets of modeling glasses (see Section 8.1.3) are given on the right side of Table 8.4. The R² statistics for two of the five evaluation subsets (0.6737 and 0.8340) are close to the R² statistic for the whole modeling dataset (0.8001). However, the remaining three evaluation sets resulted in significantly lower R^2_{Eval} values (-0.4899, 0.3723, and 0.5075). The new models in this report are intended to predict well for LAW glasses with higher waste loadings, and still predict acceptably well for glasses with lower waste loadings (the older WTP glasses). Like the 20-component FLM model, the low evaluation R² values and the significantly reduced model validity region for the $ln(k_{1208})$ model (compared to other models in this report) suggest that further data and modeling are required before directly applying this constraint in formulation of glasses for the WTP LAW Facility. We therefore recommend this model be used for indication only.

8.3.2.2 Graphical Results for the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

Diagnostic plots for the 11-component RLM model (not included in this report) support the assumption of normally distributed errors in the $\ln(k_{1208})$ data (see Section B.3 of Appendix B). Figure 8.7 displays for the 11-component RLM model of $\ln(k_{1208})$ the standardized residuals plotted versus the data index (a sequential numbering of the modeling data points), with different plotting symbols representing the different groups of LAW glasses discussed in Section 2.3. Figure 8.7 indicates that the ORP datasets have a slightly wider scatter of standardized residuals, indicating a wider range of $\ln(k_{1208})$ model prediction uncertainty than the WTP datasets. This is likely a result of the ORP glasses spanning a wider subregion of LAW glass compositions. Only 2 of the 333 model glasses show a standardized residual greater than 3 on an absolute scale. Although these data points could be considered borderline outliers, they did not have a major impact on the 11-component RLM model for $\ln(k_{1208})$ and hence were retained in the modeling dataset. There is also a noticeable trend (rainbow shape) in the index versus standardized residual. Since the index for k_{1208} was data sorted in alphabetical order of Glass ID, the trend is not meaningful.

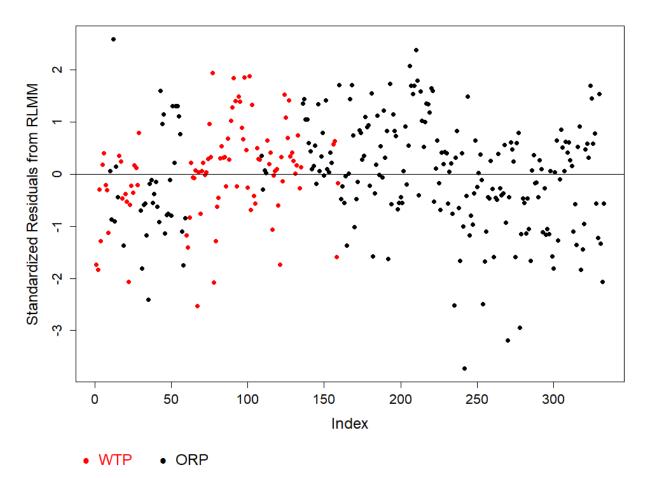


Figure 8.7. Standardized Residuals Plot for the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

Figure 8.8 displays the PvM plot for the 333-glass modeling dataset using the 11-component RLM model on $\ln(k_{1208})$. Figure 8.8 is similar to the PvM plot for the 20-component FLM model in Figure 8.4. Hence, as in Figure 8.4, Figure 8.8 illustrates that the 11-component RLM model predicts $\ln(k_{1208})$ moderately well, but with a slight tendency to under-predict above $\ln(k_{1208}) \sim -3$ ($k_{1208} \sim 0.05$ inch). However, the model predicts without bias near the WTP LAW Facility target operating limit for k_{1208} (0.04 inch, $\ln[k_{1208}] \sim -3.22 \ln[inch]$).

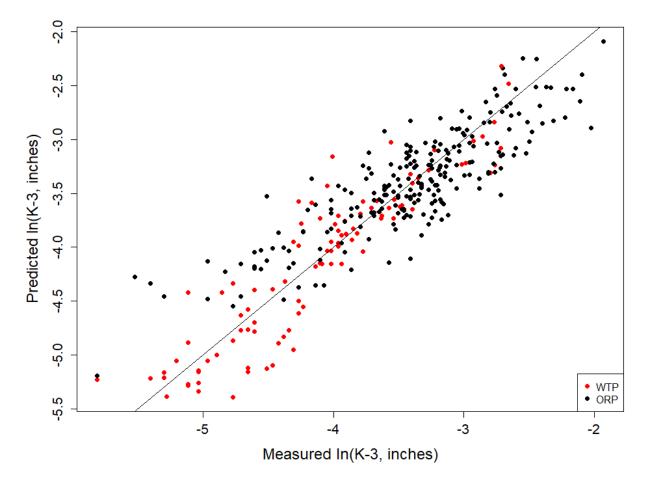


Figure 8.8. Predicted versus Measured Plot for the 333-Glass Modeling Dataset Using the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

Figure 8.9 displays PvM plots using the 11-component RLM model for $ln(k_{1208})$ in Table 8.4 applied to the five evaluation subsets discussed in Section 8.1.3. Each plot in the figure contains the evaluation R^2 and RMSE values for the corresponding evaluation subset. Figure 8.9 shows that the 11-component RLM model for $ln(k_{1208})$ fit to the 333-glass modeling dataset generally predicts reasonably well for the WTP and HiSO₃ evaluation subsets. The fits to the ORP and HiNa₂O subsets show more scatter with perhaps a slight bias for the ORP subset. The model did not fit the LP2OL subset well.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

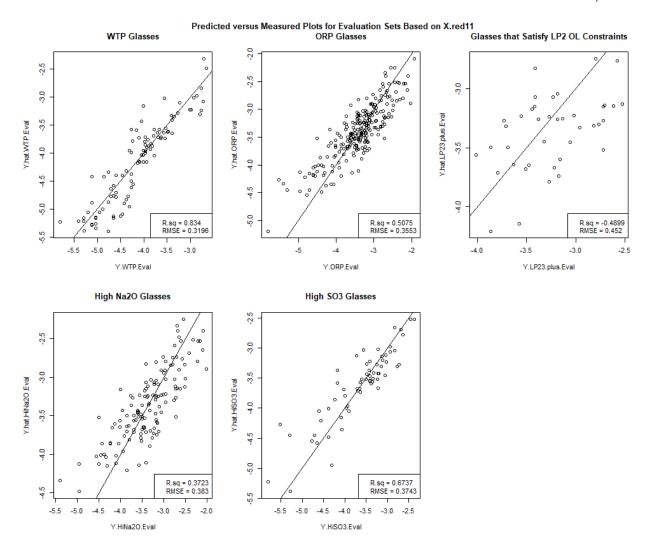
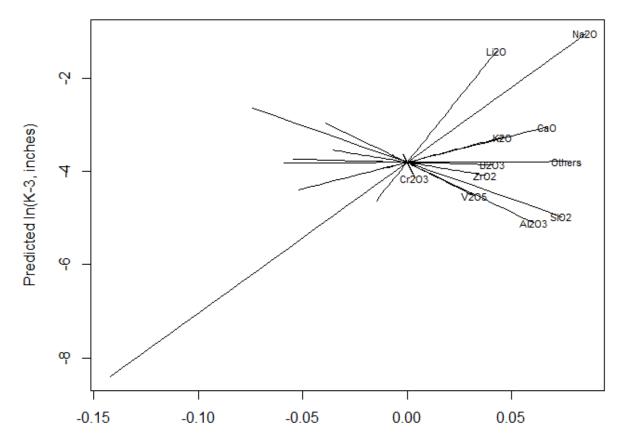



Figure 8.9. Predicted versus Measured Plots for the Five Evaluation Subsets Using the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

Figure 8.10 displays the response trace plot (see Section B.4.1 in Appendix B) for the 11-component RLM model of $\ln(k_{1208})$. The glass composition of the REFMIX glass (see Section B.4.1) used is listed in Table 2.3. Figure 8.10 shows that Li₂O and Na₂O (and CaO and K₂O to a lesser extent) are predicted to increase $\ln(k_{1208})$ the most, while Cr₂O₃, V₂O₅, Al₂O₃, and SiO₂ (and ZrO₂ to a lesser extent) are predicted to decrease $\ln(k_{1208})$ the most. B₂O₃ and Others have predicted response traces with small to negligible slopes, indicating those components are predicted to have small to negligible effects on $\ln(k_{1208})$.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 8.10. Response Trace Plot for the 11-Component Reduced Linear Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

8.3.3 Results from a Reduced Partial Quadratic Mixture Model for the Natural Logarithm of K-3 Corrosion at 1208 °C with LAW Glasses

Reduced PQM models (see Section 8.2.1) were investigated in an effort to improve the 11-component RLM model for $\ln(k_{1208})$. Past experience with developing and validating PQM models has indicated that adding too many quadratic terms tends to over-fit the model development dataset and degrade predictive performance for new glasses. So, a process of identifying as few as possible second-order terms while improving model fit statistics was performed as follows:

- 1. Regressions were performed to fit reduced partial quadratic models involving all possible subsets of 1, 2, 3, or 4 second-order terms.
- 2. The resulting model performance statistics (R-squared and RMSE values) were then examined to see which second-order terms were most beneficial to model performance and how many second-order terms to include.
- 3. The RMSE values from the top candidate models were plotted as a function of the number of second order terms (0 to 4) to identify where the point of diminishing returns was.
- 4. The reduced PQM model with the number of terms just before the point of diminishing returns was selected as the final reduced PQM model.

The MAXR criterion (see Section B.4.2 of Appendix B) was also attempted as a means of selecting second-order terms. However, the terms selected by that method were not always intuitively obvious and the performance was not substantively better than the chosen approach.

Ultimately, a 13-term PQM model for $\ln(k_{1208})$ with 11 linear terms and 2 quadratic terms (Li₂O × Li₂O and Na₂O × SiO₂) was selected as including enough quadratic terms to improve the model fit, without over-fitting the model development data. There is little past experience to judge if these second-order terms are to be expected. However, Li₂O × Li₂O and Na₂O × SiO₂ are often observed cross products in waste glass models for other properties (e.g., Piepel et al. 2007, Vienna et al. 2013, Vienna et al. 2016). Table 8.5 contains the coefficients of the 13-term PQM model for $\ln(k_{1208})$ and the coefficient standard deviations. Table 8.5 also includes model performance statistics for the 13-term PQM model using the (i) 333-glass modeling data, (ii) data-split modeling data (as a model validation approach), and (iii) five evaluation subsets of modeling glasses discussed in Section 8.1.3 (as a model evaluation approach).

8.3.3.1 Numerical Results for the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C

In Table 8.5, the $ln(k_{1208})$ model fit statistics $R^2 = 0.8245$, $R^2_A = 0.8179$, $R^2_P = 0.8081$, and RMSE = 0.3193 for the 13-term PQM model are small improvements over the corresponding statistics for the 11-component RLM model in Table 8.4. The small drop in values from R^2_A to R^2_P suggests that the $ln(k_{1208})$ modeling dataset does not have any highly influential data points for the 13-term reduced PQM model. In any case, $R^2_P = 0.8081$ provides an estimate of the fraction of variation in $ln(k_{1208})$ values for future datasets over the same GCR that might be accounted for by this 13-term reduced PQM model.

The RMSE in Table 8.5 is an estimate of the uncertainty [in ln(inch) units] in fabricating simulated LAW glasses and determining k_{1208} if the 13-term reduced PQM model for $ln(k_{1208})$ does not have a statistically significant LOF. The RMSE = 0.3193 is slightly smaller than the pooled glass batching and k_{1208} determination uncertainty [SD = 0.3311 in ln(inch) units] estimated from replicates in Table 8.2. The model LOF p-value = 0.6415 in Table 8.5 does not indicate that the 13-term reduced PQM model has a significant LOF. However, the fact that the RMSE and pooled SD are noticeably higher than similar values for properties such as viscosity and EC, combined with the fact that the 13-term reduced PQM model LOF p-value is noticeably smaller than similar values for viscosity and EC, indicates that the 13-term reduced PQM model LOF. See Section B.3 for discussion of the statistical test for model LOF.

At the bottom right of Table 8.5, the average model-fit statistics (R^2 , R^2_A , R^2_P , and RMSE) over the five data-splits are close to the statistics obtained from fitting the 13-term reduced PQM model for ln(k_{1208}) to all 333 glasses in the modeling dataset. The data-split validation statistics (R^2_V and RMSE_V) are also relatively close to the R^2 and RMSE (i) values from fitting the model to the full dataset, and (ii) averages from fitting the model to the data-split modeling subsets. This indicates that the 13-term reduced PQM model maintains its predictive performance for data not used to fit the model.

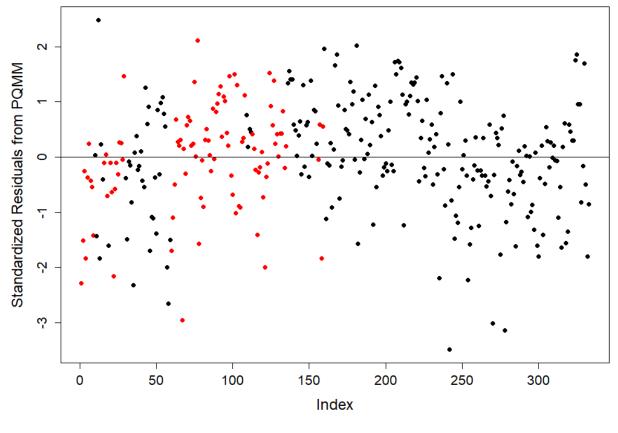
The statistics from evaluating the predictive performance of the 13-term reduced PQM model for $\ln(k_{1208})$ on the five evaluation subsets of modeling glasses (see Section 8.1.3) are given on the right side of Table 8.5. The R² statistic for the WTP evaluation subset (0.8311) is close to the R² statistic for the whole modeling dataset (0.8245). However, the remaining four evaluation sets resulted in significantly lower R² values (0.6470, 0.0328, 0.5371, and 0.7538). The new models in this report are intended to predict well for LAW glasses with higher waste loadings, and still predict acceptably well for glasses with lower waste loadings (the older WTP glasses). Like the 11-component RLM model, the low evaluation R² values and the significantly reduced model validity region for the $\ln(k_{1208})$ model (compared to other

models in this report) suggest that further data and modeling are required before directly applying this constraint in formulation of glasses for the WTP LAW Facility. We therefore recommend this model be used for indication only.

ln (<i>k</i> ₁₂₀₈) 11-Term	Coefficient	Coefficient		Data Statisti	c,	
PQM Model Term	Estimate	Stand. Err.		333 Glasses ^(a)		Value
Al_2O_3	-33.3105	1.8903	\mathbb{R}^2			0.8245
B_2O_3	-12.0828	1.5356	R^2_A			0.8179
CaO	-0.6772	1.4473	R^{2}_{P}			0.8081
Cr ₂ O ₃	-101.3429	10.3063	RMSE			0.3193
K ₂ O	4.8322	1.3384	Model	LOF p-value		0.6415
Li ₂ O	64.3499	4.9227				
Na ₂ O	54.7839	4.9832	Evaluatio (# Glasses		R ² _{Eval}	RMSE _{Eva}
5:0	4 2520	1 2052				
SiO ₂	-4.2539	1.3952	WTP (9		0.8311	0.3123
V ₂ O ₅	-27.1194	2.3701	ORP (2	,	0.6470	0.3312
ZrO ₂	-20.5035	2.3936	LP2OL	· /	0.0328	0.4315
Others	-11.0123	1.4175	LP123	· /	NA	NA
Li ₂ O×Li ₂ O	-438.1673	102.2222	HiNa ₂ C	HiNa ₂ O (136) 0.5371		0.3664
Na ₂ O×SiO ₂	-84.6857	12.9803	HiSO ₃	HiSO ₃ (65) 0.7538		0.3442
Data Splitting Statistic ^(a,d)	DS1	DS2	DS3	DS4	DS5	Averag
R ²						
	0.8294	0.8265	0.8111	0.8401	0.8178	0.8250
R ² _A	0.8216	0.8186	0.8025	0.8329	0.8095	0.8170
R ² _P	0.8103	0.8061	0.7896	0.8222	0.7971	0.8050
RMSE	0.3182	0.3216	0.3307	0.3030	0.3220	0.3191
R ² v	0.7830	0.8024	0.8766	0.7194	0.8446	0.8052
RMSEv	0.3372	0.3160	0.2694	0.4031	0.3147	0.3281

Table 8.5. Coefficients and Performance Summary for 13-Term Reduced Partial Quadratic Mixture
Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

(a) The model evaluation statistics are defined in Section B.3 of Appendix B. The model validation statistics are defined in Section B.5.


(b) The six sets of LAW evaluation glasses (five of which apply) are discussed in Section 2.4 and Section 8.1.3.

(c) For the 13-component reduced PQM model, the "Others" component includes any components not separately listed.

(d) The evaluation and validation statistics calculated for data-splits are defined the same as for separate modeling and validation sets. Section 8.1.2 describes how the modeling dataset was split into modeling and validation subsets.

8.3.3.2 Graphical Results for the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

Diagnostic plots for the 13-term reduced PQM model (not included in this report) support the assumption of normally distributed errors in the $\ln(k_{1208})$ data (see Section B.3 of Appendix B). Figure 8.11 displays for the 13-term reduced PQM model of $\ln(k_{1208})$ the standardized residuals plotted versus the data index (a sequential numbering of the modeling data points), with different plotting symbols representing the different groups of LAW glasses discussed in Section 2.3. Figure 8.11 is very similar to Figure 8.7, so the observations on Figure 8.11 are the same as discussed in Section 8.3.2.2 for Figure 8.7.

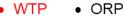
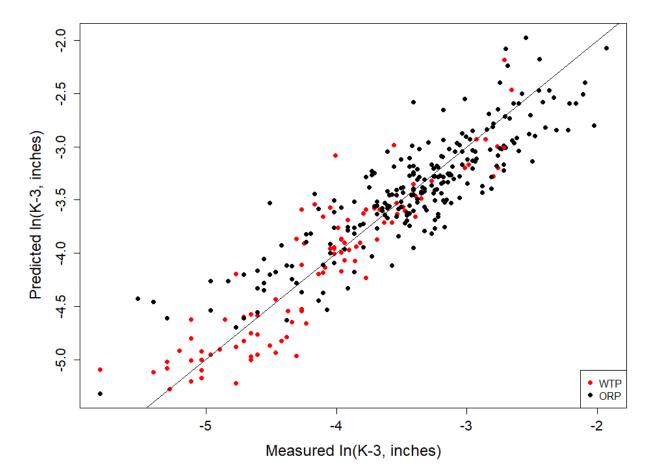



Figure 8.11. Standardized Residuals Plot for the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

Figure 8.12 displays the PvM plot for the 333-glass modeling dataset using the 13-term reduced PQM model on $\ln(k_{1208})$. Figure 8.12 is similar to the PvM plot for the 11-component RLM model in Figure 8.8. However, comparing Figure 8.8 and Figure 8.12 illustrates that the 13-term reduced PQM model predicts $\ln(k_{1208})$ with less of a tendency to under-predict above $\ln(k_{1208}) \sim -3$ ($k_{1208} \sim 0.05$ inch). Also, the model predicts without bias near the WTP LAW Facility target operating limit for k_{1208} (0.04 inch, $\ln[k_{1208}] \sim -3.22 \ln[inch]$).

Figure 8.12. Predicted versus Measured Plot for the 333-Glass Modeling Dataset Using the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

Figure 8.13 displays PvM plots using the 13-term reduced PQM model for $ln(k_{1208})$ in Table 8.5 applied to the five evaluation subsets discussed in Section 8.1.3. Each plot in the figure contains the evaluation R^2 and RMSE values for the corresponding evaluation subset. Figure 8.13 shows that the 13-component reduced PQM model for $ln(k_{1208})$ fit to the 333-glass modeling dataset generally predicts reasonably well for the WTP and HiSO₃ evaluation subsets. The fits to the ORP and HiNa₂O subsets show more scatter with perhaps a slight bias for the ORP subset. The model did not fit to the LP2OL subset well.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

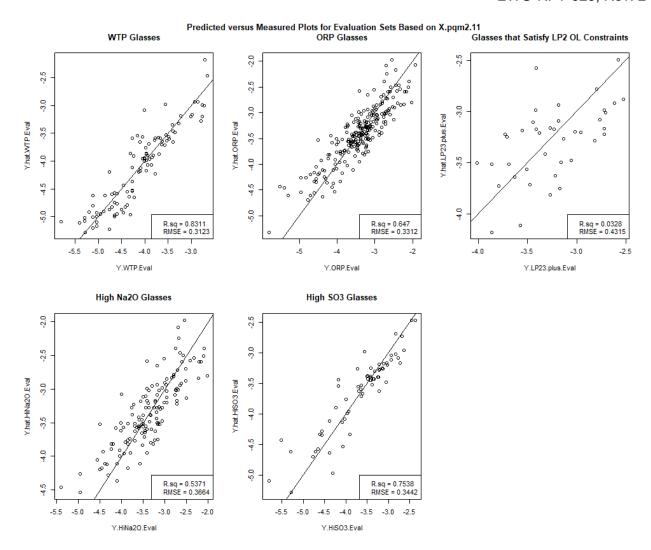
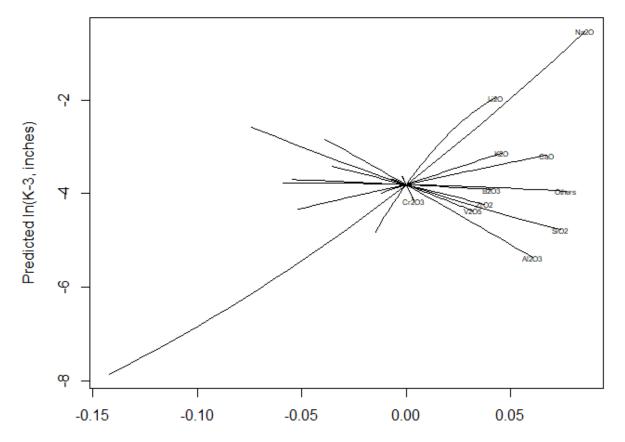



Figure 8.13. Predicted versus Measured Plots for the Five Evaluation Subsets Using the 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

Figure 8.14 displays the response trace plot (see Section B.4.1 of Appendix B) for the 13-term reduced PQM model on $\ln(k_{1208})$. Figure 8.14 shows that Li₂O and Na₂O (K₂O and CaO to a lesser extent) are predicted to increase $\ln(k_{1208})$ the most, while Cr₂O₃, Al₂O₃, V₂O₅, SiO₂, and ZrO₂ are predicted to decrease $\ln(k_{1208})$ the most. B₂O₃ and Others have predicted response traces with small to negligible slopes, indicating those components are predicted to have small to negligible effects on $\ln(k_{1208})$. The curvature in Li₂O effect is also evident with a high slope at low Li₂O concentrations and lower slope at higher Li₂O concentrations.

Difference in Component Normalized Mass Fraction from Centroid Composition

Figure 8.14. Response Trace Plot for 13-Term Reduced Partial Quadratic Mixture Model on the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

8.3.4 Recommended Model for the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

Table 8.6 summarizes the primary $\ln(k_{1208})$ model evaluation and validation results for the 20-component FLM model, the 11-component RLM model, and the 13-term reduced PQM model from Table 8.3, Table 8.4, and Table 8.5, respectively, for the following:

- Model goodness-of-fit for the $ln(k_{1208})$ -composition modeling data of 333 simulated LAW glasses
- Model validation using the data-splitting approach
- Model evaluation for six subsets of the 333-glass modeling dataset

Based on the summarized results in Table 8.6 and discussions in Sections 8.3.1 to 8.3.3, the 13-term reduced PQM model (listed in Table 8.5) is recommended for predicting $\ln(k_{1208})$ of LAW glasses. However, this model is recommended to be used as information only at this time due to lack of data. As a baseline for comparison, the 11-component RLM model (listed in Table 8.3) will be used.

			$ln(k_{1208})$) Model		
Summary Statistics from	20-Cor	nponent	11-Cor	nponent	13-Term R	educed PQM
Model Fit to 333 Glasses ^(a)	FI	LM	RI	LM	(Recommended)	
R ²	0.8	3162	0.8	001	0.8	3245
R ² _A	0.8	8050	0.7	939	0.8179	
R ² _P	0.7	'875	0.7	837	0.8	3081
RMSE	0.3	3305	0.3	397	0.3	3193
LOF p-value	0.5	361	0.4	510	0.6	5415
Linear Terms	20 (See 7	Table 8.3)	11 (See 7	Table 8.4)	11 (See '	Table 8.5)
Selected Quadratic Terms	N	JA	N	A	=	\times Li ₂ O
in Model					Na ₂ O	\times SiO ₂
# Model Terms	2	20	1	.1	-	13
Sum	mary Statistic	s for Five Evalu	uation Subsets	of LAW Glass	es ^(a)	
Evaluation Set						
(# Glasses) ^(b)	R^{2}_{Eval}	RMSE _{Eval}	R^{2}_{Eval}	RMSE _{Eval}	R^{2}_{Eval}	RMSE _{Eval}
WTP (98)	0.8399	0.3305	0.8340	0.3196	0.8311	0.3123
ORP (235)	0.5774	0.3455	0.5075	0.3553	0.6470	0.3312
LP2OL (40)	-0.6198	0.5306	-0.4899	0.4520	0.0328	0.4315
LP123 (0)	NA	NA	NA	NA	NA	NA
HiNa ₂ O (136)	0.3865	0.3954	0.3723	0.3830	0.5371	0.3664
HiSO ₃ (65)	0.7163	0.3885	0.6737	0.3743	0.7538	0.3442
	tion Summar	y Statistics Ave	raged Over 5	Data-Splitting	Sets ^(b)	
R ²	0.8	3169	0.8	001	0.8	3250
R ² _A	0.8033		0.7	926	0.8	3170
R ² _P	0.7808			801		3050
RMSE		309	0.3398			3191
R ² v	0.7	'849	0.7	820	0.8	3052
RMSEv	0.3	3458	0.3	488	0.3281	
(a) The model evaluation sta	atistics are def	fined in Section	B.3 of Appen	dix B.		

Table 8.6. Performance Summary of Three Models for the Natural Logarithm of K-3 Corrosion at 1208 °C for LAW Glasses

(b) Model validation statistics are defined in Section B.5 of Appendix B.

8.4 Example Illustrating Model Predictions and Statistical Intervals for K-3 Corrosion at 1208 °C

This section contains examples to illustrate using the recommended 13-term PQM model (Section 8.3.3) to obtain predicted k_{1208} values and corresponding 90% UCIs for a specific LAW glass composition as described in Section B.6 of Appendix B. For comparison purposes, the same results are presented for the 11-component RLM model in Section 8.3.2 (although it was not a recommended model). The 90% confidence levels associated with UCIs were chosen for illustration purposes only. The WTP LAW Facility can use an appropriate confidence level depending on the use of the $ln(k_{1208})$ -composition model and the type of statistical uncertainty expression.

The common glass composition selected for example calculations for all properties in this report (denoted REFMIX) is listed in Table 2.3. The 20-component composition (mass fractions) for k_{1208} modeling is given in Table 8.7. To apply the 13-term reduced PQM and 11-component RLM models for $\ln(k_{1208})$ to the glass composition, the mass fractions of the 20 components must be converted to mass fractions (that sum to 1.0) of the 11 LAW glass components contained in both models. This involves adding the mass fractions of the 9 of 20 components not contained in the $ln(k_{1208})$ models to the mass fraction of Others (one of the original 20 components) to obtain Others (one of the reduced sets of 11 components). Mass

fractions of the relevant components are then multiplied to obtain the two quadratic terms of the 13-term reduced PQM model. Table 8.7 contains the composition of the glass prepared for use in the two $\ln(k_{1208})$ models for LAW glasses.

For each of the two $\ln(k_{1208})$ models, predicted $\ln(k_{1208}, \operatorname{inch})$ values are obtained by multiplying the composition in the format needed for that model by the coefficients for that model, then summing the results. That is, the predicted values are calculated by

$$\hat{y}(\mathbf{g}) = \mathbf{g}^{\mathrm{T}} \mathbf{b}$$
(8.4)

where **g** is the composition of REFMIX formatted to match the terms in a given model (from Table 8.7), the superscript T represents a vector transpose, and **b** is the vector of coefficients for a given model. The predicted $\ln(k_{1208})$ values for REFMIX using the two $\ln(k_{1208})$ models are listed in the second column of Table 8.8. The predicted $\ln(k_{1208})$ values in $\ln(inch)$ units are easily converted to k_{1208} values (inch) by exponentiation. The third column of Table 8.8 contains the predicted k_{1208} values (inch). However, as discussed in Section B.6 of Appendix B, these back-transformed k_{1208} predictions in inch should be considered estimates of the true median (not the true mean) of the distribution of k_{1208} values that would result if K-3 corrosion measurements at 1208 °C were repeated multiple times on separately batched and melted samples of the REFMIX glass composition.

The predicted k_{1208} values for REFMIX in Table 8.8 are 0.0223 inch for the 11-component RLM model and 0.0222 inch for the recommended 13-term reduced PQM model.

		Example Glass	Example Glass
		Composition	Composition
		(mass fractions)	(mass fractions)
	Example Glass Composition ^(a)	to Use in 11-Component	to Use in 13-Term
Model Term	(mass fractions)	LM Model for $ln(k_{1208})^{(b)}$	PQM Model for $ln(k_{1208})^{(c)}$
Al ₂ O ₃	0.075760	0.07576	0.07576
B_2O_3	0.097257	0.097257	0.097257
CaO	0.052514	0.052514	0.052514
Cl	0.003376	NA	NA
Cr_2O_3	0.002041	0.002041	0.002041
F	0.001348	NA	NA
Fe ₂ O ₃	0.029727	NA	NA
K ₂ O	0.012064	0.012064	0.012064
Li ₂ O	0.014802	0.014802	0.014802
MgO	0.016989	NA	NA
Na ₂ O	0.168395	0.168395	0.168395
P_2O_5	0.003239	NA	NA
SO_3	0.005542	NA	NA
SiO ₂	0.424565	0.424565	0.424565
SnO ₂	0.007587	NA	NA
TiO ₂	0.008034	NA	NA
V_2O_5	0.007499	0.007499	0.007499
ZnO	0.031997	NA	NA
ZrO_2	0.036219	0.036219	0.036219
Others	0.001045	0.108884	0.108884
Li ₂ O×Li ₂ O	NA	NA	0.00021910
Na ₂ O×SiO ₂	NA	NA	0.07149462

Table 8.7. REFMIX Glass Composition in Formats Used with Models of Natural Logarithm of K-3Corrosion at 1208 °C for LAW Glasses

(a) The composition in mass fractions is from Table 2.3.

(b) See Table 8.4.

(c) See Table 8.5.

(d) NA = not applicable, because the model does not contain this term.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Table 8.8. Predicted K-3 Corrosion at 1208 °C, Standard Deviation, and Statistical Intervals for the REFMIX Glass Composition Used in TwoModels for K-3 Corrosion at 1208 °C

Model for	Predicted ln $(\widehat{k_{1208}})$	Predicted $\widehat{k_{1208}}$	Standard Deviation of Predicted ln $(\widehat{k_{1208}})^{(b)}$	90% UCI ^(c) on Mean ln $(\widehat{k_{1208}})$	90% UCI ^(c) on Median
$\ln(k_{1208})^{(a)}$	[ln(inch)]	[inch]	[ln(inch)]	[ln(inch)]	$\widehat{k_{1208}}$ [inch]
13-Term PQM Model	-3.8067 ^(d)	0.0222 ^(d)	0.0392	-3.7563	0.0234
11-Comp. LM Model	-3.8022	0.0223	0.0231	-3.7725	0.0230

(a) The two $\ln(k_{1208})$ models in this column are given in Table 8.5 (13-term PQM) and Table 8.4 (11-component LM), respectively.

(b) The standard deviation is for the $ln(k_{1208})$ prediction considered to be the mean of such values for the example glass.

(c) UCI = upper confidence interval (see Section B.6 of Appendix B).

(d) All calculations were performed using the example glass composition, model coefficients, and variance-covariance matrix values given in tables of this report. The calculated ln(inch) values were rounded to four decimal places in this table. The inch values were calculated by exponentiating the ln(inch) values before rounding, then rounding the resulting values to four decimal places in this table.

Eq. (B.19a) can be used to calculate a 90% UCI for the true mean of $ln(k_{1208})$ values for the example glass composition with each of the $ln(k_{1208})$ models. In the notation of these equations:

- $100(1-\alpha)\% = 90\%$, so that $\alpha = 0.10$ for a 90% UCI in Eq. (B.19a).
- The vector **g** contains entries corresponding to the terms in a given $\ln(k_{1208})$ models, which are calculated using the composition of the example glass in Table 8.7.
- Matrix **G** is formed from the data matrix used in the regression that generated a given $\ln(k_{1208})$ model. Matrix **G** has the number of rows in the k_{1208} modeling dataset (333 glasses) and the number of columns corresponding to the number of terms in a given $\ln(k_{1208})$ model. Each column is calculated according to the corresponding term in the model using the LAW normalized glass composition in the k_{1208} modeling dataset.

To calculate a 90% UCI in $\ln(k_{1208})$ units of $\ln(inch)$, the margin-of-error $t_{1-\alpha,n-p}\sqrt{MSE_{OLS}\mathbf{g}^{T}(\mathbf{G}^{T}\mathbf{G})^{-1}\mathbf{g}}$ is added to the predicted $\ln(k_{1208})$ [denoted $\hat{\mathbf{y}}(\mathbf{g})$] described above. The calculations are given by

Eq. (B.19a). The $MSE_{OLS}(\mathbf{G}^{T}\mathbf{G})^{-1}$ portion of these expressions is an estimate of the variance-covariance matrix for the estimated model coefficients, as discussed near the end of Section B.6 of Appendix B. For the example calculations presented in Table 8.8, the Students-*t* statistic value needed for the one-sided upper CI formula describing the 11-component LM model is 1.284186. This is based on *n*=333 and *p*=11. The following cell formula can be used to obtain the *t*-statistic value with Excel: =T.INV(0.90,333-11). For the UCI calculations associated with the 13-term PQM model described in Table 8.8, the Students-*t* statistic is 1.284203=T.INV(0.90,333-13). The variance-covariance matrices for the 11-component LM model and the recommended 13-term PQM model are respectively listed in Tables D.14 and D.15 of Appendix D. The quantity $\sqrt{MSE_{OLS}\mathbf{g}^{T}(\mathbf{G}^{T}\mathbf{G})^{-1}\mathbf{g}}$ is the standard deviation of a model

prediction (for a given composition vector \mathbf{g} expressed in a given model form); the value for each model is given in the fourth column of Table 8.8.

The 90% UCI value for the true mean $\ln(k_{1208})$ in units of $\ln(inch)$ for the example glass composition based on the two $\ln(k_{1208})$ models is given in the fifth column of Table 8.8. Exponentiating the resulting 90% UCIs for the mean $\ln(k_{1208})$ values in $\ln(inch)$ units yields 90% UCIs, for the median k_{1208} (inch). These values are in the sixth column of Table 8.8. For example, the recommended 13-term PQM model for $\ln(k_{1208})$ has -3.7536 $\ln(inch)$ as the 90% UCI on the true mean $\ln(k_{1208})$ for the example glass. Then e^{-3.7536} = 0.0234 inch is the 90% UCI on the true median for k_{1208} .

8.5 Suitability of the Recommended K-3 Corrosion at 1208 °C Model for Application by the WTP LAW Facility

The 13-term PQM model for $ln(k_{1208})$ discussed in Section 8.3.3 is recommended as the best of the currently available models for predicting k_{1208} for LAW glasses. This model yields unbiased predictions of k_{1208} near the operating limit (0.04 inch), for the whole modeling dataset (see Figure 8.12). However, the k_{1208} model is recommended to be used for indication only rather than to constrain glass compositions in the WTP LAW Facility operations, for several reasons:

1. The model predictions are not as good for the five evaluation sets that are intended to demonstrate the ability to predict for glasses of interest to the WTP LAW Facility, including high-waste-loaded glasses.

- 2. The composition region for k_{1208} model validity is reduced compared to the models for other glass properties.
- 3. The melter operating temperature is 1150 °C rather than 1208 °C at which the testing was performed and the corrosion rate is likely to decrease with longer times compared to a single point at 6 days, suggesting the data may not be the most effective way to constrain glass composition.
- 4. The magnitude of the uncertainties (both measurement and prediction) are sufficiently high as to unduly restrict the processing envelope.

It is recommended that additional testing and modeling be performed to support the inclusion of a K-3 corrosion model for plant operation. In the meantime, the 13-term k_{1208} model is a useful tool to estimate potential impacts of composition on corrosivity of a melt and may be applied in system planning type calculations.

The ranges of single-component concentrations in the 333-glass dataset used for modeling are listed in Table 8.9. These ranges can be used to determine model validity ranges.

	20-com	ponent	11-com	ponent
Component	Min	Max	Min	Max
Al_2O_3	0.035000	0.138111	0.035000	0.138111
B_2O_3	0.042017	0.139530	0.042017	0.139530
CaO	0.000000	0.122135	0.000000	0.122135
Cl	0.000000	0.011992	NA	NA
Cr_2O_3	0.000000	0.006005	0.000000	0.006005
F	0.000000	0.004902	NA	NA
Fe_2O_3	0.000000	0.094981	NA	NA
K ₂ O	0.000000	0.059065	0.000000	0.059065
Li ₂ O	0.000000	0.059065	0.000000	0.059065
MgO	0.000000	0.048970	NA	NA
Na ₂ O	0.024982	0.259714	0.024982	0.259714
P_2O_5	0.000000	0.033986	NA	NA
SO_3	0.000100	0.025000	NA	NA
SiO ₂	0.343965	0.501647	0.343965	0.501647
SnO_2	0.000000	0.050000	NA	NA
TiO ₂	0.000000	0.050015	NA	NA
V_2O_5	0.000000	0.040044	0.000000	0.040044
ZnO	0.000000	0.054032	NA	NA
ZrO_2	0.000000	0.075105	0.000000	0.075105
Others ^(b)	0.000000	0.015987	0.046231	0.190102

 Table 8.9. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Final Natural Logarithm K-3 Corrosion at 1208 °C Models

(a) NA = not applicable or component not included as term.

(b) Note: Others for the 11-components are composed of all the NA components as well as Others for the 20 components.

9.0 Summary and Conclusions for LAW Glass Property-Composition Models

This report documents the development of property models for LAW glasses and the data used to develop the models. Models have been developed to relate

- PCT responses for boron and sodium,
- The VHT constraint pass/fail,
- Viscosity at 1150 °C,
- Electrical conductivity at 1150 °C,
- melter SO₃ tolerance at 1150 °C, and
- K-3 refractory neck corrosion extent after 6 days at 1208 °C

to LAW glass compositions.

The property-composition models and formulas for uncertainties in model predictions for the full current range of LAW glasses (spanning the compositions for WTP contract baseline formulation through the high waste-loaded enhanced glasses) resulting from this work can be used for numerous purposes. These include (i) formulating LAW glasses for specific LAW waste compositions, (ii) developing LAW GFAs to make process step decisions during operation of the LAW WTP Facility, (iii) assessing whether proposed LAW glass compositions or LAW glass compositions calculated by process simulation codes will satisfy property specifications (PCT and VHT) and processing requirements (viscosity, EC, melter SO₃ tolerance), and (iv) as the basis for any future ILAW glass formulation and model development work, if needed.

The datasets available to develop property-composition models for PCT, VHT, viscosity at 1150 °C, EC at 1150 °C, melter SO₃ tolerance at 1150 °C, and K-3 refractory corrosion at 1208 °C are composed of data from different LAW glass studies conducted over several years by PNNL, VSL, and SRNL. The number of data points available for modeling varied by property because not every property was measured on every glass. The different studies from which data were drawn for ILAW property modeling are discussed in Section 2.0. Some of these studies used statistical experimental design methods to select some or all of the test matrix glasses. Glasses in parts or all of some studies were "actively designed" using glass science knowledge and experience to achieve the desired purpose for the study or individual glasses in the study. The various samples encompass the effects of testing scale (from crucible melts of a few hundred grams to samples collected from continuous melter tests producing many thousands of kilograms of glass), post-melt treatment such as container cooling, and the use of actual radioactive waste as well as waste simulants. The datasets available for modeling LAW glass properties were assessed to remove outlying and non-representative compositions from the modeling datasets. The LAW glass compositions and their property values in the available dataset and modeling dataset for each property are presented in tables in this report and its associated appendices.

All data in the modeling dataset for a given property were used to develop models for that property. Model validation was accomplished by data-splitting. To accomplish this, the modeling dataset was split into five sets of modeling and validation subsets, using roughly 80% of the data for modeling and 20% for validation in each split of the dataset. The goodness of fit was evaluated for six different evaluation subsets of the data to determine likely model performance in different composition spaces. Based on the performance of the models that were investigated, recommended models were selected.

Sections 9.1 to 9.6 summarize the model development data and work for PCT, VHT, viscosity, EC, melter SO₃ tolerance, and K-3 corrosion of LAW glasses; respectively. For each property, the recommended model is mentioned, and any limitations of the model noted. Section 9.7 summarizes the model validity region for each of the modeled LAW glass properties. Section 9.8 summarizes the component effects on the properties. Section 9.9 lists additional constraints. Section 9.10 makes recommendations for any future property-composition modeling work for LAW glasses.

9.1 Summary of LAW Glass PCT Modeling

Data on PCT were available for 703 simulated and actual quenched LAW glasses from the six data groups discussed in Section 2.0. Normalized loss values vary from 0.08 to 17.84 g/m² for PCT_B^{NL} and 0.01 to 13.41 for PCT_{Na}^{NL} . Assessment of the ranges and distributions of the component values over the 703 LAW glasses with PCT data led to designating 11 glasses as having outlying compositions. An additional two glasses for each PCT_B^{NL} and PCT_{Na}^{NL} were identified as outliers, leaving 691 total glasses with data suitable for PCT modeling (690 for PCT_B^{NL} and 690 for PCT_{Na}^{NL}). Of the 691 glasses with PCT modeling data, only 40 exceeded the 2 g/m² constraint for PCT_B^{NL} and 33 for PCT_{Na}^{NL} .

The LAW glass composition and PCT data are listed in Appendix A, Tables A.2 and A.3, respectively. Over these 691 simulated and actual LAW glasses, the component ranges and distributions of 20 components (Al₂O₃, B₂O₃, CaO, Cl, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SO₃, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others) were sufficient to support separate model terms if needed.

Several property-composition model forms for PCT response were explored. In this study as in previous studies, it was determined that a natural logarithm transformation (e.g., $\ln[PCT_j^{NL}]$) improved modeling efforts. Therefore, models to predict $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ were explored, included FLM, RLM, PQM, partial cubic, k-nearest neighbors, support vector machine, local linear regression, Gaussian process regression, and GLMs. None of these modeling approaches were found to represent PCT response with unbiased predictions across the entire range of data. Therefore, PQM models with bias correction at the high response range were selected – bcPQM.

Although FLM model, RLM model, and PQM model were reported, only the bcPQMs were fully developed and recommended with the form

$$\ln(PCT_B^{NL}) \text{ or } \ln(PCT_{Na}^{NL}) = \begin{cases} \mathbf{g}^{\mathrm{T}} \boldsymbol{\beta} & \text{if } \mathbf{g}^{\mathrm{T}} \boldsymbol{\beta} \leq C \\ \mathbf{g}^{\mathrm{T}} \boldsymbol{\beta} + (\mathbf{g}^{\mathrm{T}} \boldsymbol{\beta} - C)S & \text{if } \mathbf{g}^{\mathrm{T}} \boldsymbol{\beta} > C \end{cases} + e$$
(9.1)

As described in Sections 3.3.5 and 3.4.5. The recommended models include the following:

- A 22-term bcPQM model for PCT_B^{NL} (Table 3.7) with 15 first-order terms (combining Cl, Cr₂O₃, P₂O₅, and SO₃ into Others), four nonlinear terms (Al₂O₃×Al₂O₃, Al₂O₃×Li₂O, CaO×CaO, and CaO×V₂O₅), a bias correction slope (*s*) and cutoff (*c*). Overall R² and RMSE values of 0.7762 and 0.3954 were obtained.
- A 22-term bcPQM model for *PCT*^{*NL*}_{*Na*} (Table 3.11) with 15 first-order terms (combining Cl, Cr₂O₃, P₂O₅, and SO₃ into Others), four nonlinear terms (Al₂O₃×Al₂O₃, Al₂O₃×Na₂O, CaO×CaO, and CaO×V₂O₅), a bias correction slope (*s*) and cutoff (*c*). An overall R² and RMSE of 0.7556 and 0.3574 were obtained.

Results for the recommended 21-term models are given in Table 3.7 and Table 3.11 and discussed in Sections 3.3.5 and 3.4.5 for boron and sodium, respectively. Methods for making PCT predictions and quantifying the uncertainties in the predictions are discussed and illustrated in Section 3.6.

After bias correction, the selected models do not show significant bias across the full range of PCT responses, although there appears to be higher uncertainty at the PCT response values above the 2 g/m^2 limit (~ 0.693 ln[g/m²]) due to a lack of data. There is a statistically significant LOF in the PCT models as obtained in previous modeling efforts for this property (e.g., Piepel et al. 2007). However, the models are practically able to predict PCT responses.

9.2 Summary of LAW VHT Modeling

Data on VHT were available for 699 simulated and actual quenched LAW glasses from the six data groups discussed in Section 2.0. Numerical r_a^{VHT} values vary from 0.1 to 1529.1 g/m²/d. However, in this report it is the binary response of pass corresponding to $r_a^{VHT} < 50$ g/m²/d and fail corresponding to $r_a^{VHT} \ge 50$ g/m²/d that is modeled. This is due to the difficulty in predicting the r_a^{VHT} as functions of composition for the broader range of data needed for this phase of modeling. Of the 699 glasses with measured VHT responses, only 162 exceeded the 50 g/m²/d constraint.

Assessment of the ranges and distributions of the component values over the 699 LAW glasses with VHT data led to designating 13 glasses as having outlying compositions. The remaining 686 glass composition/VHT pass/fail data were used in modeling efforts. The LAW glass composition and VHT data are listed in Appendix A, Tables A.2 and A.3, respectively. Over these 686 LAW glasses, the component ranges and distributions of 20 components (Al₂O₃, B₂O₃, CaO, Cl, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SO₃, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others) were sufficient to support separate model terms if needed.

Several property-composition model forms for VHT response were explored. In this study as in previous studies, it was determined that a natural logarithm transformation (i.e., $\ln(r_a^{VHT})$) improved modeling efforts. Therefore, models to predict $\ln(r_a^{VHT})$ were explored, included FLM, RLM, PQM, partial cubic, k-nearest neighbors, support vector machine, local linear regression, Gaussian process regression, and artificial neural network. None of these modeling approaches were found to predict $\ln(r_a^{VHT})$ of validation sets near the limit (3.912 $\ln[g/m^2/d]$) with low uncertainty and insignificant bias. Therefore, a logistic regression approach was adopted to predict the binary pass/fail data; pass being data with $r_a^{VHT} < 50 \text{ g/m}^2/\text{d}$ (represented by 0) and fail being data with $r_a^{VHT} \ge 50 \text{ g/m}^2/\text{d}$ (represented by 1).

A logit function was used to link the binary response to the mixture portion of the data, which was represented by either FLM or PQM model forms. As VHT P/F is a binary response, the measures of goodness of fit differ from the other models. FPR, FNR, and accuracy were optimized by changing the mixture model parameters and classification threshold.

Two models were ultimately selected for reporting:

- A 20-term FLM model (Table 4.4) with an overall accuracy of 86.30%, a FPR of 13.26%, and a FNR of 15.19%.
- A 19-term PQM model (Table 4.6) formed by combining Cl, Cr_2O_3 , Fe_2O_3 , and SO_3 into the Others component and adding three non-linear terms (TiO₂ × ZrO₂, (Li₂O)², and Li₂O × Na₂O). This PQM model has an overall accuracy of 79.74%, a FPR of 24.24%, and a FNR of 6.96%.

Based on model fitting and validation results, the 19-term PQM model with three non-linear terms is the recommended model for LAW glass VHT P/F classification. This model has 16 linear composition terms of the form g_i (Al₂O₃, B₂O₃, CaO, F, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others); three quadratic terms of the form g_ig_j or g_i^2 (TiO₂ × ZrO₂, (Li₂O)², and Li₂O × Na₂O), a logit linking function, and a classification threshold of 0.19. Results for the recommended 19-term VHT P/F model are given in Table 4.6 and discussed in Section 4.3.2. Methods for making VHT P/F predictions and quantifying the uncertainties in the predictions are discussed and illustrated in Section 4.4.

The recommended VHT classification model yields predictions of pass/fail VHT that achieve the FNR $\leq 10\%$ while simultaneously maximizing overall accuracy. The selected model does not show significant LOF and has generally uniform performance across evaluation and validation datasets, so that VHT classifications can be expected to be within the uncertainty of what would be obtained by batching and melting glasses and measuring the VHT response.

9.3 Summary of LAW Viscosity Modeling

Data on viscosity were available for 549 LAW glass melts from the six data groups discussed in Section 2.0. Viscosity was measured at between three and eight temperatures for each LAW glass melt, generally 900 °C and 1250 °C. A VFT model¹ was generally used to interpolate the viscosity value at 1150 °C. The η_{1150} values vary from 4.70 to 353 poise.

Assessment of the ranges and distributions of the component values over the 549 LAW glasses with viscosity data led to designating 13 glasses as having outlying compositions. One glass was excluded from modeling since it was a CCC specimen of a previous glass, and one glass was identified as an outlier during the model development work. The remaining 534 glass composition/ η_{1150} data were used in modeling efforts. The LAW glass composition and viscosity data are listed in Appendix A, Tables A.2 and A.3, respectively. Over these 534 LAW glasses, the component ranges and distributions of 20 components (Al₂O₃, B₂O₃, CaO, Cl, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SO₃, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others) were sufficient to support separate model terms if needed.

Several property-composition model forms for η_{1150} were explored. In this study as in previous studies, it was determined that a natural logarithm transformation (i.e., $\ln(\eta_{1150})$) improved modeling efforts. Three models were ultimately selected for reporting:

- A 20-term FLM model (Table 5.4) with R² and RMSE values of 0.9429 and 0.1375
- An 18-term RLM model (Table 5.6) formed by combining Cl and SO_3 into the "Others" component, with R^2 and RMSE values of 0.9410 and 0.1395
- A 21-term PQM model (Table 5.7) formed by adding three non-linear terms to the RLM model $(Al_2O_3 \times Na_2O, (Li_2O)^2, and Li_2O \times Na_2O)$, with R² and RMSE values of 0.9487 and 0.1304

Based on model fitting and validation results, the 21-term PQM model with three non-linear terms is the recommended model for viscosity of LAW glasses. This model has 18 linear composition terms of the form g_i (Al₂O₃, B₂O₃, CaO, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SiO₂, SnO₂, TiO₂, ZnO, ZrO₂, and Others) and three quadratic terms of the form g_ig_j or g_i^2 (Al₂O₃ × Na₂O, (Li₂O)², and Li₂O × Na₂O). Results for the recommended 21-term ln(η_{1150}) model are given in Table 5.7 and discussed in Section

¹ The Vogel-Tamman-Fulcher model describes temperature effect on viscosity: $\ln[\eta_T] = A + \frac{B}{T - T_0}$, where *A*, *B*, and T_0 are fit parameters and *T* is temperature in °C.

5.3.3. Methods for making viscosity predictions and quantifying the uncertainties in the predictions are discussed and illustrated in Section 5.4.

The recommended viscosity model provides unbiased predictions over the full range of measured viscosity values in the modeling dataset, with relatively tight scatter for most data points about the fitted model, and moderate scatter for some data points (see Figure 5.14). The recommended viscosity model does not have a statistically significant LOF, so that viscosity predictions can be expected to be within the uncertainty of what would be obtained by batching and melting glasses and measuring the viscosity. The magnitudes of uncertainties in $ln(\eta_{1150})$ model predictions should be small enough that they will not unduly restrict the formulation and processing of LAW glasses in the LAW WTP Facility. However, separate work to confirm this is planned, as discussed in Section9.10.

9.4 Summary of LAW Electrical Conductivity Modeling

EC data were available for 542 LAW glass melts from the six data groups discussed in Section 2.0. EC was measured at between three and eight temperatures for each LAW glass melt, generally 900 °C and 1250 °C. A VFT model¹ was generally used to interpolate the EC value at 1150 °C. The ε_{1150} values vary from 0.0770 to 0.789 S/cm.

Assessment of the ranges and distributions of the component values over the 542 LAW glasses with EC data led to designating 13 glasses as having outlying compositions. One glass was excluded from modeling since it was a CCC specimen of a previous glass and two glasses was identified as an outlier during the model development work. The remaining 526 glass composition/ ϵ_{1150} data were used in modeling efforts. The LAW glass composition and EC data are listed in Appendix A, Tables A.2 and A.3, respectively. Over these 526 LAW glasses, the component ranges and distributions of 20 components (Al₂O₃, B₂O₃, CaO, Cl, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SO₃, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others) were sufficient to support separate model terms if needed.

Several property-composition model forms for ε_{1150} were explored. In this study as in previous studies, it was determined that a natural logarithm transformation (i.e., $\ln(\varepsilon_{1150})$) improved modeling efforts. Three models were ultimately selected for reporting:

- A 20-term FLM model (Table 6.3) with R² and RMSE values of 0.8359 and 0.1417
- An 11-term RLM model (Table 6.4) formed with individual terms for Al₂O₃, B₂O₃, CaO, K₂O, Li₂O, MgO, Na₂O, SiO₂, SnO₂, and V₂O₅, with all remaining components combined into the Others component, with R² and RMSE values of 0.8267 and 0.1444
- A 13-term PQM model (Table 6.5) formed by adding two non-linear terms to the RLM model $((Na_2O)^2 \text{ and } Li_2O \times Na_2O)$, with R² and RMSE values of 0.8563 and 0.1318

Based on model fitting and validation results, the 13-term PQM model with two non-linear terms is the recommended model for viscosity of LAW glasses. This model has 11 linear composition terms of the form g_i (Al₂O₃, B₂O₃, CaO, K₂O, Li₂O, MgO, Na₂O, SiO₂, SnO₂, V₂O₅, and Others) and two quadratic terms of the form g_ig_j or g_i^2 ((Na₂O)² and Li₂O × Na₂O). Results for the recommended 13-term ln(ε_{1150}) model are given in Table 6.5 and discussed in Section 6.3.3. Methods for making EC predictions and quantifying the uncertainties in the predictions are discussed and illustrated in Section 6.4.

¹ The Vogel-Tamman-Fulcher model describes temperature effect on EC: $\ln(\varepsilon_T) = A + \frac{B}{T - T_0}$, where *A*, *B*, and *T*₀ are fit parameters and *T* is temperature in °C.

The recommended EC model provides unbiased predictions over the full range of measured EC values in the modeling dataset, with relatively moderate scatter for most data points about the fitted model, and larger scatter for some data points (see Figure 6.14). The recommended EC model does not have a statistically significant LOF. The magnitudes of uncertainties in $\ln(\varepsilon_{1150})$ model predictions should be small enough that they will not unduly restrict the formulation and processing of LAW glasses in the LAW WTP Facility. However, separate work to confirm this is planned, as discussed in Section9.10.

9.5 Summary of LAW Melter SO₃ Tolerance Modeling

Data related to melter SO_3 tolerance and SO_3 solubility in glass melts was measured using variants of five primary techniques: batch saturation (BS), saturation re-melting (SR), bubbling (Bub), and three-time saturation (3TS), and melter tolerance (MT) (see Section 7.1.1). The first four, based on crucible test methods, were used for modeling in this study. At least one of these techniques was performed on 601 LAW glass compositions from the six data groups discussed in Section 2.0. Table 9.1 summarizes these data.

The melter SO₃ tolerance and solubility results were found to depend on measurement method. A nearly constant offset was identified between date from different groups of methods such that 3TS > Bub = MT > BS = SR. Since, the property of interest is MT, it was decided to model a separate offset for 3TS and BS+SR data with no offset for MT or Bub data. For several glasses, multiple different measurements were performed. It was decided to include each measurement as a separate model entry with the appropriate offset, if applicable, resulting in 660 individual measurements. The LAW glass composition and melter SO₃ tolerance and solubility data are listed in Appendix A, Tables A.2 and A.3, respectively.

	•			•
	# of	Min	Max	Approximate
Method	Data	Value	Value	Offset ^(a)
BS	131	0.425 wt%	1.83 wt%	-0.2 wt%
SR	360	0.15	1.66	-0.2
Bub	57	0.51	1.7	0
MT	13	0.5	1.5	0
3TS	99	0.602	2.603	0.4
Total glasses Total data	601 660	0.15	2.603	
		lal rafar to an	aifia modal f	or provise
• • •	is on moc	lel, refer to spe	cific model i	of precise
value				

Table 9.1	Summary	of Melter	SO ₃ Tolerand	e and Solubi	lity Data
1 abic 7.1.	Summary	of whether	503 Tolerane	c and Solubi	Inty Data

Assessment of the ranges and distributions of the component values over the 601 LAW glasses with melter SO₃ tolerance or solubility data led to designating 22 glasses as having outlying compositions. Three glasses were identified as outliers during the model development work (Table 7.1). The remaining 576 glass were used in melter SO₃ tolerance modeling efforts. Each of the outlying glasses were measured by only one technique, resulting in 635 melter SO₃ tolerance and solubility data points for modeling (112 BS, 356 SR, 56 Bub, 13 MT, and 98 3TS). Over these 576 LAW glasses, the component ranges and distributions of 19 re-normalized components (Al₂O₃, B₂O₃, CaO, Cl, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others) were sufficient to support separate model terms if needed.

Several property-composition model forms for melter SO_3 tolerance were explored. In each case, the glass composition was adjusted by removing measured SO_3 and renormalizing the remaining components.

After evaluating offsets for BS+SR and 3TS data compared to Bub+MT, it was determined that constant offset best reflected the trends in data. Setting the offset for MT+Bub data to zero allows the direct prediction of the property of interest in plant operation, namely MT. Three models were ultimately selected for reporting:

- A 19-term FLM model (Table 7.3) with R² and RMSE values of 0.8281 and 0.1769
- A 10-term RLM model (Table 7.4) formed with individual terms for Al₂O₃, B₂O₃, CaO, Cl, Li₂O, Na₂O, P₂O₅, SiO₂, and V₂O₅ with all remaining components combined into the Others component, with R² and RMSE values of 0.8073 and 0.1860
- An 11-term PQM model (Table 7.5) formed by adding one cross-product term to the RLM model ($Li_2O \times Na_2O$), with R² and RMSE values of 0.8303 and 0.1747

Based on model fitting and validation results, the 11-term PQM model with one non-linear term is the recommended model for $w_{SO_3}^{MT}$ of LAW glasses. This model has 10 linear composition terms of the form of normalized component concentrations, x_i (Al₂O₃, B₂O₃, CaO, Cl, Li₂O, Na₂O, P₂O₅, SiO₂, V₂O₅, and Others) and one cross-product terms of the form $x_i x_i$ (Li₂O × Na₂O). Results for the recommended 11-term $w_{SO_3}^{MT}$ model are given in Table 7.5 and discussed in Section 7.3.3. Methods for making melter SO₃ tolerance predictions and quantifying the uncertainties in the predictions are discussed and illustrated in Section 7.4.

The recommended $w_{SO_3}^{MT}$ model provides unbiased predictions over most of the measured $w_{SO_3}^{MT}$ range with relatively high scatter for most data points about the fitted model (see Figure 7.14). There is a slight under-prediction of $w_{SO_3}^{MT}$ above a predicted value of roughly 1.5 wt%, which will yield conservative results. The magnitudes of uncertainties in $w_{SO_3}^{MT}$ model predictions are likely to be high enough that they will restrict the formulation and processing of LAW glasses in the LAW WTP Facility, suggesting future testing and modeling efforts may be beneficial. Separate work to confirm this is planned, as discussed in Section9.10.

9.6 Summary of LAW K-3 Refractory Corrosion Modeling

Data related to K-3 refractory corrosion in glass melts were measured at 1208 °C for 6 days (k_{1208}). Data on k_{1208} were available for 344 LAW glass melts from the six data groups discussed in Section 2. The k_{1208} values ranged from 0.001 to 0.145 inch generally distributed in a log-normal pattern.

Assessment of the ranges and distributions of the component values over the 344 LAW glasses with k_{1208} data led to designating five glasses as having outlying compositions. Two glasses were excluded from modeling since they were tested on a CCC specimen of a previous glass and four glasses were identified as having outlying k_{1208} values (< 0.003 inch) and were also found to be outliers during model development work (Table 8.1). The remaining 333 glass composition/ k_{1208} data were used in modeling efforts. The LAW glass composition and k_{1208} data are listed in Appendix A, Tables A.4 and A.5, respectively. Over these 333 LAW glasses, the component ranges and distributions of 20 components (Al₂O₃, B₂O₃, CaO, Cl, Cr₂O₃, F, Fe₂O₃, K₂O, Li₂O, MgO, Na₂O, P₂O₅, SO₃, SiO₂, SnO₂, TiO₂, V₂O₅, ZnO, ZrO₂, and Others) were sufficient to support separate model terms if needed.

Several property-composition model forms for k_{1208} data were explored. In this study as in previous studies, it was determined that a natural logarithm transformation (i.e., $\ln(k_{1208})$) improved modeling efforts. Three models were ultimately selected for reporting:

- A 20-term FLM model (Table 8.4) with R² and RMSE values of 0.8162 and 0.3305
- An 11-term RLM model (Table 8.6) formed with individual terms for Al₂O₃, B₂O₃, CaO, Cr₂O₃, K₂O, Li₂O, Na₂O, SiO₂, V₂O₅, and ZrO₂ with all remaining components combined into the Others component, with R² and RMSE values of 0.8001 and 0.3397
- A 13-term PQM model (Table 8.7) formed by adding two non-linear terms to the RLM model $((Li_2O)^2 \text{ and } Na_2O \times SiO_2)$, with R² and RMSE values of 0.8245 and 0.3193

Based on model fitting and validation results, the 13-term PQM model with two non-linear terms is the recommended model for k_{1208} of LAW glasses. This model has 11 linear composition terms of the form g_i (Al₂O₃, B₂O₃, CaO, Cr₂O₃, K₂O, Li₂O, Na₂O, SiO₂, V₂O₅, ZrO₂, and Others) and two quadratic terms of the form g_ig_j or g_i^2 ((Li₂O)² and Na₂O × SiO₂). Results for the recommended 13-term ln[k_{1208}] model are given in Table 8.7 and discussed in Section 8.3.3. Methods for making k_{1208} predictions and quantifying the uncertainties in the predictions are discussed and illustrated in Section 8.4.

The recommended k_{1208} model provides unbiased predictions over the full range of measured k_{1208} values in the modeling dataset, with relatively moderate scatter for most data points about the fitted model, and larger scatter for some data points (see Figure 8.12). It is recommended that the k_{1208} model be used as an indicator only and not to limit the composition of LAW glasses to be produced in the WTP LAW Facility for the following reasons:

- The recommended k_{1208} model has a statistically significant LOF.
- The magnitudes of uncertainties in $\ln(k_{1208})$ model predictions are large enough that they will restrict the formulation and processing of LAW glasses in the LAW Facility.
- The model validity ranges for k_{1208} are sufficiently narrower than for other models in this report, which will limit the flexibility to process the full range of LAW glasses.

Future testing and modeling efforts are recommended to improve upon the k_{1208} model. Separate work to confirm this is planned, as discussed in Section 9.10.

9.7 Summary of Model Validity Regions for Recommended LAW Glass Property Models

The LAW glass property-composition models recommended in this report were obtained by estimating coefficients of models using least squares regression methods. Models developed in this way should only be applied to LAW glass compositions inside the composition region over which the models were developed and demonstrated to yield unbiased predictions. Such regions are referred to as *model validity regions*, which are typically defined using single- and multiple-component constraints on glass components.

The single-component concentration ranges for data used to develop each of the recommended models are summarized in Table 9.2. The single-component model validity constraints vary from model to model as all properties were not measured on all glasses. For practical application of these models in glass formulation, a single set of model validity constraints must be applied. The ranges were compared and overall model validity constraints across the models for application in glass design were determined. Relatively large differences between the overall component concentration ranges and those for individual properties are marked in bold and either red or green font to represent if the component range for the property is narrower or broader than the overall range for that component, respectively. Values marked with gray font are for components not in the recommended model. With the previously described

exception of the K-3 corrosion model, those values with narrower ranges than the overall range are few. With only a few exceptions, the overall range is not significantly broader than any individual model range for components found to be significant for the recommended model (e.g., term in the recommended model). Those exceptions include the following:

- TiO₂ for PCT responses with a maximum value of 4 wt% compared to 5.01 wt% in the overall validity range. This is a reasonable extrapolation with relatively small and linear effect of TiO₂ on $\ln(PCT_B^{NL})$ and $\ln(PCT_{Na}^{NL})$ responses and it's a relatively small extrapolation (1.01 wt%).
- P₂O₅ for VHT responses with a maximum value of 3.41 wt% compared to 4.03 wt% in the overall validity range. This is a reasonable extrapolation as P₂O₅ has a small linear effect on VHT P/F and it's a relatively small extrapolation (0.62 wt%).
- F for viscosity with a maximum value of 0.72 wt% compared to 1.3 wt% in the overall validity range. This is a reasonable extrapolation considering the general linearity and goodness of fit for viscosity and relatively small extrapolation (0.58 wt%).
- ZnO for viscosity with a minimum value of 1 wt% compared to 0 wt% for the overall validity range. The linearity and goodness of fit for viscosity model, the relatively low impact of ZnO on melt viscosity, and the relatively small extrapolation (1 wt%) suggest this extrapolation can be safely made.

For selected models there were also strong pairwise correlations between components with some portions of two- and higher-component space being sparsely covered with data. For example, there is a significant negative correlation between Li_2O and Na_2O concentrations in glasses for each of the models. This is understandable as the primary LAW waste component is Na_2O which makes the alkali needed to successfully process glass while Li_2O is added in the cases that loading limitations (primarily due to high SO_3 in the waste) reduce the Na_2O concentration.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Table 9.2. Data Component Concentration Ranges (mass fraction) for LAW Glasses Used in Models

Model	PCT	-Na	PC	Т-В	V	HT	Visc	osity	E	С	S	O ₃	k_1	1208	Ove	erall
mass fraction	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Al ₂ O ₃	0.0350	0.1475	0.0350	0.1475	0.0350	0.1475	0.0350	0.1475	0.0350	0.1475	0.0350	0.1475	0.0350	0.1381 ^(b)	0.0350	0.1475
B_2O_3	0.0500 ^(a)	0.1515	0.0500	0.1515	0.0600	0.1383	0.0600	0.1383	0.0600	0.1383	0.0397	0.1597	0.0420	0.1395	0.0600	0.1383
CaO	0.0000	0.1281	0.0000	0.1281	0.0000	0.1281	0.0000	0.1278	0.0000	0.1278	0.0000	0.1285	0.0000	0.1221	0.0000	0.1278
Cl	$0.0000^{(c)}$	0.0117	0.0000	0.0117	0.0000	0.0117	0.0000	0.0117	0.0000	0.0117	0.0000	0.0117	0.0000	0.0120	0.0000	0.0117
Cr_2O_3	0.0000	0.0063	0.0000	0.0063	0.0000	0.0063	0.0000	0.0063	0.0000	0.0063	0.0000	0.0061	0.0000	0.0060	0.0000	0.0063
F	0.0000	0.0130	0.0000	0.0130	0.0000	0.0130	0.0000	0.0072	0.0000	0.0072	0.0000	0.0304	0.0000	0.0049	0.0000	0.0130
Fe_2O_3	0.0000	0.1198	0.0000	0.1198	0.0000	0.0998	0.0000	0.1198	0.0000	0.1198	0.0000	0.1347	0.0000	0.0950	0.0000	0.1198
K ₂ O	0.0000	0.0809	0.0000	0.0809	0.0000	0.0809	0.0000	0.0588	0.0000	0.0591	0.0000	0.0591	0.0000	0.0591	0.0000	0.0590
Li ₂ O	0.0000	0.0633	0.0000	0.0633	0.0000	0.0582	0.0000	0.0633	0.0000	0.0633	0.0000	0.0584	0.0000	0.0591	0.0000	0.0584
MgO	0.0000	0.0502	0.0000	0.0502	0.0000	0.0502	0.0000	0.0502	0.0000	0.0502	0.0000	0.0502	0.0000	0.0490	0.0000	0.0502
Na ₂ O	0.0247	0.2657	0.0247	0.2657	0.0247	0.2657	0.0247	0.2657	0.0247	0.2657	0.0245	0.2657	0.0250	0.2597	0.0247	0.2657
P_2O_5	0.0000	0.0475	0.0000	0.0475	0.0000	0.0341	0.0000	0.0403	0.0000	0.0403	0.0000	0.0475	0.0000	0.0340	0.0000	0.0403
SO_3	0.0000	0.0160	0.0000	0.0160	0.0000	0.0163	0.0004	0.0163	0.0004	0.0163	NA ^(d)	NA	0.0001	0.0250	0.0000	0.0163
SiO_2	0.3329	0.5592	0.3329	0.5592	0.3329	0.5226	0.3352	0.5226	0.3352	0.5226	0.3000	0.5226	0.3440	0.5016	0.3352	0.5226
SnO_2	0.0000	0.0503	0.0000	0.0503	0.0000	0.0503	0.0000	0.0503	0.0000	0.0503	0.0000	0.0503	0.0000	0.0500	0.0000	0.0503
TiO_2	0.0000	0.0400	0.0000	0.0400	0.0000	0.0501	0.0000	0.0501	0.0000	0.0501	0.0000	0.0501	0.0000	0.0500	0.0000	0.0501
V_2O_5	0.0000	0.0571	0.0000	0.0571	0.0000	0.0409	0.0000	0.0409	0.0000	0.0409	0.0000	0.0437	0.0000	0.0400	0.0000	0.0409
ZnO	0.0000	0.0582	0.0000	0.0582	0.0100	0.0582	0.0100	0.0582	0.0100	0.0582	0.0000	0.0578	0.0000	0.0540	0.0000	0.0582
ZrO_2	0.0000	0.0675	0.0000	0.0675	0.0000	0.0675	0.0000	0.0675	0.0000	0.0675	0.0000	0.0900	0.0000	0.0751	0.0000	0.0675
Others Rec ^(e)	0.0015	0.0580	0.0015	0.0580	0.0016	0.1085	0.0010	0.0216	0.0152	0.2036	0.0653	0.2984	0.0462	0.1901	NA	NA
Others20 ^(f)	0.0000	0.0054	0.0000	0.0054	0.0000	0.0044	0.0000	0.0033	0.0000	0.0033	0.0000	0.0027	0.0000	0.0160	NA	NA
Property	-2.3026	2 5958	-2.5257	2 8814	0.0000	1 0000	1 5476	5.5595	-2.0402	-0.2370	0 1500	2 6030	-5 8091	-1.9310	NA	NA
(transformed)	2.5020	2.3750	2.0201	2.0011	0.0000	1.0000	1.5 170	0.0070	2.0102	0.2570	0.1200	2.0050	2.0071	1.7510	1,11	1,11
property (untransformed)	0.1	13.407	0.08	17.84	0.1	1529.1	4.7	259.69	0.13	0.789	0.15	2.603	0.003	0.145	NA	NA

(a) Green entries represent higher values than overall mv limits.

(b) Red entries represent significantly lower values than overall mv limits.

(c) Gray entries represent components not in the recommended models.

(d) NA represents non-applicable entries.

(e) Others Rec is the concentration of Others in the final recommended models.

(f) Others20 represents the Others in the full 20-component modeling dataset.

To address this and other pairwise (i.e., 2-D) correlations, the combined data that was used in at least one of the models was evaluated for correlations. Three pairs were found to show significant correlations (with absolute values near or greater than 0.6) – Li₂O:Na₂O (-0.8572), Al₂O₃:SiO₂ (-0.5914), and Na₂O:SiO₂ (-0.6288). Figure 9.1 shows the data correlation between Li₂O and NaK (= g_{Na_2O} + 0.66 g_{K_2O}). A similar but broader correlation exists between Li₂O and Na₂O, but since most glass formulations are designed to an optimum value of NaK (Muller et al. 2017b), the correlation is tighter and more useful as a constraint. Roughly 98% of the model database falls within the range shown by the two slanted lines on the plot. These lines have a parallel slope of precisely -1/2.07 which is equivalent to $-MW_{Na_2O}/MW_{Li_2O}$. These lines therefore translate to a limit in the range of NAlk (= g_{Na_2O} + 0.66 g_{K_2O} + 2.07 g_{Li_2O}) of:

$$0.13500 \le NAlk \le 0.27018 \tag{9.1}$$

Figure 9.2 shows the data correlation between Al₂O₃ and SiO₂. Most of the glasses (roughly 98%) in the model database falls below the red line on the plot. This line has a slope of precisely -1/1.697 which is equivalent to $-MW_{Al_2O_3}/MW_{SiO_2}$. The line therefore translates to a limit of:

$$g_{SiO_2} + 1.697 g_{Al_2O_3} \le 0.6160 \tag{9.2}$$

Figure 9.3 shows the data correlation between Na_2O and SiO_2 . In this figure the vertical lines represent the model validity range for SiO_2 given in Table 9.2. Although there is a clear cluster of glass from the upper left to lower right of the figure, the full two-dimensional composition region is reasonably covered. So, no further constraints are recommended.

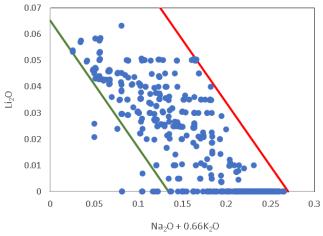


Figure 9.1. Concentrations of NaK (= $g_{Na_20} + 0.66g_{K_20}$) and Li₂O of modeling database in mass fractions.

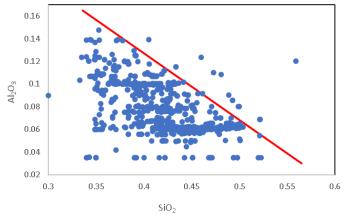


Figure 9.2. Concentrations of SiO₂ and Al₂O₃ of modeling database in mass fractions.

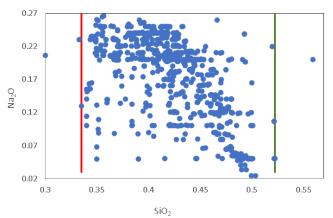


Figure 9.3. Concentrations of Na₂O and SiO₂ of modeling database in mass fractions.

Just as pairwise (2-D) correlations were identified in the modeling dataset, there are likely to be similar higher dimensional correlations in the data. This is partially due to the inherent constraint that test glasses must be fabricated in a certain temperature range and within a relatively narrow viscosity range, and they target immobilizing Hanford LAW, which is inherently compositionally correlated.

High correlation among variables used as predictors, or multicollinearity, has the effect of inflating the variances of parameter estimates of the predictors (see Myers and Montgomery, 1995, especially Appendix 2). In the context of this work, the inflated variances produced by multicollinearity can lead to poor estimates of model parameters, making interpretation of component effects difficult.

Assessing the level of multicollinearity in a dataset can be done in a variety of ways, but they all essentially determine if two or more predictors are involved in a linear or near-linear constraint such as the one shown in Figure 9.1. Naturally, this type of constraint is always present in the glass composition portion of the models in this document because the sum of the mass fractions over the glass components is always equal to unity. In addition, as shown in the analysis leading to the results in Figures 9.1 to 9.3, other multicomponent constraints needed to make usable glass for Hanford LAW are present in the data.

Multicollinearity can be diminished by collecting data in a way to systematically 'break' linear relationships that are present (one such way is the use of statistically designed glass formulations, as was

done for a number of the glasses in this work), by appropriately rescaling the predictors (although this may be of limited benefit in our case since rescaling will not eliminate some of the fundamental constraints present), by estimating model parameters using a method that is less sensitive to multicollinearity than least squares (like ridge regression), or by performing model selection in a way that deletes certain predictors from the model. Although multicollinearity can have a detrimental effect on the precision of parameter estimates, the models can produce accurate predictions, particularly in the space where the multicollinearity is in effect. This is because, while individual parameters may be poorly estimated, the data place constraints on the combination of model parameters, $\sum_i b_i g_i$, and this combination may be estimated very well (Transtrum et al. 2015). This means that predictions on new or existing glass compositions that remain in the space defined by the data are likely to have similar performance as those used during validation.

One important characteristic of the models developed in this work. which may reduce the impact of multicollinearity, is that model development has been guided by glass science and by previous efforts to statistically design new glass formulations. Knowledge of the effects that certain components have on the responses of interest was employed to select and discriminate between competing models, while the use of statistically designed glasses lessens the effect of multicollinearity as much as possible.

In conclusion, it is recommended that the 1-D model validity constraints given in Table 9.2 and the 2-D model validity constraints given in Equations (9.1) and (9.2) be used to constrain the application of the glass property-composition models recommended in this report.

9.8 Component Effects on Properties

Component effects (dP/dg_i) , where *P* is transformed property) on the properties modeled in this report are calculated at the REFMIX composition and listed in Table 9.3. A semi-graphical representation of these effects is given in Table 9.4 where arrows represent the relative effects of components on a given property. In this latter representation, there is subjectivity in determining which effects are to be considered significant as statistically all terms in the models (with the occasional exception of "Others") are significant. Therefore, the graphical representation given in Table 9.4 should be taken as a rough indication only.

eemp					-		
	$\frac{\ln(PCT_B^{NL},}{g/m^2)}$	$ln(PCT_{Na}^{NL}, g/m^2)$	VHT P/F x _b	$ln(\varepsilon_{1150}, S/cm)$	$\ln(\eta_{1150}, P)$	Melter SO ₃ Tolerance, wt%	$ln(k_{1208}, inch)$
Al ₂ O ₃	-13.85	-12.47	-26.94	-2.79	11.79	-3.52	-25.27
B ₂ O ₃	7.36	3.52	-2.07	-2.01	-10.94	2.62	-2.35
CaO	-2.40	0.34	-51.66	-2.51	-9.57	4.38	9.79
Cl	n/a	n/a	n/a	n/a	n/a	-18.57	n/a
Cr_2O_3	n/a	n/a	n/a	n/a	-10.89	n/a	-91.57
F	n/a	n/a	56.14	n/a	-17.53	n/a	n/a
Fe_2O_3	1.66	-0.19	n/a	n/a	-2.18	n/a	n/a
K ₂ O	7.53	7.69	107.40	0.41	-6.49	n/a	14.97
Li ₂ O	13.30	13.52	218.16	13.32	-37.34	5.70	62.26
MgO	14.80	8.88	39.68	-2.66	-5.05	n/a	n/a
Na ₂ O	11.23	11.35	123.30	9.27	-13.67	1.52	34.62
P_2O_5	n/a	n/a	-34.14	n/a	6.86	1.53	n/a
SO ₃	n/a	n/a	n/a	n/a	n/a	n/a	n/a
SiO ₂	-6.61	-5.64	-44.76	-3.50	13.45	-0.79	-14.87
SnO ₂	-7.01	-5.53	-51.31	-3.51	3.26	n/a	n/a
TiO ₂	-8.09	-3.62	-119.09	n/a	-4.75	n/a	n/a
V ₂ O ₅	2.53	2.96	29.41	-0.92	-5.55	5.61	-17.29
ZnO	-1.47	-1.32	-41.74	n/a	-5.54	n/a	n/a
ZrO_2	1.16	-0.51	-110.26	n/a	5.52	n/a	-10.94
Others	0.69	0.66	-13.11	-0.62	6.48	-2.32	-1.18

Table 9.3. Component effect "slopes" for each of the recommended models taken at the REFMIX composition

Table 9.4. General Direction of Component Effects on Properties^(a) (For Information Only)

	PCT	VHT	E1150	η_{1150}	SO ₃	k ₁₂₀₈	
Al ₂ O ₃	$\downarrow \leftrightarrow$	\leftrightarrow	\leftrightarrow	↑	\downarrow	\downarrow	
B_2O_3	\leftrightarrow	\leftrightarrow	\leftrightarrow	\downarrow	↑	\leftrightarrow	
CaO	\leftrightarrow	\rightarrow	\leftrightarrow	\downarrow		1	
Cl	n/a	n/a	n/a	n/a	\downarrow	n/a	
Cr_2O_3	n/a	n/a	n/a	\downarrow	n/a	\downarrow	
F	n/a	↑	n/a	\downarrow	n/a	n/a	
Fe ₂ O ₃	\leftrightarrow	n/a	n/a	\leftrightarrow	n/a	n/a	
K ₂ O	1	↑	\leftrightarrow	\downarrow	n/a	↑	
Li ₂ O	1	↑	↑	\downarrow	↑	↑ (
MgO	Ť	\leftrightarrow	\leftrightarrow	\leftrightarrow	n/a	n/a	
Na ₂ O	Ť	↑	Ť	\downarrow	↑	↑ (
P_2O_5	n/a	\leftrightarrow	n/a	↑	↑	n/a	
SO_3	n/a	n/a	n/a	n/a	n/a	n/a	
SiO ₂	\downarrow	\downarrow	\leftrightarrow	↑	\downarrow	\downarrow	
SnO_2	\downarrow	\downarrow	\leftrightarrow	\leftrightarrow	n/a	n/a	
TiO ₂	\downarrow	\downarrow	n/a	\leftrightarrow	n/a	n/a	
V_2O_5	$\leftrightarrow \uparrow$	\leftrightarrow	\leftrightarrow	\leftrightarrow	↑	\downarrow	
ZnO	\leftrightarrow	\leftrightarrow	n/a	\leftrightarrow	n/a	n/a	
ZrO ₂	\leftrightarrow	\rightarrow	n/a	\leftrightarrow	n/a	\downarrow	
Others	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\downarrow	\leftrightarrow	
(a) \uparrow - component significantly increases property value, \downarrow - component significantly decreases property value, \leftrightarrow component has a relatively small effect on property, n/a – component not included in model, $\downarrow \leftrightarrow$ - Al ₂ O ₃ significantly decreases PCT							
response when a higher concentr		concentratio	ons and has	negligible	effects who	en added at	

9.9 Additional Constraints

Not all properties of interest to LAW processing and product acceptance were fitted as functions of composition in the sections above. For example, glass property-composition models were generated to predict PCT responses (Section 3.0) and VHT responses (Section 4.0) of quenched glasses and not for CCC glasses. Additional constraints were developed, as discussed in Section 9.9.1, to ensure glasses will not have significantly poorer performance after CCC heat-treatment compared to quenched glasses. Likewise, with the broader composition regions available by applying the models reported here, there is the possibility for crystallization in the melter. Section 9.9.2 describes constraints needed to avoid the deleterious effects of that crystallization.

9.9.1 Slow-Cooled Glass Crystallization Constraint

The LAW glass property-composition models presented in this work primarily focus on quenched glass samples. These are sufficient for melt properties such as viscosity, EC, melter SO₃ tolerance, and K-3 corrosion. However, glass properties such as PCT and VHT may be changed by slow cooling inside the LAW containers. Slow cooling tends to reduce the PCT and VHT responses (makes glass more durable) so long as significant phase changes are avoided. When some components participate in crystallization or immiscible phase separation, their concentration reduction in bulk glass will have significant effects on glass properties (e.g., PCT and VHT).

The rate of cooling in a LAW glass container is bounded by typical quenching that is performed as part of normal laboratory glass sample preparation on one side and by simulated CCC on the other side (Petkus 2003). The PCT and VHT responses have been measured on selected glass samples exposed to both CCC and quench preparation. The composition space in which crystallization occurs during CCC of LAW glasses to a sufficient degree as to affect PCT or VHT is relatively small. For WTP baseline glass formulation approach, no glasses were found with significantly degraded PCT or VHT on CCC. Therefore, no constraint was necessary to avoid the potentially adverse effects of crystallization in the container (Latham 2018; Kim and Vienna 2012). As the GCR expanded, some LAW glasses were found to crystallize sufficiently during CCC as to degrade PCT and/or VHT. In the 2016 modeling effort, a crystallization constraint was introduced to avoid such concentration range (Vienna et al. 2016):

 $g_{ZrO_2} + g_{SnO_2} + g_{Al_2O_3} \le 0.17$. This ad-hoc constraint was found to be insufficient when compared to data developed after 2016; therefore, a new crystallization constraint was needed.

All the glasses with PCT and VHT measured for both quenched and simulated CCC treated samples were collected from established databases, including the one described in Section 2.1. There were two crystal groups identified to have a noticeable negative effect on PCT and VHT responses: Na-Al silicate and Na-Ca (also covering Na-Ca-Al) silicate groups. Na-Al silicate group included nepheline (nominal chemical formula of NaAlSiO₄) and nosean [Na₈Al₆Si₆O₂₄(SO₄)] while Na-Ca silicate group included combeite (Na₂Ca₂Si₃O₉), hauyne [Na₃CaAl₃Si₃O₁₂(SO₄)], and lazurite [Na₃CaAl₃Si₃O₁₂(SO₄, S, Cl, OH)]. The following CCC crystallization constraints (Eqn. 9.3 and 9.4), were developed to prevent formation of Na-Al and Na-Ca group crystals, respectively, and thus to avoid the potential negative effect of slow cooling in a LAW glass container on PCT and VHT responses.

$$g_{Al_2O_3} \le 0.158 - 0.28(g_{Na_2O} + 0.66g_{K_2O}) \tag{9.3}$$

$$g_{Ca0} \le 0.2084 - 0.528(g_{Na_20} + 0.66g_{K_20}) \tag{9.4}$$

The detailed description of data collection and constraints development is treated in a separate report (Lonergan et al. 2021).

9.9.2 Melt Crystallization Constraint

Excessive crystallization in the LAW melter may be detrimental to both melter operation and product quality. Crystals that form in the glass melt, if of sufficient density, particle size, and amount, may settle and cause pouring problems in the pour-spout riser (Matyáš et al. 2012). This is a well-established issue for HLW glass melts where spinel crystals are ubiquitous (Jain and Barnes 1991; Vienna et al. 2001; Annamalai et al. 2004; Jantzen and Brown 2007; Matlack et al. 2009b; Matyáš et al. 2010; and Lonergan et al. 2019). For Hanford HLW glass melts, ad-hoc constraints of 1 vol% (Kot and Pegg 2001) or 2 vol% (Vienna et al. 2013) of spinel at 950 °C were adopted as conservative constraints.

Crystallization in the melt has not traditionally been an issue in LAW glass melts which rarely precipitate spinel or other phases. However, in an attempt to maximize alkali loading while maintaining satisfactory VHT and PCT responses, SnO₂ has been added to the melt, creating a potential challenge with exceeding the liquidus temperature of cassiterite (SnO₂). With a density higher than spinel (~7 g/cm³ compared to ~5 g/cm³ for typical HLW glass spinels), settling may be an issue. Also, as SnO₂ is specifically added to reduce VHT response and glasses containing SnO₂ are typically formulated at or near the VHT response limit, loss of SnO₂ due to crystallization may impact waste form acceptance.

All the glass crystal content vs. composition and isothermal heat treatment data from glasses described in Section 2.1 were collected by Lonergan et al. (2022). They also tested additional glasses to fill gaps in the data primarily for glass compositions with intermediate to high SnO_2 content. An evaluation of the results identified two constraints to significantly reduce the risk of ≥ 1 vol% of either Cassiterite (SnO₂) or zirconia-containing phases (e.g., Baddeleyite, Zircon, Parakeldyshite). These constraints include:

$$g_{SnO_2} \le 0.045$$
 (9.5)

$$g_{Al_2O_3} + 0.677g_{SnO_2} + 0.827g_{ZrO_2} \le 0.1655.$$
(9.6)

9.9.3 Lithia and Zirconia Targets

The models and constraints documented in this report were used to develop a set of optimized glasses for example Hanford LAW feeds (Lu et al. 2021). It was observed that optimizing glass composition for maximum waste loading resulted in a few glasses with Li₂O concentrations above those previously observed to cause a change in the mechanism of K-3 refractory corrosion (Muller et al. 2004a). Therefore, a maximum Li₂O concentration constraint is recommended:

$$g_{Li_20} \le 0.043.$$
 (9.7)

Several glasses with optimized LAW loading also reduced ZrO_2 concentrations to zero which is below the concentration for virtually all of the actively designed glasses and in a region prone to relatively poor VHT and PCT responses. Therefore, a minimum ZrO_2 concentration constraint is recommended:

 $g_{ZrO_2} \ge 0.02.$

(9.8)

9.10 Status and Recommendation of Future Work

The work in this report to develop, validate, and quantify the uncertainty in property-composition models for LAW glasses has succeeded in meeting the objectives of this study. Models have been developed and validated for key properties of interest to the LAW Facility operation and waste form qualification, including VHT, PCT, viscosity, EC, and melter SO₃ tolerance. These models incorporate the data developed since the last plant operations modeling effort in 2007 (Piepel et al. 2007). The composition ranges over which these new models were developed are significantly broader than those in current use.

However, there are many areas where improvements to the models can significantly reduce the risk and open the operating window for operation. These include the following:

- Develop methods and models to control composition of LAW glasses to reduce the risk of disposal performance shortfalls and thereby replace the current most-restrictive constraint of VHT response.
- Develop data and models to extend the composition region over which k_{1208} models are valid. This would allow the models to be implemented directly as a formulation constraint without exceeding model validity range and thereby reduce risk of premature melter failure due to refractory corrosion (see Section 8.3.4).
- Develop viscosity and EC models as functions of temperature. This would provide LAW Facility operators with direct data to evaluate the impact of changing operating temperature due to upset conditions or idling. Viscosity predictions as a function of temperature would also be useful in evaluating crystallinity and vitrification processing rates. Example viscosity and EC models as functions of both composition and temperature are given in Appendix E.
- Develop data and models to improve VHT response prediction to reduce conservatism and expand the LAW Facility operating window. Advanced machine learning techniques could be employed.
- Develop data and models that cover broader composition regions to further open the plant processing window and reduce conservatism in glass formulation.
- More detailed analyses of replicate glass and near-replicate glass data is warranted due to the relatively large differences (%RSDs) for some near replicate pairs for some properties.
- Statistical analyses suggested significant and unexpected effects of some minor components on a number of glass properties. Most notably, the impacts of Cr₂O₃ and SO₃ on viscosity, PCT, and VHT responses were unexpectedly significant. In some cases, these components were combined in Others despite significant statistical evidence for effects, while in other cases their effects are reflected in the models. Experimental testing aimed specifically at determining the impacts of these components on properties of LAW glasses is needed to better predict composition effects. Statistical design of new test glasses can be used to decrease the impact of multicollinearity, which may be at least in part responsible for the unexpected significant effect of these minor components.
- Update the GFA(s) to allow for direct implementation of these new models and associated glass formulation approaches in plant operations.
- Update the glass formulation methods in system planning and dynamic flowsheet models to better predict the composition and amounts of LAW glasses and schedule of LAW vitrification.

• Develop data and models for other key glass and melt properties such as density, thermal expansion, thermal conductivity, melter volatility (partitioning to off-gas stream) all as functions of temperature to support various LAW product qualification and plant operations activities.

10.0 References

Annamalai S, H Gan, M Chaudhuri, WK Kot, and IL Pegg. 2004. "Spinel Crystallization in HLW Glass Melts: Cation Exchange Systematics and the Role of Rh₂O₃ in Spinel Formation." *Ceramic Transactions*, pp. 279-288. American Ceramic Society, Westerville, Ohio.

ASME. 2000. *Quality Assurance Requirements for Nuclear Facility Applications*. ASME NQA-1-2000, American Society of Mechanical Engineers, New York, New York.

ASTM. 2014. Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT). ASTM C1285-14, ASTM International, West Conshohocken, Pennsylvania.

Buechele AC, CT Mooers, and IL Pegg. 2002. "Vapor Hydration Testing of Nuclear Waste Glasses Using D₂O and H₂O." *Microscopy and Microanalysis* 8(S02):1312-1313.

Cornell JA. 2002. *Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data,* 3rd Edition. John Wiley and Sons, New York, New York.

DOE. 2000. Design, Construction, and Commissioning of the Hanford Tank Waste Treatment and Immobilization Plant. U.S. Department of Energy, Office of River Protection, Richland, Washington.

DOE. 2011. Quality Assurance. DOE O 414.1D. U.S. Department of Energy, Washington, D.C.

DOE. 2013. Nuclear Safety Management. 10CFR830. U.S. Department of Energy, Washington, D.C.

Draper NR and H Smith. 1998. *Applied Regression Analysis*, 3rd Edition. John Wiley and Sons, New York, New York.

Feng, X and TB Metzger. 1996. "A Structural Bond Strength Model for Glass Durability," *Ceramic Transactions*, Vol. 72, 51–60 pp.

Freund RJ and RC Littell. 2003. SAS System for Regression, Second Edition (SAS Series in Statistical Applications) 2nd Edition, SAS Institute, Inc., Cary, North Carolina.

Freund RJ, RC Littell, and L Creighton. 2003. *Regression Using JMP*. SAS Institute, Inc., Cary, North Carolina.

Gan H, X Lu, I Vidensky, C Paul, IL Pegg, IS Muller, AC Buechele, P Branch, L Su, C Mooers, E Malone, G Bazemore, and M Ing. 2001. *Corrosion of K-3 Refractory and Metal Alloys in RPP-WTP LAW Glasses*. VSL-01R3540-1, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Gervasio V, JD Vienna, DS Kim, and AA Kruger. 2018. *Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount*. PNNL-26996, EWG-RPT-015, Rev. 0.0, Pacific Northwest National Laboratory, Richland, Washington.

Gilbert RO. 1987. *Statistical Methods for Environmental Pollution Monitoring*. Van Nostrand Reinhold, New York, New York.

Gin, S, M Wang, N Bisbrouck, M Taron, X Lu, L Deng, F Angeli, T Charpentier, JM Delaye, J Du, and M Bauchy. 2020. "Can a Simple Topological-Constraints-Based Model Predict the Initial Dissolution Rate of Borosilicate and Aluminosilicate Glasses?," *npj-Materials Degradation*, 4(6). 10.1038/s41529-020-0111-4.

Goodman, LA. 1960. "On the Exact Variance of Products." *Journal of the American Statistical Association*, **55**(292):708-713

Hahn GJ and SS Shapiro. 1967. *Statistical Models in Engineering*, John Wiley and Sons, New York, New York.

Hrma, P, GF Piepel, MJ Schweiger, DE Smith, DS Kim, PE Redgate, JD Vienna, CA LoPresti, DB Simpson, DK Peeler, and MH Langowski. 1994. Property/Composition Relationships for Hanford High-Level Waste Glasses Melting at 1150°C, PNL-10359, Pacific Northwest Laboratory, Richland, WA.

Ihaka R, R Gentleman 1996. "R: A Language for Data Analysis and Graphics." *Journal of Computational and Graphical Statistics*, 5(3):299–314

Jain V and SM Barnes. 1991. "Effect of Glass Pour Cycle on the Crystallization Behavior in the Canistered Product at the West Valley Demonstration Project." *Nuclear Waste Management* IV 23.

Jantzen, CM., JB Pickett, KG Brown, TB Edwards, and DC Beam. 1995. *Process/Product Models for the Defense Waste Processing Facility (DWPF): Part I. Predicting Glass Durability from Composition Using a Thermodynamic Hydration Energy Reaction Model (Thermo)*, WSRC-TR-93-0672, Westinghouse Savannah River Company, Aiken, SC.

Jantzen CM and KG Brown. 2007. "Predicting the Spinel-Nepheline Liquidus for Application to Nuclear Waste Glass Processing: Part I. Primary Phase Analysis, Liquidus Measurement, and Quasicrystalline Approach." *Journal of the American Ceramic Society* 90(6):1866-1879.

Jin T, D Kim, LP Darnell, B Weese, M Bliss, N Canfield, MJ Schweiger, JD Vienna, and AA Kruger. 2019. "A Crucible Salt Saturation Method for Determining Sulfur Solubility in Glass Melt." *International Journal of Applied Glass Science* 10(1):92-102. https://doi.org/10.1111/ijag.12366

Jiricka A, JD Vienna, P Hrma, and DM Strachan. 2001. "The Effect of Experimental Conditions and Evaluation Techniques on the Alteration of Low Activity Glasses by Vapor Hydration." *Journal of Non-Crystalline Solids* 292(1-3):25-43.

Kim DS and JD Vienna. 2012. *Preliminary ILAW Formulation Algorithm Description*: 24590-LAW-RPT-*RT-04-0003, Rev. 1.* ORP-56321, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, Washington.

Kot WK and IL Pegg. 2001. *Glass Formulation and Testing with Rpp-WTP HLW Simulants*, VSL-01R2540-2, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Lonergan CE, JL George, D Cutforth, T Jin, P Cholsaipant, SE Sannoh, CH Skidmore, BA Stanfill, SK Cooley, GF Piepel, RL Russell, and JD Vienna. 2019. *Enhanced Hanford Low-Activity Waste Glass Property Data Development: Phase 3*. PNNL-29847, Pacific Northwest National Laboratory, Richland, Washington.

Lonergan CE, JL George, D Cutforth, T Jin, P Cholsaipant, SE Sannoh, CH Skidmore, BA Stanfill, SK Cooley, GF Piepel, R Russell, and JD Vienna. 2020. *Enhanced Hanford Low-Activity Waste Glass Property Data Development: Phase 3*. PNNL-29847, Rev. 0, EWG-RPT-026, Pacific Northwest National Laboratory, Richland, Washington.

Lonergan CE, T Jin, DS Kim, and JD Vienna. 2021. *LAW Glass Crystallization Constraints for WTP Operations: Assessment of CCC Impacts on VHT and PCT*, PNNL-31138, Pacific Northwest National Laboratory, Richland, Washington.

Lonergan, CE, EL Rivers, SM Baird, SE Sannoh, DS Kim and JD Vienna. 2021b. *Glass Crystallization Constraints for WTP LAW Operations: Assessment of Isothermal Treatments on Crystal Formation*. PNNL-31334, Pacific Northwest National Laboratory, Richland, Washington.

Lu X, DS Kim and JD Vienna. 2021. "Impacts of Constraints and Uncertainties on Projected Amount of Hanford Low-Activity Waste Glasses," *Nuclear Engineering and Design*, **385**, DOI: 10.1016/j.nucengdes.2021.111543.

MathWorks 2019. MatLab R2019b. The MathWorks, Inc. Natick Massachusetts.

Matlack KS, SP Morgan, and IL Pegg. 2000. *Melter Tests with LAW Envelope B Simulants to Support Enhanced Sulfate Incorporation*. VSL-00R3501-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, SP Morgan, and IL Pegg. 2001. *Melter Tests with LAW Envelope A and C Simulants to Support Enhanced Sulfate Incorporation*. VSL-01R3501-2, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, W Gong, and IL Pegg. 2003. *Compositional Variation Tests on DuraMelter 100 with LAW Sub-Envelope A3 Feed in Support of the LAW Pilot Melter*. VSL-01R62N0-1, Rev. 2, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, M Chaudhuri, H Gan, IS Muller, WK Kot, W Gong, and IL Pegg. 2004a. *Glass Formulation Testing to Increase Sulfate Incorporation*. VSL-04R4960-1, ORP-51808, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, W Gong, and IL Pegg. 2004b. *Glass Formulation Testing to Increase Sulfate Volatilization from Melter*. VSL-04R4970-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC.

Matlack KS, W Gong, and IL Pegg. 2004c. *Small Scale Melter Testing with LAW Simulants to Assess the Impact of Higher Temperature Melter Operations*. VSL-04R4980-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, W Gong, IS Muller, I Joseph, and IL Pegg. 2006a. *LAW Envelope A and B Glass Formulations Testing to Increase Waste Loading*. VSL-06R6900-1, ORP-56322, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, W Gong, IS Muller, I Joseph, and IL Pegg. 2006b. *LAW Envelope C Glass Formulation Testing to Increase Waste Loading*. VSL-05R5900-1, ORP-56323, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, IS Muller, W Gong, and IL Pegg. 2006c. *DuraMelter 100 Tests to Support LAW Glass Formulation Correlation Development*. VSL-06R6480-1, ORP-56324, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, I Joseph, W Gong, IS Muller, and IL Pegg. 2007a. *Enhanced LAW Glass Formulation Testing. VSL-07R1130-1*. ORP-56293, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, IS Muller, W Gong, and IL Pegg. 2007b. *Small Scale Melter Testing of LAW Salt Phase Separation*. VSL-07R7480-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, I Joseph, W Gong, IS Muller, and IL Pegg. 2009a. *Glass Formulation Development and DM10 Melter Testing with ORP LAW Glasses*. VSL-09R1510-2, ORP-56296, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, WK Kot, W Gong, W Lutze, IL Pegg, and I Joseph. 2009b. *Effects of High Spinel and Chromium Oxide Crystal Contents on Simulated HLW Vitrification in DM100 Melter Tests.*

VSL-09R1520-1, ORP-56327, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, IS Muller, I Joseph, and IL Pegg. 2014. *Melter Tests to Define LAW Halide, Chromium and Phosphate Concentrations*. VSL-14R3070-1, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, IS Muller, H Abramowitz, I Joseph, and IL Pegg. 2017a. *Support to Direct Feed LAW FlowSheet Development*. VSL-17R4250-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matlack KS, H Abramowitz, IS Muller, I Joseph, and IL Pegg. 2017b. *DFLAW Glass and Feed Qualifications to Support WTP Start-Up and Flow-Sheet Development*. VSL-17R4330-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Matyáš J, AR Huckleberry, CP Rodriguez, JB Lang, AT Owen, and AA Kruger. 2012. *HLW Glass Studies: Development of Crystal Tolerant HLW Glasses*. PNNL-21308, Pacific Northwest National Laboratory, Richland, Washington.

Matyáš J, JD Vienna, A Kimura, M Schaible, and RM Tate. 2010. "Development of Crystal-Tolerant Waste Glasses." *Advances in Materials Science for Environmental and Nuclear Technology* 222:41-50.

Montgomery, DC, EA Peck. 1992. Introduction to Linear Regression Analysis, Second Edition., John Wiley & Sons, Inc., New York, New York

Montgomery, DC, EA Peck, and GG Vining. 2012. *Introduction to Linear Regression Analysis*, Fifth Edition. Wiley & Sons, New York, New York

Muller IS, AC Buechele, and IL Pegg. 2001. *Glass Formulation and Testing with RPP-WTP LAW Simulants*. VSL-01R3560-2, ORP-56327, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS and IL Pegg. 2003a. *Baseline LAW Glass Formulation Testing*. VSL-03R3460-1, ORP-55237, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS and IL Pegg. 2003b. *LAW Glass Formulation to Support Melter Runs with Simulants*. VSL-03R3460-2, ORP-55237, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, IL Pegg, D McKeown, A Buechele, E Rielley, K Hight, G Bazemore, I Carranza, C Mooers, S Grant, and L Su. 2003c. *LAW Glass Formulation to Support AZ-102 Actual Waste Testing*. VSL-03R3470-1, ORP- 63493, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS and IL Pegg. 2003d. *LAW Glass Formulation to Support AP-101 Actual Waste Testing*. VSL-03R3470-2, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS and IL Pegg. 2003e. *LAW Glass Formulation to Support AZ-101 Actual Waste Testing*. VSL-03R3470-3, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, IL Pegg, E Rielley, K Hight, G Bazemore, M Chaudhuri, H Gan, E Kashnikov, J Cheron, R Cecil, KD Derr, S Watt, C Mooers, and S-T Lai. 2003f. *LAW Glass Formulationto Support SY-101/AP-104 Actual Waste Testing*. VSL-03R4470-1, ORP- 63495, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, L Goloski, IL Pegg, T Moncrief, M Chaudhuri, J Berger, D Horton, JB Martin, J Singh, R Cecil, C Viragh, C Boice, L Su, ST Lai, E Kashnikow, J Cheron, C Mooers, S Watt, and CF Feng. 2004.

LAW Glass Formulation to Support AN-104 Actual Waste Testing. VSL-04R4470-1, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, G Diener, I Joseph, and IL Pegg. 2004a. *Proposed Approach for Development of LAW Glass Formulation Correlation*. VSL-04L4460-1, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, I Joseph, and IL Pegg. 2005. *Comparison of LAW Simulant, Actual Waste, and Melter Glasses*. VSL-05R5460-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, I Joseph, and IL Pegg. 2006a. *Preparation and Testing of LAW High Phosphorus and High-Chromium Glasses*. VSL-06R6480-2, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, I Joseph, and IL Pegg. 2006b. *Preparation and Testing of LAW High-Alkali Correlation and Augmentation Matrix Glasses*. VSL-06R6480-3, ORP-63500, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, I Joseph, F Perez-Cardenas, and IL Pegg. 2008. *LAW Glass Testing and VHT Model Assessment*. VSL-08R1410-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, KS Matlack, H Gan, I Joseph, and IL Pegg. 2010. *Waste Loading Enhancements for Hanford LAW Glasses*. VSL-10R1790-1, ORP-48578, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, K Gilbo, I Joseph, and IL Pegg. 2013. *Enhanced LAW Glass Property-Composition Models – Phase 1*. VSL-13R2940-1, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, K Gilbo, I Joseph, and IL Pegg. 2014. *Enhanced LAW Glass Property-Composition Models – Phase 2*. VSL-14R3050-1, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, KS Matlack, IL Pegg, and I Joseph. 2015a. *Test Plan: Enhanced LAW Glass Correlation*. VSL-15T3680-1, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, H Gan, K Gilbo, IL Pegg, and I Joseph. 2015b. *LAW Glass Property-Composition Models for K-3 Refractory Corrosion and Sulfate Solubility*. VSL-15R3270-1, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, M Chaudhuri, H Gan, A Buechele, X Xie, IL Pegg, and I Joseph. 2015c. *Improved High-Alkali Low-Activity Waste Formulations*. VSL-15R3290-1, Rev.0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, KS Matlack, IL Pegg, and I Joseph. 2016. *Enhanced LAW Glass Correlation - Phase 1*. VSL-16R4000-1, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, KS Matlack, IL Pegg, and I Joseph. 2017a. *Enhanced LAW Glass Correlation - Phase 2*. VSL-17R4140-1, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, KS Matlack, IL Pegg, and I Joseph. 2017b. *Enhanced LAW Glass Correlation - Phase 3*. VSL-17R4230-1, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Muller IS, K Gilbo, M Chaudhuri, and IL Pegg. 2018. *K-3 Refractory Corrosion and Sulfate Solubility Model Enhancement*. VSL-18R4360-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Myers, R.H. and Montgomery, D.C. 1995. Response Surface Methodology. Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York, New York.

Myers RH, DC Montgomery, and GG Vining. 2002. *Generalized Linear Models: with Applications in Engineering and the Sciences*. John Wiley & Sons, New York, New York.

Latham, A 2018. *ILAW Product Qualification Report*, 24590-LAW-RPT-PENG-17-008, Rev. 2, River Protection Project, Waste Treatment Plant, Richland, Washington.

Perez JM. 2006. *Practical and Historical Bases for a Glass Viscosity Range for Joule-Heater Ceramic Melter Operation*. Email to JD Vienna, Dec. 22, 2006, CCN: 150054, River Protection Project, Hanford Waste Treatment and Immobilization Plant, Richland, Washington.

Perez-Cardenas, F, H Gan and IL Pegg. 2003. *Summary and Recommendations on PCT Model Form to Support LAW Vitrification*, VSL-03L4480-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, DC.

Petkus LL. 2003. *Low Activity Container Centerline Cooling Data*, to CA Musick, CCN: 074181, Oct. 16, 2003, River Protection Project, Hanford Waste Treatment and Immobilization Plant, Richland, Washington.

Piepel GF, JM Szychowski, and JL Loeppky. 2002. "Augmenting Scheffé Linear Mixture Models with Squared and/or Crossproduct Terms." *Journal of Quality Technology* 34:297-314.

Piepel GF, A Heredia-Langner, and SK Cooley. 2008. "Property-Composition-Temperature Modeling of Waste Glass Melt Data Subject to a Randomization Restriction." *Journal of the American Ceramic Society* 91(10):3222-3228.

Piepel GF, SK Cooley, IS Muller, H Gan, I Joseph, and IL Pegg. 2007. *ILAW PCT, VHT, Viscosity, and Electrical Conductivity Model Development*. VSL-07R1230-4, Rev. 0, ORP-56502, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Piepel GF and SK Cooley. 2006. "Automated Method for Reducing Scheffé Linear Mixture Experiment Models." *Quality Technology and Quantitative Management* 6:255-270.

Piepel GF, SK Cooley, JD Vienna, and JV Crum. 2016. *Experimental Design for Hanford Low-Activity Waste Glasses with High Waste Loading*, PNNL-24391, EWG-RPT-006, Rev. 1, Pacific Northwest National Laboratory, Richland, Washington.

Piepel GF and T Redgate. 1997. "Mixture techniques for reducing the number of components applied for modeling waste glass sodium release." *Journal of the American Ceramic Society* 80:3038-3044.

R Core Team. 2019. *A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/index.html

Rielley E, IS Muller and IL Pegg. 2004. *Preparation and Testing of LAW Matrix Glasses to Support WTP Property-Composition Model Development*. VSL-04R4480-1, ORP-63497, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.

Russell RL, T Jin, BP McCarthy, LP Darnell, DE Rinehart, CC Bonham, V Gervasio, JM Mayer, CL Arendt, JB Lang, MJ Schweiger, and JD Vienna. 2017. *Enhanced Hanford Low-Activity Waste Glass Property Data Development: Phase 1*. PNNL-26630, EWG-RPT-012, Pacific Northwest National Laboratory, Richland, Washington.

Russell RL, McCarthy BP, Cooley SK, Piepel GF, Cordova EA, Sannoh SE, Gervasio V, Schweiger MJ, Lang JB, Skidmore CH, Lonergan CE, Stanfill BA, Meline JM, and Vienna JD. 2020. *Enhanced Hanford Low-Activity Waste Glass Property Data Development: Phase 2*. PNNL-28838, EWG-RPT-021, Rev. 2. Pacific Northwest National Laboratory, Richland, Washington.

Skidmore CH, JD Vienna, T Jin, DS Kim, BA Stanfill, KM Fox, and AA Kruger. 2019. "Sulfur Solubility in Low Activity Waste Glass and Its Correlation to Melter Tolerance." *International Journal of Applied Glass Science* 10(4):558-568. doi:10.1111/IJAG.13272

Smith WF. 2005. *Experimental Design for Formulation*. ASA-SIAM Series on Statistics and Applied Probability, SIAM, Philadelphia, Pennsylvania, and ASA, Alexandria, Virginia.

Tilanus SN, LM Bergman, RO Lokken, AJ Schubick, EB West, RT Jasper, SL Orcutt, TM Holh, AN Praga, MN Wells, KW Burnett, CS Smalley, JK Bernards, SD Reaksecker, and TL Waldo. 2017. *River Protection Project System Plan.* ORP-11242, Rev. 8, U.S. Department of Energy, Office of River Protection, Richland, Washington.

Transtrum, M.K., Machta, B.B., Brown, K.S., Daniels, B.C., Myers, C.R. and Sethna, J.P., 2015. Perspective: Sloppiness and emergent theories in physics, biology, and beyond. *The Journal of chemical physics*, *143*(1), p.07B201_1.

Vienna JD, A Jiřička, PR Hrma, DE Smith, TH Lorier, RL Schulz, and IA Reamer. 2001. *Hanford Immobilized LAW Product Acceptance Testing: Tanks Focus Area Results*. PNNL-13744, Pacific Northwest National Laboratory, Richland, Washington.

Vienna JD, DS Kim, DC Skorski, and J Matyas. 2013. *Glass Property Models and Constraints for Estimating the Glass to Be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts*. PNNL-22631, Rev. 1, ORP-58289, Pacific Northwest National Laboratory, Richland, Washington.

Vienna, JD. 2014. "Compositional Models of Glass/Melt Properties and Their Use for Glass Formulation," *Procedia Materials Science*, 7(0):148-155. http://dx.doi.org/10.1016/j.mspro.2014.10.020.

Vienna, JD and DS Kim. 2014. *Preliminary IHLW Formulation Algorithm Description*, 24590-HLW-RPT-RT-05-001, Rev. 1, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, WA.

Vienna JD, DS Kim, IS Muller, GF Piepel, and AA Kruger. 2014. "Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility." *Journal of the American Ceramic Society*, 97(10):3135–3142. DOI: 10.1111/jace.13125.

Vienna JD, GF Piepel, DS Kim, JV Crum, CE Lonergan, BA Stanfill, BJ Riley, SK Cooley, and T Jin. 2016. 2016 Update of Hanford Glass Property Models and Constraints for Use in Estimating the Glass Mass to be Produced at Hanford by Implementing Current Enhanced Glass Formulation Efforts. PNNL-25835, Pacific Northwest National Laboratory, Richland, Washington.

Vienna, J.D. and J.V. Crum. 2018. "Non-Linear Effects of Alumina Concentration on Product Consistency Test Response of Waste Glasses," *Journal of Nuclear Materials*, **511**(12):396-405. 10.1016/j.jnucmat.2018.09.040.

Weier, DR and GF Piepel. 2003. *Methodology for Adjusting and Normalizing Analyzed Glass Compositions*, PNWD-3260, Battelle, Pacific Northwest Division, Richland, WA.

Working, H and H Hotelling. 1929. "Application of the Theory of Error to the Interpretation of Trends," *Journal of the American Statistical Association*, Supplement, (24):73-85.

Appendix A – LAW Glass Data for Developing Property-Composition Models

This appendix summarizes the complete dataset compiled to develop property-composition models for low-activity waste (LAW) glasses. Properties for which data were compiled include Product Consistency Test (PCT), Vapor Hydration Test (VHT), η_{1150} , ϵ_{1150} , melter SO₃ tolerance at 1150 °C, and the neck corrosion loss of K-3 refractory at 1208 °C.

Table A.1 summarizes the range of Glass #s in the compiled database of LAW glass compositions and properties discussed in Section 2.1. Table A.1 also lists the technical reports from which the data were compiled.

Table A.2 lists the normalized (as discussed in Section 2.2) compositions of the LAW glasses in the compiled database, including the concentrations (mass fractions) of 19 "major" LAW glass components plus Others, which is the total of all remaining "minor" components. The 19 components were selected as ones that have sufficient distributions of LAW glass concentration values (mass fractions) to support separate terms in LAW glass property-composition models. The LAW glass compositions in Table A.2 were rounded and listed to six decimal places in a way that guarantees that the mass fractions of the 20 components for each glass sum exactly to 1.000000. Six decimal places was chosen because mass fraction values for some components had the first significant figure in the fifth decimal place. Listing the mass fractions to six decimal places avoided relative rounding differences being too large for such values.

Table A.3 lists the values of properties (PCT, VHT, η_{1150} , ϵ_{1150} , and melter SO₃ tolerance and solubilities at 1150 °C) for the LAW glasses from the compiled literature data. Not all properties are available for all glasses in Table A.3. Those properties without measured properties are labelled "-". Glasses with one or more component values assessed to be outliers were not used in modeling. Glasses whose property values were assessed as outliers (as discussed in the main body section for each property) were also not used in modeling. Those glasses that were not used for modeling have their property values marked with an asterisk in Table A.3.

Table A.4 lists the normalized compositions of 344 LAW glasses with data for the neck corrosion loss of K-3 refractory at 1208 °C (k_{1208}). Similar to Table A.2, these compositions are listed using the same 20 components (19 plus Others), with mass fractions to six decimal places summing exactly to 1.000000. Table A.5 lists the k_{1208} values in inches. These LAW normalized glass compositions and K-3 corrosion values are all from Muller et al. (2018).

Group(a)	Report(b)	Reference	# of Glasses	Glass # Range		
WTP	VSL-00R3501-1	Matlack et al. 2000	1	1		
WTP	VSL-01R3501-2	Matlack et al. 2001	4	2 - 5		
WTP	VSL-01R3560-2	Muller et al. 2000	121	6 - 126		
WTP	VSL-01R3540-1	Gan et al. 2001	15	127 - 141		
WTP	VSL-01R62N0-1, Rev. 2	Matlack et al. 2003	2	142 - 143		
WTP	VSL-03R3460-1	Muller and Pegg 2003a	122	144 - 265		
WTP	VSL-03R3460-2	Muller and Pegg 2003b	42	266 - 307		
WTP	VSL-03R3470-1	Muller and Pegg 2003C	6	308 - 313		
WTP	VSL-03R3470-2	Muller and Pegg 2003d	10	314 - 323		
WTP	VSL-03R3470-3	Muller and Pegg 2003e	2	324 - 325		
WTP	VSL-03R4470-1	Muller and Pegg 2003f	3	326 - 328		
WTP	VSL-04R4470-1	Muller et al. 2004	2	329 - 330		
WTP	VSL-04R4480-1	Rielley et al. 2004	60	331 - 390		
ORP	VSL-04R4960-1	Matlack et al. 2004a	17	391 - 407		
ORP	VSL-04R4970-1	Matlack et al. 2004b	3	408 - 410		
WTP	VSL-04R4980-1	Matlack et al. 2004C	1	411		
WTP	VSL-05R5460-1	Muller et al. 2005	30	412 - 441		
ORP	VSL-05R5900-1	Matlack et al. 2005	6	442 - 447		
WTP	VSL-06R6480-1	Matlack et al. 2006a	8	448 - 455		
WTP	VSL-06R6480-2	Muller et al. 2006a	18	456 - 473		
WTP	VSL-06R6480-3	Muller et al. 2006b	26	474 – 499		
ORP	VSL-06R6900-1	Matlack et al. 2006b	45	500 - 544		
ORP	VSL-07R1130-1	Matlack et al. 2007a	78	545 - 622		
ORP	VSL-07R7480-1	Matlack et al. 2007b	9	623 - 631		
ORP	VSL-08R1410-1	Muller et al. 2008	56	632 - 686, 101		
ORP	VSL-09R1510-2	Matlack et al. 2009	50	687 - 736		
ORP	VSL-10R1790-1	Muller et al. 2010	32	737 - 768		
ORP	VSL-13R2940-1	Muller et al. 2013	20	769 - 788		
ORP	VSL-14R3050-1	Muller et al. 2014	22	789 - 810		
ORP	VSL-15R3290-1	Muller et al. 2015	24	811 - 834		
ORP	VSL-16R4000-1	Muller et al. 2016	38	835 - 872		
ORP	VSL-17R4140-1	Muller et al. 2017a	19	873 - 891		
ORP	VSL-17R4230-1	Muller et al. 2017 <mark>b</mark>	17	892 - 908		
ORP	VSL-17R4250-1	Matlack et al. 2017a	11	909 - 919		
ORP	VSL-17R4330-1	Matlack et al. 2017b	8	920 - 927		
ORP	PNNL-26630 (PNNL Ph. 1)	Russell et al. 2017	75	928 - 1002		
ORP	VSL-18R4360-1	Muller et al. 2018	9	1003 - 1011		
ORP	PNNL-28838 (PNNL Ph. 2)	Russell et al. 2020, Rev. 2	41(c)	1013-1053		
ORP	PNNL-29847 (PNNL Ph. 3)	Lonergan et al. 2020	22(d)	1054-1075		

(a) WTP denotes data for LAW glass compositions to support cold commissioning, hot commissioning, and initial(b) All reports are Rev. 0 unless otherwise noted.

(c) The PNNL LAW Phase 2 test matrices were designed to have a total of 42 glasses. However, a homogenous glass could not be made (even with modifications) for test matrix glass LP2-OL-06. Hence, no property data were collected for that glass. Thus, LP2-OL-06 does not appear in the glass composition and property value listings.
(d) The PNNL LAW Phase 3 test matrix was designed to contain 20 glasses, but replicate glasses were made for duplicate PCTs of two glasses, resulting in 22 glasses

PNNL-30932, Rev. 2

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P2O5	SO ₃	SiO ₂	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others
1	LB100-G-83A	0.061486	0.123774	0.066501	0.000100	0.000702	0.000802	0.052759	0.002608	0.046340	0.029790	0.065197	0.000301	0.006400	0.480050	0.000000	0.000000	0.000000	0.031595	0.031595	0.000000
2	LAWA102	0.060538	0.100063	0.050732	0.003302	0.000200	0.000300	0.054134	0.002602	0.025016	0.014909	0.144691	0.001301	0.003873	0.466094	0.000000	0.011407	0.000000	0.030619	0.030219	0.000000
3	LAWC21	0.061221	0.100830	0.064055	0.001236	0.000200	0.000599	0.064736	0.001506	0.027319	0.015081	0.118690	0.001179	0.004581	0.467030	0.000000	0.011204	0.000000	0.030163	0.030191	0.000179
4	A100-G-115A	0.060557	0.100030	0.050664	0.003298	0.000200	0.000300	0.054162	0.002598	0.024982	0.014990	0.144698	0.001299	0.003600	0.466173	0.000000	0.011492	0.000000	0.030678	0.030279	0.000000
5	C100-G-136B	0.061268	0.100912	0.064071	0.001201	0.000200	0.000601	0.064772	0.001502	0.027330	0.015117	0.118731	0.001201	0.004300	0.467216	0.000000	0.011212	0.000000	0.030133	0.030233	0.000000
6	LAWA41	0.062039	0.075011	0.019963	0.005791	0.000170	0.000360	0.069841	0.031015	0.000000	0.019943	0.200031	0.000780	0.000956	0.434127	0.000000	0.019953	0.000000	0.029935	0.029955	0.000130
7	LAWA42	0.062034	0.090336	0.024042	0.005790	0.000170	0.000360	0.084106	0.031012	0.000010	0.024022	0.200014	0.000780	0.000956	0.380026	0.000000	0.024022	0.000000	0.036043	0.036073	0.000204
8	LAWA43 LAWA44	0.120010 0.062019	0.073896	0.019672	0.005790	0.000170	0.000360	0.068795	0.031012	0.000010	0.019652 0.019943	0.200016	0.000780	0.000956	0.380030	0.000000	0.019652 0.019943	0.000000	0.029482 0.029654	0.029512 0.029925	0.000205
10	LAWA44 LAWA44S	0.062019	0.089033	0.019943	0.006521	0.000200	0.000100	0.069820	0.003011	0.000000	0.019943	0.200030	0.000340	0.000892	0.443596	0.000000	0.019943	0.000000	0.029634	0.029925	0.001030
10	LAWA445 LAWA45	0.062019	0.119028	0.000000	0.006521	0.000199	0.000100	0.069820	0.005011	0.000000	0.019831	0.200030	0.000338	0.000892	0.445596	0.000000	0.019831	0.000000	0.029318	0.029780	0.001023
12	LAWA46	0.062019	0.089033	0.000000	0.006521	0.000200	0.000100	0.069820	0.005011	0.000000	0.014772	0.200030	0.000340	0.000892	0.445596	0.000000	0.019943	0.000000	0.024774	0.029924	0.031025
13	LAWA47	0.062019	0.089033	0.000000	0.006521	0.000200	0.000100	0.069820	0.005011	0.000000	0.014772	0.200030	0.000340	0.000892	0.445596	0.000000	0.019943	0.000000	0.024774	0.029924	0.031025
14	LAWA48	0.062019	0.089033	0.000000	0.006521	0.000200	0.000100	0.069820	0.005011	0.000000	0.014772	0.200030	0.000340	0.000892	0.445596	0.000000	0.019943	0.000000	0.024774	0.029924	0.031025
15	LAWA49	0.062019	0.089033	0.000000	0.006521	0.000200	0.000100	0.099815	0.005011	0.000000	0.014772	0.200030	0.000340	0.000892	0.445596	0.000000	0.019943	0.000000	0.024774	0.029924	0.001030
16	LAWA50	0.062019	0.089033	0.000000	0.006521	0.000200	0.000100	0.119838	0.005011	0.000000	0.014772	0.200030	0.000340	0.000892	0.425573	0.000000	0.019943	0.000000	0.024774	0.029924	0.001030
17	LAWA51	0.062027	0.119755	0.000000	0.005861	0.000180	0.000090	0.069978	0.004511	0.000000	0.014842	0.180022	0.000300	0.000809	0.465766	0.000000	0.019962	0.000000	0.024883	0.029984	0.001030
18	LAWA52	0.061800	0.061920	0.078832	0.006521	0.000200	0.000100	0.075062	0.005011	0.000000	0.014772	0.200031	0.000340	0.000892	0.422547	0.000000	0.011082	0.000000	0.029945	0.029925	0.001020
19 20	LAWA60	0.085293	0.112308	0.043217	0.006521	0.000200	0.000100	0.000000	0.005011	0.000000	0.019943	0.200032	0.000340	0.000892	0.445600	0.000000	0.019943	0.000000	0.029655	0.029925	0.001020
20	LAWA64 LAWA81	0.061800	0.061920 0.089033	0.000000	0.006521	0.000200	0.000100	0.075062	0.005011	0.000000	0.014772	0.200031	0.000340	0.000892	0.422547	0.000000	0.011082	0.000000	0.029945	0.029925	0.079852 0.001020
21	LAWA81 LAWA82	0.062019	0.089033	0.039890	0.006521	0.000200	0.000100	0.069820	0.005011	0.000000	0.019943	0.200030	0.000340	0.000892	0.445596	0.000000	0.039896	0.000000	0.029634	0.029925	0.001020
23	LAWA82 LAWA83	0.062011	0.089035	0.019943	0.006521	0.000200	0.000100	0.049868	0.005011	0.000000	0.019943	0.200034	0.020284	0.000892	0.445605	0.000000	0.019943	0.000000	0.029655	0.029925	0.001020
24	LAWA84	0.062020	0.089034	0.019943	0.006521	0.000200	0.000100	0.029925	0.005011	0.000000	0.019943	0.200032	0.040236	0.000892	0.445600	0.000000	0.019943	0.000000	0.029655	0.029925	0.001020
25	LAWA85	0.062021	0.089035	0.000000	0.006521	0.000200	0.000100	0.049868	0.005011	0.000000	0.019943	0.200034	0.020283	0.000892	0.445605	0.000000	0.019943	0.000000	0.029655	0.029925	0.020964
26	LAWA86	0.062020	0.089034	0.000000	0.006521	0.000200	0.000100	0.029925	0.005011	0.000000	0.019943	0.200032	0.040236	0.000892	0.445600	0.000000	0.019943	0.000000	0.029655	0.029925	0.020963
27	LAWA87	0.044808	0.088736	0.019914	0.003291	0.000090	0.000000	0.069703	0.025835	0.000000	0.019914	0.200037	0.000700	0.001966	0.444632	0.000000	0.019914	0.000000	0.029575	0.029875	0.001010
28	LAWA88	0.060811	0.096997	0.019913	0.003291	0.000090	0.000000	0.055320	0.025834	0.000000	0.014753	0.200035	0.000700	0.001966	0.439987	0.000000	0.019913	0.000000	0.029505	0.029875	0.001010
29	LAWA89	0.060811	0.096997	0.000000	0.003290	0.000090	0.000000	0.055320	0.025834	0.000000	0.014753	0.200035	0.000700	0.001966	0.439987	0.000000	0.039827	0.000000	0.029505	0.029875	0.001010
30 31	LAWA90 LAWA93	0.060811 0.061800	0.096997	0.039827	0.003290	0.000090	0.000000	0.055320	0.025834	0.000000	0.014753 0.014772	0.200035	0.000700	0.001966	0.439987	0.000000	0.000000	0.000000	0.029505	0.029875	0.001010
31	LAWA95 LAWA96	0.061800	0.079101	0.078832	0.006521	0.000200	0.000100	0.029939	0.005011	0.000000	0.014772	0.100296	0.000340	0.000892	0.422547	0.000000	0.011082	0.000000	0.029945	0.029925	0.001020
33	LAWA90 LAWA97S	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.000000 NA	NA	0.000000 NA	NA	NA	NA
34	LAWA98S	0.059938	0.106681	0.050479	0.004789	0.000149	0.000070	0.074516	0.003686	0.030446	0.014826	0.147064	0.000248	0.007100	0.427260	0.000000	0.011219	0.000000	0.030466	0.030049	0.001014
35	LAWA98S0	0.060367	0.107444	0.050840	0.004824	0.000150	0.000070	0.075048	0.003713	0.030664	0.014932	0.148115	0.000250	0.000000	0.430316	0.000000	0.011299	0.000000	0.030684	0.030263	0.001021
36	LAWA99S	0.059859	0.106539	0.060811	0.004783	0.000149	0.000069	0.044815	0.003682	0.020006	0.014806	0.146868	0.000248	0.008400	0.426692	0.000000	0.011204	0.029612	0.030426	0.030009	0.001022
37	LAWA100S	0.059998	0.106787	0.060953	0.004794	0.000149	0.000070	0.074590	0.003690	0.020053	0.014840	0.147211	0.000249	0.006100	0.427686	0.000000	0.011230	0.000000	0.030496	0.030079	0.001025
38	LAWA101S	0.059992	0.106777	0.070574	0.004794	0.000149	0.000070	0.074582	0.003690	0.010423	0.014839	0.147196	0.000249	0.006200	0.427643	0.000000	0.011229	0.000000	0.030493	0.030076	0.001024
39	LAWA102S	0.060332	0.099610	0.050482	0.003316	0.000179	0.000259	0.053888	0.002589	0.024907	0.014889	0.144286	0.001325	0.006800	0.464099	0.000000	0.011393	0.000000	0.030514	0.030116	0.001016
40	LAWA103S	0.060411	0.099740 0.085915	0.050548	0.003321	0.000180	0.000259	0.049880 0.067362	0.002593 0.005511	0.024940	0.014908 0.019243	0.144475 0.220039	0.001326	0.005500	0.453787 0.429936	0.000000	0.011408	0.014998 0.000000	0.030554 0.028605	0.030155	0.001017
41 42	LAWA104 LAWA105	0.066142	0.083913	0.019244	0.007171	0.000220	0.000110	0.067362	0.005511	0.000000	0.019243	0.220039	0.000370	0.000984	0.429936	0.000000	0.019243 0.018543	0.000000	0.028605	0.028865	0.001040
42	LAWABP1	0.100006	0.092506	0.000000	0.007821	0.000240	0.000120	0.025002	0.022001	0.000000	0.010001	0.200012	0.000400	0.000938	0.414208	0.000000	0.024902	0.000000	0.026002	0.052503	0.020001
44	LAWB29	0.080352	0.080662	0.070140	0.000140	0.000730	0.001230	0.080222	0.003791	0.040766	0.029804	0.100015	0.000760	0.001842	0.438365	0.000000	0.000000	0.000000	0.039896	0.030255	0.001030
45	LAWB30	0.086034	0.100386	0.072352	0.000070	0.000860	0.000970	0.082753	0.003230	0.040696	0.030745	0.079013	0.000380	0.001860	0.427279	0.000000	0.000000	0.000000	0.041147	0.031205	0.001020
46	LAWB31	0.061833	0.121417	0.040476	0.000070	0.000884	0.000994	0.071955	0.003203	0.029682	0.022482	0.079325	0.027342	0.006200	0.471059	0.000000	0.000000	0.000000	0.031027	0.031027	0.001024
47	LAWB32	0.061802	0.151474	0.040455	0.000070	0.000883	0.000994	0.041800	0.003202	0.029667	0.022471	0.079285	0.027328	0.006700	0.470822	0.000000	0.000000	0.000000	0.031012	0.031011	0.001024
48	LAWB33	0.061752	0.121258	0.040423	0.000070	0.000882	0.000993	0.051644	0.003199	0.029643	0.022453	0.079221	0.047523	0.007500	0.470443	0.000000	0.000000	0.000000	0.030987	0.030986	0.001023
49	LAWB34	0.061796	0.121345	0.060673	0.000070	0.000883	0.000993	0.051681	0.003201	0.029664	0.022469	0.079278	0.027326	0.006800	0.470779	0.000000	0.000000	0.000000	0.031009	0.031009	0.001024
50 51	LAWB35 LAWB36S	0.061765	0.121283 0.121115	0.040431 0.040371	0.000070	0.000882	0.000993	0.051654 0.051586	0.003199 0.003194	0.029649	0.042678	0.079237	0.027312 0.047463	0.007300	0.470538	0.000000	0.000000	0.000000 0.026914	0.030993	0.030993	0.001023
51	LAWB36S LAWB37	0.061678	0.121115	0.040371	0.000069	0.000885	0.000990	0.051586	0.003194	0.038577	0.022428	0.079124	0.047463	0.008700	0.433982	0.000000	0.000000	0.026914	0.030951	0.030951	0.001022
53	LAWB37 LAWB38	0.061722	0.121334	0.047199	0.000070	0.000883	0.000993	0.051685	0.003201	0.029000	0.029214	0.079283	0.034072	0.008003	0.470209	0.000000	0.000000	0.000000	0.030971	0.030971	0.001024
54	LAWB39	0.061741	0.121236	0.047153	0.000070	0.000882	0.000993	0.051635	0.003198	0.029637	0.029186	0.079207	0.000361	0.007680	0.470358	0.000000	0.000000	0.033678	0.030981	0.030981	0.001022
55	LAWB40	0.061721	0.121197	0.047138	0.000070	0.000882	0.000992	0.051618	0.003197	0.063294	0.029177	0.079181	0.000361	0.008003	0.470205	0.000000	0.000000	0.000000	0.030971	0.030971	0.001022
56	LAWB41	0.061717	0.121200	0.065095	0.000070	0.000882	0.000992	0.051625	0.003197	0.045341	0.029175	0.079186	0.000361	0.007972	0.470207	0.000000	0.000000	0.000000	0.030979	0.030979	0.001022
57	LAWB42S	0.061907	0.121559	0.047269	0.000071	0.000888	0.000990	0.061682	0.003203	0.000000	0.029265	0.079410	0.000367	0.006100	0.471576	0.000000	0.000000	0.043668	0.040965	0.031060	0.000020
58	LAWB43S	0.061900	0.121546	0.047264	0.000071	0.000887	0.000989	0.105340	0.003203	0.000000	0.029262	0.079403	0.000367	0.006200	0.471529	0.000000	0.000000	0.000000	0.040961	0.031057	0.000021
59	LAWB44S	0.061963	0.121669	0.047312	0.000072	0.000888	0.000990	0.134737	0.003206	0.000000	0.000000	0.079482	0.000368	0.005200	0.472003	0.000000	0.000000	0.000000	0.041002	0.031088	0.000020
60	LAWB45	0.061453	0.123727	0.066446	0.000060	0.000732	0.000812	0.052699	0.002627	0.046282	0.029789	0.065172	0.000301	0.005790	0.479859	0.000000	0.000000	0.000000	0.031614	0.031614	0.001023
61	LAWB51S	0.060775	0.125111 0.099897	0.067219	0.000050	0.001127	0.000628	0.053215	0.002264 0.002264	0.047150	0.029874	0.049873	0.000130	0.010600	0.487508	0.000000	0.000000	0.000000	0.031739	0.031739	0.000998
62 63	LAWB52S LAWB53S	0.060776	0.099897	0.067219	0.000050	0.001127	0.000628	0.067219	0.002264	0.058352	0.029874	0.049874	0.000130	0.010600	0.487513	0.000000	0.000000	0.000000	0.031740	0.031740	0.000997
64	LAWB555 LAWC11 for AN107	0.060751	0.099856	0.067192	0.000050	0.001127	0.000628	0.053194	0.002263	0.000000	0.029862	0.049855	0.000130	0.001830	0.383473	0.000000	0.013999	0.000000	0.031727	0.031727	0.000997
65	LAWC11 for AN107 LAWC12 for AN107	0.119870	0.080320	0.015959	0.001302	0.000180	0.000090	0.057159	0.001332	0.000000	0.013869	0.220293	0.000300	0.001830	0.393802	0.000000	0.029239	0.000000	0.042397	0.024713	0.001366
66	LAWC12 IOI HITTO	0.061441	0.061843	0.055205	0.002009	0.000231	0.000984	0.034828	0.002470	0.000000	0.015456	0.200854	0.029726	0.001810	0.425178	0.000000	0.015456	0.029375	0.030922	0.030922	0.001290

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₂	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	No O	P ₂ O ₅	SO ₃	SiO ₂	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others
# 67	LAWC14	AI ₂ O ₃	B ₂ O ₃ 0.061751	0.055123	0.002006	0.000231	F 0.000983	re ₂ O ₃	0.002467	0.000000	0.015433	Na ₂ O 0.200556	P ₂ O ₅	SU ₃ 0.003290	0.424548	SnO ₂	0.015433	V ₂ O ₅ 0.057118	0.030876	0.030876	0.001288
68	LAWC14 LAWC15	0.062279	0.089387	0.020084	0.000779	0.000030	0.004696	0.070143	0.001419	0.000000	0.020104	0.199838	0.0001355	0.001090	0.447607	0.000000	0.020024	0.000000	0.029936	0.030086	0.002348
69	LAWC16S	0.061066	0.100574	0.063466	0.001235	0.000199	0.000598	0.074893	0.001504	0.039548	0.015042	0.117549	0.001176	0.007100	0.443678	0.000000	0.011177	0.000000	0.030085	0.030114	0.000996
70	LAWC17S	0.061098	0.100627	0.073387	0.001236	0.000199	0.000598	0.044822	0.001505	0.029672	0.015050	0.117610	0.001176	0.006600	0.443910	0.000000	0.011183	0.030100	0.030100	0.030130	0.000997
71	LAWC18S	0.061042	0.100534	0.073320	0.001235	0.000199	0.000597	0.074863	0.001504	0.029644	0.015036	0.117503	0.001175	0.007500	0.443503	0.000000	0.011173	0.000000	0.030073	0.030103	0.000996
72	LAWC19S	0.061053	0.100554	0.083224	0.001235	0.000199	0.000598	0.074878	0.001504	0.019770	0.015039	0.117525	0.001175	0.007300	0.443588	0.000000	0.011175	0.000000	0.030079	0.030108	0.000996
73 74	LAWC20S LAWC21S	0.061165	0.100737	0.073467 0.063850	0.001237	0.000200	0.000599	0.074585 0.064527	0.001507	0.000000	0.015067	0.117740 0.118263	0.001177	0.005500	0.444397 0.465536	0.000000	0.011195 0.011169	0.030133	0.030133	0.030163	0.000998
74 75	LAWC21S LAWC22	0.061023	0.100504	0.063850	0.001234	0.000199	0.000597	0.064527	0.001503	0.027236	0.015032	0.118263	0.001175	0.007000	0.465536	0.000000	0.011169	0.000000	0.030063	0.030093	0.000996
76	LAWC22 LAWC23	0.061158	0.100333	0.063987	0.001230	0.000120	0.0003301	0.064677	0.00830	0.023038	0.015155	0.1144048	0.000070	0.002891	0.467484	0.000000	0.011434	0.000000	0.030129	0.030159	0.001000
77	LAWC23S	0.060960	0.100408	0.063780	0.001226	0.000199	0.000598	0.064467	0.028706	0.000000	0.015016	0.118144	0.001176	0.007100	0.465970	0.000000	0.011160	0.000000	0.030032	0.030062	0.000996
78	LAWC24	0.059531	0.098051	0.062293	0.001201	0.000190	0.000580	0.062953	0.055569	0.000000	0.014668	0.115381	0.001151	0.003687	0.454179	0.000000	0.010896	0.000000	0.029335	0.029365	0.000970
79	LAWC24S	0.059226	0.097548	0.061973	0.001194	0.000189	0.000577	0.062630	0.055284	0.000000	0.014592	0.114788	0.001145	0.008800	0.451848	0.000000	0.010840	0.000000	0.029185	0.029215	0.000966
80	LAWC25	0.057939	0.095417	0.060620	0.001171	0.000190	0.000570	0.061260	0.080930	0.000000	0.014277	0.112276	0.001121	0.003597	0.441969	0.000000	0.010605	0.000000	0.028544	0.028574	0.000940
81	LAWC25S LAWNa1S	0.057752	0.095111	0.060425	0.001167	0.000190	0.000569	0.061063	0.080670	0.000000	0.014231	0.111915	0.001117	0.006800	0.440548	0.000000	0.010571	0.000000	0.028452	0.028482	0.000937
82 83	LAWNa1S LAWNa2	0.061726 0.061819	0.100863	0.047131	0.000071	0.000885	0.000986	0.051331	0.003194	0.000000	0.029180	0.119861	0.000366	0.009000	0.460030	0.000000	0.000000	0.043541	0.040845	0.030970	0.000020
84	LAWNa2 LAWNa3	0.061682	0.060137	0.047202	0.000071	0.000884	0.000988	0.041223	0.003199	0.000000	0.029224	0.201085	0.000367	0.009700	0.439378	0.000000	0.000000	0.043510	0.040907	0.030948	0.000020
85	LAWNa4	0.061464	0.039670	0.046931	0.000071	0.000881	0.000982	0.020731	0.003180	0.000000	0.029056	0.240884	0.000365	0.013200	0.427698	0.000000	0.000000	0.043356	0.040672	0.030839	0.000020
86	LAWNa5	0.061819	0.101015	0.047202	0.000071	0.000886	0.000988	0.095016	0.003199	0.000000	0.029224	0.120043	0.000367	0.007500	0.460726	0.000000	0.000000	0.000000	0.040907	0.031017	0.000020
87	LAWNa6	0.061863	0.080700	0.047236	0.000071	0.000887	0.000989	0.084889	0.003201	0.000000	0.029244	0.160901	0.000367	0.006800	0.450858	0.000000	0.000000	0.000000	0.040936	0.031038	0.000020
88	LAWNa7	0.061925	0.060374	0.047283	0.000072	0.000888	0.000990	0.074771	0.003204	0.000000	0.029274	0.201877	0.000367	0.005800	0.441108	0.000000	0.000000	0.000000	0.040977	0.031070	0.000020
89	LAWA53	0.061525	0.061727	0.078497	0.006466	0.000202	0.000101	0.074760	0.004950	0.000000	0.014750	0.199224	0.000303	0.005900	0.420876	0.000000	0.011012	0.000000	0.029803	0.029803	0.000101
90 91	LAWA54 LAWA55	0.061510	0.061712	0.000000	0.006464	0.000202	0.000101	0.074741	0.004949	0.000000	0.014746	0.199174	0.000303	0.006150	0.420770	0.000000	0.011009	0.000000	0.029795	0.029795	0.078579
91 92	LAWA55 LAWA56	0.061550	0.061/52	0.000000	0.006468	0.000202	0.000101	0.074790	0.004952	0.000000	0.014756	0.199304	0.000303	0.005500	0.421046	0.000000	0.011016	0.000000	0.029815	0.029815	0.078630
93	LAWA50 LAWA57	0.061593	0.061796	0.028723	0.006473	0.000202	0.000101	0.074842	0.004956	0.000000	0.014766	0.199445	0.000303	0.004800	0.421342	0.000000	0.011010	0.000000	0.029836	0.029836	0.000101
94	LAWA58	0.061568	0.061771	0.028712	0.006470	0.000202	0.000101	0.074812	0.004954	0.000000	0.014760	0.199364	0.000303	0.005200	0.421173	0.000000	0.011020	0.000000	0.029824	0.029824	0.049942
95	LAWA59	0.061528	0.061730	0.048697	0.006466	0.000202	0.000101	0.074763	0.004951	0.000000	0.014751	0.199234	0.000303	0.005850	0.420897	0.000000	0.011013	0.000000	0.029804	0.029804	0.029906
96	LAWA61	0.061897	0.062100	0.048481	0.006505	0.000203	0.000102	0.075212	0.004980	0.000000	0.014839	0.200429	0.000305	0.005500	0.423421	0.000000	0.011079	0.000000	0.029983	0.029983	0.024981
97	LAWA62	0.061537	0.061740	0.048199	0.006467	0.000202	0.000101	0.074775	0.004951	0.000000	0.014753	0.199264	0.000303	0.005700	0.420961	0.000000	0.011014	0.000000	0.029809	0.029809	0.030415
98 99	LAWA63 LAWA65	0.061568 0.061593	0.061771 0.061795	0.048224	0.006470	0.000202	0.000101 0.000101	0.074812 0.074842	0.004954	0.000000	0.014760 0.060380	0.199364 0.199445	0.000303	0.005200	0.421173 0.421342	0.000000	0.011020 0.011024	0.000000	0.029824	0.029824	0.030430
100	LAWA66	0.061469	0.061671	0.048146	0.006460	0.000202	0.000101	0.074692	0.004946	0.000000	0.014736	0.199044	0.030583	0.004800	0.420495	0.000000	0.011024	0.000000	0.029776	0.029776	0.000101
101	LAWA67	0.061488	0.061690	0.048160	0.006462	0.000202	0.000101	0.074714	0.004947	0.000000	0.014741	0.199104	0.000303	0.006500	0.420622	0.000000	0.011005	0.030290	0.029785	0.029785	0.000101
102	LAWA68	0.061599	0.061802	0.031963	0.006473	0.000202	0.030446	0.074850	0.004956	0.000000	0.014768	0.199465	0.000303	0.004700	0.437669	0.000000	0.011025	0.000000	0.029839	0.029839	0.000101
103	LAWA69	0.061574	0.110005	0.000000	0.006471	0.000202	0.000101	0.074820	0.004954	0.000000	0.014762	0.199384	0.030636	0.005100	0.421215	0.000000	0.011021	0.000000	0.029827	0.029827	0.000101
104	LAWA70	0.061572	0.061774	0.058336	0.006471	0.000202	0.020322	0.074816	0.004954	0.000000	0.014761	0.199374	0.000303	0.005150	0.421194	0.000000	0.011020	0.000000	0.029825	0.029825	0.000101
105	LAWA71 LAWA72	0.061590 0.061621	0.109729 0.109784	0.078580	0.006473 0.006476	0.000202	0.000101	0.074839 0.074876	0.004956	0.000000	0.014766	0.151598 0.151675	0.000303	0.004750	0.421320	0.000000	0.011024 0.011029	0.000000	0.029834 0.029849	0.029834	0.000101 0.078721
100	LAWA72 LAWA73	0.061541	0.061743	0.078517	0.006467	0.000202	0.000101	0.074778	0.004958	0.000000	0.014773	0.199274	0.000304	0.005650	0.420982	0.000000	0.040825	0.000000	0.029849	0.029849	0.000101
107	LAWA74	0.061506	0.069485	0.078474	0.006464	0.000202	0.000101	0.082109	0.004949	0.000000	0.022118	0.199164	0.000303	0.006100	0.420749	0.000000	0.018381	0.000000	0.000000	0.029794	0.000101
109	LAWA75	0.061556	0.159702	0.078537	0.006469	0.000202	0.000101	0.074797	0.004953	0.000000	0.014757	0.101381	0.000303	0.005400	0.421088	0.000000	0.011017	0.000000	0.029818	0.029818	0.000101
110	LAWA76	0.061358	0.109316	0.078284	0.006448	0.000201	0.000101	0.074557	0.004937	0.049872	0.014710	0.101054	0.000302	0.008600	0.419733	0.000000	0.010982	0.000000	0.029722	0.029722	0.000101
111	LAWA77	0.111774	0.109751	0.078596	0.006474	0.000202	0.000101	0.074854	0.004957	0.000000	0.014768	0.101457	0.000304	0.004550	0.421405	0.000000	0.011026	0.000000	0.029840	0.029840	0.000101
112	LAWA78	0.061479	0.109531	0.128509	0.006461	0.000202	0.000101	0.074703	0.004946	0.000000	0.014739	0.101253	0.000303	0.006550	0.420558	0.000000	0.011004	0.000000	0.029780	0.029780	0.000101
113	LAWA79 LAWA80	0.111668	0.061746	0.078521	0.006468	0.000202	0.000101	0.074782 0.024759	0.004952	0.000000	0.014754	0.199284	0.000303	0.005600	0.370879	0.000000	0.011015	0.000000	0.029812	0.029812	0.000101
	LAWABPS	0.099639	0.092167	0.000000	0.005779	0.000202	0.000398	0.024739	0.004932	0.000000	0.009964	0.199284	0.000303	0.003300	0.421003	0.000000	0.011013	0.000000	0.029812	0.029812	0.019928
116	LAWBF99	0.079642	0.081557	0.045567	0.007460	0.003629	0.008065	0.064318	0.020162	0.041333	0.023187	0.087707	0.021775	0.006800	0.435508	0.000000	0.000000	0.000000	0.041131	0.030445	0.001714
117	LAWPC99	0.098944	0.039698	0.027167	0.006215	0.002506	0.008220	0.063356	0.040199	0.000000	0.019849	0.200494	0.012831	0.004850	0.410110	0.000000	0.000000	0.000000	0.033081	0.029773	0.002707
118	LAWA91	0.061615	0.061817	0.000000	0.006475	0.000202	0.000101	0.074869	0.004958	0.000000	0.014771	0.199515	0.000304	0.004450	0.421490	0.000000	0.011028	0.000000	0.029846	0.029846	0.078713
119	LAWA92	0.061612	0.061814	0.000000	0.006475	0.000202	0.000101	0.074865	0.004957	0.000000	0.014771	0.199505	0.000303	0.004500	0.421469	0.000000	0.011027	0.000000	0.029845	0.029845	0.078709
120	LAWA95 PNLREF (LD6-5412)	0.061326	0.061527	0.056233	0.006472	0.000191	0.000091 0.002901	0.037834	0.004972	0.000000	0.014665	0.198513	0.029662	0.009400	0.419279 0.559206	0.000000	0.011001	0.029329	0.029722 0.000000	0.029692	0.000091
121	TFA-BASE (HLP-01)	0.120023	0.050009	0.040008	0.003501 0.002803	0.000400	0.002901	0.000030	0.014603 0.004104	0.000000	0.000030	0.200038	0.001900	0.001930	0.559206	0.000000	0.000000	0.000000	0.000000	0.000000	0.005421
122	A100-G-115A	0.060630	0.100100	0.050625	0.002803	0.000200	0.000300	0.053033	0.002601	0.000000	0.013013	0.144673	0.000301	0.003800	0.466034	0.000000	0.030030	0.000000	0.030715	0.030315	0.000000
123	A100CC	0.060630	0.100050	0.050625	0.003302	0.000200	0.000300	0.054127	0.002601	0.025013	0.014908	0.144673	0.001301	0.003800	0.466034	0.000000	0.011406	0.0000000	0.030715	0.030315	0.000000
125	C100-G-136B	0.061262	0.100901	0.064064	0.001201	0.000200	0.000601	0.064765	0.001502	0.027328	0.015115	0.118719	0.001201	0.004200	0.467169	0.000000	0.011211	0.000000	0.030130	0.030231	0.000200
126	C100GCC	0.061262	0.100901	0.064064	0.001201	0.000200	0.000601	0.064765	0.001502	0.027328	0.015115	0.118719	0.001201	0.004200	0.467169	0.000000	0.011211	0.000000	0.030130	0.030231	0.000200
127	LAWA41-3	0.062039	0.075011	0.019963	0.005791	0.000170	0.000360	0.069841	0.031015	0.000000	0.019943	0.200031	0.000780	0.000956	0.434127	0.000000	0.019953	0.000000	0.029935	0.029955	0.000130
128 129	LAWA44-3 LAWA52-2	0.062019	0.089033	0.019943	0.006521	0.000200	0.000100 0.000100	0.069820	0.005011	0.000000	0.019943	0.200030	0.000340	0.000892	0.445596 0.422547	0.000000	0.019943 0.011082	0.000000	0.029654 0.029945	0.029925	0.001030
129	LAWA52-2 LAWA60	0.061800	0.061920 0.112308	0.078832	0.006521 0.006521	0.000200	0.000100	0.075062	0.005011	0.000000	0.014772	0.200031	0.000340	0.000892	0.422547	0.000000	0.011082	0.000000	0.029945	0.029925	0.001020
130	LAWA60 LAWA64	0.083293	0.061920	0.043217	0.006521	0.000200	0.000100	0.000000	0.005011	0.000000	0.019943	0.200032	0.000340	0.000892	0.422547	0.000000	0.019943	0.000000	0.029833	0.029925	0.001020
	LAWA88	0.060811	0.096997	0.019913	0.003291	0.000090	0.000000	0.055320	0.025834	0.000000	0.014753	0.200035	0.000700	0.001966	0.439987	0.000000	0.019913	0.000000	0.029505	0.029875	0.001010
		•	•																		

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P ₂ O ₅	SO ₃	SiO ₂	SnO ₂	TiO ₂	V205	ZnO	ZrO ₂	Others
133	LAWA95	0.061326	0.061527	0.056233	0.006472	0.000191	0.000091	0.037834	0.004972	0.000000	0.014665	0.198513	0.029662	0.009400	0.419279	0.000000	0.011001	20	0.029722	0.029692	0.000091
134	LAWA102	0.060423	0.099708	0.050552	0.003320	0.000200	0.000259	0.053942	0.002593	0.024927	0.014956	0.144478	0.001296	0.005708	0.464641	0.000000	0.011367	0.000000	0.030511	0.030112	0.001007
	LAWA104	0.066142	0.085915	0.019244	0.007171	0.000220	0.000110	0.067362	0.005511	0.000000	0.019243	0.220039	0.000370	0.000984	0.429936	0.000000	0.019243		0.028605	0.028865	0.001040
	LAWA105	0.070271	0.082804	0.018543	0.007821	0.000240	0.000120	0.064901	0.006011	0.000000	0.018543	0.240039	0.000400	0.001067	0.414268	0.000000	0.018543		0.027564	0.027815	0.001050
	LAWABP1 LAWB37	0.100006	0.092506	0.000000	0.005800	0.000200	0.000400	0.025002	0.022001	0.000000	0.010001	0.200012	0.000800	0.000938	0.418926	0.000000	0.024902		0.026002	0.052503	0.020001
	LAWE37 LAWC21	0.061721	0.121197	0.063924	0.000070	0.000882	0.000992	0.051618	0.003197	0.029628	0.029176	0.079181	0.034028	0.008003	0.466074	0.000000	0.000000	0.00000	0.030971	0.030971	0.001022
	LAWC25	0.057939	0.095417	0.060620	0.0011230	0.000190	0.000570	0.061260	0.080930	0.000000	0.014277	0.112276	0.001121	0.003597	0.441969	0.000000	0.010605		0.028544	0.028574	0.000940
141	OD2-G-50A	0.109907	0.091355	0.016045	0.000000	0.000201	0.000000	0.057460	0.001705	0.000000	0.013839	0.200560	0.000301	0.001842	0.403727	0.000000	0.034195	0.000000	0.042819	0.024569	0.001475
142	LAWA102 + 15% Additive	0.058490	0.102358	0.051880	0.003005	0.000200	0.000200	0.055385	0.002304	0.025539	0.015324	0.128698	0.000000	0.003466	0.477735	0.000000	0.011718	0.000000	0.031348	0.030948	0.001402
143	LAWA102 + 15% Simulant	0.062638	0.097159	0.049230	0.003702	0.000200	0.000300	0.052632	0.002902	0.024315	0.014609	0.161599	0.001501	0.004192	0.452977	0.000000	0.011107		0.029718	0.029418	0.001801
	LAWA44S1 LAWA44S2	0.061845	0.088734 0.088716	0.019918 0.019914	0.005577	0.000199	0.000398 0.000398	0.069514	0.004282 0.004281	0.000000	0.019918	0.199179	0.000996	0.005100	0.443971	0.000000	0.019918		0.029578	0.029877	0.000996
	LAWA44SX	0.060887	0.087360	0.019914	0.005370	0.000199	0.000398	0.069300	0.004281	0.000000	0.019914	0.210802	0.000990	0.005800	0.437095	0.000000	0.019914	0.000000	0.029372	0.029871	0.000990
	LAWA88S1	0.060514	0.096543	0.019806	0.003284	0.000100	0.000000	0.055040	0.025678	0.000000	0.014631	0.199058	0.000697	0.006900	0.437828	0.000000	0.019806		0.029361	0.029759	0.000995
148	LAWA88S2	0.060538	0.096582	0.019814	0.003286	0.000099	0.000000	0.055062	0.025689	0.000000	0.014637	0.199138	0.000697	0.006500	0.438004	0.000000	0.019814	0.000000	0.029373	0.029771	0.000996
	LAWA88SX	0.059699	0.095244	0.019540	0.003240	0.000098	0.000000	0.054299	0.025333	0.000000	0.014434	0.209144	0.000687	0.007500	0.431936	0.000000	0.019540		0.028966	0.029358	0.000982
	LAWA102R1	0.060454	0.099759	0.050478	0.003292	0.000199	0.000299	0.053870	0.002594	0.024940	0.014864	0.145149	0.001297	0.006800	0.463979	0.000000	0.011373	0.00000	0.030526	0.030127	0.000000
	LAWA108S1 LAWA108S2	0.061677	0.123255 0.123267	0.019796	0.006466	0.000199	0.000100	0.000000	0.004974	0.000000	0.019796	0.198959	0.000299	0.006600	0.477898	0.000000	0.019796		0.029446	0.029744	0.000995
	LAWA10852 LAWA109S1	0.061690	0.105967	0.019798	0.006467	0.000199	0.000100	0.034725	0.004974	0.000000	0.019798	0.198999	0.000299	0.006300	0.460682	0.000000	0.019798		0.029449	0.029750	0.000995
	LAWA109S2	0.061690	0.105967	0.019800	0.006467	0.000199	0.000100	0.034725	0.004975	0.000000	0.019800	0.198999	0.000299	0.006300	0.460682	0.000000	0.019800		0.029452	0.029750	0.000995
	LAWA110S1	0.073217	0.100176	0.031436	0.006466	0.000199	0.000100	0.034718	0.004974	0.000000	0.019796	0.198959	0.000298	0.006500	0.443180	0.000000	0.019796	0.00000	0.029446	0.029744	0.000995
-	LAWA110S2	0.073246	0.100216	0.031448	0.006469	0.000199	0.000100	0.034732	0.004976	0.000000	0.019804	0.199039	0.000299	0.006100	0.443359	0.000000	0.019804		0.029458	0.029756	0.000995
	LAWA111S1 LAWA111S2	0.061634	0.088474 0.088403	0.089270 0.089198	0.006462	0.000199	0.000099	0.000000	0.004971 0.004967	0.000000	0.019782	0.198819	0.000298	0.007200	0.442868	0.000000	0.019782		0.029425	0.029723	0.000994 0.000993
	LAWAIIIS2 LAWAII2S1	0.061384	0.088403	0.089198	0.006456	0.000199	0.000099	0.000000	0.004967	0.000000	0.019767	0.198658	0.000298	0.008000	0.435977	0.000000	0.019767		0.029401	0.029699	0.000993
	LAWA112S2	0.060410	0.096378	0.074718	0.003279	0.000099	0.000000	0.000000	0.025635	0.000000	0.014000	0.198717	0.000695	0.008500	0.437079	0.000000	0.019772	0.000000	0.0292311	0.029708	0.000994
161	LAWA112B14	0.060945	0.098611	0.076431	0.003797	0.000200	0.000999	0.000000	0.018883	0.000000	0.014787	0.199820	0.000999	0.001600	0.442201	0.000000	0.019982		0.029673	0.030073	0.000999
162	LAWA112B15	0.061545	0.098012	0.076031	0.003097	0.000100	0.000899	0.000000	0.024078	0.000000	0.014787	0.199820	0.000500	0.001100	0.439804	0.000000	0.019882		0.029473	0.029873	0.000999
	LAWA118S1	0.060336	0.099829	0.050563	0.003291	0.000200	0.000299	0.053953	0.027525	0.000000	0.014959	0.144408	0.001297	0.006000	0.464339	0.000000	0.011369		0.030517	0.030118	0.000997
	LAWA118S2 LAWA119S1	0.060324 0.060282	0.099809 0.099738	0.050553 0.050517	0.003290	0.000199	0.000299	0.053943 0.053905	0.027520	0.000000	0.014956	0.144379 0.144277	0.001296	0.006200	0.464245 0.463918	0.000000	0.011367 0.011359		0.030511 0.030490	0.030112 0.030091	0.000997
	LAWA11951 LAWA119S2	0.060282	0.099738	0.104390	0.003288	0.000199	0.000299	0.000000	0.027300	0.000000	0.014940	0.144277	0.001295	0.007200	0.463918	0.000000	0.011339		0.030490	0.030091	0.000996
167	LAWA120S1	0.058025	0.092820	0.046958	0.003290	0.000199	0.000299	0.050149	0.082850	0.000000	0.013858	0.144364	0.001296	0.006300	0.431597	0.000000	0.010568		0.028414	0.028016	0.000997
168	LAWA120S2	0.057972	0.092736	0.046916	0.003287	0.000199	0.000299	0.050103	0.082775	0.000000	0.013846	0.144233	0.001295	0.007200	0.431206	0.000000	0.010559	0.000000	0.028388	0.027990	0.000996
	LAWA121S1	0.058019	0.092810	0.097097	0.003290	0.000199	0.000299	0.000000	0.082841	0.000000	0.013857	0.144350	0.001296	0.006400	0.431554	0.000000	0.010567		0.028411	0.028013	0.000997
170	LAWA121S2	0.057949	0.092698	0.096980	0.003286	0.000199	0.000299	0.000000	0.082742	0.000000	0.013840	0.144175	0.001294	0.007600	0.431032	0.000000	0.010554		0.028377	0.027979 0.028989	0.000996
	LAWA122S2 LAWA123S1	0.059074	0.096033	0.048614 0.100635	0.003287	0.000199	0.000299	0.051901	0.056185	0.000000	0.014345	0.144348	0.001295	0.006700	0.447389	0.000000	0.010958		0.029388	0.028989	0.000996
	LAWA123S1 LAWA123S2	0.059044	0.095984	0.100564	0.003286	0.000199	0.000299	0.000000	0.056157	0.000000	0.014338	0.144175	0.001293	0.007600	0.446764	0.000000	0.010900	0.00000	0.029373	0.028974	0.000996
	LAWA130	0.060252	0.089428	0.020783	0.001998	0.000200	0.002998	0.028577	0.038769	0.000000	0.011791	0.184452	0.000799	0.003300	0.460530	0.000000	0.020883		0.041367	0.031275	0.002598
	LAWA133	0.062038	0.089011	0.054845	0.005594	0.000200	0.000399	0.034865	0.004296	0.000000	0.019980	0.199800	0.000999	0.002000	0.445354	0.000000	0.019980		0.029670	0.029970	0.000999
	LAWA133S2	0.061808	0.088681	0.054642	0.005574	0.000199	0.000398	0.034736	0.004280	0.000000	0.019906	0.199059	0.000995	0.005700	0.443702	0.000000	0.019906		0.029560	0.029859	0.000995
	LAWA134 LAWA135	0.056466	0.099640 0.100919	0.020188	0.001999	0.000200	0.002898	0.056266	0.037278	0.000000	0.014991 0.015188	0.177293 0.170163	0.000799	0.002800	0.447531	0.000000	0.020288		0.029982	0.030382	0.000999
	LAWA135 LAWA136	0.056555	0.100919	0.020484	0.001898	0.000200	0.002798	0.056954	0.035771	0.000000	0.015188	0.170163	0.000699	0.002700	0.453037	0.000000	0.020484		0.030376	0.030775	0.000999
	LAWB60	0.061400	0.123600	0.118993	0.000100	0.000701	0.000801	0.000000	0.002604	0.046275	0.029748	0.065106	0.000301	0.006889	0.479378	0.000000	0.000000		0.031551	0.031551	0.001002
181	LAWB60S2	0.060954	0.122703	0.118129	0.000100	0.000696	0.000796	0.000000	0.002585	0.045939	0.029532	0.064633	0.000298	0.014100	0.475897	0.000000	0.000000		0.031322	0.031322	0.000994
	LAWB60S4	0.060836	0.122467	0.117901	0.000099	0.000695	0.000794	0.000000	0.002580	0.045851	0.029475	0.064508	0.000298	0.016000	0.474980	0.000000	0.000000		0.031262	0.031262	0.000992
	LAWB61	0.062050	0.099662	0.067078	0.000000	0.001006	0.000704	0.053099	0.002615	0.058228	0.029768	0.055010	0.000101	0.007100	0.486242	0.000000	0.013979	0.000000	0.031679	0.031679	0.000000
	LAWB61S4 LAWB62	0.061600 0.061937	0.098939 0.099481	0.066592 0.119960	0.000000	0.000998	0.000699	0.052714	0.002596	0.057806 0.058123	0.029552 0.029714	0.054611 0.054911	0.000100	0.014300 0.008900	0.482717 0.485361	0.000000	0.013878 0.013954	0.000000	0.031449	0.031449 0.031621	0.000000
	LAWB62S4	0.061350	0.098538	0.118822	0.000000	0.000994	0.000696	0.000000	0.002585	0.057572	0.029432	0.054390	0.000100	0.018300	0.480758	0.000000	0.013934		0.031321	0.031321	0.000000
	LAWB63	0.065785	0.099532	0.093506	0.000000	0.001004	0.000703	0.000000	0.002611	0.050519	0.029729	0.054938	0.000101	0.008400	0.489422	0.000000	0.013961		0.058152	0.031637	0.000000
	LAWB63S4	0.065394	0.098939	0.092949	0.000000	0.000998	0.000699	0.000000	0.002596	0.050219	0.029552	0.054611	0.000100	0.014300	0.486510	0.000000	0.013878		0.057806	0.031449	0.000000
	LAWB64	0.062069	0.099692	0.067099	0.000000	0.001006	0.000704	0.032996	0.002615	0.058246	0.029777	0.055027	0.000101	0.006800	0.486389	0.000000	0.013983	0.00000	0.051808	0.031688	0.000000
	LAWB64S0 LAWB64S4	0.062487	0.100365	0.067551 0.066612	0.000000	0.001013	0.000709	0.033219	0.002633	0.058639	0.029978	0.055398	0.000101	0.000100	0.489671 0.482863	0.000000	0.014077 0.013882		0.052157	0.031902 0.031458	0.000000
191	LAWB64S4 LAWB65	0.061619	0.098969	0.066612	0.000000	0.000999	0.000699	0.032757	0.002597	0.057824	0.029561	0.054628	0.000100	0.014000	0.482863	0.000000	0.013882	0.000000	0.051432	0.031458	0.000000
	LAWB65S4	0.061706	0.099481	0.066707	0.000000	0.001004	0.000703	0.052805	0.002600	0.043003	0.029714	0.054706	0.000100	0.012600	0.483549	0.000000	0.013934	0.000000	0.046505	0.031021	0.000000
	LAWB66	0.062088	0.099722	0.082213	0.000000	0.001006	0.000704	0.053132	0.002616	0.043169	0.029786	0.055044	0.000101	0.006500	0.486536	0.000000	0.013987	0.000000	0.031698	0.031698	0.000000
-	LAWB66S4	0.061650	0.099020	0.081634	0.000000	0.000999	0.000699	0.052757	0.002598	0.042865	0.029576	0.054656	0.000100	0.013500	0.483108	0.000000	0.013889		0.031475	0.031474	0.000000
	LAWB67	0.061888	0.099401	0.051857	0.000000	0.001003	0.000702	0.052960	0.002608	0.043030	0.029690	0.054866	0.030192	0.009700	0.484969	0.000000	0.013942		0.031596	0.031596	0.000000
	LAWB67S4	0.061606	0.098949	0.051622	0.000000	0.000999	0.000699	0.052720	0.002596	0.042835	0.029555	0.054617	0.030054	0.014200	0.482765	0.000000	0.013879	0.00000	0.031452	0.031452	0.000000
198	LAWB68	0.061975	0.084475	0.082064	0.000000	0.001005	0.000703	0.053035	0.002612	0.043091	0.029732	0.054944	0.000100	0.008300	0.485655	0.000000	0.013962	0.000000	0.046707	0.031640	0.000000

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P2O5	SO ₃	SiO ₂	SnO ₂	TiO ₂	V205	ZnO	ZrO ₂	Others
# 199	LAWB69	0.061513	0.123325	0.104621	0.000100	0.000500	0.000800	0.000000	0.002301	0.046109	0.029706	0.066213	0.000500	0.006500	0.479597	0.000000	0.000000	0.000000	0.045709	0.031506	0.001000
200	LAWB69S4	0.061178	0.123525	0.104021	0.000099	0.000497	0.000796	0.000000	0.002301	0.045859	0.029700	0.065853	0.000300	0.000500	0.476990	0.000000	0.000000	0.000000	0.045461	0.031335	0.000995
200		0.061587	0.123474	0.066293	0.000100	0.000501	0.000801	0.032546	0.002303	0.046165	0.029742	0.066293	0.000501	0.005400	0.480176	0.000000	0.000000	0.000000	0.051573	0.031535	0.001001
202	LAWB70S4	0.061159	0.122617	0.065833	0.000099	0.000497	0.000796	0.032320	0.002287	0.045845	0.029536	0.065833	0.000497	0.012300	0.476845	0.000000	0.000000	0.000000	0.051215	0.031326	0.000995
203	LAWB71	0.061624	0.108017	0.066333	0.000100	0.000501	0.000802	0.032565	0.002305	0.046193	0.029760	0.066333	0.000501	0.004800	0.480466	0.000000	0.015531	0.000000	0.051604	0.031563	0.001002
204	LAWB71S4	0.061141	0.107171	0.065813	0.000099	0.000497	0.000795	0.032310	0.002287	0.045831	0.029527	0.065813	0.000497	0.012600	0.476700	0.000000	0.015410	0.000000	0.051199	0.031316	0.000994
205	LAWB72	0.061543	0.123387	0.071250	0.000100	0.000500	0.000801	0.032523	0.002302	0.041129	0.029721	0.066247	0.000500	0.006100	0.479838	0.000000	0.000000	0.000000	0.051536	0.031522	0.001001
206	LAWB72S4	0.061178	0.122654	0.070827	0.000100	0.000497	0.000796	0.032330	0.002288	0.040885	0.029545	0.065853	0.000497	0.012000	0.476990	0.000000	0.000000	0.000000	0.051230	0.031335	0.000995
207	LAWB73	0.061931	0.099471	0.093449	0.000000	0.001004	0.000703	0.019071	0.002610	0.050489	0.029711	0.054905	0.000100	0.009000	0.485312	0.000000	0.013952	0.000000	0.046674	0.031618	0.000000
208 209	LAWB73S4 LAWB74	0.061619 0.062183	0.098969 0.101084	0.092977 0.087277	0.000000	0.000999	0.000699	0.018975	0.002597	0.050234	0.029561	0.054628	0.000100	0.014000	0.482863 0.487281	0.000000	0.013882	0.000000	0.046439	0.031458	0.000000
209	LAWB74S4	0.062183	0.101084	0.087277	0.000000	0.001008	0.000705	0.019149	0.002620	0.053314	0.029831	0.053128	0.000101	0.007700	0.487281	0.000000	0.014009	0.000000	0.046864	0.031746	0.000000
210	LAWB7434 LAWB75	0.061869	0.102833	0.086837	0.000000	0.001003	0.000702	0.019052	0.002390	0.053045	0.015041	0.054849	0.000100	0.014300	0.484822	0.000000	0.013938	0.000000	0.046627	0.031449	0.000000
212	LAWB75S4	0.061575	0.117362	0.086424	0.000000	0.000998	0.000699	0.018961	0.002595	0.052793	0.013041	0.054589	0.000100	0.014700	0.482520	0.000000	0.013930	0.000000	0.046406	0.031436	0.000000
213	LAWB76	0.061926	0.118032	0.086918	0.000000	0.001004	0.000702	0.019070	0.002609	0.058113	0.015055	0.054901	0.000100	0.009075	0.494208	0.000000	0.000000	0.000000	0.046671	0.031616	0.000000
214	LAWB76S4	0.061506	0.117231	0.086328	0.000000	0.000997	0.000698	0.018940	0.002592	0.057718	0.014953	0.054528	0.000100	0.015800	0.490854	0.000000	0.000000	0.000000	0.046354	0.031401	0.000000
215	LAWB77	0.061599	0.123499	0.066307	0.000100	0.000501	0.000801	0.022035	0.002304	0.041166	0.029748	0.066307	0.000501	0.005200	0.480272	0.000000	0.015525	0.000000	0.051583	0.031551	0.001001
216	LAWB77S4	0.061197	0.122692	0.065873	0.000099	0.000498	0.000796	0.021891	0.002289	0.040897	0.029553	0.065873	0.000498	0.011700	0.477134	0.000000	0.015424	0.000000	0.051246	0.031345	0.000995
217	LAWB78	0.061605	0.123511	0.071322	0.000100	0.000501	0.000801	0.032556	0.002304	0.030552	0.029751	0.097967	0.000501	0.005100	0.470805	0.000000	0.000000	0.000000	0.040068	0.031554	0.001002
218	LAWB78S4	0.061345	0.122990	0.071021	0.000100	0.000499	0.000798	0.032418	0.002294	0.030423	0.029625	0.097554	0.000499	0.009300	0.468817	0.000000	0.000000	0.000000	0.039899	0.031421	0.000997
219 220	LAWB79 LAWB79S4	0.061562	0.123424 0.122965	0.071272	0.000100	0.000500	0.000801	0.032533 0.032412	0.002302	0.035135	0.029730	0.086287	0.000501	0.005800	0.477480	0.000000	0.000000	0.000000	0.040040	0.031532	0.001001 0.000997
220	LAWB/9S4 LAWB80	0.061333	0.122965	0.071006	0.000100	0.000499	0.000798	0.032412	0.002294	0.035004	0.029619	0.085966	0.000499	0.009500	0.479934	0.000000	0.000000	0.000000	0.039891	0.031414	0.000997
221	LAWB80S4	0.061330	0.123412	0.071203	0.000100	0.000300	0.000797	0.032329	0.019918	0.033132	0.029727	0.065953	0.000300	0.003800	0.479934	0.000000	0.000000	0.000000	0.039851	0.031329	0.000996
223	LAWB81	0.061550	0.123399	0.070755	0.000100	0.000501	0.000801	0.032526	0.002302	0.042634	0.029509	0.066253	0.000501	0.006000	0.479886	0.000000	0.000000	0.000000	0.050040	0.031505	0.001001
224	LAWB81S4	0.061215	0.122729	0.070870	0.000100	0.000498	0.000796	0.032350	0.002289	0.042403	0.029563	0.065893	0.000498	0.011400	0.477279	0.000000	0.000000	0.000000	0.049768	0.031354	0.000995
225	LAWB82	0.061624	0.101003	0.071343	0.000100	0.000501	0.000802	0.095191	0.002305	0.042686	0.014830	0.066333	0.000501	0.004800	0.455315	0.000000	0.000000	0.000000	0.050101	0.031563	0.001002
226	LAWB82S4	0.061258	0.100404	0.070920	0.000100	0.000498	0.000797	0.094627	0.002291	0.042433	0.014742	0.065940	0.000498	0.010700	0.452616	0.000000	0.000000	0.000000	0.049804	0.031376	0.000996
227	LAWB83	0.061831	0.100350	0.067834	0.000100	0.000400	0.000600	0.052927	0.001901	0.043122	0.029715	0.054728	0.000400	0.004900	0.486244	0.000000	0.013907	0.000000	0.048424	0.031616	0.001001
228	LAWB83S4	0.061489	0.099796	0.067459	0.000100	0.000398	0.000597	0.052634	0.001890	0.042883	0.029551	0.054425	0.000398	0.010400	0.483557	0.000000	0.013830	0.000000	0.048157	0.031441	0.000995
229	LAWB84	0.061868	0.100411	0.066874	0.000100	0.000400	0.000601	0.052959	0.001902	0.044049	0.029733	0.054760	0.000400	0.004400	0.486538	0.000000	0.013915	0.000000	0.048454	0.031635	0.001001
230	LAWB84S4 LAWB85	0.061458 0.061837	0.099745	0.066431	0.000099	0.000398	0.000597	0.052607	0.001890	0.043757	0.029536	0.054398	0.000398	0.011000	0.483312	0.000000	0.013823	0.000000	0.048132	0.031425	0.000994
231	LAWB85S4	0.061837	0.113270	0.052556	0.000100	0.000400	0.000597	0.052655	0.001901	0.043120	0.029718	0.054447	0.000400	0.004900	0.480293	0.000000	0.013909	0.000000	0.048429	0.031019	0.000995
232	LAWB86	0.061881	0.124262	0.057375	0.000100	0.000401	0.000601	0.052969	0.001902	0.043557	0.029739	0.054772	0.000401	0.004300	0.486635	0.000000	0.000000	0.000000	0.048463	0.031641	0.001001
234	LAWB86S4	0.061514	0.123526	0.057035	0.000100	0.000398	0.000597	0.052655	0.001891	0.043299	0.029563	0.054447	0.000398	0.010200	0.483752	0.000000	0.000000	0.000000	0.048176	0.031454	0.000995
235	LAWB89	0.061821	0.100334	0.067823	0.000100	0.000400	0.000600	0.052918	0.001901	0.050017	0.029710	0.040814	0.000400	0.005060	0.493169	0.000000	0.013905	0.000000	0.048417	0.031611	0.001000
236	LAWB89S4	0.061340	0.099554	0.067296	0.000099	0.000397	0.000595	0.052506	0.001886	0.049628	0.029479	0.040496	0.000397	0.012800	0.489332	0.000000	0.013797	0.000000	0.048040	0.031365	0.000993
237	LAWB90	0.061878	0.100426	0.067885	0.000100	0.000401	0.000601	0.052967	0.001902	0.036145	0.029737	0.068786	0.000401	0.004150	0.479602	0.000000	0.013917	0.000000	0.048461	0.031640	0.001001
238	LAWB91	0.061905	0.100471	0.067916	0.000100	0.000401	0.000601	0.052990	0.001903	0.029250	0.029751	0.087349	0.000401	0.003700	0.468199	0.000000	0.013924	0.000000	0.048483	0.031654	0.001002
239	LAWB91S4	0.061695	0.100129	0.067684	0.000100	0.000399	0.000599	0.052810	0.001897	0.029150	0.029649	0.087051	0.000399	0.007100	0.466601	0.000000	0.013876	0.000000	0.048317	0.031546	0.000998
240 241	LAWB92 LAWB92S4	0.061868	0.100411 0.100199	0.067875	0.000100	0.000400	0.000601	0.052959	0.001902	0.022225	0.029733	0.101212	0.000400	0.004300	0.461009	0.000000	0.013915	0.000000	0.048454	0.031635	0.001001
241	LAWB9254 LAWB93	0.061738	0.100199	0.067861	0.000100	0.000400	0.000399	0.052948	0.001898	0.022178	0.029870	0.047843	0.000400	0.008400	0.489843	0.000000	0.013880	0.000000	0.048331	0.031508	0.000999
243	LAWB93S4	0.061402	0.099655	0.067364	0.000099	0.000397	0.000596	0.052560	0.001902	0.046300	0.029509	0.047492	0.000397	0.011800	0.486251	0.000000	0.013913	0.000000	0.048089	0.031397	0.000994
244	LAWB94	0.062068	0.100735	0.068094	0.000100	0.000402	0.000603	0.053130	0.001908	0.053833	0.029829	0.024707	0.000402	0.005000	0.503878	0.000000	0.013960	0.000000	0.048610	0.031737	0.001004
245	LAWB94S4	0.061532	0.099865	0.067506	0.000100	0.000398	0.000597	0.052670	0.001892	0.053367	0.029571	0.024493	0.000398	0.013600	0.499522	0.000000	0.013840	0.000000	0.048190	0.031463	0.000996
246	LAWB95	0.061596	0.099968	0.067576	0.000100	0.000399	0.000598	0.052725	0.001894	0.057509	0.029602	0.033688	0.000399	0.004600	0.494760	0.000000	0.013854	0.000000	0.048240	0.031495	0.000997
247	LAWB95S4	0.061057	0.099095	0.066985	0.000099	0.000395	0.000593	0.052264	0.001877	0.057007	0.029343	0.033394	0.000395	0.013300	0.490436	0.000000	0.013733	0.000000	0.047819	0.031220	0.000988
248	C21REV2	0.061249	0.100581	0.064152	0.001101	0.000200	0.000500	0.064352	0.001401	0.027322	0.015012	0.119696	0.001101	0.002900	0.467775	0.000000	0.011209	0.000000	0.030224	0.030224	0.001001
249 250	C22AN107	0.061012	0.100720	0.051110	0.000800	0.000200	0.001501	0.055911	0.000900	0.025105	0.015103	0.144229	0.001200	0.002700	0.465794	0.000000	0.011402	0.000000	0.030606	0.030206	0.001501
250	LAWC26 LAWC26S2	0.061213 0.060882	0.132627 0.132391	0.064113 0.063663	0.001100	0.000200	0.000500	0.000100	0.001400	0.027306	0.015003	0.119624	0.001100	0.003500	0.499600	0.000000	0.011202 0.011124	0.000000	0.030206	0.030206	0.001000
251	LAWC2652 LAWC27	0.060882	0.132391	0.063663	0.001192	0.000199	0.000596	0.000099	0.001490	0.027213	0.014997	0.117990	0.001192	0.009400	0.496591	0.000000	0.011124	0.000000	0.029994	0.029994	0.000993
252	LAWC27S2	0.060993	0.121851	0.085270	0.001099	0.000199	0.000597	0.0000099	0.001399	0.027263	0.014994	0.119332	0.001100	0.007600	0.486748	0.000000	0.011193	0.000000	0.030188	0.030188	0.000995
255	LAWC28	0.061169	0.100450	0.128136	0.001099	0.000200	0.000500	0.000100	0.001399	0.027286	0.014993	0.119540	0.001099	0.004300	0.467165	0.000000	0.011194	0.000000	0.030185	0.030185	0.001000
255	LAWC28S2	0.060771	0.100129	0.127789	0.001190	0.000198	0.000595	0.000099	0.001487	0.027164	0.014970	0.117776	0.001190	0.011000	0.463668	0.000000	0.011103	0.000000	0.029940	0.029940	0.000991
256	LAWC29	0.065500	0.100500	0.096200	0.001100	0.000200	0.000500	0.000100	0.001400	0.027300	0.015000	0.119600	0.001100	0.003700	0.471800	0.000000	0.011200	0.000000	0.053600	0.030200	0.001000
257	LAWC29S2	0.065138	0.099945	0.095669	0.001094	0.000199	0.000497	0.000100	0.001392	0.027149	0.014917	0.118940	0.001094	0.009200	0.469196	0.000000	0.011138	0.000000	0.053304	0.030033	0.000995
258	LAWC30	0.061219	0.100530	0.064119	0.001100	0.000200	0.000500	0.041012	0.001401	0.027308	0.015005	0.119636	0.001100	0.003400	0.467541	0.000000	0.011204	0.000000	0.053516	0.030209	0.001000
259	LAWC30S2	0.060997	0.100167	0.063888	0.001096	0.000199	0.000498	0.040864	0.001396	0.027210	0.014950	0.119204	0.001096	0.007000	0.465852	0.000000	0.011163	0.000000	0.053323	0.030100	0.000997
260	LAWC31	0.061187	0.100480	0.074085	0.001100	0.000200	0.000500	0.044291	0.001400	0.027294	0.014997	0.119576	0.001100	0.003900	0.467306	0.000000	0.011198	0.000000	0.040192	0.030194	0.001000
261	LAWC31R2 LAWC31S2	0.061187	0.100480	0.074085	0.001100	0.000200	0.000500	0.044291 0.044122	0.001400	0.027294 0.027190	0.014997	0.119576	0.001100	0.003900	0.467306	0.000000	0.011198	0.000000	0.040192	0.030194	0.001000
262 263	LAWC31S2 LAWC32	0.060954	0.100097	0.073802	0.001096	0.000199	0.000498	0.044122	0.001394	0.027190	0.014940	0.119120	0.001096	0.007700	0.465523	0.000000	0.011155	0.000000	0.040039	0.030079	0.000996
263	LAWC32 LAWC32S2	0.064900	0.100500	0.090400	0.001100	0.000200	0.000300	0.024200	0.001400	0.027300	0.015000	0.119600	0.001100	0.003800	0.467400	0.000000	0.011200	0.000000	0.040200	0.030200	0.001000
204	14111 03262	0.004529	0.079943	0.007003	0.001094	0.000199	0.000477	0.024001	0.001372	0.02/144	0.014714	0.110710	0.001074	0.009500	0.404723	0.000000	0.011130	0.000000	0.037770	0.050027	0.000774

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P_2O_5	SO ₃	SiO ₂	SnO ₂	TiO ₂	V2O5	ZnO	ZrO ₂	Others
265	LAWC33	0.061462	0.101001	0.069470	0.001101	0.000200	0.000500	0.044445	0.001401	0.027528	0.015115	0.120121	0.001101	0.003700	0.469772	0.000000	0.011311	0.000000	0.040441	0.030330	0.001001
266	LAWA44(Crucible)	0.062025	0.089036	0.019908	0.006503	0.000200	0.000100	0.069828	0.005002	0.000000	0.019908	0.200080	0.000300	0.001000	0.445678	0.000000	0.019908	0.000000	0.029612	0.029912	0.001000
267	A88AP101R1	0.060957	0.098231	0.019986	0.001299	0.000200	0.002298	0.055461	0.021385	0.000000	0.014790	0.199860	0.000699	0.002300	0.440991	0.000000	0.019986	0.000000	0.029579	0.029979	0.001999
268	A88Si+15	0.061412	0.094819	0.019304	0.001400	0.000200	0.002501	0.053511	0.023705	0.000000	0.014303	0.221844	0.000800	0.002900	0.425585	0.000000	0.019304	0.000000	0.028506	0.028906	0.001000
	A88Si-15	0.060548	0.102182	0.020717	0.001101	0.000100	0.002001	0.057646	0.018815	0.000000	0.015412	0.176742	0.000600	0.001900	0.458668	0.000000	0.020717	0.000000	0.030725	0.031125	0.001001
	LAWB96	0.061795	0.100291	0.067794	0.000100	0.000400	0.000600	0.052895	0.001900	0.043096	0.029697	0.054695	0.000400	0.005489	0.485956	0.000000	0.013899	0.000000	0.048396	0.031597	0.001000
271 272	LAWC22(Crucible) C22AN107	0.060651 0.061055	0.100419 0.100791	0.051059 0.051146	0.000500	0.000100	0.003397 0.001401	0.054157 0.055850	0.000799 0.000901	0.024980 0.025123	0.015088	0.143884 0.144330	0.000699	0.004600	0.465726 0.466121	0.000000	0.011391 0.011410	0.000000	0.030675 0.030628	0.030276	0.001599 0.001001
272	C22Si+15	0.060327	0.098182	0.031140	0.000801	0.000200	0.001401	0.053830	0.000901	0.023123	0.013114	0.144330	0.001201	0.002700	0.454153	0.000000	0.011410	0.000000	0.030628	0.030227	0.001001
273	C22Si-15	0.061731	0.103252	0.052326	0.000700	0.000200	0.001301	0.057029	0.000700	0.025713	0.015508	0.125663	0.001200	0.002300	0.477439	0.000000	0.011706	0.000000	0.031416	0.031016	0.001000
275	A1-AN105R2(LAWA44)	0.061031	0.088385	0.019643	0.011722	0.000170	0.000030	0.068682	0.004411	0.000000	0.019643	0.206655	0.000000	0.001700	0.438255	0.000000	0.019643	0.000000	0.029175	0.029395	0.001460
276	A1C1-1	0.060875	0.091252	0.027417	0.009132	0.000150	0.000860	0.065006	0.003471	0.006232	0.018494	0.191656	0.000330	0.002100	0.444757	0.000000	0.017584	0.000000	0.029507	0.029557	0.001620
277	A1C1-2	0.060722	0.094139	0.035208	0.006543	0.000130	0.001691	0.061332	0.002541	0.012477	0.017339	0.176702	0.000660	0.002300	0.451345	0.000000	0.015538	0.000000	0.029836	0.029736	0.001761
278	A1C1-3	0.060552	0.096985	0.042975	0.003951	0.000110	0.002521	0.057641	0.001611	0.018707	0.016186	0.161658	0.000990	0.002900	0.457745	0.000000	0.013475	0.000000	0.030161	0.029901	0.001931
279 280	C1-AN107(LAWC22)	0.060418	0.099905	0.050788	0.001361	0.000090	0.003353	0.053991 0.055348	0.000681	0.024954	0.015044	0.146730 0.184748	0.001311	0.002800	0.464483	0.000000	0.011431	0.000000	0.030499	0.030079	0.002082
280	A2-AP101(LAWA126) A2B1-1	0.056209	0.098278	0.019884	0.004243	0.000210	0.003502	0.055348	0.038136	0.000000	0.014770	0.184748	0.000771	0.003330	0.440175	0.000000	0.019874	0.000000	0.029400	0.029631	0.001491
281	A2B1-2	0.058982	0.099245	0.043786	0.003224	0.000240	0.002833	0.054077	0.019981	0.021503	0.022284	0.132313	0.000591	0.003300	0.462958	0.000000	0.016918	0.000000	0.034109	0.030642	0.001502
283	A2B1-3	0.060370	0.099715	0.055734	0.001191	0.000210	0.001482	0.053432	0.010893	0.032257	0.026040	0.087291	0.000501	0.004200	0.474318	0.000000	0.015448	0.000000	0.043660	0.031146	0.001502
	B1-AZ101(LAWB83)	0.061758	0.100197	0.067696	0.000170	0.000340	0.000801	0.052787	0.001802	0.043015	0.029798	0.054789	0.000411	0.005200	0.485685	0.000000	0.013968	0.000000	0.048411	0.031660	0.001512
285	A3-AN104(LAWA137)	0.060531	0.099209	0.050290	0.007871	0.000210	0.000060	0.053670	0.003281	0.024785	0.014803	0.146438	0.001120	0.003500	0.460968	0.000000	0.011342	0.000000	0.030416	0.030016	0.001490
	A3C2-1	0.060593	0.097983	0.056110	0.006884	0.000190	0.000330	0.049257	0.002691	0.026724	0.014838	0.139816	0.001241	0.003800	0.464002	0.000000	0.011206	0.000000	0.032798	0.030016	0.001521
287	A3C2-2	0.060663	0.096771	0.061945	0.005886	0.000160	0.000601	0.044847	0.002092	0.028670	0.014865	0.133209	0.001351	0.004000	0.467118	0.000000	0.011072	0.000000	0.035187	0.030021	0.001542
288 289	A3C2-3 C2-AN102C35	0.060682	0.095476	0.067737	0.004883	0.000140	0.000871	0.040408	0.001501	0.030601 0.032539	0.014880	0.126488 0.119835	0.001471	0.004900	0.469836	0.000000	0.010928	0.000000	0.037536	0.030001	0.001661 0.001682
	LAWC35S2	0.060733	0.094232	0.073554	0.003883	0.000120	0.001141	0.035982	0.000911	0.032539	0.014903	0.119835	0.001591	0.005400	0.472794	0.000000	0.010789	0.000000	0.039915	0.029996	0.001682
-/ 4	WVG-G-10B	0.065822	0.089300	0.019106	0.006202	0.000100	0.000300	0.028992	0.004902	0.000000	0.019106	0.221474	0.000700	0.002368	0.481302	0.000000	0.019106	0.000000	0.039732	0.029888	0.002591
	WVF-G-81A	0.057505	0.093308	0.020702	0.004900	0.000200	0.000200	0.072406	0.003900	0.000000	0.020702	0.176914	0.000600	0.002019	0.461938	0.000000	0.020702	0.000000	0.030702	0.031002	0.002300
	WVF-G-21B	0.060816	0.098026	0.019905	0.001300	0.000200	0.002301	0.055415	0.021306	0.000000	0.014804	0.200154	0.000700	0.003134	0.440117	0.000000	0.019905	0.000000	0.029508	0.029908	0.002501
	WVE-G-108A	0.061313	0.094521	0.019204	0.001400	0.000200	0.002501	0.053412	0.023605	0.000000	0.014203	0.221848	0.000800	0.003384	0.424392	0.000000	0.019204	0.000000	0.028506	0.028806	0.002701
	WVE-G-27D	0.060407	0.101812	0.020703	0.001100	0.000100	0.002000	0.057507	0.018802	0.000000	0.015302	0.176821	0.000600	0.002882	0.457054	0.000000	0.020702	0.000000	0.030704	0.031104	0.002400
	WVB-G-124B	0.060359	0.099833	0.050566	0.003298	0.000200	0.000300	0.053964	0.002598	0.024983	0.014890	0.144302	0.001299	0.003873	0.464786	0.000000	0.011392	0.000000	0.030579	0.030180	0.002598
	WVB-G-93A WVA-G-100B	0.062575	0.097062	0.049181 0.051765	0.003699	0.000200	0.000300	0.052579 0.055263	0.002899	0.024291 0.025483	0.014594	0.161436	0.001499	0.004192 0.003466	0.452522 0.476682	0.000000	0.011096	0.000000	0.029688	0.029388	0.002799
	WVJ-G-100D	0.061663	0.102132	0.067669	0.002998	0.000200	0.000200	0.052754	0.002299	0.023483	0.013230	0.054656	0.0001199	0.005489	0.485193	0.000000	0.013914	0.000000	0.048349	0.030879	0.002598
- / /	WVK-G-41A	0.062069	0.099010	0.066874	0.000100	0.000400	0.000701	0.052358	0.002203	0.042647	0.029333	0.062069	0.000400	0.005995	0.480234	0.000000	0.013815	0.000000	0.047853	0.031235	0.002703
	WVN-G-110A	0.061274	0.099521	0.067181	0.000100	0.000400	0.000300	0.052464	0.001302	0.042752	0.029536	0.058571	0.000100	0.005995	0.484087	0.000000	0.013817	0.000000	0.048259	0.031538	0.002803
	WVO-G-44B	0.061960	0.100597	0.067965	0.000100	0.000300	0.000200	0.053051	0.001001	0.043041	0.029829	0.050749	0.000100	0.005043	0.489171	0.000000	0.014013	0.000000	0.048647	0.031931	0.002302
	WVD-G-25A	0.060275	0.098060	0.049879	0.000900	0.000200	0.001599	0.054677	0.001000	0.024390	0.014694	0.162133	0.001299	0.003711	0.453613	0.000000	0.011095	0.000000	0.029788	0.029388	0.003299
	WVC-G-107B	0.061546	0.103077	0.052239	0.000701	0.000200	0.001301	0.056943	0.000701	0.025719	0.015412	0.126095	0.001001	0.003050	0.476658	0.000000	0.011709	0.000000	0.031324	0.030923	0.001401
	WVH-G-57B WVG-G-88D	0.061112	0.100319 0.098282	0.074014 0.072487	0.001100	0.000200	0.000500	0.044208 0.043292	0.001400	0.027305 0.026695	0.015003	0.119022 0.134475	0.001000	0.004113	0.466788 0.457115	0.000000	0.011202	0.000000	0.040108	0.030106	0.002500
	WVH-G-13A	0.061069	0.102435	0.075452	0.0001300	0.000200	0.000500	0.045072	0.001300	0.027882	0.014097	0.103535	0.0001200	0.003630	0.476399	0.000000	0.011393	0.000000	0.039293	0.029494	0.002099
	LAWB53FCC	0.061250	0.100776	0.067788	0.000101	0.001106	0.000603	0.053707	0.002313	0.058836	0.030173	0.050288	0.000101	0.003300	0.491611	0.000000	0.014081	0.000000	0.031983	0.031983	0.000000
	LAWB87	0.064957	0.130214	0.061148	0.000100	0.000501	0.000501	0.050321	0.002005	0.047014	0.014134	0.050121	0.000201	0.005700	0.492188	0.000000	0.000000	0.000000	0.048918	0.031977	0.000000
	LAWB87S	0.064604	0.129507	0.060816	0.000100	0.000499	0.000498	0.050048	0.001994	0.046758	0.014057	0.049849	0.000199	0.011100	0.489515	0.000000	0.000000	0.000000	0.048652	0.031804	0.000000
	LAWB88	0.064885	0.130070	0.079905	0.000100	0.000501	0.000501	0.022029	0.002003	0.046961	0.014118	0.050065	0.000200	0.006800	0.501056	0.000000	0.000000	0.000000	0.048864	0.031942	0.000000
	LAWB88S	0.064310	0.128918	0.079197	0.000099	0.000496	0.000496	0.021834	0.001985	0.046545	0.013993	0.049622	0.000199	0.015600	0.496616	0.000000	0.000000	0.000000	0.048431	0.031659	0.000000
	LB88SRCC-2 LAWA125	0.065000	0.129700	0.079800	0.000100	0.000600	0.000500	0.022000 0.053873	0.002000	0.046900	0.014100	0.050000	0.000200	0.008000	0.500400 0.428885	0.000000	0.000000	0.000000	0.048800	0.031900	0.000000
	LAWA125 LAWA126	0.056372	0.093432	0.019390	0.002199	0.000200	0.002998	0.055372	0.038780	0.000000	0.014393	0.199900	0.000899	0.003100	0.440979	0.000000	0.019390	0.000000	0.029585	0.029085	0.002799
	LAWA126R3	0.056449	0.098131	0.019890	0.001999	0.000200	0.002998	0.055550	0.038765	0.000000	0.014793	0.184434	0.000799	0.003300	0.441801	0.000000	0.019990	0.000000	0.029583	0.029883	0.002399
	PNLA126CC	0.056383	0.098171	0.019894	0.001999	0.000200	0.002999	0.055383	0.038788	0.000000	0.014796	0.184545	0.000800	0.002900	0.441067	0.000000	0.019994	0.000000	0.029591	0.029891	0.002599
	LAWA127R1	0.056500	0.102000	0.020700	0.001800	0.000200	0.002700	0.057600	0.034300	0.000000	0.015400	0.163100	0.000700	0.001800	0.458200	0.000000	0.020700	0.000000	0.030700	0.031100	0.002500
	LAWA127R2	0.056583	0.102169	0.020694	0.001799	0.000200	0.002699	0.057683	0.034290	0.000000	0.015395	0.163051	0.000700	0.002100	0.458862	0.000000	0.020794	0.000000	0.030791	0.031190	0.001000
	LAWA128	0.060270	0.070665	0.020790	0.001999	0.000200	0.002998	0.057871	0.038781	0.000000	0.011794	0.184507	0.000800	0.003000	0.460669	0.000000	0.020889	0.000000	0.030884	0.031284	0.002599
-	LAWA128R1	0.060258	0.070650	0.020785	0.001999	0.000200	0.002998	0.057859	0.038773	0.000000	0.011792	0.184471	0.000799	0.003200	0.460577	0.000000	0.020885	0.000000	0.030878	0.031278	0.002598
	LAWA129 LAWA129R1	0.074655	0.085149	0.035279	0.001999	0.000200	0.002998	0.000000	0.038777	0.000000	0.011793	0.184489	0.000800	0.003100	0.475114 0.475114	0.000000	0.020887	0.000000	0.030881	0.031281	0.002598
	LAWA129K1 LB83PNCC	0.062144	0.100471	0.067948	0.000000	0.000200	0.002998	0.052937	0.001801	0.043130	0.029921	0.053738	0.000500	0.003100	0.473114	0.000000	0.020887	0.000000	0.030881	0.031281	0.002398
	LB83PNCC	0.062144	0.100471	0.067948	0.000000	0.000300	0.000801	0.052937	0.001801	0.043130	0.029921	0.053738	0.000500	0.004900	0.487143	0.000000	0.014010	0.000000	0.048534	0.031722	0.000000
	LAWA44R10	0.062031	0.089045	0.019910	0.006503	0.000200	0.000100	0.069835	0.005003	0.000000	0.019910	0.200100	0.000300	0.000900	0.445723	0.000000	0.019910	0.000000	0.029615	0.029915	0.001000
	LA44PNCC	0.061731	0.088744	0.019810	0.005703	0.000700	0.002201	0.069635	0.002601	0.000000	0.019710	0.200100	0.003502	0.002100	0.444723	0.000000	0.019710	0.000000	0.029115	0.029915	0.000000
	LA44PNCC	0.061731	0.088744	0.019810	0.005703	0.000700	0.002201	0.069635	0.002601	0.000000	0.019710	0.200100	0.003502	0.002100	0.444723	0.000000	0.019710	0.000000	0.029115	0.029915	0.000000
	LA137SRCCC	0.060506	0.099110	0.050305	0.007601	0.000300	0.000200	0.053605	0.006201	0.024803	0.014801	0.146415	0.001100	0.002700	0.460646	0.000000	0.011301	0.000000	0.030403	0.030003	0.000000
330	A3-AN104	0.060531	0.099209	0.050290	0.007871	0.000210	0.000060	0.053670	0.003281	0.024785	0.014803	0.146438	0.001120	0.003500	0.460968	0.000000	0.011342	0.000000	0.030416	0.030016	0.001490

#Glass IDAlgOsBrOsCaOC1Cr2OsFFe2OsK5OLigOMagONagOPrOsSO3SO3SO2SO2TTO3V4331LAWM10.0936160.0003610.0000810.0000750.0803880.0401490.0451510.0050160.0502430.0007160.0050660.0000000.0466550.0000000.0466550.0000000.0461550.0000000.0001250.0002160.0002160.0000750.0803880.0411490.0451500.0501670.0501670.0501670.0050600.4115410.0000000.0000000.0000000.0000010.0001250.0002000.0000000.0000010.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00001250.000000	000 0.050242 000 0.050167 000 0.050167 000 0.050222 000 0.050222 000 0.050222 000 0.050222 000 0.050222 000 0.050222 000 0.050022 000 0.050152 000 0.050152 000 0.050152 000 0.050080 000 0.050020 000 0.050020 000 0.050022 000 0.050033 000 0.050035 000 0.050035 000 0.050032 000 0.050032 000 0.050032	ZrO2 Oth 2 0.00000 0.0002 2 0.000000 0.0000 3 0.000000 0.0000 5 0.040145 0.0000 6 0.040178 0.0000 5 0.040178 0.0000 6 0.040178 0.0000 0.040018 0.00000 0.0000 0.040010 0.0000 0.0000 0.040020 0.000 0.0000 0.040020 0.000 0.0000 0.040016 0.0000 0.0000 0.040016 0.0000 0.0000 0.040016 0.00000 0.00000 0.000000 0.00000 0.00000
322 LAWM2 0.035117 0.060200 0.100333 0.008029 0.000228 0.000000 0.044863 0.050167 0.005066 0.006700 0.471566 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000520 0.000000 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005500 0.005200 0.005500 0.005200 0.005200 0.005200 0.005200 0.000080 0.000000 0.00313 0.00 335 LAWM4 0.054454 0.066956 0.100220 0.000001 0.000000 0.050010 0.000012 0.003200 0.000000 0.050015 0.05015 0.05015 0.05015 0.05015 0.05015 0.05015 0.05015 0.05010 0.002000 0.000000 0.000000 0.000000 0.05015 0.05015 0.05015 0.05015 0.05015 0.05015 0.05015 0.05015 0.05015	000 0.050167 000 0.010035 000 0.010035 000 0.050222 000 0.010045 000 0.010045 000 0.010045 000 0.010045 000 0.010045 000 0.050152 0000 0.050082 0000 0.050082 0000 0.050082 0000 0.050082 0000 0.050082 0000 0.050033 0000 0.050033 0000 0.050033 0000 0.050033 0000 0.050033 0000 0.050032	0.000000 0.00000 0.040145 0.00000 0.040145 0.00000 0.040178 0.00000 0.040178 0.00000 0.040182 0.00000 0.040182 0.00000 0.040121 0.00000 0.040121 0.00000 0.0400120 0.00000 0.040000 0.00000 0.040000 0.00000 0.040016 0.00000 0.040016 0.00000 0.040016 0.00000
333 LAWM3 0.090327 0.060218 0.100364 0.000075 0.080291 0.000000 0.044863 0.05112 0.115217 0.000125 0.006400 0.414551 0.000000 0.000000 0.000000 0.030133 0.000000 0.000000 0.05222 0.000125 0.000260 0.415914 0.000000 0.030133 0.00 335 LAWM6 0.090049 0.060273 0.05792 0.000201 0.0000051 0.080015 0.045020 0.000000 0.050217 0.000217 0.000000 0.030133 0.00 336 LAWM6 0.090018 0.106121 0.000201 0.000001 0.000075 0.080206 0.000000 0.050010 0.000125 0.000200 0.000000 0.030016 0.000000 0.030016 0.000010 0.000000 0.025873 0.050111 0.050121 0.000210 0.000000 0.030085 0.000000 0.030085 0.000000 0.030085 0.000000 0.03085 0.000000 0.046882 0.00498 0.002400 0.446248 0.000000 0.030016 0.000000 0.044624 0.002400 0.446248 0.000000 <	000 0.010036 000 0.050222 000 0.010045 000 0.010042 000 0.010022 000 0.010022 000 0.010022 000 0.050182 000 0.050182 000 0.050182 000 0.050082 000 0.050082 000 0.050082 000 0.050082 000 0.049995 000 0.050032 000 0.050032 000 0.050032	0.040178 0.000 0.040178 0.000 0.00000 0.000 0.00000 0.000 0.00000 0.000 0.00000 0.000 0.04012 0.0000 0.04004 0.000 0.04004 0.000 0.040020 0.000 0.040016 0.000 0.040016 0.0000 0.000000 0.000 0.000000 0.000 0.000000 0.000
335 LAWM5 0.090409 0.060273 0.057962 0.000081 0.000075 0.080364 0.044505 0.000000 0.050227 0.000125 0.003200 0.448008 0.000000 0.030166 0.00 336 LAWM7 0.054454 0.069596 0.100223 0.000230 0.000075 0.080226 0.000000 0.050115 0.000125 0.000125 0.001270 0.51414 0.000000 0.030085 0.00 338 LAWM8 0.090273 0.130394 0.064495 0.000214 0.000299 0.00000 0.020863 0.051151 0.051152 0.00700 0.446248 0.00000 0.00000 0.00000 0.000000 0.000000 0.000090 0.000090 0.000090 0.000090 0.000493 0.002400 0.449748 0.000000 0.000000 0.000000 0.000000 0.000000 0.000090 0.013766 0.002300 0.41011 0.035005 0.000000 0.000295 0.002000 0.000000 0.000000 0.000000 0.000250 0.002300 0.41010 0.000200 0.400000 0.002300 0.41010 0.000230 0.41101 0.0	000 0.010045 000 0.010025 000 0.010025 000 0.50152 000 0.50152 000 0.500152 000 0.50025 000 0.500152 000 0.50022 000 0.50022 000 0.50035 000 0.50035 000 0.50035 000 0.50035 000 0.50035 000 0.50035 000 0.50032	0.040182 0.000 0.000000 0.000 0.000000 0.000 0.000000 0.000 0.04004121 0.000 0.040044 0.000 0.000000 0.000 0.040044 0.000 0.040004 0.000 0.000000 0.000 0.000000 0.000 0.000000 0.000 0.000000 0.000 0.000000 0.000 0.000000 0.000
336 LAWM6 0.090018 0.106121 0.100020 0.000081 0.000075 0.080016 0.040000 0.050110 0.000125 0.003200 0.400080 0.000000 0.030066 0.00011 337 LAWM7 0.054454 0.0664455 0.000211 0.000007 0.080226 0.000000 0.020000 0.050111 0.050141 0.000125 0.007000 0.51471 0.000000 <	000 0.010002 000 0.010028 000 0.050152 000 0.050080 000 0.010010 000 0.010010 000 0.010010 000 0.010010 000 0.010010 000 0.021604 000 0.049995 000 0.050035 000 0.050035 000 0.050035	2 0.000000 0.0002 3 0.000000 0.0002 2 0.040121 0.0002 3 0.040024 0.0002 4 0.00000 0.0002 5 0.040020 0.0002 5 0.040020 0.0002 6 0.000000 0.0002 6 0.000000 0.0002 6 0.000000 0.0002
337 LAWM7 0.054454 0.069956 0.100283 0.00001 0.000081 0.000007 0.080226 0.000000 0.025873 0.050141 0.050142 0.000125 0.000000 0.030085 0.00000 338 LAWM8 0.090273 0.13034 0.064495 0.008015 0.003009 0.000000 0.023863 0.050151 0.050150 0.00000 0.47898 0.000000 0.47898 0.000000 0.04998 0.024040 0.497895 0.000000 0.000000 0.023005 0.000000 0.04998 0.002300 0.401701 0.000000 0.04998 0.022000 0.41701 0.000000 0.030015 0.000000 0.030015 0.000000 0.030015 0.000000 0.030015 0.000000 0.040160 0.455014 0.000000 0.01250 0.000000 0.030015 0.000000 0.030012 0.000000 0.030012 0.000000 0.030012 0.000000 0.030012 0.000000 0.030015 0.000000 0.030012 0.000000 0.030012 0.000000 0.030012 0.000000 0.040160 0.44557 0.000125 0.000000 0.030016 0.000000	000 0.010028 000 0.050152 000 0.050080 000 0.010005 000 0.010010 000 0.050020 000 0.050020 000 0.021604 000 0.049995 000 0.050035 000 0.050035	0.000000 0.0002 0.040121 0.0002 0.040064 0.00020 0.040020 0.00020 0.000000 0.00020 0.000000 0.00020 0.040016 0.00020 0.000000 0.00020 0.000000 0.00020 0.000000 0.00020 0.000000 0.00020
338 LAWM8 0.09273 0.130394 0.064495 0.003024 0.003009 0.000000 0.020863 0.050151 0.007000 0.446248 0.000000 0.030091 0.00 339 LAWM9 0.033056 0.060096 0.100161 0.008129 0.002999 0.080129 0.040064 0.023939 0.000000 0.049998 0.002400 0.447899 0.000000 0.030015 0.00 340 LAWM10 0.030055 0.100050 0.000016 0.000295 0.000000 0.040023 0.000012 0.000125 0.000000 0.486872 0.000000 0.030015 0.00 341 LAWM11 0.035007 0.000121 0.000020 0.0000075 0.053140 0.040155 0.000125 0.000200 0.486872 0.000000 0.030012 0.00 341 LAWM13 0.035007 0.000000 0.000155 0.000125 0.000300 0.219978 0.00125 0.005300 0.440948 0.000000 0.219978 0.00125 0.005300 0.140948	000 0.050152 000 0.050080 000 0.010005 000 0.010010 000 0.010010 000 0.021604 000 0.04995 000 0.059032 000 0.059035 000 0.050032	2 0.040121 0.000 0 0.040064 0.000 5 0.040020 0.000 0 0.000000 0.0000 0 0.040016 0.000 0 0.000000 0.0000 4 0.000000 0.00000 5 0.000000 0.00000
339 LAWM9 0.035056 0.060096 0.10161 0.00815 0.00219 0.002099 0.08129 0.040064 0.02339 0.00000 0.004998 0.002400 0.497899 0.00000 0.00000 0.045023 0.000000 0.013766 0.004993 0.002300 0.41701 0.000000 0.030015 0.00 341 LAWM11 0.035035 0.130131 0.094095 0.002000 0.003216 0.000007 0.053154 0.040040 0.445048 0.000000 0.142575 0.002300 0.442169 0.000000 0.000000 0.045046 0.000000 0.142575 0.004200 0.460012 0.000000 0.000000 0.000000 0.22044 0.002570 0.040000 0.442169 0.000000 0.02997 0.00 341 LAWM14 0.035097 0.000000 0.000001 0.000000 0.000000 0.00075 0.000000 0.000000 0.00125 0.005300 0.412576 0.000000 0.02997 0.00 341 LAWM15 0.089991 0.000000	000 0.050080 000 0.010005 000 0.010010 000 0.010010 000 0.010010 000 0.050020 000 0.021604 000 0.049995 000 0.09999 000 0.050035 000 0.050020	0.040064 0.000 0.040020 0.000 0.000000 0.000 0.000000 0.000 0.040016 0.000 0.000000 0.000 0.000000 0.000 0.000000 0.000
340 LAWM10 0.090045 0.130065 0.10050 0.003016 0.00295 0.00000 0.04523 0.00000 0.130766 0.004993 0.00230 0.41701 0.00000 0.030015 0.00 341 LAWM11 0.035035 0.130131 0.094095 0.000200 0.000216 0.00295 0.02310 0.040040 0.045616 0.000200 0.468072 0.000000 0.468072 0.000000 0.000000 0.042518 0.014925 0.00290 0.468072 0.000000 0.000000 0.02295 0.023109 0.04016 0.04518 0.014925 0.000200 0.468072 0.000000 0.000000 0.02297 0.00125 0.003500 0.44978 0.000000 0.000000 0.00257 0.004995 0.21978 0.00125 0.003000 0.000000 0.02997 0.00 341 LAWM15 0.089991 0.02048 0.00200 0.000075 0.065046 0.01000 0.030125 0.003200 0.434756 0.000000 0.02997 0.00 0.344 LAWM16	000 0.010005 000 0.010010 000 0.050020 000 0.021604 000 0.049995 000 0.009999 000 0.050020 000 0.050035 000 0.050020	5 0.040020 0.000 0 0.000000 0.000 0 0.040016 0.000 0 0.000000 0.000 0 0.000000 0.000 0 0.000000 0.000
341 LAWM11 0.035035 0.130131 0.094095 0.000001 0.000075 0.053154 0.04040 0.045046 0.000000 0.114916 0.000125 0.009000 0.488072 0.000000 0.000000 0.000001 0.032101 0.00295 0.023109 0.04016 0.045018 0.019708 0.142557 0.004992 0.003200 0.422169 0.000000 0.030012 0.00 343 LAWM13 0.035007 0.060012 0.100020 0.004122 0.001656 0.01542 0.080000 0.000000 0.0200495 0.122044 0.002105 0.005300 0.420188 0.000000 0.02997 0.00 344 LAWM14 0.034996 0.029949 0.00214 0.000200 0.000000 0.00070 0.004995 0.21978 0.00170 0.434756 0.00000 0.02997 0.00 345 LAWM16 0.080056 0.120084 0.02000 0.000081 0.00075 0.065026 0.020002 0.003016 0.10076 0.100076 0.00176 0.100107	000 0.010010 000 0.050020 000 0.021604 000 0.049995 000 0.009999 000 0.050035 000 0.050020	0 0.000000 0.000 0 0.040016 0.000 4 0.000000 0.000 5 0.000000 0.000
342 LAWM12 0.035014 0.130052 0.00000 0.008005 0.00216 0.002995 0.023109 0.04016 0.045018 0.019708 0.14257 0.004992 0.02300 0.422169 0.00000 0.030012 0.00 343 LAWM13 0.035007 0.066012 0.100020 0.004122 0.00156 0.00152 0.000000 0.020000 0.020000 0.220044 0.002570 0.00500 0.400081 0.000000 0.030006 0.03006 0.03 344 LAWM14 0.034996 0.059994 0.002048 0.000201 0.000295 0.000000 0.000000 0.008799 0.049959 0.219978 0.000120 0.033001 0.029997 0.0 345 LAWM15 0.080991 0.030204 0.000200 0.000005 0.065046 0.001001 0.030211 0.10007 0.00125 0.003000 0.424798 0.000000 0.025018 0.00 345 LAWM17 0.050020 0.12048 0.02004 0.002020 0.005002 0.005002 <td>000 0.050020 000 0.021604 000 0.049995 000 0.009999 000 0.050035 000 0.050020</td> <td>0.040016 0.000 4 0.000000 0.000 5 0.000000 0.000</td>	000 0.050020 000 0.021604 000 0.049995 000 0.009999 000 0.050035 000 0.050020	0.040016 0.000 4 0.000000 0.000 5 0.000000 0.000
343 LAWM13 0.035007 0.060012 0.100020 0.00112 0.00156 0.001542 0.08016 0.037908 0.00000 0.220044 0.002570 0.005000 0.400081 0.000000 0.030006 0.000000 0.021978 0.000125 0.005000 0.02997 0.00 344 LAWM14 0.034996 0.05994 0.02048 0.000200 0.000000 0.000000 0.03716 0.219978 0.000125 0.005300 0.519948 0.000000 0.02997 0.00 345 LAWM15 0.08991 0.093591 0.000000 0.000015 0.056546 0.00101 0.030100 0.219978 0.00125 0.00000 0.02518 0.00 347 LAWM17 0.050020 0.120048 0.02002 0.000050 0.055026 0.020006 0.030016 0.100060 0.10060 0.003400 0.420253 0.000000 0.025015 0.00 348 LAWM18 0.080048 0.120076 0.0079976 0.019994 0.002999 0.019994 0.019094 <td>000 0.021604 000 0.049995 000 0.009999 000 0.050035 000 0.050020</td> <td>4 0.00000 0.000 5 0.00000 0.000</td>	000 0.021604 000 0.049995 000 0.009999 000 0.050035 000 0.050020	4 0.00000 0.000 5 0.00000 0.000
345 LAWM15 0.089991 0.093591 0.000000 0.003214 0.002994 0.062794 0.000000 0.037196 0.219978 0.004989 0.001700 0.434756 0.000000 0.029971 0.00 346 LAWM16 0.080056 0.120084 0.080056 0.000200 0.000017 0.065046 0.01001 0.030017 0.10007 0.000125 0.003200 0.242478 0.000000 0.025018 0.00 347 LAWM17 0.050020 0.120048 0.02000 0.000005 0.065026 0.02008 0.000125 0.003200 0.424798 0.000000 0.025015 0.00 348 LAWM18 0.080048 0.120072 0.080005 0.03202 0.003018 0.01000 0.003500 0.003500 0.003500 0.002405 0.00000 0.02205 0.00 0.003500 0.003500 0.003500 0.003500 0.003500 0.003500 0.003500 0.003500 0.003500 0.003500 0.003500 0.003500 0.003500 0.003500 0.003500	000 0.009999 000 0.050035 000 0.050020	0.000000 0.000
346 LAWM16 0.080056 0.120084 0.080056 0.00020 0.000081 0.000075 0.065046 0.01010 0.030021 0.100070 0.100070 0.000125 0.003300 0.424798 0.000000 0.025018 0.00 347 LAWM17 0.050020 0.120048 0.022109 0.000020 0.000080 0.000075 0.065026 0.020008 0.005022 0.035014 0.170068 0.00125 0.002000 0.420159 0.000000 0.025015 0.00 348 LAWM18 0.080048 0.120072 0.080048 0.0079976 0.0079976 0.0079976 0.0079979 0.003199 0.002999 0.019994 0.009997 0.131660 0.004090 0.420125 0.000000 0.025015 0.00 350 LAWM20 0.050015 0.070021 0.808024 0.008002 0.003010 0.02006 0.022607 0.035011 0.170015 0.004600 0.420125 0.00000 0.025025 0.00 351 LAWM21 0.050050 0.09020 <t< td=""><td>000 0.050035 000 0.050020</td><td></td></t<>	000 0.050035 000 0.050020	
347 LAWM17 0.050020 0.120048 0.022109 0.000008 0.000075 0.065026 0.02008 0.035014 0.170068 0.000125 0.00200 0.420169 0.000000 0.000000 0.000000 0.000000 0.000000 0.001001 0.000006 0.100060 0.000125 0.002000 0.420169 0.000000 0.005002 0.003018 348 LAWM18 0.080048 0.120072 0.080048 0.003095 0.003199 0.002999 0.019994 0.004999 0.00997 0.11060 0.005000 0.420123 0.000000 0.04948 0.00000 0.004998 0.003100 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 0.005002 0.00 <td>000 0.050020</td> <td>0.000000 0.000</td>	000 0.050020	0.000000 0.000
348 LAWM18 0.080048 0.12072 0.080048 0.008005 0.003202 0.003002 0.065039 0.01001 0.030018 0.01006 0.10060 0.005003 0.003400 0.420253 0.00000 0.025015 0.00 349 LAWM19 0.079976 0.119964 0.079976 0.079976 0.079978 0.003201 0.002999 0.019994 0.004999 0.004998 0.003000 0.419874 0.000000 0.004988 0.003100 0.420126 0.000000 0.004988 0.003100 0.024092 0.035011 0.170051 0.004908 0.03200 0.419874 0.000000 0.004988 0.003200 0.04998 0.035011 0.170051 0.04908 0.03200 0.04998 0.03201 0.03001 0.020060 0.025017 0.035011 0.170051 0.004000 0.42022 0.000000 0.020292 0.020001 0.035011 0.170051 0.04000 0.420422 0.000000 0.020292 0.020001 0.035012 0.170051 0.002106 0.420422 0.000000 0.020525		0.010007 0.000
349 LAWM19 0.079976 0.119964 0.079976 0.007998 0.007999 0.019994 0.019994 0.004999 0.004999 0.004998 0.004098 0.004001 0.004012 0.	000 0.020012	0.035014 0.000
350 LAWM20 0.050015 0.070021 0.080024 0.008002 0.003001 0.02006 0.02006 0.022607 0.035011 0.170051 0.005010 0.02110 0.420126 0.00000 0.005002 0.00 351 LAWM21 0.050050 0.199010 0.080081 0.000000 0.000075 0.065066 0.020007 0.030301 0.101010 0.000112 0.004600 0.420126 0.000000 0.025052 0.00 352 LAWM22 0.080027 0.070023 0.02007 0.008003 0.003001 0.050012 0.035012 0.170057 0.005026 0.420126 0.00000 0.06702 0.00 353 LAWM23 0.050111 0.070155 0.080177 0.080007 0.003007 0.005001 0.010201 0.100210 0.002100 0.420142 0.00000 0.025055 0.00 354 LAWM24 0.080008 0.100201 0.005011 0.005010 0.005001 0.005001 0.005000 0.000000 0.050000 0.005000 0.00	000 0.049985	5 0.034989 0.000
351 LAWM21 0.050050 0.109010 0.080081 0.000200 0.000075 0.065066 0.020020 0.030303 0.01010 0.10011 0.000125 0.004600 0.42422 0.000000 0.025025 0.00 352 LAWM22 0.080007 0.070023 0.022007 0.008003 0.003201 0.003001 0.055022 0.020007 0.005012 0.170057 0.00526 0.420140 0.000000 0.006702 0.00 353 LAWM23 0.050111 0.070155 0.080177 0.080018 0.000075 0.05007 0.020044 0.030066 0.100221 0.100501 0.005110 0.00240 0.48142 0.00000 0.025055 0.00 354 LAWM24 0.080008 0.200202 0.000075 0.05007 0.020024 0.030049 0.17017 0.00510 0.470474 0.000000 0.050000 0.00 354 LAWM25 0.080112 0.120149 0.020028 0.003004 0.036852 0.02028 0.030049 0.030404 0.03049<		5 0.034989 0.000 5 0.035011 0.000
352 LAWM22 0.080027 0.070023 0.02007 0.008003 0.003201 0.003001 0.065022 0.02007 0.005011 0.170057 0.00502 0.002966 0.420140 0.000000 0.006702 0.003007 0.003001 0.065022 0.020071 0.005011 0.035012 0.170057 0.00502 0.002966 0.420140 0.000000 0.006702 0.003003 353 LAWM24 0.080008 0.120012 0.000080 0.000075 0.065007 0.020022 0.006011 0.170017 0.003200 0.485472 0.000000 0.025055 0.00000 0.025055 0.00000 0.002505 0.00000 0.002002 0.000000 0.025055 0.00000 0.002505 0.00000 0.002505 0.00000 0.002505 0.00000 0.000000 0.002505 0.00000 0.002505 0.00000 0.002505 0.00000 0.002505 0.00000 0.002505 0.00000 0.002505 0.000000 0.002505 0.000000 0.002505 0.000000 0.0025050 0.002002 0.000		0.035035 0.000
353 LAWM23 0.050111 0.070155 0.08017 0.008018 0.003207 0.03007 0.020044 0.020044 0.01022 0.10022 0.005011 0.003400 0.485472 0.00000 0.025055 0.00 354 LAWM24 0.080008 0.12012 0.020020 0.000005 0.06507 0.020020 0.00401 0.10001 0.17001 0.00125 0.00120 0.485472 0.00000 0.02505 0.00 355 LAWM25 0.080112 0.20028 0.003001 0.036852 0.030042 0.030402 0.10011 0.10011 0.00507 0.026000 0.005001 0.00 0.005001 0.00 0.005001 0.005001 0.00 0.005001 0.00 0.005001 0.00 0.005001 0.00 0.005001 0.00 0.005001 0.00 0.005001 0.00 0.005001 0.00 0.005001 0.00 0.005001 0.00 0.005001 0.00 0.005001 0.00 0.005001 0.00 0.005001 0.00 0.005001		0.035012 0.000
355 LAWM25 0.080112 0.120169 0.02028 0.08011 0.03205 0.003004 0.036852 0.02028 0.030042 0.03049 0.100141 0.005007 0.002600 0.499902 0.00000 0.005007 0.00	000 0.050111	0.035077 0.000
	0.020002	2 0.010001 0.000
		8 0.010014 0.000
356 LAWM26 0.080056 0.120084 0.049735 0.008006 0.003202 0.003002 0.02014 0.01001 0.030021 0.01007 0.10070 0.005004 0.049005 0.049000 0.049000 0.049000 0.049000 0.049000 0.049000 0.042001 0.00000 0.005004 0.00 357 LAWM27 0.080056 0.070049 0.0080056 0.0030202 0.003002 0.005004 0.005003 0.005003 0.002500 0.420295 0.000000 0.025018 0.00000		5 0.010007 0.000 3 0.010007 0.000
357 LAWM27 0.080050 0.070049 0.080050 0.008005 0.003002 0.005046 0.02014 0.005035 0.133794 0.005035 0.00200 0.022016 0.0015 0.005035 0.00200 0.002001 0.002011 0.002011 0.005035 0.133794 0.005035 0.002000 0.022011 0.002011 0.005035 0.002001 0.002000 0.022011 0.00121 0.00125 0.002000 0.002001<		0.010007 0.000
359 LAWM29 0.07568 0.070061 0.0000761 0.000034 0.0000285 0.050599 0.000714 0.00027 0.03502 0.000109 0.000110 0.000000 0.025023 0.0000000 0.025023 0.000000 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.025023 0.000000 0.00000 0.000000 0.000000 0.025023 0.000000 0.000000 0.000000 0.025023 0.000000 0.000000 0.000000 0.000000000		5 0.035032 0.000
360 LAWM30 0.080032 0.120048 0.020008 0.000200 0.000080 0.000075 0.065026 0.001001 0.020208 0.010004 0.170068 0.000125 0.002000 0.420169 0.000000 0.005902 0.000000 0.005902 0.000000 0.005902 0.000000 0.005902 0.000000 0.000000 0.000000 0.000000 0.000000		0.035014 0.000
361 LAWM31 0.050020 0.070028 0.080032 0.008003 0.003201 0.003001 0.065026 0.001001 0.030012 0.01004 0.167567 0.005002 0.003000 0.423270 0.00000 0.025010 0.00	000 0.020008	8 0.035014 0.000
362 LAWM32 0.051415 0.070021 0.02006 0.003205 0.02006 0.02006 0.03009 0.03501 0.16515 0.004991 0.03200 0.00151 0.00000 0.005002 0.00		0.010003 0.000
363 LAWM33 0.050020 0.120048 0.080032 0.000008 0.000075 0.065026 0.017207 0.00004 0.170048 0.00125 0.00290 0.420169 0.000000 0.025010 0.00	0.020000	8 0.010004 0.000
364 LAWM34 0.050015 0.083525 0.080024 0.000200 0.000075 0.062919 0.020006 0.030009 0.01003 0.170051 0.000125 0.00100 0.420126 0.000000 0.014805 0.000000 0.014805 0.000000 0.014805 0.000000 0.014805 0.000000 0.014805 0.000000 0.014805 0.000000 0.000000 0.000000 0.000000 0.000000		5 0.035011 0.000
365 LAWM35 0.050030 0.120072 0.061837 0.008007 0.003216 0.002996 0.044127 0.00101 0.005003 0.170102 0.004993 0.001800 0.420253 0.000000 0.025015 0.00 366 LAWM36 0.070021 0.110033 0.070021 0.003201 0.001200 0.003001 0.025008 0.015004 0.120036 0.002001 0.003700 0.450136 0.000000 0.020006 0.00		2 0.025715 0.000 0.020006 0.000
367 LAWM37 0.06754 0.110058 0.070021 0.00080 0.000075 0.05010 0.00300 0.025020 0.12003 0.00201 0.00300 0.450362 0.000000 0.01008 0.000005 0.05000 0.00300 0.02501 0.000201 0.00300 0.450362 0.000000 0.01008 0.00000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.000000 0.01008 0.00000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.01008 0.000000 0.000000 0.000000 0.00000 0.000000	000 0.000000	8 0.030024 0.000
368 LAWM38 0.069986 0.079984 0.069986 0.002999 0.002199 0.002999 0.0024995 0.012497 0.139972 0.004999 0.003700 0.479904 0.000000 0.009998 0.0		3 0.019996 0.000
369 LAWM39 0.070070 0.090591 0.050050 0.003003 0.003003 0.001001 0.025025 0.140141 0.005005 0.0480482 0.000000 0.010101 0.001001	000 0.035035	0.020020 0.000
370 LAWM40 0.060036 0.110066 0.050030 0.002121 0.000849 0.000796 0.050030 0.011006 0.015009 0.140084 0.001326 0.003100 0.480289 0.000000 0.010006 0.01	000 0.035021	0.030018 0.000
371 LAWM41 0.070021 0.080024 0.070021 0.080024 0.070021 0.008002 0.003201 0.003001 0.050015 0.003001 0.010003 0.025008 0.140042 0.005002 0.003400 0.450135 0.00000 0.010003 0.00000 0.010003 0.00000 0.010003 0.00000 0.010003 0.000000		0.022307 0.000
372 LAWM42 0.060042 0.080056 0.050035 0.008006 0.003220 0.003020 0.040328 0.001001 0.025018 0.015011 0.140098 0.005003 0.00300 0.450337 0.000000 0.02014 0.001011 0.0101001 0.00000000		0.030021 0.000
373 LAWM43 0.070021 0.086826 0.05015 0.003021 0.03001 0.05015 0.003001 0.025008 0.120036 0.005001 0.030900 0.450136 0.000000 0.020006 0.00 374 LAWM44 0.063270 0.100411 0.070077 0.000200 0.000075 0.050055 0.010011 0.01017 0.120133 0.00125 0.002900 0.480530 0.000000 0.020022 0.00		0.030009 0.000
374 LAWM45 0.070020 0.00020 0.000080 0.000075 0.050020 0.000075 0.050020 0.000101 0.01017 0.12013 0.000125 0.000120 0.480133 0.000000 0.020008 0.000075 0.050020 0.000005 0.000125 0.000125 0.000105 0.000100 0.020008 0.000000 0.020008 0.000000 0.020008 0.000000 0.020008 0.000000 0.020008 0.000000 0.020008 0.000000 0.020008 0.000000 0.020008 0.000000 0.020008 0.000000 0.000000 0.020008 0.000000 0.020008 0.000000 0.000000 0.000000 0.000000 0.000000	000 00000	0.020022 0.000
376 LAWM46 0.060121 0.10221 0.065231 0.000200 0.000081 0.000075 0.050100 0.001020 0.010020 0.025050 0.12020125 0.002000 0.480363 0.000000 0.010020 0.0		0.030060 0.000
377 LAWM47 0.062019 0.080024 0.070021 0.000200 0.000080 0.000075 0.050015 0.001000 0.010003 0.025008 0.140042 0.000125 0.003100 0.480144 0.000000 0.013104 0.0000000000000000000000000000000000	000 0.035011	0.030009 0.000
378 LAWM48 0.062388 0.110155 0.052774 0.008011 0.003004 0.050070 0.010011 0.012012 0.120169 0.005007 0.026000 0.480675 0.000000 0.020028 0.00		0.020028 0.000
<u>379</u> LAWM49 0.070014 0.199022 0.050010 0.008002 0.003201 0.003001 0.030006 0.010002 0.015003 0.140028 0.005001 0.003500 0.475395 0.00000 0.010002 0.00	000 000000	0.020004 0.000
380 LAWM50 0.065259 0.096988 0.061055 0.004484 0.001791 0.001681 0.041137 0.002002 0.016715 0.020318 0.130918 0.002900 0.469824 0.000000 0.015314 0.00	000 0101001	0.025323 0.000
381 LAWM51 0.065239 0.096958 0.061037 0.004483 0.001793 0.00181 0.041125 0.002001 0.01301 0.130879 0.002802 0.003200 0.469683 0.000000 0.015309 0.00 382 LAWM52 0.060818 0.097029 0.019906 0.000832 0.000780 0.055317 0.025808 0.000000 0.014705 0.200000 0.001800 0.410926 0.000000 0.019906 0.01		0.025315 0.000 0.029909 0.000
382 LAWM52 0.090029 0.019900 0.00201 0.000851 0.000750 0.053517 0.023805 0.000000 0.014703 0.20000 0.001500 0.014002 0.000000 0.019900 0.0019900 0		2 0.000000 0.000
384 LAWM54 0.035494 0.060840 0.100441 0.008201 0.003004 0.08013 0.040105 0.003041 0.080113 0.000000 0.050710 0.000000 0.497799 0.000000 0.000000 0.000000 0.000000 0.000000	000 0.000.00	0.040056 0.000
385 LAWM55 0.035011 0.103009 0.008002 0.003011 0.003011 0.040012 0.045014 0.019706 0.142543 0.005001 0.022107 0.004001 0.035009 0.003009 0.		5 0.040012 0.000
386 LAWM56 0.049900 0.119759 0.061676 0.007986 0.002988 0.044012 0.00998 0.03490 0.03490 0.169659 0.004400 0.419158 0.000000 0.024950 0.00		0.025648 0.000
387 LAWA53 0.061463 0.061646 0.078418 0.000459 0.00010 0.074684 0.004945 0.00000 0.014735 0.199022 0.000303 0.05900 0.420449 0.00000 0.01100 0.00000		0.029772 0.001
388 LAWA55 0.061450 0.120378 0.019676 0.006458 0.00222 0.000101 0.074669 0.004944 0.000000 0.014732 0.198982 0.000303 0.00100 0.420364 0.000000 0.01998 0.00		5 0.029767 0.001
389 LAWA88R1 0.060818 0.097029 0.019906 0.000100 0.000000 0.055317 0.025808 0.000000 0.014705 0.200060 0.001900 0.44032 0.000000 0.011906 0.001906 0.011906 0.011906 0.011906 0.011906 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.44131 0.000000 0.01125 0.001900 0.01125 0.001900 0.01125 0.001900 0.01		0.029909 0.001
390 LAWA102R1 0.060357 0.099599 0.050496 0.00287 0.00199 0.00299 0.05383 0.002589 0.024900 0.144319 0.01295 0.006800 0.46131 0.000000 0.011354 0.00 391 LAWA147 0.090004 0.12006 0.07003 0.011701 0.000200 0.000000 0.014400 0.014901 0.206010 0.000000 0.001753 0.30014 0.000000 0.035002 0.00		0.030079 0.000
31 LAWA147 0.05004 0.12000 0.07003 0.011701 0.00020 0.00000 0.020001 0.004400 0.000000 0.019001 0.200010 0.00000 0.00173 0.30014 0.000000 0.033002	000 0.01/101	0.075004 0.001
323 LAWA152 0.104605 0.142027 0.079909 0.011701 0.000200 0.000000 0.000000 0.000400 0.000000 0.000000 0.000000 0.000000 0.000000		0.029901 0.001
394 LAWA155 0.061003 0.140007 0.070003 0.011701 0.000200 0.000000 0.000400 0.000400 0.206610 0.000000 0.001753 0.410019 0.000000 0.004600 0.004600 0.004600 0.000600 0.001753 0.410019 0.000000 0.004600 0.004600 0.004600 0.004600 0.004600 0.000600 0.001753 0.410019 0.000000 0.004600 0.004600 0.004600 0.004600 0.004600 0.000600 0.001753 0.410019 0.000000 0.004600 0.004600 0.004600 0.004600 0.000600 0.001753 0.410019 0.000000 0.001753 0.410019 0.000000 0.001753 0.410019 0.000000 0.004600 0.004600 0.004600 0.0004600 0.000600 0.001753 0.410019 0.000000 0.004600 0.004600 0.004600 0.004600 0.000000 0.001753 0.410019 0.000000 0.000000 0.000000 0.000000 0.000000		0.064403 0.001
395 LAWA159 0.101605 0.136706 0.079904 0.011701 0.000200 0.010001 0.000000 0.010010 0.206610 0.000000 0.001753 0.365817 0.000000 0.010000 0.010001 0.206610 0.000000 0.001753 0.365817 0.000000 0.010000 0.010001		
396 LAWA160 0.104605 0.140207 0.079904 0.011701 0.000200 0.000000 0.004400 0.000001 0.206610 0.000000 0.001753 0.369317 0.000000 0.000000 0.014400	0.02//01	0.029901 0.001

397 LAWA161 0.101605 0.136706 0.079904 0.011701 0.000200 0.000000 0.010001 0.004400 0.000000 0.010001 0.20610 0.000000 0.01753 0.3 398 LAWA161R 0.101605 0.136706 0.079904 0.011701 0.000200 0.000000 0.010001 0.20610 0.000000 0.01753 0.3 398 LAWA161R 0.101605 0.136706 0.079904 0.011701 0.000200 0.000000 0.010001 0.206610 0.000000 0.01753 0.3 399 LAWA161S2 0.100918 0.135782 0.079344 0.011622 0.000199 0.000000 0.009933 0.004370 0.000000 0.009933 0.205213 0.000000 0.038500 0.3	SiO2 SnO2 65817 0.000000 65817 0.000000 63345 0.000000 09019 0.000000		V ₂ O ₅ 0.010000	ZnO 0.029901	ZrO ₂ 0.029901	Others 0.001500
399 LAWA161S2 0.100918 0.135782 0.079364 0.011622 0.00019 0.00000 0.00933 0.00000 0.009933 0.205213 0.00000 0.008500 0.3	63345 0.000000	0 0.000000				
			0.010000	0.029901	0.029901	0.001500
400 LAWA162 0.061003 0.140007 0.070003 0.011701 0.000200 0.000000 0.010000 0.004400 0.000000 0.004600 0.206610 0.000000 0.001753 0.4	00010 0.000000	0 0.000000	0.009933	0.029699	0.029699	0.001490
			0.000000	0.019201	0.060003	0.001500
	09019 0.000000		0.010000	0.019201	0.060003	0.001500
	10019 0.000000	0.00.000	0.010000	0.019201	0.064403	0.001500
	55817 0.00000		0.010000	0.029901	0.049902	0.001500
	56517 0.00000 66517 0.00000		0.010000	0.029901 0.029901	0.049902 0.029901	0.001500
	66517 0.000000		0.000000	0.029901	0.029901	0.001500
	68999 0.000000		0.010133	0.020001	0.030098	0.001505
	45649 0.000000		0.020006	0.029669	0.029889	0.001490
409 LAWA144 0.062048 0.089866 0.019976 0.005642 0.000180 0.000030 0.069840 0.004481 0.000000 0.029979 0.200058 0.000000 0.001200 0.4	45649 0.000000	0 0.000000	0.010003	0.029669	0.029889	0.001490
410 LAWA145 0.062042 0.089857 0.019974 0.005641 0.000180 0.00030 0.039827 0.004481 0.000000 0.029976 0.200038 0.000000 0.01300 0.4	45605 0.000000	0 0.000000	0.040007	0.029666	0.029886	0.001490
	80293 0.000000		0.000000	0.029706	0.029806	0.000000
	46828 0.000000		0.000000	0.030002	0.030102	0.000000
	40544 0.00000		0.000000	0.029503	0.029903	0.002600
	42700 0.000000 87000 0.000000		0.000000	0.029700	0.030100	0.000300
	99697 0.00000		0.000000	0.048500	0.031700	0.000000
	99697 0.00000		0.000000	0.048670	0.031881	0.000000
	47845 0.000000		0.000000	0.029903	0.030103	0.001500
419 AN-102 Actual LC Melter 0.061475 0.100959 0.064274 0.000900 0.000200 0.000500 0.064974 0.000700 0.027489 0.015194 0.117953 0.000800 0.03600 0.4	67812 0.000000	0 0.011295	0.000000	0.030388	0.030388	0.001099
420 AN-102 Actual 0.061500 0.101300 0.064200 0.001200 0.00200 0.00600 0.064900 0.00900 0.027400 0.015200 0.118000 0.001300 0.003600 0.4	67500 0.000000	0 0.011300	0.000000	0.030300	0.030300	0.000300
	44642 0.000000		0.000000	0.029109	0.029910	0.000000
	43333 0.000000		0.000000	0.029509	0.029709	0.004401
	43333 0.000000		0.000000	0.029509	0.029709	0.004401
	38509 0.00000		0.000000	0.029367	0.029765	0.000000
	42318 0.000000 39621 0.000000		0.000000	0.029608	0.030008	0.000000
	66315 0.000000		0.000000	0.029413	0.029013	0.0002301
	60261 0.000000		0.000000	0.030391	0.029991	0.002499
	87222 0.000000	0 0.014012	0.000000	0.048542	0.031727	0.000000
430 LAWB96 0.061705 0.100271 0.067716 0.000100 0.000301 0.00020 0.052890 0.01202 0.042973 0.029751 0.054794 0.00100 0.04800 0.4	87433 0.000000	0 0.013924	0.000000	0.048583	0.031754	0.001503
	88430 0.000000		0.000000	0.048603	0.031767	0.000000
	88430 0.000000	0 0.013929	0.000000	0.048603	0.031767	0.000000
	00804 0.00000		0.000000	0.048839	0.031926	0.000000
	01005 0.000000 99194 0.000000		0.000000	0.048859 0.048721	0.031939	0.000000
	64300 0.000000		0.000000	0.048721	0.031849	0.003200
	67671 0.000000		0.000000	0.030243	0.030243	0.000000
	67671 0.000000		0.000000	0.030243	0.030243	0.000000
439 Surrogate #2 for AN-102 0.061418 0.101431 0.064219 0.002101 0.000200 0.006000 0.065020 0.000700 0.027508 0.015205 0.118036 0.000800 0.002900 0.4	67841 0.000000	0 0.011303	0.000000	0.030309	0.030309	0.000100
	74666 0.000000		0.000000	0.040041	0.030106	0.000301
	73504 0.000000	0.010011	0.000000	0.039942	0.030032	0.000300
	67794 0.00000 67164 0.00000	0.000000	0.010044	0.030131	0.030131 0.030079	0.000402
	67164 0.00000 67349 0.00000		0.010026	0.030079	0.030079	0.000401
	66941 0.00000		0.010031	0.030094	0.036915	0.000401
	67423 0.000000		0.010020	0.030100	0.060602	0.000401
	66496 0.000000	0.00000	0.010008	0.030025	0.030024	0.001401
448 LAWE3 0.061029 0.100047 0.020209 0.00201 0.000800 0.055026 0.049823 0.00000 0.014807 0.182185 0.001241 0.003134 0.4	29701 0.000000		0.000000	0.035016	0.030014	0.000160
	29210 0.000000		0.000000	0.035009	0.030008	0.001310
	20023 0.000000		0.000000	0.034202	0.029302	0.001310
	47886 0.00000		0.000000	0.034630	0.029625	0.000160
	47391 0.00000		0.000000	0.034623	0.029619	0.001311
	37830 0.000000 89914 0.000000		0.000000	0.033818	0.028915	0.001311 0.000160
	89914 0.00000 89410 0.000000		0.000000	0.034851	0.029944	0.001312
	44390 0.000000		0.000000	0.035039	0.030033	0.000000
	44034 0.000000		0.000000	0.035011	0.030009	0.000000
	31003 0.000000		0.000000	0.035025	0.030021	0.000000
	30700 0.000000		0.000000	0.035000	0.030000	0.000000
	35111 0.000000	0 0.014020	0.000000	0.035049	0.030042	0.000000
	34587 0.000000		0.000000	0.035007	0.030006	0.000000
462 LAWCrP4 0.061055 0.100090 0.021119 0.001902 0.005905 0.001001 0.055050 0.002702 0.000000 0.014813 0.210190 0.023821 0.002000 0.4	20680 0.000000	0 0.014013	0.000000	0.035032	0.030027	0.000000

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P2O5	SO3	SiO ₂	SnO ₂	TiO ₂	V2O5	ZnO	ZrO ₂	Others
463	LAWCrP4R	0.060988	0.099980	0.021096	0.001899	0.005899	0.001000	0.054989	0.002699	0.000000	0.014797	0.209958	0.023795	0.003700	0.420216	0.000000	0.013997	0.000000	0.034993	0.029994	0.000000
464	LAWCrP5	0.061061	0.100101	0.058158	0.001401	0.005906	0.000701	0.055055	0.000901	0.026427	0.014915	0.143945	0.013313	0.003800	0.434937	0.000000	0.014014	0.000000	0.035035	0.030030	0.000300
	LAWCrP6	0.061031	0.100050	0.069435	0.001401	0.006303	0.000700	0.055028	0.000900	0.041721	0.025513	0.080040	0.025113	0.005800	0.447625	0.000000	0.014007	0.000000	0.035018	0.030015	0.000300
-	LAWCrP7	0.061031	0.100050	0.069835	0.001401	0.006303	0.000700	0.055028	0.000900	0.043022	0.029315	0.054027	0.025113	0.006600	0.467335	0.000000	0.014007	0.000000	0.035018	0.030015	0.000300
	LAWCrP8CCC LAWCrP9CCC	0.061043	0.100070	0.069449 0.069863	0.001401 0.001401	0.004303 0.004304	0.000700	0.055039	0.000901	0.041729	0.025518	0.080056	0.025118	0.005600	0.449717	0.000000	0.014010 0.014013	0.000000	0.035025	0.030021	0.000300
	LAWCrP10CCC	0.061055	0.100091	0.069863	0.001401	0.004304	0.000701	0.053030	0.000901	0.043039	0.029326	0.053994	0.025125	0.006200	0.469525	0.000000	0.013999	0.000000	0.035032	0.030027	0.000300
	LAWE3Cr2CCC	0.061031	0.100050	0.020210	0.002001	0.014007	0.000800	0.055028	0.049925	0.000000	0.014807	0.182191	0.001201	0.003000	0.416509	0.000000	0.013000	0.000000	0.035018	0.030015	0.000200
	LAWE9HCr1CCC	0.060585	0.099340	0.068697	0.002003	0.006008	0.000801	0.054577	0.005408	0.040857	0.023633	0.089426	0.001202	0.005500	0.463352	0.000000	0.013920	0.000000	0.034749	0.029742	0.000200
472	LAWE9HCr2CCC	0.060604	0.099370	0.068718	0.002003	0.004508	0.000801	0.054593	0.005409	0.040870	0.023640	0.089453	0.001202	0.005200	0.464995	0.000000	0.013924	0.000000	0.034759	0.029751	0.000200
	LAWE10HCr3CCC	0.060810	0.099681	0.069726	0.002004	0.003506	0.000802	0.054900	0.005410	0.042677	0.029453	0.057304	0.001202	0.006200	0.487383	0.000000	0.013925	0.000000	0.034863	0.029954	0.000200
	LAWE3H	0.059424	0.097439	0.019708	0.002001	0.000800	0.000800	0.053621	0.054122	0.000000	0.014406	0.197479	0.001200	0.003301	0.418568	0.000000	0.013605	0.000000	0.034114	0.029212	0.000200
	LAWE12	0.069514	0.087517	0.019704	0.002000	0.000800	0.000800	0.043609	0.054111	0.000000	0.014403	0.197440	0.001200	0.003200	0.418484	0.000000	0.013703	0.000000	0.034107	0.039208	0.000200
	LAWE13 LAWE14	0.069514	0.097519	0.019704	0.002000	0.000800	0.000800	0.053611	0.054111	0.000000	0.004401	0.197440	0.001200	0.003200	0.418484	0.000000	0.003701	0.000000	0.034107	0.039208	0.000200
	LAWE14 LAWE15	0.059518	0.097529	0.014705	0.002001	0.000800	0.000800	0.053616	0.054110	0.000000	0.004401	0.197460	0.001200	0.003100	0.433531	0.000000	0.013704	0.000000	0.034110	0.039212	0.000200
	LAWE16	0.059428	0.082401	0.014682	0.001998	0.000799	0.000799	0.053535	0.054035	0.000000	0.009389	0.197162	0.001199	0.004600	0.427884	0.000000	0.013683	0.000000	0.034059	0.044147	0.000200
480	LAWM57	0.070007	0.110011	0.030003	0.002000	0.000800	0.000800	0.046605	0.038004	0.000000	0.014402	0.206121	0.001200	0.003200	0.392639	0.000000	0.013701	0.000000	0.030303	0.040004	0.000200
481	LAWM58	0.070014	0.092919	0.010302	0.002000	0.000800	0.000800	0.065013	0.038008	0.000000	0.014403	0.205341	0.001200	0.003200	0.416484	0.000000	0.013703	0.000000	0.025605	0.040008	0.000200
	LAWM59	0.068421	0.090127	0.029609	0.002001	0.000800	0.000800	0.064920	0.020006	0.000000	0.014404	0.200060	0.001200	0.003100	0.445534	0.000000	0.013704	0.000000	0.025108	0.020006	0.000200
	LAWM60	0.050020	0.110044	0.017107	0.002001	0.000800	0.000800	0.045018	0.020008	0.000000	0.014406	0.200180	0.001201	0.003000	0.453482	0.000000	0.013706	0.000000	0.028011	0.040016	0.000200
	LAWM61 LAWM62	0.050005	0.110011 0.090018	0.010001	0.002000	0.000800	0.000800	0.045005	0.032903 0.033807	0.000000	0.014402	0.200020	0.001200	0.003300	0.450545	0.000000	0.013701	0.000000	0.045005	0.020102	0.000200
	LAWM62 LAWM63	0.069993	0.093991	0.010002	0.002000	0.000800	0.000800	0.046995	0.033807	0.000000	0.014403	0.2200040	0.001200	0.003200	0.443389	0.000000	0.013703	0.000000	0.038408	0.020598	0.000200
	LAWM64	0.069928	0.109844	0.030012	0.002000	0.000800	0.000800	0.065026	0.020008	0.000000	0.014406	0.200480	0.001200	0.003000	0.383754	0.000000	0.013706	0.000000	0.044918	0.039916	0.000200
488	LAWM65	0.050005	0.090009	0.029603	0.002000	0.000800	0.000800	0.045005	0.020002	0.000000	0.014401	0.227923	0.001200	0.003400	0.435944	0.000000	0.013701	0.000000	0.025003	0.040004	0.000200
	LAWM66	0.075915	0.106321	0.010002	0.002001	0.000800	0.000800	0.063113	0.004801	0.000000	0.014403	0.229946	0.001200	0.003200	0.383577	0.000000	0.013703	0.000000	0.045009	0.045009	0.000200
	LAWM67	0.080008	0.106011	0.015502	0.002000	0.000800	0.000800	0.046005	0.054005	0.000000	0.014401	0.201320	0.001200	0.003200	0.383639	0.000000	0.013701	0.000000	0.027203	0.050005	0.000200
	LAWM68 LAWM69	0.050000 0.079792	0.090000 0.109889	0.030000 0.029997	0.002000 0.002000	0.000800	0.000800	0.065000	0.048000 0.018298	0.000000	0.014400 0.014398	0.200100	0.001200	0.003300 0.003400	0.408100 0.395960	0.000000	0.013700 0.013699	0.000000	0.035600	0.036800	0.000200
	LAWM70	0.049995	0.093991	0.029997	0.002000	0.000800	0.000800	0.063694	0.018298	0.000000	0.014398	0.200880	0.001200	0.003400	0.393960	0.000000	0.013699	0.000000	0.024993	0.020098	0.000200
	LAWM71	0.050100	0.090000	0.010000	0.002000	0.000800	0.000800	0.045000	0.054000	0.000000	0.014400	0.200000	0.001200	0.003400	0.449400	0.000000	0.013700	0.000000	0.045000	0.020000	0.000200
495	LAWM72	0.080008	0.110011	0.029403	0.002000	0.000800	0.000800	0.064507	0.041804	0.000000	0.014402	0.200420	0.001200	0.003200	0.391639	0.000000	0.013701	0.000000	0.025003	0.020902	0.000200
	LAWM73	0.080008	0.090009	0.030003	0.002000	0.000800	0.000800	0.048805	0.012201	0.000000	0.014402	0.230023	0.001200	0.003200	0.403841	0.000000	0.013701	0.000000	0.044905	0.023902	0.000200
	LAWM74	0.075838	0.090045	0.010005	0.002001	0.000800	0.000800	0.045023	0.000000	0.000000	0.014407	0.213307	0.001201	0.002900	0.453728	0.000000	0.013707	0.000000	0.026013	0.050025	0.000200
	LAWM75 LAWM76	0.080032	0.091537	0.030012 0.019206	0.002001	0.000800	0.000800	0.064926 0.054216	0.010804 0.026008	0.000000	0.014406	0.206883	0.001201	0.003100	0.384554 0.418826	0.000000	0.013706	0.000000	0.045018	0.050020	0.000200
	LAWA171	0.101682	0.136910	0.056546	0.002001	0.000200	0.000000	0.010008	0.005104	0.000000	0.010008	0.230186	0.000000	0.006700	0.366095	0.000000	0.000000	0.010008	0.034210	0.030024	0.000200
	LAWA172	0.106554	0.127964	0.079940	0.006503	0.000200	0.000000	0.009105	0.005102	0.000000	0.009105	0.230116	0.000000	0.006800	0.348776	0.000000	0.000000	0.009805	0.030015	0.030015	0.0000000
	LAWA173	0.106575	0.112980	0.079956	0.006505	0.000200	0.000000	0.009106	0.005104	0.000000	0.009106	0.230162	0.000000	0.006600	0.348846	0.000000	0.000000	0.009807	0.030021	0.045032	0.000000
	LAWA174	0.106543	0.097939	0.079932	0.006503	0.000200	0.000000	0.009104	0.005102	0.000000	0.009104	0.230093	0.000000	0.006900	0.348740	0.000000	0.000000	0.009804	0.030012	0.060024	0.000000
	LAWA175	0.121525	0.112923	0.079916	0.006501	0.000200	0.000000	0.009102	0.005101	0.000000	0.009102	0.230046	0.000000	0.007100	0.348670	0.000000	0.000000	0.009802	0.030006	0.030006	0.000000
	LAWA176 LAWA177	0.136583 0.101641	0.097959 0.136655	0.079948 0.036515	0.006504 0.007103	0.000200	0.000000	0.009105	0.005103	0.000000	0.009106	0.230139	0.000000	0.006700	0.348811 0.365947	0.000000	0.000000	0.009806	0.030018 0.029612	0.030018 0.029612	0.000000
	LAWA177	0.101041	0.107632	0.079824	0.007102	0.000200	0.000000	0.009103	0.005602	0.000000	0.009103	0.250075	0.000000	0.007100	0.353307	0.000000	0.000000	0.009403	0.023507	0.029509	0.000000
	LAWA179	0.108555	0.092647	0.079840	0.007103	0.000200	0.000000	0.009104	0.005603	0.000000	0.009105	0.250126	0.000000	0.006900	0.353378	0.000000	0.000000	0.009405	0.023512	0.044522	0.000000
	LAWA180	0.108544	0.077631	0.079832	0.007103	0.000200	0.000000	0.009104	0.005602	0.000000	0.009104	0.250101	0.000000	0.007000	0.353342	0.000000	0.000000	0.009404	0.023509	0.059524	0.000000
	LAWA181	0.123625	0.092619	0.079816	0.007101	0.000200	0.000000	0.009102	0.005601	0.000000	0.009102	0.250050	0.000000	0.007100	0.353271	0.000000	0.000000	0.009402	0.023505	0.029506	0.000000
	LAWA182	0.138542	0.077623	0.079824	0.007102	0.000200	0.000000	0.009103	0.005602	0.000000	0.009103	0.250075	0.000000	0.007100	0.353307	0.000000	0.000000	0.009403	0.023507	0.029509	0.000000
-	LAWA183 LAWA184	0.106575	0.097969 0.094313	0.079956	0.006505	0.000200	0.000000	0.009107	0.005104	0.000000	0.009106	0.230162	0.000000	0.006600	0.343642	0.000000	0.000000	0.015011	0.030021	0.060042	0.000000
	LAWA184 LAWA185	0.121549	0.094313	0.079932	0.006508	0.000200	0.000000	0.009111	0.005108	0.000000	0.009111	0.230277	0.000000	0.007000	0.368949	0.000000	0.000000	0.015006	0.014518	0.030012	0.000000
	LAWA186	0.116540	0.093112	0.079996	0.006508	0.000200	0.000000	0.009111	0.005102	0.000000	0.009111	0.230277	0.000000	0.006206	0.369244	0.000000	0.000000	0.015018	0.014517	0.045054	0.000000
516	LAWA187	0.106629	0.128055	0.064878	0.006508	0.005206	0.000000	0.009111	0.005106	0.000000	0.009111	0.230278	0.000000	0.006200	0.349022	0.010012	0.000000	0.009812	0.030036	0.030036	0.000000
	LAWA187R	0.106629	0.128055	0.064878	0.006508	0.005206	0.000000	0.009111	0.005106	0.000000	0.009111	0.230278	0.000000	0.006200	0.349022	0.010012	0.000000	0.009812	0.030036	0.030036	0.000000
	LAWA187CCC	0.106629	0.128055	0.064878	0.006508	0.005206	0.000000	0.009111	0.005106	0.000000	0.009111	0.230278	0.000000	0.006200	0.349022	0.010012	0.000000	0.009812	0.030036	0.030036	0.000000
	LAWA188 LAWA189	0.106629	0.128055 0.113037	0.054866 0.074991	0.006508	0.005206	0.000000	0.009111 0.009111	0.005106	0.000000	0.009111	0.230278	0.000000	0.006100	0.349022 0.349021	0.020124	0.000000	0.009812	0.030036	0.030036	0.000000
	LAWA189 LAWA190	0.106629	0.113037	0.074991	0.006508	0.005208	0.000000	0.009111	0.005108	0.000000	0.009111	0.230278	0.000000	0.005900	0.349021	0.000000	0.000000	0.009812	0.030036	0.045054	0.000000
	LAWA190	0.121633	0.113071	0.074991	0.006508	0.005206	0.000000	0.009111	0.005106	0.000000	0.009111	0.230278	0.000000	0.006100	0.349021	0.000000	0.000000	0.009812	0.030036	0.030036	0.000000
	LAWA192	0.121573	0.112968	0.059836	0.006504	0.000200	0.000000	0.009106	0.005103	0.000000	0.009106	0.230139	0.000000	0.006800	0.358817	0.000000	0.000000	0.009806	0.030018	0.040024	0.000000
	LAWA193	0.121647	0.113037	0.054866	0.006508	0.005206	0.000000	0.009111	0.005106	0.000000	0.009111	0.230278	0.000000	0.006200	0.359034	0.000000	0.000000	0.009812	0.030036	0.040048	0.000000
	LAWA194	0.108675	0.077725	0.069913	0.007111	0.000200	0.000000	0.009115	0.005609	0.000000	0.009115	0.250403	0.000000	0.005800	0.353769	0.010016	0.000000	0.009415	0.023538	0.059596	0.000000
	LAWA195	0.108664	0.077717	0.064898	0.007111	0.005308	0.000000	0.009114	0.005608	0.000000	0.009114	0.250378	0.000000	0.005800	0.353734	0.010015	0.000000	0.009414	0.023535	0.059590	0.000000
	LAWA196 LAWA197	0.118643 0.118667	0.077694	0.059872	0.007109	0.000200	0.000000	0.009111	0.005607	0.000000	0.009111	0.250302	0.000000	0.006200	0.363639	0.000000	0.000000	0.009411	0.023529	0.059572	0.000000
520	L/11//11//	0.11000/	0.077709	0.054077	5.00/110	0.0000000	5.000000	0.007113	0.0000008	0.000000	0.007113	0.4000000	0.000000	0.000900	0.000/12	5.00000	0.000000	0.007413	0.020000	0.0000004	0.000000

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P ₂ O ₅	SO ₃	SiO ₂	SnO ₂	TiO ₂	V2O5	ZnO	ZrO ₂	Others
529	LAWB97	0.091629	0.100241	0.092130	0.000100	0.001102	0.000701	0.011516	0.004106	0.035450	0.011516	0.100141	0.000300	0.006300	0.461450	0.000000	0.000000	0.012418	0.035450	0.035450	0.000000
530	LAWB98	0.101694	0.110311	0.092176	0.000100	0.001102	0.000701	0.011522	0.004108	0.035468	0.011522	0.100191	0.000301	0.005800	0.441644	0.000000	0.000000	0.012424	0.035468	0.035468	0.000000
531	LAWB99	0.101623	0.110233	0.102223	0.000100	0.001101	0.000701	0.011514	0.004105	0.035443	0.011514	0.100121	0.000300	0.006400	0.431321	0.000000	0.000000	0.012415	0.035443	0.035443	0.000000
532	LAWB100	0.091565	0.115281	0.107176	0.000100	0.001101	0.000700	0.011508	0.004103	0.035425	0.011508	0.100070	0.000300	0.006900	0.431004	0.000000	0.000000	0.012409	0.035425	0.035425	0.000000
533	LAWB101	0.101694	0.100292	0.112315	0.000100	0.001102	0.000701	0.011522	0.004108	0.035468	0.011522	0.100191	0.000300	0.005700	0.431625	0.000000	0.000000	0.012424	0.035468	0.035468	0.000000
534	LAWB102	0.091731	0.100352	0.122408	0.000100	0.001103	0.000702	0.011529	0.004110	0.035489	0.011529	0.100252	0.000301	0.005100	0.431885	0.000000	0.000000	0.012431	0.035489	0.035489	0.000000
535 536	LAWB103 LAWB104	0.091638	0.100251	0.092139	0.000100	0.001102	0.000701	0.011517 0.011492	0.004106	0.040461	0.011517	0.100151	0.000301	0.006100	0.456589 0.425600	0.000000	0.000000	0.012419	0.035454	0.035454	0.000000
530	LAWB104 LAWB105	0.101428	0.130476	0.092195	0.000100	0.001099	0.000700	0.011492	0.004097	0.040372	0.011492	0.100212	0.000300	0.008200	0.425600	0.000000	0.000000	0.012391	0.035375	0.035375	0.000000
538	EWV-G-89B	0.106361	0.127693	0.064798	0.006510	0.005208	0.000000	0.009014	0.005108	0.000000	0.009014	0.229647	0.000000	0.008000	0.348026	0.010015	0.000000	0.009715	0.029945	0.029945	0.001001
539	EWV-G-89B	0.106361	0.127693	0.064798	0.006510	0.005208	0.000000	0.009014	0.005108	0.000000	0.009014	0.229647	0.000000	0.008000	0.348026	0.010015	0.000000	0.009715	0.029945	0.029945	0.001001
540	EWV-G-89BCCC	0.106361	0.127693	0.064798	0.006510	0.005208	0.000000	0.009014	0.005108	0.000000	0.009014	0.229647	0.000000	0.008000	0.348026	0.010015	0.000000	0.009715	0.029945	0.029945	0.001001
541	EWV-G-93B	0.106393	0.127732	0.064818	0.006512	0.005209	0.000000	0.009016	0.005109	0.000000	0.009016	0.229717	0.000000	0.007700	0.348132	0.010018	0.000000	0.009718	0.029954	0.029954	0.001002
542	EWV-G-93BCCC	0.106393	0.127732	0.064818	0.006512	0.005209	0.000000	0.009016	0.005109	0.000000	0.009016	0.229717	0.000000	0.007700	0.348132	0.010018	0.000000	0.009718	0.029954	0.029954	0.001002
543 544	EWV-G-108B	0.106329	0.127655 0.109421	0.064778	0.006508	0.005206	0.000000	0.009011	0.005106	0.000000	0.009011	0.229578	0.000000	0.008300	0.347921 0.428557	0.010012	0.000000	0.009712	0.029936	0.029936	0.001001 0.001003
544	DWV-G-123C ORPLA1	0.100896	0.109421	0.035000	0.007100	0.0001103	0.000702	0.011434	0.004012	0.035304	0.011434	0.099893	0.000301	0.001900	0.428557	0.000000	0.000000	0.0000000	0.033203	0.035203	0.001003
546	ORPLA1S4	0.099709	0.089739	0.034898	0.007079	0.000199	0.000000	0.010071	0.005584	0.000000	0.013360	0.249274	0.000000	0.004800	0.411900	0.000000	0.000000	0.000000	0.023531	0.047861	0.001900
547	ORPLA2	0.100000	0.090000	0.025000	0.007100	0.000200	0.000000	0.010100	0.005600	0.000000	0.013500	0.250000	0.000000	0.001900	0.413100	0.010000	0.000000	0.000000	0.023600	0.048000	0.001900
548	ORPLA2S4	0.099769	0.089793	0.024942	0.007084	0.000199	0.000000	0.010077	0.005587	0.000000	0.013469	0.249424	0.000000	0.004200	0.412148	0.009977	0.000000	0.000000	0.023546	0.047889	0.001896
549	ORPLA3	0.099990	0.089991	0.030397	0.007099	0.004899	0.000000	0.010099	0.005599	0.000000	0.013499	0.249975	0.000000	0.001900	0.413059	0.000000	0.000000	0.000000	0.023598	0.047995	0.001900
550	ORPLA3S4	0.099769	0.089793	0.030330	0.007084	0.004889	0.000000	0.010077	0.005587	0.000000	0.013469	0.249424	0.000000	0.004100	0.412148	0.000000	0.000000	0.000000	0.023546	0.047889	0.001895
551 552	ORPLA4	0.079976	0.089973	0.034989	0.007098	0.000200	0.000000	0.030191	0.005598	0.000000	0.013496	0.249925	0.000000	0.002100	0.412976	0.000000	0.000000	0.000000	0.023593	0.047986	0.001899
552	ORPLA4S4 ORPLA5	0.079792	0.089766	0.034909	0.007081	0.000199	0.000000	0.030121 0.010102	0.005585	0.000000	0.013465	0.249349	0.000000	0.004400	0.412024 0.433187	0.000000	0.000000	0.000000	0.023539	0.047875	0.001895
554	ORPLA5S4	0.099880	0.069916	0.009988	0.007101	0.004901	0.000000	0.010102	0.005593	0.000000	0.013303	0.249699	0.000000	0.002000	0.432579	0.009988	0.000000	0.000000	0.033560	0.047942	0.001900
555	ORPLA6	0.108800	0.077800	0.010000	0.007100	0.004900	0.000000	0.009400	0.005600	0.000000	0.009100	0.250000	0.000000	0.001900	0.419200	0.010000	0.000000	0.000000	0.023600	0.060700	0.001900
556	ORPLA6S4	0.108648	0.077691	0.009986	0.007090	0.004893	0.000000	0.009387	0.005592	0.000000	0.009087	0.249649	0.000000	0.003300	0.418612	0.009986	0.000000	0.000000	0.023567	0.060615	0.001897
557	ORPLA7	0.108800	0.077800	0.014700	0.007100	0.004900	0.000000	0.009400	0.005600	0.000000	0.009100	0.250000	0.000000	0.002000	0.405000	0.010000	0.000000	0.009400	0.023600	0.060700	0.001900
558	ORPLA7S4	0.108713	0.077738	0.014688	0.007094	0.004896	0.000000	0.009392	0.005596	0.000000	0.009093	0.249800	0.000000	0.002800	0.404675	0.009992	0.000000	0.009392	0.023581	0.060651	0.001899
559 560	ORPLA8	0.058177	0.084766	0.000000	0.007097	0.004898	0.000000	0.026989	0.005598	0.000000	0.033687	0.249900	0.000000	0.002300	0.420831	0.019392 0.019361	0.015494 0.015469	0.000000	0.009996	0.058976	0.001899
561	ORPLA8S4 ORPLA9	0.109022	0.084630	0.065213	0.007086	0.004890	0.000000	0.026946	0.005589	0.000000	0.0030033	0.249499	0.000000	0.003900	0.355171	0.019361	0.000000	0.000000	0.009980	0.058882	0.001896
562	ORPLA9S4	0.108618	0.077727	0.064971	0.007075	0.004883	0.000000	0.009068	0.005580	0.000000	0.009068	0.249123	0.000000	0.005500	0.353855	0.019930	0.000000	0.009367	0.023517	0.049825	0.001893
563	ORPLA10	0.109000	0.078000	0.065200	0.007100	0.004900	0.000000	0.009100	0.005600	0.000000	0.009100	0.250000	0.000000	0.001900	0.357800	0.026800	0.000000	0.000000	0.023600	0.050000	0.001900
564	ORPLA10S4	0.108672	0.077765	0.065004	0.007079	0.004885	0.000000	0.009073	0.005583	0.000000	0.009073	0.249249	0.000000	0.004900	0.356725	0.026719	0.000000	0.000000	0.023529	0.049850	0.001894
565	ORPLA11	0.108989	0.069993	0.019998	0.007099	0.004900	0.000000	0.009099	0.005599	0.000000	0.009099	0.249975	0.000000	0.001900	0.401460	0.026997	0.000000	0.000000	0.023598	0.059394	0.001900
566 567	ORPLA11S4 ORPLA12	0.108880	0.069923 0.071293	0.019978 0.020298	0.007092 0.006799	0.004895	0.000000	0.009090	0.005594 0.005399	0.000000	0.009090	0.249724 0.239976	0.000000	0.002900	0.401058 0.409959	0.026970 0.027497	0.000000	0.000000	0.023574 0.024498	0.059334 0.059494	0.001898 0.001800
568	ORPLA12 ORPLA12S4	0.107689	0.071293	0.020298	0.006799	0.003000	0.000000	0.009299	0.005399	0.000000	0.009299	0.239976	0.000000	0.001700	0.409939	0.027497	0.000000	0.000000	0.024498	0.059494	0.001800
569	ORPLA13	0.108311	0.070707	0.020102	0.006901	0.004994	0.000000	0.009201	0.005501	0.000000	0.009201	0.245024	0.000000	0.001900	0.406141	0.027203	0.000000	0.000000	0.024202	0.058906	0.001798
570	ORPLA13S4	0.108191	0.070629	0.020080	0.006893	0.004895	0.000000	0.009191	0.005494	0.000000	0.009191	0.244755	0.000000	0.003000	0.405693	0.027173	0.000000	0.000000	0.024176	0.058841	0.001798
571	ORPLA14	0.107011	0.072007	0.020502	0.006601	0.005000	0.000000	0.009401	0.005301	0.000000	0.009401	0.235024	0.000000	0.001700	0.413841	0.027803	0.000000	0.000000	0.024702	0.060006	0.001700
572	ORPLA14S4	0.106893	0.071928	0.020479	0.006593	0.004995	0.000000	0.009391	0.005295	0.000000	0.009391	0.234765	0.000000	0.002800	0.413385	0.027772	0.000000	0.000000	0.024675	0.059940	0.001698
573 574	ORPLA15	0.094591	0.086491	0.033397	0.006799	0.005000	0.000000	0.009299 0.009291	0.005399	0.000000	0.009299	0.239976	0.000000	0.001800	0.394960	0.027497	0.000000	0.000000	0.024498	0.059494	0.001500
575	ORPLA15S4 ORPLA16	0.094505	0.086413	0.033367	0.006793	0.004995	0.000000	0.009291	0.005395	0.000000	0.009291	0.239760	0.000000	0.002700	0.394604 0.415925	0.027472	0.000000	0.000000	0.024475	0.059440	0.001499 0.001901
576	ORPLA16S4	0.098601	0.077722	0.014685	0.007093	0.004901	0.000000	0.009391	0.005594	0.000000	0.009091	0.249750	0.000000	0.003000	0.415383	0.009990	0.000000	0.009391	0.023576	0.059940	0.001901
577	ORPLA17	0.098900	0.087800	0.029900	0.006800	0.005000	0.000000	0.009400	0.005400	0.000000	0.009100	0.240000	0.000000	0.001800	0.400300	0.010000	0.000000	0.009800	0.023600	0.060700	0.001500
578	ORPLA17S4	0.098761	0.087677	0.029858	0.006791	0.004993	0.000000	0.009387	0.005392	0.000000	0.009087	0.239663	0.000000	0.003200	0.399739	0.009986	0.000000	0.009786	0.023567	0.060615	0.001498
579	ORPLB1	0.120060	0.073037	0.011005	0.001101	0.005203	0.004902	0.011006	0.001201	0.000000	0.011006	0.250126	0.002301	0.004800	0.379991	0.010805	0.000000	0.020010	0.036518	0.054427	0.002501
580	ORPLB1S4	0.119964	0.072978	0.010997	0.001100	0.005198	0.004898	0.010997	0.001200	0.000000	0.010997	0.249925	0.002299	0.005600	0.379685	0.010797	0.000000	0.019994	0.036489	0.054383	0.002499
581 582	ORPLB2 ORPLB2S4	0.100050	0.073037	0.011005	0.001101 0.001099	0.005203	0.004902	0.011006	0.001201	0.000000	0.011006	0.250126	0.002301 0.002299	0.004800	0.400001	0.010805	0.000000	0.020010	0.036518	0.054427	0.002501 0.002499
583	ORPLB254 ORPLB3	0.099930	0.072903	0.030012	0.001099	0.005302	0.004898	0.009604	0.001199	0.000000	0.009304	0.249874	0.002299	0.003800	0.399399	0.010793	0.000000	0.019990	0.023710	0.060424	0.002499
584	ORPLB3S4	0.098770	0.085674	0.029991	0.001100	0.005298	0.004699	0.009597	0.001100	0.000000	0.009297	0.239928	0.002201	0.005400	0.400479	0.009997	0.000000	0.009997	0.023693	0.060382	0.002399
585	ORPLB4	0.100361	0.085251	0.019011	0.001101	0.005303	0.004703	0.009606	0.001101	0.000000	0.009306	0.240145	0.002201	0.004500	0.400842	0.010006	0.000000	0.020012	0.023714	0.060436	0.002401
586	ORPLB4S4	0.100290	0.085191	0.018998	0.001100	0.005299	0.004699	0.009599	0.001100	0.000000	0.009299	0.239976	0.002200	0.005200	0.400560	0.009999	0.000000	0.019998	0.023698	0.060394	0.002400
587	ORPLC1	0.095019	0.060612	0.030006	0.006602	0.005001	0.000100	0.010002	0.005801	0.000000	0.010002	0.250050	0.002001	0.005000	0.383277	0.020004	0.010002	0.030006	0.030006	0.045009	0.001500
588	ORPLC1S4	0.094933	0.060557	0.029979	0.006595	0.004997	0.000100	0.009993	0.005796	0.000000	0.009993	0.249824	0.001999	0.005900	0.382930	0.019986	0.009993	0.029979	0.029979	0.044968	0.001499
589 590	ORPLC2	0.106743	0.116747	0.064226	0.006202	0.005102	0.000100	0.009004	0.005402	0.000000	0.009004	0.235094	0.001801	0.004900	0.345339	0.009904	0.000000	0.014706	0.029712	0.034614	0.001400
590	ORPLC2S4 ORPLC3	0.106539 0.106711	0.116524 0.116712	0.064103	0.006191	0.005092	0.000100	0.008986	0.005392	0.000000	0.008986	0.234646	0.001797	0.006800	0.344680 0.345235	0.009885	0.000000	0.014678 0.014701	0.029655 0.029703	0.034548	0.001398
592	ORPLC3S4	0.106593	0.116712	0.064135	0.006201	0.005100	0.000100	0.009001	0.005394	0.000000	0.009001	0.233024	0.001800	0.005200	0.344853	0.009901	0.000000	0.014701	0.029703	0.034565	0.001400
593	ORPLC4	0.106522	0.111923	0.064713	0.006201	0.005101	0.000100	0.009102	0.005401	0.000000	0.009102	0.235047	0.001800	0.005100	0.348670	0.010002	0.000000	0.014803	0.030006	0.035007	0.001400
594	ORPLC4S4	0.106318	0.111709	0.064589	0.006189	0.005091	0.000100	0.009085	0.005391	0.000000	0.009084	0.234598	0.001797	0.007000	0.348004	0.009983	0.000000	0.014775	0.029949	0.034940	0.001398

	<i>a</i> i m		D O		<i>a</i>		-		T O		14.0	NO	D O		<i>a</i> 10	<i>a</i> . 0					
#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P ₂ O ₅	SO ₃	SiO ₂	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others
595	ORPLC5	0.100440	0.085234	0.019108	0.006202	0.005302	0.000100	0.009704	0.005402	0.000000	0.009304	0.235795	0.001901	0.004800	0.401161	0.010004	0.000000	0.020008	0.023710	0.060424	0.001401
596 597	ORPLC5S4 ORPLD1	0.100360	0.085166	0.019092	0.006198	0.005298	0.000100	0.009696	0.005398	0.000000	0.009296	0.235605 0.210445	0.001899	0.005600	0.400839	0.009996	0.000000	0.019992	0.023690 0.030064	0.060376	0.001399
597	ORPLD1 ORPLD1S4	0.101815	0.120755	0.080370	0.003307	0.005011	0.001704	0.010021	0.001603	0.000000	0.010021	0.210445	0.002908	0.007601	0.372488	0.000000	0.000000	0.010021	0.030064	0.030064	0.001804
598	ORPLD134 ORPLD2	0.091275	0.076246	0.080354	0.003309	0.005014	0.001703	0.007514	0.001603	0.007514	0.010027	0.210373	0.002908	0.007000	0.394756	0.010019	0.000000	0.010027	0.030082	0.052701	0.001803
600	ORPLD2 ORPLD2S4	0.091273	0.076208	0.080334	0.003305	0.005007	0.001703	0.007511	0.001603	0.007511	0.010019	0.210403	0.002908	0.007700	0.394730	0.010019	0.000000	0.010019	0.025148	0.052674	0.001804
601	ORPLD234 ORPLD3	0.091229	0.086204	0.100321	0.003303	0.005007	0.001702	0.007509	0.001602	0.007509	0.010014	0.210257	0.002904	0.008200	0.3944337	0.000000	0.000000	0.010014	0.025133	0.032674	0.001803
602	ORPLD3S4	0.081157	0.086161	0.100321	0.003302	0.005004	0.001702	0.007505	0.001601	0.007505	0.010007	0.210233	0.002902	0.008900	0.394279	0.000000	0.000000	0.010007	0.025118	0.042632	0.001801
603	ORPLE1	0.076085	0.098610	0.104717	0.000200	0.001001	0.002002	0.002403	0.005506	0.030033	0.010512	0.160178	0.001201	0.011300	0.414561	0.000000	0.000000	0.012514	0.032236	0.035439	0.001502
604	ORPLE2	0.100262	0.114786	0.080530	0.000200	0.001002	0.002003	0.002404	0.005509	0.030049	0.010517	0.160259	0.001202	0.010900	0.398645	0.000000	0.000000	0.012520	0.032252	0.035457	0.001503
605	ORPLE3	0.100232	0.114751	0.104738	0.000200	0.001001	0.002003	0.002403	0.005507	0.030039	0.010514	0.160211	0.001202	0.011100	0.374392	0.000000	0.000000	0.012516	0.032242	0.035447	0.001502
606	ORPLE4	0.076539	0.098279	0.104490	0.000301	0.001102	0.002304	0.002304	0.006111	0.021038	0.010519	0.180328	0.001403	0.010800	0.404136	0.000000	0.000000	0.012122	0.031357	0.035364	0.001503
607	ORPLE5	0.076069	0.096188	0.102493	0.000300	0.001301	0.002502	0.002302	0.006806	0.011010	0.009909	0.200182	0.001502	0.011500	0.399864	0.000000	0.000000	0.011811	0.029627	0.035132	0.001502
608	ORPLE6	0.076092	0.098620	0.099821	0.000200	0.005006	0.002002	0.002403	0.005507	0.030037	0.010513	0.160194	0.001202	0.011300	0.414603	0.000000	0.000000	0.012515	0.032239	0.036244	0.001502
609	ORPLE7	0.076085	0.098610	0.104716	0.000200	0.005006	0.002002	0.002403	0.005506	0.026029	0.010512	0.160178	0.001201	0.011300	0.414561	0.000000	0.000000	0.012514	0.032236	0.035439	0.001502
610	ORPLE8	0.076085	0.094605	0.100612	0.000200	0.001001	0.002002	0.010512	0.005506	0.030033	0.010512	0.160178	0.001201	0.011300	0.414561	0.000000	0.000000	0.012514	0.032236	0.035440	0.001502
611	ORPLE9	0.076085	0.090601	0.096607	0.000200	0.005006	0.002002	0.010512	0.005506	0.030033	0.010512	0.160178	0.001201	0.011300	0.414561	0.000000	0.000000	0.012514	0.032236	0.039444	0.001502
612	ORPLE10	0.088278	0.104930	0.092792	0.000201	0.001003	0.002006	0.002408	0.005517	0.030095	0.010533	0.160505	0.001204	0.009281	0.409389	0.000000	0.000000	0.012539	0.032302	0.035512	0.001505
613	ORPLE11	0.076100	0.098630	0.104738	0.000200	0.001001	0.002003	0.002403	0.005507	0.025033	0.010514	0.160211	0.001201	0.011100	0.414645	0.000000	0.000000	0.017523	0.032242	0.035447	0.001502
614	ORPLE12	0.076154	0.098700	0.100704	0.000200	0.005010	0.002004	0.002405	0.005511	0.025051	0.010521	0.160324	0.001202	0.010500	0.414939	0.000000	0.000000	0.017535	0.032265	0.035472	0.001503
615	Q10-G-134A	0.076000 0.094985	0.098630	0.100633	0.000200	0.002503	0.002003	0.002403 0.009247	0.005407	0.025033	0.010514	0.160211 0.241232	0.001202	0.013800 0.001100	0.414647 0.394514	0.000000	0.000100	0.017523	0.032242 0.024425	0.035447	0.001502
616 617	R10-G-91E R10-G-155A	0.094985	0.086441	0.033371	0.006835	0.004925	0.000000	0.009247	0.005428	0.000000	0.009247	0.241232	0.000000	0.001100	0.394514	0.027440	0.000000	0.000000	0.024425	0.059403	0.001407
618	S10-G-45A	0.094605	0.086095	0.033237	0.006808	0.004903	0.000000	0.009210	0.005406	0.000000	0.009210	0.240266	0.002201	0.005100	0.392934	0.027330	0.000000	0.019908	0.024327	0.060124	0.001402
619		0.099840	0.084834	0.018908	0.001100	0.005302	0.004702	0.009604	0.001100	0.000000	0.009304	0.240097	0.002201	0.008100	0.398961	0.010004	0.000000	0.019908	0.023610	0.060124	0.002301
620	S10-G-101B	0.100271	0.085060	0.019103	0.006204	0.005302	0.000100	0.009707	0.005404	0.000000	0.009307	0.235866	0.001801	0.006100	0.400382	0.010007	0.000000	0.020014	0.023617	0.060342	0.002301
621	S10-G-101BR	0.100271	0.085060	0.019113	0.006204	0.005304	0.000100	0.009707	0.005404	0.000000	0.009307	0.235866	0.001801	0.006100	0.400382	0.010007	0.000000	0.020014	0.023617	0.060342	0.001401
622	T10-G-16A	0.101705	0.120443	0.080262	0.003307	0.005010	0.001703	0.010020	0.001603	0.000000	0.010020	0.210425	0.002806	0.008900	0.371850	0.000000	0.000000	0.010020	0.030061	0.030061	0.001804
623	FWV-G-35B	0.060391	0.098949	0.069205	0.004307	0.000801	0.005208	0.054482	0.005408	0.042364	0.029244	0.057287	0.001202	0.006300	0.486434	0.000000	0.013821	0.000000	0.034652	0.029745	0.000200
624	FWV-G-63B	0.060130	0.098650	0.063032	0.002001	0.000800	0.001901	0.054227	0.005403	0.031716	0.014907	0.135368	0.001201	0.005300	0.447125	0.000000	0.013807	0.000000	0.034617	0.029615	0.000200
625	LAWE4H	0.059322	0.097236	0.024409	0.002001	0.000800	0.000800	0.053420	0.005402	0.000000	0.014405	0.212779	0.001201	0.003630	0.447466	0.000000	0.013605	0.000000	0.034113	0.029211	0.000200
626	FWV-G-108B	0.057806	0.094810	0.023802	0.010001	0.000800	0.012001	0.052105	0.005301	0.000000	0.014002	0.212721	0.001200	0.003800	0.436344	0.000000	0.013301	0.000000	0.033303	0.028503	0.000200
627	FWV-G-138A	0.058624	0.096039	0.024110	0.003201	0.006303	0.003801	0.052721	0.005402	0.000000	0.014206	0.212785	0.001200	0.003700	0.441777	0.000000	0.013405	0.000000	0.033714	0.028812	0.000200
628	GWV-G-36D	0.055734	0.091455	0.022914	0.007705	0.006304	0.009306	0.050230	0.005403	0.000000	0.013508	0.212828	0.027917	0.003500	0.420653	0.000000	0.012808	0.000000	0.032119	0.027416	0.000200
629	GWV-G-65A	0.059918	0.098330	0.019806	0.007702	0.000800	0.009303	0.054016	0.049015	0.000000	0.014505	0.182155	0.001200	0.003200	0.422127	0.000000	0.013804	0.000000	0.034410	0.029509	0.000200
630	GWV-G-110A	0.060594	0.099290	0.020098	0.002000	0.006299	0.000800	0.054594	0.049795	0.000000	0.014699	0.182082	0.001200	0.003600	0.426357	0.000000	0.013899	0.000000	0.034696	0.029797	0.000200
631 632	GWV-G-133B A3-AN104	0.058100	0.095200	0.019200	0.003200	0.006300	0.003800	0.052400	0.049800	0.000000	0.014100	0.182100	0.027900	0.003500	0.409000	0.000000	0.013300	0.000000	0.033300	0.028600	0.000200
633	A3-AN104 A3-AN104	0.060531	0.099209	0.050290	0.007871	0.000210	0.000060	0.053670	0.003281	0.024785	0.014803	0.146438	0.001120	0.003500	0.460968	0.000000	0.011342	0.000000	0.030416	0.030016	0.001490
634	LA137SRCCC	0.060506	0.099110	0.050305	0.007601	0.000210	0.000200	0.053605	0.006201	0.024703	0.014801	0.146415	0.001120	0.003300	0.460646	0.000000	0.011342	0.000000	0.030410	0.030003	0.000000
635	LA137SRCCC	0.060506	0.099110	0.050305	0.007601	0.000300	0.000200	0.053605	0.006201	0.024803	0.014801	0.146415	0.001100	0.002700	0.460646	0.000000	0.011301	0.000000	0.030403	0.030003	0.000000
636	LAWA137	0.060470	0.099050	0.050275	0.007596	0.000300	0.000200	0.053573	0.006197	0.024787	0.014793	0.146327	0.001099	0.003300	0.460369	0.000000	0.011294	0.000000	0.030385	0.029985	0.000000
637	LAWA137	0.060470	0.099050	0.050275	0.007596	0.000300	0.000200	0.053573	0.006197	0.024787	0.014793	0.146327	0.001099	0.003300	0.460369	0.000000	0.011294	0.000000	0.030385	0.029985	0.000000
638	LAWCrP11	0.061006	0.100010	0.063706	0.001400	0.006101	0.000700	0.055006	0.000900	0.034004	0.020202	0.111911	0.019202	0.005600	0.441044	0.000000	0.014001	0.000000	0.035004	0.030003	0.000200
639	LAWCrP11	0.061006	0.100010	0.063706	0.001400	0.006101	0.000700	0.055006	0.000900	0.034004	0.020202	0.111911	0.019202	0.005600	0.441044	0.000000	0.014001	0.000000	0.035004	0.030003	0.000200
640	LAWCrP11CCC	0.061006	0.100010	0.063706	0.001400	0.006101	0.000700	0.055006	0.000900	0.034004	0.020202	0.111911	0.019202	0.005600	0.441044	0.000000	0.014001	0.000000	0.035004	0.030003	0.000200
641		0.061006	0.100010	0.063706	0.001400	0.006101	0.000700	0.055006	0.000900	0.034004	0.020202	0.111911	0.019202	0.005600	0.441044	0.000000	0.014001	0.000000	0.035004	0.030003	0.000200
642	LAWCrP12	0.061000	0.100000	0.060900	0.001400	0.006000	0.000700	0.055000	0.000900	0.030200	0.017500	0.127800	0.016300	0.005300	0.437700	0.000000	0.014000	0.000000	0.035000	0.030000	0.000300
643	LAWCrP12	0.061000	0.100000	0.060900	0.001400	0.006000	0.000700	0.055000	0.000900	0.030200	0.017500	0.127800	0.016300	0.005300	0.437700	0.000000	0.014000	0.000000	0.035000	0.030000	0.000300
644	LAWCrP12CCC	0.061000	0.100000	0.060900	0.001400	0.006000	0.000700	0.055000	0.000900	0.030200	0.017500	0.127800	0.016300	0.005300	0.437700	0.000000	0.014000	0.000000	0.035000	0.030000	0.000300
645 646	LAWCrP12CCC LAWCrP6CCC	0.061000	0.100000	0.060900	0.001400	0.006000	0.000700	0.055000	0.000900	0.030200	0.017500	0.127800	0.016300	0.005300	0.437700	0.000000	0.014000	0.000000	0.035000	0.030000	0.000300
646 647	LAWCrP6CCC LAWCrP6CCC	0.061031	0.100050	0.069435	0.001401	0.006303	0.000700	0.055028	0.000900	0.041721	0.025513	0.080040	0.025113	0.005800	0.447625	0.000000	0.014007	0.000000	0.035018	0.030015	0.000300
648	LAWCIPOCCC LAWCIP7CCC	0.061031	0.100050	0.069435	0.001401	0.006303	0.000700	0.055028	0.000900	0.041721	0.023313	0.080040	0.025113	0.003800	0.447823	0.000000	0.014007	0.000000	0.035018	0.030013	0.000300
649	LAWCIP7CCC	0.061031	0.100050	0.069835	0.001401	0.006303	0.000700	0.055028	0.000900	0.043022	0.029315	0.054027	0.025113	0.006600	0.467335	0.000000	0.014007	0.000000	0.035018	0.030015	0.000300
650	LAWE10HCr1CCC	0.060847	0.099741	0.069768	0.002005	0.012029	0.000802	0.054933	0.005413	0.042703	0.029471	0.057338	0.001203	0.005600	0.479156	0.000000	0.013934	0.000000	0.034884	0.029972	0.000201
651	LAWE10HCr1CCC	0.060847	0.099741	0.069768	0.002005	0.012029	0.000802	0.054933	0.005413	0.042703	0.029471	0.057338	0.001203	0.005600	0.479156	0.000000	0.013934	0.000000	0.034884	0.029972	0.000201
652	LAWE9HCr1	0.060585	0.099340	0.068697	0.002003	0.006008	0.000801	0.054577	0.005408	0.040857	0.023633	0.089426	0.001202	0.005500	0.463352	0.000000	0.013920	0.000000	0.034749	0.029742	0.000200
653	LAWE9HCr1	0.060585	0.099340	0.068697	0.002003	0.006008	0.000801	0.054577	0.005408	0.040857	0.023633	0.089426	0.001202	0.005500	0.463352	0.000000	0.013920	0.000000	0.034749	0.029742	0.000200
654	LAWE9HCr2	0.060604	0.099370	0.068718	0.002003	0.004508	0.000801	0.054593	0.005409	0.040870	0.023640	0.089453	0.001202	0.005200	0.464995	0.000000	0.013924	0.000000	0.034759	0.029751	0.000200
655	LAWE9HCr2	0.060604	0.099370	0.068718	0.002003	0.004508	0.000801	0.054593	0.005409	0.040870	0.023640	0.089453	0.001202	0.005200	0.464995	0.000000	0.013924	0.000000	0.034759	0.029751	0.000200
656	LAWM2CCC	0.035117	0.060200	0.100333	0.008029	0.003225	0.003004	0.080266	0.000000	0.045150	0.050167	0.050167	0.005006	0.006700	0.471566	0.000000	0.030100	0.000000	0.050167	0.000000	0.000803
657	LAWM2CCC	0.035117	0.060200	0.100333	0.008029	0.003225	0.003004	0.080266	0.000000	0.045150	0.050167	0.050167	0.005006	0.006700	0.471566	0.000000	0.030100	0.000000	0.050167	0.000000	0.000803
658	LAWM7CCC	0.054454	0.069596	0.100283	0.000201	0.000081	0.000075	0.080226	0.000000	0.025873	0.050141	0.050141	0.000125	0.007200	0.521471	0.000000	0.030085	0.000000	0.010028	0.000000	0.000020
659	LAWM7CCC	0.054454	0.069596	0.100283	0.000201	0.000081	0.000075	0.080226	0.000000	0.025873	0.050141	0.050141	0.000125	0.007200	0.521471	0.000000	0.030085	0.000000	0.010028	0.000000	0.000020
660	LAWM25R1CCC	0.080112	0.120169	0.020028	0.008011	0.003205	0.003004	0.036852	0.020028	0.030042	0.035049	0.100141	0.005007	0.002600	0.499902	0.000000	0.005007	0.000000	0.020028	0.010014	0.000801

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P ₂ O ₅	SO ₃	SiO ₂	SnO ₂	TiO ₂	V2O5	ZnO	ZrO ₂	Others
661	LAWM25R1CCC	0.080112	0.120169	0.020028	0.008011	0.003205	0.003004	0.036852	0.020028	0.030042	0.035049	0.100141	0.005007	0.002600	0.499902	0.000000	0.005007	0.000000	0.020028	0.010014	0.000801
662	LAWM39CCC	0.070070	0.090591	0.050050	0.008008	0.003203	0.003003	0.030030	0.001001	0.025025	0.025025	0.140141	0.005005	0.002500	0.480482	0.000000	0.010010	0.000000	0.035035	0.020020	0.000801
663	LAWM39CCC	0.070070	0.090591	0.050050	0.008008	0.003203	0.003003	0.030030	0.001001	0.025025	0.025025	0.140141	0.005005	0.002500	0.480482	0.000000	0.010010	0.000000	0.035035	0.020020	0.000801
664	LAWM41CCC	0.070021	0.080024	0.070021	0.008002	0.003201	0.003001	0.050015	0.003001	0.010003	0.025008	0.140042	0.005002	0.003400	0.450135	0.000000	0.010003	0.000000	0.046014	0.022307	0.000800
665	LAWM41CCC	0.070021	0.080024	0.070021	0.008002	0.003201	0.003001	0.050015	0.003001	0.010003	0.025008	0.140042	0.005002	0.003400	0.450135	0.000000	0.010003	0.000000	0.046014	0.022307	0.000800
666	LAWM43CCC	0.070021	0.086826	0.050015	0.008002	0.003201	0.003001	0.050015	0.003001	0.025008	0.025008	0.120036	0.005001	0.003900	0.450136	0.000000	0.020006	0.000000	0.046014	0.030009	0.000800
667	LAWM43CCC	0.070021	0.086826	0.050015	0.008002	0.003201	0.003001	0.050015	0.003001	0.025008	0.025008	0.120036	0.005001	0.003900	0.450136	0.000000	0.020006	0.000000	0.046014	0.030009	0.000800
668 669	LAWE18 LAWE18	0.059258	0.082342 0.082342	0.014690	0.001999	0.000800	0.000799	0.053562 0.053562	0.053962	0.000000	0.009393	0.202058	0.001199	0.005100	0.422703	0.000000	0.013690 0.013690	0.000000	0.034076	0.044169	0.000200
670	LAWE18 LAWE19	0.059258	0.082342	0.014690	0.001999	0.000800	0.000799	0.053562	0.053962	0.000000	0.009393	0.202038	0.001199	0.005100	0.422703	0.000000	0.013690	0.000000	0.034078	0.044109	0.000200
671	LAWE19	0.059264	0.082350	0.024685	0.001999	0.000800	0.000800	0.053568	0.053968	0.000000	0.009394	0.197081	0.001199	0.005000	0.417748	0.000000	0.013692	0.000000	0.034079	0.044173	0.000200
672	LAWE19	0.059264	0.082350	0.024685	0.001999	0.000800	0.000800	0.053568	0.053968	0.000000	0.009394	0.197081	0.001199	0.005000	0.417748	0.000000	0.013692	0.000000	0.034079	0.044173	0.000200
673	LAWE20	0.059364	0.087447	0.014691	0.001999	0.000800	0.000800	0.053668	0.054067	0.000000	0.009394	0.207375	0.001199	0.003700	0.418348	0.000000	0.013692	0.000000	0.034080	0.039176	0.000200
674	LAWE20	0.059364	0.087447	0.014691	0.001999	0.000800	0.000800	0.053668	0.054067	0.000000	0.009394	0.207375	0.001199	0.003700	0.418348	0.000000	0.013692	0.000000	0.034080	0.039176	0.000200
675	LAWE21	0.074363	0.072464	0.014693	0.001999	0.000799	0.000800	0.053673	0.054073	0.000000	0.009395	0.197401	0.001199	0.003600	0.428385	0.000000	0.013693	0.000000	0.034083	0.039180	0.000200
676	LAWE21	0.074363	0.072464	0.014693	0.001999	0.000799	0.000800	0.053673	0.054073	0.000000	0.009395	0.197401	0.001199	0.003600	0.428385	0.000000	0.013693	0.000000	0.034083	0.039180	0.000200
677	LAWE22 LAWE22	0.075854	0.106336	0.009994	0.001999	0.000799	0.000800	0.063062	0.004797	0.000000	0.014391	0.224865	0.001199	0.003700	0.388366	0.000000	0.013692	0.000000	0.044973	0.044973	0.000200
678 679	LAWE22 LAWE23	0.075854 0.075839	0.106336	0.009994	0.001999	0.000799	0.000800 0.000799	0.063062 0.063049	0.004797	0.000000	0.014391 0.014389	0.224865	0.001199	0.003700	0.388366	0.000000	0.013692 0.013689	0.000000	0.044973	0.044973	0.000200
680	LAWE23	0.075839	0.106315	0.000000	0.001998	0.000799	0.000799	0.063049	0.009792	0.000000	0.014389	0.229816	0.001199	0.003900	0.388288	0.000000	0.013689	0.000000	0.044964	0.044964	0.000200
681	LAWE23 LAWE24	0.079952	0.090046	0.029982	0.001999	0.000799	0.000799	0.048771	0.012193	0.000000	0.014391	0.224864	0.001199	0.003700	0.408654	0.000000	0.013692	0.000000	0.044873	0.023886	0.000200
682	LAWE24	0.079952	0.090046	0.029982	0.001999	0.000799	0.000799	0.048771	0.012193	0.000000	0.014391	0.224864	0.001199	0.003700	0.408654	0.000000	0.013692	0.0000000	0.044873	0.023886	0.000200
683	LAWE25	0.079952	0.090046	0.039976	0.001999	0.000799	0.000799	0.048771	0.012193	0.000000	0.014391	0.224864	0.001199	0.003700	0.398660	0.000000	0.013692	0.000000	0.044873	0.023886	0.000200
684	LAWE25	0.079952	0.090046	0.039976	0.001999	0.000799	0.000799	0.048771	0.012193	0.000000	0.014391	0.224864	0.001199	0.003700	0.398660	0.000000	0.013692	0.000000	0.044873	0.023886	0.000200
685	LAWE26	0.079952	0.090046	0.029982	0.001999	0.000799	0.000799	0.048771	0.017190	0.000000	0.014391	0.224864	0.001199	0.003700	0.403657	0.000000	0.013692	0.000000	0.044873	0.023886	0.000200
686	LAWE26	0.079952	0.090046	0.029982	0.001999	0.000799	0.000799	0.048771	0.017190	0.000000	0.014391	0.224864	0.001199	0.003700	0.403657	0.000000	0.013692	0.000000	0.044873	0.023886	0.000200
687	ORPLA18	0.097000	0.088000	0.033400	0.006800	0.005000	0.000000	0.003000	0.005400	0.000000	0.009300	0.240000	0.000000	0.001700	0.395200	0.027600	0.000000	0.000000	0.027600	0.060000	0.000000
688 689	ORPLA19 ORPLA20	0.097000 0.067013	0.088000	0.033400	0.006800	0.005000	0.000000	0.003000	0.005400	0.000000	0.009300	0.240000	0.000000	0.001700	0.395200	0.048300	0.000000	0.000000	0.027600	0.039300	0.000000
690	ORPLA20 ORPLA21	0.069100	0.086400	0.033407	0.007100	0.005000	0.000000	0.002900	0.005600	0.000000	0.009302	0.240048	0.000000	0.001800	0.417200	0.027003	0.000000	0.000000	0.027000	0.058800	0.000000
691	ORPLA22	0.094609	0.088009	0.035504	0.006801	0.005000	0.000000	0.000000	0.005401	0.000000	0.000000	0.240024	0.000000	0.001700	0.402940	0.030003	0.000000	0.000000	0.030003	0.060006	0.000000
692	ORPLA23	0.094609	0.088009	0.035504	0.006801	0.005000	0.000000	0.000000	0.005401	0.000000	0.000000	0.240024	0.000000	0.001700	0.402940	0.050005	0.000000	0.000000	0.030003	0.040004	0.000000
693	ORPLA24	0.093409	0.085509	0.035203	0.007101	0.005000	0.000000	0.000000	0.005601	0.000000	0.000000	0.250025	0.000000	0.001700	0.397040	0.030003	0.000000	0.000000	0.029403	0.060006	0.000000
694	ORPLA25	0.091718	0.083917	0.034507	0.007302	0.004901	0.000000	0.000000	0.005801	0.000000	0.000000	0.260052	0.000000	0.001800	0.391078	0.030006	0.000000	0.000000	0.028906	0.060012	0.000000
695	ORPLD4	0.101934	0.120858	0.080405	0.003304	0.005007	0.001702	0.003004	0.001602	0.000000	0.010013	0.210276	0.002904	0.008500	0.379698	0.000000	0.000000	0.010013	0.030139	0.030140	0.000501
696	ORPLD5	0.101954	0.100452	0.080422	0.003305	0.005008	0.001703	0.003005	0.001602	0.000000	0.010015	0.210318	0.002904	0.008300	0.379774	0.000000	0.000000	0.020030	0.030146	0.040561	0.000501
697 698	ORPLD6 ORPLD7	0.101384 0.100943	0.098880	0.079244 0.079212	0.003506	0.005009	0.001803	0.003005	0.001703	0.000000	0.009918	0.220400	0.003005	0.008200	0.373979	0.000000	0.000000	0.019736	0.029754 0.029742	0.039973	0.000501 0.000501
699	ORPLD7 ORPLD8	0.100943	0.098840	0.079212	0.003505	0.005012	0.001803	0.003004	0.001702	0.000000	0.009914	0.220511	0.003004	0.008700	0.368249	0.010014	0.000000	0.010014	0.029742	0.039930	0.000501
700	ORPLD9	0.085898	0.095220	0.073670	0.003608	0.005012	0.001904	0.002907	0.001804	0.000000	0.009722	0.230532	0.003107	0.008213	0.368249	0.010023	0.000000	0.029268	0.029969	0.040293	0.000601
701	ORPLF1	0.100993	0.098174	0.100691	0.000101	0.005538	0.000705	0.003121	0.004128	0.037759	0.010170	0.100691	0.000302	0.009200	0.436496	0.008861	0.000000	0.012586	0.030207	0.040277	0.000000
702	ORPLF2	0.099544	0.096726	0.099243	0.000101	0.005536	0.000805	0.003020	0.004529	0.037241	0.009964	0.110717	0.000302	0.011500	0.430185	0.008656	0.000000	0.012481	0.029793	0.039657	0.000000
703	ORPLF3	0.098585	0.095757	0.098181	0.000101	0.005657	0.000808	0.003030	0.005050	0.036868	0.009899	0.121211	0.000404	0.009300	0.425654	0.008586	0.000000	0.012323	0.029394	0.039192	0.000000
704	ORPLF4	0.086728	0.095804	0.098023	0.000101	0.005647	0.000807	0.003025	0.005042	0.035296	0.009883	0.121016	0.000403	0.011000	0.424967	0.008572	0.000000	0.025212	0.029346	0.039128	0.000000
705	ORPLF4(Rep-K3)	0.086728	0.095804	0.098023	0.000101	0.005647	0.000807	0.003025	0.005042	0.035296	0.009883	0.121016	0.000403	0.011000	0.424967	0.008572	0.000000	0.025212	0.029346	0.039128	0.000000
706 707	ORPLF5 ORPLF6	0.097192	0.094364 0.094508	0.096788	0.000101	0.005658	0.000909	0.002930	0.005456	0.036270	0.009800	0.131341	0.000404	0.010800	0.419685	0.008487	0.000000	0.012124	0.028996	0.038695	0.000000
707	ORPLF6 ORPLF7	0.085625	0.094508	0.096729	0.000101	0.005635	0.000909	0.002928	0.005432	0.034835	0.009794	0.131261	0.000404	0.011300	0.419430	0.008482	0.000000	0.024940	0.028978	0.038672	0.000000
708	ORPLF7(Rep-K3)	0.086535	0.095591	0.097805	0.000101	0.005635	0.000805	0.003019	0.005031	0.043771	0.009861	0.120746	0.000402	0.013200	0.424021	0.000000	0.000000	0.025155	0.029281	0.039041	0.000000
710	ORPLF8	0.086631	0.089150	0.097914	0.000101	0.005641	0.000806	0.003022	0.005037	0.050367	0.009872	0.120881	0.000403	0.012099	0.424494	0.000000	0.000000	0.025183	0.029314	0.039085	0.000000
711	ORPLF9	0.076566	0.089159	0.097924	0.000101	0.005642	0.000806	0.003022	0.005037	0.035260	0.009873	0.120893	0.020149	0.012099	0.421314	0.008563	0.000000	0.025186	0.029317	0.039089	0.000000
712	ORPLF10	0.086605	0.095668	0.106444	0.000101	0.005639	0.000806	0.003021	0.005035	0.035246	0.009869	0.120844	0.000403	0.012400	0.424365	0.000000	0.000000	0.025176	0.029305	0.039073	0.000000
713	ORPLF10(Rep-K3)	0.086605	0.095668	0.106444	0.000101	0.005639	0.000806	0.003021	0.005035	0.035246	0.009869	0.120844	0.000403	0.012400	0.424365	0.000000	0.000000	0.025176	0.029305	0.039073	0.000000
714	ORPLF11	0.086666	0.095736	0.097953	0.000101	0.005643	0.000907	0.003023	0.005039	0.035271	0.009876	0.120930	0.000403	0.011600	0.424665	0.006047	0.000000	0.027713	0.029326	0.039101	0.000000
715	ORPLF12	0.086614	0.095678	0.097894	0.000101	0.005640	0.000906	0.003021	0.005036	0.035250	0.009870	0.120856	0.000403	0.012099	0.424408 0.424451	0.000000	0.000000	0.027696	0.029308	0.045220	0.000000
716	ORPLF13 ORPLF14	0.086623	0.095688	0.106465	0.000101	0.005640	0.000806	0.000000	0.005036	0.035253	0.000000	0.120869	0.000403	0.012099	0.424451	0.010072	0.000000	0.027397 0.025184	0.029311 0.029314	0.039786	0.000000
717	ORPLF14 ORPLG1	0.100430	0.095698	0.022307	0.002001	0.005641	0.000806	0.000000	0.005037	0.000000	0.009603	0.120881	0.001300	0.003300	0.424494	0.010073	0.000000	0.025184	0.029314	0.059318	0.000200
719	ORPLG2	0.099940	0.089027	0.022307	0.002001	0.006002	0.000800	0.002901	0.052021	0.000000	0.009603	0.190076	0.001300	0.003300	0.409064	0.029709	0.000000	0.000000	0.024307	0.058824	0.000200
720	ORPLG3	0.099520	0.087418	0.021804	0.002100	0.006001	0.000800	0.002901	0.053411	0.000000	0.009502	0.195039	0.001300	0.003600	0.405081	0.029106	0.000000	0.000000	0.024005	0.058212	0.000200
721	ORPLG4	0.099500	0.087400	0.021800	0.002100	0.006000	0.000800	0.002900	0.053400	0.000000	0.009500	0.195000	0.001300	0.003800	0.405000	0.048000	0.000000	0.000000	0.024000	0.039300	0.000200
722	ORPLG5	0.099510	0.087409	0.027703	0.002100	0.006001	0.000800	0.000000	0.053405	0.000000	0.000000	0.195019	0.001300	0.003600	0.407941	0.029103	0.000000	0.000000	0.027703	0.058206	0.000200
	ORPLG6	0.067700	0.087000	0.027500	0.002200	0.006000	0.000900	0.002900	0.054000	0.000000	0.009800	0.197500	0.001400	0.003600	0.417500	0.029000	0.000000	0.000000	0.034800	0.058000	0.000200
724	ORPLG7	0.067727	0.086535	0.027411	0.002201	0.005902	0.000900	0.002901	0.054722	0.000000	0.009704	0.200080	0.001401	0.003500	0.415667	0.028812	0.000000	0.000000	0.034614	0.057723	0.000200
	ORPLG8 ORPLG9	0.067520	0.085726 0.084934	0.027108	0.002301 0.002301	0.005902	0.000900	0.002901 0.002801	0.056117 0.057523	0.000000	0.009603	0.205062 0.210084	0.001400 0.001401	0.003600	0.411624 0.407664	0.028609	0.000000	0.000000	0.034310 0.033914	0.057117	0.000200
/20	UKFLUY	0.007427	0.084934	0.020911	0.002301	0.005902	0.000900	0.002801	0.057523	0.000000	0.009504	0.210084	0.001401	0.003600	0.40/004	0.028511	0.000000	0.000000	0.033914	0.050023	0.000200

TO COLOR LANDING LANDING <thlanding< th=""> <thlanding< th=""> <thlanding<< th=""><th>#</th><th>Glass ID</th><th>Al₂O₃</th><th>B₂O₃</th><th>CaO</th><th>Cl</th><th>Cr₂O₃</th><th>F</th><th>Fe₂O₃</th><th>K₂O</th><th>Li₂O</th><th>MgO</th><th>No O</th><th>P₂O₅</th><th>SO₃</th><th>SiO₂</th><th>SnO₂</th><th>TiO₂</th><th>V₂O₅</th><th>ZnO</th><th>ZrO₂</th><th>Others</th></thlanding<<></thlanding<></thlanding<>	#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	No O	P ₂ O ₅	SO ₃	SiO ₂	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others
Dep Repart DepArt 1			2 - 3	2-3		-	- 2- 3	-	20	-	-	0	Na ₂ O			-		- 2	2 0	_	- 2	
2000 Control 1000000 ontro 1000000			0.00.000	0.00.07	0.020002			0.00007.				0.007.00			0.000000				0.00000	0.000	0.0000000	0.000277
31 1000007 0.000007 0.00000 0.	729	ORPLG11	0.067507	0.085709	0.039604	0.002300	0.005901	0.000900	0.000000	0.056106	0.000000	0.000000	0.205020	0.001400	0.003800	0.411541	0.028603	0.000000	0.000000	0.034303	0.057106	0.000200
No. No. <td></td>																						
No. Allebody Outsoin O																						
1000000000000000000000000000000000000																						
1000000000000000000000000000000000000																						
1000000000000000000000000000000000000																	0.000000					0.000000
28 PERAIP 0.01046 0.00050 0.00000 0.00	736	10A-G-43B	0.067593	0.085092	0.026997	0.002300	0.005899	0.000900	0.002000	0.057594	0.000000	0.009599	0.209979	0.001400	0.002100	0.409159	0.028397	0.000000	0.000000	0.033997	0.056794	0.000200
200 DerAx 0.0012.0 0.0002.0 0.0000 0.0000 0.0000 0.0000 0.0000			0.2000.7				0.000 = 0.		0.007.010		0.00000	0.007020	0.200020	0.00000	0.000000		0.02002.		0.007.12.		0.02// .2	0.000000
10 CPRL AS 0.000001 0.000011 0.																						
No. Description Description <thdescription< th=""> <thdes< td=""><td></td><td></td><td>0.101210</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.070110</td><td></td><td>0.000000</td><td></td><td></td><td>0.007117</td><td></td><td>0.000710</td><td></td><td>0.021201</td><td>0.000000</td></thdes<></thdescription<>			0.101210									0.070110		0.000000			0.007117		0.000710		0.021201	0.000000
2 Derge al al control in al conttrol in al control in al control in al control in al con			0.07 07 20	0	0.00 00 00	0.000.2.	0.00.000	0.000000	0.00.000	0.000.000	0.00000	0.100210	0.20000	0.00000	0.00.000	0.000000	0.000.07	0.00000	0.000.20		0.020701	0.000000
1 0000000 0.0000000 0.0000000 0.0000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 <														0.000000	0.007538		0.020020		0.009720			0.000000
1 0	743	ORPLA32	0.077469	0.096611	0.033473	0.006414	0.005211	0.000000	0.009020	0.005111	0.000000	0.100218	0.230502	0.000000	0.007538	0.348760	0.010022	0.000000	0.009721	0.029965	0.029965	0.000000
16 DBRLASH 0.007214 0.1000001 0.00412 0.000001 0.007101 0.000000 0.000001 0.000000 0.000000 0.000001 0.000000 0.000001 0.																						
717 787 7																						
18 DEFLAIS 0.065386 0.085701 0.000001 0.00728 0.21286 0.00000 0.00728 0.0118 0.00000 0.00728 0.0118 0.00000 0.00728 0.0118 0.00000 0.0000														0.000000			0.0177.10					0.000000
100 100 0.000000 0.000														0.000000	0.007001				0.000 117		0.050771	0.000000
750 DRFLAS 0.05432 0.05432 0.050342 0.00000 0.000728 0.1272 0.00000 0.000728 0.01720 0.00000 0.00000 0.00078 0.1272 0.00000 0.00000 0.00078 0.1272 0.00000 0.0														0.000000					0.009222		0.057935	0.000000
720 DePLG 13 0.005407 0.002200 0.004701 0.00400 0.000000 0.00000 0.00000	750	ORPLA38	0.063642	0.082784	0.031470	0.006715	0.004911	0.000000	0.002606	0.005312	0.000000	0.009922	0.242039	0.000000	0.007788	0.417932	0.026860	0.000000	0.009221	0.028263	0.060535	0.000000
753 084PLG14 0.065370 0.080000 0.080700 0.000700			0.007000		0.00.22.0	0.000.20	0.00.0	0.000000	0.00=000	0.000012	0.000000	0.002		0.00000	0.00.00			0.00000	0.007 -= 0		0.000.00	0.00000
74 ORFG15 0.063170 0.087101 0.007701 0.007701 0.007000 0.077001 0.00000 0.077001 0.00000 0.077001 0.000000 0.077001 0.00000 0.077001 0.000000 0.077001 0.000000 0.00000 0.00001 0.000000 0.000000																						
755 OBMPG 16 0.05522 0.05230 0.002301 0.002900 0.0029															0.003700							
756 OBER/GIT 0.05522 0.088/033 0.027311 0.000900 0.002900 0.030005 0.030005 0.030005 0.030005 0.032015 0.00000 0.027311 0.000000 0.027311 0.000000 0.027311 0.000000 0.002701 0.000000 0.027311 0.000000 0.000000 0.027311 0.000000 0.00000 0.01781 0.001700 0.001701 0.000000 0.00000															0.003900							
788 08P.G19 0.057965 0.027019 0.002701 0.002700 0.002700 0.002701 0.002700 0.002701 0.002711 0.002701 0.002711 0																						
790 08PH-G20 0.060412 0.08016 0.027105 0.002210 0.002201 0.056111 0.000000 0.002800 0.027105 0.000000 0.000200 0.002810 0.002810 0.008500 0.028173 0.027111 0.000000 0.000000 0.000000 0.	757	ORPLG18	0.055222	0.080432	0.027311	0.002301	0.005902	0.000900	0.002901	0.056423	0.000000	0.019708	0.206183	0.001401	0.003600	0.422570	0.027311	0.000000	0.000000	0.027311	0.060324	0.000200
760 08/HC.21 0.069424 0.089072 0.002900 0.002900 0.002910 0.003500 0.420311 0.000000 0.002000 0.002910 0.002910 0.002910 0.003500 0.420311 0.000000 0.000000 0.002111 0.000000 0.000000 0.02111 0.000000 0.000000 0.002111 0.000000 0.000000 0.02111 0.000000 0.000000 0.02111 0.000000 0.000000 0.02311 0.000000 0.000000 0.02311 0.000000 0.000000 0.02114 0.000000 0.000000 0.000000 0.01101 0.003300 0.01111 0.000000															0.0000000							0.000200
761 ORP.C22 0.004040 0.008000 0.027114 0.007301 0.007301 0.004101 0.034111 0.034111 0.034111					0.02.200	0.001001								01002.000	0.000.00		0.00.200		0.00000		0.000012	0.000=00
762 08PR-C23 0.060410 0.089100 0.009900 0.009900 0.009900 0.009100 0.00110 0.003100 0.427114 0.002000 0.009900 0.00110 0.001400 0.01310 0.03115 0.000000 0.000900 0.00110 0.001400 0.00310 0.02911 0.00530 0.02911 0.00530 0.02911 0.001401 0.001400 0.01111 0.002910 0.0012411 0.002910 0.0012411 0.002910 0.0012411 0.002910 0.0012411 0.0012411 0.002910 0.0012411 0.0012411 0.002910 0.0012411 0.0012411 0.002911 0.0012411 0.002911 0.0012411 0.002911 0.0012411 0.0012411 0.0012411 0.002911 0.0012411 0.0012411 0.0029111 0.0012411 0.0012411 0.0012411 0.0012411 0.0012411 0.0012411 0.0012411 0.0012411 0.0012411 0.0012411 0.0012411 0.0012411 0.0012411 0.0012411 0.0012411 0.0012411 0.00124111 0.00124111 0.00124111 0.001241111 <																			0.00000			0.000-00
763 ORP.C24 0.069324 0.079230 0.020011 0.005901 0.009200 0.002201 0.057523 0.000000 0.000																			0.00000			
765 0.RPLC36 0.009340 0.002914 0.002901 0.002912 0.00000 0.001700 0.21417 0.002811 0.00000 0.002811 0.000281 0.002811 0.000281 0.002811 0.00000 0.01411 0.00110 0.01110 0.00110 0.021411 0.012451 0.012411 0.012411 0.012411 0.012411 0.012411 0.012411 0.012411 0.012411 0.012411 0.012411 0.012411 0.012411 0.012411 0.012411 0.012411	763	ORPLG24	0.060324	0.079232	0.026911	0.002301		0.000900	0.002801	0.057523	0.000000	0.009404	0.210084	0.001401	0.003600	0.416167	0.036915	0.000000	0.000000	0.026911	0.059424	0.000200
766 ORPLG27 0.060330 0.072940 0.026914 0.002801 0.005202 0.000000 0.007240 0.201401 0.001000 0.007241 0.000000 0.007241 0.000000 0.007241 0.000000 0.007241 0.000000 0.007241 0.001000 0.007241 0.001000 0.007241 0.021711 0.021711 0.021711 0.021711 0.021731 0.000000 0.007241 0.021751 0.000000 0.007241 0.021751 0.000000 0.007241 0.021751 0.021751 0.000000 0.007241 0.021751 0.021751 0.021751 0.021751 0.021751 0.021751 0.021751 0.021751 0.021751 0.021751 0.021751 0.021751 0.021751 0.021751 0.021751 0.021751 0.021751 0.000000 0.010251 0.000000 0.010251 0.000000 0.010251 0.000000 0.010251 0.000000 0.010251 0.000000 0.010251 0.000000 0.010251 0.000000 0.010251 0.000000 0.011632 0.000000 0.011632 0																						
767 II-G-24B 0.06953 0.002831 0.002801 0.002801 0.002801 0.00000 0.007700 0.41567 0.002711 0.00000 0.002814															0.000 100				0.000000			
768 III-G-135A 0.060230 0.079140 0.023814 0.003203 0.003903 0.003903 0.003903 0.003903 0.003743 0.000101 0.001410 0.044470 0.004700 0.420711 0.031816 0.000000 0.002814 0.003223 0.000300 0.003223 0.003215 0.003223 0.003215 0.003203 0.003601 0.05541 0.013786 0.034517 0.025814 0.03597 0.021814 0.003000 0.000800 0.00710 0.25077 0.021841 0.003233 0.00000 0.004431 0.006710 0.05560 0.002641 0.003233 0.00000 0.004431 0.007000 0.03977 0.023814 0.00000 0.000747 0.023971 0.023814 0.00000 0.000743 0.001151 0.000700 0.03971 0.023814 0.000000 0.000743 0.001101 0.000700 0.018814 0.00000 0.000743 0.001101 0.022711 0.018512 0.000000 0.000743 0.01131 0.000000 0.000743 0.01131 0.000000 0.000000 0.000000 <td></td>																						
769 LORPM1 0.068894 0.082904 0.01276 0.008004 0.001232 0.003001 0.05142 0.000000 0.001700 0.521471 0.025662 0.004753 0.033138 0.010012 0.0000012 0.0000013 0.000000 0.000200 0.001700 0.521677 0.025497 0.023497 0.017310 0.01318 0.00000 0.000210 0.001700 0.350077 0.021497 0.023497 0.01700 0.02497 0.02797 0.00001 0.000000 0.000110 0.003505 0.002660 0.007110 0.002577 0.000110 0.002477 0.2771 0.00001 0.001711 0.00000 0.00000 0.00000 0.000000																						
771 LORPM3 0.041988 0.072923 0.017611 0.002866 0.002660 0.02177 0.22477 0.22913 0.004445 0.002900 0.032985 0.002900 0.029978 0.002992 0.002978 0.00301 0.058823 0.00000 0.014935 0.004445 0.00000 0.010804 0.000000 0.014016 0.044016 0.000000 0.00000 0.00000 0.010804 0.000000 0.001000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000																						
772 LORPM4R1 0.094467 0.123829 0.030560 0.007449 0.002992 0.002787 0.003001 0.049239 0.139625 0.004455 0.007000 0.410843 0.000000 0.00					0.105903	0.008004																0.000800
773 LORPMS 0.108494 0.000091 0.043065 0.003014 0.003214 0.003298 0.080121 0.006380 0.050076 0.000900 0.041097 0.050076 0.0000000 0.000														0.00.0.0					0.01		0.010101	
774 LORPM6 0.035004 0.137314 0.122412 0.008003 0.00294 0.00294 0.002000 0.00171 0.004991 0.001230 0.037761 0.004991 0.044953 0.044975 0.054221 0.004991 0.004991 0.001230 0.003000 0.007761 0.004991 0.001230 0.003000 0.004991 0.00000 0.004001 0.004991 0.00000 0.004000 0.004991 0.001230 0.004000 0.004001 0.004991 0.00100 0.004000 0.004991 0.00100 0.004000 0.00000 0.004000 0.004991 0.00100 0.03001 0.000000 0.004000 0.004000 0.004000 0.004000 0.004000 0.004000 0.004000 0.004000 0.004000 0.004000 0.004000 0.004000 0.004000 0.004000 0.004000 0.004000														0.001010					0.010010		0.000000	0.000.00
775 LORPMTR1 0.138431 0.007891 0.022938 0.001238 0.001154 0.040899 0.020160 0.030275 0.012574 0.140470 0.001203 0.002300 0.37761 0.04038 0.005227 0.014573 0.049975 0.054882 0.000000 776 LORPMBR1 0.139116 0.069314 0.000000 0.000838 0.000275 0.003000 0.000000 0.023366 0.05222 0.083701 0.046365 0.046365 0.026336 0.04178 0.050222 0.000000 0.000000 0.000000 0.000000 0.03996 0.049975 0.046364 0.000000 0.046364 0.000000 0.03996 0.049975 0.046364 0.000000 0.030023 0.040034 0.046364 0.000000 0.030023 0.040034 0.030001 0.000000 0.030000 0.000000 0.030000 0.000000 0.030000 0.000000 0.030000 0.000000 0.030000 0.000000 0.030000 0.000000 0.030000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000																						0.00000
776 LORPM8R1 0.139116 0.069216 0.000000 0.00838 0.003228 0.00075 0.003126 0.00322 0.005012 0.005012 0.00500 0.045243 0.046355 0.026336 0.04178 0.05222 0.000000 0.008084 777 LORPM10R1 0.035027 0.006047 0.000000 0.000806 0.000075 0.005000 0.005030 0.004094 0.00110 0.42523 0.000000 0.00323 0.040001 0.000000 0.001300 0.000000 0.000000 0.001300 0.000000 0.000000 <t< td=""><td></td><td></td><td>0.00000</td><td>0.20.02.</td><td>0</td><td>0.00000</td><td>0.000=</td><td>0.00=///</td><td>0.000000</td><td>0.00</td><td>0.000000</td><td>0.0</td><td></td><td>0.00</td><td>0.000700</td><td></td><td>0.00000</td><td>0.00000</td><td>0.00000</td><td>0.000000</td><td>0.0022000</td><td>0.00000</td></t<>			0.00000	0.20.02.	0	0.00000	0.000=	0.00=///	0.000000	0.00	0.000000	0.0		0.00	0.000700		0.00000	0.00000	0.00000	0.000000	0.0022000	0.00000
778 LORPM10R1 0.035027 0.060047 0.122495 0.008008 0.003216 0.002996 0.080062 0.05886 0.050039 0.04905 0.008100 0.03000 0.040031 0.01008 0.00000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.001100 0.000000 0.050000 0.000																						
779 LORPM11 0.035000 0.060000 0.008002 0.003214 0.00294 0.00100 0.01000 0.01100 0.00490 0.00490 0.01100 0.049370 0.00100 0.03000 0.00000 <																						
780 LORPM12R1 0.035177 0.124877 0.00769 0.00716 0.002878 0.002881 0.011890 0.052936 0.044463 0.002220 0.004460 0.052262 0.004460 0.03107 0.000000 0.000000 0.000000 0.000001 0.00125 0.000015 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000015 0.000013 0.000001 0.000013 0.000240 0.003101 0.0																	0.00000					0.00000
781 LORPM13 0.139283 0.139273 0.00000 0.000001 0.000075 0.080453 0.001106 0.09528 0.000100 0.133853 0.00126 0.00440 0.372666 0.013979 0.000000 0.040226 0.010057 0.060339 0.000000 782 LORPM14R1 0.055689 0.075445 0.097900 0.000080 0.00075 0.02345 0.047251 0.036103 0.034993 0.132703 0.000125 0.02600 0.338923 0.036213 0.000804 0.01999 0.02344 0.01996 0.000901 783 LORPM16R1 0.117864 0.121906 0.022443 0.00024 0.00296 0.02574 0.02214 0.02214 0.012614 0.106042 0.00080 0.000313 0.02096 0.02346 0.00925 0.00804 0.03210 0.00080 0.00013 0.00000 0.03814 0.00510 0.38429 0.02344 0.03210 0.00080 0.00013 0.00080 0.00013 0.00005 0.03849 0.01264 0.015050 0.03504 0.001050					0.000000					0.002200				0.001770	0.001000		0.000000		0.000000			0.000000
782 LORPM14R1 0.055689 0.075445 0.09790 0.00000 0.000075 0.02345 0.047251 0.036103 0.034933 0.132703 0.00125 0.00260 0.38323 0.036213 0.005999 0.028744 0.01796 0.01996 0.000020 783 LORPM16R1 0.117864 0.12106 0.000524 0.00026 0.00254 0.000524 0.000524 0.00126 0.010488 0.00126 0.000614 0.00500 0.036123 0.036123 0.036123 0.036123 0.036123 0.036123 0.00299 0.028744 0.01996 0.000130 784 LORPM16R1 0.117864 0.121906 0.00200 0.000560 0.00275 0.02174 0.02104 0.04022 0.01641 0.106438 0.00530 0.384209 0.02346 0.00295 0.00804 0.03171 0.022001 0.000020 785 LORPM17R1 0.105599 0.075458 0.002479 0.00009 0.00075 0.01739 0.021640 0.03349 0.03125 0.00155 0.03800 0.38673 0.03500 0.38673 0.03500 0.38673 0.03509 <t< td=""><td></td><td></td><td>0.000.000</td><td></td><td></td><td></td><td></td><td></td><td>0.011070</td><td></td><td></td><td></td><td></td><td>0.001100</td><td></td><td></td><td></td><td></td><td>0.00000</td><td></td><td>0.000000</td><td>0.000710</td></t<>			0.000.000						0.011070					0.001100					0.00000		0.000000	0.000710
783 LORPM15 0.055734 0.07506 0.05906 0.00130 0.00024 0.00468 0.04024 0.03021 0.10060 0.00814 0.00540 0.03612 0.03612 0.03612 0.03612 0.03612 0.03612 0.03612 0.03612 0.00130 0.000130 0.000130 0.000130 0.000130 0.000130 0.000130 0.00130 <td></td> <td>0.155055</td> <td>0.000120</td> <td></td> <td></td> <td>0.010777</td> <td></td> <td></td> <td></td> <td></td> <td>0.000020</td>													0.155055	0.000120			0.010777					0.000020
784 LORPM16R1 0.117864 0.121906 0.024493 0.008006 0.003216 0.002996 0.026747 0.02101 0.040022 0.019641 0.106438 0.004993 0.00510 0.384209 0.029346 0.009255 0.008004 0.039371 0.022962 0.000000 785 LORPM17R1 0.107599 0.075466 0.026702 0.000000 0.000075 0.05475 0.042173 0.01001 0.035003 0.386101 0.101001 0.00720 0.00800 0.00125 0.00212 0.00001 0.001010 0.001700 0.00125 0.00125 0.00210 0.000001 0.002925 0.002950 0.021372 0.020101 0.00125 0.00125 0.00210 0.001001 0.001750 0.02150 0.01135 0.023461 0.00000 0.000020 0.000020 0.000018 0.00018 0.001155 0.00125 0.00125 0.00250 0.41750 0.022560 0.13790 0.02150 0.11750 0.01550 0.02170 0.00000 0.000020 0.00020 0.000020 0.00018														0.000814								
786 LORPM18 0.055698 0.075458 0.024479 0.00000 0.00080 0.01260 0.03349 0.01720 0.105827 0.00125 0.00280 0.01780 0.03999 0.03999 0.031999 0.031999 0.01799 0.01799 0.01614 0.00000 787 LORPM19R1 0.08529 0.092529 0.042999 0.00185 0.00004 0.02800 0.17330 0.022630 0.14748 0.00158 0.00300 0.01750 0.02999 0.01550 0.022600 0.03999 0.01750 0.022600 0.00008 0.00018 0.00018 0.00158 0.00158 0.00158 0.00155 0.02101 0.01850 0.01261 0.01260 0.04099 0.01750 0.02260 0.03199 0.01750 0.02102 0.00018 0.00018 0.00018 0.00018 0.00018 0.00020 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 <t< td=""><td></td><td>LORPM16R1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.026274</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00000</td></t<>		LORPM16R1							0.026274													0.00000
787 LORPM19R1 0.085929 0.092529 0.042999 0.00185 0.000694 0.02810 0.02800 0.01746 0.00118 0.00350 0.40999 0.01150 0.02950 0.03390 0.03150 0.00175 0.00260 0.00185 788 LORPM20R1 0.097860 0.085639 0.036724 0.00000 0.000076 0.02903 0.03993 0.01501 0.155476 0.00125 0.04090 0.40104 0.027833 0.0021 0.01202 0.032743 0.00000 0.00001 0.00000 0.155476 0.00125 0.04090 0.01040 0.027833 0.00211 0.01002 0.00002 0.00001														0.000120			0.010001		0.000001			
788 LORPM2OR1 0.097860 0.085639 0.036724 0.00000 0.000050 0.02923 0.03493 0.02913 0.01501 0.01015 0.04100 0.02783 0.00921 0.03273 0.00000 0.03774 0.00000 0.000075 0.02913 0.01991 0.155476 0.00115 0.04100 0.02783 0.00921 0.01501 0.02021 0.00000 0.00000 0.00101 0.00105 0.00100 0.01010 0.01105 0.00100 0.01000 0.00101 0.00101 0.00101 0.00100 0.00101														0.000125								
789 LORPM21 0.048460 0.12850 0.11450 0.00024 0.00026 0.01270 0.00000 0.01017 0.00100 0.448820 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00107 0.00100 0.01000 0.00100 0.01000 0.00100 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00100 0.00000			0.000/2/																			
790 LORPM22 0.034972 0.059952 0.105985 0.00000 0.00075 0.01701 0.00000 0.01704 0.00100 0.01125 0.00180 0.34972 0.04960 0.00000 0.00155 0.03135 0.05952 0.00000 0.00000 0.01212 0.00120 0.01800 0.04960 0.00100 0.00100 0.00000 0.00000 0.00000 0.00120 0.00100 0.34972 0.00000 0.00100 0.00000 0.00000 0.00000 0.00000 0.00120 0.00100 0.34970 0.00000 0.00100 0.00000 0.00000 0.00000 0.00120 0.00100 0.34970 0.00000 0.00100 0.00000 <th< td=""><td></td><td></td><td></td><td>0.0000000</td><td>0.000.0.2.</td><td></td><td>0.000000</td><td>0.0000.0</td><td></td><td>0.00 .770</td><td>0.0=//.00</td><td>0.010.001</td><td>0.200.00</td><td>0.000120</td><td>0.00.00</td><td>01.010.0</td><td></td><td></td><td>0.02.00.22</td><td></td><td>010021.10</td><td>0.0000=0</td></th<>				0.0000000	0.000.0.2.		0.000000	0.0000.0		0.00 .770	0.0=//.00	0.010.001	0.200.00	0.000120	0.00.00	01.010.0			0.02.00.22		010021.10	0.0000=0
791 LORPM23 0.126140 0.07070 0.018110 0.00019 0.00007 0.00007 0.00073 0.06850 0.0110 0.05000 0.04329 0.08100 0.00122 0.00100 0.36680 0.02840 0.02679 0.04000 0.04000 0.06000 0.00002																						
792 LORPM24 0.113790 0.060000 0.000000 0.000000 0.000000 0.000000	791	LORPM23	0.126140	0.0.000		0.000196			0.068580	0.001100			0.088100	0.000		0.00000						
	792	LORPM24	0.113790	0.060000	0.000000	0.000200	0.000080	0.000075	0.070970	0.058800	0.000000	0.038540	0.134770	0.000125	0.002800	0.359800	0.021760	0.000000	0.040000	0.045740	0.052530	0.000020

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P2O5	SO ₃	SiO ₂	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others
# 793	LORPM25	Al ₂ O ₃	B ₂ O ₃ 0.127545	0.000000	0.000980	0.000394	F 0.000367	Fe ₂ O ₃ 0.009968	0.026255	0.023665	0.043321	0.182703	P ₂ O ₅ 0.000611	SU ₃ 0.001200	0.371386	SnO ₂ 0.003049	0.000000	V ₂ O ₅	0.009998	2rO ₂ 0.059988	0.000098
793	LORPM25 LORPM26	0.138472	0.060303	0.100887	0.000980	0.003230	0.003009	0.072323	0.020233	0.023003	0.000000	0.109741	0.005015	0.001200	0.351766	0.050252	0.025950	0.000000	0.009998	0.000000	0.000804
794	LORPM20 LORPM27	0.100997	0.060303	0.011905	0.008043	0.0003230	0.003009	0.072323	0.053528	0.050273	0.000000	0.087424	0.000128	0.004100	0.389634	0.000000	0.023930	0.000000	0.030232	0.060327	0.000804
796	LORPM28	0.034972	0.137190	0.000000	0.007216	0.002898	0.002700	0.002998	0.001099	0.049960	0.000000	0.142995	0.004500	0.001800	0.389034	0.049960	0.000000	0.039968	0.009992	0.059952	0.000721
797	LORPM28R1	0.034972	0.137190	0.000000	0.007216	0.002898	0.002700	0.002998	0.001099	0.049960	0.000000	0.142995	0.004500	0.001800	0.451079	0.049960	0.000000	0.039968	0.009992	0.059952	0.000721
798	LORPM28R1	0.034972	0.137190	0.000000	0.007216	0.002898	0.002700	0.002998	0.001099	0.049960	0.000000	0.142995	0.004500	0.001800	0.451079	0.049960	0.000000	0.039968	0.009992	0.059952	0.000721
799	LORPM29	0.094335	0.099661	0.000000	0.008045	0.003231	0.003010	0.003015	0.059085	0.050242	0.046645	0.088979	0.005017	0.005200	0.351697	0.050242	0.030146	0.000000	0.046223	0.054423	0.000804
800	LORPM30	0.034989	0.059982	0.122363	0.001676	0.000673	0.000627	0.079976	0.058782	0.043577	0.029991	0.049985	0.001045	0.001300	0.349895	0.049985	0.005019	0.039988	0.009997	0.059982	0.000168
801	LORPM31	0.109833	0.101750	0.000000	0.008035	0.003227	0.003006	0.064034	0.001105	0.043720	0.006346	0.094952	0.005011	0.005900	0.351450	0.050207	0.000000	0.040166	0.050207	0.060248	0.000803
802	LORPM32	0.055767	0.116030	0.024510	0.000985	0.000396	0.000369	0.043382	0.047317	0.035743	0.035042	0.100121	0.000614	0.004800	0.430970	0.010012	0.024029	0.010843	0.038947	0.020024	0.000099
803	LORPM33	0.117847	0.115767	0.024490	0.008005	0.003215	0.002995	0.023019	0.012645	0.040016	0.031713	0.100040	0.004992	0.002000	0.405483	0.010004	0.006003	0.020938	0.020008	0.050020	0.000800
804	LORPM34	0.071780	0.121926	0.024497	0.008008	0.003216	0.002996	0.018413	0.047293	0.040028	0.035025	0.100851	0.004994	0.003500	0.384270	0.018993	0.024017	0.021875	0.020644	0.046873	0.000801
805	LORPM35	0.103713	0.075448	0.049242	0.000196	0.000079	0.000073	0.018397	0.032385	0.028885	0.031275	0.172972	0.000122	0.003000	0.383938	0.0099999	0.013338	0.008929	0.017997	0.049992	0.000020
806	LORPM36	0.066557	0.121872	0.024486	0.006976	0.002802	0.002610	0.018405	0.025087	0.040010	0.035009	0.128203	0.004350	0.002500	0.397514	0.024856	0.022046	0.008002	0.018005	0.050013	0.000697
807	LORPM37	0.055706	0.116252	0.024482	0.002145	0.000861	0.000802	0.021612	0.047265	0.036594	0.035004	0.121982	0.001337	0.002300	0.394750	0.040004	0.024002	0.008001	0.042004	0.024683	0.000214
808	LORPM38	0.055835	0.075642	0.024539	0.008021	0.003222	0.003001	0.064756	0.047374	0.010024	0.035085	0.134233	0.005002	0.003600	0.397548	0.010024	0.024058	0.008019	0.042101	0.047114	0.000802
809	LORPM39	0.055694	0.121828	0.024478	0.000200	0.000080	0.000075	0.064593	0.012639	0.039996	0.0099999	0.173823	0.000125	0.002500	0.383961	0.0099999	0.005999	0.031997	0.017998	0.043996	0.000020
810	LORPM40	0.117812	0.075468	0.024482	0.000200	0.000080	0.000075	0.057106	0.047265	0.040004	0.035003	0.100010	0.000125	0.002300	0.384038	0.010001	0.006001	0.008001	0.042004	0.050005	0.000020
811	ORPLA39	0.066554	0.082266	0.033227	0.006705	0.000200	0.000000	0.026922	0.005304	0.000000	0.009308	0.240193	0.000000	0.006200	0.418637	0.027422	0.000000	0.000000	0.022418	0.054644	0.000000
812	ORPLA40	0.066547	0.082258	0.033223	0.006705	0.000200	0.000000	0.001901	0.005304	0.000000	0.009307	0.240169	0.000000	0.006300	0.418595	0.027419	0.025018	0.000000	0.022416	0.054638	0.000000
813 814	ORPLA41 ORPLA42	0.066574 0.091537	0.082291	0.033237	0.006707	0.000200	0.000000	0.001902	0.005306	0.000000	0.034338	0.240266	0.000000	0.005900	0.418763	0.027430	0.000000	0.000000	0.022425	0.054661	0.000000
814	ORPLA42 ORPLA43	0.106623	0.082233	0.033213	0.006703	0.000200	0.000000	0.001901	0.005302	0.000000	0.009304	0.240097	0.000000	0.006600	0.418468	0.02/411 0.015017	0.000000	0.000000	0.022409	0.054622	0.000000
815	ORPLA43 ORPLA43R1	0.106623	0.080293	0.020023	0.006708	0.000200	0.000000	0.001902	0.005306	0.000000	0.009311	0.240278	0.000000	0.005852	0.390751	0.015017	0.030035	0.000000	0.028032	0.059669	0.000000
817	ORPLA43R1	0.106597	0.080273	0.020018	0.006706	0.000200	0.000000	0.001902	0.005305	0.000000	0.009308	0.240217	0.000000	0.006100	0.390654	0.015014	0.030027	0.000000	0.028025	0.059654	0.000000
818	ORPLA44	0.106529	0.080275	0.020018	0.006708	0.000200	0.000000	0.001902	0.005305	0.000000	0.009311	0.240290	0.000000	0.005800	0.390772	0.015014	0.030027	0.014017	0.014017	0.059672	0.000000
819	ORPLA45	0.086587	0.080281	0.020024	0.006707	0.000200	0.000000	0.001902	0.005305	0.000000	0.009310	0.240242	0.000000	0.006000	0.390693	0.015015	0.050050	0.000000	0.028028	0.059660	0.000000
820	ORPLA46	0.106623	0.075287	0.020023	0.006708	0.000200	0.000000	0.001902	0.005306	0.000000	0.009311	0.240278	0.000000	0.005852	0.390751	0.000000	0.050058	0.000000	0.028032	0.059669	0.000000
	ORPLA46	0.106564	0.075246	0.020012	0.006704	0.000200	0.000000	0.001901	0.005303	0.000000	0.009306	0.240145	0.000000	0.006400	0.390536	0.000000	0.050030	0.000000	0.028017	0.059636	0.000000
822	ORPLA47	0.106629	0.080297	0.020024	0.006708	0.000200	0.000000	0.001902	0.005307	0.000000	0.009311	0.240290	0.000000	0.005800	0.390772	0.000000	0.030036	0.015018	0.028034	0.059672	0.000000
823	ORPLA48	0.106629	0.080297	0.020024	0.006708	0.000200	0.000000	0.001902	0.005307	0.000000	0.009311	0.240290	0.000000	0.005800	0.390772	0.000000	0.040048	0.010012	0.028034	0.054666	0.000000
824	ORPLA49	0.096587	0.080273	0.020018	0.006706	0.000200	0.000000	0.001902	0.005305	0.000000	0.009308	0.240218	0.000000	0.006100	0.390654	0.000000	0.040036	0.015014	0.028025	0.059654	0.000000
825	ORPLA50	0.096578	0.080265	0.020016	0.006705	0.000200	0.000000	0.001902	0.005304	0.000000	0.009308	0.240193	0.000000	0.006200	0.389614	0.000000	0.040032	0.030024	0.014011	0.059648	0.000000
826	ORPLA51	0.101623	0.080297	0.010012	0.006708	0.000200	0.000000	0.001902	0.005307	0.000000	0.019323	0.240290	0.000000	0.005800	0.390772	0.010012	0.040048	0.000000	0.028034	0.059672	0.000000
827	ORPLA52	0.101582	0.080265	0.010008	0.006705	0.000200	0.000000	0.001902	0.005304	0.000000	0.019316	0.240193	0.000000	0.006200	0.390614	0.010008	0.020016	0.020016	0.028023	0.059648	0.000000
828	ORPLA53	0.101613	0.080289	0.010011	0.006708	0.000200	0.000000	0.001902	0.005306	0.000000	0.019321	0.240266	0.000000	0.005900	0.390732	0.010011	0.030033	0.010011	0.028031	0.059666	0.000000
829 830	ORPLA54 ORPLA55	0.101613	0.080289	0.010011	0.006707	0.000200	0.000000	0.001902	0.005306	0.000000	0.019321	0.240266	0.000000	0.005900	0.390732	0.010011	0.030033	0.024027	0.014016	0.059666	0.000000
830	ORPLA55 ORPLA56	0.106682	0.080337	0.020024	0.006712	0.000200	0.000000	0.001803	0.005309	0.000000	0.022003	0.240411	0.000000	0.005300	0.411003	0.000000	0.000000	0.000000	0.040069	0.060103	0.000000
832	ORPLA57	0.106586	0.080297	0.015012	0.006708	0.000200	0.000000	0.000501	0.005300	0.000000	0.000000	0.240290	0.000000	0.006200	0.408629	0.000000	0.030024	0.000000	0.040048	0.060048	0.000000
833	ORPLA58	0.106623	0.087601	0.000000	0.006708	0.000200	0.000000	0.002503	0.005306	0.000000	0.015518	0.240277	0.000000	0.005852	0.409273	0.000000	0.030035	0.000000	0.030035	0.060069	0.000000
834	ORPLA20R1	0.067013	0.088018	0.033407	0.006801	0.005001	0.000000	0.003001	0.005401	0.000000	0.009302	0.240048	0.000000	0.001600	0.425185	0.027605	0.000000	0.000000	0.027606	0.060012	0.000000
835	ORLEC1	0.100000	0.100000	0.019500	0.002000	0.005800	0.000800	0.010000	0.005000	0.000000	0.010000	0.240000	0.001200	0.001000	0.380900	0.023300	0.010000	0.000000	0.030000	0.060300	0.000200
836	ORLEC2	0.100217	0.100217	0.022248	0.002004	0.000802	0.000802	0.010022	0.005011	0.000000	0.010022	0.230499	0.001203	0.007850	0.394555	0.013329	0.010022	0.010523	0.030065	0.050409	0.000200
837	ORLEC3	0.100258	0.100258	0.026368	0.002005	0.000802	0.000802	0.010026	0.005013	0.000000	0.010026	0.220568	0.001203	0.008448	0.417875	0.003308	0.010026	0.012332	0.030077	0.040404	0.000201
838	ORLEC4	0.100289	0.100289	0.032594	0.002006	0.000802	0.000802	0.010029	0.005014	0.000000	0.010029	0.210606	0.001203	0.008846	0.428534	0.000000	0.010029	0.013539	0.030087	0.035101	0.000201
839	ORLEC5	0.078403	0.100516	0.041413	0.002010	0.000804	0.000804	0.010051	0.005026	0.000000	0.010052	0.201033	0.001206	0.007300	0.450816	0.000000	0.010052	0.014977	0.030155	0.035181	0.000201
840	ORLEC6	0.078474	0.100608	0.052719	0.002012	0.000805	0.000805	0.010061	0.005030	0.003622	0.010061	0.191155	0.001207	0.007000	0.444787	0.000000	0.010061	0.015997	0.030182	0.035213	0.000201
841	ORLEC7	0.078387	0.100497	0.065825	0.002010	0.000804	0.000804	0.010050	0.005025	0.015276	0.010050	0.180894	0.001206	0.008800	0.427714	0.000000	0.010050	0.017084	0.030149	0.035174	0.000201
842	ORLEC8	0.078340	0.100436	0.079445	0.002009	0.000803	0.000803	0.010044	0.005022	0.020891	0.010044	0.170741	0.001205	0.009900	0.416810	0.000000	0.010044	0.017978	0.030131	0.035153	0.000201
843 844	ORLEC9	0.078348	0.100447	0.092109	0.002009	0.000804	0.000804	0.010045	0.005022	0.024911	0.010045	0.160714	0.001205	0.010300	0.408918	0.000000	0.010045	0.018783	0.030134	0.035156	0.000201
844 845	ORLEC10 ORLEC11	0.099970	0.099970	0.019494 0.019498	0.001999	0.005798	0.000800	0.009997	0.014196 0.033596	0.000000	0.009997	0.233830	0.001200	0.001300	0.377686	0.023293	0.009997	0.000000	0.029991	0.060282	0.000200
845 846	ORLEC12	0.099990	0.099990	0.019498	0.002000	0.005799	0.000800	0.009999	0.055396	0.000000	0.009999	0.221078	0.001200	0.001100	0.363327	0.023298	0.009999	0.000000	0.029997	0.060294	0.000200
840	ORLEC12 ORLEC13	0.099990	0.099980	0.019498	0.001999	0.003799	0.000800	0.009998	0.004999	0.000000	0.009998	0.239976	0.001200	0.001200	0.385161	0.023293	0.009998	0.000000	0.029994	0.060288	0.000200
848	ORLEC14	0.100050	0.100050	0.019498	0.002000	0.003402	0.000800	0.003402	0.005002	0.000000	0.010005	0.239970	0.001200	0.005400	0.388295	0.023238	0.003402	0.003502	0.029997	0.060330	0.000200
849	ORLEC15	0.100050	0.100151	0.019530	0.002001	0.002304	0.000801	0.002003	0.005002	0.000000	0.010005	0.240363	0.001201	0.006800	0.387786	0.023335	0.000200	0.003302	0.030045	0.060391	0.000200
850	ORLEC16	0.100217	0.100217	0.025054	0.002004	0.001503	0.000802	0.002004	0.005011	0.000000	0.010022	0.230500	0.001202	0.007850	0.409087	0.013329	0.0000000	0.010523	0.030065	0.050409	0.000200
851	ORLEC17	0.100258	0.100258	0.036494	0.002005	0.001003	0.000802	0.002005	0.005013	0.000000	0.010026	0.220568	0.001203	0.008448	0.425696	0.003308	0.000000	0.012231	0.030077	0.040404	0.000201
852	ORLEC18	0.090962	0.100289	0.045932	0.002006	0.000802	0.000802	0.002006	0.005014	0.000000	0.010029	0.210606	0.001204	0.008846	0.442574	0.000000	0.000000	0.013539	0.030087	0.035101	0.000201
853	ORLEC19	0.081456	0.100316	0.055073	0.002006	0.000802	0.000802	0.002006	0.005016	0.000000	0.010032	0.200632	0.001204	0.009281	0.451020	0.000000	0.000000	0.014947	0.030095	0.035111	0.000201
854	ORLEC20	0.078387	0.100496	0.062509	0.002010	0.000804	0.000804	0.002010	0.005025	0.003718	0.010050	0.190943	0.001206	0.008200	0.452335	0.000000	0.000000	0.015979	0.030149	0.035174	0.000201
855	ORLEC21	0.078348	0.100446	0.069710	0.002009	0.000803	0.000803	0.002009	0.005022	0.014565	0.010045	0.180803	0.001205	0.009300	0.442365	0.000000	0.000000	0.017076	0.030134	0.035156	0.000201
856	ORLEC22	0.078332	0.100426	0.076123	0.002009	0.000804	0.000803	0.002009	0.005021	0.021491	0.010043	0.170724	0.001205	0.010000	0.437556	0.000000	0.000000	0.017976	0.030128	0.035149	0.000201
857	ORLEC23	0.078245	0.100315	0.082158	0.002006	0.000803	0.000803	0.002006	0.005016	0.024577	0.010031	0.160503	0.001204	0.011600	0.436469	0.000000	0.000000	0.018859	0.030094	0.035110	0.000201
858	ORLEC24	0.100050	0.100050	0.019510	0.002001	0.003402	0.000800	0.003402	0.014207	0.000000	0.010005	0.234018	0.001200	0.005500	0.385094	0.023312	0.003402	0.003502	0.030015	0.060330	0.000200

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P2O5	SO ₃	SiO ₂	SnO ₂	TiO ₂	V2O5	ZnO	ZrO ₂	Others
	ORLEC25	0.100080	0.100080	0.019516	0.002002	0.003403	0.000801	0.003403	0.056445	0.000000	0.010008	0.206266	0.001201	0.005100	0.370898	0.023319	0.003403	0.003503	0.030024	0.060348	0.000200
860	ORLEC25	0.100080	0.100080	0.019516	0.002002	0.003403	0.000801	0.003403	0.056445	0.000000	0.010008	0.206266	0.001201	0.005100	0.370898	0.023319	0.003403	0.003503	0.030024	0.060348	0.000200
861	ORLEC25	0.100080	0.100080	0.019516	0.002002	0.003403	0.000801	0.003403	0.056445	0.000000	0.010008	0.206266	0.001201	0.005100	0.370898	0.023319	0.003403	0.003503	0.030024	0.060348	0.000200
862	ORLEC26	0.100020	0.100020	0.019504	0.002001	0.004401	0.000800	0.006001	0.005001	0.000000	0.010002	0.240048	0.001200	0.003800	0.387378	0.023305	0.006001	0.000000	0.030006	0.060312	0.000200
863	ORLEC27	0.100010	0.100010	0.019502	0.002000	0.004400	0.000800	0.006001	0.056406	0.000000	0.010001	0.206121	0.001200	0.003900	0.369837	0.023302	0.006001	0.000000	0.030003	0.060306	0.000200
	ORLEC28	0.100030	0.100030	0.019506	0.002001	0.004401	0.000800	0.006002	0.033610	0.000000	0.010003	0.221167	0.001200	0.003700	0.377714	0.023307	0.006002	0.000000	0.030009	0.060318	0.000200
	OWV-G-144E	0.099923	0.099923	0.019485	0.001998	0.005796	0.000799	0.009992	0.056357	0.000000	0.009992	0.205941	0.001199	0.001800	0.363020	0.023282	0.009992	0.000000	0.029977	0.060253	0.000271
866 867	OWV-G-144E OWV-G-109B	0.099923	0.099923 0.100054	0.019485 0.019511	0.001998	0.005796	0.000799 0.000801	0.009992	0.056357 0.005003	0.000000	0.009992	0.205941 0.240130	0.001199 0.001201	0.001800	0.363020	0.023282 0.023313	0.009992	0.000000	0.029977 0.030016	0.060253	0.000271 0.000160
	OWV-G-109B	0.100054	0.100054	0.019511	0.002001	0.004402	0.000801	0.006003	0.005003	0.000000	0.010005	0.240130	0.001201	0.003500	0.387510	0.023313	0.006003	0.000000	0.030016	0.060333	0.000160
	PWV-G-43E	0.100023	0.100023	0.019505	0.002001	0.004402	0.000800	0.006001	0.056413	0.000000	0.010003	0.206148	0.001201	0.003300	0.369785	0.023305	0.006001	0.000000	0.030007	0.060314	0.000271
	PWV-G-43E	0.100023	0.100023	0.019505	0.002001	0.004401	0.000800	0.006001	0.056413	0.000000	0.010002	0.206148	0.001200	0.003800	0.369785	0.023305	0.006001	0.000000	0.030007	0.060314	0.000271
	PWV-G-93A	0.100063	0.100063	0.019512	0.002001	0.004403	0.000801	0.006004	0.033621	0.000000	0.010006	0.221240	0.001201	0.003400	0.377738	0.023315	0.006004	0.000000	0.030019	0.060338	0.000271
872	PWV-G-93A	0.100063	0.100063	0.019512	0.002001	0.004403	0.000801	0.006004	0.033621	0.000000	0.010006	0.221240	0.001201	0.003400	0.377738	0.023315	0.006004	0.000000	0.030019	0.060338	0.000271
	ORLEC29	0.100217	0.110239	0.025054	0.002004	0.000802	0.000802	0.002004	0.005011	0.000000	0.010022	0.230500	0.001203	0.007850	0.410089	0.000000	0.000000	0.013529	0.030065	0.050409	0.000200
	ORLEC30	0.100258	0.110284	0.036494	0.002005	0.000802	0.000802	0.002005	0.005013	0.000000	0.010026	0.220568	0.001203	0.008448	0.415570	0.000000	0.000000	0.015841	0.030077	0.040404	0.000200
	ORLEC31	0.090962	0.110318	0.045932	0.002006	0.000802	0.000802	0.002006	0.005014	0.000000	0.010029	0.210606	0.001204	0.008846	0.428333	0.000000	0.000000	0.017751	0.030087	0.035101	0.000201
	ORLEC32	0.081456	0.110347	0.055073	0.002006	0.000802	0.000803	0.002006	0.005016	0.000000	0.010032	0.200632	0.001204	0.009281	0.436273	0.000000	0.000000	0.019662	0.030095	0.035111	0.000201
	ORLEC33 ORLEC34	0.092500	0.110239 0.110273	0.025054	0.002004	0.000802	0.000802	0.002004	0.005011	0.000000	0.010022	0.230500	0.001203	0.007850 0.008448	0.410289 0.425151	0.000000	0.000000	0.021046	0.030065	0.050409 0.040400	0.000200
	ORLEC35	0.076292	0.110273	0.036490	0.002003	0.000802	0.000802	0.002003	0.005015	0.000000	0.010023	0.220343	0.001203	0.007900	0.423131	0.000000	0.000000	0.022730	0.030074	0.040400	0.000201
880	ORLEC36	0.076339	0.110423	0.055145	0.002008	0.000803	0.000803	0.002008	0.005022	0.000000	0.010038	0.200891	0.001205	0.008100	0.437139	0.000000	0.000000	0.024509	0.030134	0.035155	0.000201
	ORLEC37	0.076208	0.110300	0.045925	0.002005	0.000802	0.000802	0.002005	0.005014	0.007922	0.010027	0.210574	0.001203	0.009000	0.429069	0.000000	0.000000	0.023765	0.030082	0.035096	0.000201
882	ORLEC38	0.076200	0.110290	0.055045	0.002005	0.000802	0.000802	0.002005	0.005013	0.012232	0.010026	0.200527	0.001203	0.009900	0.424114	0.000000	0.000000	0.024464	0.030079	0.035092	0.000201
883	ORLEC39	0.076416	0.110602	0.062540	0.002011	0.000804	0.000804	0.002011	0.005027	0.003720	0.010055	0.191040	0.001207	0.007700	0.435570	0.000000	0.000000	0.024936	0.030164	0.035192	0.000201
	ORLEC40	0.076277	0.110402	0.069653	0.002007	0.000803	0.000803	0.002007	0.005018	0.014553	0.010037	0.180657	0.001204	0.010100	0.425949	0.000000	0.000000	0.025091	0.030110	0.035128	0.000201
885	ORLEC41	0.076270	0.110391	0.076069	0.002007	0.000803	0.000803	0.002007	0.005018	0.021476	0.010035	0.170604	0.001204	0.010700	0.422093	0.000000	0.000000	0.025089	0.030106	0.035124	0.000201
886	ORLEC42	0.076278	0.110402	0.081697	0.002007	0.000803	0.000803	0.002007	0.005018	0.024589	0.010037	0.160585	0.001204	0.011100	0.422940	0.000000	0.000000	0.025091	0.030110	0.035128	0.000201
	QWV-G-107B PWV-G-130C	0.100023	0.100023	0.019505 0.025039	0.002001	0.003401 0.001502	0.000800	0.003301	0.005001	0.000000	0.010002	0.240055	0.001200	0.005900	0.388089	0.023305	0.003301	0.003501 0.010516	0.030007	0.060314	0.000271 0.000271
	PWV-G-130C	0.100155	0.100154	0.025039	0.002003	0.001302	0.000801	0.002003	0.005008	0.000000	0.010016	0.230333	0.001202	0.008400	0.408830	0.013321	0.000000	0.010516	0.030046	0.050378	0.000271
	OWV-G-29C	0.081111	0.1000134	0.054907	0.002000	0.000800	0.000800	0.002000	0.005000	0.000000	0.010010	0.200026	0.001202	0.012300	0.449659	0.000000	0.000000	0.010910	0.030004	0.035005	0.000271
891	QWV-G-75B	0.078074	0.100094	0.075871	0.002002	0.000801	0.000801	0.002002	0.005005	0.021420	0.010009	0.170160	0.001201	0.012200	0.436111	0.000000	0.000000	0.017917	0.030028	0.035033	0.000271
892	ORLEC43	0.076192	0.110278	0.045916	0.002005	0.000802	0.000802	0.002005	0.005013	0.004511	0.010025	0.210531	0.001203	0.009200	0.432391	0.000000	0.000000	0.023760	0.030076	0.035089	0.000201
893	ORLEC44	0.076254	0.110368	0.055083	0.002007	0.000803	0.000803	0.002007	0.005017	0.009933	0.010033	0.200668	0.001204	0.009200	0.426721	0.000000	0.000000	0.024481	0.030100	0.035117	0.000201
894	ORLEC45	0.076139	0.110201	0.062313	0.002004	0.000801	0.000801	0.002004	0.005009	0.014326	0.010018	0.190347	0.001202	0.011300	0.423371	0.000000	0.000000	0.024845	0.030055	0.035064	0.000200
895	ORLEC46	0.076223	0.110323	0.069604	0.002006	0.000802	0.000802	0.002006	0.005015	0.018655	0.010029	0.180529	0.001204	0.010800	0.421536	0.000000	0.000000	0.025074	0.030088	0.035103	0.000201
896 897	ORLEC47 ORLEC48R	0.076116	0.110167	0.075915	0.002003	0.000801	0.000801	0.002003	0.005008	0.022534 0.025863	0.010015	0.170259 0.160390	0.001202	0.012600	0.420239	0.000000	0.000000	0.025038	0.030046	0.035053	0.000200
	ORLEC48R ORLEC49	0.100020	0.110268	0.081598	0.002003	0.000802	0.000802	0.002005	0.005012	0.025865	0.010024	0.160390	0.001203	0.012300	0.421123	0.000000	0.006001	0.025061	0.030073	0.055085	0.000201
	ORLEC49 ORLEC49R	0.100020	0.110022	0.019504	0.002001	0.004401	0.000800	0.006001	0.005001	0.000000	0.010002	0.240048	0.001200	0.003800	0.390679	0.010002	0.006001	0.000000	0.030006	0.060312	0.000200
900	ORLEC50	0.100060	0.110022	0.019512	0.002001	0.003402	0.000801	0.003402	0.005003	0.000000	0.010002	0.240046	0.001200	0.005300	0.386133	0.010002	0.003402	0.009006	0.030018	0.060336	0.000200
	ORLEC51	0.100101	0.110111	0.019520	0.002002	0.002502	0.000801	0.002002	0.005005	0.000000	0.010010	0.240242	0.001201	0.006900	0.382285	0.010010	0.000701	0.016016	0.030030	0.060361	0.000200
902	ORLEC52	0.099368	0.110187	0.019533	0.002004	0.002003	0.000801	0.002003	0.005009	0.000000	0.010017	0.238404	0.001202	0.007218	0.386755	0.008014	0.000000	0.018832	0.030051	0.058399	0.000200
	RWV-G-9C	0.092402	0.110121	0.025028	0.002002	0.000801	0.000801	0.002002	0.005006	0.000000	0.010011	0.230253	0.001201	0.008900	0.409750	0.000000	0.000000	0.021023	0.030033	0.050355	0.000311
	RWV-G-48D	0.083675	0.110099	0.036433	0.002002	0.000801	0.000801	0.002002	0.005004	0.000000	0.010009	0.220198	0.001201	0.010600	0.423781	0.000000	0.000000	0.022720	0.030027	0.040336	0.000311
_	RWV-G-79C	0.076076	0.110110	0.054955	0.002002	0.000801	0.000801	0.002002	0.005005	0.009910	0.010010	0.200200	0.001201	0.011500	0.425626	0.000000	0.000000	0.024425	0.030030	0.035035	0.000311
	RWV-G-120D SWV-G-17A	0.076161	0.110233 0.110445	0.069547	0.002004	0.000802	0.000802	0.002004	0.005011 0.005020	0.018639	0.010021 0.010041	0.180381 0.160648	0.001203	0.011600	0.421090 0.421700	0.000000	0.000000	0.025053	0.030063 0.030122	0.035074 0.035142	0.000312
907	SWV-G-17A SWV-G-17A	0.076308	0.110445	0.081730	0.002008	0.000803	0.000803	0.002008	0.005020	0.025904	0.010041	0.160648	0.001205	0.010700	0.421700	0.000000	0.000000	0.025101	0.030122	0.035142	0.000312
908	AP105DLAW1	0.083463	0.1100443	0.019515	0.002008	0.003603	0.000300	0.002008	0.005604	0.000000	0.010041	0.219565	0.003903	0.004891	0.455443	0.000000	0.000000	0.007606	0.030023	0.040130	0.000060
	AP105DLAW2	0.089284	0.110104	0.019518	0.004004	0.003503	0.000300	0.002002	0.005806	0.000000	0.010010	0.226214	0.004004	0.004900	0.435111	0.000000	0.000000	0.008308	0.030028	0.046844	0.000060
911	AP105DLAW3	0.095094	0.109993	0.019499	0.004100	0.003400	0.000400	0.002000	0.006000	0.000000	0.009999	0.232586	0.004100	0.005900	0.414275	0.000000	0.000000	0.008999	0.029998	0.053597	0.000060
912	AP105DLAW4	0.100085	0.110093	0.019516	0.004204	0.003303	0.000400	0.002002	0.006105	0.000000	0.010008	0.239402	0.004204	0.005500	0.395134	0.000000	0.000000	0.009608	0.030025	0.060351	0.000060
	AP105DLAW5	0.095171	0.100074	0.019515	0.004103	0.003403	0.000400	0.002002	0.006004	0.000000	0.010007	0.232773	0.004103	0.005100	0.424616	0.000000	0.000000	0.009007	0.030022	0.053640	0.000060
	AP105DLAW6	0.100064	0.100064	0.019513	0.004203	0.003302	0.000400	0.002001	0.006104	0.000000	0.010007	0.239354	0.004203	0.005700	0.405061	0.000000	0.000000	0.009606	0.030019	0.060339	0.000060
915	AP105DLAW7	0.095161	0.100064	0.019513	0.004103	0.000000	0.000400	0.002001	0.006004	0.000000	0.010006	0.232750	0.004103	0.005200	0.427975	0.000000	0.000000	0.009006	0.030019	0.053635	0.000060
916 917	AP105DLAW8 AP105DLAW9	0.099994 0.095133	0.099994 0.110038	0.019499 0.019507	0.004200	0.000000	0.000400	0.002000	0.006100	0.000000	0.009999	0.239986	0.004200	0.005500	0.408175 0.417843	0.000000	0.000000	0.009599	0.029998	0.060296	0.000060
917	AP105DLAW9 AP105DLAW10	0.100085	0.110038	0.019507	0.004101	0.000000	0.000400	0.002001	0.006002	0.000000	0.010003	0.232680	0.004101	0.005500	0.417843	0.000000	0.000000	0.009003	0.030010	0.053618	0.000060
919	AP105DLAW10 AP105DLAW11	0.100033	0.110035	0.019516	0.005102	0.004602	0.000400	0.002002	0.000103	0.000000	0.010003	0.239402	0.002001	0.003400	0.398337	0.009803	0.006702	0.000000	0.030023	0.060120	0.000070
	WDFL1	0.060984	0.099974	0.020795	0.004499	0.000500	0.000100	0.054986	0.004099	0.000000	0.014796	0.209945	0.001699	0.003300	0.445284	0.000000	0.013996	0.000000	0.034991	0.029992	0.000060
921	WDFL1H	0.059578	0.097665	0.020293	0.004398	0.000500	0.000100	0.053681	0.004398	0.000000	0.014495	0.227518	0.001699	0.003600	0.434843	0.000000	0.013695	0.000000	0.034188	0.029289	0.000060
922	WDFL1+15%	0.062677	0.096364	0.020093	0.004998	0.000600	0.000100	0.052980	0.004498	0.000000	0.014295	0.232614	0.001899	0.003700	0.429041	0.000000	0.013495	0.000000	0.033687	0.028889	0.000070
	WDFL1-15%	0.059090	0.103883	0.021597	0.003999	0.000500	0.000100	0.057191	0.003599	0.000000	0.015398	0.185470	0.001500	0.002700	0.462826	0.000000	0.014498	0.000000	0.036394	0.031195	0.000060
924	WDFL2	0.061029	0.100048	0.052225	0.003502	0.000400	0.000600	0.055027	0.003902	0.021410	0.014807	0.152674	0.002101	0.004500	0.448716	0.000000	0.014007	0.000000	0.035017	0.030015	0.000020

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	CI	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P_2O_5	SO ₃	SiO ₂	SnO ₂	TiO ₂	V2O5	ZnO	ZrO ₂	Others
925	WDFL2H	0.059999	0.098398	0.051399	0.003500	0.000400	0.000600	0.054099	0.004200	0.021099	0.014600	0.165497	0.002000	0.005300	0.441191	0.000000	0.013800	0.000000	0.034399	0.029499	0.000020
926	WDFL2+15%	0.060393	0.097488	0.050894	0.003900	0.000400	0.000700	0.053594	0.004399	0.020898	0.014398	0.171079	0.002300	0.005600	0.437047	0.000000	0.013598	0.000000	0.034096	0.029196	0.000020
927	WDFL2-15%	0.061730	0.102750	0.053626	0.003101	0.000300	0.000600	0.056527	0.003402	0.022011	0.015207	0.133264	0.001801	0.003800	0.460722	0.000000	0.014407	0.000000	0.035917	0.030815	0.000020
928	New-IL-456	0.062504	0.080006	0.090006	0.001200	0.000800	0.001800	0.012501	0.002000	0.035003	0.025002	0.150011	0.003800	0.003830	0.431530	0.035003	0.000000	0.030002	0.020001	0.015001	0.000000
929	New-IL-456CCC	0.062504	0.080006	0.090006	0.001200	0.000800	0.001800	0.012501	0.002000	0.035003	0.025002	0.150011	0.003800	0.003830	0.431530	0.035003	0.000000	0.030002	0.020001	0.015001	0.000000
930	New-IL-1721	0.062615	0.117715	0.027550	0.003106	0.002104	0.004709	0.012523	0.010018	0.035064	0.005009	0.164802	0.010119	0.011190	0.433293	0.035064	0.000000	0.030055	0.020037	0.015027	0.000000
931	New-IL-1721CCC	0.062615	0.117715	0.027550	0.003106	0.002104	0.004709	0.012523	0.010018	0.035064	0.005009	0.164802	0.010119	0.011190	0.433293	0.035064	0.000000	0.030055	0.020037	0.015027	0.000000
932	New-IL-1721(PNNL)	0.062615	0.117715	0.027550	0.003106	0.002104	0.004709	0.012523	0.010018	0.035064	0.005009	0.164802	0.010119	0.011190	0.433293	0.035064	0.000000	0.030055	0.020037	0.015027	0.000000
933	New-IL-5253	0.062714	0.117902	0.027594	0.001204	0.000803	0.001806	0.012543	0.002007	0.035120	0.025085	0.150514	0.003813	0.009520	0.398861	0.035120	0.000000	0.030103	0.040137	0.045154	0.000000
934	New-IL-5253CCC	0.062714		0.027594	0.001204	0.000803	0.001806	0.012543	0.002007	0.035120	0.025085	0.150514	0.003813	0.009520	0.398861	0.035120	0.000000	0.030103	0.040137	0.045154	0.000000
935	New-IL-5255	0.062578		0.027534	0.001202	0.000801	0.001802	0.012516	0.002002	0.035044	0.025031	0.180224	0.003805	0.011670	0.367958	0.035044	0.000000	0.030037	0.040050	0.045056	0.000000
936 937	New-IL-5255CCC New-IL-42295	0.062578	0.117646 0.117490	0.027534 0.027498	0.001202 0.001200	0.000801	0.001802	0.012516	0.002002	0.035044	0.025031	0.180224	0.003805	0.011670	0.367958	0.035044	0.000000	0.030037	0.040050	0.045056	0.000000
937	New-IL-42295 New-IL-42295CCC	0.062495	0.117490	0.027498	0.001200	0.000800	0.001800	0.012499	0.002000	0.034997	0.024998	0.174786	0.003800	0.003980	0.424166	0.0099999	0.000000	0.029998	0.019998	0.047496	0.000000
939	New-IL-70316	0.062534	0.080044	0.090049	0.001200	0.000800	0.001800	0.012499	0.010006	0.010005	0.025014	0.202411	0.003802	0.012360	0.387412	0.035019	0.000000	0.030016	0.020011	0.015008	0.000000
940	New-IL-70316CCC	0.062534	0.080044	0.090049	0.001201	0.000800	0.001801	0.012507	0.010006	0.010005	0.025014	0.202411	0.003802	0.012360	0.387412	0.035019	0.000000	0.030016	0.020011	0.015008	0.000000
941	New-IL-87749	0.114980	0.079986	0.089985	0.001200	0.000800	0.001800	0.012498	0.009998	0.034994	0.004999	0.174870	0.003799	0.004070	0.374036	0.026995	0.000000	0.029995	0.019997	0.014998	0.000000
942	New-IL-87749CCC	0.114980	0.079986	0.089985	0.001200	0.000800	0.001800	0.012498	0.009998	0.034994	0.004999	0.174870	0.003799	0.004070	0.374036	0.026995	0.000000	0.029995	0.019997	0.014998	0.000000
943	New-IL-93907	0.115241	0.117746	0.027558	0.001203	0.000802	0.001804	0.012526	0.010021	0.035073	0.005010	0.151517	0.003808	0.009130	0.433405	0.035073	0.000000	0.005010	0.020042	0.015031	0.000000
944	New-IL-93907CCC	0.115241	0.117746	0.027558	0.001203	0.000802	0.001804	0.012526	0.010021	0.035073	0.005010	0.151517	0.003808	0.009130	0.433405	0.035073	0.000000	0.005010	0.020042	0.015031	0.000000
945	New-IL-94020	0.115252	0.080175	0.035377	0.001203	0.000802	0.001804	0.012527	0.002004	0.035077	0.025055	0.150329	0.003808	0.007930	0.433448	0.035077	0.000000	0.005011	0.040088	0.015033	0.000000
946	New-IL-94020CCC	0.115252	0.080175	0.035377	0.001203	0.000802	0.001804	0.012527	0.002004	0.035077	0.025055	0.150329	0.003808	0.007930	0.433448	0.035077	0.000000	0.005011	0.040088	0.015033	0.000000
947	New-IL-103151	0.062460		0.027482	0.001199	0.000799	0.001799	0.012492	0.009993	0.009994	0.024984	0.224754	0.003798	0.012240	0.418129	0.024984	0.000000	0.029981	0.039974	0.014990	0.000000
948	New-IL-103151CCC	0.062460	0.079948	0.027482	0.001199	0.000799	0.001799	0.012492	0.009993	0.009994	0.024984	0.224754	0.003798	0.012240	0.418129	0.024984	0.000000	0.029981	0.039974	0.014990	0.000000
949	New-IL-151542	0.062648	0.097630	0.090212	0.003107	0.002105	0.004711	0.012529	0.002005	0.010024	0.025059	0.174110	0.010124	0.010670	0.394830	0.035083	0.000000	0.030071	0.020047	0.015035	0.000000
950 951	New-IL-151542CCC New-IL-166697	0.062648 0.112720	0.097630 0.102400	0.090212 0.027554	0.003107 0.003106	0.002105 0.002104	0.004711 0.004709	0.012529 0.012524	0.002005	0.010024 0.035068	0.025059	0.174110 0.175242	0.010124	0.010670 0.010970	0.394830	0.035083	0.000000	0.030071	0.020047	0.015035	0.000000
951	New-IL-166697CCC	0.112720	0.102400	0.027554	0.003106	0.002104	0.004709	0.012524	0.010020	0.035068	0.005010	0.175242	0.010120	0.010970	0.368219	0.035068	0.000000	0.030059	0.040078	0.013029	0.000000
953	New-IL-166731	0.112720	0.093343	0.027572	0.003100	0.002104	0.004703	0.005013	0.002005	0.035008	0.005010	0.173242	0.010120	0.010370	0.368460	0.032084	0.000000	0.030039	0.040078	0.015029	0.000000
954	New-IL-166731CCC	0.115301	0.093343	0.027572	0.003108	0.002100	0.004712	0.005013	0.002005	0.035092	0.025065	0.180671	0.010126	0.010120	0.368460	0.032084	0.000000	0.030078	0.040105	0.015039	0.000000
955	New-OL-8445	0.124089	0.137488	0.122389	0.004699	0.003100	0.007099	0.000000	0.014999	0.020098	0.034997	0.099991	0.015099	0.000990	0.339969	0.000000	0.000000	0.000000	0.009999	0.064994	0.000000
956	New-OL-8445CCC	0.124089	0.137488	0.122389	0.004699	0.003100	0.007099	0.000000	0.014999	0.020098	0.034997	0.099991	0.015099	0.000990	0.339969	0.000000	0.000000	0.000000	0.009999	0.064994	0.000000
957	New-OL-8788Mod	0.123506	0.060003	0.000500	0.004700	0.003100	0.007100	0.015001	0.015001	0.025001	0.035002	0.130007	0.015101	0.000950	0.460023	0.000000	0.000000	0.000000	0.050002	0.055003	0.000000
958	New-OL-8788ModCCC	0.123506	0.060003	0.000500	0.004700	0.003100	0.007100	0.015001	0.015001	0.025001	0.035002	0.130007	0.015101	0.000950	0.460023	0.000000	0.000000	0.000000	0.050002	0.055003	0.000000
959	New-OL-14844	0.034990	0.061482	0.122363	0.004699	0.003099	0.007098	0.000000	0.014996	0.049985	0.034989	0.155053	0.015095	0.001300	0.339898	0.000000	0.000000	0.039988	0.049985	0.064980	0.000000
960	New-OL-14844CCC	0.034990	0.061482	0.122363	0.004699	0.003099	0.007098	0.000000	0.014996	0.049985	0.034989	0.155053	0.015095	0.001300	0.339898	0.000000	0.000000	0.039988	0.049985	0.064980	0.000000
961	New-OL-15493	0.034994	0.059990	0.122379	0.000600	0.000400	0.000900	0.000000	0.014997	0.000000	0.034994	0.255057	0.002000	0.001270	0.392433	0.029995	0.000000	0.039993	0.009998	0.000000	0.000000
962 963	New-OL-15493CCC New-OL-17130	0.034994	0.059990	0.122379	0.000600	0.000400	0.000900	0.000000	0.014997	0.000000	0.034994	0.255057	0.002000	0.001270	0.392433	0.029995	0.000000	0.039993	0.009998	0.000000	0.000000
963	New-OL-17130CCC	0.035000	0.137499	0.016500	0.004700	0.003100	0.007100	0.015000	0.000000	0.049999	0.000000	0.164998	0.015100	0.001010	0.469993	0.030000	0.000000	0.039999	0.010000	0.000000	0.000000
965	New-OL-45748	0.138564	0.060028	0.122456	0.004702	0.003100	0.007100	0.015007	0.000000	0.050023	0.000000	0.114053	0.015107	0.000540	0.340157	0.050023	0.000000	0.029113	0.050023	0.000000	0.000000
966	New-OL-45748CCC	0.138564	0.060028	0.122456	0.004702	0.003101	0.007103	0.015007	0.000000	0.050023	0.000000	0.114053	0.015107	0.000540	0.340157	0.050023	0.000000	0.029113	0.050023	0.000000	0.000000
967	New-OL-54017	0.035001	0.060002	0.111703	0.000600	0.000400	0.000900	0.015000	0.000000	0.000000	0.035001	0.150005	0.002000	0.000870	0.470014	0.050001	0.000000	0.018501	0.050002	0.000000	0.000000
968	New-OL-54017CCC	0.035001	0.060002	0.111703	0.000600	0.000400	0.000900	0.015000	0.000000	0.000000	0.035001	0.150005	0.002000	0.000870	0.470014	0.050001	0.000000	0.018501	0.050002	0.000000	0.000000
969	New-OL-57284	0.035008	0.137532	0.029807	0.004701	0.003101	0.007102	0.000000	0.015003	0.000000	0.000000	0.140132	0.015103	0.000770	0.470108	0.000000	0.000000	0.040009	0.050012	0.051612	0.000000
970	New-OL-57284CCC	0.035008	0.137532	0.029807	0.004701	0.003101	0.007102	0.000000	0.015003	0.000000	0.000000	0.140132	0.015103	0.000770	0.470108	0.000000	0.000000	0.040009	0.050012	0.051612	0.000000
971	New-OL-62380	0.035023	0.137591	0.122481	0.001101	0.000800	0.001701	0.015010	0.015010	0.000000	0.000000	0.140192	0.003702	0.000440	0.340225	0.045030	0.000000	0.026618	0.050033	0.065043	0.000000
972	New-OL-62380CCC	0.035023	0.137591	0.122481	0.001101	0.000800	0.001701	0.015010	0.015010	0.000000	0.000000	0.140192	0.003702	0.000440	0.340225	0.045030	0.000000	0.026618	0.050033	0.065043	0.000000
973	New-OL-62909Mod	0.123561	0.089044	0.122460	0.004702	0.003102	0.007103	0.000000	0.000000	0.025012	0.035017	0.130064	0.015107	0.000510	0.335164	0.044122	0.000000	0.000000	0.010005	0.055027	0.000000
974 975	New-OL-62909ModCCC New-OL-65959Mod	0.123561 0.138569	0.089044	0.122460	0.004702	0.003102	0.007103	0.000000	0.000000	0.025012 0.050025	0.035017	0.130064 0.165083	0.015107	0.000510	0.335164 0.345173	0.044122 0.045023	0.000000	0.000000	0.010005	0.055027	0.000000
975	New-OL-65959Mod New-OL-65959ModCCC	0.138569	0.130565	0.000000	0.000600	0.000400	0.000900	0.000000	0.000000	0.050025	0.035018	0.165083	0.002001	0.000600	0.345173	0.045023	0.000000	0.036018	0.050025	0.000000	0.000000
977	New-OL-80309	0.035047	0.130505	0.000000	0.000600	0.000400	0.000900	0.015020	0.000000	0.050023	0.035047	0.151201	0.002001	0.000000	0.340453	0.045060	0.000000	0.040053	0.050023	0.065087	0.000000
978	New-OL-80309CCC	0.035047	0.137683	0.000000	0.000601	0.000400	0.000901	0.015020	0.015020	0.050067	0.035047	0.151201	0.002003	0.016290	0.340453	0.045060	0.000000	0.040053	0.050067	0.065087	0.000000
979	New-OL-90780	0.139006	0.138002	0.000000	0.004717	0.003111	0.007126	0.000000	0.015055	0.050182	0.035128	0.155666	0.015155	0.012810	0.343750	0.030109	0.000000	0.040035	0.010037	0.000000	0.000000
980	New-OL-90780CCC	0.139006	0.138002	0.000000	0.004717	0.003111	0.007126	0.000000	0.015055	0.050182	0.035128	0.155666	0.015155	0.012810	0.343750	0.030109	0.000000	0.040146	0.010037	0.000000	0.000000
981	New-OL-100210	0.034987	0.059978	0.018893	0.004698	0.003099	0.007098	0.000000	0.000000	0.000000	0.034987	0.259906	0.015095	0.009460	0.469829	0.031988	0.000000	0.000000	0.049982	0.000000	0.000000
982	New-OL-100210CCC	0.034987	0.059978	0.018893	0.004698	0.003099	0.007098	0.000000	0.000000	0.000000	0.034987	0.259906	0.015095	0.009460	0.469829	0.031988	0.000000	0.000000	0.049982	0.000000	0.000000
983	New-OL-108249Mod	0.120299	0.060399	0.100699	0.004700	0.003100	0.007100	0.015100	0.015100	0.050300	0.000000	0.156098	0.015200	0.009010	0.342297	0.050299	0.000000	0.000000	0.050299	0.000000	0.000000
984	New-OL-108249ModCCC	0.120299	0.060399	0.100699	0.004700	0.003100	0.007100	0.015100	0.015100	0.050300	0.000000	0.156098	0.015200	0.009010	0.342297	0.050299	0.000000	0.000000	0.050299	0.000000	0.000000
985	New-OL-108249Mod(PNNL)	0.120299	0.060399	0.100699	0.004700	0.003100	0.007100	0.015100	0.015100	0.050300	0.000000	0.156098	0.015200	0.009010	0.342297	0.050299	0.000000	0.000000	0.050299	0.000000	0.000000
986	New-OL-116208Mod	0.035287	0.060477	0.123453	0.004698	0.003099	0.007197	0.015094	0.000000	0.050481	0.035286	0.163337	0.015194	0.009780	0.342968	0.045383	0.000000	0.012595	0.010096	0.065575	0.000000
987	New-OL-116208ModCCC	0.035287	0.060477	0.123453	0.004698	0.003099	0.007197	0.015094	0.000000	0.050481	0.035286	0.163337	0.015194	0.009780	0.342968	0.045383	0.000000	0.012595	0.010096	0.065575	0.000000
988 989	New-OL-116208Mod(PNNL) New-OL-122817	0.035287	0.060477	0.123453 0.122658	0.004698	0.003099 0.003106	0.007197	0.015094 0.015032	0.000000	0.050481	0.035286	0.163337	0.015194	0.009780	0.342968	0.045383	0.000000	0.012595	0.010096	0.065575	0.000000
989	New-OL-122817 New-OL-122817CCC	0.035074	0.060127	0.122658	0.004710	0.003106	0.007115	0.015032	0.015032	0.000000	0.000000	0.186393	0.015132	0.012820	0.442633	0.030063	0.000000	0.040084	0.010021	0.000000	0.000000
770	110 01-12201/000	0.055074	0.000127	0.122030	0.004710	0.005100	0.007115	0.015052	0.015052	0.000000	0.000000	0.100393	0.015152	0.012020	0.772033	0.050005	0.000000	0.040004	0.010021	0.000000	0.000000

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K20	Li ₂ O	MgO	Na ₂ O	P_2O_5	SO ₃	SiO ₂	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others
991	New-OL-127708Mod	0.110032	0.138294	0.003017	0.000603	0.000402	0.000905	0.015087	0.015087	0.020216	0.035202	0.125722	0.002012	0.000360	0.472714	0.050289	0.000000	0.000000	0.010058	0.000000	0.000000
992	New-OL-127708ModCCC	0.110032	0.138294	0.003017	0.000603	0.000402	0.000905	0.015087	0.015087	0.020216	0.035202	0.125722	0.002012	0.000360	0.472714	0.050289	0.000000	0.000000	0.010058	0.000000	0.000000
993	EWG-LAW-Centroid-1	0.090099	0.100110	0.055060	0.002102	0.001402	0.003204	0.010011	0.004004	0.020022	0.015016	0.190209	0.006807	0.005910	0.395934	0.020022	0.000000	0.020022	0.030033	0.030033	0.000000
994	EWG-LAW-Centroid-1CCC	0.090099	0.100110	0.055060	0.002102	0.001402	0.003204	0.010011	0.004004	0.020022	0.015016	0.190209	0.006807	0.005910	0.395934	0.020022	0.000000	0.020022	0.030033	0.030033	0.000000
995	EWG-LAW-Centroid-2	0.089991	0.099990	0.054994	0.002100	0.001400	0.003200	0.009999	0.004000	0.019998	0.014998	0.189981	0.006799	0.007100	0.395460	0.019998	0.000000	0.019998	0.029997	0.029997	0.000000
996 997	EWG-LAW-Centroid-2CCC LAW-ORP-LD1(1)	0.089991 0.101558	0.099990 0.120469	0.054994 0.080146	0.002100	0.001400	0.003200	0.009999	0.004000	0.019998	0.014998	0.189981 0.209921	0.006799	0.007100	0.395460	0.019998	0.000000	0.019998	0.029997	0.029997	0.000000
997	LAW-ORP-LD1(1) LAW-ORP-LD1(1)CCC	0.101558	0.120469	0.080146	0.003302	0.005003	0.001701	0.010006	0.001601	0.000000	0.010006	0.209921	0.002902	0.009930	0.371614	0.000000	0.000000	0.010006	0.030017	0.030017	0.001801
999	LAW-ORP-LD1(2)	0.101338	0.120409	0.080290	0.003302	0.005003	0.001701	0.010000	0.001604	0.000000	0.010000	0.209921	0.002902	0.009930	0.372282	0.000000	0.000000	0.010000	0.030017	0.030017	0.001801
	LAW-ORP-LD1(2)CCC	0.101741	0.120686	0.080290	0.003308	0.005012	0.001704	0.010024	0.001604	0.000000	0.010024	0.210298	0.002907	0.008150	0.372282	0.000000	0.000000	0.010024	0.030071	0.030071	0.001804
1001	LAW-ORP-LD1(M)	0.147521	0.114369	0.076088	0.003135	0.004749	0.001615	0.009499	0.001520	0.000000	0.009499	0.199291	0.002755	0.008960	0.352796	0.000000	0.000000	0.009499	0.028497	0.028497	0.001710
1002	LAW-ORP-LD1(M)CCC	0.147521	0.114369	0.076088	0.003135	0.004749	0.001615	0.009499	0.001520	0.000000	0.009499	0.199291	0.002755	0.008960	0.352796	0.000000	0.000000	0.009499	0.028497	0.028497	0.001710
1003	LORPM1R1	0.068908	0.082921	0.012779	0.008026	0.003224	0.003003	0.013671	0.001103	0.050152	0.000000	0.106732	0.005005	0.007000	0.521576	0.025668	0.004754	0.034524	0.050152	0.000000	0.000802
1004	LORPM4R2	0.094524	0.123903	0.050590	0.007453	0.002994	0.002789	0.003003	0.058859	0.000000	0.049269	0.139709	0.004648	0.006400	0.360069	0.000000	0.010811	0.040040	0.044194	0.000000	0.000745
1005	LORPM4R2 (K3-R) LORPM9-repeat	0.094524 0.085812	0.123903 0.069344	0.050590	0.007453	0.002994	0.002789	0.003003	0.058859	0.000000	0.049269	0.139709 0.238958	0.004648	0.006400	0.360069	0.000000	0.010811	0.040040	0.044194 0.049996	0.000000	0.000745
1008	LORPM19-repeat	0.083812	0.069344	0.122495	0.008008	0.000080	0.002996	0.080062	0.058846	0.050039	0.045055	0.238938	0.000123	0.001100	0.390213	0.000000	0.030023	0.039990	0.049998	0.009889	0.000801
1007	LORPM11-repeat	0.035000	0.060000	0.000000	0.008002	0.003210	0.002994	0.003000	0.001100	0.000000	0.050000	0.196200	0.004990	0.001000	0.493700	0.000000	0.0300020	0.000000	0.050000	0.060000	0.000800
1009	LORPM18-repeat	0.055698	0.075458	0.024479	0.000200	0.000080	0.000075	0.018399	0.012640	0.033449	0.031729	0.105827	0.000125	0.002800	0.478876	0.039999	0.023999	0.031999	0.017999	0.046149	0.000020
	LORPM38R1	0.055806	0.075604	0.024527	0.008017	0.003220	0.003000	0.064724	0.047350	0.010019	0.035067	0.134166	0.005000	0.004100	0.397348	0.010019	0.024046	0.008015	0.042080	0.047090	0.000802
1011	LORPM40R1	0.117753	0.075430	0.024470	0.000200	0.000080	0.000075	0.057077	0.047241	0.039984	0.034986	0.099960	0.000125	0.002800	0.383846	0.009996	0.005997	0.007997	0.041983	0.049980	0.000020
	LAWE17	0.064961	0.068559	0.079952	0.000200	0.000100	0.000100	0.062862	0.019988	0.034979	0.009994	0.169997	0.000100	0.003600	0.414950	0.000000	0.014691	0.000000	0.019988	0.034979	0.000000
1013 1014	LP2-IL-01 LP2-IL-02	0.074995 0.075006	0.079995 0.081297	0.076165	0.001740	0.005250	0.002630	0.002000	0.019999	0.000000	0.003000	0.236786 0.236819	0.005629	0.008060	0.379757	0.005000	0.000000	0.019999	0.023998	0.054997	0.000000
1014	LP2-IL-02 LP2-IL-03	0.075006	0.081297	0.020002	0.001/40	0.003750	0.002630	0.005771	0.020002	0.000000	0.010001	0.236819	0.005630	0.007920	0.418114	0.025002	0.000000	0.005000	0.026312	0.055004	0.000000
1015	LP2-IL-03	0.074978	0.079977	0.074918	0.003469	0.005249	0.005268	0.009997	0.019994	0.000000	0.009997	0.236731	0.011267	0.002290	0.381889	0.024993	0.000000	0.004999	0.023993	0.029991	0.000000
1017	LP2-IL-05	0.074991	0.119986	0.070242	0.003470	0.003750	0.005259	0.002000	0.004999	0.000000	0.003000	0.219973	0.011269	0.002120	0.369955	0.024997	0.000000	0.004999	0.023997	0.054993	0.000000
1018	LP2-IL-06	0.106819	0.120022	0.020004	0.003471	0.005251	0.005261	0.002000	0.020004	0.000000	0.010002	0.220040	0.011272	0.007820	0.370067	0.008201	0.000000	0.010752	0.024004	0.055010	0.000000
	LP2-IL-07	0.075014	0.120022	0.051479	0.003471	0.003751	0.005271	0.002000	0.020004	0.000000	0.010002	0.223310	0.011272	0.007820	0.394571	0.005001	0.000000	0.005001	0.032006	0.030005	0.000000
	LP2-IL-08	0.075028	0.080030	0.080030	0.003471	0.005252	0.005262	0.010004	0.005002	0.000000	0.010004	0.220082	0.011274	0.007630	0.389895	0.005002	0.000000	0.005002	0.032012	0.055020	0.000000
1021	LP2-IL-09 LP2-IL-10	0.074991	0.119986	0.019998	0.001730	0.005249	0.002630 0.003161	0.0099999	0.004999	0.000000	0.009999	0.243701 0.230072	0.005629	0.002120	0.369955	0.022027	0.000000	0.019998	0.031996	0.054993	0.000000
	LP2-IL-10 LP2-IL-11	0.090001	0.093030	0.030800	0.002081	0.004301	0.005161	0.0100002	0.020000	0.000000	0.003000	0.230072	0.000782	0.004090	0.388454	0.025000	0.000000	0.020000	0.028009	0.040012	0.000000
	LP2-IL-12	0.074995	0.079995	0.031168	0.003470	0.003750	0.005270	0.002000	0.005000	0.000000	0.0099999	0.237856	0.011269	0.002060	0.429174	0.005000	0.000000	0.019999	0.023998	0.054997	0.000000
1025	LP2-IL-13	0.075001	0.112551	0.023200	0.001740	0.005250	0.002630	0.010000	0.020000	0.000000	0.003000	0.220002	0.005630	0.001990	0.430005	0.005000	0.000000	0.005000	0.024000	0.055001	0.000000
1026	LP2-IL-14	0.087979	0.120040	0.038313	0.003471	0.003751	0.005262	0.010003	0.005002	0.000000	0.003001	0.245081	0.011274	0.007670	0.370123	0.005002	0.000000	0.005002	0.024008	0.055018	0.000000
1027	LP2-IL-15	0.075044	0.107584	0.020012	0.003472	0.005253	0.005273	0.010006	0.005003	0.000000	0.003002	0.220131	0.011277	0.007410	0.427474	0.025015	0.000000	0.020012	0.024014	0.030018	0.000000
1028		0.100014	0.095013	0.050007	0.002080	0.004501	0.003161	0.006001	0.010001	0.000000	0.006501	0.230032	0.006761	0.004860	0.388055	0.015002	0.000000	0.010001	0.028004	0.040006	0.000000
	LP2-IL-17 LP2-OL-01	0.092313	0.110051 0.059968	0.025012	0.000730	0.000800	0.001101	0.002001	0.005002	0.000000	0.010005	0.230107	0.002371	0.009540	0.409620	0.000000	0.000000	0.021010	0.030014	0.050323	0.000000
1030	LP2-OL-01 LP2-OL-02	0.100021	0.039908	0.050011	0.002080	0.003997	0.000949	0.006001	0.010002	0.000000	0.006501	0.209880	0.002029	0.001340	0.388082	0.000000	0.000000	0.000000	0.019989	0.040009	0.000000
1031	LP2-OL-03-MOD2	0.107411	0.061088	0.109082	0.000630	0.006112	0.000970	0.000000	0.000000	0.000000	0.013744	0.264717	0.002071	0.007250	0.355334	0.027798	0.000000	0.000000	0.020366	0.023427	0.000000
1033	LP2-OL-04	0.104943	0.059968	0.078358	0.000620	0.005997	0.000949	0.014992	0.057469	0.000000	0.013493	0.209886	0.002029	0.001540	0.348811	0.000000	0.000000	0.000000	0.035980	0.064965	0.000000
1034	LP2-OL-05	0.125064	0.060031	0.110057	0.004672	0.003002	0.007084	0.015008	0.000000	0.000000	0.000000	0.210108	0.015158	0.009290	0.391001	0.000000	0.000000	0.000000	0.020010	0.029515	0.000000
1035	LP2-OL-07	0.101550	0.120459	0.080140	0.003302	0.005002	0.001701	0.010005	0.001601	0.000000	0.010005	0.209904	0.002901	0.010110	0.371584	0.000000	0.000000	0.010005	0.030015	0.030015	0.001701
1036	LP2-OL-08-MOD	0.061323	0.061323	0.108991	0.000631	0.006131	0.000972	0.015328	0.000000	0.000000	0.000000	0.265729	0.002074	0.006330	0.356697	0.000000	0.000000	0.040885	0.020438	0.053148	0.000000
1037	LP2-OL-09 LP2-OL-10-MOD	0.124990 0.125332	0.137489 0.060159	0.019998	0.000620	0.005999	0.000950	0.000000	0.000000	0.000000	0.000000	0.209983	0.002030	0.001080	0.391869	0.015499	0.000000	0.039997	0.019998	0.029498	0.000000
1038	LP2-OL-10-MOD LP2-OL-11	0.059972	0.137435	0.079862	0.004684	0.003013	0.007096	0.000000	0.057473	0.000000	0.013494	0.210552	0.002029	0.007180	0.348836	0.000000	0.000000	0.000000	0.020056	0.029574	0.000000
	LP2-OL-12	0.059978	0.137433	0.079880	0.004668	0.005998	0.007077	0.014995	0.000000	0.000000	0.013494	0.259314	0.002029	0.001370	0.351150	0.000000	0.000000	0.000000	0.019993	0.029489	0.000000
	LP2-OL-13	0.059999	0.059999	0.109998	0.004670	0.003000	0.007080	0.000000	0.057499	0.000000	0.000000	0.222045	0.015150	0.001020	0.354043	0.000000	0.000000	0.039999	0.035999	0.029499	0.000000
1042	LP2-OL-14	0.060010	0.137522	0.071722	0.000620	0.006001	0.000950	0.000000	0.057509	0.000000	0.000000	0.210034	0.002030	0.015030	0.349057	0.000000	0.000000	0.040007	0.020003	0.029505	0.000000
	LP2-OL-15	0.059989	0.137474	0.109979	0.000620	0.005999	0.000950	0.014997	0.000000	0.000000	0.000000	0.209960	0.002030	0.001190	0.356332	0.034993	0.000000	0.000000	0.035993	0.029494	0.000000
	LP2-OL-16-MOD	0.060138	0.074902	0.030569	0.000621	0.006016	0.000951	0.015034	0.000000	0.000000	0.013533	0.210462	0.002032	0.008960	0.471041	0.000000	0.000000	0.040088	0.036085	0.029568	0.000000
	LP2-OL-17	0.059977	0.059977	0.045483	0.004668	0.002999	0.007077	0.014994	0.057478	0.000000	0.013495	0.221966	0.015144	0.001380	0.370909	0.034987	0.000000	0.039985	0.019992	0.029489	0.000000
1046	LP2-OL-18 LP2-OL-19	0.060081	0.060081 0.060106	0.087348	0.004676	0.006008	0.007090	0.000000	0.000000	0.000000	0.013518	0.210285	0.015171	0.010030	0.349473 0.465815	0.035048	0.000000	0.040054	0.036049	0.065088	0.000000
	LP2-OL-19 LP2-OL-20	0.059988	0.059988	0.033309	0.000621	0.002999	0.000932	0.000000	0.000000	0.000000	0.000000	0.259948	0.002034	0.008200	0.465815	0.000000	0.000000	0.000000	0.020038	0.029332	0.000000
	LP2-OL-21	0.099998	0.094998	0.049999	0.002080	0.004500	0.003160	0.006000	0.010000	0.000000	0.006500	0.2299995	0.006760	0.005020	0.387992	0.015000	0.000000	0.010000	0.027999	0.039999	0.000000
	LP2-OL-22	0.069997	0.059998	0.109996	0.000620	0.003000	0.000950	0.014999	0.000000	0.000000	0.000000	0.209992	0.002030	0.001040	0.367385	0.034999	0.000000	0.039998	0.019999	0.064997	0.000000
	LP2-OL-23	0.060094	0.137466	0.110173	0.000621	0.003005	0.000951	0.000000	0.000000	0.000000	0.013521	0.210330	0.002033	0.011600	0.349548	0.035055	0.000000	0.000000	0.036057	0.029546	0.000000
	LP2-OL-24	0.124965	0.059983	0.072430	0.000620	0.002999	0.000950	0.014996	0.000000	0.000000	0.013496	0.251879	0.002029	0.001280	0.348902	0.000000	0.000000	0.039989	0.035990	0.029492	0.000000
	LP2-OL-25	0.060135	0.137808	0.025838	0.000621	0.003007	0.000952	0.015034	0.000000	0.000000	0.000000	0.260583	0.002034	0.007900	0.349783	0.035078	0.000000	0.000000	0.036081	0.065146	0.000000
	LAWPH3-01 LAWPH3-02	0.065744	0.135027 0.131539	0.044549	0.001370	0.005739	0.002079	0.005369	0.006758	0.000000	0.012347	0.241252	0.004459	0.005520	0.355734	0.030753	0.000000	0.002809	0.020695	0.059796	0.000000
	LAWPH3-02 LAWPH3-03	0.068669	0.131539	0.046716	0.000740	0.005198	0.001120	0.000450	0.028851	0.000000	0.010837	0.226999	0.002399	0.004780	0.349111	0.015525	0.000000	0.028531	0.030900	0.047635	0.000000
1050		0.000020	5.000209	5.0-0755	5.007751	5.005440	5.000721	5.014032	5.050057	5.000000	5.011702	5.215070	0.014002	5.005250	5.577052	5.015702	0.000000	5.002540	5.050554	5.055507	3.000000

#	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P ₂ O ₅	SO ₃	SiO ₂	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others
1057	LAWPH3-04	0.063676	0.127662	0.095308	0.002011	0.004944	0.003052	0.003673	0.008956	0.000000	0.004153	0.222260	0.006525	0.012030	0.358287	0.003493	0.000000	0.027580	0.022446	0.033944	0.000000
1058	LAWPH3-05 mod6	0.062360	0.084946	0.024684	0.004397	0.004497	0.006596	0.010593	0.029282	0.000000	0.011393	0.227256	0.014191	0.009530	0.395049	0.020187	0.000000	0.032979	0.021486	0.040574	0.000000
1059	LAWPH3-06	0.090177	0.067261	0.101596	0.001000	0.005829	0.001510	0.002390	0.023937	0.000000	0.011378	0.212640	0.003239	0.003550	0.357720	0.032525	0.000000	0.023037	0.028946	0.033265	0.000000
1060	LAWPH3-07	0.098065	0.076119	0.088452	0.004151	0.003291	0.006312	0.005251	0.007822	0.000000	0.000700	0.238920	0.013503	0.005320	0.350728	0.007332	0.000000	0.030508	0.030958	0.032568	0.000000
1061	LAWPH3-08	0.066728	0.064828	0.061427	0.004560	0.004680	0.006931	0.001060	0.015152	0.000000	0.001850	0.212456	0.014822	0.003590	0.439923	0.005691	0.000000	0.000500	0.032914	0.062888	0.000000
1062	LAWPH3-09	0.078230	0.085981	0.092272	0.002570	0.003051	0.003911	0.008421	0.054987	0.000000	0.002050	0.212878	0.008361	0.009510	0.355177	0.002360	0.000000	0.006441	0.022893	0.050907	0.000000
1063	LAWPH3-10	0.082534	0.063629	0.055807	0.000950	0.003611	0.001441	0.007892	0.026268	0.000000	0.003381	0.235999	0.003081	0.010740	0.355124	0.017195	0.000000	0.038371	0.031879	0.062098	0.000000
1064	LAWPH3-11	0.093342	0.093302	0.037719	0.002719	0.005648	0.004119	0.000520	0.013716	0.000000	0.008167	0.247516	0.008817	0.001380	0.354883	0.007458	0.000000	0.034560	0.021863	0.064271	0.000000
1065	LAWPH3-12	0.111198	0.135093	0.027604	0.003199	0.004269	0.004859	0.010708	0.002290	0.000000	0.012588	0.214277	0.010388	0.003150	0.351300	0.009338	0.000000	0.038452	0.027904	0.033383	0.000000
1066	LAWPH3-12-2	0.111198	0.135093	0.027604	0.003199	0.004269	0.004859	0.010708	0.002290	0.000000	0.012588	0.214277	0.010388	0.003150	0.351300	0.009338	0.000000	0.038452	0.027904	0.033383	0.000000
1067	LAWPH3-13	0.071219	0.062449	0.085958	0.001690	0.005800	0.002570	0.000690	0.034029	0.000000	0.012510	0.230375	0.005490	0.011110	0.398382	0.002720	0.000000	0.007860	0.035009	0.032139	0.000000
1068	LAWPH3-14	0.066353	0.082668	0.052978	0.004302	0.003181	0.006542	0.000330	0.002091	0.000000	0.000870	0.256518	0.013995	0.008830	0.395726	0.021687	0.000000	0.021397	0.024809	0.037723	0.000000
1069	LAWPH3-15	0.072964	0.094299	0.086661	0.001050	0.004299	0.001600	0.012457	0.041351	0.000000	0.000080	0.217032	0.003419	0.004090	0.353352	0.016916	0.000000	0.016036	0.029414	0.044980	0.000000
1070	LAWPH3-16	0.061103	0.069171	0.074150	0.001930	0.004249	0.002939	0.003329	0.040809	0.000000	0.007918	0.231957	0.006288	0.001920	0.365481	0.001150	0.000000	0.036220	0.034321	0.057065	0.000000
1071	LAWPH3-17	0.061675	0.061255	0.098614	0.001910	0.003921	0.002901	0.013953	0.003281	0.000000	0.013273	0.253721	0.006201	0.006750	0.380852	0.007532	0.000000	0.023886	0.023746	0.036529	0.000000
1072	LAWPH3-17-2	0.061675	0.061255	0.098614	0.001910	0.003921	0.002901	0.013953	0.003281	0.000000	0.013273	0.253721	0.006201	0.006750	0.380852	0.007532	0.000000	0.023886	0.023746	0.036529	0.000000
1073	LAWPH3-18	0.083707	0.060726	0.035766	0.003089	0.004778	0.004698	0.003939	0.029449	0.000000	0.013025	0.222373	0.010046	0.003630	0.407690	0.033007	0.000000	0.004028	0.034587	0.045462	0.000000
1074	LAWPH3-19 mod1	0.067000	0.068895	0.084855	0.000768	0.003731	0.001157	0.013605	0.030762	0.000000	0.002105	0.214156	0.002494	0.011000	0.407935	0.010783	0.000000	0.029106	0.021106	0.030542	0.000000
1075	LAWPH3-20	0.060342	0.089328	0.047574	0.001320	0.004089	0.002000	0.011219	0.001270	0.000000	0.000740	0.224291	0.004289	0.007430	0.411926	0.028626	0.000000	0.036385	0.033876	0.035295	0.000000

Glass #	Glass ID	η ₁₁₅₀ ,	ε ₁₁₅₀ ,		esponse, m ²	VHT R	esponse	SO ₃ Sol	ubility and	d Melter S	O ₃ Toleran	.ce, wt%
G1055 #	51430 ID	P ^(a)	S/cm	NL _B	NL _{Na}	r_a , $g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
1	LB100-G-83A	-	-	0.725	0.62		-	-	-	-	-	-
2	LAWA102	55	0.39	-	-	-	-	-	-	-	-	-
3	LAWC21	56	0.31	-	-	-	-	-	-	-	-	-
4	A100-G-115A	-	-	0.48	0.458	-	-	-	-	-	-	-
5	C100-G-136B	-	-	0.368	0.405	-	-	-	-	-	-	-
6	LAWA41	68	0.526	0.47	0.52	-	-	-	-	-	-	-
7 8	LAWA42	31	0.554	0.78	0.695	-	-	-	-	-	-	-
<u>8</u> 9	LAWA43 LAWA44	87 69	0.521 0.516	0.385 0.37	0.43	- 1	- P	-	-	-	-	-
10	LAWA44S		0.510	-	-	-	-	0.55	-	-	-	-
10	LAWA45	64	0.514	0.77	0.515	-	-	-	-	-	-	_
12	LAWA46	89*	0.55	0.425*	0.355*	16.6	Р	-	-	-	-	-
13	LAWA47	85*	0.499	0.375*	0.335*	0.6	Р	-	-	-	-	-
14	LAWA48	81*	0.554	0.395*	0.335*	3.2	Р	-	-	-	-	-
15	LAWA49	87	0.52	0.31	0.29	3.3	Р	-	-	-	-	-
16	LAWA50	72	0.517	0.315	0.3	-	-	-	-	-	-	-
17	LAWA51	107	0.412	0.355	0.26	0.6	Р	-	-	-	-	-
18	LAWA52	52	0.466	0.425	0.55	7.4	Р	-	-	-	-	
19	LAWA60	63	0.398	0.29	0.31	6.2	Р	-	-	-	-	-
20	LAWA64	61*	0.498	0.38*	0.5*	28.5	Р	-	-	-	-	-
21	LAWA81	70	0.512	0.39	0.42	-	-	-	-	-	-	-
22	LAWA82	97	0.523	0.34	0.335	-	-	-	-	-	-	-
23 24	LAWA83 LAWA84	92 92	0.461 0.444	0.31 0.295	0.34	-	-	-	-	-	-	-
24	LAWA84 LAWA85	92 86*	0.444	0.295	0.355	-		-	-		-	-
25	LAWA86	-	-	0.34*	0.385*	-	-	-	-	-	-	-
	LAWA87	49	0.517	0.595	0.55	_	_	_	_	-	_	-
28	LAWA88	60	0.562	0.435	0.425	1.3	Р	-	-	-	-	-
29	LAWA89	65	0.542	0.585	0.465	-	-	-	-	-	-	-
30	LAWA90	65	0.501	0.485	0.485	-	-	-	-	-	-	-
31	LAWA93	16	0.442	0.525	0.535	-	-	-	-	1.35	-	-
32	LAWA96	77	0.507	0.31	0.375	-	-	-	-	-	-	-
33	LAWA97S	76*	0.431*	-	-	-	-	-	-	-	-	-
34	LAWA98S	35	0.468	0.36	0.28	-	-	0.71	-	-	-	-
35	LAWA98S0	-	-	0.735	0.545	-	-	-	-	-	-	-
36	LAWA99S	40	0.309	-	-	-	-	0.84	-	-	-	-
37	LAWA100S	42	0.329	0.54	0.375	-	-	0.61	-	-	-	-
38	LAWA101S	60	0.221	0.43	0.32	-	-	0.62	-	-	-	-
39 40	LAWA102S LAWA103S	-	-	0.275	0.22	-	-	0.68	-	-	-	-
	LAWA1035 LAWA104	53	0.596	0.58	0.525	- 6.5	- P	0.55	-	-	-	-
	LAWA105	38	0.731	0.96	0.795	39.6	P	_	_	_	_	_
43	LAWABP1	140*	0.469	0.285*	0.31*	5.1	P	-	-	-	-	-
	LAWB29	43	0.339	-	-	-	-	-	-	-	-	-
	LAWB30	31	0.287	0.24	0.24	-	-	-	-	-	-	-
46	LAWB31	-	-	0.21	0.105	-	-	-	-	-	-	-
47	LAWB32	-	-	0.245	0.14	-	-	-	-	-	-	-
48	LAWB33	-	-	0.19	0.115	-	-	-	-	-	-	-
	LAWB34	85	0.238	0.215	0.125	-	-	-	-	-	-	-
	LAWB35	-	-	0.5	0.34	-	-	-	-	-	-	-
51	LAWB36S	- 02	-	-	-	-	- D	0.87	-	-	-	-
	LAWB37	92	0.231	0.26	0.18	1.5	Р	-	-	-	-	-
53 54	LAWB38 LAWB39	65 66	0.277 0.235	0.255	0.18	-	-	-	-	- 0.91	-	-
	LAWB39 LAWB40	24	0.235	1.585	1.175	-	-	-	-	- 0.91	-	-
56	LAWB40 LAWB41	35	0.317	0.85	0.705	-	-	-	-	1.05	-	-
57	LAWB42S	353*	-	-	-	-	-	0.61	-	-	-	-
58	LAWB43S	-	-	-	-	-	-	0.62	-	-	-	-
59	LAWB44S	-	-	-	-	-	-	0.52	-	-	-	-
	LAWB45	43	0.311	-	-	-	-	-	-	-	-	-
61	LAWB51S	67	-	0.475	0.33	-	-	1.06	-	-	-	-
62	LAWB52S	50	0.341	0.49	0.335	-	-	1.06	-	-	-	-
63	LAWB53S	47	0.364	0.42	0.265	-	-	1.1	-	-	-	-
64	LAWC11 for AN107	59	0.694	-	-	-	-	-	-	-	-	-
65	LAWC12 for AN107	56	0.591	0.42	0.409	1.8	Р	-	-	-	-	-

		η ₁₁₅₀ ,	ε ₁₁₅₀ ,	PCT Re		VHT R	esponse	SO ₃ Sol	ubility and	l Melter S	O ₃ Toleran	ce, wt%
Glass #	Glass ID	P ^(a)	S/cm	g/			-	-	-		-	
66	LAWC13	86	0.364	NL _B 0.355	NL _{Na} 0.37	r_a , $g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
66 67	LAWC13 LAWC14	49*	0.561	0.555	3.609*	-	-	-	-	-	-	-
	LAWC15	74	0.522	0.329	0.336	0.5	Р	-	-	-	-	-
	LAWC16S	31	0.336	0.584	0.409	-	-	0.71	-	-	-	-
	LAWC17S	-	-	0.399	0.294	-	-	0.66	-	-	-	-
	LAWC18S	46	0.318	0.413	0.295	-	-	0.75	-	-	-	-
	LAWC19S	48	0.208	0.232	0.226	-	-	0.73	-	-	-	-
73 74	LAWC20S	-	- 0.31	0.244 0.15	0.189	- 2.9	- P	0.55	-	-	-	-
	LAWC21S LAWC22	56 39	0.31	0.15	0.172	2.9 7.7	Р Р	0.7	-	-	-	-
	LAWC22 LAWC23	149	-	0.239	0.40)	-	P	-	_	-	_	_
	LAWC23S	-	-	-	-	-	-	0.71	-	-	-	-
	LAWC24	128	-	0.221	0.282	-	Р	-	-	-	-	-
	LAWC24S	-	-	-	-	-	-	0.88	-	-	-	-
	LAWC25	96*	0.209	0.32	0.385	-	Р	-	-	-	-	-
81	LAWC25S	-	-	-	-	-	-	0.68*	-	-	-	-
	LAWNa1S	-	-	-	-	-	-	0.9	-	-	-	-
83 84	LAWNa2 LAWNa3	-	-	-	-	-	-	0.75 0.97	-	-	-	-
	LAWNa3 LAWNa4	-	-	-	-	-	-	1.32	-	-	-	-
	LAWNa5	-	-	-	-	-	-	0.75	-	-	-	-
87	LAWNa6	-	-	-	-	-	-	0.68	-	-	-	-
	LAWNa7	-	-	-	-	-	-	0.58	-	-	-	-
	LAWA53	-	-	-	-	0.8	Р	0.59	-	-	-	-
	LAWA54	-	-	-	-	4.9	Р	0.615*	-	-	-	-
	LAWA55	-	-	-	-	40.9	P	0.55*	-	-	-	-
	LAWA56 LAWA57	-	-	-	-	1.7 0.1	<u>Р</u> Р	0.61 0.48	-	-	-	-
	LAWA57 LAWA58	-	-	-	-	0.1	P	0.48	-	-	-	-
	LAWA59	-	-	-	-	0.9	P	0.585*	_	-	-	-
	LAWA61	-	-	-	-	-	-	0.55*	-	-	-	-
	LAWA62	-	-	-	-	-	-	0.57*	-	-	-	-
98	LAWA63	-	-	-	-	-	-	0.52*	-	-	-	-
	LAWA65	-	-	-	-	-	-	0.48*	-	-	-	-
	LAWA66	-	-	-	-	-	-	0.68*	-	-	-	-
	LAWA67 LAWA68	-	-	-	-	-	-	0.65	-	-	-	-
	LAWA69	-	-	_	-	_	_	0.51	_	_	_	-
	LAWA70	-	-	-	-	-	-	0.515	-	-	-	-
	LAWA71	-	-	-	-	-	-	0.475	-	-	-	-
106	LAWA72	-	-	-	-	-	-	0.425*	-	-	-	-
	LAWA73	-	-	-	-	-	-	0.565	-	-	-	-
	LAWA74	-	-	-	-	-	-	0.61	-	-	-	-
	LAWA75 LAWA76	-	-	- 0.71	- 0.66	-	-	0.54 0.86	-	-	-	-
	LAWA76 LAWA77	-	-	- 0.71	- 0.00	-	-	0.86	-	-	-	-
	LAWA78	-	-	-	-	_	-	0.655	-	-	-	-
	LAWA79	-	-	-	-	-	-	0.56	-	-	-	-
	LAWA80	-	-	-	-	-	-	0.55	-	-	-	-
	LAWABPS	-	-	-	-	-	-	0.46*	-	-	-	-
	LAWBF99	-	-	-	-	-	-	0.68	-	-	-	-
	LAWPC99	-	-	-	-	-	-	0.485	-	-	-	-
	LAWA91 LAWA92	-	-	-	-	-	-	0.445* 0.45*	-	-	-	-
	LAWA92 LAWA95	-	-	-	-	-	-	0.43*	-	-	-	-
	PNLREF (LD6-5412)	-	-	0.105	0.275	-	-	-	-	-	-	-
122	TFA-BASE (HLP-01)	-	-	0.395	0.325	9.5	Р	-	-	-	-	-
123	A100-G-115A	-	-	0.485	0.45	13	Р	-	-	-	-	-
124	A100CC	-	-	0.355*	0.325*	9.7*	Р	-	-	-	-	-
	C100-G-136B	-	-	0.368	0.349	2.5	Р	-	-	-	-	-
	C100GCC	-	-	0.232*	0.243*	6.4*	Р	-	-	-	-	-
	LAWA41-3 LAWA44-3	-	-	-	-	-	-	-	-	-	-	-
	LAWA44-3 LAWA52-2	-	-	-	-	-	-	-	-	-	-	-
-	LAWA60	-	-	-	-	-	-	-	-	-	-	-

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Glass #	Glass ID	η_{1150} , $\mathbf{P}^{(a)}$	ε ₁₁₅₀ ,	PCT Re		VHT Re	esponse	SO ₃ Sol	ubility and	d Melter S	O ₃ Toleran	ce, wt%
132 LAWA8S .<			P ^(a)	S/cm	-		r_a , $g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
131 LAWA05			-	-	-	-	-	-	-	-	-	-	-
138 LAWAIO2 <													
135 LAWA104 <													
130 LAWA105 <													
138 LAWB37 .<			-	-			-		-			-	-
130 LAWC21 -<			-	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					-	-	-		-	-	-	-	-
141 OD2-G-S0A - <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<>													-
142 LAWA102 + 15% Multime 59 0.28 .													
143 LAWA102 + 158 Simulant 39 0.39 . <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
145 LAWA482 - - - 0.58 - - - 146 LAWA8852 - - - 0.66 - - - 147 LAWA8852 - - - 0.65 - - - 148 LAWA8852 - - - 0.65 - - - 150 LAWA02R1 81 0.426 - - - 0.65 - - - 151 LAWA0881 81 0.426 - - - 0.65 - - - - - - - - - - - - - - - - 0.63 -	143			0.39	-	-	-	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-	-	-	-	-	-		-	0.6	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-									
			81	0.426	-	-			-	-	-	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	-	-	-	-	-		-	-	-	-
155 LAWA110S1 81 0.382 .			-	0.378	-	-	-	-			-	-	-
157 LAWA11181 46 0.309 0.72 .				0.382									
158 LAWA111S2 0.8 159 LAWA112S1 36 0.441 . <				- 0.309									
159 LAWA112S1 36 0.441 .				-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			36	0.441	-	-	-	-		-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	160		-	-	0.53	0.64	-	-	0.85	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								-			-		-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	-			-	-			-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	168		-	-	-	-	-	-		-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-	-	-	-	-			-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-							-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-							-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	175	LAWA133	-	-	0.54	0.565	0.6	Р			-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	176	LAWA133S2	-	-	-	-	-		0.57	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
181 LAWB60S2 35 0.257 - - - 1.41 -													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													-
185 LAWB62 27 0.35 0.165 0.18 4.1 P -	183	LAWB61		0.3				-		-	-	-	-
186 LAWB62S4 - - - - - 1.83 - <										-	-	-	-
187 LAWB63 41 0.248 0.18 0.175 7.9 P - <td></td>													
188 LAWB63S4 - - - - - - 1.43 - <													
189 LAWB64 34 0.3 0.28 0.245 1.7 P -				0.248	0.18	0.175							
190 LAWB64S0 -				0.3	0.28	0.245							
191 LAWB64S4 - - - - - - 1.4 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
193 LAWB65S4 - - - - - 1.26 - <			-	-			<u> </u>	-	1.4	-	-		-
194 LAWB66 46 0.263 0.295 0.275 1.9 P								Р		-	-	-	-
195 LAWB66S4 1.35	194 195	LAWB66 LAWB66S4		0.263	0.295	0.275			- 1.35				

Cla "	Class ID	η ₁₁₅₀ ,	ε ₁₁₅₀ ,	PCT Re	esponse, m ²	VHT Re	esponse	SO ₃ Sol	ubility and	d Melter S	O ₃ Toleran	.ce, wt%
Glass #	Glass ID	P ^(a)	S/cm	NL _B	m NL _{Na}	r _a , g/m ² /d	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
196	LAWB67	77	0.217	0.245	0.14	$r_{a}, g/m/u$	P/F P	- B2	- SK	Bub -	- MI	
	LAWB67S4	-	-	-	-	-	-	1.42*	-	-	-	-
	LAWB68	58	0.214	0.25	0.24	2	Р	-	-	-	-	-
	LAWB69	37	0.25	0.245	0.24	14.1	Р	-	-	-	-	-
	LAWB69S4	-	-	-	-	-	-	1.19	-	-	-	-
	LAWB70 LAWB70S4	38	0.274	0.56	0.47	3.4	Р	- 1.23	-	-	-	-
	LAWB7054 LAWB71	- 39	0.297	0.32	0.275	- 1.3	- P	-	-	-	-	-
	LAWB71S4	-	-	-	-	-	-	1.26	-	-	-	-
	LAWB72	42	0.234	0.44	0.385	2.5	Р	-	-	-	-	-
	LAWB72S4	-	-	-	-	-	-	1.2	-	-	-	-
	LAWB73	36	0.285	0.205	0.19	3.4	Р	-	-	-	-	-
	LAWB73S4 LAWB74	- 34	0.325	0.225	- 0.2	- 5.7	- P	- 1.4	-	-	-	-
	LAWB74S4	- 34	-	-	-	-	г -	1.43	-	-	-	-
	LAWB75	33	0.312	0.17	0.145	6.5	Р	-	-	-	-	-
	LAWB75S4	-	-	-	-	-	-	1.47	-	-	-	-
	LAWB76	34	0.374	0.21	0.18	8.6	Р	-	-	-	-	-
	LAWB76S4	-	-	-	-	-	- D	1.58	-	-	-	-
	LAWB77 LAWB77S4	- 64	0.242	0.36	0.3	1.9	P -	- 1.17	-	-	-	-
	LAWB78	42	0.241	0.615	0.555	2.5	P	-	-	-	-	-
	LAWB78S4	-	-	-	-	-	-	0.93	-	-	-	-
219	LAWB79	40	0.231	0.545	0.49	1.2	Р	-	-	-	-	-
	LAWB79S4	-	-	-	-	-	-	0.95	-	-	-	-
	LAWB80	55	0.183	0.44	0.365	1.1	Р	-	-	-	-	-
	LAWB80S4 LAWB81	- 39	0.303	- 0.45	0.395	- 2.7	- P	1.04	-	-	-	-
	LAWB81S4	-	-	-	-	-	-	1.14	-	-	-	-
	LAWB82	33	0.288	0.25	0.23	3.5	Р	-	-	-	-	-
226	LAWB82S4	-	-	-	-	-	-	1.07	-	-	-	-
	LAWB83	54	0.223	0.305	0.265	1.8	Р	-	-	-	-	-
	LAWB83S4 LAWB84	- 51	- 0.23	- 0.34	- 0.28	- 1.7	- P	1.04	-	-	-	-
	LAWB84S4	- 51	0.23	0.34	0.28	-	- P	- 1.1	-	-	-	-
	LAWB85	55	0.235	0.325	0.25	1.2	P	-	-	-	-	-
	LAWB85S4	-	-	-	-	-	-	1.01	-	-	-	-
	LAWB86	47	0.225	0.625	0.505	1.7	Р	-	-	-	-	-
	LAWB86S4	-	-	-	-	-	-	1.02	-	-	-	-
	LAWB89 LAWB89S4	48	0.271	0.3	0.235	1.8	P -	- 1.28	-	-	-	-
	LAWB90	-	-	0.31	0.275	- 1.5	- P	-	-	-	-	-
	LAWB91	-	-	0.395	0.345	1.3	P	-	-	-	-	-
	LAWB91S4	-	-	-	-	-	-	0.71	-	-	-	-
	LAWB92	54	0.222	0.455	0.395	1.1	Р	-	-	-	-	-
	LAWB92S4	-	-	-	-	-	- D	0.64	-	-	-	-
	LAWB93 LAWB93S4	50	0.204	0.43	0.25	1.7	P -	- 1.18	-	-	-	-
-	LAWB9354 LAWB94	- 48	0.235	0.355	0.235	- 1.5	- P	-	-	-	-	-
	LAWB94S4	-	-	-	-	-	-	1.36	-	-	-	-
	LAWB95	55	0.282	0.335	0.22	1.2	Р	-	-	-	-	-
	LAWB95S4	-	-	-	-	-	-	1.33	-	-	-	-
248	C21REV2	-	-	0.345	0.36	-	-	-	-	-	-	
	C22AN107 LAWC26	- 51	-	0.57 0.34	0.555	1 2.4	<u>Р</u> Р	-	-	-	-	-
	LAWC26S2	67	0.251	-	-	<u></u> +	<u>г</u>	- 0.94	-	-	-	-
	LAWC27	51	0.256	0.19	0.22	19.5	Р	-	-	-	-	-
	LAWC27S2	55	0.211	-	-	-	-	0.76	-	-	-	-
	LAWC28	-	-	0.145	0.22	10.2	Р	-	-	-	-	-
-	LAWC28S2	31	0.283	-	-	-	-	1.1	-	-	-	-
	LAWC29 LAWC29S2	40	0.279	0.15	0.205	- 11.7	P -	- 0.92	-	-	-	-
251		43	0.347	0.3	0.33	- 6.6	- P	- 0.92	-	-	-	-
258	LAWUSU											1
	LAWC30 LAWC30S2	-	-	-	-	-	-	0.7	-	-	-	-

Glass #	Glass ID	$\eta_{1150},$	ε ₁₁₅₀ ,	PCT Re		VHT Re	esponse	SO ₃ Sol	ubility and	l Melter S	O ₃ Toleran	ce, wt%
		P ^(a)	S/cm	NL _B	NL _{Na}	$r_a, g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
261	LAWC31R2	-	-	-	-	-	-	-	-	-	-	-
262	LAWC31S2	-	-	-	-	-	-	0.77	-	-	-	-
	LAWC32	39	0.317	0.21	0.275	22.7	Р	-	-	-	-	-
	LAWC32S2	-	-	- 0.32	-	- 1.9	- P	0.95	-	-	-	-
265 266	LAWC33 LAWA44(Crucible)	-	-	0.32	0.34	-	- P	-	-	-	-	-
260	A88AP101R1	-	-	0.685	0.47	- 1.4	- P	-	-	-	-	-
268	A88Si+15	42	0.58	1.24	1	32	P	-	-	-	-	-
269	A88Si-15	94	0.35	0.325	0.325	0.4	P	-	-	-	-	-
	LAWB96	-	-	0.275	0.285	-	-	-	-	-	-	-
	LAWC22(Crucible)	-	-	0.48	0.435	-	-	-	-	-	-	-
272	C22AN107	44	0.34	0.57	0.555	1.1	Р	-	-	-	-	-
273	C22Si+15	35	0.42	0.635	0.83	2.5	Р	-	-	-	-	-
274	C22Si-15	54	0.31	0.465	0.345	3.2	Р	-	-	-	-	-
275	A1-AN105R2(LAWA44)	70	0.39	0.525	0.515	-	-	-	-	-	-	-
276	A1C1-1	58	0.44	0.435	0.435	0.7	Р	-	-	-	-	-
277	A1C1-2	49	0.4	0.41	0.445	3.4	P	-	-	-	-	-
278	A1C1-3	-	-	0.455	0.42	0.7	P	-	-	-	-	-
279	C1-AN107(LAWC22)	46	0.32	0.515	0.53	8.8	P	-	-	-	-	-
280 281	A2-AP101(LAWA126) A2B1-1	60 61	0.35	0.78	0.56 0.325	0.8	<u>Р</u> Р	-	-	-	-	-
281	A2B1-1 A2B1-2	54	0.32	0.355	0.325	0.6	<u>Р</u> Р	-	-	-	-	-
282	A2B1-2 A2B1-3	53	0.25	0.34	0.3	- 0.7	- P	-	-	-	-	-
283	B1-AZ101(LAWB83)	53	0.24	0.39	0.265	1.5	P	_	_	-	_	
285	A3-AN104(LAWA137)	35	0.29	0.54	0.53	0.7	P	-	-	-	-	-
286	A3C2-1	41	0.32	0.55	0.535	-	-	-	-	-	-	-
287	A3C2-2	35	0.28	0.545	0.555	-	-	-	-	-	-	-
288	A3C2-3	33	0.27	0.415	0.43	-	-	-	-	-	-	-
289	C2-AN102C35	35	0.27	0.34	0.375	17	Р	-	-	-	-	-
290	LAWC35S2	46	0.32	-	-	9.6	Р	0.89	-	-	-	-
291	WVG-G-10B	-	-	0.745	0.645	-	-	-	-	-	-	-
292	WVF-G-81A	-	-	0.315	0.29	-	-	-	-	-	-	-
293	WVF-G-21B	-	-	0.415	0.365	-	-	-	-	-	-	-
294	WVE-G-108A	-	-	0.585	0.515	-	-	-	-	-	-	-
295	WVE-G-27D	-	-	0.3	0.285	-	-	-	-	-	-	-
296 297	WVB-G-124B WVB-G-93A	-	-	0.425	0.415	-	-	-	-	-	-	-
297	WVA-G-100B	-	-	0.395	0.48	-	-	-	-	-	-	-
299	WVJ-G-109D	_	-	0.245	0.22	_		_	_	_	_	
300	WVK-G-41A	-	-	0.245	0.22	_	_	-	-	-	-	-
301	WVN-G-110A	-	-	0.28	0.27	-	-	-	-	-	-	-
302	WVO-G-44B	-	-	0.22	0.23	-	-	-	-	-	-	-
303	WVD-G-25A	-	-	0.46	0.46	-	-	-	-	-	-	-
304	WVC-G-107B	-	-	0.285	0.26	-	-	-	-	-	-	-
305	WVH-G-57B	-	-	0.24	0.245	-	-	-	-	-	-	-
306	WVG-G-88D	-	-	0.315	0.345	-	-	-	-	-	-	-
307	WVH-G-13A	-	-	0.195	0.22	-	-	-	-	-	-	-
	LAWB53FCC	-	-	-	-	8.5*	P	-	-	-	-	-
	LAWB87 LAWB87S	64	0.29	0.265	0.21	1.2	Р	- 1.11	-	-	-	-
	LAWB875 LAWB88	- 52	0.275	0.195	- 0.16	- 3.8	- P	-	-	-	-	-
	LAWB88S	-	-	-	-		- -	1.56	-	-	-	-
	LB88SRCC-2	-	-	-	-	3.4*	P	-	-	-	-	-
	LAWA125	42	0.464	0.964	0.809	37.9	P	-	-	-	-	-
	LAWA126	63	0.395	0.598	0.524	2.4	Р	-	-	-	-	-
	LAWA126R3	-	-	-	-	-	-	-	-	-	-	-
317	PNLA126CC	-	-	0.448*	0.393*	1.4*	Р	-	-	-	-	-
	LAWA127R1	85	0.295	0.334	0.342	-	-	-	-	-	-	-
	LAWA127R2	-	-	0.365	0.353	0.4	Р	-	-	-	-	-
	LAWA128	-	-	0.314	0.434	0.9	Р	-	-	-	-	-
	LAWA128R1	94	0.393	-	-	-	-	-	-	-	-	-
322	LAWA129	-	-	0.271	0.372	-	- D	-	-	-	-	-
323	LAWA129R1	108	0.323	-	-	2.4	P	-	-	-	-	-
	LB83PNCC LB83PNCC	-	-	0.235*	0.23*	1.5* 1.7*	<u>Р</u> Р	-	-	-	-	-
525	LDOJPINUU	-	-	-	-	1./*	r	-	-	-	-	-

Glass #	Glass ID	η ₁₁₅₀ ,	ε ₁₁₅₀ ,	PCT Re	esponse, m ²	VHT Re	esponse	SO ₃ Sol	ubility and	l Melter S	O ₃ Toleran	ce, wt%
		P ^(a)	S/cm	NLB	NL _{Na}	$r_a, g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
326	LAWA44R10	71	0.288	-	-	-	-	-	-	-	-	-
327	LA44PNCC	58*	0.283*	0.335*	0.335*	0.8*	Р	-	-	-	-	-
	LA44PNCC	-	-	-	-	-	-	-	-	-	-	-
329 330	LA137SRCCC A3-AN104	-	-	0.54*	0.485*	5.5*	Р	-	-	-	-	-
	LAWM1	- 36	- 0.162	- 0.075	- 0.145	- 9.1	- P	-	- 0.87	-	-	-
	LAWM2	21	0.102	0.335	0.43	8.3	P	-	0.85	-	-	_
333	LAWM3	18	0.365	0.4	0.58	3.8	P	-	0.78	-	-	-
	LAWM4	13	0.192	0.23	0.3	0.6	Р	-	1.08	-	-	-
335	LAWM5	123	0.198	0.125	0.14	0.8	Р	-	0.62	-	-	-
	LAWM6	50	0.13	0.275	0.355	2.1	Р	-	0.49	-	-	-
	LAWM7	117	0.077	0.125	0.215	2.9	Р	-	0.95	-	-	-
	LAWM8	-	-	0.16	0.14	1.4	P	-	0.72	-	-	-
	LAWM9	126	0.091 0.424	0.105	0.255	0.1	P	-	0.44	-	-	-
	LAWM10 LAWM11	14 13	0.424	0.12	0.22 0.705	12.6 77.3	P F	-	1.21	-	-	-
	LAWM12	13	0.526	14.85	8.045	-	F	-	0.77	-	-	-
	LAWM13	14	0.733	1.24	2.465	-	F	-	1.02	-	-	-
344	LAWM14	47	0.488	1	1.08	-	F	-	0.74	-	-	-
	LAWM15	65	0.57	1.085	0.77	94.5	F	-	0.43	-	-	-
	LAWM16	26	0.299	0.145	0.21	7.8	Р	-	0.68	-	-	-
	LAWM17	33	0.428	6.265	3.99	0.3	Р	-	0.45	-	-	-
	LAWM18	-	-	0.215	0.255	1.7	P	-	0.75	-	-	-
349	LAWM19	-	-	0.25	0.275	0.1	P	-	0.56	-	-	-
	LAWM20 LAWM21	-	-	1.335 0.445	1.36 0.48	12.8	<u>Р</u> Р	-	0.46 0.85	-	-	-
352	LAWM21 LAWM22	-	-	0.443	0.48	0.2	P P	-	0.83	-	-	-
	LAWM22 LAWM23	-	_	0.175	0.255	1	P	_	0.42	-	_	_
	LAWM24	-	-	0.525	0.41	13.6	P	-	0.47	-	-	-
	LAWM25	-	-	0.41	0.29	4.5	Р	-	0.35	-	-	-
	LAWM26	-	-	0.21	0.18	3.4	Р	-	0.55	-	-	-
	LAWM27	-	-	0.345	0.425	5	Р	-	0.56	-	-	-
358	LAWM28	-	-	0.185	0.265	0.7	Р	-	0.4	-	-	-
	LAWM29	-	-	0.25	0.245	1	P	-	0.47	-	-	-
	LAWM30 LAWM31	-	-	0.59	0.51	20 5.3	P P	-	0.31 0.85	-	-	-
	LAWM31 LAWM32	42	0.407	1.155	0.92		F	-	0.83	-	-	-
	LAWM32	-	-	2.14	2.055	3.8	P	_	0.32	-	-	-
	LAWM34	-	-	2.61	2.135	46.4	P	-	0.73	-	-	-
	LAWM35	25	0.304	5.265	3.315	0.4	Р	-	0.41	-	-	-
366	LAWM36	-	-	0.245	0.305	11.8	Р	-	0.6	-	-	-
367	LAWM37	-	-	0.62	0.495	1.1	Р	-	0.59	-	-	-
368	LAWM38	-	-	0.19	0.345	18.9	Р	-	0.6	-	-	-
	LAWM39	-	-	0.27	0.23	12.4	P	-	0.47	-	-	-
	LAWM40 LAWM41	-	-	0.385	0.365	0.3 4.7	<u>Р</u> Р	-	0.42	-	-	-
	LAWM41 LAWM42	-	-	0.18	0.293	0.8	P P	-	0.59	-	-	-
	LAWM42 LAWM43	-	-	0.205	0.29	1	P	-	0.5	-	-	-
374	LAWM44	-	-	0.25	0.285	2.2	P	-	0.46	-	-	-
	LAWM45	-	-	0.215	0.295	4.9	Р	-	0.54	-	-	
	LAWM46	77	0.139	0.24	0.235	0.3	Р	-	0.31	-	-	-
	LAWM47	-	-	0.26	0.365	2.8	Р	-	0.61	-	-	-
	LAWM48	-	-	0.235	0.285	0.6	P	-	0.27	-	-	-
	LAWM49	-	-	0.27	0.25	2.5	P	-	0.48	-	-	-
	LAWM50 LAWM51	-	-	0.325 0.345	0.315 0.36	0.4 0.6	<u>Р</u> Р	-	0.57 0.58	-	-	-
381	LAWM51 LAWM52	-	-	0.345	0.58	3.1	Р Р	-	0.58	-	-	-
	LAWM52 LAWM53	56	0.421	0.723	0.135	9.9	P	-	0.44	-	-	-
-	LAWM55 LAWM54	-	-	0.185	0.135	0.3	P	-	0.36	-	-	-
-	LAWM55	-	-	17.835	11.47	-	F	-	0.81	-	-	-
	LAWM56	51	0.433	7.29	4.89	0.7	Р	-	0.59	-	-	-
	LAWA53	-	-	0.405	0.535	-	-	-	-	-	-	-
	LAWA56	-	-	0.87	0.59	-	-	-	-	-	-	
	LAWA88R1	-	-	0.815	0.65	1.4	Р	-	-	-	-	-
390	LAWA102R1	-	-	0.43	0.365	-	-	-	-	-	-	-

Glass #	Glass ID	η_{1150} , $\mathbf{P}^{(a)}$	ε ₁₁₅₀ ,	PCT Re		VHT Re	esponse	SO ₃ Sol	lubility and	l Melter S	O ₃ Toleran	ce, wt%
		1	S/cm	NL _B	NL _{Na}	r_a , $g/m^2/d$	$P/F^{(b)}$	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
391	LAWA147	-	-	-	-	-	-	-	0.6	-	-	-
392	LAWA149	-	-	-	-	-	-	-	0.61	-	-	-
393 394	LAWA152 LAWA155	-	-	-	-	-	-	-	0.82	-	-	-
394	LAWA155 LAWA159	-	-	-	-	-	-	-	0.69	-	-	-
395	LAWA160	-	-	-	-	-	-	-	0.88	-	-	-
	LAWA161	-	-	0.672	0.667	24.6	P	-	0.85	1.07	1	-
398	LAWA161R	-	-	-	-	25.4	P	-	-	-	-	-
399	LAWA161S2	33	0.374	-	-	-	-	-	-	-	-	-
400	LAWA162	-	-	-	-	-	-	-	0.69	-	-	-
401	LAWA163	-	-	-	-	-	-	-	0.76	-	-	-
402	LAWA164	-	-	-	-	-	-	-	0.69	-	-	-
403	LAWA165	-	-	-	-	-	-	-	0.82	-	-	-
404	LAWA166	-	-	-	-	-	-	-	0.71	-	-	-
405	LAWA167	-	-	-	-	-	-	-	0.77	-	-	-
406	LAWA168	-	-	-	-	- 12.5	- P	-	0.75	-	-	-
407 408	WVW-G-11A LAWA143	- 55	- 0.463	0.63	0.57	12.5	- P	-	-	-	-	-
408	LAWA143 LAWA144	55 64	0.463	-	-	-	-	-	-	-	-	-
409	LAWA144 LAWA145	56	0.465	-	-	-	-	-	-	-	-	-
410	LAWA140	94	0.438	0.42	0.5	4	P	-	-	-	-	-
412	AN-103 Actual	-	-	0.37	0.4	-	-	-	-	-	-	-
413	AW-101 Actual	-	-	0.57	0.59	-	-	-	-	-	-	-
414	AP-101 Actual	-	-	0.65	0.65	-	-	-	-	-	-	-
415	AZ-101 Actual	-	-	0.26	0.25	-	-	-	-	-	-	-
416	AZ-102 Actual	-	-	0.2	0.16	-	-	-	-	-	-	-
417	AZ-102 Actual CCC	-	-	0.16*	0.14*	-	-	-	-	-	-	-
418	AN-107 Actual	-	-	0.35	0.42	-	-	-	-	-	-	-
419	AN-102 Actual LC Melter	-	-	0.21	0.26	-	-	-	-	-	-	-
420	AN-102 Actual	-	-	0.3	0.35	-	- D	-	-	-	-	-
421 422	LA44CCCR2 12U-G-86A	-	-	0.33*	0.36* 0.38	0.9*	<u>Р</u> Р	-	-	-	-	-
422	12U-G-86ACCC	-	-	-	-	1.7	P P	-	-	-	-	-
424	LAWA170	53	0.459	0.65	0.64	14.5	P	-	-	-	-	-
425	LA126CCC	-	-	0.47*	0.43*	4*	P	-	-	-	-	-
426	WVM-G-142C	-	-	0.57	0.52	-	-	-	-	-	-	-
427	LAWA102R2	-	-	0.38	0.44	-	-	-	-	-	-	-
428	WVR-G-127A	-	-	0.4	0.4	-	-	-	-	-	-	-
429	LB83CCC-1	-	-	0.26*	0.22*	1.1*	Р	-	-	-	-	-
	LAWB96	45	0.194	-	-	4.5	Р	-	-	-	-	-
	GTSD-1126	-	-	0.29	0.28	1.1	P	-	-	-	-	-
-	GTSD-1126CCC	-	-	-	-	1.5*	Р	-	-	-	-	-
433 434	LB88SRCC-2 LAWB88CCC	-	-	0.15*	0.14*	3.8*	- P	-	-	-	-	-
434	AZ-102 Surrogate	-	-	0.22	0.2		-	-	-	-	-	_
436	12S-G-85C	-	-	0.22	0.33	-	-	-	-	-	-	-
437	LAWC21	-	-	0.33	0.36	13.7	Р	-	-	-	-	-
	LAWC21Rev2	-	-	0.35	0.36	-	-	-	-	-	-	-
	Surrogate #2 for AN-102	-	-	0.22	0.26	-	-	-	-	-	-	-
	GTSD-1437	-	-	0.35	0.37	-	-	-	-	-	-	-
	PLTC35CCC	-	-	0.25*	0.31*	6.1*	Р	-	-	-	-	-
	LAWC100	32	0.29	0.525	0.435	10.5	P	-	1	1.15	1.1	-
	LAWC100R1	25	0.33	0.84	0.755	15.9	P	-	- 0.9	- 1.07	-	-
444 445	LAWC101 LAWC102	29 22	0.42	0.68	0.625	7.4 15.6	<u>Р</u> Р	-	0.9	1.07	-	-
	LAWC102 LAWC103	22	0.46	1.075	0.82	0.6	<u>Р</u> Р	-	0.97	1.12	-	-
440	WVY-G-95A	25	0.45	0.92	0.97	11.3	P	-	-	-	-	-
	LAWE3	52	0.404	0.955	0.705	14.2	P	-	-	-	-	-
	WVZ-G-61D	52	0.41	0.71	0.685	19.3	Р	-	-	-	-	-
450	DWV-G-51B	44*	0.404	1.405	1.135	11	Р	-	-	-	-	-
	LAWE7H	21	0.4	0.535	0.515	16.8	Р	-	-	-	-	-
452	AWV-G-78A	26	0.362	0.54	0.51	9.6	Р	-	-	-	-	-
	BWV-G-142B	27*	0.374	0.49	0.535	7	P	-	-	-	-	-
	LAWE10H	42 50	0.201	0.23	0.215	1.9 2.2	<u>Р</u> Р	-	-	-	-	-
433	BWV-G-32B	50	0.216	0.245	0.26	2.2	Ч	-	-	-	-	-

Glass #	Glass ID	η ₁₁₅₀ ,	ε ₁₁₅₀ ,		esponse, m ²	VHT Re	esponse	SO ₃ Sol	lubility and	d Melter S	O ₃ Toleran	ce, wt%
		P ^(a)	S/cm	NLB	NL _{Na}	$r_a, g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
	LAWCrP1	87	0.294	0.276	0.326	0.2	Р	-	-	-	-	-
	LAWCrP1R	63	0.524	0.283	0.328	3.5	Р	-	-	-	-	-
	LAWCrP2	66	0.381	0.303	0.328	1.8	Р	-	-	-	-	-
	LAWCrP2R	45	0.658	0.558	0.519	23.9	Р	-	-	-	-	-
	LAWCrP3	95	0.339	0.285	0.326	0.2	Р	-	-	-	-	-
	LAWCrP3R	56	0.519	0.376	0.424	8.7	Р	-	-	-	-	-
	LAWCrP4	67	0.363	0.436	0.409	0.7	P	-	-	-	-	-
	LAWCrP4R	45	0.704	0.437	0.437	22.1	P	-	-	-	-	-
	LAWCrP5	29	0.356	0.733	0.734	0.9	P	-	-	-	-	-
	LAWCrP6	-	-	0.335	0.288	1.4	P	-	-	-	-	-
	LAWCrP7	-	-	0.242	0.178	1.3 1.7*	P	-	-	-	-	-
	LAWCrP8CCC	-	-	0.333*	0.243*		P	-	-	-	-	-
	LAWCrP9CCC	-	-	0.244* 0.147*	0.143* 0.146*	1.3* 1.1*	<u>Р</u> Р	-	-	-	-	-
	LAWCrP10CCC	-	-	0.14/*	0.146*	20.5*	<u>Р</u> Р	-	-	-	-	-
	LAWE3Cr2CCC	-	-					-	-	-	-	-
	LAWE9HCr1CCC	-	-	0.203*	0.228*	7.5*	<u>Р</u> Р	-	-	-	-	-
	LAWE9HCr2CCC	-	-	0.253*	0.245*	10.2*	Р Р	-	-	-	-	-
	LAWE10HCr3CCC	-	-	0.133*	0.143*	3.1*	P F	-	-	-	-	-
	LAWE3H LAWE12	- 48		- 1.201	- 1.06	71.1 81.4	F F	-	-		-	-
	LAWE12 LAWE13	48	0.496 0.531	1.201	0.989	81.4 67.9	F F	-	-	-	-	-
						1		-	-		-	
	LAWE14 LAWE15	43 51	0.424 0.455	1.494 1.138	1.203 1.026	- 53.6	F F	-	-	-	-	-
						53.6		-				
	LAWE16	60 28	0.487	0.829	0.816		F P	-	-	-	-	-
	LAWM57	- 28	0.545	1.316		15.7		-	-	-	-	-
	LAWM58			1.103	0.822	17.3	P	-	-	-	-	-
	LAWM59	57 47	0.484	0.385	0.45	14.8	<u>Р</u> Р	-	-	-	-	-
	LAWM60 LAWM61		0.448	1.184 1.83	0.895	3.3 39.9	<u>Р</u> Р			-	-	-
	LAWM61 LAWM62	-	-	0.751	0.627	12.7	P P	-	-	-	-	-
	LAWM62 LAWM63	40	0.668	1.246	0.027	72.3	F F			-		-
	LAWM64	- 40	-	0.979	0.938	3	P	-	-	-	-	-
	LAWM65	-	-	1.319	1.139	57.6	F	-	-	-	-	-
	LAWM66	31	0.619	1.102	0.784	49.1	P	_	_	_	_	_
	LAWM67	-	0.017	1.348	0.992	28.7	P	-	-	-	-	-
	LAWM68	32	0.49	2.428	1.749	25.8	P	-	-	-	-	-
	LAWM69	-	-	0.795	0.665	31.2	P	-	-	_	-	-
	LAWM70	-	-	1.609	1.305	89.8	F	-	-	-	-	-
	LAWM71	43	0.487	2.194	1.758	108.2	F	-	-	-	-	_
	LAWM72	-	-	1.58	1.315	54.7	F	-	-	-	-	-
	LAWM73	33	0.514	0.994	1.06	52.1	F	-	-	-	-	-
	LAWM74	-	-	0.53	0.572	1.5	P	-	-	-	-	-
	LAWM75	42	0.447	0.562	0.587	0.8	P	-	-	-	-	-
	LAWM76	-	-	1.188	0.978	9.9	P	-	-	-	-	-
	LAWA171	21	0.585	1.315	1.025	- 1	F	-	0.94	-	-	- 1
	LAWA172	19	0.563	0.855	0.805	-	F	-	1.01	1.15	-	-
	LAWA173	24	0.576	0.98	0.93	76.9	F	-	0.93	1	-	-
	LAWA174	32	0.548	0.96	1.12	27.7	Р	-	0.83	-	-	-
504	LAWA175	26	0.572	0.885	1.075	45.8	Р	-	0.96	1	-	-
505	LAWA176	35	0.576	0.43	0.685	16.8	Р	-	0.96	1.01	-	-
506	LAWA177	19	0.637	3.34	2.33	-	F	-	1.02	-	-	-
507	LAWA178	22	0.693	1.5	1.7	-	F	-	1.06	-	-	-
	LAWA179	26	0.678	1.2	1.46	-	F	-	0.98	-	-	-
	LAWA180	33	0.661	1.01	1.47	64.6	F	-	0.87	-	-	-
	LAWA181	28	0.695	1.02	1.375	-	F	-	1.01	-	-	-
	LAWA182	43	0.686	0.58	1.135	-	F	-	0.98	-	-	-
	LAWA183	43	0.428	0.565	0.505	25.4	Р	-	0.7	-	-	-
	LAWA184	52	0.424	0.605	0.615	7.7	Р	-	0.68	-	-	-
-	LAWA185	50	0.428	0.375	0.49	14.2	Р	-	0.73	-	-	-
	LAWA186	58	0.392	0.43	0.535	9.9	Р	-	0.73	-	-	-
	LAWA187	21	0.541	1.71	1.46	25.4	Р	-	0.84	1.09	0.95	-
	LAWA187R	-	-	-	-	36.9	Р	-	-	-	-	-
	LAWA187CCC	-	-	1.03*	0.84*	-	-	-	-	-	-	-
519	LAWA188	25	0.548	1.665	1.305	10.6	Р	-	0.77	1	-	-
520	LAWA189	26	0.576	1.165	1.185	14.9	Р	-	0.76	0.89	-	-

		n	c	PCT Re		VHT Re	esnonse	SO ₂ Sol	ubility and	l Melter S	D. Toleran	ce wt%
Glass #	Glass ID	$\eta_{1150},$ $P^{(a)}$	ϵ_{1150} , S/cm		m ²		1				-	-
	* 1 *** 1 4 0 0	-	0.520	NLB	NL _{Na}	$r_a, g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
521 522	LAWA190 LAWA191	34 28	0.538 0.529	1.3 1.065	1.135 1.13	26.4 18.9	<u>Р</u> Р	-	0.72 0.78	0.86	-	-
	LAWA191 LAWA192	38	0.529	1.005	0.985	27.8	P P	-	0.78	0.95	-	-
	LAWA193	35	0.508	1.375	1.225	22.9	P	-	0.73	0.83	-	-
525	LAWA194	37	0.513	0.935	1.36	22.9	Р	-	0.72	-	-	-
	LAWA195	37	0.643	1.06	1.415	25.3	Р	-	0.64	-	-	-
	LAWA196	49	0.665	0.76	0.955	78.6	F	-	0.76	-	-	-
528 529	LAWA197 LAWB97	50 47	0.599 0.277	0.78	0.975	23.4 19	<u>Р</u> Р	-	0.64	- 1.33	-	-
	LAWB98	38	0.286	0.12	0.175	19	P	-	1.05	-	-	-
	LAWB99	35	0.324	0.12	0.205	14.9	P	-	1.08	1.51	1.5	-
	LAWB100	27	0.3	0.135	0.215	13	Р	-	1.02	1.7	-	-
	LAWB101	36	0.264	0.11	0.205	13.4	Р	-	0.88	-	-	-
	LAWB102	31 39	0.308	0.135	0.225	17.2	<u>Р</u> Р	-	0.87	-	-	-
	LAWB103 LAWB104	28	0.319 0.309	0.135	0.205	6.8 30.1	<u>Р</u> Р	-	0.96	1.58	-	-
	LAWB105	29	0.277	0.26	0.33	3.3	P	-	0.96	-	-	-
538	EWV-G-89B	-	-	1.06	0.95	81.3	F	-	-	-	-	-
539	EWV-G-89B	-	-	-	-	100	F	-	-	-	-	-
	EWV-G-89BCCC	-	-	1.125*	0.85*	25.4*	Р	-	-	-	-	-
541 542	EWV-G-93B EWV-G-93BCCC	-	-	-	-	79.4 24.6*	F P	-	-	-	-	-
	EWV-G-93BCCC EWV-G-108B	-	-	-	-	24.6* 32.1	<u>Р</u> Р	-	-	-	-	-
544	DWV-G-123C	_	-	0.09	0.165	21.9	P	_	-	-	-	-
545	ORPLA1	57	0.719	0.92	0.775	-	F	-	-	-	-	-
546	ORPLA1S4	-	-	-	-	-	F	-	0.48	-	-	-
547	ORPLA2	67	0.677	0.99	0.785	130.2	F	-	-	-	-	-
548	ORPLA2S4 ORPLA3	-	- 0.681	- 0.9	- 0.75	94.7	F F	-	0.42	-	-	-
549 550	ORPLA3 ORPLA3S4	61		- 0.9	0.75	114.7 133.8	F F	-	- 0.41	-	-	-
551	ORPLA4	39	0.697	1.19	1.07	113.8	F	-	-	-	-	-
552	ORPLA4S4	-	-	-	-	101.4	F	-	0.44	-	-	-
553	ORPLA5	128	0.735	0.655	0.745	103.1	F	-	-	-	-	-
554	ORPLA5S4	-	-	-	-	-	F	-	0.34	-	-	-
555 556	ORPLA6 ORPLA6S4	124	0.789	0.575	0.63	90.7 61.9	F F	-	- 0.33	-	-	-
557	ORPLA7	101	0.624	0.655	0.655	67.7	F	-	-	-	-	-
558	ORPLA7S4	-	-	-	-	75.1	F	-	0.28	-	-	-
559	ORPLA8	55	0.753	1.43	1.025	98.7	F	-	-	-	-	-
560	ORPLA8S4	-	-	-	-	-	F	-	0.39	-	-	-
561	ORPLA9	44	0.615	0.895	0.94	56.8	F	-	-	-	-	-
562 563	ORPLA9S4 ORPLA10	47	0.709	0.87	0.965	37.5 15	<u>Р</u> Р	-	0.55	-	-	-
564	ORPLA10S4	-	-	-	-	12.6	P	-	0.49	-	-	_
565	ORPLA11	110	0.645	0.485	0.605	-	F	-	-	-	-	-
566	ORPLA11S4	-	-	-	-	-	F	-	0.29	-	-	-
567	ORPLA12	128	0.579	0.375	0.505	16	P	-	-	-	-	-
568 569	ORPLA12S4 ORPLA13	- 120	- 0.623	- 0.44	- 0.545	18.6 20.2	<u>Р</u> Р	-	0.27	-	-	-
570	ORPLA13 ORPLA13S4	-	-	- 0.44	-	76.7	F F	-	0.3	-	-	-
570	ORPLA14	145	0.623	0.32	0.46	8.5	P	-	-	-	-	-
572	ORPLA14S4	-	-	-	-	0.6	Р	-	0.28	-	-	
573	ORPLA15	65	0.702	0.66	0.68	25.4	Р	-	-	-	-	-
574	ORPLA15S4	-	-	-	-	30.8	P	-	0.27	-	-	-
575 576	ORPLA16 ORPLA16S4	95	0.691	0.75	0.695	107.7 112.2	F F	-	- 0.3	-	-	-
577	ORPLA1654 ORPLA17	- 71	0.599	0.775	- 0.67	74.4	F F	-	- 0.5	-	-	-
578	ORPLA17S4	-	-	-	-	94.7	F	-	0.32	-	-	-
579	ORPLB1	83	0.776	0.605	0.655	-	F	-	-	0.62	-	-
580	ORPLB1S4	-	-	-	-	-	F	-	0.56	-	-	-
581	ORPLB2	77	0.751	0.845	0.77	109.9	F	-	-	0.68	-	-
582 583	ORPLB2S4 ORPLB3	- 65	- 0.709	- 0.55	- 0.575	58.1 38	F P	-	0.58	-	-	-
584	ORPLB3S4	-	-	-	-		F	-	0.54	-	-	-
585	ORPLB4	75	0.644	0.705	0.665	40.7	P	-	-	0.7	0.85	-
		•		•								

PP SCIII NI ₁₀ e.g. m ² /s perior BS ² SS ² PS ² PS ² SS ² SSS ² PS ² <	Glass #	Glass ID	η_{1150} , $P^{(a)}$	ε ₁₁₅₀ ,	PCT Re		VHT Re	esponse	SO ₃ Sol	lubility and	l Melter S	O ₃ Toleran	ce, wt%
580 ORPLASA 0.22 . <t< td=""><td></td><td></td><td>P^(a)</td><td>S/cm</td><td></td><td></td><td>$r_a, g/m^2/d$</td><td>P/F^(b)</td><td>BS^(c)</td><td>SR^(d)</td><td>Bub^(e)</td><td>MT^(f)</td><td>3TS^(g)</td></t<>			P ^(a)	S/cm			$r_a, g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
588 ORPL(1SA - - - - 177 F - 0 0.59 -	586				-	-		Р	-	0.52		-	-
589 ORPIC2 27 0.559 1.12 1.125 F 0.68 591 ORPIC34 1.74 1.28 F 0.68 591 ORPIC34 F 0.63 592 ORPIC44 F 0.63 595 ORPIC54 2.4.7 P 0.56			59	0.782	-	-			-		0.58	-	-
590 ORPLC34 .			-	-			117.7		-	0.59	-	-	-
991 ORPLC3 - - - F -<				0.559			-		-		-	-	-
592 ORPLCS - - - - F - 0.0 - - 593 ORPLCA - - - - F - 0.0 - - 593 ORPLCS 74 0.52 0.85 0.74 - - 0.7 - - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - 0.7 - - - - 0.7 - - - - 0.7 - - - - - - - 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 - - - - - - - - - -			-						-	0.68	-	-	-
993 0RPLC4 - - 1045 103 - F - <					1.74		-			-			-
949 ORPLCS4 - - - - - 0 0 - - 0 0 - - 0 0 - 0 0 - 0 0 0 0 - 0 0 0 0 0 0 0 - - 0 0 0 0 0 - - - 0			-	-	-		-		-			-	-
995 DRPLCS 74 0.532 0.85 0.745 40 P .													
990 DRPLCSA4 - - - 2 2 P - - - 1.1 - 597 DRPLD1S4 - - - - 15.6 P - <td></td>													
997 ORPLD1 33 0.347 0.66 0.72 1.0 P . <td></td> <td></td> <td></td> <td>0.532</td> <td>0.85</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				0.532	0.85								
599 ORPLD2 . 0600 DRPLE				-	-								
599 ORPLD2 . . .													
600 0RPLD2S4 .										0.7			
601 ORPLD3 . . 0 0.42 0.655 10.9 P .	-									-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
601 ORPLE2 22 0.448 0.27 0.55 0.455 0.24 P . 1.63 1.66 1.66 . . 605 ORPLE2 22 0.477 0.355 0.455 0.292 P . 1.34 1.51 . . 605 ORPLE4 19 0.481 0.225 0.422 1.52 . 1.13 1.44 . . 607 ORPLE6 17 0.486 0.215 0.43 4.06 P . 1.23 1.52 .<													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
607 0RPL5 23 0.482 0.365 0.72 104.9 F . 1.18 . . . 608 0RPL5 17 0.485 0.215 0.43 40.6 P . 1.23 1.52 . . 610 0RPLE7 17 0.485 0.215 0.43 40.6 P . 1.23 1.52 . . 610 0RPLE9 22 0.463 0.17 0.373 32.4 P . 1.24 . <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									-				-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-											-	-
611 ORPLE9 22 0.463 0.17 0.375 27.4 P . 1.19 1.44 . . 612 ORPLE10 20 0.492 0.225 0.37 32.4 P . 1.24 . . . 614 ORPLE12 22 0.442 0.155 0.395 30.6 P . 1.29 . </td <td></td> <td>-</td> <td>-</td>												-	-
612 ORPLE10 20 0.492 0.225 0.37 32.4 P - 1.24 - - - 613 ORPLE12 22 0.547 0.25 0.395 30.6 P - 1.29 -	611	ORPLE9	22		0.17		27.4	Р	-	1.19	1.44	-	-
613 ORPLE11 22 0.442 0.155 0.345 31.5 P . 1.29 . . . 614 ORPLE12 22 0.547 0.255 0.395 30.6 P . 1.2 1.55 1.5 . . 615 Q10-G-13AA - - 0.255 0.385 33.2 P . <td>612</td> <td></td> <td>20</td> <td>0.492</td> <td>0.225</td> <td></td> <td>32.4</td> <td>Р</td> <td>-</td> <td>1.24</td> <td>-</td> <td>-</td> <td>-</td>	612		20	0.492	0.225		32.4	Р	-	1.24	-	-	-
615 Q10-G-13AA - - 0.255 0.385 33.2 P - </td <td>613</td> <td>ORPLE11</td> <td>22</td> <td>0.442</td> <td></td> <td>0.345</td> <td>31.5</td> <td>Р</td> <td>-</td> <td>1.29</td> <td>-</td> <td>-</td> <td>-</td>	613	ORPLE11	22	0.442		0.345	31.5	Р	-	1.29	-	-	-
616 R10-G-91E - - - 61.2 F - - - - 617 R10-G-155A - - 0.935 0.83 82.9 F -	614	ORPLE12	22	0.547	0.25	0.395	30.6	Р	-	1.2	1.55	1.5	-
617 R10-G-155A . . 0.935 0.83 82.9 F . <td>615</td> <td>Q10-G-134A</td> <td>-</td> <td>-</td> <td>0.255</td> <td>0.385</td> <td>33.2</td> <td>Р</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	615	Q10-G-134A	-	-	0.255	0.385	33.2	Р	-	-	-	-	-
618 S10-G-45A - - 0.815 0.705 53.1 F - - - - 667 F - - - - 667 F -	616	R10-G-91E	-	-	-			F	-	-	-	-	-
619 S10-G-45AR - - - 66.7 F - - - - 620 S10-G-101B - - 0.675 0.605 32.2 P - <td></td> <td></td> <td>-</td> <td>-</td> <td>0.935</td> <td>0.83</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>			-	-	0.935	0.83			-	-	-	-	-
620 \$10-G-101B - - 0.675 0.605 32.2 P - - - - - 26.5 P - - - - - 26.5 P - <													-
621 S10-G-101BR .	-		-	-					-	-	-	-	-
622 T10-G-16A . . 0.345 0.395 10.9 P . <td></td> <td></td> <td>-</td> <td>-</td> <td>0.675</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>			-	-	0.675				-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										-	-	-	-
624 FWV-G-63B 32 0.388 0.14 0.245 9.7 P $ -$													
625LAWE4H440.4550.630.616.2P <th< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<>	-												-
626FWV-G-108B49*0.4960.530.4552.1P </td <td></td> <td>-</td>													-
627FWV-G-138A540.5080.520.476.7P628GWV-G-36D53*0.5430.4450.44510.2P629GWV-G-65A58*0.4290.6550.534P<													
628 GWV-G-36D 53* 0.543 0.445 0.425 10.2 P - <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td></td<>			-						-			-	-
629GWV-G-65A58* 0.429 0.655 0.53 4P630GWV-G-110A77 0.392 0.74 0.565 8.7 P631GWV-G-133B46 0.397 0.7 0.51 21 P632A3-AN1041.2P633A3-AN1040.6P634LA137SRCCC1.4*P635LAWA13717.9P638LAWCrP110.3410.3231.3P640LAWCrP11CCC7.8*P641LAWCrP1221.1P643LAWCrP12CCC1.1P	-								-			-	-
630GWV-G-110A77 0.392 0.74 0.565 8.7 P631GWV-G-133B46 0.397 0.7 0.51 21 P632A3-AN1041.2P633A3-AN1040.6P634LA137SRCCC1.4*P635LA137SRCCC1.4*P636LAWA13713P637LAWA1371.2P638LAWCrP111.2P640LAWCrP11CCC1.2P	-												-
631 GWV-G-133B 46 0.397 0.7 0.51 21 P - <td>-</td> <td></td>	-												
632 A3-AN104 - - - 1.2 P - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
633 A3-AN104 - - - 0.6 P - <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>	-												_
634 LA137SRCCC - - - 3.8* P -	-												-
635 LA137SRCCC - - - 1.4* P -													
636 LAWA137 - - - 13 P -	-				-				-				-
637 LAWA137 - - - 17.9 P - <t< td=""><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td>-</td></t<>	-		-		-				-		-	-	-
638 LAWCrP11 - - 0.341 0.323 1.3 P -	-									-			-
639 LAWCrP11 - - - 1.2 P - <t< td=""><td>-</td><td></td><td></td><td></td><td>0.341</td><td>0.323</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td></t<>	-				0.341	0.323				-			-
640 LAWCrP11CCC - - 0.333* 0.293* 8.2* P -			-	-					-	-	-	-	-
641 LAWCrP11CCC - - - 7.8* P -	640		-	-	0.333*	0.293*		Р	-	-	-	-	-
643 LAWCrP12 - - - 1.1 P - <t< td=""><td>641</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>Р</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	641		-	-	-	-		Р	-	-	-	-	-
644 LAWCrP12CCC - - 0.334* 0.31* 10.9* P -	642	LAWCrP12	-	-	0.378	0.363	1.2	Р	-	-	-	-	-
645 LAWCrP12CCC - - - 11.8* P -	643	LAWCrP12	-	-	-	-	1.1	Р	-	-	-	-	-
646 LAWCrP6CCC - - 0.269* 0.231* 1.5* P -<	644	LAWCrP12CCC	-	-	0.334*	0.31*	10.9*	Р	-	-	-	-	-
647 LAWCrP6CCC - - - 1.3* P -	645	LAWCrP12CCC	-	-	-	-		Р	-	-	-	-	-
648 LAWCrP7CCC - - 0.217* 0.116* 0.3* P - <td>646</td> <td></td> <td>-</td> <td>-</td> <td>0.269*</td> <td>0.231*</td> <td>1.5*</td> <td>Р</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	646		-	-	0.269*	0.231*	1.5*	Р	-	-	-	-	-
649 LAWCrP7CCC 0.8* P	647		-	-	-	-	1.3*	Р	-	-	-	-	-
	648		-	-	0.217*	0.116*			-	-	-	-	-
650 LAWE10HCr1CCC 0.326* 0.213* 3.8* P			-	-	-	-			-	-	-	-	-
	650	LAWE10HCr1CCC	-	-	0.326*	0.213*	3.8*	Р	-	-	-	-	-

	Glass #	Glass ID	η_{1150} ,	ε ₁₁₅₀ ,	PCT Re		VHT Re	esponse	SO ₃ Sol	ubility and	d Melter S	O ₃ Toleran	ce, wt%
652 LAWE90C1 . <th< td=""><td></td><td></td><td>P^(a)</td><td>S/cm</td><td>NL_B</td><td>NL_{Na}</td><td>$r_a, g/m^2/d$</td><td>P/F^(b)</td><td>BS^(c)</td><td>SR^(d)</td><td>Bub^(e)</td><td>MT^(f)</td><td>3TS^(g)</td></th<>			P ^(a)	S/cm	NL _B	NL _{Na}	$r_a, g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
653 LAWE9HC1 - - - 2.4 P - - - 654 LAWE9HC2 - - - 7.8 P - - - 655 LAWE9HC2 - - - - 7.8 P -	651	LAWE10HCr1CCC	-	-	-	-	1.8*	Р	-	-	-	-	-
654 LAWEMIC2 - - 0.311 0.319 1.1 P - - - 655 LAWMCCC - 0.414* 0.318* 1.3.4* P - <td< td=""><td></td><td></td><td>-</td><td>-</td><td>0.165</td><td>0.211</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></td<>			-	-	0.165	0.211	-		-	-	-	-	-
655 LAWEMICC - - - 7.8 P - - - 656 LAWMCCC - - 0.042* 0.18* 1.4* P -			-	-	-	-			-	-	-	-	-
656 JAWM2CC - - 0.414* 0.318* P -			-	-	0.311	0.319			-	-	-	-	-
687 LAWMCCC - - - 15.5* P - - - 658 LAWMTCCC - 0.062* 0.25* 1.4* P - - - 660 LAWMSRICCC - 0.25* 0.25* 8.4* P - - - 661 LAWMSRICCC - 0.26* 0.25* 8.2* P - - - - 663 LAWMSGCC - 0.26* 0.23* 7.1* P -			-	-	-	-			-	-	-	-	-
658 LAWNTCCC . . .			-	-	0.414*	0.318*			-	-	-	-	-
659 LAWM/TCC .				-	-	-			-	-	-	-	-
					0.062*								-
661 LAWM2SRICCC . <					-						-		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.295*	0.254*							-
663 LAWM39CCC . . . 8.2" P 664 LAWM41CCC . . 0.232" 0.28" P 665 LAWM41CCC . . 0.232" 0.28" P . <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>					-	-							-
666 LAWM41CCC . . . <td></td> <td>-</td>													-
665 LAWM41CCC . . . 7.8* P . . . <td></td> <td>-</td>													-
666 LAWM43CCC . . . <td></td> <td></td> <td></td> <td></td> <td>0.20/*</td> <td>0.239*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>					0.20/*	0.239*							-
667 LAWM43CCC - - - 614 F - - - 668 LAWE18 - - - 579 F -					- 0.020*	-							-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	667	LAWM43CCC											-
669 LAWE18 - - - S79 F - 671 LAW													-
670 LAWE19 .													-
671 LAWE19 19.3 P . . . 672 LAWE19 . . . 12 P . . . 673 LAWE20 674 LAWE21 . <td></td> <td>-</td>													-
672 LAWE19 12 P 673 LAWE20 .													-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													-
674 LAWE20 .													-
675 LAWE21 . 680 LAWE2													-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_		_				-		-	_	-
678 LAWE22 .													-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-						-		-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	-	-	-			-	-	-	-	-
681 LAWE24 - - - 64.6 F - - - 682 LAWE25 - - - 45.1 P - - - - 684 LAWE25 - - - 76.6 F - - - - 684 LAWE26 - - - 44.3 P - - - - 686 LAWE26 - - - - 44.3 P -			-	-	-	-			-	-	-	-	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	-	-	-		F	-	-	-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	682	LAWE24	-	-	-	-	45.1	Р	-	-	-	-	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	683	LAWE25	-	-	-	-	45.1	Р	-	-	-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	684	LAWE25	-	-	-	-	76.6	F	-	-	-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	685	LAWE26	-	-	-	-	44.3	Р	-	-	-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	686	LAWE26	-	-	-	-	56.8	F	-	-	-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				0.719	0.555	0.58		Р	-		-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	688	ORPLA19		0.677	0.66		22.3	Р	-		-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			54	0.681					-		-	0.7	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	-					-		-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-	-					-		-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		-	-					-		-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		-	-					-		-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$													-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									-				-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													-
699 ORPLD8 29 0.487 0.69 0.79 12.8 P - 0.88 - - 700 ORPLD9 23 0.542 0.755 0.84 41.6 P - 0.95 - - 701 ORPLF1 40 0.249 0.08 0.26 4.7 P - 1.26 - - 702 ORPLF2 34 0.269 0.08 0.325 18.6 P - 1.23 - - 703 ORPLF3 33 0.269 0.14 0.305 14.5 P - 1.24 - - 704 ORPLF4 27 0.299 0.15 0.245 21.3 P - 1.32 - - 706 ORPLF4(Rep-K3) - - - - - - - - - - - - - - - - - - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>													-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													-
701 ORPLF1 40 0.249 0.08 0.26 4.7 P - 1.26 - - 702 ORPLF2 34 0.269 0.08 0.325 18.6 P - 1.23 - - 703 ORPLF3 33 0.269 0.14 0.305 14.5 P - 1.24 - - 704 ORPLF4 27 0.299 0.15 0.245 21.3 P - 1.32 - - 705 ORPLF4(Rep-K3) -													-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													-
703 ORPLF3 33 0.269 0.14 0.305 14.5 P - 1.24 - - 704 ORPLF4 27 0.299 0.15 0.245 21.3 P - 1.32 - - 705 ORPLF4(Rep-K3) -									-				-
704 ORPLF4 27 0.299 0.15 0.245 21.3 P - 1.32 - - 705 ORPLF4(Rep-K3) -									-				-
705 ORPLF4(Rep-K3) -													-
706 ORPLF5 - - 0.16 0.595 15.2 P - 1.19 - - 707 ORPLF6 - - 0.165 0.345 16.7 P - 1.28 - - 708 ORPLF7 21 0.42 0.165 0.355 18.1 P - 1.44 - 1.5 709 ORPLF7(Rep-K3) - <td></td> <td>-</td> <td></td> <td>-</td>		-											-
707 ORPLF6 - - 0.165 0.345 16.7 P - 1.28 - - 708 ORPLF7 21 0.42 0.165 0.355 18.1 P - 1.44 - 1.5 709 ORPLF7(Rep-K3) - </td <td>-</td> <td>•</td> <td></td> <td>-</td>	-	•											-
708 ORPLF7 21 0.42 0.165 0.355 18.1 P - 1.44 - 1.5 709 ORPLF7(Rep-K3) - <td></td>													
709 ORPLF7(Rep-K3) -													-
710 ORPLF8 18 0.442 0.185 0.325 10.5 P - 1.45 - - 711 ORPLF9 29 0.341 0.31 0.37 30.1 P - 1.4 - - 712 ORPLF10 24 0.314 0.18 0.46 13.5 P - 1.41 - - 713 ORPLF10(Rep-K3) - - - - - - - -													-
711 ORPLF9 29 0.341 0.31 0.37 30.1 P - 1.4 - - 712 ORPLF10 24 0.314 0.18 0.46 13.5 P - 1.41 - - 713 ORPLF10(Rep-K3) -<													-
712 ORPLF10 24 0.314 0.18 0.46 13.5 P - 1.41 - - 713 ORPLF10(Rep-K3) -													
713 ORPLF10(Rep-K3)													-
													-
		ORPLF11			0.165	0.29	26.1	Р		1.35			-
714 ORI LI 11 0.105 0.25 20.1 1 1.05 715 ORPLF12 27 0.335 0.175 0.31 24.5 P - 1.33 - -													-

Glass #	Glass ID	η ₁₁₅₀ ,	ε ₁₁₅₀ ,	PCT Re	esponse, m ²	VHT R	esponse	SO ₃ Sol	lubility and	d Melter S	O ₃ Toleran	ce, wt%
Olass #		P ^(a)	S/cm	NL _B	NL _{Na}	r_a , $g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
716	ORPLF13	26	0.324	0.1	0.25	11.9	P	-	1.36	- Bub	- IVI I	-
717	ORPLF14	26	0.369	0.13	0.275	10.4	P	-	1.41	-	-	-
718	ORPLG1	132	0.312	0.235	0.32	1.9	Р	-	0.36	-	-	-
719	ORPLG2	114	0.324	0.81	0.835	2.4	Р	-	0.38	-	-	-
720	ORPLG3	-	-	0.46	0.645	11.6	Р	-	0.4	-	-	-
721	ORPLG4	101	0.377	0.485	0.63	20.4	Р	-	0.43	-	-	-
722	ORPLG5	99	0.38	0.285	0.43	4	Р	-	0.4	-	-	-
723	ORPLG6	66	0.394	0.3	0.44	11.3	Р	-	0.45	-	-	-
724	ORPLG7	66	0.388	0.305	0.46	16.5	Р	-	0.44	-	-	-
725	ORPLG8	57	0.459	0.295	0.455	34.8	P	-	0.46	-	-	-
726	ORPLG9	51	0.539	0.51	0.59	45.3	Р	-	0.48	0.65	-	-
727	ORPLG9CrS4	-	-	-	-	-	-	-	- 0.49	0.55*	-	-
728 729	ORPLG10 ORPLG11	43 52	0.535	0.475	0.565	87.8 8.6	F P	-	0.49	-	-	-
729	ORPLG12	53	0.437	0.33	0.765	8.0 91.1	F	-	0.48	-	-	-
730	Y10-G-146C	-	-	0.743	0.765	15.5	<u>Р</u>	-	-	-	-	-
731	Z10-G-60C	-	-	0.625	0.79	-	-	-	-	-	-	-
732	10A-G-53C	-	-	0.49	0.565	27.2	P	_	-	-	-	_
734	Z10-G-122B	-	-	0.205	0.295	23.1	P	-	-	-	-	-
735	Z10-G-153B	-	-	0.205	0.315	25.8	P	-	-	-	-	-
736	10A-G-43B	-	-	0.65	0.78	-	F	-	-	-	-	-
737	ORPLA26	-	-	0.92	0.775	50.7	F	-	0.88	-	-	-
738	ORPLA27	-	-	2.745	1.975	144.1	F	-	0.79	-	-	-
739	ORPLA28	-	-	4.66*	3.5*	111.7	F	-	0.62*	-	-	-
740	ORPLA29	-	-	3.475*	2.775*	69.9	F	-	0.44*	-	-	-
741	ORPLA30	-	-	2.86	1.84	145.8	F	-	0.72	-	-	-
742	ORPLA31	-	-	7.76*	5.335*	150.2	F	-	0.62*	-	-	-
743	ORPLA32	-	-	5.84*	4.11*	108.4	F	-	0.56*	-	-	-
744	ORPLA33	-	-	0.965	0.81	0.6	Р	-	0.68	-	-	-
745	ORPLA33-1	58	0.541	0.67	0.605	0.9	Р	-	0.67	-	-	-
746	ORPLA34	-	-	1.3	1.03	11.4	P	-	0.65	-	-	-
747	ORPLA35	-	-	2.75	2.015	117.7	F	-	0.7	-	-	-
748 749	ORPLA36 ORPLA37	-	-	1.425 2.295	1.095 1.59	6.3 13.8	<u>Р</u> Р	-	0.71	-	-	-
750	ORPLA38	-	-	0.83	0.74	9.9	P	-	0.08	-	-	-
751	ORPLA38-1	56	0.641	0.83	0.675	7.8	P	-	0.72	_	0.8	-
752	ORPLG13	-	-	4.86	3.325	136.5	F	-	0.42	-	-	-
753	ORPLG14	-	-	5.155	3.51	125.7	F	-	0.42	-	-	-
754	ORPLG15	-	-	5.415	3.675	119.4	F	-	0.44	-	-	-
755	ORPLG16	-	-	2.715	1.995	-	F	-	0.45	-	-	-
756	ORPLG17	-	-	2.285	1.66	-	F	-	0.48	-	-	-
757	ORPLG18	-	-	2.465	1.78	-	F	-	0.48	-	-	-
758	ORPLG19	-	-	3.48	2.405	-	F	-	0.48	-	-	-
759	ORPLG20	-	-	0.615	0.735	3.4	Р	-	0.49	-	-	-
760	ORPLG21	67	0.496	0.695	0.765	45.8	Р	-	0.46	-	-	-
761	ORPLG22	69	0.499	0.47	0.72	3.5	P	-	0.49	-	-	-
762	ORPLG23	72	0.51	0.455	0.705	5.7	P	-	0.47	-	-	
763	ORPLG24	56	0.538	0.69	0.845	71.6	F	-	0.52	-	-	-
764	ORPLG25 ORPLG26	63 62	0.518	0.695	0.8	79.7 3.5	F P	-	0.52 0.46	-	-	-
765 766	ORPLG26 ORPLG27	62 58	0.571	0.635	0.765	3.5	Р Р	-	0.46	- 0.58	- 0.5	-
760	J10-G-24B	- 38	-	0.875	0.825	- 3.8	- P	-	- 0.49	- 0.58	- 0.5	-
768	I10-G-135A	-	-	0.873	1.02	- 72.7	F	-	-	-	-	-
769	LORPM1	71.97	0.475	0.235	0.185	54.9	F	_	0.73	-	-	_
770	LORPM2R1	51.71	0.167	0.139	0.192	3.8	P	-	0.33	-	-	-
771	LORPM3	19.84	0.656	0.784	0.796	66.5	F	-	0.71	-	-	-
772	LORPM4R1	29.83	0.255	0.943	0.83	76	F	-	0.82	-	-	-
773	LORPM5	154.81	0.328	0.132	0.1	10.7	Р	-	0.56	-	-	_
774	LORPM6	22.15	0.184	0.839	0.882	-	Р	-	0.49	-	-	-
775	LORPM7R1	63.36	0.397	0.226	0.266	11	Р	-	0.34	-	-	-
	LORPM8R1	-	0.205	0.176	0.152	35.7	Р	-	0.76	-	-	<u> </u>
777	LORPM9	97.29	0.658	0.844	0.842	43.1	Р	-	0.31	-	-	-
778	LORPM10R1	7.32	0.359	1.787	2.047	13.3	Р	-	1.47	-	-	-
779	LORPM11	135.34	0.398	0.735	0.663	0.1	P	-	0.15	-	-	
780	LORPM12R1	72.63	0.209	0.445	0.369	0.8	Р	-	0.49	-	-	-

		η ₁₁₅₀ ,	ε ₁₁₅₀ ,	PCT Re		VHT Re	esponse	SO ₃ Sol	lubility and	l Melter S	D₃ Toleran	ce, wt%
Glass #	Glass ID	P ^(a)	S/cm	g/1			1	-	-	-	-	
701	LORPM13		0.217	NL _B 0.328	NL _{Na} 0.252	$r_{a}, g/m^{2}/d$ 51.5	P/F ^(b) F	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
781 782	LORPM15 LORPM14R1	- 11.15	0.317 0.477	0.328	0.232	9.4	г Р	-	0.36 0.75	-	-	-
782	LORPM15	21.79	0.368	0.681	0.7	0.5	P	-	0.73	-	_	_
784	LORPM16R1	32.95	0.367	0.281	0.248	11.8	P	-	0.57	-	-	-
785	LORPM17R1	50.47	0.443	0.538	0.549	-	F	-	0.6	-	-	-
786	LORPM18	80.8	0.32	0.205	0.253	0.4	Р	-	0.36	-	-	-
787	LORPM19R1	37.34	0.385	0.325	0.313	0.4	Р	-	0.52	-	-	-
788	LORPM20R1	33.13	0.465	0.39	0.401	85.8	F	-	0.6	-	-	-
789 790	LORPM21 LORPM22	26.93 16.99	0.257 0.549	0.194 0.184	0.34	2.3 1.3	<u>Р</u> Р	-	0.42	-	-	-
790	LORPM22 LORPM23	10.99	0.349	0.184	0.897	8.8	P P	-	0.48	-	-	-
792	LORPM24	-	0.223	0.259	0.353	1.6	P	-	0.28	-	-	-
793	LORPM25	45.44	0.439	0.74	0.588	60.7	F	-	0.34	-	-	-
794	LORPM26	-	0.133	0.142	0.211	9	Р	-	0.38	-	-	-
795	LORPM27	56.69	0.319	0.292	0.311	3.2	Р	-	0.58	-	-	-
796	LORPM28	24.96	0.571	-	-	-	-	-	-	-	-	-
797	LORPM28R1	-	-	3.845	2.094	19.5	Р	-	0.6	-	-	-
798 799	LORPM28R1 LORPM29	-	- 0.4	3.709 0.418	2.124 0.37	- 3.4	- P	-	- 0.55	-	-	-
800	LORPM29 LORPM30	- 13.84	0.4	0.418	0.37	3.4 0.2	Р Р	-	0.55	-	-	-
800	LORPM30	-	0.230	0.474	0.039	44.6	P P	-	0.47	-	-	-
802	LORPM32	25.16	0.342	0.576	0.521	56.4	F	-	0.6	-	-	-
803	LORPM33	54.98	0.296	0.261	0.208	2.6	P	-	0.31	-	-	-
804	LORPM34	21.22	0.348	0.501	0.436	1.2	Р	-	0.6	-	-	-
805	LORPM35	30.4	0.476	0.63	0.673	37.1	Р	-	0.4	-	-	-
806	LORPM36	20.66	0.396	0.396	0.375	0.5	P	-	0.43	-	-	-
807	LORPM37 LORPM38	17.32	0.385	0.52 0.371	0.479	60.4 0.2	F P	-	0.52	-	-	-
808 809	LORPM38 LORPM39	56.26 10.1	0.231	2.672	1.99	35.2	Р Р	-	0.42	-	-	-
810	LORPM40	45.61	0.00	0.302	0.309	1.1	P	-	0.31	_	-	_
811	ORPLA39	-	-	-	-	-	-	-	0.74	-	-	-
812	ORPLA40	-	-	-	-	-	-	-	0.73	-	-	-
813	ORPLA41	-	-	-	-	-	-	-	0.66	-	-	-
814	ORPLA42	-	-	-	-	-	-	-	0.67	-	-	-
815	ORPLA43	89	0.595	0.295	0.475	2.4	Р	-	0.52	-	-	-
816 817	ORPLA43R1 ORPLA43R1	-	-	-	-	-	-	-	-	-	-	-
817	ORPLA43K1	-	-	-	-	- 11.1	P	-	0.63	-	-	-
819	ORPLA45	-	-	-	-	-	-	-	0.63	-	-	-
820	ORPLA46	67	0.595	-	-	1.9	Р	-	0.63	-	-	-
821	ORPLA46	-	-	-	-	-	-	-	-	-	-	-
822	ORPLA47	-	-	-	-	30.9	Р	-	0.66	-	-	-
823	ORPLA48	63	0.589	0.35	0.555	34	P	-	0.6	-	-	-
824	ORPLA49 ORPLA50	-	-	-	-	26.3 38.1	<u>Р</u> Р	-	0.63	-	-	-
825 826	ORPLA50 ORPLA51	- 70	0.662	0.37	- 0.54	2.1	<u>Р</u> Р	-	0.72	-	-	-
820	ORPLA52	70	0.638	0.37	0.585	37.7	P	-	0.59	-	-	_
828	ORPLA53	69	0.634	0.245	0.445	17.6	P	-	0.62	-	-	-
829	ORPLA54	74	0.63	0.42	0.575	42.6	Р	-	0.64	-	-	-
830	ORPLA55	104	0.707	0.36	0.55	19	Р	-	0.57	-	-	-
831	ORPLA56	93	0.556	0.47	0.63	104.7	F	-	0.58	-	-	-
832	ORPLA57	85	0.585	0.215	0.5	74.6	F	-	0.63	-	-	-
833 834	ORPLA58 ORPLA20R1	- 90	0.553	0.305	0.495	- 24.8	P -	-	0.63	-	-	-
834	ORLEC1	- 55	0.523	- 0.49	0.525	26.2	- P	-	0.27	-	-	-
835	ORLEC2	69	0.523	0.49	0.325	52.2	F	-	0.27	-	-	-
837	ORLEC3	73	0.475	0.41	0.415	33.3	P	-	0.78	-	-	-
838	ORLEC4	79	0.438	0.315	0.33	26.9	Р	-	0.67	-	-	-
839	ORLEC5	78	0.393	0.31	0.32	2.7	Р	-	0.76	-	-	-
840	ORLEC6	63	0.381	0.3	0.32	0.7	Р	-	0.77	-	-	-
841	ORLEC7	35	0.413	0.3	0.375	21.7	P	-	0.95	-	-	-
	ORLEC8	25	0.421	0.3	0.39	25.5	Р	-	1.06	-	-	-
842	ODIECO	01	0.202	0.207	0.265	20.0	D		1 0 1			
842 843 844	ORLEC9 ORLEC10	21 57	0.393 0.532	0.285	0.365	20.8 1.3	<u>Р</u> Р	-	1.21 0.33	-	-	-

		~	_	PCT Re		VHT Re	sponso	SO So	lubility on	l Melter S) Toleran	ce wt%
Glass #	Glass ID	η_{1150} , $P^{(a)}$	ε ₁₁₅₀ , S/cm	g/ı	m ²			303 30	•	i Mener So	-	ce, w170
		Г		NLB	NL _{Na}	$r_a, g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
846	ORLEC12	60	0.431	0.635	0.605	41.1	Р	-	0.28	-	-	-
847 848	ORLEC13 ORLEC14	64 66	0.561 0.567	0.42 0.475	0.475	4.6 1.6	<u>Р</u> Р	-	0.43	- 0.68	-	-
849	ORLEC14 ORLEC15	64	0.579	0.473	0.48	2.5	P	-	0.01	-	-	-
850	ORLEC16	77	0.531	0.435	0.435	20.9	P	-	0.77	0.73	-	-
851	ORLEC17	82	0.459	0.425	0.415	38.4	Р	-	0.77	-	-	-
852	ORLEC18	79	0.443	0.36	0.38	23.6	Р	-	0.76	-	-	-
853	ORLEC19	76	0.35	0.33	0.365	17.9	P	-	0.79	0.81	-	-
854 855	ORLEC20 ORLEC21	67 41	0.36 0.39	0.3	0.365	22.1 33.9	<u>Р</u> Р	-	0.82	-	-	-
856	ORLEC21 ORLEC22	34	0.393	0.31	0.4	35.5	P	-	1.14	- 1.41	-	-
857	ORLEC23	31	0.397	0.265	0.36	40.7	P	-	1.25	-	-	-
858	ORLEC24	65	0.504	0.46	0.47	2.3	Р	-	0.61	-	-	-
859	ORLEC25	61	0.448	0.81	0.715	74.4	F	-	0.57	-	-	-
860	ORLEC25	-	-	-	-	78.8	F	-	-	-	-	-
861 862	ORLEC25 ORLEC26	- 62	- 0.514	- 0.365	- 0.445	75.7 0.6	F P	-	- 0.45	- 0.59	-	-
862	ORLEC26 ORLEC27	62	0.514	0.365	0.445	38.8	Р Р	-	0.43	0.59	-	-
864	ORLEC27	65	0.431	0.08	0.51	6.5	P	-	0.43	0.51	-	-
865	OWV-G-144E	51	0.455	0.84	0.61	21.9	P	-	-	-	-	-
866	OWV-G-144E	-	-	-	-	27.8	Р	-	-	-	-	-
867	OWV-G-109B	56	0.455	0.615	0.515	1.7	Р	-	-	-	-	-
868	OWV-G-109B	-	-	-	-	0.9	P	-	-	-	-	-
869 870	PWV-G-43E PWV-G-43E	- 50	0.442	1.39	0.945	71.7 48.5	F P	-	-	-	-	-
870	PWV-G-93A	55	0.461	0.765	0.585	2.5	P	_	_	-	_	_
872	PWV-G-93A	-	-	-	-	1.5	P	-	-	-	-	-
873	ORLEC29	70	0.452	0.555	0.44	38.1	Р	-	0.74	0.8	-	-
874	ORLEC30	65	0.453	0.51	0.42	39.4	Р	-	0.8	-	-	-
875	ORLEC31	77 68	0.413	0.435	0.395	20.4 16.9	P	-	0.8	0.91	-	-
876 877	ORLEC32 ORLEC33	58	0.384 0.501	0.39 0.74	0.385	28.8	<u>Р</u> Р	-	0.89	- 0.86	-	-
878	ORLEC34	55	0.477	0.9	0.68	23.3	P	_	0.85	0.80	-	-
879	ORLEC35	56	0.389	0.755	0.62	28.7	Р	-	0.82	0.98	-	-
880	ORLEC36	58	0.352	0.515	0.46	10.5	Р	-	0.86	-	-	-
881	ORLEC37	38	0.433	0.875	0.755	34.9	Р	-	1.01	1.22	-	-
882	ORLEC38	32	0.472	-	-	42.6	<u>Р</u> Р	-	1.15	1.29	-	-
883 884	ORLEC39 ORLEC40	53 34	0.344 0.405	0.39	0.375 0.385	24.7 29.4	Р Р	-	0.87	-	-	-
885	ORLEC40 ORLEC41	26	0.389	0.34	0.38	38.5	P	-	1.1	-	-	-
886	ORLEC42	26	0.377	0.31	0.35	27.8	Р	-	1.28	-	-	-
887	QWV-G-107B	59	0.561	0.425	0.49	1.1	Р	-	-	-	-	-
888	PWV-G-130C	67	0.546	0.49	0.445	0.5	Р	-	-	-	-	-
889 890	PWV-G-130C OWV-G-29C	- 71	- 0.414	- 0.365	- 0.37	1.8 12.3	<u>Р</u> Р	-	-	-	-	-
890	QWV-G-29C OWV-G-75B	32	0.414	0.303	0.37	33.3	P P	-	-	-	-	-
892	ORLEC43	44	0.434	0.875	0.745	35.3	P	-	1	-	-	-
893	ORLEC44	36	0.432	0.49	0.52	30	Р	-	1.03	1.25	-	-
894	ORLEC45	31	0.464	0.505	0.465	28.9	Р	-	1.15	-	-	-
895	ORLEC46	27	0.456	0.345	0.405	26.6	P	-	1.13	1.44	-	-
896 897	ORLEC47 ORLEC48R	25 24	0.422 0.423	0.35 0.275	0.38	47.3 45.8	P P	-	1.28 1.3	- 1.61	-	-
897	ORLEC48K ORLEC49	55	0.423	0.275	0.435	45.8	<u>Р</u> Р	-	0.45	-	-	-
899	ORLEC49R	-	-	-	-	-	-	-	-	-	-	-
900	ORLEC50	54	0.595	0.795	0.58	2.1	Р	-	0.62	-	-	-
901	ORLEC51	47	0.607	0.87	0.725	2.2	Р	-	0.71	-	-	-
902	ORLEC52	47	0.602	0.845	0.71	17.1	P	-	0.77	-	-	-
903	RWV-G-9C	58	0.553	0.72	0.525	24.5	P	-	-	-	-	-
904 905	RWV-G-48D RWV-G-79C	50 37	0.487 0.484	0.97 0.695	0.735	22.2 31.4	<u>Р</u> Р	-	-	-	-	-
905	RWV-G-120D	27	0.451	0.095	0.54	23.7	P	-	-	-	-	-
907	SWV-G-17A	25	0.403	0.315	0.395	30.5	P	-	-	-	-	-
908	SWV-G-17A	-	-	-	-	28.3	Р	-	-	-	-	-
909	AP105DLAW1	95	0.463	-	-	11.8	P	-	0.48	-	-	-
910	AP105DLAW2	76	0.578	-	-	16.6	Р	-	0.54	-	-	-

Glass #	Glass ID	η ₁₁₅₀ ,	ε ₁₁₅₀ ,	PCT Re	esponse, m ²	VHT R	esponse	SO ₃ Sol	ubility and	l Melter S	O ₃ Toleran	ce, wt%
01035 #		P ^(a)	S/cm	NLB	NL _{Na}	r_a , $g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
911	AP105DLAW3	68	0.519	0.64	0.5	24.3	P	-	0.59	-	-	-
912	AP105DLAW4	57	0.558	-	-	28.2	P	-	0.57	-	-	-
913	AP105DLAW5	77	0.568	0.47	0.46	24.1	Р	-	0.59	-	-	-
914	AP105DLAW6	64	0.576	0.585	0.52	30.9	Р	-	0.6	-	-	-
915	AP105DLAW7	80	0.561	0.445	0.445	23.8	Р	-	0.65	-	-	-
916	AP105DLAW8	69	0.575	0.52	0.5	32.3	Р	-	0.59	-	-	-
917	AP105DLAW9	-	-	-	-	-	-	-	0.58	-	-	-
918 919	AP105DLAW10 AP105DLAW11	- 53	0.563	0.695	- 0.55	- 27.3	- P	-	0.59	-	-	-
919	WDFL1	58	0.365	0.693	0.33	14	Р Р	-	0.45	-	-	-
921	WDFL1H	47	0.552	0.77	0.62	12.3	P	_	0.5	-	_	_
922	WDFL1+15%	43	0.574	0.865	0.68	19	P	-	0.48	-	-	-
923	WDFL1-15%	86	0.343	-	-	0.5	Р	-	0.33	-	-	-
924	WDFL2	38	0.386	0.29	0.31	12.2	Р	-	0.58	-	-	-
925	WDFL2H	32	0.392	-	-	2.4	Р	-	0.64	-	-	-
926	WDFL2+15%	29	0.42	0.405	0.41	13.3	Р	-	0.67	-	-	-
927	WDFL2-15%	50	0.287	-	-	2.1	P	-	0.51	-	-	-
928 929	New-IL-456 New-IL-456CCC	22.66	0.359	0.25 0.254*	0.451 0.382*	19.2	Р	-	-	-	-	1.949
929	New-IL-456CCC New-IL-1721	- 25.45	0.398	1.276	1.091	- 95.6	- F	-	-	-	-	1.647
930	New-IL-1721 New-IL-1721CCC	-	-	0.8*	0.701*	- 95.0	<u>г</u> -	-	-	-	-	-
932	New-IL-1721(PNNL)	-	-	-	-	-	-	-	-	-	-	1.716
933	New-IL-5253	23.04	0.373	0.8	0.725	10.3	Р	-	-	-	-	1.459
934	New-IL-5253CCC	-	-	1.105*	0.904*	-	-	-	-	-	-	-
935	New-IL-5255	13.93	0.5	6.597	5.12	95.2	F	-	-	-	-	1.584
936	New-IL-5255CCC	-	-	6.286*	4.504*	-	-	-	-	-	-	-
937	New-IL-42295	21.78	0.457	9.727	6.598	60	F	-	-	-	-	1.639
938	New-IL-42295CCC	-	-	8.15*	5.815*	-	-	-	-	-	-	-
939	New-IL-70316	20.61	0.389	0.313	0.674	66.6	F	-	-	-	-	1.602
940 941	New-IL-70316CCC New-IL-87749	20.29	- 0.414	0.301*	0.633*	- 19.1	- P	-	-	-	-	1.633
941	New-IL-87749CCC	-	-	0.229	0.434*	-	-	-	-	-	-	-
943	New-IL-93907	48.47	0.342	0.214	0.26	37.9	Р	-	-	-	-	1.134
944	New-IL-93907CCC	-	-	0.223*	0.233*	-	-	-	-	-	-	-
945	New-IL-94020	61.98	0	0.249	0.334	16.6	Р	-	-	-	-	1.081
946	New-IL-94020CCC	-	-	0.204*	0.282*	-	-	-	-	-	-	-
947	New-IL-103151	29.43	0.46	1.055	1.013	287.7	F	-	-	-	-	1.48
948	New-IL-103151CCC	-	-	0.844*	0.944*	-	-	-	-	-	-	-
949	New-IL-151542	24.23	0.3	0.317	0.475	8	Р	-	-	-	-	1.664
950 951	New-IL-151542CCC New-IL-166697	- 24.64	- 0.486	0.336*	0.469*	- 80.8	- F	-	-	-	-	- 1.474
951	New-IL-166697CCC	- 24.04	-	0.4	0.448		- -	-	-	-	-	-
953	New-IL-166731	26.19	0.452	0.406	0.502	165.4	F	-	-	-	-	1.462
954	New-IL-166731CCC	-	-	2.351*	1.457*	-	-	-	-	-	-	-
955	New-OL-8445	28.21	0.156	0.265	0.319	2	Р	-	-	-	-	1.459
956	New-OL-8445CCC	-	-	0.208*	0.248*	-	-	-	-	-	-	-
957	New-OL-8788Mod	259.69	0.185	0.156	0.202	1.4	Р	-	-	-	-	0.602
958	New-OL-8788ModCCC	-	-	0.261*	0.211*	-	-	-	-	-	-	-
959	New-OL-14844	4.7	0.544	3.805	3.687	2.9	Р	-	-	-	-	1.403*
960	New-OL-14844CCC	-	-	3.499*	3.394*	-	- F	-	-	-	-	-
961 962	New-OL-15493 New-OL-15493CCC	- 11.55	0.566	0.476 44.793*	1.617 20.679*	167	- F	-	-	-	-	2.138
962	New-OL-17130	15.4	0.488	11.385	8.464	262.5	F	-	-	-	-	2.379
964	New-OL-17130CCC	-	-	10.719*	8.17*	-	-	-	-	-	-	-
965	New-OL-45748	27.88	0.377	0.113	0.201	7.4	Р	-	-	-	-	1.637
966	New-OL-45748CCC	-	-	0.481*	0.184*	-	-	-	-	-	-	-
967	New-OL-54017	52.72	0.199	0.181	0.258	0.3	Р	-	-	-	-	1.331
968	New-OL-54017CCC	-	-	0.101*	0.226*	-	-	-	-	-	-	-
969	New-OL-57284	76.04	0.151	0.854	0.778	283.9	F	-	-	-	-	0.916
970	New-OL-57284CCC	-	-	1.113*	0.904*	-	- D	-	-	-	-	-
971 972	New-OL-62380	16.91	0.156	0.165 0.126*	0.251 0.227*	0.1	Р	-	-	-	-	1.532
972	New-OL-62380CCC New-OL-62909Mod	- 43.78	- 0.246	0.126*	0.227*	- 3.9	- P	-	-	-	-	1.265
973	New-OL-62909ModCCC		-	0.132*	0.303		-	-	-	-	-	-
975	New-OL-65959Mod	14.3	0.472	1.67	1.218	262.2	F	-	-	-	-	1.68
				/			-					

Glass #	Glass ID	η ₁₁₅₀ ,	ε ₁₁₅₀ ,	PCT Re		VHT Re	esponse	SO ₃ Sol	ubility and	l Melter S	D ₃ Toleran	.ce, wt%
Glubb II		P ^(a)	S/cm	NLB	NL _{Na}	$r_a, g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
976	New-OL-65959ModCCC	-	-	23.234*	9.191*	-	-	-	-	-	-	-
977	New-OL-80309	8.14	0.434	11.52	7.563	287.7	F	-	-	-	-	1.657
978	New-OL-80309CCC	-	-	5.587*	3.562*	-	-	-	-	-	-	-
979 980	New-OL-90780 New-OL-90780CCC	21.39	0.532	2.419 14.07*	1.465 5.992*	176.6	F	-	-	-	-	1.506
980	New-OL-100210	42.2	- 0.444	1.033	<u>3.992</u> * 1.41	1529.1	- F	-	-	-	-	1.478
982	New-OL-100210CCC	+2.2	-	0.98*	1.232*	-	-	-	-	-	_	-
983	New-OL-108249Mod	16.39	0.403	0.164	0.42	7.3	Р	-	-	-	-	1.295
984	New-OL-108249ModCCC	-	-	8.055*	2.279*	-	-	-	-	-	-	-
985	New-OL-108249Mod(PNNL)	-	-	-	-	-	-	-	-	-	-	1.267
986	New-OL-116208Mod	6.91	0.558	4.303	3.935	0.7	Р	-	-	-	-	1.271
987	New-OL-116208ModCCC	-	-	9.033*	5.722*	-	-	-	-	-	-	-
988	New-OL-116208Mod(PNNL)	-	-	-	-	-	-	-	-	-	-	1.464
989	New-OL-122817	35.68	0.328	0.147	0.538	34.7	Р	-	-	-	-	1.977
990 991	New-OL-122817CCC New-OL-127708Mod	- 78.25	0.241	0.22* 0.276	0.466*	- 2.9	- P	-	-	-	-	- 0.85
991	New-OL-127708ModCCC	18.23	0.241	0.276	0.209	2.9	- P	-	-	-	-	0.85
992	EWG-LAW-Centroid-1	28.25	0.388	0.20*	0.524	16.1	P	-	-	-	-	-
994	EWG-LAW-Centroid-1CCC	-	-	0.444*	0.521*	-	-	-	-	-	-	-
995	EWG-LAW-Centroid-2	27.55	0.404	0.398	0.527	27.4	Р	-	-	-	-	1.435
996	EWG-LAW-Centroid-2CCC	-	-	0.446*	0.526*	-	-	-	-	-	-	-
997	LAW-ORP-LD1(1)	29.37	0.34	0.467	0.596	6.2	Р	-	-	-	-	1.253
998	LAW-ORP-LD1(1)CCC	-	-	0.285*	0.368*	-	-	-	-	-	-	-
999	LAW-ORP-LD1(2)	29.46	0.407	0.424	0.517	26.8	Р	-	-	-	-	1.314
1000	LAW-ORP-LD1(2)CCC	-	-	0.322*	0.414*	-	-	-	-	-	-	-
1001	LAW-ORP-LD1(M)	46.18	0.33	0.303	0.354	2.5	Р	-	-	-	-	1.019
1002	LAW-ORP-LD1(M)CCC LORPM1R1	-	-	0.231*	0.299*	-	-	-	- 0.83	-	-	-
1003	LORPM4R2		-	-	-	-	-	-	0.83	-	-	-
1001	LORPM4R2 (K3-R)	-	-	-	-	-	-	-	-	-	-	-
1006	LORPM9-repeat	-	-	-	-	-	-	-	0.35	-	-	-
1007	LORPM10R1-repeat	-	-	-	-	-	-	-	1.54	-	-	-
1008	LORPM11-repeat	-	-	-	-	-	-	-	0.25	-	-	-
1009	LORPM18-repeat	-	-	-	-	-	-	-	0.52	-	-	-
1010	LORPM38R1	-	-	-	-	-	-	-	0.5	-	-	-
1011	LORPM40R1 LAWE17	-	-	-	-	-	-	-	0.47	-	-	-
1012 1013	LAWEI7 LP2-IL-01	- 25.14	- 0.569	- 0.688	- 0.927	- 49.8	F F	-	-	-	-	- 1.503
1013	LP2-IL-01 LP2-IL-02	62.72	0.578	0.088	0.927	0.8	P	-	-	-	-	1.18
1014	LP2-IL-03	56.64	0.59	0.384	0.556	169.4	F	-	-	-	_	1.18
1016	LP2-IL-04	25	0.582	0.68	0.954	1	P	-	-	-	-	1.484
1017	LP2-IL-05	24.53	0.502	0.502	0.569	5.2	Р	-	-	-	-	1.489
1018	LP2-IL-06	46.91	0.537	1.261	0.934	132.9	F	-	-	-	-	1.035
1019	LP2-IL-07	25.9	0.534	1.474	1.281	113.2	F	-	-	-	-	1.632
1020	LP2-IL-08	35.98	0.491	0.659	0.786	12.3	Р	-	-	-	-	1.373
1021	LP2-IL-09	24.21	0.626	1.734	1.347	31.6	<u>Р</u>	-	-	-	-	1.444
1022	LP2-IL-10	47.13	0.523	0.441	0.573	106.6	F	-	-	-	-	1.337
1023 1024	LP2-IL-11 LP2-IL-12	59.28 62.44	0.532 0.586	0.291 0.692	0.48	27.2 45.9	<u>Р</u> Р	-	-	-	-	1.189 1.468
1024	LP2-IL-12 LP2-IL-13	56.11	0.386	1.011	0.749	2.1	Р Р	-	-	-	-	1.468
1025	LP2-IL-14	27.55	0.625	1.456	1.178	39.3	P	-	-	-	-	1.496
1020	LP2-IL-15	55.56	0.61	0.89	0.681	6.3	P	-	-	-	-	1.252
1028	LP2-IL-16	43.53	0.562	0.486	0.599	47.6	P	-	-	-	-	1.338
1029	LP2-IL-17	50.87	0.514	0.889	0.706	62.7	F	-	-	-	-	1.321
1030	LP2-OL-01	85.59	0.334	0.333	0.57	0.5	Р	-	-	-	-	1.489
1031	LP2-OL-02	52.56	0.462	0.469	0.523	1.2	Р	-	-	-	-	1.098
1032	LP2-OL-03-MOD2	25.82	0.607	0.371	1.276	23.2	P	-	-	-	-	1.445
1033	LP2-OL-04	39.05	0.423	0.766	1.058	2.7	P	-	-	-	-	1.092
1034 1035	LP2-OL-05 LP2-OL-07	66.51 30.01	0.357 0.377	0.16 0.437	0.363	5.2 15.8	<u>Р</u> Р	-	-	-	-	1.427
1035	LP2-OL-07 LP2-OL-08-MOD	12.76	0.377	1.268	2.261	15.8	P F	-	-	-	-	1.634 1.816
1030	LP2-OL-09	63.66	0.393	1.559	0.922	109.4	<u>Р</u>	-	-	-	-	1.096
			0.369	0.17	0.405	8.7	P	-	-	-		1.090
1038	LP2-OL-10-MOD	05.55	0.507	0.17	0.405	0.7		-	-	-	-	
1038 1039	LP2-OL-10-MOD LP2-OL-11	<u>63.33</u> 11.41	0.486	3.869	3.605	55.4	F	-	-	-	-	1.47

Table A 3 Properties of LAW	Glasses in the Compiled Literatu	re Database (Glasses # 1-1075).
Table A.S. FTOPETTIES OF LAW	Glasses in the complied Literati	ile Dalabase (Glasses # 1-1075).

Glass #	Glass ID	η ₁₁₅₀ ,	ε ₁₁₅₀ ,	PCT Re		VHT Re	esponse	SO3 Sol	ubility and	d Melter S	O ₃ Toleran	.ce, wt%
Glass #	Glass ID	P ^(a)	S/cm	NL _B	n NL _{Na}	r_a , $g/m^2/d$	P/F ^(b)	BS ^(c)	SR ^(d)	Bub ^(e)	MT ^(f)	3TS ^(g)
1041	LP2-OL-13	13.31	0.567	0.516	1.943	50.8	F	-	-	-	-	1.5
1042	LP2-OL-14	9.64	0.512	7.233	6.38	-	F	-	-	-	-	2.603
1043	LP2-OL-15	12.83	0.397	0.276	0.438	1.2	P	-	-	-	-	2.022
1044	LP2-OL-16-MOD	72.96	0.421	1.304	1.306	3.8	P	-	-	-	-	1.19
1045	LP2-OL-17	25.18	0.565	5.617	4.744	-	F	-	-	-	-	1.786
1046	LP2-OL-18	26.74	0.433	1.183	1.186	9.5	Р	-	-	-	-	1.195
1047	LP2-OL-19	95.88	0.45	0.389	0.913	121.1	F	-	-	-	-	0.956
1048	LP2-OL-20	45.86	0.541	0.27	1.091	261	F	-	-	-	-	1.87
1049	LP2-OL-21	42.41	0.498	0.451	0.521	24.6	Р	-	-	-	-	1.127
1050	LP2-OL-22	32.19	0.406	0.198	0.539	1.4	Р	-	-	-	-	1.139
1051	LP2-OL-23	12.1	0.424	0.481	0.597	2.1	P	-	-	-	-	1.707
1052	LP2-OL-24	37.31	0.525	0.457	0.873	13.9	Р	-	-	-	-	1.385
1053	LP2-OL-25	14.92	0.556	2.574	1.932	27.7	Р	-	-	-	-	1.248
1054	LAWPH3-01	13.29	0.657	4.505	3.734	-	F	-	-	-	-	1.714
1055	LAWPH3-02	12.38	-	7.529	6.559	-	F	-	-	-	-	1.95
1056	LAWPH3-03	34.88	0.712	3.751	3.257	-	F	-	-	-	-	1.29
1057	LAWPH3-04	10.47	0.583	1.282	1.628	30	Р	-	-	-	-	2.416
1058	LAWPH3-05 mod6	27.64	0.588	6.64	5.19	242.3	F	-	-	-	-	1.58
1059	LAWPH3-06	21.35	0.53	<0.3205*	0.993	6.3	Р	-	-	-	-	1.592
1060	LAWPH3-07	19.61	0.693	0.501	1.168	-	F	-	-	-	-	1.905
1060	LAWPH3-08	59.26	-	0.344	0.654	0.6	P	-	-	-	-	1.317
1061	LAWPH3-09	17.16	-	1.138	1.653	55.3	F	-	-	-	-	1.641
1062	LAWPH3-10	24.34	0.686	0.835	1.234	47	P	-	-	-	-	1.557
1064	LAWPH3-11	30.2	0.575	1.623	1.471	-	F	-	-	-	-	1.559
1065	LAWPH3-12	27.02	-	1.36	0.96	79.9	F	-	-	-	-	1.353
1066	LAWPH3-12-2	-	-	1.558	1.075	-	-	-	-	-	-	-
1067	LAWPH3-13	22.25	0.611	0.405	1.287	-	F	-	-	-	-	1.628
1068	LAWPH3-14	19.91	0.676	0.797	1.32	54.1	F	-	-	-	-	2.01
1069	LAWPH3-15	15.39	-	0.873	1.475	32.9	F	-	-	-	-	1.749
1070	LAWPH3-16	14.66	-	2.747	3.408	203.7	F	-	-	-	-	1.95
1071	LAWPH3-17	13.6	-	0.532	1.713	39	F	-	-	-	-	2.076
1071	LAWPH3-17-2	-	-	0.591	1.324	-	-	-	-	-	-	-
1072	LAWPH3-18	54.74	-	0.451	0.841	3.4	Р	-	-	-	-	1.143
	LAWPH3-19 mod1	25.83	-	0.502	1.096	39	F	-	-	-	-	1.96
	LAWPH3-20	28.94	0.518	0.481	0.741	8.7	F	-	-	-	-	1.727
(a) Most	η_{1150} values were obtained fro culated from VFT models fit to	m VSL rep	orts where	the values v	were calcu	lated and ro	unded to z					values
	places usually recorded for vis							4001	Places			
(b) P/F =	Pass/Fail, where P = Pass and	F = Fail. T	This refers	to whether the	he VHT A	Iteration Rat	te passes o	r fails the V	WTP contr	actual limi	it of 50 g/m	n^2/d .
(c) BS =	Batch saturation. Excess sulfa	te is added	to raw ma	terials batch	and melte	d to fabrica	te glass wh	ile saturati	ng glass v	vith sulfate		
(d) SR =	Saturation re-melting. Pre-me	lted glass is	s mixed wi	th excess su	lfate and n	nelted to sat	urate glass					
(e) Bub	= Bubbling. Molten glass is bu	bbled with	SO2 and C	0 ₂ gas mixtu	re to satura	ate glass.						
(f) MT =	Melter tolerance. Maximum ta	arget SO ₃ c	oncentratio	on (glass bas	sis) in the	melter feed	without sal	t segregati	on.			
(g) 3TS	= Three-time saturation. Like t	he saturatio	on re-melti	ng method, l	but re-mel	ed three tim	nes to fully	saturate gl	ass.			
(h) LP2-	OL-06 (Mod2) did not form a	glass upon	melting ev	en after two	modificat	ions of the o	original con	nposition,	and hence	no proper	ty data cou	ıld be
	l for this composition.	-	-							-		
(i) A mo	dified composition of glass LP	2-OL-18 w	as investig	ated, but ult	imately th	e original co	omposition	was used	for all prop	perty meas	urements.	Still, the
records t	from data collection show this	alace as mo	dified so t	for consister	ow with th	aca ragarda	" MOD"	was includ	ad in the (loss ID		

records from data collection show this glass as modified, so for consistency with those records, "-MOD" was included in the Glass ID.

1 1 </th <th>K-3 ID Number</th> <th>Glass Number from Database</th> <th>Glass ID</th> <th>Al₂O₃</th> <th>B₂O₃</th> <th>CaO</th> <th>Cl</th> <th>Cr₂O₃</th> <th>F</th> <th>Fe₂O₃</th> <th>K₂O</th> <th>Li₂O</th> <th>MgO</th> <th>Na₂O</th> <th>P₂O₅</th> <th>SO3</th> <th>SiO2</th> <th>SnO₂</th> <th>TiO₂</th> <th>V205</th> <th>ZnO</th> <th>ZrO₂</th> <th>Others</th>	K-3 ID Number	Glass Number from Database	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P ₂ O ₅	SO3	SiO2	SnO ₂	TiO ₂	V205	ZnO	ZrO ₂	Others
9 9 </td <td>k001</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>0</td> <td></td>	k001								-				0										
1 1 </td <td>k002</td> <td>N/A</td> <td>A2-AP101</td> <td>0.056028</td> <td>0.098049</td> <td>0.020010</td> <td>0.004202</td> <td>0.000000</td> <td>0.003502</td> <td>0.055028</td> <td>0.038019</td> <td>0.000000</td> <td>0.015007</td> <td>0.185093</td> <td>0.000800</td> <td>0.003500</td> <td>0.440221</td> <td>0.000000</td> <td>0.020010</td> <td>0.000000</td> <td>0.029015</td> <td>0.030015</td> <td>0.001501</td>	k002	N/A	A2-AP101	0.056028	0.098049	0.020010	0.004202	0.000000	0.003502	0.055028	0.038019	0.000000	0.015007	0.185093	0.000800	0.003500	0.440221	0.000000	0.020010	0.000000	0.029015	0.030015	0.001501
999<		282		0.058959	0.098930	0.043969	0.002198	0.000000	0.002198	0.053962	0.019986	0.021984	0.021985	0.119916	0.000600	0.004200	0.462675	0.000000	0.016988	0.000000	0.038973		0.001499
11 14 14 <	k004	283			0.100161	0.056090			0.001502			0.032052											
911 912 32.2 802<	k005	330		0.061055	0.099089	0.050045	0.007907	0.000000		0.054049			0.015014		0.001101	0.003500	0.461417	0.000000		0.000000	0.030027	0.030027	0.001501
11 <td>k006</td> <td>286</td> <td>A3C2-1</td> <td>0.060957</td> <td>0.097931</td> <td>0.055961</td> <td>0.006895</td> <td>0.000000</td> <td>0.000300</td> <td>0.048966</td> <td>0.002998</td> <td>0.026981</td> <td>0.014989</td> <td>0.139902</td> <td>0.001199</td> <td>0.003800</td> <td>0.463674</td> <td>0.000000</td> <td>0.010992</td> <td>0.000000</td> <td>0.032977</td> <td>0.029979</td> <td>0.001499</td>	k006	286	A3C2-1	0.060957	0.097931	0.055961	0.006895	0.000000	0.000300	0.048966	0.002998	0.026981	0.014989	0.139902	0.001199	0.003800	0.463674	0.000000	0.010992	0.000000	0.032977	0.029979	0.001499
1 1 </td <td>k007</td> <td>287</td> <td></td> <td>0.060975</td> <td>0.096961</td> <td>0.061975</td> <td>0.005898</td> <td>0.000000</td> <td>0.000600</td> <td>0.044982</td> <td>0.001999</td> <td>0.028988</td> <td>0.014994</td> <td>0.132947</td> <td></td> <td>0.004000</td> <td>0.466813</td> <td>0.000000</td> <td>0.010996</td> <td>0.000000</td> <td>0.034986</td> <td>0.029988</td> <td>0.001499</td>	k007	287		0.060975	0.096961	0.061975	0.005898	0.000000	0.000600	0.044982	0.001999	0.028988	0.014994	0.132947		0.004000	0.466813	0.000000	0.010996	0.000000	0.034986	0.029988	0.001499
9 9 9 1 1 1 0 0 0 0 0 0 0 0 0 0 0 </td <td>k008</td> <td>288</td> <td></td> <td>0.060951</td> <td>0.094924</td> <td></td> <td>0.004896</td> <td>0.000000</td> <td>0.000899</td> <td>0.039968</td> <td></td> <td>0.030975</td> <td></td> <td></td> <td>0.001499</td> <td>0.004900</td> <td></td> <td>0.000000</td> <td>0.010991</td> <td></td> <td></td> <td>0.029976</td> <td></td>	k008	288		0.060951	0.094924		0.004896	0.000000	0.000899	0.039968		0.030975			0.001499	0.004900		0.000000	0.010991			0.029976	
1 1	k009	919		0.101847			0.005192	0.004993	0.000100	0.006989	0.004993	0.000000	0.009985		0.001997	0.003100	0.393408	0.000000	0.000000	0.000000	0.030953	0.060908	
111 91004 91004 9	k010	910		0.088982	0.109978	0.019996	0.003999	0.003999	0.000300	0.002000	0.005999	0.000000	0.009998	0.225955	0.003999	0.004900	0.434913	0.000000	0.000000	0.007998	0.029994	0.046990	0.000000
1111 11111 1111 1111 1111 1111 1111 1111 1111 1111 1111 11111 1111 1111 1111 1111 11111 11111 11111 11111 11111 <	k011	911		0.095048	0.110055	0.019010	0.004102	0.003002	0.000400	0.002001	0.006003	0.000000	0.010005	0.233117	0.004102	0.005900	0.414208	0.000000	0.000000	0.009005	0.030015	0.054027	0.000000
111 14 14 14 14 </td <td>k012</td> <td>912</td> <td>AP105DLAW4</td> <td>0.100071</td> <td>0.110078</td> <td>0.020014</td> <td>0.004203</td> <td>0.003002</td> <td>0.000400</td> <td>0.002001</td> <td>0.006004</td> <td>0.000000</td> <td>0.010007</td> <td>0.240169</td> <td>0.004203</td> <td>0.005500</td> <td>0.394278</td> <td>0.000000</td> <td>0.000000</td> <td>0.010007</td> <td>0.030021</td> <td>0.060042</td> <td>0.000000</td>	k012	912	AP105DLAW4	0.100071	0.110078	0.020014	0.004203	0.003002	0.000400	0.002001	0.006004	0.000000	0.010007	0.240169	0.004203	0.005500	0.394278	0.000000	0.000000	0.010007	0.030021	0.060042	0.000000
111 9 9 9 9 9	k013	914				0.020010	0.004202	0.003002	0.000400	0.002001	0.006003	0.000000	0.010005			0.005700	0.405204	0.000000	0.000000		0.030015	0.060030	0.000000
1000011000010000	k014	915	AP105DLAW7	0.094924	0.099919	0.019984	0.004097	0.000000	0.000400	0.001998	0.005995	0.000000	0.009992	0.232813	0.004097	0.005200	0.427656	0.000000	0.000000	0.008993	0.029976	0.053956	0.000000
InternNATATURDUSUM <th< td=""><td>k015</td><td>916</td><td>AP105DLAW8</td><td>0.100081</td><td>0.100081</td><td>0.020016</td><td>0.004103</td><td>0.000000</td><td>0.000400</td><td>0.002002</td><td>0.006005</td><td>0.000000</td><td>0.010008</td><td>0.239192</td><td>0.004203</td><td>0.005500</td><td>0.408329</td><td>0.000000</td><td>0.000000</td><td>0.010008</td><td>0.030024</td><td>0.060048</td><td>0.000000</td></th<>	k015	916	AP105DLAW8	0.100081	0.100081	0.020016	0.004103	0.000000	0.000400	0.002002	0.006005	0.000000	0.010008	0.239192	0.004203	0.005500	0.408329	0.000000	0.000000	0.010008	0.030024	0.060048	0.000000
111100011110001111000111100011110001111000111100001111000011110000111100001111000011110000111100001111000011110000111100001111000011110000111100001111000011110000111100001111000001111000001111000001111000001111000001111000001111000001111000001111000001111000000111100000011110000000111100000000011110000000000011110000000000000001111000000000000000000000000000000000	k016	N/A	AY102D1-01	0.059928	0.077906	0.019976	0.001598	0.000999	0.001898	0.056931	0.040951	0.000000	0.018977	0.204753	0.003196	0.005700	0.415498	0.000000	0.000000	0.000000	0.029964	0.047942	0.013783
NM AYD21:A AUD2 BUDM UDM BUDM B	k017	N/A																	0.000000				
NAM NYMO OUND UND OUND OU	k018	N/A	AY102D1-03	0.064941	0.118893	0.001998	0.001699	0.000999	0.001998	0.061944	0.044959	0.000000	0.000999	0.222799	0.003497	0.004700	0.455588	0.000000	0.000000	0.000000	0.000000	0.000000	0.014986
NAM NYMO OUND UND OUND OU	k019	N/A	AY102D1-04	0.070943	0.079936	0.001998	0.001899	0.001998	0.002198	0.066946	0.047962	0.000000	0.000999	0.240807	0.003797	0.004900	0.391685	0.000000	0.000000	0.000000	0.025979	0.041966	0.015987
BNA Ayright District Distrint District District	k020											0.000000											
BNA NY1022-06 D12000 D01000 D01000 <thd0100< th=""> <thd100000< th=""> <thd100000000< td=""><td>k021</td><td>N/A</td><td>AY102D1-06R</td><td>0.062062</td><td>0.101102</td><td>0.021021</td><td>0.001502</td><td>0.001001</td><td>0.001702</td><td>0.052052</td><td>0.038038</td><td>0.000000</td><td>0.019019</td><td>0.190191</td><td>0.003003</td><td>0.004000</td><td>0.417419</td><td>0.000000</td><td>0.014014</td><td>0.000000</td><td>0.031031</td><td>0.030030</td><td>0.012813</td></thd100000000<></thd100000<></thd0100<>	k021	N/A	AY102D1-06R	0.062062	0.101102	0.021021	0.001502	0.001001	0.001702	0.052052	0.038038	0.000000	0.019019	0.190191	0.003003	0.004000	0.417419	0.000000	0.014014	0.000000	0.031031	0.030030	0.012813
BNA NA BNA BNA	k022	N/A	AY102D2-01	0.121975	0.089982	0.004999	0.001300	0.002999	0.001500	0.135973	0.032993	0.000000	0.001000	0.202959	0.005999	0.005200	0.359928	0.000000	0.000000	0.000000	0.000000	0.000000	0.033193
PhysicalPhysic	k023	N/A	AY102D2-05	0.122000	0.073000	0.005000	0.001300	0.003000	0.001500	0.136000	0.033000	0.009000	0.001000	0.203000	0.006000	0.005000	0.313000	0.000000	0.000000	0.000000	0.021000	0.034000	0.033200
Phy Ch-MUTPI 019001 010001 010000 010000 010000 010000 010000	k024	N/A	AY102D2-06	0.102969	0.077976	0.003999	0.001100	0.001999	0.001300	0.114965	0.027992	0.020994	0.001000	0.170948	0.004998	0.004000	0.437868	0.000000	0.000000	0.000000	0.000000	0.000000	0.027892
C2 299 C3_NN10255 0.00996 0.07966 0.00090 0.01996 0.01996 0.01996 0.00096 0.00199 0.01996 0.01996 0.00196 0.01996 0.01996 0.00006 0.00006 0.00196 0.00196 0.01996 0.01996 0.00006 0.00106 0.00196 0.01996 0.01	k025	N/A	B1-AZ101	0.061950	0.099920	0.067945	0.000200	0.000000	0.000799	0.052957	0.001998	0.042966	0.029976	0.054956	0.000400	0.004900	0.485610	0.000000	0.013989	0.000000	0.047961	0.031974	0.001499
Constrain Object Outpoint	k026	N/A	C1-AN107R1	0.061018	0.100030	0.051015	0.000700	0.000000	0.002801	0.054016	0.001000	0.025008	0.015005	0.145044	0.001301	0.002900	0.466140	0.000000	0.011003	0.000000	0.031009	0.030009	0.002001
B 41 LWA164 0.66677 0.66797 0.6079 0.6079 0.6079	k027	289	C2-AN102C35	0.060969	0.093953	0.072963	0.003898	0.000000	0.001099	0.035982	0.001000	0.032983	0.014992	0.119940	0.001599	0.006300	0.471763	0.000000	0.010995	0.000000	0.039980	0.029985	0.001599
B30 4 ² LANA 105 0.05997 0.01797 0.00000 0.01100 0.01899 0.01100 0.01130 0.01130 0.01130 0.01130 0.01130 0.01130 0.01130 0.01130 0.01130 0.01130 0.01130 0.01130 0.01130 0.01130 0.01130 0.01130 0.01100 0.01130 0.01130 0.01100 0.01130 0.01100 0.01000 0.01100 0.01100 0.01100 0.01100 0.01100 0.01100 0.01100 0.00000 0.01100 0.01100 0.01000 0.01100 0.01100 0.01100 0.01100 0.01000 0.01100 0.01100 0.01100 0.01100 0.01000 0.01100 0.01	k028	N/A	I10-G-130B	0.060018	0.079024	0.027008	0.002301	0.006002	0.000900	0.003001	0.057017	0.000000	0.004001	0.210063	0.001401	0.005000	0.421127	0.032010	0.000000	0.000000	0.027008	0.064019	0.000100
Bit JAWA J26 0.05477 0.098345 0.00007 0.00000 0.03111 0.01305 0.13464 0.00830 0.03110 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.02007 0.00000 0.00000 0.02007 0.00000 0.00000 0.02007 0.00000	k029	41	LAWA104	0.066079	0.086103	0.019023	0.007209	0.000000	0.000100	0.067081	0.006007	0.000000	0.019023	0.220265	0.000400	0.001100	0.430517	0.000000	0.019023	0.000000	0.029035	0.029035	0.000000
B316 LAWA12813 0.05816 0.07027 0.07080 0.03910 0.01940 0.01980 0.01980 0.01980 0.01980 0.00800 0.01980 0.01980 0.00800 0.01980 0.00800 0.01980 0.00800 0.01980 0.00800 0.01980 0.00800 0.01980 0.00000 0.01980 0.00000 0.01980 0.00000 0.01980 0.00000 0.01980 0.00000 0.01980 0.00000 0.01980 <th< td=""><td>k030</td><td>42</td><td>LAWA105</td><td>0.069972</td><td>0.082967</td><td>0.018992</td><td>0.007797</td><td>0.000000</td><td>0.000100</td><td>0.064974</td><td>0.005998</td><td>0.000000</td><td>0.018992</td><td>0.239904</td><td>0.000400</td><td>0.001100</td><td>0.413834</td><td>0.000000</td><td>0.018992</td><td>0.000000</td><td>0.027989</td><td>0.027989</td><td>0.000000</td></th<>	k030	42	LAWA105	0.069972	0.082967	0.018992	0.007797	0.000000	0.000100	0.064974	0.005998	0.000000	0.018992	0.239904	0.000400	0.001100	0.413834	0.000000	0.018992	0.000000	0.027989	0.027989	0.000000
B33 LANA127R1 D65977 D1199 D02992 D00799 D00799 D01999 01999 D01999 <td>k031</td> <td>315</td> <td>LAWA126</td> <td>0.056197</td> <td>0.098345</td> <td>0.020071</td> <td>0.002007</td> <td>0.000000</td> <td>0.003011</td> <td>0.055194</td> <td>0.039137</td> <td>0.000000</td> <td>0.015053</td> <td>0.184648</td> <td>0.000803</td> <td>0.003100</td> <td>0.440547</td> <td>0.000000</td> <td>0.020070</td> <td>0.000000</td> <td>0.029102</td> <td>0.030106</td> <td>0.002609</td>	k031	315	LAWA126	0.056197	0.098345	0.020071	0.002007	0.000000	0.003011	0.055194	0.039137	0.000000	0.015053	0.184648	0.000803	0.003100	0.440547	0.000000	0.020070	0.000000	0.029102	0.030106	0.002609
94.4 174 LAWA 130 0.60015 0.08027 0.02100 0.02000 0.02900 0.03002 0.03000 0.01300 0.00300 0.00300 0.00300 0.00300 0.01300 0.01300 0.00300 0.01300 0.00300 0.01300 0.00300 0.01300 0.00300 0.01	k032	316	LAWA126R3	0.056186	0.098325	0.020066	0.002007	0.000000	0.003010	0.055183	0.039130	0.000000	0.015050	0.184611	0.000803	0.003300	0.440458	0.000000	0.020066	0.000000	0.029096	0.030100	0.002609
0177 LAWA134 0.05084 0.00151 0.00000 0.00290 0.01000 0.01000 0.01000 0.01000 0.02000 0.01000 0.02000 0.01000 0.01000 0.02000 0.01000 0.02000 0	k033	318	LAWA127R1	0.056977	0.101959	0.020992	0.001799	0.000000	0.002599	0.057977	0.033986	0.000000	0.014994	0.162935	0.000700	0.001800	0.457816	0.000000	0.020992	0.000000	0.030987	0.030988	0.002499
0.66 178 LAWA135 0.05705 0.10191 0.02018 0.00000 0.01283 0.01501 0.01021 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.02018 0.00000 0.000	k034	174	LAWA130	0.060018	0.089027	0.021006	0.002001	0.000000	0.003001	0.029009	0.039012	0.000000	0.012004	0.184055	0.000800	0.003300	0.461139	0.000000	0.021006	0.000000	0.041012	0.031009	0.002601
637 179 LAWA136 0.65705 0.10199 0.30027 0.00192 0.00000 0.00200 0.00000 0.01010 0.00000 <td< td=""><td>k035</td><td>177</td><td>LAWA134</td><td>0.056084</td><td>0.100151</td><td>0.020030</td><td>0.002003</td><td>0.000000</td><td>0.002904</td><td>0.056084</td><td>0.037056</td><td>0.000000</td><td>0.015023</td><td>0.177267</td><td>0.000801</td><td>0.002800</td><td>0.448675</td><td>0.000000</td><td>0.020030</td><td>0.000000</td><td>0.030045</td><td>0.030045</td><td>0.001002</td></td<>	k035	177	LAWA134	0.056084	0.100151	0.020030	0.002003	0.000000	0.002904	0.056084	0.037056	0.000000	0.015023	0.177267	0.000801	0.002800	0.448675	0.000000	0.020030	0.000000	0.030045	0.030045	0.001002
NA LAWA140R3 Oncore Output Outpu< Output Outpu /</td <td>k036</td> <td>178</td> <td>LAWA135</td> <td>0.057051</td> <td>0.101091</td> <td>0.020018</td> <td>0.001902</td> <td>0.000000</td> <td>0.002803</td> <td>0.057051</td> <td>0.036032</td> <td>0.000000</td> <td>0.015014</td> <td>0.170154</td> <td>0.000701</td> <td>0.002700</td> <td>0.453409</td> <td>0.000000</td> <td>0.020018</td> <td>0.000000</td> <td>0.030027</td> <td>0.031028</td> <td>0.001001</td>	k036	178	LAWA135	0.057051	0.101091	0.020018	0.001902	0.000000	0.002803	0.057051	0.036032	0.000000	0.015014	0.170154	0.000701	0.002700	0.453409	0.000000	0.020018	0.000000	0.030027	0.031028	0.001001
and bind	k037	179	LAWA136	0.057051	0.101091	0.030027	0.001902	0.000000	0.002803	0.057051	0.036032	0.000000	0.015014	0.170154	0.000701	0.002700	0.443400	0.000000	0.020018	0.000000	0.030027	0.031028	0.001001
bit bit< bit< bit< bit< bit< bit< bit< bit< bit< </td <td>k038</td> <td>N/A</td> <td>LAWA140R3</td> <td>0.062019</td> <td>0.090027</td> <td>0.020006</td> <td>0.005602</td> <td>0.000000</td> <td>0.000000</td> <td>0.045014</td> <td>0.004001</td> <td>0.000000</td> <td>0.015004</td> <td>0.200060</td> <td>0.000700</td> <td>0.002400</td> <td>0.480144</td> <td>0.000000</td> <td>0.015005</td> <td>0.000000</td> <td>0.030009</td> <td>0.030009</td> <td>0.000000</td>	k038	N/A	LAWA140R3	0.062019	0.090027	0.020006	0.005602	0.000000	0.000000	0.045014	0.004001	0.000000	0.015004	0.200060	0.000700	0.002400	0.480144	0.000000	0.015005	0.000000	0.030009	0.030009	0.000000
MA LWA15S2 0.6052 0.1379 0.0870 0.0000 0.04103 0.0000 0.01830 0.4016 0.0000 0.4013 0.0000 0.01830 0.4016 0.0000 0.01030 0.0000 0.01103 0.00000 0.01130 0.00000 0.01130 0.00000 0.01130 0.00000 0.01130 0.00000 0.00130 0.00130 0.00130 0.00100 0.00130 0.00100 0.00130 0.00000 0.00131 0.00000 0.00130 0.00130 0.00130 0.00130 0.00130 0.00130 0.00130 0.00100 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00131 0.00000 0.00000 0.00000	k039	392	LAWA149	0.065091	0.105148	0.070098	0.011716	0.000000	0.000000	0.040056	0.004006	0.000000	0.020028	0.207291	0.000000	0.001900	0.350492	0.000000	0.020028	0.000000	0.029041	0.075105	0.000000
MA LWA15S2 0.052 0.1934 0.0594 0.00000 0.0000 0.00000 <td>k040</td> <td>N/A</td> <td>LAWA152S2</td> <td>0.103394</td> <td>0.139224</td> <td>0.078825</td> <td>0.011875</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> <td>0.004095</td> <td>0.000000</td> <td>0.010237</td> <td>0.204741</td> <td>0.000000</td> <td>0.011000</td> <td>0.365462</td> <td>0.000000</td> <td>0.010237</td> <td>0.000000</td> <td>0.029687</td> <td>0.029687</td> <td>0.001536</td>	k040	N/A	LAWA152S2	0.103394	0.139224	0.078825	0.011875	0.000000	0.000000	0.000000	0.004095	0.000000	0.010237	0.204741	0.000000	0.011000	0.365462	0.000000	0.010237	0.000000	0.029687	0.029687	0.001536
MAX LAWA159S2 0.10128 0.1027 0.01188 0.00000 0.01023 0.00000 0.01023 0.00000 0.01023 0.00000 0.01023 0.00000 0.01023 0.00000 0.01023 0.00000 0.01023 0.00000 0.01023 0.00000 0.01023 0.00000 0.01031 0.00000 0.01031 0.00000 0.01031 0.00000 0.01031 0.00000 0.01031 0.00000 0.01031 0.00000 0.01031 0.00000 0.01031 0.00000 0.01031 0.00000 0.01031 0.00000 0.01031 0.00000 0.01031 0.00000 0.01031 0.00000 0.01031 0.00000 0.00001 0.00000 0	k041	N/A	LAWA155S2	0.060523	0.137459	0.068729	0.011797	0.000000	0.000000	0.000000	0.004103	0.000000	0.004103	0.203110	0.000000	0.018300	0.404169	0.000000	0.004103	0.000000	0.018465	0.063600	0.001539
MA LAWA1602 0.13454 0.13935 0.78871 0.01825 0.00000 0.00000 0.01024 0.01024 0.00000 0.	k042	N/A	LAWA156S2	0.051228	0.139340	0.059424	0.011885	0.000000	0.000000	0.019467	0.004098	0.000000	0.004098	0.205936	0.000000	0.007100	0.407775	0.000000	0.004098	0.000000	0.019467	0.064547	0.001537
399 LAWA161S2 0.13197 0.13487 0.07867 0.01175 0.0000 0.00127 0.0000 0.0121 0.0000 0.0021 0.0000 0.	k043	N/A	LAWA159S2	0.101286	0.136071	0.079801	0.011868	0.000000	0.000000	0.010231	0.004092	0.000000	0.010231	0.204618	0.000000	0.007500	0.363197	0.000000	0.010231	0.000000	0.029669	0.029670	0.001535
MA LAWA1652 0.06048 0.13941 0.06977 0.1181 0.00000 0.0121 0.0010 0.0010 0.0000	k044	N/A	LAWA160S2	0.103454	0.139305	0.078871	0.011882	0.000000	0.000000	0.000000	0.004097	0.000000	0.010243	0.204860	0.000000	0.009400	0.366699	0.000000	0.000000	0.010243	0.029705	0.029705	0.001536
MA LAWA164S2 0.06047 0.1192 0.06700 0.00000 0.01020 0.00100 0.00100 0.00100 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01020 0.00000 0.	k045	399	LAWA161S2	0.103197	0.134871	0.078675	0.011750	0.000000	0.000000	0.010217	0.004087	0.000000	0.010217	0.203329	0.000000	0.008900	0.363744	0.000000	0.000000	0.010218	0.029631	0.029631	0.001533
MA LAWA1652 0.01917 0.13623 0.07801 0.1186 0.0000 0.01024 0.0000 0.01024 0.01030 0.0000 0.01004 0.0000 0.01024 0.0000 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.00000 0.00000 0.0000 0.00	k046	N/A	LAWA162S2	0.060481	0.139414	0.069707	0.011891	0.000000	0.000000	0.010251	0.004100	0.000000	0.004100	0.205020	0.000000	0.007600	0.406965	0.000000	0.000000	0.000000	0.019477	0.059456	0.001538
MA LAWA166S2 0.09420 0.19312 0.07899 0.1182 0.0000 0.00407 0.0000 0.0124 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.0124 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.0000 0.01024 0.00000 0.0000 0.0000	k047	N/A	LAWA164S2	0.060475	0.119924	0.069700	0.011992	0.000000	0.000000	0.010250	0.004100	0.000000	0.004100	0.206024	0.000000	0.007600	0.409998	0.000000	0.000000	0.010250	0.019475	0.064575	0.001537
MA LAWA1672 0.1356 0.1356 0.1366 0.17895 0.0185 0.0000 0.01025 0.1080 0.0000 0.01858 0.00000 0.00000 <td>k048</td> <td>N/A</td> <td>LAWA165S2</td> <td>0.091197</td> <td>0.136283</td> <td>0.078901</td> <td>0.011886</td> <td>0.000000</td> <td>0.000000</td> <td>0.010247</td> <td>0.004099</td> <td>0.000000</td> <td>0.010247</td> <td>0.204938</td> <td>0.000000</td> <td>0.008000</td> <td>0.353517</td> <td>0.000000</td> <td>0.000000</td> <td>0.010247</td> <td>0.029716</td> <td>0.049185</td> <td>0.001537</td>	k048	N/A	LAWA165S2	0.091197	0.136283	0.078901	0.011886	0.000000	0.000000	0.010247	0.004099	0.000000	0.010247	0.204938	0.000000	0.008000	0.353517	0.000000	0.000000	0.010247	0.029716	0.049185	0.001537
N/A LAWA168S2 0.13051 0.13951 0.17898 0.11990 0.0000 0.0000 0.01025 0.10125 0.10000 0.01025 0.10000 0.0000 0.02753 0.02753 0.02075 0.02075 0.0000 0.02075 0.0000 <th< td=""><td>k049</td><td>N/A</td><td>LAWA166S2</td><td>0.094240</td><td>0.139312</td><td>0.079899</td><td>0.011882</td><td>0.000000</td><td>0.000000</td><td>0.003073</td><td>0.004097</td><td>0.000000</td><td>0.010244</td><td>0.204871</td><td>0.000000</td><td>0.007300</td><td>0.354426</td><td>0.000000</td><td>0.000000</td><td>0.010244</td><td>0.029706</td><td>0.049169</td><td>0.001537</td></th<>	k049	N/A	LAWA166S2	0.094240	0.139312	0.079899	0.011882	0.000000	0.000000	0.003073	0.004097	0.000000	0.010244	0.204871	0.000000	0.007300	0.354426	0.000000	0.000000	0.010244	0.029706	0.049169	0.001537
652 LAWA13 0.10698 0.11298 0.07992 0.00699 0.0000 0.00899 0.0000 0.00899 0.2097 0.0000 0.4080 0.4099 0.4090 0.4099 0.4099 0.0000 0.00899 0.2097 0.0000 0.4089 0.0000 0.40899 0.2097 0.4000 0.4090 0.4099 0.4099 0.4099 0.4090 0.4099 0.4099 0.4099 0.4090 0.4099 </td <td>k050</td> <td>N/A</td> <td>LAWA167S2</td> <td>0.103569</td> <td>0.139460</td> <td>0.078959</td> <td>0.011895</td> <td>0.000000</td> <td>0.000000</td> <td>0.003076</td> <td>0.004102</td> <td>0.000000</td> <td>0.010254</td> <td>0.205087</td> <td>0.000000</td> <td>0.008300</td> <td>0.364030</td> <td>0.000000</td> <td>0.000000</td> <td>0.010254</td> <td>0.029738</td> <td>0.029738</td> <td>0.001538</td>	k050	N/A	LAWA167S2	0.103569	0.139460	0.078959	0.011895	0.000000	0.000000	0.003076	0.004102	0.000000	0.010254	0.205087	0.000000	0.008300	0.364030	0.000000	0.000000	0.010254	0.029738	0.029738	0.001538
504 LAWA15 0.12192 0.12192 0.07952 0.0649 0.0000 0.04997 0.0000 0.08995 0.22961 0.0000 0.34878 0.0000 0.0000 0.00994 0.0000 0.00994 0.0000 0.0000 0.0000 0.00995 0.22961 0.0000 0.34878 0.0000 0.0000 0.09994 0.02994	k051	N/A	LAWA168S2	0.103621	0.139530	0.078998	0.011901	0.000000	0.000000	0.003078	0.004104	0.000000	0.010259	0.205191	0.00000	0.007800	0.364214	0.000000	0.010259	0.000000	0.029753	0.029753	0.001539
505 LAWA176 0.136972 0.097984 0.006499 0.00000 0.004999 0.004999 0.002601 0.00000 0.008984 0.22961 0.00000 0.00000 0.00000 0.00000 0.00099 0.00000 0.00000 0.00000 0.00000 0.00099 0.000000 0.00000 0.00000	k052	502	LAWA173	0.106989	0.112989	0.079992	0.006499	0.000000	0.000000	0.008999	0.005000	0.000000	0.008999	0.229977	0.000000	0.006600	0.348965	0.000000	0.000000	0.009999	0.029997	0.044995	0.000000
	k053	504	LAWA175	0.121926	0.112932	0.079952	0.006496	0.000000	0.000000	0.008994	0.004997	0.000000	0.008995	0.229861	0.00000	0.007100	0.348789	0.000000	0.000000	0.009994	0.029982	0.029982	0.000000
255 512 LAWA183 0.106989 0.097990 0.07992 0.00649 0.00000 0.00000 0.00899 0.00500 0.00899 0.22997 0.0000 0.0660 0.34365 0.00000 0.01499 0.20997 0.05994 0.00000	k054	505	LAWA176	0.136972	0.097980	0.079984	0.006499	0.000000	0.000000	0.008998	0.004999	0.000000	0.008998	0.229954	0.000000	0.006700	0.348930	0.000000	0.000000	0.009998	0.029994	0.029994	0.000000
	k055	512	LAWA183	0.106989	0.097990	0.079992	0.006499	0.000000	0.000000	0.008999	0.005000	0.000000	0.008999	0.229977	0.000000	0.006600	0.343965	0.000000	0.000000	0.014999	0.029997	0.059994	0.000000

TABY 1	Glass Number from Database	a. m		R.O.		<i>(</i> 1)	6.0		E O	K O	L'O		N. O	D.O.	50		5-0	TO	N O	7.0	7.0	
K-3 ID Number	Glass Number from Database 513	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P ₂ O ₅	SO3	SiO2	SnO ₂	TiO ₂	V2O5	ZnO	ZrO ₂	Others
k056	515	LAWA184	0.106968	0.093972	0.076977	0.006498	0.000000	0.000000	0.008997	0.004999	0.000000	0.008997	0.229931	0.000000	0.006800	0.365889	0.000000	0.000000	0.014995	0.014995	0.059982	0.000000
k057		LAWA185	0.121939	0.097951	0.079960	0.006497	0.000000	0.000000	0.008995	0.004998	0.000000	0.008995	0.229884	0.000000	0.007000	0.368814	0.000000	0.000000	0.014992	0.019990	0.029985	0.000000
k058	515	LAWA186	0.116094	0.093075	0.080065	0.006505	0.000000	0.000000	0.009007	0.005004	0.000000	0.009007	0.230185	0.000000	0.006700	0.369298	0.000000	0.000000	0.015012	0.015012	0.045036	0.000000
k059	516	LAWA187	0.107032	0.128039	0.065020	0.006502	0.005001	0.000000	0.009003	0.005002	0.000000	0.009003	0.230069	0.000000	0.006200	0.349105	0.010003	0.000000	0.010003	0.030009	0.030009	0.000000
k060	N/A	LAWA187R1	0.107032	0.128039	0.065020	0.006502	0.005001	0.000000	0.009003	0.005002	0.000000	0.009003	0.230069	0.000000	0.006200	0.349105	0.010003	0.000000	0.010003	0.030009	0.030009	0.000000
k061	519	LAWA188	0.107043	0.128051	0.055022	0.006503	0.005002	0.000000	0.009004	0.005002	0.000000	0.009004	0.230093	0.000000	0.006100	0.349140	0.020008	0.000000	0.010004	0.030012	0.030012	0.000000
k062	520	LAWA189	0.107043	0.113045	0.075030	0.006503	0.005002	0.000000	0.009004	0.005002	0.000000	0.009004	0.230093	0.000000	0.006100	0.349140	0.000000	0.000000	0.010004	0.030012	0.045018	0.000000
k063	521	LAWA190	0.122074	0.113068	0.060036	0.006504	0.005003	0.000000	0.009006	0.005003	0.000000	0.009005	0.230139	0.000000	0.005900	0.349211	0.000000	0.000000	0.010006	0.030018	0.045027	0.000000
k064	522	LAWA191	0.122049	0.113045	0.075030	0.006503	0.005002	0.000000	0.009004	0.005002	0.000000	0.009004	0.230093	0.000000	0.006100	0.349140	0.000000	0.000000	0.010004	0.030012	0.030012	0.000000
k065	523	LAWA192	0.121963	0.112966	0.059982	0.006498	0.000000	0.000000	0.008997	0.004998	0.000000	0.008997	0.229931	0.000000	0.006800	0.358892	0.000000	0.000000	0.009997	0.029991	0.039988	0.000000
k066	525	LAWA194	0.108901	0.077929	0.069937	0.007094	0.000000	0.000000	0.008992	0.005994	0.000000	0.008992	0.249774	0.000000	0.005800	0.353680	0.009991	0.000000	0.008992	0.023978	0.059946	0.000000
k067	526	LAWA195	0.108901	0.077929	0.064941	0.007094	0.004995	0.000000	0.008992	0.005995	0.000000	0.008992	0.249774	0.000000	0.005800	0.353680	0.009991	0.000000	0.008992	0.023978	0.059946	0.000000
k068	527	LAWA196	0.118845	0.077898	0.059922	0.007091	0.000000	0.000000	0.008988	0.005992	0.000000	0.008988	0.249673	0.000000	0.006200	0.363524	0.000000	0.000000	0.008988	0.023969	0.059922	0.000000
k069	N/A	LAWA23C	0.098039	0.042017	0.043017	0.005803	0.000000	0.000400	0.073029	0.031013	0.020008	0.020008	0.200080	0.000800	0.001600	0.401161	0.000000	0.000000	0.000000	0.033013	0.030012	0.000000
k070	N/A	LAWA28	0.119916	0.060957	0.033976	0.005796	0.000000	0.000400	0.072949	0.030978	0.000000	0.019986	0.199860	0.000799	0.001600	0.379734	0.000000	0.000000	0.000000	0.042970	0.029979	0.000100
k071	N/A	LAWA28Ti	0.119856	0.060927	0.013983	0.005793	0.000000	0.000399	0.049940	0.030963	0.000000	0.014982	0.199760	0.000799	0.002100	0.379544	0.000000	0.047942	0.000000	0.042948	0.029964	0.000100
k072	N/A	LAWA29	0.124912	0.065954	0.033976	0.005796	0.000000	0.000400	0.057959	0.030978	0.000000	0.019986	0.199860	0.000800	0.001600	0.384730	0.000000	0.000000	0.000000	0.042970	0.029979	0.000100
k073	N/A	LAWA30	0.119988	0.085991	0.028997	0.005799	0.000000	0.000400	0.057994	0.030997	0.000000	0.019998	0.199980	0.000800	0.001000	0.379962	0.000000	0.000000	0.000000	0.042996	0.024998	0.000100
k074	N/A	LAWA32	0.115104	0.086078	0.015013	0.005805	0.000000	0.000400	0.055050	0.031028	0.000000	0.016014	0.200180	0.000801	0.001000	0.380343	0.000000	0.025022	0.000000	0.043039	0.025023	0.000100
k075	N/A	LAWA34	0.105989	0.101990	0.029997	0.005799	0.000000	0.000400	0.054994	0.030997	0.000000	0.019998	0.199980	0.000800	0.001000	0.379962	0.000000	0.000000	0.000000	0.042996	0.024998	0.000100
k076	N/A	LAWA36	0.122024	0.083017	0.028006	0.006401	0.000000	0.000400	0.055011	0.034007	0.000000	0.019004	0.220044	0.000900	0.001100	0.365073	0.000000	0.000000	0.000000	0.041008	0.024005	0.000000
k077	127	LAWA41-3	0.062019	0.075023	0.020006	0.005802	0.000000	0.000100	0.070021	0.031009	0.000000	0.020006	0.200060	0.000800	0.001000	0.434130	0.000000	0.020006	0.000000	0.030009	0.030009	0.000000
k078	128	LAWA44-3	0.062006	0.089009	0.020002	0.006501	0.000000	0.000100	0.070007	0.005000	0.000000	0.020002	0.200020	0.000300	0.001000	0.446045	0.000000	0.020002	0.000000	0.030003	0.030003	0.000000
k079	N/A	LAWA44PNCC	0.062013	0.089018	0.020004	0.006501	0.000000	0.000000	0.070014	0.005001	0.000000	0.020004	0.200040	0.000300	0.001000	0.446089	0.000000	0.020004	0.000000	0.030006	0.030006	0.000000
k080	N/A	LAWA44PNCC-repeat	0.062013	0.089018	0.020004	0.006501	0.000000	0.000000	0.070014	0.005001	0.000000	0.020004	0.200040	0.000300	0.001000	0.446089	0.000000	0.020004	0.000000	0.030006	0.030006	0.000000
k081	N/A	LAWA44R11	0.062013	0.089018	0.020004	0.006501	0.000000	0.000000	0.070014	0.005001	0.000000	0.020004	0.200040	0.000300	0.001000	0.446089	0.000000	0.020004	0.000000	0.030006	0.030006	0.000000
k082	129	LAWA52-2	0.062006	0.062006	0.079008	0.006501	0.000000	0.000100	0.075008	0.005000	0.000000	0.015002	0.200020	0.000300	0.001000	0.423042	0.000000	0.011001	0.000000	0.030003	0.030003	0.000000
k083	130	LAWA60	0.085094	0.112123	0.043047	0.006507	0.000000	0.000100	0.000000	0.005006	0.000000	0.020022	0.200221	0.000300	0.001000	0.446492	0.000000	0.020022	0.000000	0.030033	0.030033	0.000000
k084	132	LAWA88	0.060994	0.096990	0.019998	0.003300	0.000000	0.000000	0.054994	0.025997	0.000000	0.014999	0.199980	0.000700	0.002100	0.439956	0.000000	0.019998	0.000000	0.029997	0.029997	0.000000
k085	120	LAWA95	0.060950	0.060950	0.055955	0.006395	0.000000	0.000100	0.037969	0.004996	0.000000	0.014988	0.196840	0.029476	0.014800	0.416662	0.000000	0.010991	0.028976	0.029976	0.029976	0.000000
k086	535	LAWB103	0.092074	0.100080	0.092074	0.000100	0.001001	0.000701	0.012010	0.004003	0.040032	0.012010	0.100081	0.000300	0.006100	0.457368	0.000000	0.000000	0.012010	0.035028	0.035028	0.000000
k087	138	LAWB37	0.061975	0.120951	0.046981	0.000100	0.001000	0.001000	0.051979	0.002999	0.029988	0.028988	0.078968	0.033986	0.010300	0.468811	0.000000	0.000000	0.000000	0.030987	0.030987	0.000000
k088	N/A	LAWB45-S	0.062013	0.132027	0.065013	0.000100	0.001000	0.000800	0.053011	0.004001	0.045009	0.027005	0.059012	0.002200	0.012100	0.473096	0.000000	0.000000	0.000000	0.032007	0.031006	0.000600
k089	183	LAWB61	0.061881	0.099809	0.066872	0.000000	0.000998	0.000699	0.052899	0.002994	0.057889	0.029943	0.054895	0.000100	0.007100	0.485072	0.000000	0.013973	0.000000	0.031939	0.031939	0.000998
k090	189	LAWB64	0.061900	0.099839	0.066892	0.000000	0.000998	0.000699	0.032947	0.002995	0.057907	0.029952	0.054912	0.000100	0.006800	0.485218	0.000000	0.013978	0.000000	0.051916	0.031949	0.000998
k091	190	LAWB64S0	0.062068	0.100110	0.067074	0.000000	0.001001	0.000701	0.033036	0.003003	0.059065	0.030033	0.055061	0.000100	0.000100	0.489539	0.000000	0.014016	0.0000000	0.052057	0.032035	0.001001
k092	192	LAWB65	0.061894	0.098830	0.066885	0.000000	0.000998	0.000699	0.052909	0.002995	0.042926	0.029949	0.054906	0.000100	0.008900	0.484170	0.000000	0.013976	0.000000	0.046920	0.031945	0.000998
k092	196	LAWB67	0.061900	0.098840	0.051916	0.000000	0.000998	0.000699	0.052905	0.002995	0.042920	0.029952	0.054911	0.030151	0.009700	0.484218	0.000000	0.013978	0.000000	0.031948	0.031945	0.000000
k094	198	LAWB68	0.061931	0.083907	0.081909	0.000000	0.000999	0.000699	0.052941	0.002997	0.042951	0.029967	0.054939	0.000100	0.008300	0.484463	0.000000	0.013978	0.000000	0.046948	0.031948	0.000999
k095	199	LAWB69	0.061882	0.122765	0.104800	0.000100	0.000998	0.000798	0.000000	0.001996	0.045912	0.029943	0.065874	0.000499	0.006500	0.479084	0.000000	0.000000	0.000000	0.045912	0.031939	0.000998
k095	201	LAWB70	0.061950	0.122763	0.065947	0.000100	0.000998	0.000798	0.032974	0.001998	0.045963	0.029943	0.065947	0.000499	0.006300	0.479614	0.000000	0.000000	0.000000	0.051958	0.031939	0.000998
k098	201	LAWB70 LAWB71	0.061930	0.122901	0.065920	0.000100	0.000999	0.000799	0.032974	0.001999	0.043963	0.029978	0.065921	0.000300	0.003400	0.479422	0.000000	0.015981	0.000000	0.051938	0.031974	0.000999
k097 k098	205	LAWB72	0.061923	0.122815	0.070893	0.000100	0.000999	0.000799	0.032960	0.001998	0.043943	0.029964	0.065900	0.000499	0.004800	0.479227	0.000000	0.000000	0.000000	0.051937	0.031961	0.000999
k098 k099	203	LAWB72 LAWB73	0.061907	0.099020	0.093019	0.000100	0.001000	0.000799	0.032950	0.001997	0.040938	0.029955	0.065900	0.000499	0.006100	0.479277	0.000000	0.014003	0.000000	0.051922	0.031952	0.000998
k099 k100	207	LAWB/3 LAWB74	0.062013	0.099020	0.093019	0.000000	0.001000	0.000700	0.019004	0.003001	0.050010	0.030006	0.055011	0.000100	0.009000	0.485098	0.000000	0.014003	0.000000	0.047024	0.032006	0.000000
R100	209	Latition	0.062031	0.101051	0.087044	0.000000	0.001000	0.000700	0.017010	0.005001	0.055021	0.050015	0.055028	0.000100	0.007700	0.48/246	0.000000	0.011007	0.000000	0.017021	0.032010	0.000000
k101	215	LAWB77	0.000.00	0.122926	0.0007.00				0.021987	0.001999	0.040975	0.029982	0.0007.00	0.000500	0.000-00		0.000000	0.015990	0.000000	0.051969	0.031981	0.000999
k102		LAWB78	0.061845	0.123689	0.070822	0.000100	0.000998	0.000798	0.032917	0.001995	0.030922	0.029925	0.097754	0.000499	0.005100	0.469819	0.000000	0.000000	0.000000	0.039900	0.031920	0.000997
k103	219 221	LAWB79	0.061987	0.122975	0.070986	0.000100	0.001000	0.000800	0.032993	0.002000	0.034993	0.029994	0.085983	0.000500	0.005000	0.476904	0.000000	0.000000	0.000000	0.039992	0.031993	0.001000
k104		LAWB80	0.061925	0.122852	0.070914	0.000100	0.000999	0.000799	0.032960	0.019976	0.034958	0.029964	0.065921	0.000499	0.005800	0.479421	0.000000	0.000000	0.000000	0.039952	0.031961	0.000999
k105	223	LAWB81	0.061913	0.122827	0.070900	0.000100	0.000999	0.000799	0.032953	0.001997	0.042939	0.029958	0.065907	0.000499	0.006000	0.479325	0.000000	0.000000	0.000000	0.049930	0.031955	0.000999
k106	225	LAWB82	0.061987	0.100980	0.070986	0.000100	0.001000	0.000800	0.094981	0.002000	0.042991	0.014997	0.065987	0.000500	0.004800	0.454908	0.000000	0.000000	0.000000	0.049990	0.031993	0.001000
k107	227	LAWB83	0.062000	0.100000	0.068000	0.000100	0.000000	0.000600	0.053000	0.002000	0.043000	0.030000	0.055000	0.000400	0.004900	0.486000	0.000000	0.014000	0.000000	0.048000	0.032000	0.001000
k108	229	LAWB84	0.061969	0.099950	0.066966	0.000100	0.000000	0.000600	0.052973	0.001999	0.043978	0.029985	0.054972	0.000400	0.004400	0.486756	0.000000	0.013993	0.000000	0.047976	0.031984	0.000999
k109	231	LAWB85	0.062000	0.115000	0.053000	0.000100	0.000000	0.000600	0.053000	0.002000	0.043000	0.030000	0.055000	0.000400	0.004900	0.486000	0.000000	0.014000	0.000000	0.048000	0.032000	0.001000
k110	233	LAWB86	0.061975	0.123950	0.056977	0.000100	0.000000	0.000600	0.052979	0.001999	0.043982	0.029988	0.054978	0.000400	0.004300	0.486804	0.000000	0.000000	0.000000	0.047981	0.031987	0.001000

1111 1	K-3 ID Number	Glass Number from Database	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P2O5	SO3	SiO2	SnO ₂	TiO ₂	V205	ZnO	ZrO ₂	Others
11 </td <td>k111</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>0</td> <td></td>	k111								-				0										
1110 5A Asomp 61.00 1000 1000 1000 1000 10000 1000 1000 1000	k112	311																					
1114 14.04 <	k113			0.000.000		0.017770-		0.000000	0.000000	0.0227.01		0.0.07.1-	0.0.00		0.000399	0.006500		0.000000	0.013986			0.000.000	
9 9 </td <td>k114</td> <td></td>	k114																						
11.1 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	k115						0.000101	0.000000	0.000604	0.053337			0.030191		0.000403	0.003600		0.000000	0.014089	0.000000	0.048305		
111<	k116	N/A	LAWB92R1		0.100606	0.067406	0.000101	0.000000	0.000604	0.053321	0.002012	0.022133	0.030182		0.000402	0.003900		0.000000	0.014085	0.000000	0.048291	0.031188	
1111 1410 1400 1600 1600 <	k117						0.000101	0.00000	0100000.	0.000021		0.022.000	0.00.0105		0.000.00	0.0007.00	0	0.00000	0.01.000	0.000000	0101022		01002000
1 2 3 3 3 3 3 <	k118	244			0.099890		0.000100	0.000000	0.000599						0.000400	0.005000		0.000000					
Phy Symbo ymbo S	k119	246	LAWB95		0.099930		0.000100	0.000000	0.000600	0.052963		0.057959			0.000400	0.004600		0.000000	0.013990	0.000000	0.047966		0.000999
11 <td>k120</td> <td></td> <td></td> <td>0.000,000</td> <td>0.077700</td> <td></td> <td>0.000100</td> <td>0.00000</td> <td>01000000</td> <td></td> <td>0.000,777</td> <td>0.00.000</td> <td>0.02/////</td> <td></td> <td>0.000.00</td> <td>0.00.000</td> <td></td> <td>0.00000</td> <td>0.010770</td> <td>0.000000</td> <td>0.0</td> <td>0.001.7.10</td> <td>0.0007777</td>	k120			0.000,000	0.077700		0.000100	0.00000	01000000		0.000,777	0.00.000	0.02/////		0.000.00	0.00.000		0.00000	0.010770	0.000000	0.0	0.001.7.10	0.0007777
111 1111 111 111 111 </td <td>k121</td> <td>531</td> <td>LAWB99</td> <td>0.102154</td> <td>0.110166</td> <td>0.102154</td> <td>0.000100</td> <td>0.001002</td> <td>0.000701</td> <td>0.012018</td> <td>0.004006</td> <td>0.035053</td> <td>0.012018</td> <td>0.100151</td> <td>0.000301</td> <td>0.006400</td> <td>0.431652</td> <td>0.000000</td> <td>0.000000</td> <td>0.012018</td> <td>0.035053</td> <td>0.035053</td> <td>0.000000</td>	k121	531	LAWB99	0.102154	0.110166	0.102154	0.000100	0.001002	0.000701	0.012018	0.004006	0.035053	0.012018	0.100151	0.000301	0.006400	0.431652	0.000000	0.000000	0.012018	0.035053	0.035053	0.000000
NAM Oxencis Disco isco <th< td=""><td>k122</td><td>442</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.000000</td><td></td><td></td><td>0.029994</td><td></td></th<>	k122	442																	0.000000			0.029994	
111 111 11111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 11111 1111 1111 11111 11111 11111 </td <td>k123</td> <td>N/A</td> <td></td> <td></td> <td></td> <td></td> <td>0.006499</td> <td>0.000000</td> <td></td> <td>0.009998</td> <td></td> <td>0.000000</td> <td>0.009998</td> <td></td> <td></td> <td></td> <td></td> <td>0.000000</td> <td>0.000000</td> <td></td> <td></td> <td></td> <td>0.000000</td>	k123	N/A					0.006499	0.000000		0.009998		0.000000	0.009998					0.000000	0.000000				0.000000
121 143 Lecccccccccccccccccccccccccccccccccccc	k124						0.006505		0.000000														
11	k125	N/A		0.070985		0.076984	0.006499	0.000000	0.000000	0.009998	0.001000	0.000000	0.009998	0.197959	0.002699	0.025000	0.362926	0.000000	0.000000	0.009998	0.029994	0.059988	0.000000
121114000014000010000010000<	k126																		0.011015			0.030042	
12100000000000000000000000000000000000	k120																						
12 13 13 13 <td>k128</td> <td>81</td> <td></td> <td></td> <td></td> <td>0.061067</td> <td>0.000000</td> <td></td> <td></td> <td></td> <td></td> <td>0.000000</td> <td></td> <td></td> <td>0.001101</td> <td></td> <td></td> <td>0.000000</td> <td></td> <td></td> <td></td> <td></td> <td></td>	k128	81				0.061067	0.000000					0.000000			0.001101			0.000000					
1010000000000000000000000000000000000	k120				0.0702.00			0.00000	0.00000	01001001	0.001070	0.000000	0.01.010			0.00.100	0	0.00000	0.011012	0.000000		0.027.002	0.000100
1110000000000000000000000000000000000	k130	256																					
121 1310 131000 131000 13100 13100 13	k131	260		0.061147	0.100242	0.074179	0.001103	0.000000	0.000501	0.044106			0.015036			0.003900		0.000000		0.000000	0.040097	0.030072	0.001002
1314 1340 13400 ² 0.0000 ² </td <td>k132</td> <td>261</td> <td>LAWC31R2</td> <td>0.061147</td> <td>0.100242</td> <td>0.074179</td> <td>0.001103</td> <td>0.000000</td> <td>0.000501</td> <td>0.044106</td> <td>0.001002</td> <td>0.027065</td> <td>0.015036</td> <td>0.120290</td> <td>0.001103</td> <td>0.003900</td> <td>0.468128</td> <td>0.000000</td> <td>0.011027</td> <td>0.000000</td> <td>0.040097</td> <td>0.030072</td> <td>0.001002</td>	k132	261	LAWC31R2	0.061147	0.100242	0.074179	0.001103	0.000000	0.000501	0.044106	0.001002	0.027065	0.015036	0.120290	0.001103	0.003900	0.468128	0.000000	0.011027	0.000000	0.040097	0.030072	0.001002
NA LNK-362 0.8790 0.8790 0.8790 0.8790 0.8090 0.8090 0.8090 0.8090 0.1790 0.8198 0.8290 0.8290 0.8198 0.8290 0.8299 0.8198 0.8290 0.8299 0.8299 0.8299 0.8299 0.8299 0.8299 0.8299 0.8199 0.8199 0.8199	k133	N/A						0.000000	0.001099	0.042947	0.000999	0.026967	0.014982			0.025000	0.454441	0.000000		0.000000	0.038952	0.028964	0.002597
151 0.11001 0.01991 0.01990 0.	k134	290			0.091981			0.000000							0.001600	0.025000		0.000000				0.028994	
13.113.414.414.010.0000 </td <td>k135</td> <td>N/A</td> <td></td> <td></td> <td></td> <td></td> <td>0.003896</td> <td>0.000000</td> <td></td> <td></td> <td></td> <td>0.036958</td> <td></td> <td></td> <td></td> <td>0.025000</td> <td></td> <td>0.000000</td> <td>0.010988</td> <td>0.000000</td> <td>0.038956</td> <td>0.028967</td> <td></td>	k135	N/A					0.003896	0.000000				0.036958				0.025000		0.000000	0.010988	0.000000	0.038956	0.028967	
138 476 LAWE13 0.06992 0.01997 0.00999 0.00799 0.05792 0.05795 0.01994	k136	454		0.060963	0.099940		0.001999	0.000999	0.000799	0.054967	0.004997	0.042974	0.028982		0.001199	0.005400	0.490704	0.000000	0.013992	0.000000	0.034979	0.029982	0.000200
199 477 LNRE14 0.84885 0.07970 0.01990 0.0000 0.03984 0.00390 0.01994 0.01910 0.03100 0.01396 0.0000 0.03984 0.0000 0.01994 0.01196 0.01000 0.03994 0.0000 0.0000 0.01994 0.0000 0.01994 0.01196 0.01000 0.03994 0.0000 0.0000 0.01994 0.01196 0.01000 0.0000 0.0000 0.0000 0.0000 0.0000 0.01196 0.01000 0.01196 0.01000 0.01196 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.01196 0.0000 0.0000 0.0000 0.0000 0.01196 0.00000 0.0000 0.0000<	k137	N/A	LAWE11	0.060957	0.099930	0.022984	0.001999	0.000999	0.000799	0.054961	0.047966	0.000000	0.014990	0.173878	0.001199	0.002500	0.437693	0.000000	0.013990	0.000000	0.034976	0.029979	0.000200
141 1478 LANE15 0.058982 0.01999 0.01090 0.00200 0.03594 0.00390 0.01994 0.01000 0.01394 0.01000 0.01394 0.00300 0.01394 0.01394 0.01394 0.01394 0.01394 0.01394 0.01394 0.01394 0.01000 0.01400 0.01400 0.01000 0.01394 0.00300 0.0141 0.0000 0.0141 0.0000 0.0141 0.0000 0.0141 0.0000 0.0141 0.0000 0.01414 0.00000 0.01414 0.00000<	k138	476	LAWE13	0.069902	0.097863	0.019972	0.001997	0.000999	0.000799	0.053924	0.053924	0.000000	0.003995	0.196724	0.001198	0.003200	0.418412	0.000000	0.003994	0.000000	0.033952	0.038945	0.000200
414 4.NVE16 0.05902 0.05902 0.01900 0.09000 0.19900 0.01900 0.01400 0.01394 0.00000 0.01404 0.00000 0.	k139	477	LAWE14	0.048985	0.097970	0.014995	0.001999	0.001000	0.000800	0.053984	0.053984	0.000000	0.003999	0.196941	0.001200	0.003100	0.433869	0.000000	0.013996	0.000000	0.033990	0.038988	0.000200
42 NA LAWE2H 0.05972 0.01974 0.01997 0.00399 0.03790 0.03790 0.01980 0.01980 0.01980 0.02180 0.01180 0.01180 0.01180 0.01280 0.01180 0.	k140	478	LAWE15	0.058982	0.087973	0.014995	0.001999	0.001000	0.000800	0.053984	0.053984	0.000000	0.008997	0.196941	0.001200	0.003100	0.428871	0.000000	0.013996	0.000000	0.033990	0.038988	0.000200
141 1448 LANE3 0.08976 0.09990 0.01990 0.01000 0.00800 0.04990 0.01990 0.00200 0.01990 0.00200 0.01000 0.00800 0.04990 0.01990 0.00200 0.01190 0.00200 0.01100 0.00000 0.01190 0.00200 0.01100 0.00100 0.00100 0.00000 0.01190 0.0120 0.00100 0.01100 0.00000 0.01100 0.00100 0.00100 0.00000 0.01190 0.01100 0.00100 0.00000 0.01190 0.01100 0.00100 0.00000 0.01190 0.01100 0.00100 0.00000 0.01100 0	k141	479	LAWE16	0.059012	0.082016	0.015003	0.002000	0.001000	0.000800	0.054011	0.054011	0.000000	0.009002	0.197040	0.001200	0.004600	0.428086	0.000000	0.014003	0.000000	0.034007	0.044009	0.000200
444 444 LAWE3H 0.89024 0.07039 0.02000 0.01400 0.01405 0.01709 0.00340 0.01406 0.01406 0.01406 0.01406 0.01406 0.01406 0.01406 0.01406 0.01406 0.01406 0.01406 0.01406 0.01396 0.00300 0.01406 0.01396 0.01396 0.02000 0.01206 0.01206 0.01396 0.01206 0.01396 0.01206 0.01396 0.02000 0.01206 0.01206 0.01206 0.01206 0.01206 0.01206 0.01396 0.01206	k142	N/A	LAWE2H	0.059922	0.097872	0.019974	0.001997	0.000999	0.000799	0.053930	0.037950	0.000000	0.013982	0.207729	0.001198	0.003100	0.423448	0.000000	0.013982	0.000000	0.033956	0.028962	0.000200
143 645 LAWE4H 0.0598 0.09791 0.0209 0.00090 0.05392 0.01990 0.01990 0.04390 0.44488 0.00000 0.13990 0.00390 0.01391 0.01391 </td <td>k143</td> <td>448</td> <td>LAWE3</td> <td>0.060976</td> <td>0.099960</td> <td>0.019992</td> <td>0.001999</td> <td>0.001000</td> <td>0.000800</td> <td>0.054978</td> <td>0.049980</td> <td>0.000000</td> <td>0.014994</td> <td>0.181927</td> <td>0.001199</td> <td>0.003200</td> <td>0.429827</td> <td>0.000000</td> <td>0.013994</td> <td>0.000000</td> <td>0.034986</td> <td>0.029988</td> <td>0.000200</td>	k143	448	LAWE3	0.060976	0.099960	0.019992	0.001999	0.001000	0.000800	0.054978	0.049980	0.000000	0.014994	0.181927	0.001199	0.003200	0.429827	0.000000	0.013994	0.000000	0.034986	0.029988	0.000200
Head NA LAWESH 0.60018 0.98030 0.02010 0.00000 0.05040 0.01020 0.01020 0.01000 0.01200 0.00000 0.01201 0.00000 0.01200 0.01000 0.01101 0.00000 0.01200 0.01500 0.01100 0.00000 0.00000 0.01500 0.01394 0.00100 0.00300 0.01794 0.00100 0.00300 0.01394 0.00300 0.01300 0.01394 0.00300 0.01394 0.00300 0.01394 0.00100 0.00300 0.01394 0.00100	k144	474	LAWE3H	0.059024	0.097039	0.020008	0.002001	0.001000	0.000800	0.054022	0.054022	0.000000	0.014005	0.197079	0.001200	0.003400	0.419168	0.000000	0.014006	0.000000	0.034014	0.029012	0.000200
147 N/A LAWE7 0.6017 0.0012 0.0020 0.00100 0.00000 0.0550 0.0500 0.0200 0.01000 0.00000 0.05000 0.02000 0.01000 0.00000 0.02000 0.01000 0.02000 0.02000 0.01000 0.02000 0.00000 0.02000 0.02000 0.01000 0.02000 0.02000 0.01000 0.02000 0.02000 0.01000 0.02000 0.01200 0.01200 0.01000 0.04400 0.04400 0.44805 0.0000 0.13941 0.0000 0.01394 0.0010 0.0000 0.01394 0.0010 0.00000 0.01994 </td <td>k145</td> <td>625</td> <td>LAWE4H</td> <td>0.059958</td> <td>0.097931</td> <td>0.024982</td> <td>0.001999</td> <td>0.000999</td> <td>0.000799</td> <td>0.053962</td> <td>0.004997</td> <td>0.000000</td> <td>0.014989</td> <td>0.212851</td> <td>0.001199</td> <td>0.003500</td> <td>0.444688</td> <td>0.000000</td> <td>0.013990</td> <td>0.000000</td> <td>0.033976</td> <td>0.028980</td> <td>0.000200</td>	k145	625	LAWE4H	0.059958	0.097931	0.024982	0.001999	0.000999	0.000799	0.053962	0.004997	0.000000	0.014989	0.212851	0.001199	0.003500	0.444688	0.000000	0.013990	0.000000	0.033976	0.028980	0.000200
1444.ME7H0.060000.09000.063000.020000.000000.054000.054000.012000.012000.010000.44810.000000.14010.00000.030000.030000.020001504.M0LAWA5T0.069000.019900.001900.001900.000000.049810.019900.010000.019900.019900.019900.010000.019900.010000.019900.010000.019900.010000.019900.010000.019900.019900.010000.019000.010000.010100.000000.13900.010100.001000.01000	k146	N/A	LAWE5H	0.060018	0.098030	0.036011	0.002001	0.001000	0.000800	0.054016	0.005001	0.005002	0.015005	0.190057	0.001200	0.003500	0.451136	0.000000	0.014004	0.000000	0.034010	0.029009	0.000200
Image: state	k147	N/A	LAWE7	0.061074	0.100121	0.064077	0.002002	0.001001	0.000000	0.055067	0.005006	0.032039	0.015018	0.125151	0.001202	0.005500	0.453547	0.000000	0.014017	0.000000	0.035042	0.030036	0.000100
1630 1AWM57 0.06997 0.01998 0.	k148	451	LAWE7H	0.060006	0.099010	0.063006	0.002000	0.001000	0.000800	0.054005	0.005001	0.032003	0.015002	0.135014	0.001200	0.004700	0.448045	0.000000	0.014001	0.000000	0.035004	0.030003	0.000200
151481LMMSs0.09970.09970.09990.01990.01090.00800.017980.010990.0109 <td>k149</td> <td>N/A</td> <td>LAWE9H</td> <td>0.060908</td> <td>0.098851</td> <td>0.068896</td> <td>0.001997</td> <td>0.000999</td> <td>0.000799</td> <td>0.054917</td> <td>0.004992</td> <td>0.040938</td> <td>0.023964</td> <td>0.089865</td> <td>0.001198</td> <td>0.004300</td> <td>0.468295</td> <td>0.000000</td> <td>0.013979</td> <td>0.000000</td> <td>0.034947</td> <td>0.029955</td> <td>0.000200</td>	k149	N/A	LAWE9H	0.060908	0.098851	0.068896	0.001997	0.000999	0.000799	0.054917	0.004992	0.040938	0.023964	0.089865	0.001198	0.004300	0.468295	0.000000	0.013979	0.000000	0.034947	0.029955	0.000200
122 1482 LAWM59 0.06979 0.08997 0.0299 0.0109 0.0000 0.0109 0.01090 <td>k150</td> <td>480</td> <td>LAWM57</td> <td>0.069972</td> <td>0.109956</td> <td>0.029988</td> <td>0.001999</td> <td>0.001000</td> <td>0.000800</td> <td>0.046981</td> <td>0.037985</td> <td>0.000000</td> <td>0.013994</td> <td>0.205917</td> <td>0.001200</td> <td>0.003200</td> <td>0.392842</td> <td>0.000000</td> <td>0.013994</td> <td>0.000000</td> <td>0.029988</td> <td>0.039984</td> <td>0.000200</td>	k150	480	LAWM57	0.069972	0.109956	0.029988	0.001999	0.001000	0.000800	0.046981	0.037985	0.000000	0.013994	0.205917	0.001200	0.003200	0.392842	0.000000	0.013994	0.000000	0.029988	0.039984	0.000200
1331483LAWM600.049990.109970.109970.109970.01090.010000.014900.010900.101900.101900.01000.101900.010000.101900.010000.101900.010000.101900.010000.101900.010000.101900.010000.101900.010000.013900.01390<	k151	481	LAWM58	0.069972	0.092963	0.009996	0.001999	0.001000	0.000800	0.064974	0.037985	0.000000	0.013994	0.204918	0.001199	0.003200	0.416833	0.000000	0.013994	0.000000	0.025989	0.039984	0.000200
14.1 14.1 <th< td=""><td>k152</td><td>482</td><td>LAWM59</td><td>0.067979</td><td>0.089973</td><td>0.029991</td><td>0.001999</td><td>0.001000</td><td>0.000800</td><td>0.064980</td><td>0.019994</td><td>0.000000</td><td>0.013996</td><td>0.199940</td><td>0.001200</td><td>0.003100</td><td>0.445866</td><td>0.000000</td><td>0.013996</td><td>0.000000</td><td>0.024992</td><td>0.019994</td><td>0.000200</td></th<>	k152	482	LAWM59	0.067979	0.089973	0.029991	0.001999	0.001000	0.000800	0.064980	0.019994	0.000000	0.013996	0.199940	0.001200	0.003100	0.445866	0.000000	0.013996	0.000000	0.024992	0.019994	0.000200
Alternation	k153	483	LAWM60	0.049990	0.109978	0.016996	0.002000	0.001000	0.000800	0.044991	0.019996	0.000000	0.013997	0.199960	0.001200	0.003000	0.453909	0.000000	0.013997	0.000000	0.027994	0.039992	0.000200
486 LAWMG 0.06998 0.03993 0.00994 0.01999 0.00099 0.04979 0.02995 0.01990 0.01	k154	484	LAWM61	0.049975	0.109945	0.009995	0.001999	0.001000	0.000800	0.044977	0.032983	0.000000	0.013993	0.199900	0.001199	0.003300	0.450774	0.000000	0.013993	0.000000	0.044977	0.019990	0.000200
487 LAWM64 0.06996 0.09896 0.01986 0.00996 0.00996 0.00996 0.00996 0.00996 0.00996 0.00996 0.01982 0.01986 0.0	k155		LAWM62	0.050030	0.090054	0.010006	0.002001	0.001001	0.000801	0.065039	0.034021	0.000000	0.014008	0.200120	0.001201	0.003200	0.443267	0.000000	0.014008	0.000000	0.038023	0.033020	0.000200
And the series And the	k156	486	LAWM63	0.069958	0.093943	0.009994	0.001999	0.000999	0.000799	0.046972	0.020987	0.000000	0.013992	0.229862	0.001199	0.003400	0.425744	0.000000	0.013992	0.000000	0.044973	0.020987	0.000200
489 LAWA66 0.07599 0.01997 0.00999 0.0109 0.0080 0.0299 0.01999 0.01999 0.01999 0.01999 0.01999 0.01999 0.01999 0.01999 0.01999 0.01999 0.01999 0.01990 0.0120 0	k157	487	LAWM64	0.069916	0.109868	0.029964	0.001998	0.000999	0.000799	0.064922	0.019976	0.000000	0.013983	0.200758	0.001198	0.003000	0.383538	0.000000	0.013983	0.000000	0.044946	0.039952	0.000200
490 LAWAG7 0.80048 0.1060 0.1050 0.0000 0.0000 0.60408 0.60408 0.0000 0.0100 0.1010 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0120 0.0100<	k158	488	LAWM65	0.049970	0.089946	0.029982	0.001999	0.000999	0.000799	0.044973	0.019988	0.000000	0.013991	0.227863	0.001199	0.003400	0.435738	0.000000	0.013992	0.000000	0.024985	0.039976	0.000200
Mark Mark <th< td=""><td>k159</td><td>489</td><td>LAWM66</td><td>0.075969</td><td>0.105957</td><td>0.009996</td><td>0.001999</td><td>0.001000</td><td>0.000800</td><td>0.062975</td><td>0.004998</td><td>0.000000</td><td>0.013994</td><td>0.229908</td><td>0.001200</td><td>0.003200</td><td>0.383846</td><td>0.000000</td><td>0.013994</td><td>0.000000</td><td>0.044982</td><td>0.044982</td><td>0.000200</td></th<>	k159	489	LAWM66	0.075969	0.105957	0.009996	0.001999	0.001000	0.000800	0.062975	0.004998	0.000000	0.013994	0.229908	0.001200	0.003200	0.383846	0.000000	0.013994	0.000000	0.044982	0.044982	0.000200
492 LAWM69 0.07952 0.10953 0.02952 0.0199 0.0079 0.03795 0.01995 0.01995 0.01999 0.00799 0.00799 0.00199 0.00799 0.01999 0.00199 0.01995 0.019	k160	490	LAWM67	0.080048	0.106064	0.015009	0.002001	0.001001	0.000801	0.046028	0.054033	0.000000	0.014008	0.201121	0.001201	0.003200	0.384231	0.000000	0.014008	0.000000	0.027016	0.050030	0.000200
493 LAWM7 0.049975 0.08996 0.01999 0.01999 0.00199 0.00799 0.04975 0.04997 0.01999 0.0	k161	491	LAWM68	0.049975	0.089955	0.029985	0.001999	0.001000	0.000800	0.064967	0.047976	0.000000	0.013993	0.199900	0.001199	0.003300	0.407795	0.000000	0.013993	0.000000	0.035982	0.036981	0.000200
494 LAWM71 0.049970 0.08994 0.001990 0.001990 0.004970 0.053967 0.001990 0.01990 <	k162	492	LAWM69	0.079952	0.109934	0.029982	0.001999	0.000999	0.000799	0.063961	0.017989	0.000000	0.013992	0.200879	0.001199	0.003400	0.395762	0.000000	0.013992	0.000000	0.044973	0.019988	0.000200
	k163	493	LAWM70	0.049975	0.093953	0.009995	0.001999	0.001000	0.000800	0.064967	0.045977	0.000000	0.013993	0.199900	0.001199	0.003300	0.453772	0.000000	0.013993	0.000000	0.024987	0.019990	0.000200
165 495 LAWM2 0.07988 0.10986 0.2097 0.00998 0.0987 0.00997 0.00999 0.00999 0.00999 0.00499 0.041941 0.00000 0.13980 0.200718 0.01198 0.03200 0.31450 0.00000 0.13980 0.00000 0.02496 0.02097 0.00000	k164		LAWM71	0.049970	0.089946	0.009994	0.001999	0.000999	0.000799	0.044973	0.053967	0.000000	0.013992	0.199880	0.001199	0.003400	0.449729	0.000000	0.013992	0.000000	0.044973	0.019988	0.000200
	k165	495	LAWM72	0.079888	0.109846	0.028959	0.001997	0.000999	0.000799	0.064909	0.041941	0.000000	0.013980	0.200718	0.001198	0.003200	0.391450	0.000000	0.013980	0.000000	0.024965	0.020971	0.000200

K-3 ID Number	Glass Number from Database	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	14.0	Na ₂ O	P2O5	SO3	SiO2	SnO ₂	TiO ₂	V205	ZnO	ZrO ₂	Others
k166	496	LAWM73	Al ₂ O ₃ 0.079968	0.089964	0.029988	0.001999	0.001000	F 0.000800	0.048980	0.011995	0.000000	MgO 0.013994	0.229908	P ₂ O ₅ 0.001200	0.003200	0.403838	0.000000	0.013994	0.000000	2nO 0.044982	0.023990	0.000200
k160	490	LAWM75 LAWM74	0.075992	0.089904	0.009999	0.002000	0.001000	0.000800	0.048980	0.000000	0.000000	0.013994	0.2129908	0.001200	0.003200	0.453954	0.000000	0.013994	0.000000	0.025997	0.023990	0.000200
k167	498	LAWM75	0.073992	0.089991	0.029961	0.002000	0.001000	0.000800	0.064915	0.010986	0.000000	0.013999	0.206730	0.001200	0.002900	0.455954	0.000000	0.013999	0.000000	0.023997	0.049993	0.000200
k169	499	LAWM75 LAWM76	0.064045	0.091880	0.029981	0.002001	0.000999	0.000799	0.054038	0.026018	0.000000	0.013982	0.208730	0.001198	0.003100	0.384499	0.000000	0.013982	0.000000	0.034024	0.034024	0.000200
k10)	N/A	LAWSNa1-3	0.100000	0.093000	0.011000	0.001100	0.005000	0.004900	0.011000	0.001000	0.000000	0.011000	0.250000	0.002300	0.005200	0.380000	0.011000	0.000000	0.020000	0.037000	0.054000	0.002500
k170	N/A	LAWSNa2-2	0.060895	0.098830	0.078864	0.003494	0.004991	0.001797	0.002995	0.001997	0.000000	0.009983	0.219622	0.002905	0.012000	0.411292	0.000000	0.000000	0.019966	0.029949	0.039931	0.000399
k171	N/A	LAWSNa3-2	0.056063	0.118132	0.100112	0.000200	0.005005	0.002002	0.002993	0.006007	0.025028	0.010011	0.160179	0.001201	0.012000	0.413462	0.000000	0.000000	0.017019	0.032036	0.035039	0.001502
k172	778	LORPM10R1	0.035039	0.060067	0.122135	0.008009	0.003003	0.002002	0.080089	0.059065	0.050056	0.045050	0.050056	0.005006	0.008100	0.390433	0.000000	0.030033	0.040044	0.010011	0.000000	0.000801
k175	779	LORPM11	0.035007	0.060012	0.000000	0.008002	0.003000	0.003003	0.003001	0.001000	0.000000	0.050010	0.196039	0.005000	0.001000	0.494099	0.000000	0.030006	0.000000	0.050010	0.060012	0.000800
k175	782	LORPM14R1	0.056000	0.075000	0.098000	0.000200	0.000000	0.000100	0.024000	0.047000	0.036000	0.035000	0.133000	0.000100	0.002600	0.384000	0.036000	0.006000	0.029000	0.018000	0.020000	0.000000
k176	785	LORPM17R1	0.108033	0.075023	0.027008	0.000200	0.000000	0.000100	0.057017	0.042013	0.010003	0.035000	0.187056	0.000100	0.005300	0.386117	0.010003	0.008002	0.008002	0.021006	0.020006	0.000000
k170	787	LORPM19R1	0.085871	0.092860	0.042935	0.001897	0.000999	0.000699	0.028956	0.027958	0.016975	0.022965	0.146779	0.001198	0.003500	0.400397	0.016975	0.019970	0.022965	0.033949	0.031952	0.000200
k178	788	LORPM20R1	0.097872	0.085888	0.036952	0.000200	0.000000	0.000100	0.029961	0.034954	0.029961	0.014980	0.154798	0.000100	0.004900	0.400377	0.027963	0.008988	0.016978	0.021971	0.032957	0.0000000
k179	789	LORPM21	0.048029	0.129077	0.115069	0.000200	0.000000	0.000100	0.071043	0.010006	0.000000	0.000000	0.160096	0.000100	0.001000	0.449270	0.000000	0.006004	0.000000	0.010006	0.000000	0.000000
k180	793	LORPM25	0.138111	0.129077	0.000000	0.001001	0.000000	0.000400	0.010008	0.026021	0.024019	0.043034	0.183147	0.000601	0.001200	0.371297	0.003002	0.000004	0.000000	0.010008	0.060048	0.000000
k181	797	LORPM28R1	0.035000	0.137000	0.000000	0.007200	0.003000	0.002700	0.003000	0.001000	0.050000	0.000000	0.143000	0.004500	0.001200	0.451000	0.050000	0.000000	0.040000	0.010000	0.060000	0.000800
k182	802	LORPM32	0.056011	0.116023	0.025005	0.001200	0.000000	0.0002700	0.043009	0.047010	0.036007	0.035007	0.100020	0.000600	0.004800	0.431087	0.010002	0.024005	0.011002	0.039008	0.020004	0.000000
k183	804	LORPM34	0.072051	0.122086	0.023003	0.008006	0.003002	0.003002	0.018013	0.047033	0.040028	0.035025	0.101071	0.005003	0.003500	0.384270	0.019013	0.024017	0.022015	0.021015	0.047033	0.000800
k184	805	LORPM35	0.104167	0.075121	0.049079	0.000200	0.000002	0.000100	0.018013	0.032051	0.029047	0.031050	0.173278	0.000100	0.003000	0.384617	0.019013	0.013021	0.0022015	0.018029	0.050080	0.000000
k185	806	LORPM36	0.066987	0.121976	0.023995	0.006999	0.002999	0.002600	0.017996	0.024995	0.039992	0.034993	0.127974	0.004299	0.002500	0.397920	0.024995	0.021996	0.007998	0.017996	0.049990	0.000800
k186	807	LORPM37	0.055961	0.115919	0.023983	0.002099	0.000999	0.000799	0.021985	0.046967	0.036974	0.034975	0.121914	0.001299	0.002300	0.394723	0.039972	0.023983	0.007994	0.041971	0.024983	0.000200
k187	808	LORPM38	0.055978	0.075969	0.024990	0.007997	0.002999	0.002999	0.064974	0.046981	0.009996	0.034986	0.133946	0.004998	0.003600	0.397840	0.009996	0.023990	0.007997	0.041983	0.046981	0.000800
k188	809	LORPM39	0.055950	0.121890	0.023978	0.000200	0.000000	0.000100	0.064941	0.012988	0.039964	0.0099991	0.173843	0.000100	0.002500	0.383654	0.009991	0.005995	0.031971	0.017984	0.043960	0.000000
k189	1004	LORPM4R2	0.093943	0.123925	0.050969	0.007396	0.002998	0.002798	0.002998	0.058964	0.000000	0.048970	0.139916	0.004597	0.007000	0.359783	0.000000	0.010993	0.039976	0.043974	0.000000	0.000800
k190	N/A	LORPM4R2-Repeat	0.093943	0.123925	0.050969	0.007396	0.002998	0.002798	0.002998	0.058964	0.000000	0.048970	0.139916	0.004597	0.007000	0.359783	0.000000	0.010993	0.039976	0.043974	0.000000	0.000800
k191	777	LORPM9	0.086043	0.069035	0.000000	0.000200	0.000000	0.000100	0.003001	0.008004	0.000000	0.000000	0.239120	0.000100	0.001100	0.493247	0.000000	0.000000	0.040020	0.050025	0.010005	0.000000
k192	N/A	OD2-G-50A	0.110132	0.091110	0.016019	0.000000	0.000000	0.000000	0.057069	0.002002	0.000000	0.014017	0.200241	0.000300	0.002000	0.403485	0.000000	0.034041	0.000000	0.043052	0.025030	0.001502
k193	835	ORLEC1	0.099980	0.099980	0.019996	0.001999	0.005999	0.000800	0.009998	0.004999	0.000000	0.009998	0.239952	0.001200	0.001000	0.380924	0.022995	0.009998	0.000000	0.029994	0.059988	0.000200
k194	844	ORLEC10	0.100050	0.100050	0.019010	0.002001	0.006003	0.000800	0.010005	0.014007	0.000000	0.010005	0.234117	0.001201	0.001300	0.378189	0.023012	0.010005	0.000000	0.030015	0.060030	0.000200
k195	845	ORLEC11	0.100070	0.100070	0.019013	0.002002	0.006004	0.000801	0.010007	0.034024	0.000000	0.010007	0.221155	0.001201	0.001100	0.371260	0.023016	0.010007	0.000000	0.030021	0.060042	0.000200
k196	846	ORLEC12	0.100060	0.100060	0.020012	0.002001	0.006004	0.000800	0.010006	0.056034	0.000000	0.010006	0.206124	0.001201	0.001200	0.363218	0.023014	0.010006	0.000000	0.030018	0.060036	0.000200
k197	847	ORLEC13	0.100171	0.100171	0.019032	0.002003	0.005009	0.000801	0.007012	0.005009	0.000000	0.010017	0.240410	0.001202	0.003100	0.385658	0.023039	0.007012	0.000000	0.030051	0.060103	0.000200
k198	848	ORLEC14	0.100141	0.100141	0.020028	0.002003	0.003004	0.000801	0.003004	0.005007	0.000000	0.010014	0.241340	0.001202	0.005400	0.390550	0.023033	0.003004	0.000000	0.030042	0.061086	0.000200
k199	849	ORLEC15	0.100101	0.100101	0.020020	0.002002	0.002002	0.000801	0.002002	0.005005	0.000000	0.010010	0.240242	0.001201	0.006800	0.388391	0.023023	0.000000	0.008008	0.030030	0.060061	0.000200
k200	850	ORLEC16	0.100091	0.100091	0.025023	0.002002	0.002002	0.000801	0.002002	0.005004	0.000000	0.010009	0.230209	0.001201	0.007900	0.409371	0.013012	0.000000	0.011010	0.030027	0.050045	0.000200
k201	851	ORLEC17	0.100111	0.100111	0.036040	0.002002	0.001001	0.000801	0.002002	0.005006	0.000000	0.010011	0.221246	0.001202	0.008700	0.426473	0.003003	0.000000	0.012013	0.030033	0.040045	0.000200
k202	852	ORLEC18	0.090972	0.099970	0.045986	0.001999	0.001000	0.000800	0.001999	0.004999	0.000000	0.009997	0.210936	0.001200	0.008100	0.442866	0.000000	0.000000	0.013996	0.029991	0.034989	0.000200
k203	853	ORLEC19	0.082008	0.101010	0.055006	0.002000	0.001000	0.000800	0.002000	0.005001	0.000000	0.010001	0.201020	0.001200	0.008700	0.452046	0.000000	0.000000	0.013001	0.030003	0.035004	0.000200
k204	836	ORLEC2	0.100000	0.100000	0.022000	0.002000	0.001000	0.000800	0.010000	0.005000	0.000000	0.010000	0.231000	0.001200	0.007800	0.395000	0.013000	0.010000	0.011000	0.030000	0.050000	0.000200
k205	854	ORLEC20	0.078047	0.100061	0.063038	0.002001	0.001001	0.000800	0.002001	0.005003	0.004002	0.010006	0.191116	0.001201	0.008200	0.452274	0.000000	0.000000	0.016010	0.030018	0.035021	0.000200
k206	855	ORLEC21	0.078039	0.100050	0.070035	0.002001	0.001001	0.000800	0.002001	0.005003	0.015008	0.010005	0.181091	0.001201	0.009300	0.442223	0.000000	0.000000	0.017009	0.030015	0.035018	0.000200
k207	856	ORLEC22	0.078063	0.100081	0.076061	0.002002	0.001001	0.000801	0.002002	0.005004	0.021017	0.010008	0.171138	0.001201	0.010000	0.438354	0.000000	0.000000	0.018015	0.030024	0.035028	0.000200
k208	857	ORLEC23	0.076783	0.098720	0.080771	0.001994	0.000997	0.000798	0.019944	0.004986	0.023932	0.009972	0.157554	0.001197	0.011600	0.427788	0.000000	0.000000	0.018946	0.029915	0.033904	0.000199
k209	858	ORLEC24	0.100131	0.100131	0.020026	0.002003	0.003004	0.000801	0.003004	0.014018	0.000000	0.010013	0.234306	0.001202	0.005500	0.385504	0.023030	0.003004	0.004005	0.030039	0.060079	0.000200
k210	862	ORLEC26	0.100101	0.100101	0.020020	0.002002	0.004004	0.000801	0.006006	0.005005	0.000000	0.010010	0.240241	0.001201	0.003800	0.387389	0.023023	0.006006	0.000000	0.030030	0.060060	0.000200
k211	863	ORLEC27	0.100091	0.100090	0.020018	0.002002	0.004004	0.000801	0.006005	0.056051	0.000000	0.010009	0.206186	0.001201	0.003900	0.370335	0.023021	0.006005	0.000000	0.030027	0.060054	0.000200
k212	864	ORLEC28	0.100010	0.100010	0.020002	0.002000	0.004000	0.000800	0.006001	0.034004	0.000000	0.010001	0.221022	0.001200	0.003700	0.378038	0.023002	0.006001	0.000000	0.030003	0.060006	0.000200
k213	873	ORLEC29	0.100010	0.110011	0.025003	0.002000	0.001000	0.000800	0.002000	0.005001	0.000000	0.010001	0.230023	0.001200	0.008700	0.410041	0.000000	0.000000	0.014002	0.030003	0.050005	0.000200
k214	837	ORLEC3	0.100152	0.100151	0.026039	0.002003	0.001002	0.000801	0.010015	0.005008	0.000000	0.010015	0.221335	0.001202	0.008300	0.418633	0.003005	0.010015	0.012018	0.030045	0.040061	0.000200
k215	874	ORLEC30	0.099150	0.109165	0.036055	0.002003	0.001001	0.000801	0.002003	0.005008	0.000000	0.010015	0.219332	0.001202	0.008300	0.412624	0.000000	0.000000	0.013020	0.030045	0.050076	0.000200
k216	875	ORLEC31	0.090972	0.109967	0.045986	0.001999	0.001000	0.000800	0.001999	0.004999	0.000000	0.009997	0.210936	0.001200	0.008100	0.428870	0.000000	0.000000	0.017995	0.029991	0.034989	0.000200
k217	876	ORLEC32	0.081049	0.110067	0.055033	0.002001	0.001001	0.000801	0.002001	0.005003	0.000000	0.010006	0.201122	0.001201	0.009200	0.436264	0.000000	0.000000	0.020012	0.030018	0.035021	0.000200
k218	877	ORLEC33	0.093019	0.110022	0.025005	0.002001	0.001000	0.000800	0.002000	0.005001	0.000000	0.010002	0.231047	0.001200	0.007600	0.410083	0.000000	0.000000	0.021004	0.030006	0.050010	0.000200
k219	878	ORLEC34	0.084068	0.110089	0.036029	0.002002	0.001001	0.000801	0.002002	0.005004	0.000000	0.010008	0.220178	0.001201	0.009000	0.425343	0.000000	0.000000	0.023018	0.030024	0.040032	0.000200
k220	879	ORLEC35	0.076069	0.110100	0.046042	0.002002	0.001001	0.000801	0.002002	0.005004	0.000000	0.010009	0.211191	0.001201	0.007900	0.437397	0.000000	0.000000	0.024022	0.030027	0.035032	0.000200

01100 01100 01100 01000 0100 <th></th> <th>Glass Number from Database</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th>N. O</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		Glass Number from Database							_					N. O									
9000 910000 91000 91000 9													-								-		
Part 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td>555</td> <td></td> <td>0.00.00-1</td> <td></td> <td></td>		555																			0.00.00-1		
Desc Desc Long Long <thlong< th=""> <thlong< th=""> Long <thlo< td=""><td></td><td></td><td></td><td></td><td></td><td>0.0.0777</td><td></td><td>0.000000</td><td></td><td>0.000-000</td><td></td><td>0.001770</td><td>0.007770</td><td>0.220701</td><td>0.000-000</td><td>01002000</td><td>0</td><td></td><td></td><td>0.0207770</td><td></td><td>0.00</td><td>0.000-00</td></thlo<></thlong<></thlong<>						0.0.0777		0.000000		0.000-000		0.001770	0.007770	0.220701	0.000-000	01002000	0			0.0207770		0.00	0.000-00
1212 1414 0124 0124 0124 0124 0124 0126 0126 0126 0	-		GIGLECOU			0.055050	0.002002		0.000001	0.002002						0.007700		0.000000	0.000000	0.021022	0.050021	0.055052	0.000200
9 9 </td <td></td>																							
Phere Phere <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00.00.00</td><td></td><td></td></th<>																					0.00.00.00		
B B			OREECTO		0.107707	0.007777	0.001777	0.001000	0.000000	0.001////	0.001777	0.01 1775	0.007777	0.100715		0.010100		0.000000	0.000000	0.021772	0.02///1	0.051707	0.000200
Physe Billion Billion <th< td=""><td></td><td></td><td></td><td></td><td>0.110123</td><td></td><td>0.002002</td><td></td><td>0.000001</td><td>0.000000</td><td></td><td>0.021023</td><td></td><td></td><td>0.001201</td><td>0.010700</td><td></td><td>0.000000</td><td>0.000000</td><td>0.010.010</td><td>0.030033</td><td>0.055057</td><td></td></th<>					0.110123		0.002002		0.000001	0.000000		0.021023			0.001201	0.010700		0.000000	0.000000	0.010.010	0.030033	0.055057	
Photo Photo <t< td=""><td>k228</td><td>000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	k228	000																					
Phile Online nline Online <td></td> <td></td> <td></td> <td></td> <td>0.109956</td> <td></td> <td>0.001999</td> <td></td> <td>0.000800</td> <td>0.001////</td> <td>0.004998</td> <td>0.004998</td> <td>0.009996</td> <td></td> <td></td> <td>0.009200</td> <td></td> <td>0.000000</td> <td>0.000000</td> <td></td> <td>0.029988</td> <td></td> <td></td>					0.109956		0.001999		0.000800	0.001////	0.004998	0.004998	0.009996			0.009200		0.000000	0.000000		0.029988		
N31 N31 N310 N300 300 N300 N30	k230		ORLEC44	0.076046	0.110067	0.055033	0.002001	0.001001	0.000800	0.002001	0.005003	0.010006	0.010006	0.201122	0.001201	0.009200	0.427259	0.000000	0.000000	0.024015	0.030018	0.035021	0.000200
Shale Shane Shale Shale <th< td=""><td>k231</td><td>894</td><td>ORLEC45</td><td>0.076115</td><td>0.110167</td><td>0.062094</td><td>0.002003</td><td>0.001002</td><td>0.000801</td><td>0.002003</td><td>0.005008</td><td>0.014021</td><td>0.010015</td><td>0.190289</td><td>0.001202</td><td>0.011300</td><td>0.423643</td><td>0.000000</td><td>0.000000</td><td>0.025038</td><td>0.030046</td><td>0.035053</td><td>0.000200</td></th<>	k231	894	ORLEC45	0.076115	0.110167	0.062094	0.002003	0.001002	0.000801	0.002003	0.005008	0.014021	0.010015	0.190289	0.001202	0.011300	0.423643	0.000000	0.000000	0.025038	0.030046	0.035053	0.000200
1314 141000 14100 14100	k232	895	ORLEC46	0.075923	0.109889	0.069929	0.001998	0.000999	0.000799	0.001998	0.004995	0.018981	0.009990	0.180817	0.001199	0.010800	0.421574	0.000000	0.000000	0.024975	0.029970	0.034964	0.000200
22.29900	k233	896	ORLEC47	0.076015	0.110022	0.076015	0.002001	0.001000	0.000800	0.002001	0.005001	0.023005	0.010002	0.170035	0.001200	0.012600	0.420085	0.000000	0.000000	0.025005	0.030006	0.035007	0.000200
NM DIECE Diame Di	k234	897	ORLEC48R	0.076038	0.110056	0.082042	0.002001	0.001000	0.000800	0.002001	0.005003	0.026013	0.010005	0.160081	0.001201	0.012300	0.421213	0.000000	0.000000	0.025013	0.030015	0.035018	0.000200
27.109.10000.100	k235	898	ORLEC49	0.100000	0.110000	0.020000	0.002000	0.004000	0.000800	0.006000	0.005000	0.000000	0.010000	0.240000	0.001200	0.003800	0.391000	0.010000	0.006000	0.000000	0.030000	0.060000	0.000200
NM Display Dis	k236	N/A	ORLEC49-Repeat	0.100000	0.110000	0.020000	0.002000	0.004000	0.000800	0.006000	0.005000	0.000000	0.010000	0.240000	0.001200	0.003800	0.391000	0.010000	0.006000	0.000000	0.030000	0.060000	0.000200
ND D ND ND ND	k237	900	ORLEC50	0.100151	0.110166	0.020030	0.002003	0.003004	0.000801	0.003005	0.005008	0.000000	0.010015	0.240362	0.001202	0.005300	0.386583	0.010015	0.003005	0.009014	0.030045	0.060091	0.000200
BMDLPSDLP	k238	901	ORLEC51	0.099990	0.109989	0.019998	0.002000	0.003000	0.000800	0.002000	0.004999	0.000000	0.0099999	0.239976	0.001200	0.006900	0.381961	0.0099999	0.001000	0.015998	0.029997	0.059994	0.000200
bit bit< bit bit< bit< bit< bit< bit< bit< bit< bit<	k239	902	ORLEC52	0.099090	0.110100	0.020018	0.002002	0.002002	0.000801	0.002002	0.005005	0.000000	0.010009	0.238216	0.001201	0.007900	0.386350	0.008007	0.000000	0.019017	0.030027	0.058053	0.000200
b2:2 98:2 011:5* 011001 010002 010001 0100001 0100001 0100001 <td>k240</td> <td>840</td> <td>ORLEC6</td> <td>0.077984</td> <td>0.100980</td> <td>0.052989</td> <td>0.002000</td> <td>0.001000</td> <td>0.000800</td> <td>0.009998</td> <td>0.004999</td> <td>0.003999</td> <td>0.009998</td> <td>0.190961</td> <td>0.001200</td> <td>0.007000</td> <td>0.444910</td> <td>0.000000</td> <td>0.009998</td> <td>0.015997</td> <td>0.029994</td> <td>0.034993</td> <td>0.000200</td>	k240	840	ORLEC6	0.077984	0.100980	0.052989	0.002000	0.001000	0.000800	0.009998	0.004999	0.003999	0.009998	0.190961	0.001200	0.007000	0.444910	0.000000	0.009998	0.015997	0.029994	0.034993	0.000200
323.3 984.5 01125 011912 011912	k241	841	ORLEC7	0.078079	0.100101	0.066067	0.002002	0.001001	0.000801	0.010010	0.005005	0.015015	0.010010	0.181183	0.001201	0.008800	0.428432	0.000000	0.010010	0.017017	0.030030	0.035036	0.000200
NB SMM OMPMA1 OMPMA1 OMPMA0 OMPMA00 MPMA000	k242	842	ORLEC8	0.078071	0.100091	0.079072	0.002002	0.001001	0.000801	0.010009	0.005005	0.021019	0.010009	0.171156	0.001201	0.009900	0.417379	0.000000	0.010009	0.018016	0.030027	0.035032	0.000200
23.410.197.410.197.91<	k243	843	ORLEC9	0.079120	0.101153	0.093141	0.002003	0.001001	0.000801	0.010015	0.005008	0.025038	0.000000	0.162246	0.001202	0.010300	0.413627	0.000000	0.010015	0.019029	0.030046	0.036055	0.000200
31491%A1019%A010%A0	k244	545	ORPLA1	0.099910	0.089919	0.034968	0.007094	0.000000	0.000000	0.009991	0.005995	0.000000			0.000000	0.001900	0.412628	0.000000	0.000000	0.000000	0.023978	0.047957	0.001898
32494549479.419109.419109.909009.909009.909009090090920909009090190<	k245	563		0.108902	0.077930	0.064941	0.007094	0.004995	0.000000	0.008992	0.005995	0.000000	0.008992		0.000000	0.001900	0.357677	0.026976	0.000000	0.000000	0.023978	0.049955	0.001898
337 687.0 087.42 0.1928 0.1919 0.2009 0.2009 0.2009		565									0.006001					0.001900		0.027003				0.059006	
323495990srPa1,150srPa1,150srPa10s				0.108293	0.071193	0.020054	0.006818	0.005014	0.000000	0.009024	0.005014	0.000000	0.009024	0.240651	0.000000	0.001700	0.411112		0.000000	0.000000	0.024065	0.059160	
1 0		569		0 108043		0.020008	0.006903		0.000000	0.009003		0.000000	0.009004		0.000000				0.000000	0.000000		0.059024	
1290 1777 0RPLA15 0.99577 0.90527 0.00507 0.20000 0.00					01011020	0.020000	0.0007.00	0.000-00-		0.007.000	0.00000	0.00000		0.2.00000	0.000000	0.000,000	01100100	0.027.077	0.00000	01000000		0.007.0-1	0.00000
251 0.874.16 0.07935 0.07945 0.01999 0.00094 0.00094 0.00094 0.01994 0.01099 0.01994 0.01099 0.01994 0.01994 0.01099 0.01994 0.01995 0.00099 0.01994 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004<	k250																						
L22 S77 ORF_A17 ORF_A17 ORF_PA1 ORF_PP1 ORF_PP	R250			0.075277	0.000201	0.055070	0.000020	0.005011	0.000000	0.007020	0.005015	0.000000	0.009020	0.210077	0.000000	0.001000		0.02.01.2	0.000000	0.000000	0.021070	0.057172	
1233 947 0,8PLA2 0,89919 0,89919 0,89919 0,89919 0,80909 0,00309 0,00309 0,00309 0,00300 <t< td=""><td></td><td></td><td></td><td>0.07.07.02</td><td></td><td></td><td>0.00.070</td><td>0.00.0.000</td><td>01000000</td><td></td><td>0.0007770</td><td>0.000000</td><td></td><td></td><td>0.000000</td><td></td><td></td><td>0.007770</td><td>0.000000</td><td></td><td></td><td>0.0077700</td><td></td></t<>				0.07.07.02			0.00.070	0.00.0.000	01000000		0.0007770	0.000000			0.000000			0.007770	0.000000			0.0077700	
254 689 0.874.20 0.05000 0.05800 0.000																							
25.5 N/A ORPLA20HV 0.06909 0.07105 0.00000 0.00000 0.00000 0.00000 0.00000 0.02000 0.0																010012200		0.007777					
2550 874 0RPLA2R1 0.07040 0.08000 0.03000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000				0.001010	0.000000	0.0000-0	0.000001	0.005005	0.000000	0.000002	0.005005	0.000000	0.009005		0.000000	0.000.000	0	0.020021	0.000000	0.000000		0.000050	
Control ORPLA1 ORPMA1																							
Constraint Constra						0.0000-0		010000000		0100000			01002000				0						
259 694 0RPLA25 0.00189 0.00390 0.00729 0.00000 0.00000 0.00100 0.20170 0.00000 0.00100 0.00000 0.00000 0.00100 0.00000 0.00100 0.0000														0.200020				0.02.000			0.02.000	0.007.000	
bit line				0.070017		0.000000		0.000.001	0.000000		0.00000			0.200000	0.000000		0.07.000	0.000000		0.000000	0.02,000	0.000.0	
Call ORPLASA-1 ORODO OLOSOD OLOSOD<					0.0007.00		01001222				0.0007770					0.000.000							
k262 811 ORPLA39 0.06707 0.08209 0.03007 0.0000 0.02703 0.09000 0.02000 0.01000 0.02000 0.01000 0.00000 0.01000 0.01000 0.00000 0.01000 0.00000 0.01000 0.00000 0.01000 0.00000 0.01000 0.00000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>0.00.0000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.200020</td><td></td><td>0.000.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						0.00.0000								0.200020		0.000.00							
633 671 <td></td> <td></td> <td></td> <td>0.010000</td> <td>0.00-000</td> <td>0.00.000</td> <td>0.000.00</td> <td>0.0000000</td> <td>0.000000</td> <td></td> <td>0.000.000</td> <td>0.000000</td> <td></td> <td></td> <td>0.000000</td> <td>0.000000</td> <td></td> <td></td> <td>0.00000</td> <td>0.007000</td> <td>0.020000</td> <td>0.00000</td> <td>0.00000</td>				0.010000	0.00-000	0.00.000	0.000.00	0.0000000	0.000000		0.000.000	0.000000			0.000000	0.000000			0.00000	0.007000	0.020000	0.00000	0.00000
Character Character <t< td=""><td></td><td></td><td></td><td></td><td>0.002071</td><td>0.055057</td><td>0.000707</td><td>0.000000</td><td>0.000000</td><td></td><td>0.000000</td><td>0.000000</td><td>0.009010</td><td></td><td>0.000000</td><td>0.000200</td><td></td><td>0.02.000</td><td>0.000000</td><td>0.000000</td><td>0.022021</td><td>0.055001</td><td>0.000000</td></t<>					0.002071	0.055057	0.000707	0.000000	0.000000		0.000000	0.000000	0.009010		0.000000	0.000200		0.02.000	0.000000	0.000000	0.022021	0.055001	0.000000
k265 813 ORPLA1 0.06704 0.08716 0.033047 0.00709 0.00000 0.00500 0.03000 0.00000 0.01000 0.03448 0.24038 0.00000 0.01500 0.00000 0.02703 0.00000 0.00000 0.02000 0.00000 </td <td></td>																							
814 ORPLA2 0.09218 0.08218 0.082018 0.00071 0.00000 0.00000 0.00010 0.00000 0.								0.00000		0.000000			0.007.007		0.000000	0.000000							
815 ORPLA3 0.10705 0.8005 0.02014 0.00005 0.00000 0.00000 0.2010 0.00000 0.000																		0.02.000					
k268 N/A ORPLA43R1-1 0.10705 0.80056 0.02014 0.00000 0.00000 0.00000 0.2016 0.00000 0.00000 0.00000 0.00000 0.00000 0.01000 0.01000 0.01000 0.01000 0.01000 0.00000 0.01000									0.000000	0.000-000		0.000000	01002010			0.000000			0.000000			0.055071	0.00000
k269 N/A ORPLA43R1-2 0.10705 0.80056 0.02014 0.00005 0.00000 0.00000 0.2010 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01000 0.00000 0.01000 0.01000 0.00000																							
R18 RPLA4 0.10704 0.8080 0.8000 0.0000										0.000-000			01002000			0.000.000			0.0000-0		01020020		
R19 RPLA45 0.88702 0.88702 0.80702 0.00702 0.00702 0.00700 0.0										0.000-000			01002000			01000000	0.07.12.10				01020020		
k272 SRPLA46 OL16989 OL19998 OL19998 OL06999 OL00000 O	k270				0.000.00		0.000.00	0.000000	01000000	0.0000000	0.00000	0.000000	01002000		0.000000	0.000.000		0.010000	0.000000			0.000000	
N/A ORPLA46-Repeat 0.10699 0.07499 0.01999 0.00699 0.0000 0.00000						0.020000	0.000.02		0.000000				0.007.000			0.000000						0.000000	0.000000
822 ORPLA47 0.107054 0.08004 0.02010 0.006703 0.00000 0.00201 0.00500 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.02010 0.00200 0.02010 0.00500 0.039117 0.00000 0.03015 0.01508 0.02801 0.06000 0.00000			ORPLA46	0.106989	0.074992	0.019998	0.006699	0.000000	0.000000	0.002000	0.005000	0.000000	0.008999		0.000000	0.006400	0.390961	0.000000	0.049995		0.027997	0.059994	
	k273		ORPLA46-Repeat	0.106989	0.074992	0.019998	0.006699	0.000000	0.000000	0.002000	0.005000	0.000000	0.008999	0.239976	0.000000	0.006400	0.390961	0.000000	0.049995	0.000000	0.027997	0.059994	0.000000
275 823 ORPLA48 0.107032 0.080024 0.02006 0.006702 0.000000 0.000000 0.002001 0.005002 0.000000 0.09003 0.240072 0.000000 0.391118 0.00000 0.40102 0.10003 0.28008 0.055017 0.000000	k274	-	ORPLA47	0.107054	0.080040	0.020010	0.006703	0.000000	0.000000	0.002001	0.005002	0.000000	0.009005	0.240121	0.000000	0.005800	0.391197	0.000000	0.030015	0.015008	0.028014	0.060030	0.000000
	k275	823	ORPLA48	0.107032	0.080024	0.020006	0.006702	0.000000	0.000000	0.002001	0.005002	0.000000	0.009003	0.240072	0.000000	0.006000	0.391118	0.000000	0.040012	0.010003	0.028008	0.055017	0.000000

1 1 </th <th>K-3 ID Number</th> <th>Glass Number from Database</th> <th>Glass ID</th> <th>Al₂O₃</th> <th>B₂O₃</th> <th>CaO</th> <th>Cl</th> <th>Cr₂O₃</th> <th>F</th> <th>Fe₂O₃</th> <th>K₂O</th> <th>Li₂O</th> <th>MgO</th> <th>Na₂O</th> <th>P2O5</th> <th>SO3</th> <th>SiO2</th> <th>SnO₂</th> <th>TiO₂</th> <th>V2O5</th> <th>ZnO</th> <th>ZrO₂</th> <th>Others</th>	K-3 ID Number	Glass Number from Database	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P2O5	SO3	SiO2	SnO ₂	TiO ₂	V2O5	ZnO	ZrO ₂	Others
Phy hy Phy Phy Phy Phy Phy Phy Phy Phy Phy Phy Phy Phy Phy Phy Phy									-				0										
1 1 </td <td></td> <td>553</td> <td></td>		553																					
Photo hoto <th< td=""><td></td><td></td><td></td><td>0.077700</td><td>0.007750</td><td></td><td></td><td>0.001775</td><td>0.000000</td><td>0.007770</td><td>0.005777</td><td>0.000000</td><td></td><td></td><td>0.000000</td><td>0.002000</td><td>01.00 - 0 0 0</td><td>0.007770</td><td>0.000000</td><td></td><td>0.0007.00</td><td>0.0</td><td>0.001070</td></th<>				0.077700	0.007750			0.001775	0.000000	0.007770	0.005777	0.000000			0.000000	0.002000	01.00 - 0 0 0	0.007770	0.000000		0.0007.00	0.0	0.001070
9 9 9 9 9 9 <									0.00000			0.000000											
91 91 91 91 91 91 91 91 91 91 91						0.010000				0.00-001			0.017.010			0.000.000			0.0.00-0				
311 910.4 910.4 910.4 910.4 910.9 <			· · · ·			0.010001				0.00-000			0.017.00-			0.000-00			0.020002	0.020002	0.020000		
9114 9104 9104 9104 9104 9004	-				0.00000	0.010001	0.000.00	0.000000	0.000000	0.002000	0.000.00-	0.000000	0.017000			0.0007.00		0.01000.	0.000.00	0.010000	0.0200011		0.00000
3140 61100 61104 61104 61104 61004 6000 6000 6000 <t< td=""><td></td><td></td><td></td><td></td><td>0.00000-</td><td></td><td></td><td></td><td></td><td>0.00-001</td><td></td><td></td><td></td><td></td><td></td><td>0.0007.00</td><td></td><td></td><td>0.00001</td><td></td><td></td><td></td><td></td></t<>					0.00000-					0.00-001						0.0007.00			0.00001				
111 111 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000000</td> <td></td> <td>0.0.00.0</td> <td></td> <td></td>						0.000000							0.000000						0.000000		0.0.00.0		
9 9 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>0.020020</td> <td>0.000.00</td> <td>0.000000</td> <td>0.00000</td> <td></td> <td></td> <td>0.000000</td> <td></td> <td></td> <td>0.000000</td> <td>0.000.000</td> <td></td> <td>0.00000</td> <td>0.00000</td> <td>0.000000</td> <td>01010020</td> <td>0.000000</td> <td></td>	-					0.020020	0.000.00	0.000000	0.00000			0.000000			0.000000	0.000.000		0.00000	0.00000	0.000000	01010020	0.000000	
21111.200 <t< td=""><td></td><td></td><td></td><td>0.106828</td><td>0.087858</td><td>0.000000</td><td>0.006689</td><td>0.000000</td><td>0.000000</td><td>0.002995</td><td>0.004992</td><td>0.000000</td><td>0.015974</td><td></td><td>0.000000</td><td>0.006900</td><td>0.408342</td><td>0.000000</td><td>0.029952</td><td>0.000000</td><td>0.029952</td><td>0.059904</td><td>0.000000</td></t<>				0.106828	0.087858	0.000000	0.006689	0.000000	0.000000	0.002995	0.004992	0.000000	0.015974		0.000000	0.006900	0.408342	0.000000	0.029952	0.000000	0.029952	0.059904	0.000000
111 111 </td <td></td> <td>555</td> <td></td> <td>0.200020</td> <td>0.001.000</td> <td>0.000000</td> <td></td> <td></td> <td></td> <td>0.00-2220</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0007.00</td> <td></td> <td></td> <td>0.02//02</td> <td></td> <td></td> <td></td> <td></td>		555		0.200020	0.001.000	0.000000				0.00-2220						0.0007.00			0.02//02				
91 91 91 91 91 <td></td> <td></td> <td></td> <td>0.0007.0-</td> <td></td> <td>0.007777</td> <td></td> <td>0.00.000</td> <td>0100000</td> <td>0.00077</td> <td>0.0007770</td> <td>0.000000</td> <td>0.000772</td> <td></td> <td></td> <td></td> <td></td> <td>0.007777</td> <td>0.00000</td> <td></td> <td></td> <td>010007.10</td> <td>0.000.070</td>				0.0007.0-		0.007777		0.00.000	0100000	0.00077	0.0007770	0.000000	0.000772					0.007777	0.00000			010007.10	0.000.070
Set Set <td>k289</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.000000</td> <td></td> <td></td> <td>0.000000</td> <td></td> <td></td> <td>0.000000</td> <td>0.001900</td> <td></td> <td></td> <td>0.015985</td> <td></td> <td></td> <td></td> <td></td>	k289								0.000000			0.000000			0.000000	0.001900			0.015985				
32 9	k200		ORPLA9	0.109022	0.078016	0.065013	0.007101	0.005001	0.000000	0.009002	0.006001	0.000000	0.009002		0.000000	0.001800		0.020004	0.000000	0.009002	0.024005	0.050010	0.001900
211311311031103100300				0.107.022	0.0.0000		0.00.000	0.000.001		0.007.00-	0.000002	0.000000	0.007.002		0.000000	0.000.000						0.000000	
91.94 91.94 91.94 10.01 10.01 <					01010022				01001202			0.000000				0.00.000			0.00000				0.000-0.00
NameN	k292					0.0110.00																	
3D29P3(-1)0P4(-1)0P40				0.100171	0.085145	0.000.00		0.005009	0.004708	0.010002	0.001000	0.000000	0.007.000		0.0002001	0.004500	01101202	0.010017	0.000000	0.000000	0.02.0012	0.060103	
Part												0.000000							0.00000				
S20 S407 407 S4	k296	589																					
9310 947.4 940.54 940.95 940.97		591					0.006194			0.008992	0.004996		0.008992			0.005200		0.009991	0.000000		0.029973		
PartyBirty <th< td=""><td>k298</td><td>593</td><td></td><td>0.106935</td><td>0.111932</td><td>0.064961</td><td>0.006196</td><td>0.004997</td><td>0.000100</td><td>0.008995</td><td>0.004997</td><td>0.000000</td><td>0.008995</td><td>0.234858</td><td>0.001799</td><td>0.005100</td><td>0.348790</td><td>0.009994</td><td>0.000000</td><td>0.014991</td><td>0.029982</td><td>0.034979</td><td>0.001399</td></th<>	k298	593		0.106935	0.111932	0.064961	0.006196	0.004997	0.000100	0.008995	0.004997	0.000000	0.008995	0.234858	0.001799	0.005100	0.348790	0.009994	0.000000	0.014991	0.029982	0.034979	0.001399
3010 90101 01007 <th< td=""><td>k299</td><td>595</td><td>ORPLC5</td><td>0.100161</td><td>0.085137</td><td>0.019031</td><td>0.006210</td><td>0.005008</td><td>0.000100</td><td>0.010016</td><td>0.005008</td><td>0.000000</td><td>0.009014</td><td>0.236380</td><td>0.001903</td><td>0.004800</td><td>0.401646</td><td>0.010016</td><td>0.000000</td><td></td><td>0.024039</td><td>0.060097</td><td>0.001402</td></th<>	k299	595	ORPLC5	0.100161	0.085137	0.019031	0.006210	0.005008	0.000100	0.010016	0.005008	0.000000	0.009014	0.236380	0.001903	0.004800	0.401646	0.010016	0.000000		0.024039	0.060097	0.001402
31191729179491794917949179491079910794917949		597	ORPLD1	0.101897	0.120878	0.079919	0.003297	0.004995	0.001698	0.009990	0.001998	0.000000	0.009990	0.210788	0.002897	0.007300	0.372625	0.000000	0.000000	0.009990	0.029970	0.029970	0.001798
32339340947094700.0000<	k301	599	ORPLD2	0.090963	0.075969	0.079968	0.003299	0.004998	0.001699	0.007997	0.001999	0.007997	0.009996	0.209915	0.002899	0.007700	0.394841	0.009996	0.000000	0.009996	0.024990	0.052979	0.001799
3331 9479 04795 04799 0479 0479 0479 0479 0479 04799 04799 04799 0479<	k302	601	ORPLD3	0.080992	0.085991	0.099990	0.003300	0.004999	0.001700	0.007999	0.002000	0.007999	0.0099999		0.002900	0.008400	0.393960	0.000000	0.000000	0.0099999	0.024997	0.042996	0.001800
385 9999 08P4D 0.09998 0.01999 0.00999 0.02999 0.02999 0.0199<	k303	697		0.100837	0.098840	0.078872	0.003494	0.004992		0.002995		0.000000	0.009984		0.002995	0.010800	0.372398	0.000000	0.000000	0.019968			
Control ONTRO NTRO ONTRO <t< td=""><td>k304</td><td>698</td><td>ORPLD7</td><td>0.100949</td><td>0.098950</td><td>0.078960</td><td>0.003498</td><td>0.004997</td><td>0.001799</td><td>0.002999</td><td>0.001999</td><td>0.000000</td><td>0.009995</td><td>0.219889</td><td>0.002999</td><td>0.008700</td><td>0.373811</td><td>0.009995</td><td>0.000000</td><td>0.009995</td><td>0.029985</td><td>0.039980</td><td>0.000500</td></t<>	k304	698	ORPLD7	0.100949	0.098950	0.078960	0.003498	0.004997	0.001799	0.002999	0.001999	0.000000	0.009995	0.219889	0.002999	0.008700	0.373811	0.009995	0.000000	0.009995	0.029985	0.039980	0.000500
OPE PE OPE OPE	k305	699	ORPLD8	0.099939	0.094942	0.073955	0.003598	0.004997	0.001899	0.002998	0.001999	0.000000	0.009994	0.229861	0.003098	0.009400	0.367777	0.009994	0.000000	0.014991	0.029982	0.039976	0.000600
368 612 0.88809 0.18911 0.93910 0.00200 0.00200 0.00000 0.0190	k306	700	ORPLD9	0.085904	0.094894	0.073918	0.003596	0.004994	0.001898	0.002997	0.001998	0.000000	0.009989	0.229745	0.003096	0.009900	0.367592	0.009989	0.000000	0.028968	0.029967	0.039956	0.000599
309 613 ORPLE11 0.07920 0.09880 0.10484 0.00099 0.001998 0.01108 0.01108 0.01108 0.01108 0.01108 0.01108 0.01108 0.01108 0.01108 0.01108 0.01183 0.01180 0.01108 0.01108 0.011	k307	603	ORPLE1	0.075908	0.098880	0.104873	0.000200	0.000999	0.001997	0.001998	0.005993	0.029964	0.010987	0.159806	0.001198	0.011300	0.414497	0.000000	0.000000	0.012984	0.031961	0.034957	0.001498
310 614 0RPLE12 0.07990 0.01990 0.00090 0.01900 0.01900 0.0199	k308	612	ORPLE10	0.088009	0.105011	0.093010	0.000200	0.001000	0.002000	0.002000	0.006001	0.030003	0.011001	0.160016	0.001200	0.010000	0.409041	0.000000	0.000000	0.013001	0.032003	0.035004	0.001500
111 0.0170 0.0170 0.0170 0.0070 0.0070 0.0170 0.0170 0.0170 0.0170 0.0070 0.0170 0.0170 0.0170 0.0170 0.0170 0.0170 0.0170 0.0070 0.0070 0.0170 0.0170 0.0070 0.0170 0.0170 0.0070 0.0170 0.0170 0.0070 0.0170 0.0170 0.0070 0.0070 0.0170 0.0170 0.00700 0.00700 0.0170 0.0170 0.0070 0.0070 0.0170 0.0170 0.0170 0.00700 0.00700 0.0170 0.00700 0.00700 0.0170 0.00700 0.00700 0.0170 0.00700 0.00700 0.00700 0.00700 0.00700 0.00000 0.0000 0.0000 <	k309	613	ORPLE11	0.075923	0.098900	0.104894	0.000200	0.000999	0.001998	0.001998	0.005994	0.024975	0.010989	0.159838	0.001199	0.011100	0.414581	0.000000	0.000000	0.017982	0.031968	0.034964	0.001498
Chr Observe Ob	k310	614	ORPLE12	0.075969	0.098960	0.100959	0.000200	0.004998	0.001999	0.001999	0.005998	0.024990	0.010996	0.159935	0.001200	0.010500	0.414832	0.000000	0.000000	0.017993	0.031987	0.034986	0.001499
313 060 08PLE4 07713 0.9816 0.1017 0.0020 0.00204 0.00204 0.0010 0.0100 0.0100 0.0100	k311	604	ORPLE2	0.099919	0.114907	0.080935	0.000200	0.000999	0.001998	0.001998	0.005995	0.029976	0.010991	0.159871	0.001199	0.010900	0.398678	0.000000	0.000000	0.012989	0.031974	0.034972	0.001499
Alt N/A ORPLEA-Regeneration OUT13 Out98 Out179 Out080 Out200 Out080 ut080<	k312	605	ORPLE3	0.100000	0.115000	0.105000	0.000200	0.001000	0.002000	0.002000	0.006000	0.030000	0.011000	0.160000	0.001200	0.011100	0.374000	0.000000	0.000000	0.013000	0.032000	0.035000	0.001500
And ONE-Field ONE-	k313	606	ORPLE4	0.077133	0.098169	0.104179	0.000301	0.001002	0.002304	0.002003	0.006010	0.021036	0.011019	0.180310	0.001402	0.010800	0.404695	0.000000	0.000000	0.012021	0.031053	0.035060	0.001503
Chr Chr <td>k314</td> <td>N/A</td> <td>ORPLE4-Repeat 2010</td> <td>0.077133</td> <td>0.098169</td> <td>0.104179</td> <td>0.000301</td> <td>0.001002</td> <td>0.002304</td> <td>0.002003</td> <td>0.006010</td> <td>0.021036</td> <td>0.011019</td> <td>0.180310</td> <td>0.001402</td> <td>0.010800</td> <td>0.404695</td> <td>0.000000</td> <td>0.000000</td> <td>0.012021</td> <td>0.031053</td> <td>0.035060</td> <td>0.001503</td>	k314	N/A	ORPLE4-Repeat 2010	0.077133	0.098169	0.104179	0.000301	0.001002	0.002304	0.002003	0.006010	0.021036	0.011019	0.180310	0.001402	0.010800	0.404695	0.000000	0.000000	0.012021	0.031053	0.035060	0.001503
317 610 ORPLEs 0.07581 0.0978 0.00179 0.00199 0.01995 0.01979 0.01993 0.01197 0.1100 0.1100 0.1100 0.1100 0.1100 0.01000 0.00000 0.01991 0.01993 0.01993 0.01993 0.01993 0.01993 0.01993 0.01903 0.0110 0.1100 0.1100 0.1	k315	608	ORPLE6	0.075908	0.098880	0.099879	0.000200	0.004994	0.001997	0.001998	0.005993	0.029964	0.010987	0.159806	0.001198	0.011300	0.414497	0.000000	0.000000	0.012984	0.031961	0.035956	0.001498
3186110RPL590.07830.09790.09780.09790.01990.01990.01990.01990.01990.19190.11900.1100	k316	609	ORPLE7	0.075908	0.098880	0.104873	0.000200	0.004994	0.001998	0.001998	0.005993	0.025968	0.010987	0.159806	0.001198	0.011300	0.414497	0.000000	0.000000	0.012984	0.031961	0.034957	0.001498
NRL ORDE	k317	610	ORPLE8	0.075831	0.094789	0.100776	0.000199	0.000998	0.001995	0.010976	0.005987	0.029933	0.010976	0.159645	0.001197	0.011300	0.414079	0.000000	0.000000	0.012971	0.031929	0.034922	0.001497
320 N/A ORPLF0-Repert 0.87026 0.96029 0.16032 0.00000 0.00000 0.01000 0.1210 0.10400 0.12410 0.00000 0.02000	k318	611	ORPLE9	0.075831	0.090798	0.096785	0.000199	0.004989	0.001995	0.010976	0.005987	0.029933	0.010976	0.159645	0.001197	0.011300	0.414079	0.000000	0.000000	0.012971	0.031929	0.038913	0.001497
321 716 ORPLF3 0.86017 0.96019 0.16022 0.0010 0.00500 0.0500 0.1000 0.1212 0.0040 0.1350 0.42086 0.10000 0.2706 0.2706 0.42000 0.2700	k319	712	ORPLF10	0.087026	0.096029	0.106032	0.000100	0.006002	0.000800	0.003001	0.005001	0.035011	0.010003	0.121037	0.000400	0.012400	0.424129	0.000000	0.000000	0.025008	0.029009	0.039012	0.000000
322 717 ORPI4 0.8700 0.9600 0.9600 0.0600 0.0000 0.0000 0.0100 0.0100 0.0100 0.0100 0.1000 0.1000 0.1000 0.1000 0.1000 0.0100 <t< td=""><td>k320</td><td>N/A</td><td>ORPLF10-Repeat</td><td>0.087026</td><td>0.096029</td><td>0.106032</td><td>0.000100</td><td>0.006002</td><td>0.000800</td><td>0.003001</td><td>0.005001</td><td>0.035011</td><td>0.010003</td><td>0.121037</td><td>0.000400</td><td>0.012400</td><td>0.424129</td><td>0.000000</td><td>0.000000</td><td>0.025008</td><td>0.029009</td><td>0.039012</td><td>0.000000</td></t<>	k320	N/A	ORPLF10-Repeat	0.087026	0.096029	0.106032	0.000100	0.006002	0.000800	0.003001	0.005001	0.035011	0.010003	0.121037	0.000400	0.012400	0.424129	0.000000	0.000000	0.025008	0.029009	0.039012	0.000000
333 704 ORPF4 0.8697 0.9979 0.0019 0.0059 0.0099 0.0499 0.0199 0.1099 0.1010 0.110 0.1481 0.0089 0.0089 0.0099 0.0109 0.1010 0.1481 0.0099 0.0199 0.0199 0.0109 0.0109 0.1010 0.1481 0.0199	k321	716	ORPLF13	0.086017	0.096019	0.106022	0.000100	0.006001	0.000800	0.000000	0.005001	0.035007	0.000000	0.121025	0.000400	0.013500	0.424086	0.010002	0.000000	0.027006	0.029006	0.040008	0.000000
324 708 RPF7 0.8688 0.9584 0.9781 0.0019 0.0079 0.0493 0.0498 0.0181 0.0130 0.1233 0.0000 0.0200 0.2485 0.0205 0.0200 0.0205 <th< td=""><td>k322</td><td>717</td><td>ORPLF14</td><td>0.087000</td><td>0.096000</td><td>0.106000</td><td>0.000100</td><td>0.006000</td><td>0.000800</td><td>0.000000</td><td>0.005000</td><td>0.037000</td><td>0.000000</td><td>0.121000</td><td>0.000400</td><td>0.012700</td><td>0.424000</td><td>0.010000</td><td>0.000000</td><td>0.025000</td><td>0.029000</td><td>0.040000</td><td>0.000000</td></th<>	k322	717	ORPLF14	0.087000	0.096000	0.106000	0.000100	0.006000	0.000800	0.000000	0.005000	0.037000	0.000000	0.121000	0.000400	0.012700	0.424000	0.010000	0.000000	0.025000	0.029000	0.040000	0.000000
SANA ORPF-Repert 0.8688 0.9785 0.0975 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0100 0.01	k323	704	ORPLF4	0.086974	0.095971	0.097970	0.000100	0.005998	0.000800	0.002999	0.004999	0.034989	0.009997	0.120963	0.000400	0.011000	0.424871	0.008997	0.000000	0.024993	0.028991	0.038988	0.000000
326 710 ORPF 0.8000 0.8900 0.9900 0.0000 0.0000 0.0000 0.0000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.0000 0.0000 0.2000 0.0000 <th< td=""><td>k324</td><td>708</td><td>ORPLF7</td><td>0.086868</td><td>0.095854</td><td>0.097851</td><td>0.000100</td><td>0.005991</td><td>0.000799</td><td>0.002996</td><td>0.004992</td><td>0.043933</td><td>0.009985</td><td>0.120816</td><td>0.000399</td><td>0.013200</td><td>0.423357</td><td>0.000000</td><td>0.000000</td><td>0.024962</td><td>0.028956</td><td>0.038941</td><td>0.000000</td></th<>	k324	708	ORPLF7	0.086868	0.095854	0.097851	0.000100	0.005991	0.000799	0.002996	0.004992	0.043933	0.009985	0.120816	0.000399	0.013200	0.423357	0.000000	0.000000	0.024962	0.028956	0.038941	0.000000
CALL CALL <th< td=""><td>k325</td><td>N/A</td><td>ORPLF7-Repeat</td><td>0.086868</td><td>0.095854</td><td>0.097851</td><td>0.000100</td><td>0.005991</td><td>0.000799</td><td>0.002996</td><td>0.004992</td><td>0.043933</td><td>0.009985</td><td>0.120816</td><td>0.000399</td><td>0.013200</td><td>0.423357</td><td>0.000000</td><td>0.000000</td><td>0.024962</td><td>0.028956</td><td>0.038941</td><td>0.000000</td></th<>	k325	N/A	ORPLF7-Repeat	0.086868	0.095854	0.097851	0.000100	0.005991	0.000799	0.002996	0.004992	0.043933	0.009985	0.120816	0.000399	0.013200	0.423357	0.000000	0.000000	0.024962	0.028956	0.038941	0.000000
728 ORPLG10 0.6693 0.8391 0.0297 0.0297 0.0089 0.0297 0.0890 0.6891 0.1478 0.0149 0.0149 0.4359 0.2797 0.0000 0.3396 0.3594 0.00290 329 729 ORPLG1 0.6793 0.0593 0.0297 0.0099 0.0099 0.0090 0.0198 0.0198 0.0198 0.0193 0.0193 0.0297 0.0000 0.0591 0.0000 0.0198 0.0198 0.0198 0.0198 0.0199 0.0199 0.0198 0.0198 0.0199 0.0199 0.0199 0.0198 0.0198 0.0199 0.0199 0.0198 0.0198 0.0198 0.0199 0.0199 0.0198 0.0198 0.0199 0.0199 0.0198 0.0198 0.0199 0.0199 0.0199 0.0199 0.0198 0.0198 0.0199 0.0199 0.0199 0.0198 0.0198 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0.0199 0	k326	710	ORPLF8	0.086000	0.089000	0.098000	0.000100	0.006000	0.000800	0.003000	0.005000	0.050000	0.010000	0.121000	0.000400	0.014700	0.423000	0.000000	0.000000	0.025000	0.029000	0.039000	0.000000
329 729 ORPLG11 0.06789 0.05882 0.03936 0.02296 0.00590 0.00890 0.00890 0.05591 0.00000 0.55910 0.00000 0.02467 0.01398 0.0380 0.41339 0.2895 0.0000 0.0395 0.0590 0.00590 0.00000 0.05910 0.00000 0.05910 0.00000 0.2467 0.01398 0.01398 0.01398 0.02895 0.0000 0.0395 0.0590 0.00000 0.00000 0.00000 0.00000 0.01398 0.00000 0.01398 0.00000 0.01398 0.00000 0.03950 0.00000 0.00000 0.00000 0.00000 0.01398	k327	711	ORPLF9	0.075977	0.088973	0.097970	0.000100	0.005998	0.000800	0.002999	0.004999	0.034989	0.009997	0.120963	0.020094	0.014300	0.419872	0.008997	0.000000	0.024993	0.028991	0.038988	0.000000
	k328	728	ORPLG10	0.066933	0.083916	0.026973	0.002397	0.005994	0.000899	0.002997	0.058941	0.000000	0.008991	0.214784	0.001498	0.004000	0.403595	0.027972	0.000000	0.000000	0.033966	0.055944	0.000200
330 730 ORPLG12 0.067871 0.085883 0.00299 0.055893 0.00000 0.09981 0.20401 0.01962 0.01962 0.01964 0.02894 0.03890 0.00000 0.019961 0.01962 0.01960 0.11216 0.02894 0.03895 0.00000 0.03895 0.00000 0.03996 0.01962 0.01962 0.01962 0.01216 0.02894 0.00000 0.01961 0.01962 0.01962 0.01216 0.02894 0.00000 0.01961 0.01962 0.01962 0.01216 0.02894 0.00000 0.01961 0.01962 0.01962 0.01216 0.02894 0.00000 0.01961 0.01962 0.01962 0.01216 0.02894 0.00000 0.018945 0.00000 0.018945 0.00000 0.018945 0.00000 0.018945 0.00000 0.018945 0.00000 0.018945 0.00000 0.018945 0.00000 0.018945 0.00000 0.018945 0.00000 0.018945 0.00000 0.018945 0.00000 0.018945 0.000000 0.018945	k329	729	ORPLG11	0.067891	0.085862	0.039936	0.002296	0.005990	0.000899	0.000000	0.055910	0.000000	0.000000	0.204671	0.001398	0.003800	0.411339	0.028954	0.000000	0.000000	0.033945	0.056909	0.000200
	k330	730	ORPLG12	0.067871	0.085836	0.026949	0.002296	0.005988	0.000898	0.002994	0.055893	0.000000	0.009981	0.204610	0.019962	0.003500	0.411216	0.028945	0.000000	0.000000	0.033935	0.038926	0.000200

K-3 ID Number	Glass Number from Database	Glass ID	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P2O5	SO3	SiO2	SnO ₂	TiO ₂	V2O5	ZnO	ZrO ₂	Others
k331	763	ORPLG24	0.060036	0.079048	0.027016	0.002301	0.006004	0.000901	0.003002	0.058035	0.000000	0.009005	0.210126	0.001401	0.003600	0.416251	0.037022	0.000000	0.000000	0.027016	0.059036	0.000200
k332	765	ORPLG26	0.060048	0.079063	0.027022	0.002302	0.006005	0.000901	0.003002	0.058047	0.000000	0.004003	0.210169	0.001401	0.003400	0.416334	0.034027	0.000000	0.000000	0.027022	0.067054	0.000200
k333	766	ORPLG27	0.060042	0.079055	0.027019	0.002302	0.006004	0.000901	0.003002	0.058041	0.000000	0.004003	0.210148	0.001401	0.003500	0.421296	0.032022	0.000000	0.000000	0.027019	0.064045	0.000200
k334	722	ORPLG5	0.100000	0.087000	0.028000	0.002100	0.006000	0.000800	0.000000	0.053000	0.000000	0.000000	0.195000	0.001300	0.003600	0.408000	0.029000	0.000000	0.000000	0.028000	0.058000	0.000200
k335	723	ORPLG6	0.067843	0.086800	0.027936	0.002195	0.005986	0.000898	0.002993	0.053876	0.000000	0.009977	0.197544	0.001397	0.003600	0.417037	0.028933	0.000000	0.000000	0.034919	0.057866	0.000200
k336	724	ORPLG7	0.067823	0.086774	0.026930	0.002194	0.005984	0.000898	0.002992	0.054857	0.000000	0.009974	0.199479	0.001396	0.003900	0.414917	0.028925	0.000000	0.000000	0.034909	0.057849	0.000199
k337	725	ORPLG8	0.067905	0.085879	0.026962	0.002297	0.005992	0.000899	0.002996	0.055921	0.000000	0.009986	0.204712	0.001398	0.003600	0.411422	0.028959	0.000000	0.000000	0.033952	0.056920	0.000200
k338	726	ORPLG9	0.066906	0.084881	0.026962	0.002297	0.005991	0.000899	0.002996	0.057919	0.000000	0.009986	0.209705	0.001398	0.003600	0.407427	0.027961	0.000000	0.000000	0.033952	0.056920	0.000200
k339	920	WDFL1	0.061024	0.100040	0.021008	0.004502	0.000000	0.000100	0.055022	0.004002	0.000000	0.015006	0.210084	0.001701	0.003300	0.445179	0.000000	0.014006	0.000000	0.035014	0.030012	0.000000
k340	N/A	WDFL1+15	0.063019	0.096029	0.020006	0.005002	0.001000	0.000100	0.053016	0.004001	0.000000	0.014004	0.233070	0.001901	0.003700	0.429129	0.000000	0.013004	0.000000	0.034010	0.029009	0.000000
k341	921	WDFL1H	0.059952	0.097921	0.019984	0.004396	0.000999	0.000100	0.053957	0.003997	0.000000	0.014988	0.227817	0.001699	0.003600	0.432652	0.000000	0.014988	0.000000	0.033973	0.028977	0.000000
k342	924	WDFL2	0.061018	0.100030	0.052016	0.003501	0.000000	0.000600	0.055017	0.004001	0.021006	0.015005	0.153046	0.002101	0.004500	0.449135	0.000000	0.014004	0.000000	0.035011	0.030009	0.000000
k343	N/A	WDFL2+15	0.060091	0.097147	0.051077	0.003906	0.000000	0.000701	0.054082	0.004006	0.021032	0.014021	0.171258	0.002303	0.005600	0.437660	0.000000	0.014021	0.000000	0.034051	0.029044	0.000000
k344	925	WDFL2H	0.059970	0.098950	0.051974	0.003498	0.000000	0.000600	0.053973	0.001999	0.020989	0.014992	0.165917	0.002099	0.005300	0.441778	0.000000	0.013993	0.000000	0.033983	0.029985	0.000000

Table A.5. Values of K-3 Refractory Corrosion Neck Loss at 1208°C for 344 LAW glasses.

K-3 ID Number	Glass Number from Database	Glass ID	Neck Loss (inch)
x001	N/A	A1-AN105R2	0.0175
x002	N/A	A2-AP101	0.0255
x003	282	A2B1-2	0.0085
c004	283	A2B1-3	0.009
x005	330	A3-AN104	0.0305
x006	286	A3C2-1	0.0245
k007	287	A3C2-2	0.0225
x008	288	A3C2-3	0.0165
x009	919	AP105DLAW11	0.026
x010	910	AP105DLAW2	0.007
k011	911	AP105DLAW3	0.012
x012	912	AP105DLAW4	0.018
x013	914	AP105DLAW6	0.02
x014	915	AP105DLAW7	0.021
x015	916	AP105DLAW8	0.032
k016	N/A	AY102D1-01	0.048
x017	N/A	AY102D1-02	0.068
x018	N/A	AY102D1-03	0.132
x019	N/A	AY102D1-04	0.078
x020	N/A	AY102D1-05	0.035
x021	N/A	AY102D1-06R	0.028
x022	N/A	AY102D2-01	0.02*
x023	N/A	AY102D2-05	0.021*
x024	N/A	AY102D2-06	0.0155*
x025	N/A	B1-AZ101	0.0065
x026	N/A	C1-AN107R1	0.0265
x027	289	C2-AN102C35	0.02
x028	N/A	I10-G-130B	0.024
x029	41	LAWA104	0.0398
x030	42	LAWA105	0.07
k031	315	LAWA126	0.014*
k032	316	LAWA126R3	0.023
k033	318	LAWA127R1	0.0115
x034	174	LAWA130	0.019
k035	177	LAWA134	0.022
k036	178	LAWA135	0.0165
k037	179	LAWA136	0.018
k038	N/A	LAWA140R3	0.023
x039	392	LAWA149	0.063
x040	N/A	LAWA152S2	0.024
x041	N/A	LAWA155S2	0.04
x042	N/A	LAWA156S2	0.0455
x043	N/A	LAWA159S2	0.032
x044	N/A	LAWA160S2	0.0155
x045	399	LAWA161S2	0.0325
k046	N/A	LAWA162S2	0.05

Table A.5. Values of K-3 Refractor	ry Corrosion Neck Loss at 1208°C for 344 LAW glasses.
------------------------------------	---

K-3 ID Number	Glass Number from Database	Glass ID	Neck Loss (inch)
x047	N/A	LAWA164S2	0.034
:048	N/A	LAWA165S2	0.0385
x049	N/A	LAWA166S2	0.039
x050	N/A	LAWA167S2	0.029
x051	N/A	LAWA168S2	0.033
x052	502	LAWA173	0.121
k053	504	LAWA175	0.081
x054	505	LAWA176	0.065
x055	512	LAWA183	0.0415
x056	513	LAWA184	0.037
x057	514	LAWA185	0.0345
x058	515	LAWA186	0.0435
x059	516	LAWA187	0.0327
x060	N/A	LAWA187R1	0.066
x061	519	LAWA188	0.0413
x062	520	LAWA189	0.067
x063	521	LAWA190	0.0425
x064	522	LAWA191	0.052
x065	523	LAWA192	0.052
x066	525	LAWA194	0.067
:067	526	LAWA195	0.033
x068	527	LAWA196	0.049
x069	N/A	LAWA23C	0.0664
k 070	N/A	LAWA28	0.0143
x071	N/A	LAWA28Ti	0.014
x072	N/A	LAWA29	0.0211
x073	N/A	LAWA30	0.0213
x074	N/A	LAWA32	0.0202
x075	N/A	LAWA34	0.0292
x076	N/A	LAWA36	0.0182
x077	127	LAWA41-3	0.0379
x078	128	LAWA44-3	0.019
x079	N/A	LAWA44PNCC	0.0135*
x080	N/A	LAWA44PNCC-rep	0.0095*
x081	N/A	LAWA44R11	0.025
x082	129	LAWA52-2	0.0628
k083	130	LAWA60	0.019
x084	132	LAWA88	0.0335
x085	132	LAWA95	0.0264
x086	535	LAWB103	0.0145
x087	138	LAWB37	0.0051
x088	N/A	LAWB45-S	0.0135
x089	183	LAWB43-3	0.006
x089 x090	185	LAWB61	0.0078
x090	189	LAWB64S0	0.0078
x091 x092	190	LAWB64S0 LAWB65	0.003

Table A.5. Values of K-3 Refractory Corrosion Neck Loss at 1208°C for 344 LAW glasses.

K-3 ID Number	Glass Number from Database	Glass ID	Neck Loss (inch)
x093	196	LAWB67	0.001*
c094	198	LAWB68	0.0055
x095	199	LAWB69	0.014
x096	201	LAWB70	0.01
x097	203	LAWB71	0.0095
c098	205	LAWB72	0.0075
x099	207	LAWB73	0.0095
x100	209	LAWB74	0.014
x101	215	LAWB77	0.007
x102	217	LAWB78	0.014
x103	219	LAWB79	0.013
c104	221	LAWB80	0.011
c105	223	LAWB81	0.012
x106	225	LAWB82	0.009
x107	227	LAWB83	0.0095
c108	229	LAWB84	0.0095
x109	231	LAWB85	0.0065
x110	233	LAWB86	0.0065
x111	309	LAWB87	0.0085
x112	311	LAWB88	0.006
x113	N/A	LAWB89R1	0.005
x114	N/A	LAWB90R1	0.0115
x115	N/A	LAWB91R1	0.006
x116	N/A	LAWB92R1	0.0125
x117	242	LAWB93	0.005
x118	244	LAWB94	0.0045
x119	246	LAWB95	0.006
x120	529	LAWB97	0.0085
x121	531	LAWB99	0.01
x122	442	LAWC100	0.036
x123	N/A	LAWC101S2	0.027
x124	N/A	LAWC102S2	0.039
x125	N/A	LAWC103S2	0.044
x126	438	LAWC21REV2	0.0195
x127	N/A	LAWC21S	0.0168
c128	81	LAWC25S	0.0128*
k129	252	LAWC27	0.018
k130	256	LAWC29	0.0135
(13)	260	LAWC31	0.0175
x132	261	LAWC31R2	0.018
x132	N/A	LAWC34S2	0.019
x134	290	LAWC35S2	0.0185
x135	N/A	LAWC36S2	0.0155
x136	454	LAWE10H	0.0065
x130	N/A	LAWE11	0.0195
x138	476	LAWE13	0.061

Table A.5. Values of K-3 Refractory Corrosion Neck Loss at 1208°C for 344 LAW glasses.

K-3 ID Number	Glass Number from Database	Glass ID	Neck Loss (inch)
k139	477	LAWE14	0.066
x140	478	LAWE15	0.0505
x141	479	LAWE16	0.063
x142	N/A	LAWE2H	0.0575
x143	448	LAWE3	0.031
s144	474	LAWE3H	0.0535
x145	625	LAWE4H	0.035
x146	N/A	LAWE5H	0.028
x147	N/A	LAWE7	0.0335
x148	451	LAWE7H	0.033
x149	N/A	LAWE9H	0.016
k150	480	LAWM57	0.084
k151	481	LAWM58	0.056
x152	482	LAWM59	0.04
x153	483	LAWM60	0.039
x154	484	LAWM61	0.043
k155	485	LAWM62	0.0415
k156	486	LAWM63	0.0605
x157	487	LAWM64	0.0437
x158	488	LAWM65	0.0967
x159	489	LAWM66	0.0495
x160	490	LAWM67	0.0625
x161	491	LAWM68	0.071
x162	492	LAWM69	0.0385
x163	493	LAWM70	0.053
x164	494	LAWM71	0.046
x165	495	LAWM72	0.074
x166	496	LAWM73	0.0667
k167	497	LAWM74	0.0165
x168	498	LAWM75	0.039
k169	499	LAWM76	0.052
x170		LAWSNa1-3	0.029
x171	N/A	LAWSNa2-2	0.049
x172	N/A	LAWSNa3-2	0.0285
x173	778	LORPM10R1	0.032
x174	779	LORPM11	0.001*
k175	782	LORPM14R1	0.145
x176	785	LORPM17R1	0.038
x177	787	LORPM19R1	0.014
(178	787	LORPM20R1	0.014
(179	789	LORPM21	0.06
(180	793		0.024
		LORPM25	0.024
k181	797	LORPM28R1	0.032
x182	802	LORPM32	
x183	804	LORPM34	0.01
k184	805	LORPM35	0.099

Table A.5. Values of K-3 Refractor	ry Corrosion Neck Loss at 1208°C for 344 LAW glasses.
------------------------------------	---

K-3 ID Number	Glass Number from Database	Glass ID	Neck Loss (inch)
:185	806	LORPM36	0.02
x186	807	LORPM37	0.027
x187	808	LORPM38	0.001*
x188	809	LORPM39	0.087
x189	1004	LORPM4R2	0.001*
k190	N/A	LORPM4R2-Repeat	0.003
x191	777	LORPM9	0.007
x192	N/A	OD2-G-50A	0.0126
x193	835	ORLEC1	0.025
x194	844	ORLEC10	0.016
k195	845	ORLEC11	0.0315
x196	846	ORLEC12	0.0315
k197	847	ORLEC13	0.011
k198	848	ORLEC14	0.0235
x199	849	ORLEC15	0.027
k200	850	ORLEC16	0.0175
k201	851	ORLEC17	0.0125
k202	852	ORLEC18	0.0135
k203	853	ORLEC19	0.0105
x204	836	ORLEC2	0.0315
x205	854	ORLEC20	0.009
x206	855	ORLEC21	0.026
k207	856	ORLEC22	0.033
x208	857	ORLEC23	0.0265
k209	858	ORLEC24	0.029
k210	862	ORLEC26	0.0275
x211	863	ORLEC27	0.0295
k212	864	ORLEC28	0.03
x213	873	ORLEC29	0.0145
x214	837	ORLEC3	0.013
k215	874	ORLEC30	0.0165
k216	875	ORLEC31	0.011
k217	876	ORLEC32	0.0105
k218	877	ORLEC33	0.0145
k219	878	ORLEC34	0.0195
k220	879	ORLEC35	0.0105
k221	880	ORLEC36	0.008
k222	881	ORLEC37	0.03
k223	882	ORLEC38	0.0405
×224	883	ORLEC39	0.01
×225	838	ORLEC4	0.0045
<225 <226	884	ORLEC40	0.0245
k227	885	ORLEC41	0.0395
k228	886	ORLEC42	0.0355
k229	892	ORLEC42	0.025
k230	893	ORLEC44	0.035

Table A.5. Values of K-3 Refractor	ry Corrosion Neck Loss at 1208°C for 344 LAW glasses.
------------------------------------	---

K-3 ID Number	Glass Number from Database	Glass ID	Neck Loss (inch)	
x231	894	ORLEC45	0.033	
232	895	ORLEC46	0.04	
:233	896	ORLEC47	0.036	
:234	897	ORLEC48R	0.033	
x235	898	ORLEC49	0.021	
:236	N/A	ORLEC49-Repeat	0.025	
:237	900	ORLEC50	0.018	
:238	901	ORLEC51	0.03	
239	902	ORLEC52	0.033	
\$240	840	ORLEC6	0.013	
z241	841	ORLEC7	0.034	
242	842	ORLEC8	0.043	
:243	843	ORLEC9	0.0445	
:244	545	ORPLA1	0.108	
x245	563	ORPLA10	0.064	
x246	565	ORPLA11	0.0275	
:247	567	ORPLA12	0.0175	
\$248	569	ORPLA13	0.025	
:249	571	ORPLA14	0.0115	
250	573	ORPLA15	0.0355	
:251	575 ORPLA10		0.039	
:252	577 ORPLA17		0.042	
x253	547 ORPLA2		0.0705	
:254	689 ORPLA		0.033	
:255	N/A		0.0385*	
:256	834	ORPLA20R1	0.0395	
x257	690	ORPLA21	0.061	
:258	693	ORPLA24	0.064	
:259	694	ORPLA25	0.089	
\$260	549	ORPLA3	0.041	
261	751	ORPLA38-1	0.0435	
x262	811	ORPLA39	0.115	
:263	551	ORPLA4	0.123	
264	812	ORPLA40	0.109	
:265	813	ORPLA41	0.074	
:266	814	ORPLA42	0.082	
x267	815	ORPLA43	0.023	
:268	N/A	ORPLA43R1-1	0.0345	
:269	N/A	ORPLA43R1-2	0.0415	
270	818	ORPLA44	0.0415	
271	819	ORPLA45	0.058	
272	820	ORPLA46	0.047	
273	N/A	ORPLA46-Repeat	0.0385	
(274	822	ORPLA47	0.042	
(275	823	ORPLA48	0.036	
276	823	ORPLA48	0.045	

Table A.5. Values of K-3 Refractory Corrosion Neck Loss at 1208°C for 344 LAW glasses.

K-3 ID Number	Glass Number from Database	Glass ID	Neck Loss (inch)	
:277	553	ORPLA5	0.015	
:278	825	ORPLA50	0.044	
279	826	ORPLA51	0.032	
:280	827	ORPLA52	0.0365	
c281	828	ORPLA53	0.041	
×282	829	ORPLA54	0.029	
x283	830	ORPLA55	0.021	
c 284	831	ORPLA56	0.027	
c285	832	ORPLA57	0.027	
x286	833	ORPLA58	0.022	
c287	555	ORPLA6	0.0225	
x288	557	ORPLA7	0.0295	
x289	559	ORPLA8	0.051	
:290	561	ORPLA9	0.076	
x291	579	ORPLB1	0.033	
:292	581	ORPLB2	0.036	
x293	583	ORPLB3	0.038	
<294	585	ORPLB4	0.028	
x295	587	ORPLC1	0.066	
x296	589	ORPLC2	0.08	
297	591	ORPLC3	0.03	
:298	593	ORPLC4	0.073	
(299	595	ORPLC5	0.021	
< 300	597	ORPLD1	0.031	
:301	599	ORPLD2	0.05	
:302	601	ORPLD3	0.091	
x303	697	ORPLD6	0.04	
<304	698	ORPLD7	0.047	
305	699	ORPLD8 0.066		
:306	700	ORPLD9	0.063	
307	603	ORPLE1	0.059	
c308	612	ORPLE10	0.053	
c309	613	ORPLE11	0.0595	
310	614	ORPLE12	0.0305	
311	604	ORPLE2	0.0305	
312	605	ORPLE3	0.0715	
313	606	ORPLE4	0.0865	
k314	N/A	ORPLE4-Repeat 20	0.0935	
315	008 ORP		0.0535	
316			0.033	
317	610	ORPLE7 ORPLE8	0.069	
318	611	ORPLE9	0.048	
319	712	ORPLE9 ORPLF10	0.009	
(320	/12 N/A		0.005	
	N/A 716	ORPLF10-Repeat ORPLF13	0.003	
<321 <322	716	ORPLF13 ORPLF14	0.0123	

Table A.5. Values of K-3 Refractory Corrosion Neck Loss at 1208°C for 344 LAW glasses	s.
---	----

K-3 ID Number	Glass Number from Database	Glass ID	Neck Loss (inch) 0.0085	
k323	704	ORPLF4		
k324	708	ORPLF7	0.01	
k325	N/A	ORPLF7-Repeat	0.02	
k326	710	ORPLF8	0.018	
k327	711	ORPLF9	0.004	
k328	728	ORPLG10	0.0415	
k329	729	ORPLG11	0.06	
k330	730	ORPLG12	0.0245	
k331	763	ORPLG24	0.032	
k332	765 ORPLG26		0.0285	
k333	766	ORPLG27	0.034	
k334	722 ORPLG5		0.016	
k335	723	ORPLG6	0.0225	
k336	724	ORPLG7	0.0265	
k337	725	ORPLG8	0.036	
k338	726 ORPLG9		0.038	
k339	920	WDFL1	0.019	
k340	N/A	WDFL1+15	0.052	
k341	921	WDFL1H	0.047	
k342	924	WDFL2	0.034	
k343	N/A	WDFL2+15	0.048	
k344	925	WDFL2H	0.041	

(a) k_{1208} = Neck corrosion distance in 6-day test at 1208°C (in inches).

Appendix B – Statistical Methods to Develop, Evaluate, and Validate Property-Compositions Models Fit to Experimental Data

This appendix presents statistical methods used for developing, evaluating, and validating waste glass property-composition models. Section B.1 discusses mixture experiments and corresponding model forms. Section B.2 discusses the least squares regression methods used to fit models to data and the corresponding assumptions. Section B.3 discusses the statistical methods and summary statistics used for model evaluation based on the data used to fit a model. Section B.4 discusses statistical methods for model augmentation (i.e., adding terms to a model) and model reduction (i.e., removing unneeded terms from a model). Section B.5 discusses the statistical methods and summary statistics used for model validation based on data not used to fit a model. Section B.6 discusses several statistical intervals used to quantify uncertainties in model predictions. Draper and Smith (1998) and Montgomery et al. (2012) are textbook references that discuss statistical methods for evaluating and validating models.

B.1 Mixture Experiments and Model Forms

A *mixture experiment* involves mixing two or more components in various proportions, and then measuring one or more response variables for the resulting end-product mixtures. If the proportions of q mixture components are denoted g_i , i = 1, 2, ..., q, then these proportions are subject to the basic mixture constraints

$$0 \le g_i \le 1 \forall i \text{ and } \sum_{i=1}^q g_i = 1.$$
 (B.1)

Often in practice, the component proportions may be subject to additional single-component constraints (SCCs)

$$0 \le L_i \le g_i \le U_i \le 1 \tag{B.2}$$

and/or multiple-component constraints (MCCs) that can be written in the general form

$$\sum_{i=1}^{q} A_{ki} g_i + A_{k0} \ge 0, \quad k = 1, 2, \dots, K.$$
(B.3)

In Eq. (B.2), L_i and U_i denote, respectively, the lower and upper constraints on the *i*th component (*i* = 1, 2, ..., *q*). In Eq. (B.3), the A_{ki} (*i* = 1, 2, ..., *q*) and A_{k0} denote the coefficients of the *k*th MCC. The MCC in Eq. (B.3) is a linear function of glass composition, but MCCs may also involve nonlinear functions of glass composition. Cornell (2002) provides a comprehensive discussion of statistical methods for the design, modeling, and data analysis of mixture experiments.

The linear mixture (LM) model and partial quadratic mixture (PQM) model forms for mixture experiment data were used in this work. The LM model form is given by

$$f(y) = \sum_{i=1}^{q} \beta_i g_i + e \tag{B.4}$$

while the PQM model form is given by

$$f(y) = \sum_{i=1}^{q} \beta_i g_i + \text{ Selected } \left\{ \sum_{i=1}^{q} \beta_{ii} g_i^2 + \sum_{i=1}^{q-1} \sum_{j=1}^{q} \beta_{ij} g_i g_j \right\} + e .$$
(B.5)

In Eqs. (B.4) and (B.5), *y* is a property or response variable that can be measured for each end-product mixture; f(y) is some mathematical transformation of *y* (which could be the identity transformation); the g_i (i = 1, 2, ..., q) are proportions of *q* components subject to the constraints in Eq. (B.1) and possibly constraints of the forms in Eqs. (B.2) and/or (B.3); the b_i (i = 1, 2, ..., q), the b_{ii} (selected), and the b_{ij} (selected) are coefficients to be estimated from data; and *E* is a random experimental and property measurement error for each data point. Estimates of model coefficients and related statistics can be obtained using well-established statistical methods. More traditional statistical methods are used for the case where the *E* are independent (i.e., not correlated) and normally distributed with mean 0 and standard deviation σ , but other techniques, also discussed in this document, exist for cases with more complex error structures. In Eq. (B.5), "Selected" means that only some of the terms in curly brackets are included in the model. The subset is selected using standard stepwise regression or related methods (Draper and Smith 1998; Montgomery et al. 2012). LM models and PQM models are discussed in more detail and illustrated, respectively, by Cornell (2002) and Piepel et al. (2002).

Cornell (2002) discusses many other empirical mixture model forms that can be more appropriate than models of the forms in Eqs. (B.4) and (B.5) in certain specialized conditions. However, models of the form in Eqs. (B.4) and (B.5) are widely used in many application areas (including waste glass property modeling) and have been shown to perform very well (Hrma et al. 1994, Piepel et al. 2007, Piepel et al. 2008, Vienna et al. 2013, Vienna 2014, Vienna et al. 2016). Selection of LM and PQM models is often informed by knowledge of the effects of specific components on the response gained through experience or scientific discoveries.

B.2 Least Squares Regression Methods and Assumptions for Fitting Models

Empirical or semi-empirical property-composition models are typically fitted to datasets using ordinary least squares (OLS) or weighted least squares (WLS) regression. Generalized linear models (GLMs) have also been used in this work in the form of a logistic model for VHT, and as one of the techniques employed to find good predictive models for the PCT response. Section B.2.1 discusses OLS and WLS regression, while Section B.2.2 discusses GLMs. Draper and Smith (1998), Montgomery et al. (2012), and Myers at al. (2002) provide additional discussion of the OLS, WLS, and GLM topics.

B.2.1 Ordinary and Weighted Least Squares Regression

The underlying assumptions of OLS and WLS regression are as follows:

- i. The predictor variable values (e.g., mass fractions of glass components) are known or measured without uncertainty or at least the uncertainty is small relative to the uncertainty in response variable (glass property) values. This assumption is expected to hold for the work of modeling glass properties using glass compositions as predictors because glass composition is usually known accurately, and any significant biases can generally be corrected.
- ii. The testing and/or measurement errors in a response variable (glass property) over a model development dataset are independently distributed (i.e., the errors are not correlated across measurements). For OLS regression, the additional assumption is made that the errors are

identically distributed (i.e., with zero mean and the same variance). For WLS regression, the errors are also assumed to have zero mean, but the variance can be different for different data points.

iii. The errors from (ii) are normally (Gaussian) distributed.

Regarding assumption (i), the true compositions of glasses in a model development dataset are generally not known, and so any representation of glass composition selected (e.g., target compositions, analyzed compositions, or adjusted and normalized versions of analyzed compositions) will be subject to uncertainty. Weier and Piepel (2003) discuss a procedure for performing adjustments and weighted normalization of analyzed glass compositions that corrects for biases and reduces uncertainties in analyzed glass compositions. If representations of glass composition do not have significant biases (or those biases are appropriately corrected), it is generally expected that uncertainties in glass compositions will be small compared to uncertainties in glass property values. Further, uncertainties in glass compositions are expected to be small compared to errors in using empirical or semi-empirical model forms to approximate the true (but unknown) property-composition relationships. Hence, assumption (i) is sufficiently satisfied for most waste glass property-composition modeling situations.

The portion of assumption (ii) having to do with the independence of errors in testing and measuring properties may not be completely satisfied when model development datasets are composed of subsets of data generated at different times or locations (e.g., different laboratories). There is the potential for errors (uncertainties) in testing and measuring properties to vary for different subsets of data and be more alike within the same subset of data. However, this issue has generally not been a problem in many past property-composition modeling efforts (Vienna and Kim 2014). If needed, generalized least squares (GLS; Myers et al. 2002) methods that account for correlations among data points could be applied.

The "identically distributed errors" portion of assumption (ii) for OLS regression is not valid for some properties, because the variance of errors in testing and measurement of properties depends on the value of the property. For example, the variances of viscosity and durability results for waste glasses tend to increase as the values of these properties increase. In cases where the equal variance (identically distributed errors) assumption is violated, it can often be remedied by applying an appropriate mathematical transformation to the property values (e.g., a logarithmic transformation). The Box-Cox family of transformations contains transformations (including the logarithmic transformation) appropriate for many models (see Draper and Smith 1998). Such transformations also often yield better-fitting empirical or semi-empirical property-composition models. In some cases, a property transformation used in a particular model form may be preferred for some reason (e.g., provides a better fit), but does not satisfy the constant variance assumption of (ii). Or, it may be that the difference in variances across response values in the modeling dataset cannot be rectified by a response transformation. In such cases, other regression methods such as WLS regression or GLS regression (Myers et al. 2002) could be applied.

The assumption of normally distributed measurement and testing errors in the measured response variable values allows the use of normal theory regression tests, estimation of the standard errors of the coefficients, and uncertainty equations associated with the fitted regression model and resulting predictions. For example, normal theory confidence intervals and prediction intervals can be used (see Section B.6).

As discussed previously, OLS regression requires that all response values for the modeling data have constant variance (i.e., uncertainty). WLS regression accounts for response values having different variations by using a weight for each data point (w_i). Often, w_i is chosen to be proportional to the reciprocal of the variance (squared standard deviation) of the response for the *i*th data point (y_i).

$$w_i = \frac{\lambda}{Var(y_i)} = \frac{\lambda}{[SD(y_i)]^2}$$
(B.6)

where λ is a proportionality constant (which could be 1). Thus, in such a WLS regression the weighted response values $\sqrt{w_i}y_i$ then have equal variance. However, other methods for selecting weights can be applicable for various situations.

In summary, assumptions of OLS regression may not be completely satisfied for typical propertycomposition datasets and models. Violations of the constant variance assumption for property values over a modeling dataset can sometimes be addressed by appropriate property transformations so that OLS regression may be used. Other violations may be small enough that OLS regression methods can still be used without significant consequence. However, if there are large enough differences in variances of property values across a modeling dataset that cannot be addressed by a property transformation, then WLS regression methods should be used. If there are correlations among data points in a regression set, GLS methods are needed, as discussed in the following subsection.

B.2.2 Regression Using Generalized Linear Models (GLM)

The underlying assumptions of GLM regression are as follows:

- i. The predictor variable values (e.g., mass fractions of glass components) are known or measured without uncertainty, or at least the uncertainty is small relative to the uncertainty in response variable (glass property) values.
- ii. The responses of a variable (glass property), $y_1, y_2, ..., y_n$ over a model development dataset are independent with means $\mu_1, \mu_2, ..., \mu_n$, respectively.
- iii. The observation y_i has a distribution that is a member of the exponential family. The exponential family of distributions includes normal, binomial, Poisson, gamma, and inverse gaussian. OLS is a special case where responses are independent and normally distributed.

A GLM for a linear mixture model is built using a linear predictor

$$\eta = \sum_{i=1}^{q} \beta_i g_i \tag{B.7}$$

while the PQM model form for a GLM is built using the linear predictor

$$\eta = \sum_{i=1}^{q} \beta_i g_i + \text{ Selected } \left\{ \sum_{i=1}^{q} \beta_{ii} g_i^2 + \sum_{i=1}^{q-1} \sum_{j=1}^{q} \beta_{ij} g_i g_j \right\}.$$
 (B.8)

The model is found using a link function

$$\eta_i = h(\mu_i), i = 1, 2 \dots, n$$

so that the expected response for a linear mixture model is found through

$$E(y_i) = h^{-1}(\eta_i) = h^{-1}\left(\sum_{i=1}^q \beta_i g_i\right)$$
(B.9)

and the expected response for the PQM model is found through

$$E(y_i) = h^{-1}(\eta_i) = h^{-1}\left(\sum_{i=1}^q \beta_i g_i + \text{ Selected } \left\{\sum_{i=1}^q \beta_{ii} g_i^2 + \sum_{i=1}^{q-1} \sum_{j=1}^q \beta_{ij} g_i g_j\right\}\right).$$
(B.10)

The link function $h(\cdot)$ can take many forms, including an identity function, a logarithmic function, a reciprocal function, or another monotonic differentiable function. The variance σ_i^2 (i = 1, 2, ..., n) of the observations is a function of the mean μ_i . Model parameters for GLMs are obtained using weighted least squares iteratively.

B.3 Statistical Methods for Model Evaluation

There are many statistical methods (both numerical and graphical) for assessing models. *Evaluation methods* assess a model with the data used to develop the model. Such data are referred to as *model development data*. The goals of model evaluation are to assess (i) how well a model fits the data used to develop it, (ii) how well the least squares or other regression method assumptions are satisfied (see Section B.2), and (iii) whether there are any outlying or influential data points that significantly affect the fitted model.

Problems detected by model evaluation such as violation of assumptions, detection of outlying data points, or detection of model inadequacy require implementation of various remedies in the model development process until the problem(s) are corrected. When the model being evaluated acceptably fits the data used to develop the model, *model validation* methods should be applied using data not used to develop the model. Such data are referred to as *model validation data*. If model validation data are not available, *cross-validation methods* can be applied using the model development data. Cross-validation methods leave out one or more data points at a time, so that some of the data are used for model development and some for model validation. Such methods are also referred to as data-splitting validation methods, where part of the data is used for model development and evaluation, while the other part is used for validation. Draper and Smith (1998) and Montgomery et al. (2012) discuss statistical methods for evaluating and validating models.

Model evaluation techniques include predicted versus measured (PvM) property plots, standardized residual plots, outlier diagnostics, three R^2 statistics, root mean squared error (*RMSE*), and statistical lack-of-fit (LOF) tests. Each of these is explained briefly below. The following notation is used in the subsequent descriptions and definitions:

- n = the number of data points used to fit a model
- p = the number of parameters (coefficients) in a model form estimated via regression on the data
- y_i = the measured property value (mathematically transformed, if appropriate for the model form used) for the i^{th} data point
- \hat{y}_i = the predicted property value (mathematically transformed, if appropriate for the model form used) for the *i*th data point made using the model fitted to all *n* data points
- r_i = the residual for the *i*th data point = $y_i \hat{y}_i$

- $\hat{y}_{(i)}$ = the predicted property value (mathematically transformed, if appropriate for the model form used) for the *i*th data point made using a model fitted to all *n* data points except the *i*th
 - w_i = the weight applied to the *i*th data point in cases where WLS regression is used. Typically, w_i is proportional to the reciprocal of the variance of the response variable for the *i*th data point
 - \bar{y} = the unweighted average (mean) of the *n* measured property values (mathematically transformed, if appropriate for the model form used)
 - \bar{y}_w = the weighted average (mean) of the *n* measured property values (mathematically transformed, if appropriate for the model form used)

$$\bar{y}_{W} = \frac{\sum_{i=1}^{n} w_{i} y_{i}}{\sum_{i=1}^{n} w_{i}}$$
(B.11)

The model evaluation methods are now briefly described.

• <u>PvM property plots</u> show how well model predicted values, \hat{y}_i , compare to the measured values, y_i , for the glasses in the model development dataset. Predicted property values, \hat{y}_i , are plotted on the y-axis and measured property values (mathematically transformed, if appropriate for the model form used), y_i , are plotted on the x-axis. A line with a slope of 1 and an intercept of 0 is included in the plot for reference purposes and represents the ideal situation of predicted values equaling measured values. Plotted points falling above this line correspond to glasses for which the model over-predicts the property, while plotted points falling below this line represent glasses for which the model underpredicts the property. A preponderance of plotted points in a portion of the plot falling above or below the line indicates that the model tends to yield biased predictions for that range of property values. Plotted points far from the line are outlying or potentially influential data points.

For WLS regression, an *ordinary (unweighted)* PvM plot of \hat{y}_i versus y_i could be viewed as is done for OLS regression. Or, a *weighted* PvM plot of $\sqrt{w_i}\hat{y}_i$ versus $\sqrt{w_i}y_i$ could be viewed. The ordinary (unweighted) PvM plot has the advantage of retaining the units of the response (or its transformation), but the disadvantage that points with smaller weights (i.e., higher uncertainties) may appear farther from the line with a slope of 1 and an intercept of 0. However, rather than considering this a disadvantage, it may be better thought of as showing the penalty paid in obtaining predictions having more uncertainty for modeling data points with smaller weights (i.e., higher uncertainty). The weighted PvM plot would show the model predictive performance for the modeling data points after accounting for (i.e., removing the scatter due to) the differing weights (i.e., uncertainties).

• <u>*RMSE*</u> for OLS regression is given by

$$RMSE_{OLS} = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n-p}}$$
(B.12a)

and for WLS regression

$$RMSE_{WLS} = \sqrt{\frac{\sum_{i=1}^{n} w_i (\hat{y}_i - y_i)^2}{n - p}}$$
(B.12b)

If the fitted model is adequate and does not have a statistically significant LOF, this statistic provides an estimate of the experimental and measurement uncertainty standard deviation associated with melting glasses and measuring the associated property. The statistic *RMSE* is included as standard output in most regression software, and has units the same as the property values y_i (including any mathematical transformation of the property in the model form) for OLS regression and the units of $\sqrt{w_i y_i}$ for WLS regression.

• <u>Standardized residual plots</u> display standardized residuals (s_i , differences in predicted and measured property values divided by their standard deviations) versus various quantities, such as normalized glass component mass fractions (g_i), predicted property values (\hat{y}_i), or an index associated with each data point. The formula for a standardized residual is given by

$$s_{i} = \frac{r_{i}}{RMSE_{OLS} \left[1 - g_{i}^{T} (G^{T} G)^{-1} g_{i} \right]^{0.5}}$$
(B.13a)

for OLS regression and by

$$s_{i} = \frac{\sqrt{w_{i}r_{i}}}{RMSE_{WLS} [1 - g_{i}^{T} (G^{T}WG)^{-1} g_{i}]^{0.5}}$$
(B.13b)

for WLS regression.

In Eqs. (B.13a) and (B.13b): s_i , w_i , and r_i are as previously described; *RMSE*_{OLS} and *RMSE*_{WLS} are respectively given by Eqs. (B.12a) and (B.12b); g_i is the composition (column) vector for the i^{th} modeling data point expanded in the form of the model; G is an $n \times p$ matrix of the compositions in the modeling dataset expanded in the form of the model; and W is an $n \times n$ matrix with the weights, w_i , along the main diagonal, and zeros elsewhere.

Patterns in the s_i versus \hat{y}_i plot can indicate a violation of the least squares regression assumptions and suggest a property transformation to remedy the situation. Patterns in the s_i versus x_i plots can indicate inadequacies of the model or least squares assumptions. Patterns in s_i versus data indices can indicate subsets of the data for which a model may be inadequate. Standardized residuals are typically used in residual plots because the majority should fall within the range of \pm 2.0 and almost all should fall within \pm 3.0. Comparing standardized residuals to such a range provides an easy criterion for judging whether a data point is outlying.

- <u>Normality plots</u> display normal scores versus the ordered (from smallest to largest) standardized residuals [from Eqs. (B.13a) and (B.13b) for OLS and WLS, respectively] for the *n* data points used to fit the model being assessed. Normal scores are the expected values of a sample of size *n* from standard normal distribution (with mean 0 and standard deviation 1). The plotted points are compared to the ideal of a straight line corresponding to a normal distribution. A straight middle portion of the plot with curved "tails" on each end of the plot indicates the presence of outlying data points, which cause a heavier-tailed distribution than the normal distribution.
- <u>Outlier diagnostics and plots</u> indicate data points that are outlying or influential with respect to property value or composition. There are too many of these diagnostics and plots to discuss here, but several produced by the R software (Ihaka and Gentleman 1996; R Core Team 2019) and MatLab (Mathworks 2019) were considered in this work. Draper and Smith (1998) and Montgomery et al. (2012) discuss outlier diagnostics and plots for OLS regression, but software such as R (R Core Team

2019) and SAS (SASTM Software SAS Institute Inc., Cary, NC) produce the appropriate versions of diagnostics and plots for WLS as well as OLS regression.

- <u>*R*² statistics</u> quantify the proportion of variation in the property values (mathematically transformed, if appropriate for the model form used) y_i (for OLS regression) or weighted property values $\sqrt{w_i}y_i$ (for WLS regression) accounted for by the fitted model. Three R² statistics are used, as discussed later in this section.
- <u>A statistical lack-of-fit (LOF) test</u> checks whether the differences (for OLS regression) or weighted differences (for WLS regression) between measured and predicted property values from a fitted model are larger than expected based on the experimental and measurement uncertainty in the data. If the predicted versus measured differences are larger than data uncertainty at a high enough statistical confidence (e.g., greater than 90%), the model is said to have a statistically significant LOF. Replicate data points containing all applicable sources of experimental and measurement uncertainty¹ are required to perform statistical LOF tests. This process is conducted using a LOF F-test given by

$$F = \frac{(\text{SSE} - \text{SSPE})/(n - p - f)}{\text{SSPE/}f}$$

$$= \frac{\left[\left(\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2} - \sum_{k=1}^{K} \sum_{j=1}^{m_{k}} (y_{kj} - \overline{y}_{k})^{2} \right) / (n - p - f) \right]}{\sum_{k=1}^{K} \sum_{j=1}^{m_{k}} (y_{kj} - \overline{y}_{k})^{2} / f}$$
(B.14a)

for OLS regression, and by

$$F = \frac{(\text{SSE} - \text{SSPE})/(n - p - f)}{\text{SSPE/f}}$$

$$= \frac{\left[\left(\sum_{i=1}^{n} w_i (\hat{y}_i - y_i)^2 - \sum_{k=1}^{K} \sum_{j=1}^{m_k} w_j (y_{kj} - \bar{y}_k)^2 \right) / (n - p - f) \right]}{\sum_{k=1}^{K} \sum_{j=1}^{m_k} w_j (y_{kj} - \bar{y}_k)^2 / f}$$
(B.14b)

for WLS regression. In Eqs. (B.14a) and B.14b), SSE = sum of squares error; SSPE = sum of squared pure error (i.e., from replicates); *n* and *p* are as described previously such that n-p is the degrees of freedom for SSE; and the degrees of freedom for pure error is given by $f = \sum_{k=1}^{K} (m_k - 1)$, where m_k is the number of replicate data points in the k^{th} replicate set, k = 1, 2, ..., K. In practice, if the F-test for LOF is statistically significant at a significance level (often referred to as a *p*-value) of 0.05 or smaller (i.e., 95% confidence or higher), then it would be concluded that the fitted model has a

¹ To be appropriate replicate data points, two or more glass samples of the same composition must be batched and melted at different times, and have their properties measured at different times. It is insufficient, for example, to batch and melt a glass once and measure its properties two or more times (because the batching and melting sources of uncertainty are not included in the data). Similarly, replicate samples should not be measured at the same time (or close in time) because all sources of measurement uncertainty will not be included in the data.

statistically significant LOF for the modeling dataset. See Draper and Smith (1998) or Montgomery et al. (2012) for additional discussion of the statistical test for model LOF with OLS and WLS regression.

Even when a fitted model has a statistically significant LOF, the LOF may not be "practically significant." An example of such a situation is when a fitted model yields biased predictions for higher and/or lower values of a property or in a particular subregion of compositions, but the model will not be applied to such areas in practice. Another example is when the model fits the data very well (e.g., $R^2 > 0.95$) without bias over the model's region of validity, but the LOF is statistically significant because the experimental and measurement uncertainty is very small (e.g., because glasses can be batched, melted, and properties measured with excellent reproducibility). Finally, a statistically significant LOF may not be practically significant if the uncertainty in model predictions is considerably smaller than uncertainty that can be tolerated and still meet requirements.

The model evaluation techniques discussed in the preceding bullets are included in, or can be obtained from, the output of the R software (Ihaka and Gentleman 1996, R Core Team 2019), and MatLab R2019b, (2019). See Draper and Smith (1998) or Montgomery et al. (2012) for further discussion of the concepts.

Three different R^2 statistics are useful in evaluating models fitted to glass property-composition data. These are denoted as R^2 , R_A^2 , and R_P^2 , which are discussed subsequently. Formulas for these statistics are given when models are fitted by OLS or WLS.

The (ordinary) R^2 statistic is given by

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(B.15a)

for OLS regression, and by

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} w_{i} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i=1}^{n} w_{i} (y_{i} - \bar{y}_{w})^{2}}$$
(B.15b)

for WLS regression, where \bar{y}_w in Eq. (B.15b) is the weighted mean whose formula is given in Eq. (B.11). R^2 is interpreted as the fraction of variability in the unweighted (for OLS regression) or weighted (for WLS regression) property data (transformed if appropriate) accounted for by the fitted model. The *adjusted* R^2 *statistic* is given by

$$R_A^2 = 1 - \frac{\sum_{i=1}^n (\hat{y}_i - y_i)^2 / (n-p)}{\sum_{i=1}^n (y_i - \bar{y})^2 / (n-1)}$$
(B.16a)

for OLS regression, and by

$$R_A^2 = 1 - \frac{\sum_{i=1}^n w_i (\hat{y}_i - y_i)^2 / (n-p)}{\sum_{i=1}^n w_i (y_i - \bar{y}_w)^2 / (n-1)}$$
(B.16b)

for WLS regression. R_A^2 is interpreted as the adjusted fraction of variability in the unweighted or weighted property data (transformed if appropriate) accounted for by the fitted model. The adjustment is for the number of parameters (*p*) and number of data points (*n*) used in fitting the model.

The *predicted* R^2 *statistic* is given by

$$R_P^2 = 1 - \frac{\sum_{i=1}^n (\hat{y}_{(i)} - y_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2},$$
(B.17a)

for OLS regression, and by

$$R_P^2 = 1 - \frac{\sum_{i=1}^n w_i (\hat{y}_{(i)} - y_i)^2}{\sum_{i=1}^n w_i (y_i - \bar{y}_w)^2},$$
(B.17b)

for WLS regression. R_P^2 is interpreted as the leave-one-out cross-validation fraction of variability in the unweighted or weighted property data (transformed if appropriate) accounted for by the fitted model. This statistic is calculated by a method equivalent to leaving each data point out of the model fit, and then evaluating how well the model predicts the property for that data point. R_P^2 estimates the fraction of variability that would be explained in predicting new observations drawn from the same composition space. However, computational simplifications for OLS and WLS regression do not require re-fitting a model with each data point removed.

Generally, R^2 statistics take values between 0 and 1. However, R_A^2 and R_P^2 can take negative values for a poor-fitting model, a model that contains many more terms than needed to fit the data, or a model fitted to data with one or more very influential data points. Among the three R^2 statistics, typically $R^2 > R_A^2 > R_P^2$. More than a minor difference between R^2 and R_A^2 indicates that the model may contain more terms than needed to achieve the same goodness of fit. A substantial difference between R^2 and R_P^2 is indicative of one or more data points being very influential in determining the fit of the model. Some reduction from R^2 to R_P^2 is expected because R^2 corresponds to using all data to fit the model, whereas R_P^2 corresponds to leaving each data point out of the fit when evaluating the performance of the model for that point. In general, a model will tend to predict better for data used to fit it than for data not used to fit it. R_P^2 is a crossvalidation evaluation method.

B.4 Statistical Methods for Model Reduction and Augmentation

Section B.4.1 discusses methods for identifying and removing unnecessary terms from mixture experiment models. Section B.4.2 discusses methods for augmenting linear mixture models with quadratic terms or other nonlinear blending terms.

B.4.1 Statistical Methods for Reducing Mixture Experiment Models

In evaluating a fitted regression model, it may often be determined that there are unnecessary terms in the model. Such terms may not improve, and can even degrade, the predictive performance of the model in applications to data not used to develop the model. Also, unnecessary model terms can increase the uncertainties of model-predicted response values.

The most basic statistical method to identify unnecessary terms in a model is a *t-test* to perform a hypothesis test of whether the coefficient of a model term is statistically different from zero. The t-test computes a t-statistic equal to a model coefficient divided by the standard deviation of the coefficient. The t-statistic is then compared to the Student-t probability distribution to determine the probability of getting a t-statistic at least that large. The resulting probability is referred to as a *p-value* and represents the probability of incorrectly deciding a coefficient is significantly different than zero. Most regression software output includes estimated model coefficients, coefficient standard deviations, t-statistics, and p-values. Typically, practitioners require a p-value to be smaller than 0.05 or 0.01 as strong evidence that the coefficient is significantly different than zero, and thus that the corresponding model term is needed. If there are not too many potentially unnecessary terms in a model, a practitioner can assess the t-statistics

and p-values for the coefficients in a "full" model and remove the model term whose coefficient is least statistically significant. Then, the model would be refitted without that term, and the t-statistics and p-values again considered, deleting the model term with the least statistically significant coefficient. This process continues until all terms in the model have p-values lower than a certain value, e.g. 0.05. This approach, referred to as *backward elimination* (Draper and Smith 1998; Montgomery et al. 2012), is a widely used statistical method for removing unneeded terms from a model. This method basically automates the process just described, where the practitioner sets a stopping criterion.

Unfortunately, there are some model forms for which the model reduction methods just described are inappropriate. In general, these are model forms where a model coefficient being small (e.g., near zero) does not imply the corresponding model term is unneeded. Some model forms may have terms with significant effects even though the coefficients of those terms are small. One class of models in this category relevant to this work is the class of mixture experiment models (Cornell 2002), of which LM and PQM models are discussed in Section B.1. The LM model (or the linear blending portion of a PQM model) is of the form $\sum_{i=1}^{q} b_i g_i$, where the b_i are coefficients and the g_i are proportions of the mixture components (e.g., mass fractions of waste glass components) that must sum to one (i.e., $\sum_{i=1}^{q} g_i = 1$). When each g_i can vary from zero to one, the coefficient b_i represents the estimated response variable value for pure component i [i.e., when $g_i = 1$ and $g_i = 0$ $(j \neq i)$]. When the ranges of the mixture component proportions g_i are constrained, each b_i represents the extrapolated response value for pure component *i*. Because hypotheses concerning LM model coefficients (or the coefficients of linear terms in PQM models) equaling zero are not related to the importance or non-importance of a given component, it is inappropriate to use t-tests or the standard backward elimination method to reduce the linear portion of a mixture experiment model. However, mixture models can contain nonlinear terms in the components (such as in the PQM model form discussed in Section B.1), and it is appropriate to use t-tests or the standard stepwise, forward, or backward elimination variable selection methods (see Draper and Smith 1998 or Montgomery et al. 2012) on such terms.

Component response trace plots (Cornell 2002) provide for graphically assessing the effects of mixture components on a response variable of interest. These plots are generally produced using a fitted mixture model. The model is used to predict, for each component, the response for a series of compositions lying along an *effect direction* for that component. The most commonly used effect direction corresponds to subtracting or adding a component to a reference (or baseline) mixture. Along such a direction, the component of interest is varied within the allowable composition region of interest. The changes in the component of interest are offset by changes in the remaining components, such that they remain in the same relative proportions as in the REFMIX. The predicted response values along the effect direction for a given component form a *component response trace*. The response traces for the components varied in a mixture experiment plotted together form the *component response trace plot*. The predicted response values are plotted on the y-axis and changes in each component from its REFMIX value are plotted on the x-axis. Components with steeper response traces have stronger effects on the response. A response trace that is nearly horizontal indicates the corresponding component has little or no effect on the response. Components whose response traces are very close may have similar effects on the response. Thus, component response trace plots can be used to guide the reduction of components appearing in a mixture experiment model (e.g., see Piepel and Redgate 1997).

A special backward-elimination, F-test method for mixture experiments has been developed to reduce linear mixture models and linear portions of mixture models (Piepel and Cooley 2006). The reduction method is performed in stages. In general, at the end of each stage, either (i) a mixture component is dropped, and the remaining components are renormalized; or (ii) two components are combined. As an option, model reductions of the form (i) can be skipped and only reductions of the form (ii) considered.

This includes combining minor components into an "Others" component. For each stage, the process occurs as follows.

- If reductions of the form (i) are allowed, each mixture component still in the model is in turn dropped from the model; the remaining mixture component proportions are renormalized to sum to one. Then a linear mixture model without the dropped component is fitted to the data. The dropped mixture component that causes the smallest increase in the error sums of squares (the quantity being minimized in OLS regression) is then the component permanently dropped from the model at the current stage. After each component is dropped, the remaining components are renormalized according to the mixture experiment definition that a response variable depends only on the relative proportions of the mixture components that affect the response variable (Cornell 2002).
- For reductions of the form (ii), each allowable pair of components is combined, and the corresponding reduced linear mixture model is fitted. The pair of components causing the smallest increase in the error sum of squares is then permanently combined at the current stage.

Similar stages continue, with either one component dropped [option (i)] or one pair of components combined [option (ii)], until the stage in which a model reduction causes the full-reduced model F-test (Draper and Smith 1998; Montgomery et al. 2012) to declare a statistically significant increase in the error sum of squares. This then signals the stopping point for the backward elimination algorithm appropriate for linear mixture models. Note that the algorithm allows for the user specifying the components (if any) that can be dropped, and components that can be combined. These options provide for incorporating subject-matter knowledge into the model reduction process.

B.4.2 Statistical Methods for Adding Terms to Models

It is often of interest to add additional terms onto a starting model in the hopes of improving the predictive performance of the starting model. For example, a linear mixture model may be considered as a starting model. However, if it has a significant LOF, adding nonlinear composition terms may be considered in hopes of improving the predictive performance of the model. *Stepwise regression* is the most commonly used method to add terms to an existing starting model. In stepwise regression, certain terms can be forced into the model, and a candidate list of possible terms to add is identified. The procedure identifies the term from the candidate list that, if added to the model, would yield the greatest reduction in the error sum of squares (i.e., the sum of squared differences in measured and model-predicted values across the modeling dataset). If the reduction is statistically significant, that term is added to the model. Stepwise regression proceeds in stages, with one additional term being added at each stage unless the user-selected stopping criterion is reached. After adding a term, stepwise regression checks all other terms in the model to assess if they are still statistically significant. If not, a term can be removed during a stage.

The stepwise regression algorithm requires that a statistical significance level be specified for terms to enter the model, and that a statistical significance level be specified for terms to remain in the model. In each iteration of a stepwise regression application, t-tests are conducted for each term already in the model and for terms being considered for inclusion in the model. To describe the results of these t-tests, a p-value is calculated for each of the terms. Loosely speaking, the p-values represent the probability that the respective model terms do <u>not</u> make a significant contribution to the predictive ability of the model. Terms whose corresponding p-values are small (often <0.05 is considered sufficiently small) are considered important in the model. The statistical significance levels specified for the stepwise regression algorithm indicate how small p-values must be for the corresponding terms to be included in the model. The statistical literature generally indicates that the stepwise algorithm is somewhat liberal in allowing terms into models. Yet, models containing unnecessary terms are undesirable because they tend to have

inflated prediction uncertainties. Thus, it is typically advisable to use tight statistical significance levels, such as 0.05, 0.01, or even smaller in some cases, when applying the stepwise regression algorithm.

One variation of stepwise regression that can be used to select terms for model building is what the SAS statistical software package (SASTM Software, SAS Institute Inc., Cary, NC) refers to as the Maximum R-squared Improvement (MAXR) selection method. For the MAXR criterion (as with other criteria for stepwise regression), terms can enter and leave (being replaced by another term) the model. Sequential changes to the model are based on maximal increases to the model's R² value, and MAXR tries to find the "best" model having a specified number of terms. However, MAXR is not the same as the "best subsets" algorithm because it does not consider all possible models with a given number of terms. Therefore, MAXR is not guaranteed to find the model with the highest R² value among all models having a given number of terms. This method tends to have a better chance of finding more nearly optimal models than does the stepwise selection method using other criteria (Freund and Littell 2003). The MAXR method does not require significance levels to control model term selection but does require the user to identify any terms to force into the model and to specify the number of terms to include in models being considered. Graphical and other methods can be used to compare and choose among models with different numbers of terms.

The standard stepwise regression procedure (regardless of the criterion used for model term selection) is not appropriate for linear mixture models or linear portions of other mixture experiment models for similar reasons as described previously regarding the standard backward elimination method. However, it is appropriate for adding nonlinear mixture terms or non-mixture terms to mixture models.

B.5 Statistical Methods for Model Validation

Model validation methods assess how well a fitted model predicts property values for data not used in fitting the model. The glasses used for validation ideally should be in the same composition region as the data used to fit the property-composition models, because (in general) fitted empirical and semi-empirical models should not be used to extrapolate much beyond the region covered by the modeling data. Also, ideally the validation data should be evenly distributed over the model composition region of model validity to properly assess predictive ability over the region. However, this is difficult to achieve in practice because validation data are typically not designed, but often consist of whatever extra data are available.

Validation generally consists of using a fitted model to predict property values for a set of validation data, and then comparing the predicted property values to the measured values from the validation database. The following subsections describe several methods for comparing predicted and measured values of properties.

B.5.1 Validation R²

Statistical summary comparisons of predicted and measured property values are also useful to see if differences are larger than their expected uncertainties. One such comparison is the *validation* R^2 statistic, which in general is given by

$$R_V^2 = 1 - \frac{\sum_{i=1}^n (\hat{y}_i - y_i)^2}{\sum_{i=1}^n (y_i - \bar{y})^2}.$$
 (B.18a)

However, in cases where WLS regression is used to fit the model and corresponding weights are available for the validation data, a weighted version of the *validation* R^2 statistic is given by

$$R_V^2 = 1 - \frac{\sum_{i=1}^n w_i (\hat{y}_i - y_i)^2}{\sum_{i=1}^n w_i (y_i - \bar{y}_w)^2}.$$
 (B.18b)

 R_V^2 is interpreted as the fraction of variability in the unweighted or weighted property values (transformed if appropriate) in the validation data accounted for by the fitted model. Note that R_V^2 is defined exactly the same as the ordinary R^2 defined in Eqs. (B.15a) and (B.15b), except that model validation data are used to assess model predictive performance instead of the model development data. Hence, the y_i , \hat{y}_i , \bar{y} , w_i , and \bar{y}_w values in Eqs. (B.18a) and (B.18b) correspond to the model validation data.

Generally, the range is $R_V^2 \le R_P^2 \le R_A^2 \le R^2 \le 1$. However, R_V^2 can take negative values (when a model predicts a validation set very poorly) and can take values larger than R_P^2 , R_A^2 , or R^2 (when a model predicts a particular validation dataset better than estimated by these statistics based on the modeling data).

B.5.2 Validation RMSE

Another useful summary statistic for model validation is *validation RMSE* ($RMSE_V$). This statistic is calculated the same as given in Eq. (B.12a) for OLS-fitted models and as given in Eq. (B.12b) for WLS-fitted models.

B.5.3 Predicted versus Measured Plots for Validation

Predicted and measured values for a model validation dataset can be compared by plotting the predicted versus the measured property values for each data point. Such *PvM plots* are the same as described in Section B.3, except model validation data are used instead of model development data. Also, similarly as described in Section B.3, *unweighted PvM plots* or *weighted PvM plots* may be produced and viewed to validate models fitted by WLS regression.

Optionally, error bars consisting of two-sided prediction intervals (PIs) with a specified level of confidence (e.g. 95% PIs) on the predicted values can be included in the PvM plot for validation. Then, if the error bar for a given validation data point overlaps a line with slope one superimposed on the PvM plot, the model is validated for that data point. Draper and Smith (1998) and Montgomery et al. (2012) provide additional discussion of PIs for regression models. The formulas for a 95% two-sided PI in the OLS and WLS cases are given in Section B.6.

B.6 Statistical Intervals for Quantifying Uncertainties in Model Predictions

Several types of statistical intervals are available to quantify the uncertainty associated with model predictions. Each type of statistical interval has a particular interpretation. A common assumption for all statistical intervals based on regression models is that the model represents the true underlying response surface (property-composition relationship for waste glasses) without a statistically significant lack-of-fit.

The following subsections present the formulas for one-sided upper (or lower) confidence intervals (Section B.6.1), two-sided confidence intervals (Section B.6.2), and two-sided prediction intervals (Section B.6.3). These types of statistical intervals are used to describe the uncertainty associated with model predictions at a single specific composition. Section B.6.4 presents the formulas for simultaneous

upper confidence intervals, which are used to describe the uncertainty associated with model predictions at many glass compositions. The formulas for these types of statistical intervals are given in each subsection for the OLS and WLS cases. Section B.6.5 presents two-sided approximated intervals for GLMs. Section B.6.6 discusses aspects of using the statistical intervals.

B.6.1 One-Sided Confidence Interval for OLS and WLS regression

A $100(1-\alpha)\%$ upper confidence interval (UCI) for the true mean response value for a given glass composition $\mathbf{g} = (g_1, g_2, \dots, g_q)$ is given by

$$\hat{y}(\mathbf{g}) + t_{1-\alpha,n-p} \sqrt{\mathbf{g}^{\mathrm{T}} C_{OLS} \mathbf{g}} = \hat{y}(\mathbf{g}) + t_{1-\alpha,n-p} \sqrt{\mathbf{g}^{\mathrm{T}} [(\mathbf{G}^{\mathrm{T}} \mathbf{G})^{-1} M S E_{OLS}] \mathbf{g}}$$
$$= \hat{y}(\mathbf{g}) + t_{1-\alpha,n-p} R M S E_{OLS} \sqrt{\mathbf{g}^{\mathrm{T}} (\mathbf{G}^{\mathrm{T}} \mathbf{G})^{-1} \mathbf{g}}, \qquad (B.19a)$$

for OLS regression, and by

$$\hat{y}(\mathbf{g}) + t_{1-\alpha,n-p} \sqrt{\mathbf{g}^{\mathrm{T}} C_{WLS} \, \mathbf{g}} = \hat{y}(\mathbf{g}) + t_{1-\alpha,n-p} \sqrt{\mathbf{g}^{\mathrm{T}} [(\mathbf{G}^{\mathrm{T}} \mathbf{W} \mathbf{G})^{-1} MSE_{WLS}] \, \mathbf{g}}$$
$$= \hat{y}(\mathbf{g}) + t_{1-\alpha,n-p} RMSE_{WLS} \sqrt{\mathbf{g}^{\mathrm{T}} (\mathbf{G}^{\mathrm{T}} \mathbf{W} \mathbf{G})^{-1} \, \mathbf{g}}, \qquad (B.19b)$$

for WLS regression. In Eqs. (B.19a) and (B.19b), the superscript T notation indicates a vector or matrix transpose, not temperature. The other notations in Eqs. (B.19a) and (B.19b) are defined as follows.

$\hat{y}(\mathbf{g})$	=	model predicted property value at composition g
100(1- <i>α</i>)	=	desired confidence (e.g., 90%) for the confidence interval, where α denotes the statistical significance level (e.g., $\alpha = 0.10$ for 90% confidence)
$t_{1-\alpha,n-p}$	=	100(1– α)-percentile of the Student's <i>t</i> -distribution with $n - p$ degrees of freedom
n	=	number of data points used to fit the model
р	=	number of parameters estimated in the model
Cols	=	estimated variance-covariance matrix for the estimated coefficients of a model fitted by OLS regression = $(\mathbf{G}^{\mathrm{T}}\mathbf{G})^{-1}MSE_{OLS}$
C_{WLS}	=	estimated variance-covariance matrix for the estimated coefficients of a model fitted by WLS regression = $(\mathbf{G}^{\mathrm{T}}\mathbf{W}\mathbf{G})^{-1}MSE_{WLS}$
g	=	the vector of the glass composition expanded in the form of the model terms
G	=	the matrix of the data (consisting of glass compositions expanded in the form of the model terms)
W	=	an $n \times n$ diagonal weight matrix with entries w_i , $i = 1, 2,, n$ (i.e., the weights associated with the model development set of n data points)
MSE	=	mean squared error, which is obtained from the OLS (MSE_{OLS}) or WLS (MSE_{WLS}) regression fit of the model

RMSE = the root mean squared error = \sqrt{MSE} , with *RMSE*_{*OLS*} and *RMSE*_{*WLS*} resulting from OLS and WLS regression fits of a model, respectively

A 100(1- α) % UCI, as given by Eqs. (B.18a) and (B.18b), is appropriate when an uncertainty statement is desired about the true mean response for a given composition g.

The formulas for a one-sided lower confidence interval (LCI) are the same as in Eqs. (B.18a) and (B.18b), except the plus signs following $\hat{y}(\mathbf{g})$ are changed to minus signs. Thus, a $100(1-\alpha)$ % LCI for the true mean response value for a given glass composition $\mathbf{g} = (g_1, g_2, \dots, g_q)$ is given by

$$\hat{y}(\mathbf{g}) - t_{1-\alpha,n-p} \sqrt{\mathbf{g}^{\mathrm{T}} \mathcal{C}_{OLS} \mathbf{g}} = \hat{y}(\mathbf{g}) - t_{1-\alpha,n-p} \sqrt{\mathbf{g}^{\mathrm{T}} [(\mathbf{G}^{\mathrm{T}} \mathbf{G})^{-1} M S E_{OLS}] \mathbf{g}}$$
$$= \hat{y}(\mathbf{g}) - t_{1-\alpha,n-p} R M S E_{OLS} \sqrt{\mathbf{g}^{\mathrm{T}} (\mathbf{G}^{\mathrm{T}} \mathbf{G})^{-1} \mathbf{g}}, \qquad (B.20a)$$

for OLS regression, and by

$$\hat{y}(\mathbf{g}) - t_{1-\alpha,n-p} \sqrt{\mathbf{g}^T C_{WLS} \mathbf{g}} = \hat{y}(\mathbf{g}) - t_{1-\alpha,n-p} \sqrt{\mathbf{g}^T [(\mathbf{G}^T \mathbf{W} \mathbf{G})^{-1} MSE_{WLS}] \mathbf{g}}$$
$$= \hat{y}(\mathbf{g}) - t_{1-\alpha,n-p} RMSE_{WLS} \sqrt{\mathbf{g}^T (\mathbf{G}^T \mathbf{W} \mathbf{G})^{-1} \mathbf{g}}, \qquad (B.20b)$$

for WLS regression.

B.6.2 Two-Sided Confidence Interval for OLS and WLS regression

A $100(1-\alpha)$ % two-sided confidence interval (CI) for the true mean response value for a given glass composition $\mathbf{g} = (g_1, g_2, \dots, g_q)$ is given by

$$\hat{y}(\mathbf{g}) \neq t_{1-\alpha/2,n-p} \sqrt{\mathbf{g}^{\mathrm{T}} C_{OLS} \mathbf{g}} = \hat{y}(\mathbf{g}) \neq t_{1-\alpha/2,n-p} \sqrt{\mathbf{g}^{\mathrm{T}} [(\mathbf{G}^{\mathrm{T}} \mathbf{G})^{-1} M S E_{OLS}] \mathbf{g}}$$
$$= \hat{y}(\mathbf{g}) \neq t_{1-\alpha/2,n-p} R M S E_{OLS} \sqrt{\mathbf{g}^{\mathrm{T}} (\mathbf{G}^{\mathrm{T}} \mathbf{G})^{-1} \mathbf{g}}, \qquad (B.21a)$$

for OLS regression, and by

$$\hat{y}(\mathbf{g}) \neq t_{1-\alpha/2,n-p} \sqrt{\mathbf{g}^T C_{WLS} \mathbf{g}} = \hat{y}(\mathbf{g}) \neq t_{1-\alpha/2,n-p} \sqrt{\mathbf{g}^T [(\mathbf{G}^T \mathbf{W} \mathbf{G})^{-1} MSE_{WLS}] \mathbf{g}}$$
$$= \hat{y}(\mathbf{g}) \neq t_{1-\alpha/2,n-p} RMSE_{WLS} \sqrt{\mathbf{g}^T (\mathbf{G}^T \mathbf{W} \mathbf{G})^{-1} \mathbf{g}},$$
(B.21b)

for WLS regression. In Eqs. (B.21a) and (B.21b), the notation is all the same as described in Section B.6.1, except that $t_{1-\alpha/2n-p}$ denotes the 100(1- $\alpha/2$)-percentile of the Student's *t*-distribution with n-p degrees of freedom.

B.6.3 Two-Sided Prediction Interval for OLS and WLS regression

A $100(1-\alpha)$ % two-sided prediction interval (PI) for an individual response value for a given composition **g** is given by

$$\hat{y}(\mathbf{g}) \neq t_{1-\alpha/2,n-p} \sqrt{MSE_{OLS} + \mathbf{g}^{\mathrm{T}} \mathbf{C}_{OLS} \mathbf{g}} = \hat{y}(\mathbf{g}) \neq t_{1-\alpha/2,n-p} RMSE_{OLS} \sqrt{1 + \mathbf{g}^{\mathrm{T}} (\mathbf{G}^{\mathrm{T}} \mathbf{G})^{-1} \mathbf{g}}$$
(B.22a)

for OLS regression, and by

$$\hat{y}(\mathbf{g}) \neq t_{1-\alpha/2,n-p} \sqrt{\frac{MSE_{WLS}}{w_i} + \mathbf{g}^{\mathrm{T}} \mathbf{C}_{\mathrm{WLS}} \mathbf{g}} = \hat{y}(\mathbf{g}) \neq t_{1-\alpha/2,n-p} RMSE_{WLS} \sqrt{\frac{1}{w_i} + \mathbf{g}^{\mathrm{T}} (\mathbf{G}^{\mathrm{T}} \mathbf{W} \mathbf{G})^{-1} \mathbf{g}} \quad (B.22b)$$

for WLS regression. The remaining notations in Eqs. (B.22a) and (B.22b) are defined as given following the UCI formulas in Section B.6.1. The preceding equations for $100(1-\alpha)$ % two-sided PIs are easily converted to $100(1-\alpha)$ % one-sided PIs by replacing " \mp " with "-" or "+", and replacing $t_{1-\alpha/2,n-p}$ with $t_{1-\alpha,n-p}$.

Note in Eq. (B.22b) that the w_i under the square root applies when PIs are calculated for modeling data, validation data, or application data (i.e., data used in applying the models and PIs) with weights. In situations where validation or application data do not have weights, w_i should be set to 1.

A $100(1-\alpha)$ % PI is appropriately used when comparing a model predicted response value for a given composition to an individual measurement of the response for that composition. This type of application arises in validating the predictive performance of a model for one or more glass compositions not used to fit the model. Specifically, Eqs. (B.21a) and (B.21b) can be used to produce 95% PIs displayed as error bars in PvM plots, as described at the end of Section B.5.

B.6.4 Simultaneous Upper Confidence Intervals for OLS and WLS Regression

At times it is desirable to describe the uncertainty associated with predictions obtained for a specified group of compositions. For example, a statement may be desired that indicates with high confidence that the predicted response value for every composition **g** in a specified group of compositions (or composition region) is below a particular regulatory limit. Such a confidence statement requires a statistical interval called a simultaneous upper confidence interval. While several different approaches exist to calculate simultaneous confidence intervals, the Working-Hotelling methodology (Working and Hotelling, 1929) is relatively simple and is particularly useful when a large number of compositions is involved. The formula for a $100(1-\alpha)$ % simultaneous upper confidence interval (SUCI) associated with predictions on an unlimited number of compositions **g** using the Working-Hotelling approach is given by

$$\hat{y}(\mathbf{g}) + \sqrt{pF_{1-2\alpha,(p,n-p)}}\sqrt{\mathbf{g}^{\mathrm{T}}\mathbf{C}_{\mathrm{OLS}}\ \mathbf{g}} = \hat{y}(\mathbf{g}) + RMSE_{OLS}\sqrt{pF_{1-2\alpha,(p,n-p)}}\sqrt{\mathbf{g}^{\mathrm{T}}(\mathbf{G}^{\mathrm{T}}\mathbf{G})^{-1}\mathbf{g}}$$
(B.23a)

for OLS regression, and by

$$\hat{y}(\mathbf{g}) + \sqrt{pF_{1-2\alpha,(p,n-p)}}\sqrt{\mathbf{g}^{\mathrm{T}}\mathbf{C}_{\mathrm{WLS}} \mathbf{g}} = \hat{y}(\mathbf{g}) + RMSE_{WLS}\sqrt{pF_{1-2\alpha,(p,n-p)}}\sqrt{\mathbf{g}^{\mathrm{T}}(\mathbf{G}^{\mathrm{T}}\mathbf{W}\mathbf{G})^{-1}\mathbf{g}}$$
(B.23b)

for WLS regression. In Eqs. (B.23a) and (B.23b), $F_{1-2\alpha,(p,n-p)}=100(1-2\alpha)$ -percentile of the *F*-distribution with *p* and *n* – *p* degrees of freedom.

The remaining notations are the same as defined previously.

B.6.5 Confidence Intervals for Generalized Linear Models

Inference on goodness-of-fit statistics for GLMs can be carried out in a manner analogous to OLS, and Wald inference can be applied in hypothesis testing and for building approximated confidence intervals.

Confidence intervals for GLMs can be estimated using the fact that, asymptotically (Myers et al. 2002),

$$\mathbf{g}^{\mathrm{T}}\mathbf{b} \sim N\left[\mathbf{g}^{\mathrm{T}}\mathbf{b}, \mathbf{g}^{\mathrm{T}}\left(\mathbf{G}^{\mathrm{T}}\mathbf{W}\mathbf{G}\right)^{-1}\mathbf{g}\right]$$
 (B.24)

which leads to a confidence interval on $\boldsymbol{g}^T\boldsymbol{b}$ of

$$\mathbf{g}^{\mathrm{T}}\mathbf{b} \, \pm z_{\alpha/2} \sqrt{\mathbf{g}^{\mathrm{T}} (\mathbf{G}^{\mathrm{T}} \mathbf{W} \mathbf{G})^{-1} \mathbf{g}} \,. \tag{B.25}$$

If the inverse link function produces a monotonic function of $\mathbf{g}^{T}\mathbf{b}$, Eq. (B.25) can be used to attach an approximate $100(1 - \alpha)$ % confidence interval on the mean response, where $z_{\alpha/2}$ is the $100(1-\alpha/2)$ -percentile of the standard normal distribution.

One-sided confidence intervals for GLMs can be obtained with Eq. (B.25), using z_{α} , and

$$\mathbf{g}^{\mathrm{T}}\mathbf{b} + z_{\alpha}\sqrt{\mathbf{g}^{\mathrm{T}}(\mathbf{G}^{\mathrm{T}}\mathbf{W}\mathbf{G})^{-1}\mathbf{g}}$$
(B.26)

for an upper confidence interval, or

$$\mathbf{g}^{\mathrm{T}}\mathbf{b} - z_{\alpha}\sqrt{\mathbf{g}^{\mathrm{T}}(\mathbf{G}^{\mathrm{T}}\mathbf{W}\mathbf{G})^{-1}\mathbf{g}}$$
(B.27)

for a lower confidence interval.

B.6.6 Statistical Intervals in Transformed and Untransformed Units

Eqs. (B.19) through (B.23) yield statistical intervals in transformed units when a transformed property is modeled. For example, a natural logarithm transformation of a response y [i.e., $\ln(y)$] is often used for property-composition models. Hence, the statistical intervals calculated using the preceding equations would be in $\ln(y)$ units. The statistical intervals can be transformed back to the original units of y by exponentiating the endpoint(s) of the statistical interval. However, the process of back-transforming (exponentiating) a statistical interval can change its interpretation. For example, if a 90% UCI in $\ln(y)$ units has the value "v", the back-transformed 90% UCI in the original units of y is given by e^v . The 90% UCI in units of $\ln(y)$ is a statement about the true mean response in $\ln(y)$ units for a given glass composition g. However, the resulting back-transformed interval is a 90% UCI on the true median response value for the given composition g, under the assumption that experimental errors in the data used to develop the model are lognormally distributed. This assumes that the experimental errors in the natural-log-transformed response data are normally distributed. This change in interpretation occurs

because the mean and median of a normal distribution are the same, but the mean of a lognormal distribution is larger than the median of a lognormal distribution.

Hence, back-transforming a 90% UCI on a mean response for a given composition **g** in ln-units yields a 90% UCI on the median response for a given composition **g** in original units. This then underestimates a 90% UCI on the mean response for a given composition **g** in original units. Back-transforming $100(1-\alpha)$ % SUCIs given by Eq. (B.23) in log-transformed units has a similar change in interpretation. Whereas the original $100(1-\alpha)$ % SUCIs are statements about the true mean values of responses in log-transformed response units for multiple compositions **g**, the back-transformed $100(1-\alpha)$ % SUCIs are statements about the true median values of responses in log-transformed response units for multiple compositions **g**, the back-transformed $100(1-\alpha)$ % SUCIs are statements about the true median values of responses in original response units for multiple compositions **g**. However, a $100(1-\alpha)$ % PI given by Eq. (B.22) in log-transformed units does not have a change in interpretation when back-transforming, because the original statement (in log-transformed units) and the back-transformed statement (in original units) are both about a true individual response value.

Alternatives exist to using normal-theory-based Eqs. (B.19) through (B.23) and back-transforming them when a transformed response variable is modeled. One alternative is to modify the statistical interval equations so that the statistical statement is about the true mean response value in the original units for a given composition \mathbf{g} [e.g., Eq. (B.19) for an UCI] or a set of compositions \mathbf{g} [e.g., Eq. (B.23) for a SUCI]. Although this type of alternative is discussed in the literature for non-regression problems (e.g., Gilbert 1987), no references were found for the regression context. Another alternative, the *generalized linear model* regression approach (Myers et al. 2002), avoids directly transforming the response variable and instead uses the transformation indirectly. Confidence intervals for the generalized linear models (GLMs) used in this document are based on the fact that the linear predictor in the model, $\mathbf{g}^{T}\mathbf{b}$, is asymptotically normal and the logit link, the function used to link the linear predictor with the score or probability of failure for a glass, is a monotonic function of the linear predictor.

Note that Eqs. (B.19) through (B.23) require knowledge of the variance-covariance matrix $C_{OLS} = MSE_{OLS}(G^TG)^{-1}$ for OLS regression and $C_W = MSE_{WLS}(G^TWG)^{-1}$ for WLS regression. The MSE_U and MSE_W are mean squared errors equal to the squares of $RMSE_U$ and $RMSE_W$ given by Eqs. (B.12a) and (B.12b). This information is included in the OLS or WLS regression software output that comes with the estimates of the *p* model coefficients. A variance-covariance matrix for estimated model coefficients is a $p \times p$ matrix with variances of estimated coefficients along the diagonal, and covariances between pairs of estimated model coefficients in the off-diagonal entries.

Appendix C – LAW Glass Numbers in Each of the Six Evaluation Subsets.

The specific glasses in each of the six evaluation subsets below are listed for each of the LAW glass properties modeled in this report:

- WTP: Older low-activity waste (LAW) glasses with lower waste loadings that were tested by the Vitreous State Laboratory (VSL), which were used by Piepel et al. (2007) for property-composition modeling. This classification was assigned when the database of 1075 LAW glasses was compiled (see Section 2.3).
- **ORP**: Newer LAW glasses with higher waste loadings that were tested by VSL. This classification was assigned when the database of 1075 LAW glasses was compiled (see Section 2.3).
- LP2OL: LAW glasses that satisfy slightly expanded (described subsequently) versions of the Pacific Northwest National Laboratory (PNNL) Phase 2 OL (and Phase 3) constraints specified in Table 2.1. Hence, this subset of evaluation glasses includes the LP2.OL, LP2.IL, and LP3 glasses, as well as any other LAW glasses that satisfy the expanded Phase 2 OL constraints. Note that the glasses in this evaluation set have high Na₂O waste loadings.
- LP123: LAW glasses from PNNL Phases 1, 2, and 3.
- HiNa₂O: LAW glasses with high concentrations of Na₂O (\geq 0.21 mf).
- **HiSO**₃: LAW glasses with high concentrations of SO₃ (≥ 0.0085 mf).

Table C.1 lists the glass numbers of LAW glasses with Product Consistency Test (PCT) data in the six evaluation subsets. Table C.2 lists the glass numbers of LAW glasses with Vapor Hydration Test (VHT) data in the six evaluation subsets. Table C.3 lists the glass numbers of LAW glasses with viscosity data in the six evaluation subsets. Table C.4 lists the glass numbers of LAW glasses with electrical conductivity data in the six evaluation subsets. Table C.5 lists the glass numbers of LAW glasses with melter SO₃ tolerance and solubility data in the six evaluation subsets. Table C.5 lists the glass numbers of LAW glasses numbers of LAW glasses with melter SO₃ tolerance and solubility data in the six evaluation subsets. Table C.6 lists the glass numbers of LAW glasses with k_{1208} data in five of the six evaluation subsets.

		Evaluation Subset, Glass #s for PCT					
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃	
1	1	397	516	928	41	61	
2	4	407	519	930	42	62	
3	5	442	520	933	268	63	
4	6	443	521	935	291	110	
5	7	444	522	937	294	182	
6	8	445	524	939	343	185	
7	9	446	526	941	344	192	
8	11	447	528	943	345	196	
9	15	500	538	945	458	207	
10	16	501	561	947	459	211	
11	17	502	577	949	462	213	
12	18	503	583	951	486	341	
13	19	504	585	953	488	407	
14	21	505	589	955	489	435	
15	22	506	591	957	496	443	
16	23	507	593	959	497	444	
17	24	508	595	961	499	445	
18	27	509	597	963	500	446	
19	28	510	618	965	501	447	
20	29	511	620	967	502	544	
21	30	512	622	969	503	603	
22	31	513	689	971	504	604	
23	32	514	690	973	505	605	
24	34	515	695	975	506	606	
25	35	516	696	979	507	607	
26	37	519	697	981	508	608	
27	38	520	698	983	509	609	
28	39	521	699	986	510	610	
29	41	522	700	989	511	611	
30	42	523	723	991	512	612	
31	45	524	724	1013	513	613	
32	46	525	725	1014	514	614	
33	47	526	726	1015	515	615	
34	48	527	728	1016	516	622	
35	49	528	729	1017	519	698	
36	50	529	730	1018	520	701	
37	52	530	731	1019	521	702	
38	53	531	732	1020	522	703	
39	54	532	733	1021	523	704	
40	55	533	736	1022	524	706	
41	56	534	737	1023	525	707	
42	61	535	744	1024	526	708	

Table C.1. Glass #s of LAW Glasses with PCT Data in Six Evaluation Subsets^(a)

Evaluation Subset, Glass #s for PCT						
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃
43	62	536	745	1025	527	710
44	63	537	748	1026	528	711
45	65	538	750	1027	538	712
46	66	544	751	1028	545	714
47	67	545	759	1029	547	715
48	68	547	760	1030	549	716
49	69	549	761	1031	551	717
50	70	551	762	1032	553	732
51	71	553	763	1033	555	733
52	72	555	764	1034	557	735
53	73	557	765	1035	559	838
54	74	559	766	1036	561	841
55	75	561	767	1037	563	842
56	76	563	768	1038	565	843
57	78	565	898	1039	567	852
58	80	567	900	1040	569	853
59	110	569	919	1041	571	855
60	121	571	997	1042	573	856
61	122	573	999	1043	575	857
62	123	575	1013	1044	577	875
63	125	577	1014	1045	579	876
64	160	579	1015	1046	581	881
65	161	581	1016	1047	583	884
66	162	583	1017	1048	585	885
67	174	585	1018	1049	589	886
68	175	589	1019	1050	591	890
69	177	591	1020	1051	593	891
70	178	593	1021	1052	595	892
71	179	595	1022	1053	597	893
72	182	597	1023	1054	599	894
73	183	599	1024	1055	601	895
74	185	601	1025	1056	617	896
75	187	603	1026	1057	618	897
76	189	604	1027	1058	620	903
77	192	605	1028	1059	622	904
78	194	606	1030	1060	625	905
79	196	607	1031	1061	626	906
80	198	608	1033	1062	627	907
81	199	609	1034	1063	628	930
82	201	610	1035	1064	687	933
83	203	611	1036	1065	688	935
84	205	612	1037	1066	689	939

 Table C.1. Glass #s of LAW Glasses with PCT Data in Six Evaluation Subsets,^(a) cont.

Evaluation Subset, Glass #s for PCT						
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃
85	207	613	1038	1067	690	943
86	209	614	1039	1068	691	947
87	211	615	1040	1069	692	949
88	213	617	1041	1070	693	951
89	215	618	1042	1071	694	953
90	217	620	1043	1072	695	979
91	219	622	1044	1073	696	981
92	221	623	1045	1074	697	983
93	223	624	1046	1075	698	986
94	225	625	1047		699	989
95	227	626	1048		700	997
96	229	627	1049		726	1001
97	231	628	1050		728	1029
98	233	629	1051		731	1034
99	235	630	1052		732	1035
100	237	631	1053		733	1042
101	238	638	1054		737	1044
102	240	642	1055		738	1046
103	242	652	1056		741	1051
104	244	654	1057		744	1057
105	246	687	1059		745	1058
106	248	688	1060		746	1062
107	249	689	1061		747	1063
108	250	690	1062		748	1067
109	252	691	1063		749	1068
110	254	692	1064		750	1074
111	256	693	1065		751	
112	258	694	1066		754	
113	260	695	1067		758	
114	263	696	1068		763	
115	265	697	1069		764	
116	266	698	1070		765	
117	267	699	1071		766	
118	268	700	1072		767	
119	269	701	1073		768	
120	270	702	1074		771	
121	271	703	1075		777	
122	272	704			790	
123	273	706			815	
124	274	707			823	
125	275	708			826	
126	276	710			827	
127	277	711			828	

Table C.1. Glass #s of LAW Glasses with PCT Data in Six Evaluation Subsets,^(a) cont.

		Eva	luation Subset	, Glass #s for	PCT	
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃
128	278	712			829	
129	279	714			830	
130	280	715			831	
131	281	716			832	
132	282	717			833	
133	283	718			835	
134	284	719			836	
135	285	720			837	
136	286	721			838	
137	287	722			844	
138	288	723			845	
139	289	724			847	
140	291	725			848	
141	292	726			849	
142	293	728			850	
143	294	729			851	
144	295	730			852	
145	296	731			858	
146	297	732			862	
147	298	733			864	
148	299	734			867	
149	300	735			871	
150	301	736			873	
151	302	737			874	
152	303	738			875	
153	304	741			877	
154	305	744			878	
155	306	745			879	
156	307	746			881	
157	309	747			887	
158	311	748			888	
159	314	749			892	
160	315	750			898	
161	318	751			900	
162	319	752			901	
163	320	753			902	
164	322	754			903	
165	331	755			904	
166	332	756			911	
167	333	757			913	
168	334	758			914	
169	335	759			915	
170	336	760			916	

 Table C.1. Glass #s of LAW Glasses with PCT Data in Six Evaluation Subsets,^(a) cont.

		Evaluation Subset, Glass #s for PCT					
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃	
171	337	761			919		
172	338	762			921		
173	339	763			922		
174	340	764			947		
175	341	765			961		
176	342	766			981		
177	343	767			999		
178	344	768			1013		
179	345	769			1014		
180	346	770			1015		
181	347	771			1016		
182	348	772			1017		
183	349	773			1018		
184	350	774			1019		
185	351	775			1020		
186	352	776			1021		
187	353	777			1022		
188	354	778			1023		
189	355	779			1024		
190	356	780			1025		
191	357	781			1026		
192	358	782			1027		
193	359	783			1028		
194	360	784			1029		
195	361	785			1031		
196	362	786			1032		
197	363	787			1034		
198	364	788			1036		
199	365	789			1038		
200	366	790			1040		
201	367	791			1041		
202	368	792			1042		
203	369	793			1044		
204	370	794			1045		
205	371	795			1046		
206	372	797			1047		
207	373	798			1048		
208	374	799			1049		
209	375	800			1051		
210	376	801			1052		
211	377	802			1053		
212	378	803			1054		
213	379	804			1055		

 Table C.1. Glass #s of LAW Glasses with PCT Data in Six Evaluation Subsets,^(a) cont.

		Eva	luation Subset	, Glass #s for	РСТ	
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃
214	380	805			1056	
215	381	806			1057	
216	382	807			1058	
217	383	808			1059	
218	384	809			1060	
219	385	810			1061	
220	386	815			1062	
221	387	823			1063	
222	388	826			1064	
223	389	827			1065	
224	390	828			1066	
225	411	829			1067	
226	412	830			1068	
227	413	831			1069	
228	414	832			1070	
229	415	833			1071	
230	416	835			1072	
231	418	836			1073	
232	419	837			1074	
233	420	838			1075	
234	422	839				
235	424	840				
236	426	841				
237	427	842				
238	428	843				
239	431	844				
240	435	845				
241	436	846				
242	437	847				
243	438	848				
244	439	849				
245	440	850				
246	448	851				
247	449	852				
248	450	853				
249	451	854				
250	452	855				
251	453	856				
252	454	857				
252	455	858				
253	456	859				
255	457	862				
256	458	863				

 Table C.1. Glass #s of LAW Glasses with PCT Data in Six Evaluation Subsets,^(a) cont.

	Eva	luation Subset	, Glass #s for	PCT	
WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃
459	864				
460	865				
461	867				
462	869				
463	871				
464	873				
465	874				
466	875				
475	876				
476	877				
477	878				
478	879				
479					
480					
481	883				
482	884				
483	885				
484					
485					
486	888				
487	890				
490					
491					
499					
	904				
	905				
	906				
	907				
	911				
	915				
	459 460 461 462 463 464 465 466 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 	459 864 460 865 461 867 462 869 463 871 464 873 465 874 466 875 475 876 476 877 477 878 478 879 479 880 480 881 481 883 482 884 483 885 484 886 485 887 486 888 487 890 488 891 489 892 490 893 491 894 492 895 493 896 494 897 495 898 496 900 497 901 498 902 499 903 905 906 9	459 864 460 865 461 867 462 869 463 871 464 873 465 874 466 875 475 876 477 878 477 878 478 879 479 880 480 881 481 883 482 884 484 886 484 886 485 887 486 888 487 890 490 893 491 894 492 895 493 896 494 897 495 898 496 900 497 901 498 902 499 903 498 902 499 903 499 903 $$ 906 $$ 907 $$ 907 $$ 914 $$ 914 $$ 916	459 864 $$ $$ 460 865 $$ $$ 461 867 $$ $$ 462 869 $$ $$ 463 871 $$ $$ 465 874 $$ $$ 475 876 $$ $$ 476 877 $$ $$ 477 878 $$ $$ 478 879 $$ $$ 479 880 $$ $$ 480 881 $$ $$ 481 883 $$ $$ 484 886 $$ $$ 485 887 $$ $$ 486 888 $$ $$ 486 888 $$ $$ 487 890 $$ $$ 486 888 $$ $$ 487 890 $$ $$ 490 893 $$ $$ 490 893 $$ $$ 491 894 $$ $$ 493 896 $$ $$ 496 900 $$ $$ 496 900 $$ $$ 498 902 $$ $$ 499 903 $$ $$ 494 897 $$ $$ 494 897 $$ $$ 494 997 $$ $$ 494 997 $$ $$ $$	459 864 $$ $$ $$ $$ 460 865 $$ $$ $$ $$ 461 867 $$ $$ $$ 462 869 $$ $$ $$ 463 871 $$ $$ $$ 464 873 $$ $$ $$ 465 874 $$ $$ $$ 466 875 $$ $$ $$ 475 876 $$ $$ $$ 477 878 $$ $$ $$ 478 879 $$ $$ $$ 479 880 $$ $$ $$ 480 881 $$ $$ $$ 483 885 $$ $$ $$ 484 886 $$ $$ $$ 485 887 $$ $$ $$ 484 886 $$ $$ $$ 485 887 $$ $$ $$ 484 886 $$ $$ $$ 484 886 $$ $$ $$ 494 890 $$ $$ $$ 494 891 $$ $$ $$ 493 896 $$ $$ $$ 494 897 $$ $$ $$ 494 897 $$ $$ $$ 494 890 $$ $$ $$ 494 890 <td< td=""></td<>

 Table C.1. Glass #s of LAW Glasses with PCT Data in Six Evaluation Subsets,^(a) cont.

	Evaluation Subset, Glass #s for PCT							
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃		
300		920						
301		921						
302		922						
303		924						
304		926						
305		993						
306		995						
307		997						
308		999						
309		1001						

Table C.1. Glass #s of LAW	Glasses with PCT Data in Six Evaluation Subsets, ^(a)
cont.	

(a) The "Glass #" is a unique number assigned to each LAW glass composition, as shown in Table A.2 of Appendix A. The corresponding η₁₁₅₀ values of LAW glasses by Glass # are listed in Table A.3 of Appendix A.

	Evaluation Subset, Glass #s for VHT							
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃		
1	9	397	516	928	41	185		
2	15	398	517	930	42	192		
3	17	407	519	933	268	196		
4	18	442	520	935	343	207		
5	19	443	521	937	344	211		
6	28	444	522	939	345	213		
7	41	445	524	941	458	290		
8	42	446	526	943	459	341		
9	52	447	528	945	462	407		
10	65	500	538	947	486	443		
11	68	501	539	949	488	444		
12	74	502	541	951	489	445		
13	75	503	543	953	496	446		
14	76	504	561	955	497	447		
15	78	505	562	957	499	544		
16	80	506	577	959	500	602		
17	89	507	578	961	501	603		
18	92	508	583	963	502	604		
19	93	509	584	965	503	605		
20	122	510	585	967	504	606		
21	123	511	586	969	505	607		
22	125	512	587	971	506	608		
23	150	513	588	973	507	609		
24	174	514	589	975	508	610		
25	175	515	590	977	509	611		
26	177	516	591	979	510	612		
27	178	517	592	981	511	613		
28	179	519	593	983	512	614		
29	180	520	594	986	513	615		
30	185	521	595	989	514	622		
31	187	522	596	991	515	698		
32	189	523	597	1013	516	701		
33	192	524	598	1014	517	702		
34	194	525	618	1015	519	703		
35	196	526	619	1016	520	704		
36	198	527	620	1017	521	706		
37	199	528	621	1018	522	707		
38	201	529	622	1019	523	708		
39	203	530	689	1020	524	710		
40	205	531	690	1021	525	711		
41	207	532	695	1022	526	712		
42	209	533	696	1023	527	714		
43	211	534	697	1024	528	715		
44	213	535	698	1025	538	716		
45	215	536	699	1026	539	717		
46	217	537	700	1027	541	733		

Table C.2. Glass #s of LAW Glasses with Pass/Fail VHT Data in Six Evaluation Subsets^(a)

	Evaluation Subset, Glass #s for VHT							
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃		
47	219	538	723	1028	543	735		
48	221	539	724	1029	545	838		
49	223	541	725	1030	546	841		
50	225	543	726	1031	547	842		
51	227	544	728	1032	548	843		
52	229	545	729	1033	549	852		
53	231	546	730	1034	550	853		
54	233	547	731	1035	551	855		
55	235	548	733	1036	552	856		
56	237	549	736	1037	553	857		
57	238	550	737	1038	554	875		
58	240	551	744	1039	555	876		
59	242	552	745	1040	556	881		
60	244	553	748	1041	557	882		
61	246	554	750	1042	558	884		
62	249	555	751	1043	559	885		
63	250	556	759	1044	560	886		
64	252	557	760	1045	561	890		
65	254	558	761	1046	562	891		
66	256	559	762	1047	563	892		
67	258	560	763	1048	564	893		
68	260	561	764	1049	565	894		
69	263	562	765	1050	566	895		
70	265	563	766	1051	567	896		
70	265	564	768	1051	568	897		
72	268	565	898	1052	569	903		
73	269	566	900	1055	570	904		
74	272	567	919	1055	570	905		
75	272	568	997	1055	572	906		
76	273	569	999	1050	572	907		
70	274	570	1013	1057	575	908		
78	270	571	1013	1050	575	930		
78	277	572	1014	1059	575	933		
80	278	573	1015	1060	570	935		
81	280	574	1010	1061	578	939		
81	280	575	1017	1062	578	943		
82	281	576	1018	1063	580	943		
83	282	577	1019	1065	581	949		
84 85	284	578	1020	1063	582	949		
85	283	579	1021	1067	583	953		
80	289	580	1022	1069	584	933		
87	309	580	1023	1009	585	977		
89	309	582	1024	1070	586	979 981		
89 90								
	314	583	1026	1073	587	983		
91	315	584	1027	1074	588	986		

Table C.2. Glass #s of LAW Glasses with Pass/Fail VHT Data in Six Evaluation Subsets^(a), cont.

	Evaluation Subset, Glass #s for VHT							
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃		
92	319	585	1028	1075	589	989		
93	320	586	1030		590	997		
94	323	587	1031		591	1001		
95	331	588	1033		592	1029		
96	332	589	1034		593	1034		
97	333	590	1035		594	1035		
98	334	591	1036		595	1042		
99	335	592	1037		596	1044		
100	336	593	1038		597	1046		
101	337	594	1039		598	1051		
102	338	595	1040		599	1057		
103	339	596	1041		600	1058		
104	340	597	1042		601	1062		
105	341	598	1043		602	1063		
106	342	599	1044		616	1067		
107	343	600	1045		617	1068		
108	344	601	1046		618	1074		
100	345	602	1047		619			
110	346	603	1048		620			
110	347	604	1049		621			
112	348	605	1019		622			
112	349	606	1050		625			
113	350	607	1051		626			
115	351	608	1052		627			
116	352	609	1055		628			
117	353	610	1054		677			
117	354	611	1055		678			
110	355	612	1050		679			
120	356	613	1059		680			
120	357	614	1060		681			
121	358	615	1060		682			
122	359	616	1061		683			
123	360	617	1062		684			
124	361	618	1064		685			
125	362	619	1065		686			
120	363	620	1067		687			
127	364	620	1067		688			
128	365	621	1068		689			
129	365	623	1009		690			
130	360	623			690 691			
131		624	1071 1073		691			
	368	625 626						
133	369	626	1074		693 694			
134	370		1075					
135	371	628			695			
136	372	629 620			696			
137	373	630			697			

Table C.2. Glass #s of LAW Glasses with Pass/Fail VHT Data in Six Evaluation Subsets^(a), cont.

	Evaluation Subset, Glass #s for VHT							
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃		
138	374	631			698			
139	375	632			699			
140	376	633			700			
141	377	636			726			
142	378	637			728			
143	379	638			731			
144	380	639			733			
145	381	642			737			
146	382	643			738			
147	383	652			741			
148	384	653			744			
149	385	654			745			
150	386	655			746			
151	389	668			747			
152	411	669			748			
153	422	670			749			
154	424	671			750			
155	430	672			751			
156	431	673			754			
157	437	674			758			
158	448	675			763			
150	449	676			764			
160	450	677			765			
161	451	678			766			
162	452	679			768			
163	453	680			771			
164	454	681			777			
165	455	682			790			
166	456	683			815			
167	457	684			818			
168	458	685			820			
169	459	686			822			
170	460	687			823			
170	400	688			823			
171	462	689			824			
172	462	690			823			
173	464	690			820			
174	464	692			827			
		692 693			828			
176	466 474							
177		694			830			
178	475	695			831			
179	476	696			832			
180	477	697			833			
181	478	698			835			
182	479	699 700			836			
183	480	700			837			

Table C.2. Glass #s of LAW Glasses with Pass/Fail VHT Data in Six Evaluation Subsets^(a), cont.

	Evaluation Subset, Glass #s for VHT							
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃		
184	481	701			838			
185	482	702			844			
186	483	703			845			
187	484	704			847			
188	485	706			848			
189	486	707			849			
190	487	708			850			
191	488	710			851			
192	489	711			852			
193	490	712			858			
194	491	714			862			
195	492	715			864			
196	493	716			867			
197	494	717			868			
198	495	718			871			
199	496	719			872			
200	497	720			873			
201	498	721			874			
202	499	722			875			
203		723			877			
204		724			878			
205		725			879			
206		726			881			
207		728			887			
208		729			888			
209		730			889			
210		731			892			
211		733			898			
212		734			900			
212		735			901			
213		736			902			
215		737			903			
216		738			904			
217		741			909			
218		744			910			
210		745			911			
21)		746			912			
220		740			912			
221		748			914			
222		748			915			
223		749			915			
224		751			910			
225		752			919			
220		753			921			
227		754			922 947			
228		755			947 961			
229		155			701			

Table C.2. Glass #s of LAW Glasses with Pass/Fail VHT Data in Six Evaluation Subsets^(a), cont.

		Evaluation Subset, Glass #s for VHT							
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃			
230		756			981				
231		757			999				
232		758			1013				
233		759			1014				
234		760			1015				
235		761			1016				
236		762			1017				
237		763			1018				
238		764			1019				
239		765			1020				
240		766			1021				
241		768			1022				
242		769			1023				
243		770			1024				
244		771			1025				
245		772			1026				
246		773			1023				
247		774			1028				
248		775			1029				
249		776			1025				
250		777			1031				
250		778			1032				
252		779			1036				
252		780			1030				
254		781			1030				
255		782			1040				
256		782			1041				
250		784			1042				
258		785			1044				
258		786			1045				
260		787			1040				
261		787			1047				
261		789			1048				
262		789			1049				
263		790			1051				
264		791 792							
					1053				
266		793 704			1054				
267		794			1055				
268		795			1056				
269		797			1057				
270		799			1058				
271		800			1059				
272		801			1060				
273		802			1061				
274		803			1062				
275		804			1063				

Table C.2. Glass #s of LAW Glasses with Pass/Fail VHT Data in Six Evaluation Subsets^(a), cont.

		Evaluation Subset, Glass #s for VHT						
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃		
276		805			1064			
277		806			1065			
278		807			1067			
279		808			1068			
280		809			1069			
281		810			1070			
282		815			1071			
283		818			1073			
284		820			1074			
285		822			1075			
286		823						
287		824						
288		825						
289		826						
290		827						
291		828						
292		829						
293		830						
294		831						
295		832						
296		833						
297		835						
298		836						
299		837						
300		838						
301		839						
302		840						
303		841						
304		842						
305		843						
306		844						
307		845						
308		846						
309		847						
310		848						
311		849						
312		850						
312		851						
313		852						
315		853						
315		853						
317		855						
317		856						
319		857						
319		858						
320		859						
321		039						

Table C.2. Glass #s of LAW Glasses with Pass/Fail VHT Data in Six Evaluation Subsets^(a), cont.

		Evaluation Subset, Glass #s for VHT						
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃		
322		860						
323		861						
324		862						
325		863						
326		864						
327		865						
328		866						
329		867						
330		868						
331		869						
332		870						
333		871						
334		872						
335		873						
336		874						
337		875						
338		876						
339		877						
340		878						
341		879						
342		880						
343		881						
344		882						
345		883						
346		884						
347		885						
348		886						
349		887						
350		888						
351		889						
352		890						
353		891						
354		892						
355		893						
356		893						
357		895						
358		895						
359		890						
360		898						
361		900						
362		900						
363		901						
363		902						
365		903 904						
		904 905						
366 367		905 906						
307		900						

Table C.2. Glass #s of LAW Glasses with Pass/Fail VHT Data in Six Evaluation Subsets^(a), cont.

a .	N /TD		luation Subset			Trac
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃
368		907				
369		908				
370		909				
371		910				
372		911				
373		912				
374		913				
375		914				
376		915				
377		916				
378		919				
379		920				
380		921				
381		922				
382		923				
383		924				
384		925				
385		926				
386		927				
387		993				
388		995				
389		997				
390		999				
391		1001				
392		1012				

Table C.2. Glass #s of LAW	Glasses with Pass/Fail	VHT Data in Six Evaluation
Subsets ^(a) , cont.		

(a) The "Glass #" is a unique number assigned to each LAW glass composition, as shown in Table A.2 of Appendix A. The corresponding pass/fail VHT values of LAW glasses by Glass # are listed in Table A.3 of Appendix A.

		Evaluation Subset, Glass #s for η_{1150}						
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃		
1	2	399	516	928	41	61		
2	3	408	519	930	42	62		
3	6	409	520	933	64	63		
4	7	410	521	935	268	159		
5	8	442	522	937	343	181		
6	9	443	524	939	344	185		
7	11	444	526	941	345	192		
8	15	445	528	943	458	196		
9	16	446	561	945	459	207		
10	17	447	577	947	462	211		
11	18	500	583	949	486	213		
12	19	501	585	951	489	251		
13	21	502	587	953	496	255		
14	22	503	589	955	500	290		
15	23	504	595	957	501	341		
16	24	505	597	959	502	443		
17	27	506	689	961	503	444		
18	28	507	695	963	504	445		
19	29	508	696	965	505	446		
20	30	509	697	967	506	447		
21	31	510	698	969	507	603		
22	32	511	699	971	508	604		
23	34	512	700	973	509	605		
24	36	513	723	975	510	606		
25	37	514	724	977	511	607		
26	38	515	725	979	512	608		
27	41	516	726	981	513	609		
28	42	519	728	983	514	610		
29	44	520	729	986	515	611		
30	45	521	730	989	516	612		
31	49	522	745	991	519	613		
32	52	523	751	1013	520	614		
33	53	524	760	1014	521	698		
34	54	525	761	1015	522	701		
35	55	526	762	1016	523	702		
36	56	527	763	1017	524	703		
37	60	528	764	1018	525	704		
38	61	529	765	1019	526	708		
39	62	530	766	1020	527	710		
40	63	531	898	1021	528	711		
41	64	532	900	1022	545	712		
42	65	533	919	1023	547	715		
43	66	534	997	1024	549	716		
44	68	535	999	1025	551	717		

Table C.3. Glass #s of LAW Glasses with Viscosity at 1150 °C Data in SixEvaluation Subsets^(a)

		Evaluation Subset, Glass #s for η_{1150}						
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃		
45	69	536	1013	1026	553	838		
46	71	537	1013	1020	555	841		
47	72	545	1015	1028	557	842		
48	74	547	1016	1029	559	843		
49	75	549	1017	1030	561	852		
50	76	551	1018	1031	563	853		
51	78	553	1019	1032	565	855		
52	142	555	1020	1033	567	856		
53	143	557	1021	1034	569	857		
54	151	559	1022	1035	571	875		
55	155	561	1023	1036	573	876		
56	157	563	1024	1037	575	881		
57	159	565	1025	1038	577	882		
58	174	567	1026	1039	579	884		
59	177	569	1027	1040	581	885		
60	178	571	1028	1041	583	886		
61	181	573	1030	1042	585	890		
62	183	575	1031	1043	587	891		
63	185	577	1033	1044	589	892		
64	187	579	1034	1045	595	893		
65	189	581	1035	1046	597	894		
66	192	583	1036	1047	625	895		
67	194	585	1037	1048	627	896		
68	196	587	1038	1049	687	897		
69	198	589	1039	1050	688	903		
70	199	595	1040	1051	689	904		
71	201	597	1041	1052	695	905		
72	203	603	1042	1053	696	906		
73	205	604	1043	1054	697	907		
74	207	605	1044	1055	698	930		
75	209	606	1045	1056	699	933		
76	211	607	1046	1057	700	935		
77	213	608	1047	1058	726	939		
78	215	609	1048	1059	728	943		
79	217	610	1049	1060	745	947		
80	219	611	1050	1061	751	949		
81	221	612	1051	1062	763	951		
82	223	613	1052	1063	764	953		
83	225	614	1053	1064	765	977		
84	227	623	1054	1065	766	979		
85	229	624	1055	1067	771	981		
86	231	625	1056	1068	777	983		
87	233	627	1057	1069	790	986		
88	235	630	1059	1070	815	989		
89	240	631	1060	1071	820	997		
90	242	687	1061	1073	823	1001		

Table C.3. Glass #s of LAW Glasses with Viscosity at 1150 °C Data in Six Evaluation Subsets,^(a) cont.

	Evaluation Subset, Glass #s for η_{1150}						
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃	
91	244	688	1062	1074	826	1029	
92	246	689	1063	1075	827	1034	
93	250	695	1064		828	1035	
94	251	696	1065		829	1042	
95	252	697	1067		830	1044	
96	253	698	1068		831	1046	
97	255	699	1069		832	1051	
98	256	700	1070		833	1057	
99	258	701	1071		835	1058	
100	260	702	1073		836	1062	
101	263	703	1074		837	1063	
102	268	704	1075		838	1067	
102	269	708			844	1068	
102	272	710			845	1074	
105	272	711			847		
105	273	712			848		
107	275	712			849		
107	276	716			850		
100	270	717			851		
110	279	718			852		
110	280	719			858		
112	280	719			858		
112	281	721			862 864		
113	282	723			867		
114	283	723			871		
115	285	724			873		
110	285	725			873		
117	280	720			874		
118	287	728			873		
119	289	729			878		
121	290	745			879		
122	309	751			881		
123	311	760			887		
124	314	761			888		
125	315	762			892		
126	318	763			898		
127	321	764			900		
128	323	765			901		
129	326	766			902		
130	331	769			903		
131	332	770			904		
132	333	771			909		
133	334	772			910		
134	335	773			911		
135	336	774			912		
136	337	775			913		

Table C.3. Glass #s of LAW Glasses with Viscosity at 1150 °C Data in Six Evaluation Subsets,^(a) cont.

	Evaluation Subset, Glass #s for η_{1150}						
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃	
137	339	777			914		
138	340	778			915		
130	341	779			916		
140	342	780			919		
141	343	782			921		
142	344	783			922		
143	345	784			947		
144	346	785			961		
145	347	786			981		
146	362	787			999		
140	365	788			1013		
148	376	789			1013		
148	383	790			1014		
150	386	793			1015		
150	411	795			1010		
151	411 424	795			1017		
152					1018		
	430	800					
154	448	802			1020		
155	449	803			1021		
156	451	804			1022		
157	452	805			1023		
158	454	806			1024		
159	455	807			1025		
160	456	808			1026		
161	457	809			1027		
162	458	810			1028		
163	459	815			1029		
164	460	820			1031		
165	461	823			1032		
166	462	826			1034		
167	463	827			1036		
168	464	828			1038		
169	475	829			1040		
170	476	830			1041		
171	477	831			1042		
172	478	832			1044		
173	479	833			1045		
174	480	835			1046		
175	482	836			1047		
176	483	837			1048		
177	486	838			1049		
178	489	839			1051		
179	491	840			1052		
180	494	841			1053		
181	496	842			1054		
182	498	843			1055		

Table C.3. Glass #s of LAW Glasses with Viscosity at 1150 °C Data in Six Evaluation Subsets,^(a) cont.

	Evaluation Subset, Glass #s for η_{1150}					
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃
183		844			1056	
184		845			1057	
185		846			1058	
186		847			1059	
187		848			1060	
188		849			1061	
189		850			1062	
190		851			1063	
191		852			1064	
192		853			1065	
192		854			1065	
194		855			1067	
194		856			1069	
195		857			1009	
190						
		858			1071	
198		859			1073	
199		862			1074	
200		863			1075	
201		864				
202		865				
203		867				
204		869				
205		871				
206		873				
207		874				
208		875				
209		876				
210		877				
211		878				
212		879				
213		880				
214		881				
215		882				
216		883				
217		884				
218		885				
219		886				
220		887				
221		888				
222		890				
222		891				
223		892				
224		893				
226		894				
220		894				
227		895				
220		090				

Table C.3. Glass #s of LAW Glasses with Viscosity at 1150 °C Data in Six Evaluation Subsets,^(a) cont.

	Evaluation Subset, Glass #s for η_{1150}						
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃	
229		897					
230		898					
231		900					
232		901					
233		902					
234		903					
235		904					
236		905					
237		906					
238		907					
239		909					
240		910					
241		911					
242		912					
243		913					
244		914					
245		915					
246		916					
247		919					
248		920					
249		921					
250		922					
251		923					
252		924					
253		925					
254		926					
255		927					
256		993					
257		995					
258		997					
259		999					
260		1001					

Table C.3. Glass #s of LAW Glasses with Viscosity at 1150 °C Data in Six Evaluation Subsets,^(a) cont.

 (a) The "Glass #" is a unique number assigned to each LAW glass composition, as shown in Table A.2 of Appendix A. The corresponding η₁₁₅₀ values of LAW glasses by Glass # are listed in Table A.3 of Appendix A.

Number		Eva	luation Subset	, Glass #s for	Evaluation Subset, Glass #s for ε_{1150}						
of Glasses	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃					
1	2	399	516	928	41	62					
2	3	408	519	930	42	63					
3	6	409	520	933	64	159					
4	7	410	521	935	268	181					
5	8	442	522	937	343	185					
6	9	443	524	939	344	192					
7	11	444	526	941	345	196					
8	15	445	528	943	458	207					
9	16	446	561	947	459	211					
10	17	447	577	949	462	213					
11	18	500	583	951	486	251					
12	19	501	585	953	489	255					
13	21	502	587	955	496	290					
14	22	503	589	957	500	341					
15	23	504	595	959	501	443					
16	24	505	597	961	502	444					
17	27	506	689	963	503	445					
18	28	507	695	965	504	446					
19	29	508	696	967	505	447					
20	30	509	697	969	506	603					
21	31	510	698	971	507	604					
22	32	511	699	973	508	605					
23	34	512	700	975	509	606					
24	36	513	723	977	510	607					
25	37	514	724	979	511	608					
26	38	515	725	981	512	609					
27	41	516	726	983	513	610					
28	42	519	728	986	514	611					
29	44	520	729	989	515	612					
30	45	521	730	991	516	613					
31	49	522	745	1013	519	614					
32	52	523	751	1014	520	698					
33	53	524	760	1015	521	701					
34	54	525	761	1016	522	702					
35	55	526	762	1017	523	703					
36	56	527	763	1018	524	704					
37	60	528	764	1019	525	708					
38	62	529	765	1020	526	710					
39	63	530	766	1021	527	711					
40	64	531	898	1022	528	712					
41	65	532	900	1023	545	715					
42	66	533	919	1024	547	716					
43	68	534	997	1025	549	717					
44	69	535	999	1026	551	838					
45	71	536	1013	1027	553	841					

Table C.4. Glass #s of LAW Glasses with Electrical Conductivity at 1150 °C Data in Six Evaluation Subsets^(a)

Number		Evaluation Subset, Glass #s for ε_{1150}					
of Glasses	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃	
46	72	537	1014	1028	555	842	
47	74	545	1015	1029	557	843	
48	75	547	1016	1030	559	852	
49	142	549	1017	1031	561	853	
50	143	551	1018	1032	563	855	
51	151	553	1019	1033	565	856	
52	153	555	1020	1034	567	857	
53	155	557	1021	1035	569	875	
54	157	559	1022	1036	571	876	
55	159	561	1023	1037	573	881	
56	174	563	1024	1038	575	882	
57	177	565	1025	1039	577	884	
58	178	567	1026	1040	579	885	
59	181	569	1027	1041	581	886	
60	183	571	1028	1042	583	890	
61	185	573	1030	1043	585	891	
62	187	575	1031	1044	587	892	
63	189	577	1033	1045	589	893	
64	192	579	1034	1046	595	894	
65	194	581	1035	1047	597	895	
66	196	583	1036	1048	625	896	
67	198	585	1037	1049	627	897	
68	199	587	1038	1050	687	903	
69	201	589	1039	1051	688	904	
70	203	595	1040	1052	689	905	
71	205	597	1041	1053	695	906	
72	207	603	1042	1054	696	907	
73	209	604	1043	1056	697	930	
74	211	605	1044	1057	698	933	
75	213	606	1045	1058	699	935	
76	215	607	1046	1059	700	939	
77	217	608	1047	1060	726	943	
78	219	609	1048	1063	728	947	
79	221	610	1049	1064	745	949	
80	223	611	1050	1067	751	951	
81	225	612	1051	1068	763	953	
82	227	613	1052	1075	764	977	
83	229	614	1053		765	979	
84	231	623	1054		766	981	
85	233	624	1056		771	983	
86	235	625	1057		777	986	
87	240	627	1059		790	989	
88	242	630	1060		815	997	
89	244	631	1063		820	1001	
90	246	687	1064		823	1029	

Table C.4. Glass #s of LAW Glasses with Electrical Conductivity at 1150 °C Data in Six Evaluation Subsets,^(a) cont.

Number	Evaluation Subset, Glass #s for ε_{1150}								
of Glasses	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃			
91	251	688	1067		826	1034			
92	252	689	1068		827	1035			
93	253	695	1075		828	1042			
94	255	696			829	1044			
95	256	697			830	1046			
96	258	698			831	1051			
97	260	699			832	1057			
98	263	700			833	1058			
99	268	701			835	1063			
100	269	702			836	1067			
101	272	703			837	1068			
102	273	704			838				
102	274	708			844				
102	275	710			845				
105	276	710			847				
105	270	712			848				
100	279	712			849				
107	280	715			850				
108	280	710			850				
110	281	717			852				
111	283	719			858				
112	284	721			862				
113	285	722			864				
114	286	723			867				
115	287	724			871				
116	288	725			873				
117	289	726			874				
118	290	728			875				
119	309	729			877				
120	311	730			878				
121	314	745			879				
122	315	751			881				
123	318	760			887				
124	321	761			888				
125	323	762			892				
126	326	763			898				
127	331	764			900				
128	332	765			901				
129	333	766			902				
130	334	769			903				
131	335	770			904				
132	336	771			909				
132	340	772			910				
133	341	773			911				
134	342	774			912				
135	343	775			913				

Table C.4. Glass #s of LAW Glasses with Electrical Conductivity at 1150 °C Data in Six Evaluation Subsets,^(a) cont.

Number		Eva	luation Subset	, Glass #s for	ε ₁₁₅₀	
of Glasses	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃
137	344	776			914	
138	345	777			915	
139	346	778			916	
140	347	779			919	
141	362	780			921	
142	365	781			922	
143	376	782			947	
144	383	783			961	
145	386	784			981	
146	411	785			999	
147	424	786			1013	
148	430	787			1014	
149	448	788			1015	
150	449	789			1016	
151	451	790			1017	
152	452	791			1018	
153	454	792			1019	
154	455	793			1020	
155	456	794			1020	
156	457	795			1022	
153	458	796			1022	
158	459	799			1023	
159	460	800			1025	
160	461	801			1025	
161	462	802			1020	
162	463	803			1027	
162	464	804			1020	
164	475	805			102)	
165	476	806			1031	
166	477	807			1032	
167	478	808			1034	
168	479	809			1030	
169	480	810			1030	
170	482	815			1040	
170	483	820			1041	
171	486	823			1042	
172	489	825			1044	
173	491	820			1045	
174	494	828			1040	
175	496	828			1047	
170	498	830			1048	
178		830			1049	
178		832			1051	
180		832			1052	
180		835			1055	
181		835			1054	
102		030			1050	

Table C.4. Glass #s of LAW Glasses with Electrical Conductivity at 1150 °C Data in Six Evaluation Subsets,^(a) cont.

Number	Evaluation Subset, Glass #s for ε_{1150}							
of Glasses	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃		
183		837			1057			
184		838			1058			
185		839			1059			
186		840			1060			
187		841			1063			
188		842			1064			
189		843			1067			
190		844			1068			
191		845			1075			
192		846						
193		847						
193		848						
195		849						
196		850						
197		851						
198		852						
199		853						
200		854						
200		855						
201		855						
202		850						
203		858						
204		859						
206		862						
207		863						
208		864						
209		865						
210		867						
211		869						
212		871						
213		873						
214		874						
215		875						
216		876						
217		877						
218		878						
219		879						
220		880						
221		881						
222		882						
223		883						
224		884						
225		885						
226		886						
227		887						
228		888						

Table C.4. Glass #s of LAW Glasses with Electrical Conductivity at 1150 °C Data in Six Evaluation Subsets,^(a) cont.

Number	Evaluation Subset, Glass #s for ε_{1150}								
of Glasses	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃			
229		890							
230		891							
231		892							
232		893							
233		894							
234		895							
235		896							
236		897							
237		898							
238		900							
239		901							
240		902							
241		903							
242		904							
243		905							
244		906							
245		907							
246		909							
247		910							
248		911							
249		912							
250		913							
251		914							
252		915							
253		916							
254		919							
255		920							
256		921							
257		922							
258		923							
259		924							
260		925							
261		926							
262		927							
263		993							
264		995							
265		997							
266		999							
267		1001							

Table C.4. Glass #s of LAW Glasses with Electrical Conductivity at 1150 °C Data	
in Six Evaluation Subsets, ^(a) cont.	

(a) The "Glass #" is a unique number assigned to each LAW glass composition, as shown in Table A.2 of Appendix A. The corresponding ϵ_{1150} values of LAW glasses by Glass # are listed in Table A.3 of Appendix A.

	Evalı	ation Subset	, Glass #s for	SO3 Solubilit	y/Melter Tolei	ance
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃
1	10	391	516	928	85	51
2	31	392	519	930	146	61
3	34	393	520	932	343	62
4	36	394	521	933	344	63
5	37	395	522	935	345	79
6	38	396	524	937	500	82
7	39	397	526	939	501	84
8	40	400	528	941	502	85
9	51	401	562	943	503	110
10	54	402	578	945	504	120
11	56	403	584	947	505	181
12	57	404	585	949	506	182
13	58	405	586	951	507	184
14	59	406	587	953	508	186
15	61	442	588	955	509	188
16	62	444	590	957	510	191
17	63	445	592	961	511	193
18	69	446	593	963	512	195
19	70	500	594	965	513	200
20	71	501	595	967	514	202
21	72	502	596	969	515	204
22	73	503	597	971	516	206
23	74	504	598	973	519	208
24	77	505	689	975	520	210
25	79	506	690	977	521	212
26	82	507	695	979	522	214
27	83	508	696	981	523	216
28	84	509	697	983	524	218
29	85	510	698	985	525	220
30	86	511	699	986	526	222
31	87	512	700	988	527	224
32	88	513	723	989	528	226
33	89	514	724	991	546	228
34	92	515	725	1013	548	230
35	93	516	726	1014	550	232
36	101	519	728	1015	552	234
37	102	520	729	1016	554	236
38	103	521	730	1017	556	243
39	104	522	737	1018	558	245
40	105	523	744	1019	560	247
41	107	524	745	1020	562	251
42	108	525	748	1021	564	255
43	109	526	750	1022	566	257
44	110	527	751	1023	568	264
45	111	528	759	1024	570	290

Table C.5. Glass #s of LAW Glasses with Melter SO ₃ Tolerance and Solubility at
1150 °C Data in Six Evaluation Subsets ^(a)

	Evaluation Subset, Glass #s for SO3 Solubility/Melter Tolerance								
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃			
46	112	529	760	1025	572	310			
47	113	530	761	1026	574	312			
48	114	531	762	1027	576	341			
49	116	532	763	1028	578	444			
50	117	533	764	1029	579	445			
51	120	534	765	1030	580	446			
52	144	535	766	1031	581	602			
53	145	536	898	1032	582	603			
54	146	537	900	1033	584	604			
55	147	546	919	1034	585	605			
56	148	548	997	1035	586	606			
57	149	550	999	1036	587	607			
58	152	552	1013	1037	588	608			
59	153	554	1014	1038	590	609			
60	154	556	1015	1039	592	610			
61	155	558	1016	1040	593	611			
62	156	560	1017	1041	594	612			
63	157	562	1018	1042	595	613			
64	158	564	1019	1043	596	614			
65	160	566	1020	1044	597	698			
66	163	568	1021	1045	598	701			
67	164	570	1022	1046	600	702			
68	165	572	1023	1047	602	703			
69	166	574	1024	1048	687	704			
70	171	576	1025	1049	688	706			
71	172	578	1026	1050	689	707			
72	173	579	1027	1051	690	708			
73	176	580	1028	1052	691	710			
74	181	581	1030	1053	692	711			
75	182	582	1031	1054	693	712			
76	184	584	1033	1055	694	714			
77	186	585	1034	1056	695	715			
78	188	586	1035	1057	696	716			
79	191	587	1036	1058	697	717			
80	193	588	1037	1059	698	838			
81	195	590	1038	1060	699	841			
82	200	592	1030	1060	700	842			
83	202	593	1040	1062	726	843			
84	202	594	1041	1062	728	852			
85	206	595	1042	1064	737	853			
86	208	596	1043	1065	738	855			
87	210	597	1044	1065	741	856			
88	210	598	1045	1068	744	857			
89	212	600	1046	1069	745	875			
90	216	602	1047	1070	746	876			

Table C.5. Glass #s of LAW Glasses with Melter SO3 Tolerance and Solubility at1150 °C Data in Six Evaluation Subsets,(a) cont.

	Evalı	ation Subset	, Glass #s for	SO3 Solubilit	y/Melter Toler	rance
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃
91	218	603	1048	1071	747	881
92	220	604	1049	1073	748	882
93	222	605	1050	1074	749	884
94	224	606	1051	1075	750	885
95	226	607	1052		751	886
96	228	608	1053		754	892
97	230	609	1054		758	893
98	232	610	1055		763	894
99	234	611	1056		764	895
100	236	612	1057		765	896
101	239	613	1059		766	897
102	241	614	1060		771	930
103	243	687	1061		777	932
104	245	688	1062		790	933
105	247	689	1063		811	935
106	251	690	1064		812	939
107	253	691	1065		813	943
108	255	692	1067		814	947
109	257	693	1068		815	949
110	259	694	1069		818	951
111	262	695	1070		819	953
112	264	696	1071		820	977
112	290	697	1071		822	979
113	310	698	1074		823	981
114	312	699	1074		824	983
116	331	700			825	985
117	332	700			826	986
117	333	701			827	988
110	334	702			828	989
120	335	703			829	997
120	336	704			830	1001
121	337	700			830	1001
122	338	707			832	1029
123	339	710			832	1034
124	339	710	-		835	1033
125	340	711			835	1042
126	341	712			830	1044
127	342	714				1048
					838	
129	344	716			844	1057
130	345	717			845 847	1058
131	346	718			847	1062
132	347	719			848	1063
133	348	720			849	1067
134	349	721			850	1068
135	350	722			851	1074
136	351	723			852	

Table C.5. Glass #s of LAW Glasses with Melter SO3 Tolerance and Solubility at1150 °C Data in Six Evaluation Subsets,

	Evaluation Subset, Glass #s for SO3 Solubility/Melter Tolerance								
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃			
137	352	724			858				
138	353	725			862				
139	354	726			864				
140	355	728			873				
141	356	729			874				
142	357	730			875				
143	358	737			877				
144	359	738			878				
145	360	741			879				
146	361	744			881				
147	362	745			892				
148	363	746			898				
149	364	747			900				
150	365	748			901				
150	366	749			902				
152	367	750			909				
152	368	751			910				
155	369	752			911				
154	370	753			912				
155	370	754			913				
150	371	755			913				
157	372				914				
		756							
159	374	757			916				
160	375	758			917				
161	376	759			918				
162	377	760			919				
163	378	761			921				
164	379	762			922				
165	380	763			947				
166	381	764			961				
167	382	765			981				
168	383	766			999				
169	384	769			1006				
170	385	770			1013				
171	386	771			1014				
172		772			1015				
173		773			1016				
174		774			1017				
175		775			1018				
176		776			1019				
177		777			1020				
178		778			1021				
179		779			1022				
180		780			1023				
181		781			1024				
182		782			1025				

Table C.5. Glass #s of LAW Glasses with Melter SO3 Tolerance and Solubility at1150 °C Data in Six Evaluation Subsets, ^(a) cont.

Court	WTP	ORP	LP2OL	SO ₃ Solubilit LP123	HiNa ₂ O	HiSO
Count				LF123		пізО3
183		783			1026	
184		784			1027	
185		785			1028	
186		786			1029	
187		787			1031	
188		788			1032	
189		789			1034	
190		790			1036	
191		791			1038	
192		792			1040	
193		793			1041	
194		794			1042	
195		795			1044	
196		797			1045	
197		799			1046	
198		800			1047	
199		801			1048	
200		802			1049	
201		803			1051	
202		804			1052	
203		805			1053	
203		806			1055	
205		807			1055	
206		808			1055	
200		809			1050	
207		810			1057	
208		811			1058	
210		812			1059	
210		812			1060	
212		814			1062	
213		815			1063	
214		818			1064	
215		819			1065	
216		820			1067	
217		822			1068	
218		823			1069	
219		824			1070	
220		825			1071	
221		826			1073	
222		827			1074	
223		828			1075	
224		829				
225		830				
226		831				
227		832				
228		833				

Table C.5. Glass #s of LAW Glasses with Melter SO3 Tolerance and Solubility at1150 °C Data in Six Evaluation Subsets,

	Evaluation Subset, Glass #s for SO3 Solubility/Melter Tolerance							
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃		
229		835						
230		836						
231		837						
232		838						
233		839						
234		840						
235		841						
236		842						
237		843						
238		844						
239		845						
240		846						
241		847						
242		848						
243		849						
243		850						
245		851						
245		852						
240		853						
247		854						
248		855						
250		856						
251		857						
252		858						
253		859						
254		862						
255		863						
256		864						
257		873						
258		874						
259		875						
260		876						
261		877						
262		878						
263		879						
264		880						
265		881						
266		882						
267		883						
268		884						
269		885						
270		886						
271		892						
272		893						
272		894						
273		895						

Table C.5. Glass #s of LAW Glasses with Melter SO3 Tolerance and Solubility at1150 °C Data in Six Evaluation Subsets,

	Eval	uation Subset	, Glass #s for	SO3 Solubilit	y/Melter Tole	rance
Count	WTP	ORP	LP2OL	LP123	HiNa ₂ O	HiSO ₃
275		896				
276		897				
277		898				
278		900				
279		901				
280		902				
281		909				
282		910				
283		911				
284		912				
285		913				
286		914				
287		915				
288		916				
289		917				
290		918				
291		919				
292		920				
293		921				
293		922				
295		923				
296		924				
297		925				
298		926				
299		927				
300		995				
301		997				
302		999				
303		1001				
304		1001				
305		1003				
306		1004				
300		1000				
307		1007				
308		1008				
310		1009				
311		1011				

Table C.5. Glass #s of LAW Glasses with Melter SO ₃ Tolerance and Solubility at
1150 °C Data in Six Evaluation Subsets, ^(a) cont.

(a) The "Glass #" is a unique number assigned to each LAW glass composition, as shown in Table A.2 of Appendix A. The corresponding melter SO₃ tolerance and solubility values of LAW glasses by Glass # are listed in Table A.3 of Appendix A.

_		Glass # in Each Evaluation Set					
Count	WTP	ORP	LP2OL	HiNa ₂ O	HiSO ₃		
1	k001	k009	k028	k009	k040		
2	k002	k010	k059	k010	k041		
3	k003	k011	k060	k011	k044		
4	k004	k012	k061	k012	k045		
5	k005	k013	k062	k013	k085		
6	k006	k014	k063	k014	k087		
7	k007	k015	k064	k015	k088		
8	k008	k016	k067	k017	k092		
9	k025	k010	k171	k018	k092		
10	k026	k017	k171 k235	k010	k123		
10	k020	k019	k235 k236	k019	k125 k124		
12	k029	k020	k230	k020	k124		
12	k030	k020	k237	k029	k125		
13	k030	k021	k252	k050	k133		
15	k031	k039	k254	k052	k133		
	k032 k033	k040	k256	k054	k134		
16		k040					
17	k034		k257	k055	k171		
18	k035	k042	k261	k056	k172		
19	k036	k043	k290	k057	k201		
20	k037	k044	k293	k058	k203		
21	k038	k045	k294	k059	k206		
22	k069	k046	k295	k060	k207		
23	k070	k047	k296	k061	k208		
24	k071	k048	k298	k062	k213		
25	k072	k049	k299	k063	k217		
26	k073	k050	k300	k064	k219		
27	k074	k051	k303	k065	k222		
28	k075	k052	k304	k066	k223		
29	k076	k053	k305	k067	k226		
30	k077	k054	k306	k068	k227		
31	k078	k055	k328	k076	k228		
32	k081	k056	k329	k145	k229		
33	k082	k057	k330	k156	k230		
34	k083	k058	k331	k158	k231		
35	k084	k059	k332	k159	k232		
36	k085	k060	k333	k166	k233		
37	k086	k061	k335	k167	k234		
38	k087	k062	k336	k169	k241		
39	k088	k063	k337	k170	k242		
40	k089	k064	k338	k171	k243		
41	k090	k065		k191	k303		
42	k091	k066		k193	k304		
43	k092	k067		k194	k305		
44	k094	k068		k195	k306		
45	k095	k122		k197	k307		
46	k096	k122		k198	k308		
47	k097	k123		k190	k309		
48	k098	k124		k200	k310		

Table C.6. Glass #s of LAW Glasses with K-3 Corrosion at 1208 °C Data in Five of the Six Evaluation Subsets^(a)

Count WTP ORP LP20L HiNa ₂ O His 49 $k099$ $k150$ $k201$ $k3$ 50 $k100$ $k151$ $k202$ $k3$ 51 $k101$ $k152$ $k204$ $k3$ 52 $k102$ $k153$ $k210$ $k3$ 54 $k104$ $k155$ $k212$ $k3$ 55 $k105$ $k156$ $k213$ $k3$ 56 $k106$ $k157$ $k214$ $k3$ 57 $k107$ $k158$ $k215$ $k3$ 58 $k108$ $k159$ $k216$ $k3$ 60 $k110$ $k161$ $k219$ $k3$ 61 $k111$ $k162$ $k220$ $k3$ 61 $k111$ $k165$ $k222$ $k3$ 62 $k112$			Gla	ss # in Each Evaluat	ion Set	
49 k099 k150 k201 k3 50 k100 k151 k202 k3 51 k101 k152 k204 k3 52 k102 k153 k209 k3 53 k103 k154 k210 k3 54 k104 k155 k212 k3 55 k105 k156 k213 k3 56 k106 k157 k216 k3 58 k108 k159 k216 k3 59 k109 k160 k218 k3 60 k111 k162 k220 k3 61 k111 k162 k220 k3 62 k112 k163 k225 k3 64 k114 k165 k235 k3 65 k115 k166 k237 - 66 k1	Count	WTP				HiSO ₃
50 k100 k151 k202 k3 51 k101 k152 k204 k3 52 k102 k153 k209 k3 53 k103 k154 k210 k3 54 k104 k155 k212 k3 55 k105 k156 k214 k3 56 k106 k157 k214 k3 57 k107 k158 k216 k3 58 k108 k159 k218 k3 60 k110 k161 k218 k3 61 k111 k162 k220 k3 62 k112 k163 k222 k3 64 k114 k165 k225 k3 65 k115 k166 k236 66 k116 k167 k237 67 k						k311
51 k101 k152 k204 k3 52 k102 k153 k209 k3 53 k103 k154 k210 k3 54 k104 k155 k212 k3 55 k105 k156 k214 k3 56 k106 k157 k215 k3 57 k107 k158 k216 k3 58 k108 k159 k216 k3 60 k110 k161 k219 k3 61 k111 k162 k220 k3 62 k112 k163 k222 k3 63 k113 k164 k225 k3 64 k114 k165 k237 67 k117 k168 k237 68 k118 k169 k238 70 k						k312
52 k102 k153 k209 k3 53 k103 k154 k212 k3 54 k104 k155 k212 k3 55 k105 k156 k213 k3 56 k106 k157 k214 k3 57 k107 k158 k216 k3 58 k108 k159 k216 k3 60 k110 k161 k218 k3 61 k111 k162 k220 k3 62 k112 k163 k222 k3 63 k113 k164 k225 k3 64 k114 k165 k225 k3 65 k115 k166 k235 k3 66 k116 k167 k236 67 k117 k168 k237 68 k						k313
53 k103 k154 k210 k3 54 k104 k155 k212 k3 55 k105 k156 k213 k3 56 k106 k157 k214 k3 57 k107 k158 k216 k3 58 k108 k159 k216 k3 60 k110 k161 k218 k3 61 k111 k162 k220 k3 61 k111 k162 k220 k3 62 k112 k163 k220 k3 63 k113 k164 k225 k3 64 k114 k165 k235 k3 65 k115 k166 k237 67 k117 k168 k237 68 k18 k169 k237 72 k1						k314
54 k104 k155 k212 k3 55 k105 k156 k213 k3 56 k106 k157 k214 k3 57 k107 k158 k215 k3 58 k108 k159 k216 k3 60 k110 k161 k219 k3 61 k111 k162 k220 k3 62 k112 k163 k222 k3 63 k113 k164 k225 k3 64 k114 k165 k229 k3 65 k115 k166 k235 k3 66 k116 k167 k238 - 67 k117 k168 k237 - 68 k118 k169 k238 - 70 k120 k175 k244 - 71 k121<						k315
55 k105 k156 k213 k3 56 k106 k157 k214 k3 57 k107 k158 k216 k3 58 k108 k159 k216 k3 59 k109 k160 k218 k3 60 k110 k161 k220 k3 61 k111 k162 k222 k3 62 k113 k164 k222 k3 63 k113 k164 k225 k3 64 k114 k165 k229 k3 65 k115 k166 k235 k3 66 k116 k167 k236 67 k117 k168 k237 70 k120 k175 k238 71 k121 k176 k244 - 72 k1						k316
56 k106 k157 k214 k3 57 k107 k158 k215 k3 58 k108 k159 k216 k3 59 k109 k160 k218 k3 60 k110 k161 k218 k3 61 k111 k162 k220 k3 62 k112 k163 k222 k3 63 k113 k164 k229 k3 64 k114 k165 k229 k3 65 k115 k166 k235 k3 66 k116 k167 k238 - 67 k117 k168 k238 - 68 k118 k169 k238 - 70 k120 k175 k244 - 71 k121 k176 k246 - 72 k126 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>k310</td>						k310
57 k107 k158 k215 k3 58 k108 k159 k216 k3 59 k109 k160 k218 k3 60 k110 k161 k219 k3 61 k111 k162 k220 k3 62 k112 k163 k222 k3 63 k113 k164 k225 k3 64 k114 k165 k235 k3 65 k115 k166 k238 - 66 k116 k167 k237 - 67 k117 k168 k238 - 69 k119 k173 k238 - 70 k120 k175 k244 - 71 k121 k176 k244 - 72 k126 k177 k246 - 73 k127 <td></td> <td></td> <td></td> <td></td> <td></td> <td>k318</td>						k318
58 k108 k159 k216 k3 59 k109 k160 k218 k3 60 k110 k161 k219 k3 61 k111 k162 k220 k3 62 k112 k163 k222 k3 63 k113 k164 k225 k3 64 k114 k165 k235 k3 65 k115 k166 k235 k3 66 k116 k167 k235 k3 67 k117 k168 k237 - 68 k118 k169 k238 - 70 k120 k175 k244 - 71 k120 k176 k244 - 72 k126 k177 k246 - 73 k127 k178 k247 - 75 k130 <td></td> <td></td> <td></td> <td></td> <td></td> <td>k319</td>						k319
59k109k160k218k360k110k161k219k361k111k162k220k362k112k163k222k363k113k164k225k364k114k165k235k365k115k166k236-66k116k167k236-67k117k168k237-68k118k169k238-69k119k173k239-70k120k175k244-71k121k176k245-73k127k178k247-74k129k179k248-75k130k180k250-77k132k182k251-78k133k183k252-80k135k186k254-81k136k186k256-82k137k188k258-84k139k191k259-85k140k193k260-86k141k194k260-87k142k195k263-89k144 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>k320</td></td<>						k320
60k110k161k219k3 61 k111k162k220k3 62 k112k163k222k3 63 k113k164k225k3 64 k114k165k229k3 65 k115k166k235k3 66 k116k167k236 67 k117k168k238 69 k119k173k239 70 k120k175k244 71 k121k176k245 72 k126k177k248 74 k129k179k248 74 k130k180k249 76 k131k181k250 77 k132k182k251 79 k134k186k254 79 k134k186k254 81 k136k186k254 84 k139k191k260 84 k139k191k260 86 k141k194k260 86 k141k194k260 87 k142k195k260 88 k143k196 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>k320</td></t<>						k320
61k111k162k220k3 62 k112k163k222k3 63 k113k164k225k3 64 k114k165k235k3 65 k115k166k236 67 k117k168k237 68 k118k169k238 69 k119k173k239 70 k120k175k244 71 k121k176k245 72 k126k177k246 73 k127k178k247 74 k129k179k248 75 k130k180k250 77 k132k182k251 79 k134k184k252 79 k134k186k257 84 k139k191k258 84 k139k191k259 85 k140k193k260 86 k141k194k261 87 k142k195k262- 88 k143k196k265- 89 k144k197k265- 80 k145k198						k322
62k112k163k222k3 63 k113k164k225k3 64 k114k165k229k3 65 k115k166k235k3 66 k116k167k236 67 k117k168k237 68 k118k169k238 69 k119k173k239 70 k120k175k244 71 k121k176k246 72 k126k177k246 73 k127k178k247 74 k129k179k248 76 k131k180k250 77 k132k182k251 78 k133k183k252 79 k134k184k253 80 k135k185k256 81 k136k186k259 84 k139k191k260 84 k140k193k260 86 k141k194k261 87 k142k195k262- 88 k143k196k263 89 k144k197 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>k323</td></td<>						k323
63k113k164k225k364k114k165k229k365k115k166k235k366k116k167k236-67k117k168k237-68k118k169k238-69k119k173k239-70k120k175k244-71k121k176k245-72k126k177k246-73k127k178k247-74k129k180k248-75k130k180k250-77k132k182k251-78k133k183k252-79k134k186k256-81k136k188k257-84k139k191k258-84k139k191k260-85k140k193k260-86k141k194k261-87k142k195k264-88k143k196k263-89k144k197k264-90k145k198k265-91k146k1						k324
64k114k165k229k3 65 k115k166k235k3 66 k116k167k236- 67 k117k168k237- 68 k118k169k238- 69 k119k173k239- 70 k120k175k244- 71 k121k176k245- 72 k126k177k246- 73 k127k178k247- 74 k129k179k248- 75 k130k180k250- 77 k132k182k251- 78 k133k183k252- 79 k134k184k253- 80 k135k185k254- 81 k136k186k258- 82 k137k188k258- 84 k139k191k260- 84 k139k191k260- 86 k141k194k261- 87 k142k195k263- 88 k143k196k263- 89 k144k197k265- 81 k146k199k265						k325
65k115k166k235k366k116k167k23667k117k168k23768k118k169k23869k119k173k23970k120k175k24471k121k176k24572k126k177k24673k127k178k24874k129k179k24875k130k180k24976k131k181k25077k132k182k25178k133k183k25479k134k184k25680k135k185k25481k136k186k25882k137k188k25983k138k190k25884k139k191k26086k141k194k26187k142k195k26288k143k196k26389k144k197k26490k145k198k26591k146k199k266						k326
66k116k167k236 67 k117k168k237 68 k118k169k238 69 k119k173k239 70 k120k175k244 71 k121k176k245 72 k126k177k246 73 k127k178k247 74 k129k179k248 75 k130k180k249 76 k131k181k250 77 k132k182k251 78 k133k183k252 79 k134k184k253 80 k135k185k254 81 k136k186k256 82 k137k188k258 84 k139k191k260 86 k141k194k260 86 k141k196k261 87 k142k195k261 88 k143k196k263 89 k144k197k265 91 k146k199k265 91 k146k199k266						k320
67k117k168k237- 68 k118k169k238- 69 k119k173k239- 70 k120k175k244- 71 k121k176k245- 72 k126k177k246- 73 k127k178k247- 74 k129k179k248- 75 k130k180k249- 76 k131k181k250- 77 k132k182k251- 78 k133k183k251- 79 k134k184k253- 80 k135k185k254- 81 k136k186k256- 82 k137k188k256- 84 k139k191k260- 85 k140k193k260- 86 k141k194k261- 87 k142k195k261- 88 k143k196k263- 89 k144k197k263- 89 k144k197k265- 90 k145k198k265- 91 k146k199k266 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
68k118k169k23869k119k173k23970k120k175k24471k121k176k24572k126k177k24673k127k178k24774k129k179k24875k130k180k24976k131k181k25077k132k182k25178k133k183k25279k134k184k25380k135k186k25681k136k186k25682k137k188k25884k139k191k25985k140k193k26086k141k194k26187k142k195k26188k143k196k26390k145k198k26591k146k199k266						
69k119k173k23970k120k175k24471k121k176k24572k126k177k24673k127k178k24774k129k179k24875k130k180k24976k131k181k25077k132k182k25178k133k183k25279k134k184k25380k135k186k25481k136k186k25682k137k188k25884k139k191k25885k140k193k26086k141k194k26187k142k195k26389k144k197k26390k145k198k26591k146k199k266						
70k120k175k24471k121k176k24572k126k177k24673k127k178k24774k129k179k24875k130k180k24976k131k181k25077k132k182k25178k133k183k25279k134k186k25480k135k186k25681k136k186k25682k137k188k25884k139k191k25885k140k193k26086k141k194k26187k142k195k26188k143k196k26389k144k197k26390k145k198k266						
71k121k176k245 72 k126k177k246 73 k127k178k247 74 k129k179k248 75 k130k180k249 76 k131k181k250 77 k132k182k251 78 k133k183k252 79 k134k184k253 80 k135k185k254 81 k136k186k256 82 k137k188k258 84 k139k191k259 85 k140k193k260 86 k141k194k261 87 k142k195k263 89 k144k197k263 89 k144k197k264 90 k145k198k265 91 k146k199k266						
72k126k177k246 73 k127k178k247 74 k129k179k248 75 k130k180k249 76 k131k181k250 77 k132k182k251 78 k133k183k252 79 k134k184k253 80 k135k185k254 81 k136k186k256 82 k137k188k258 84 k139k191k258 85 k140k193k260 86 k141k194k261 87 k142k195k263 89 k144k197k263 90 k145k198k265 91 k146k199k266						
73k127k178k24774k129k179k24875k130k180k24976k131k181k25077k132k182k25178k133k183k25279k134k184k25380k135k185k25481k136k186k25682k137k188k25884k139k191k25885k140k193k26086k141k194k26187k142k195k26389k144k197k26390k145k198k26591k146k199k266						
74k129k179k248 75 k130k180k249 76 k131k181k250 77 k132k182k251 78 k133k183k252 79 k134k184k253 80 k135k185k254 81 k136k186k256 82 k137k188k258 84 k139k191k258 85 k140k193k260 86 k141k194k261 87 k142k195k263 89 k144k197k263 89 k144k197k265 91 k146k199k266						
75k130k180k249 76 k131k181k250 77 k132k182k251 78 k133k183k252 79 k134k184k253 80 k135k185k254 81 k136k186k256 82 k137k188k257 83 k138k190k258 84 k139k191k260 86 k141k194k261 87 k142k195k263 88 k143k196k263 89 k144k197k263 90 k145k198k265 91 k146k199k266						
76k131k181k250 77 k132k182k251 78 k133k183k252 79 k134k184k253 80 k135k185k254 81 k136k186k256 82 k137k188k257 83 k138k190k258 84 k139k191k259 85 k140k193k260 86 k141k194k261 87 k142k195k263 89 k144k197k263 90 k145k198k265 91 k146k199k266						
77k132k182k251 78 k133k183k252- 79 k134k184k253- 80 k135k185k254- 81 k136k186k256- 82 k137k188k257- 83 k138k190k258- 84 k139k191k259- 85 k140k193k260- 86 k141k194k261- 87 k142k195k263- 88 k143k196k263- 89 k144k197k264- 90 k145k198k265- 91 k146k199k266-						
78k133k183k252 79 k134k184k253 80 k135k185k254 81 k136k186k256 82 k137k188k257 83 k138k190k258 84 k139k191k259 85 k140k193k260 86 k141k194k261 87 k142k195k263 89 k144k197k263 90 k145k198k265 91 k146k199k266						
79k134k184k25380k135k185k25481k136k186k25682k137k188k25783k138k190k25884k139k191k25985k140k193k26086k141k194k26187k142k195k26388k143k196k26390k145k198k26591k146k199k266						
80k135k185k254 81 k136k186k256 82 k137k188k257 83 k138k190k258 84 k139k191k259 85 k140k193k260 86 k141k194k261 87 k142k195k262 88 k143k196k263 89 k144k197k264 90 k145k198k265 91 k146k199k266						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
82 k137 k188 k257 - 83 k138 k190 k258 - 84 k139 k191 k259 - 85 k140 k193 k260 - 86 k141 k194 k261 - 87 k142 k195 k262 - 88 k143 k196 k263 - 89 k144 k197 k264 - 90 k145 k198 k265 - 91 k146 k199 k266 -						
83 k138 k190 k258 - 84 k139 k191 k259 - 85 k140 k193 k260 - 86 k141 k194 k261 - 87 k142 k195 k262 - 88 k143 k196 k263 - 89 k144 k197 k264 - 90 k145 k198 k265 - 91 k146 k199 k266 -						
84 k139 k191 k259 - 85 k140 k193 k260 - 86 k141 k194 k261 - 87 k142 k195 k262 - 88 k143 k196 k263 - 89 k144 k197 k264 - 90 k145 k198 k265 - 91 k146 k199 k266 -						
85 k140 k193 k260 - 86 k141 k194 k261 - 87 k142 k195 k262 - 88 k143 k196 k263 - 89 k144 k197 k264 - 90 k145 k198 k265 - 91 k146 k199 k266 -						
86 k141 k194 k261 - 87 k142 k195 k262 - 88 k143 k196 k263 - 89 k144 k197 k264 - 90 k145 k198 k265 - 91 k146 k199 k266 -						
87 k142 k195 k262 - 88 k143 k196 k263 - 89 k144 k197 k264 - 90 k145 k198 k265 - 91 k146 k199 k266 -						
88 k143 k196 k263 - 89 k144 k197 k264 - 90 k145 k198 k265 - 91 k146 k199 k266 -						
89 k144 k197 k264 - 90 k145 k198 k265 - 91 k146 k199 k266 -						
90 k145 k198 k265 - 91 k146 k199 k266 -						
91 k146 k199 k266 -						
02 1140 1201 1200						
0.5 1.170 1.000 1.070						
0.6 1.171 1.004 1.071						

Table C.6. Glass #s of LAW Glasses with K-3 Corrosion at 1208 °C Data in Five of the Six Evaluation Subsets^(a), cont.

	Glass # in Each Evaluation Set					
Count	WTP	ORP	LP2OL	HiNa ₂ O	HiSO ₃	
97	k172	k205		k272		
98	k192	k206		k273		
99		k207		k274		
100		k208		k275		
101		k209		k276		
102		k210		k277		
103		k211		k278		
104		k212		k279		
105		k213		k280		
106		k214		k281		
107		k215		k282		
108		k216		k283		
109		k217		k284		
110		k217		k285		
111		k210		k286		
112		k219		k280		
112		k220		k287		
113		k221 k222		k289		
		k222 k223				
115				k290		
116		k224		k291		
117		k225		k292		
118		k226		k293		
119		k227		k294		
120		k228		k295		
121		k229		k296		
122		k230		k297		
123		k231		k298		
124		k232		k299		
125		k233		k300		
126		k234		k303		
127		k235		k304		
128		k236		k305		
129		k237		k306		
130		k238		k328		
131		k239		k331		
132		k240		k332		
133		k241		k333		
134		k242		k339		
135		k243		k340		
136		k244		k341		
137		k245				
138		k246				
139		k247				
140		k248				
140		k240				
142		k250				
142		k250				
143		k251 k252				
144		k252				
146		k254				

Table C.6. Glass #s of LAW Glasses with K-3 Corrosion at 1208 °C Data in Five of the Six Evaluation Subsets^(a), cont.

		Gla	ss # in Each Evaluat	ion Set	
Count	WTP	ORP	LP2OL	HiNa ₂ O	HiSO ₃
147		k256			
148		k257			
149		k258			
150		k259			
151		k260			
152		k261			
153		k262			
154		k263			
155		k264			
156		k265			
157		k266			
158		k267			
150		k268			
160		k269			
161		k270			
162		k270			
162		k271 k272			
164		k272			
165		k275			
166		k274			
167		k275			
168		k270			
169		k277			
170		k278			
170		k279 k280			
171		k280			
172		k281			
175		k282 k283			
175		k284			
176		k285			
177		k286			
178		k287			
179		k288			
180		k289			
181		k290			
182		k291			
183		k292			
184		k293			
185		k294			
186		k295			
187		k296			
188		k297			
189		k298			
190		k299			
191		k300			
192		k301			
193		k302			
194		k303			
195		k304			
196		k305			

Table C.6. Glass #s of LAW Glasses with K-3 Corrosion at 1208 °C Data in Five of the Six Evaluation Subsets^(a), cont.

		Gla	ss # in Each Evaluat	ion Set	
Count	WTP	ORP	LP2OL	HiNa ₂ O	HiSO ₃
197		k306			
198		k307			
199		k308			
200		k309			
201		k310			
202		k311			
203		k312			
204		k313			
205		k314			
206		k315			
207		k316			
208		k317			
209		k318			
210		k319			
211		k320			
212		k321			
213		k322			
214		k323			
215		k324			
216		k325			
217		k326			
218		k327			
219		k328			
220		k329			
221		k330			
222		k331			
223		k332			
224		k333			
225		k334			
226		k335			
227		k336			
228		k337			
229		k338			
230		k339			
231		k340			
232		k341			
233		k342			
234		k343			
235		k344			

Table C.6. Glass #s of LAW Glasses with K-3 Corrosion at 1208 °C Data in Five of the Six Evaluation Subsets^(a), cont.

(a) The "Glass #" is a unique number assigned to each LAW glass composition, as shown in Table A.4 of Appendix A. The corresponding k_{1208} values of LAW glasses by Glass # are listed in Table A.5 of Appendix A.

Appendix D – Variance-Covariance Matrices Associated with the Estimated Coefficients of LAW Glass Property-Composition

This appendix contains the variance-covariance matrices for the estimated model coefficients of selected property-composition models for low-activity waste (LAW) glasses discussed in this report. Included are variance-covariance matrices for Product Consistency Test (PCT), Vapor Hydration Test (VHT), viscosity at 1150 °C, electrical conductivity at 1150 °C, melter SO₃ tolerance at 1150 °C, and K-3 refractory corrosion at 1208 °C models, which are functions of LAW glass composition. Variances and covariances are listed to six decimal places, which was determined to be sufficient to obtain appropriate precision in calculated values of statistical intervals (see Section B.6).

Tables D.1 and D.2, respectively, contain the variance-covariance matrices for the $\ln(PCT_B^{NL}, g/m^2)$ and the $\ln(PCT_{Na}^{NL}, g/m^2)$ 22-term bias corrected partial quadratic mixture (bcPQM) models given in Tables 3.7 and 3.11.

Tables D.3 and D.4, respectively, contain the variance-covariance matrices for two VHT pass/fail models: (i) the 20-term FLM model given in Table 4.3 and (ii) the 19-term PQM model given in Table 4.4. The 20-term FLM model was judged as inadequate for predicting VHT pass/fail but provides a baseline for comparison to the PQM model. The 19-term PQM model is the recommended model for predicting VHT pass/fail.

Tables D.5 and D.6, respectively, contain the variance-covariance matrices for two $\ln(\eta_{1150}, P)$ models: (i) the 18-component reduced linear mixture (RLM) model given in Table 5.4, and (ii) the 21-term PQM model given in Table 5.5. The 18-component RLM model provides a baseline for comparison to the 21-term PQM model [which is the recommended model for $\ln(\eta_{1150}, P)$ prediction].

Tables D.7 and D.8, respectively, contain the variance-covariance matrices for two $ln(\varepsilon, S/cm)$ models: (i) the 11-term RLM model given in Table 6.4, and (ii) the 13-term PQM model given in Table 6.5. The 11-term RLM model provides a baseline for comparison to the 13-term PQM model [which is the recommended model for $ln(\varepsilon, S/cm)$ prediction].

Tables D.9 and D.10, respectively, contain the variance-covariance matrices for two melter SO_3 tolerance at 1150 °C (wt%) models: (i) the 10-component RLM model with two offsets given in Table 7.4, and (ii) the 11-term PQM model with two offsets given in Table 7.5. The 10-component RLM model with two offsets provides a baseline for comparison to the 11-term PQM model with two offsets (which is the recommended model for melter SO_3 tolerance at 1150 °C prediction).

Tables D.11 and D.12, respectively, contain the variance-covariance matrices for two $ln(k_{1208}, inch)$ (K-3 refractory corrosion at 1208 °C) models: (i) the 11-component RLM model given in Table 8.4, and (ii) the 13-term PQM model given in Table 8.5. The 11-component RLM model provides a baseline for comparison to the 13-term PQM model (which is the recommended model for k_{1208} prediction).

Table D.1. Variance-Covariance Matrix Associated With the Terms in the 19-term PQM model for In(PCT-B) of LAW Glasses.

Term	Al_2O_3	B_2O_3	CaO	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	SiO ₂	SnO ₂
Al ₂ O ₃	25.471817	-1.207720	-4.344667	-0.076427	-0.427823	2.856344	0.130499	-0.958991	-1.111311	0.207370
B ₂ O ₃	-1.207720	0.697856	0.005962	0.011418	0.003054	-0.512135	-0.081662	-0.017313	-0.032632	0.126531
CaO	-4.344667	0.005962	4.964385	-0.088406	0.221486	-1.273600	0.126360	0.148251	0.017220	0.469206
Fe ₂ O ₃	-0.076427	0.011418	-0.088406	0.646984	-0.050309	0.089730	-0.071668	0.029905	-0.073566	0.135234
K ₂ O	-0.427823	0.003054	0.221486	-0.050309	0.984784	0.528137	-0.035621	0.096838	-0.029786	-0.443486
Li ₂ O	2.856344	-0.512135	-1.273600	0.089730	0.528137	10.885676	-0.335643	0.558165	-0.384757	-0.217229
MgO	0.130499	-0.081662	0.126360	-0.071668	-0.035621	-0.335643	2.978226	0.134684	-0.094235	-0.256211
Na ₂ O	-0.958991	-0.017313	0.148251	0.029905	0.096838	0.558165	0.134684	0.314099	-0.050958	-0.192114
SiO ₂	-1.111311	-0.032632	0.017220	-0.073566	-0.029786	-0.384757	-0.094235	-0.050958	0.154299	0.001640
SnO ₂	0.207370	0.126531	0.469206	0.135234	-0.443486	-0.217229	-0.256211	-0.192114	0.001640	2.035562
TiO ₂	-1.170801	0.202408	1.437434	-0.608554	-0.192072	-0.551289	-0.811255	-0.051501	-0.078868	0.510089
V ₂ O ₅	0.737500	-0.398197	0.448745	0.104262	0.352062	-0.770961	0.222723	-0.023112	-0.052427	-0.663133
ZnO	-0.826343	-0.047286	-0.234892	0.116763	-0.058413	0.122506	-0.205850	0.082996	-0.164134	0.106165
ZrO ₂	-2.140986	0.092205	0.459892	0.164718	-0.182075	-1.155193	-0.039685	-0.109206	0.055001	-0.168246
Others	-0.331007	-0.028220	-0.100705	0.128850	0.041243	-0.233332	-0.248036	-0.141420	-0.024807	-0.247410
$Al_2O_3 \times Al_2O_3$	-149.682999	6.487049	24.607478	0.923354	2.710410	-9.458567	-1.829832	4.615579	6.822777	-0.437623
$Al_2O_3 \times Li_2O$	-48.978214	5.142475	18.441405	-1.312134	-1.564051	-106.902332	1.744186	3.082478	1.957565	-5.696826
$CaO \times CaO$	32.227590	-0.407089	-38.867320	0.986919	-1.020915	6.883273	0.091046	-0.699715	-0.320979	-4.077822
$\text{CaO} \times \text{V}_2\text{O}_5$	-20.884699	6.920648	-3.638362	0.930814	-6.658844	6.439389	-5.477255	-2.826332	1.872214	9.774779

Term	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others	$Al_2O_3 \times Al_2O_3$	$Al_2O_3 \times Li_2O$	$CaO \times CaO$	$CaO \times V_2O_5$
Al ₂ O ₃	-1.170801	0.737500	-0.826343	-2.140986	-0.331007	-149.682999	-48.978214	32.227590	-20.884699
B_2O_3	0.202408	-0.398197	-0.047286	0.092205	-0.028220	6.487049	5.142475	-0.407089	6.920648
CaO	1.437434	0.448745	-0.234892	0.459892	-0.100705	24.607478	18.441405	-38.867320	-3.638362
Fe ₂ O ₃	-0.608554	0.104262	0.116763	0.164718	0.128850	0.923354	-1.312134	0.986919	0.930814
K ₂ O	-0.192072	0.352062	-0.058413	-0.182075	0.041243	2.710410	-1.564051	-1.020915	-6.658844
Li ₂ O	-0.551289	-0.770961	0.122506	-1.155193	-0.233332	-9.458567	-106.902332	6.883273	6.439389
MgO	-0.811255	0.222723	-0.205850	-0.039685	-0.248036	-1.829832	1.744186	0.091046	-5.477255
Na ₂ O	-0.051501	-0.023112	0.082996	-0.109206	-0.141420	4.615579	3.082478	-0.699715	-2.826332
SiO ₂	-0.078868	-0.052427	-0.164134	0.055001	-0.024807	6.822777	1.957565	-0.320979	1.872214
SnO ₂	0.510089	-0.663133	0.106165	-0.168246	-0.247410	-0.437623	-5.696826	-4.077822	9.774779
TiO ₂	5.182647	0.328957	-0.203718	0.508594	0.282370	6.903590	7.145730	-10.259386	2.247095
V ₂ O ₅	0.328957	6.834246	-0.071665	0.248785	-0.262637	-7.268965	3.548646	4.083478	-86.880557
ZnO	-0.203718	-0.071665	3.211062	-0.059927	-0.048268	5.010206	-2.099436	1.319312	5.352353
ZrO ₂	0.508594	0.248785	-0.059927	1.640204	0.215250	11.451765	12.054899	-2.770333	-0.272737
Others	0.282370	-0.262637	-0.048268	0.215250	3.353813	2.067308	0.719613	0.175947	-0.137760
$Al_2O_3 \times Al_2O_3$	6.903590	-7.268965	5.010206	11.451765	2.067308	912.792737	160.712087	-188.874767	176.148561
$Al_2O_3 \times Li_2O$	7.145730	3.548646	-2.099436	12.054899	0.719613	160.712087	1502.468116	-121.775691	-101.283024
$CaO \times CaO$	-10.259386	4.083478	1.319312	-2.770333	0.175947	-188.874767	-121.775691	343.956007	-140.035979
$CaO \times V_2O_5$	2.247095	-86.880557	5.352353	-0.272737	-0.137760	176.148561	-101.283024	-140.035979	1684.304327

 Table D.2.
 Variance-Covariance Matrix Associated With the Terms in the 19-term PQM model for In(PCT-Na) of LAW Glasses.

Term	Al ₂ O ₃	B ₂ O ₃	CaO	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	SiO ₂	SnO ₂
Al ₂ O ₃	19.670735	-0.878130	-2.702538	-0.256798	-0.601670	-0.591151	-0.027610	-0.043264	-0.936112	-0.217357
B ₂ O ₃	-0.878130	0.548792	-0.076026	0.025471	0.026011	-0.104573	-0.056078	-0.073860	-0.023700	0.137293
CaO	-2.702538	-0.076026	3.896607	-0.117397	0.104581	-0.024157	0.020720	0.327242	-0.043919	0.349539
Fe ₂ O ₃	-0.256798	0.025471	-0.117397	0.549966	0.007417	0.020785	-0.017928	-0.114327	-0.034115	0.149468
K ₂ O	-0.601670	0.026011	0.104581	0.007417	0.851005	0.367415	0.024952	-0.113206	0.009330	-0.293792
Li ₂ O	-0.591151	-0.104573	-0.024157	0.020785	0.367415	2.633428	-0.143000	0.524006	-0.181426	-0.457220
MgO	-0.027610	-0.056078	0.020720	-0.017928	0.024952	-0.143000	2.411566	-0.045657	-0.051923	-0.151167
Na ₂ O	-0.043264	-0.073860	0.327242	-0.114327	-0.113206	0.524006	-0.045657	0.800773	-0.135249	-0.325132
SiO ₂	-0.936112	-0.023700	-0.043919	-0.034115	0.009330	-0.181426	-0.051923	-0.135249	0.135838	0.038021
SnO ₂	-0.217357	0.137293	0.349539	0.149468	-0.293792	-0.457220	-0.151167	-0.325132	0.038021	1.656836
TiO ₂	-0.803216	0.139341	1.071276	-0.466985	-0.133721	-0.037300	-0.638324	-0.101428	-0.061292	0.441273
V ₂ O ₅	0.421815	-0.323719	0.267969	0.144107	0.353019	-0.403854	0.239032	-0.250625	-0.005944	-0.449356
ZnO	-0.786417	-0.027149	-0.187489	0.106099	-0.028948	-0.012197	-0.146655	0.012403	-0.118652	0.094169
ZrO ₂	-1.323664	0.033242	0.271802	0.127637	-0.152710	-0.250449	-0.054843	-0.058826	0.023010	-0.109826
Others	-0.409484	-0.007352	-0.165936	0.142299	0.089567	-0.114551	-0.156232	-0.270210	0.003950	-0.137684
$Al_2O_3 \times Al_2O_3$	-109.232903	4.238075	20.032505	-0.328640	0.659912	0.662194	-2.844430	8.074418	4.482021	-1.252711
$CaO \times CaO$	19.350960	0.332357	-31.079851	1.368604	0.046705	-0.831370	0.887187	-3.021430	0.303902	-2.747680
$CaO \times V_2O_5$	-19.536014	5.832578	-1.930647	0.671311	-5.373786	-0.531194	-4.282112	-2.091657	1.607184	7.413039
$Al_2O_3 \times Na_2O$	-9.868312	0.805614	-3.735750	2.171553	2.991749	1.484695	2.324207	-8.603005	1.412275	2.828242

Term	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others	$Al_2O_3 \times Al_2O_3$	$CaO \times CaO$	$CaO \times V_2O_5$	$Al_2O_3 \times Na_2O$
Al ₂ O ₃	-0.803216	0.421815	-0.786417	-1.323664	-0.409484	-109.232903	19.350960	-19.536014	-9.868312
B_2O_3	0.139341	-0.323719	-0.027149	0.033242	-0.007352	4.238075	0.332357	5.832578	0.805614
CaO	1.071276	0.267969	-0.187489	0.271802	-0.165936	20.032505	-31.079851	-1.930647	-3.735750
Fe ₂ O ₃	-0.466985	0.144107	0.106099	0.127637	0.142299	-0.328640	1.368604	0.671311	2.171553
K ₂ O	-0.133721	0.353019	-0.028948	-0.152710	0.089567	0.659912	0.046705	-5.373786	2.991749
Li ₂ O	-0.037300	-0.403854	-0.012197	-0.250449	-0.114551	0.662194	-0.831370	-0.531194	1.484695
MgO	-0.638324	0.239032	-0.146655	-0.054843	-0.156232	-2.844430	0.887187	-4.282112	2.324207
Na ₂ O	-0.101428	-0.250625	0.012403	-0.058826	-0.270210	8.074418	-3.021430	-2.091657	-8.603005
SiO ₂	-0.061292	-0.005944	-0.118652	0.023010	0.003950	4.482021	0.303902	1.607184	1.412275
SnO_2	0.441273	-0.449356	0.094169	-0.109826	-0.137684	-1.252711	-2.747680	7.413039	2.828242
TiO ₂	4.121145	0.306567	-0.146301	0.358200	0.226455	4.493527	-7.623558	2.146839	0.729139
V ₂ O ₅	0.306567	5.626140	-0.021968	0.162855	-0.171296	-7.979264	4.204437	-69.083049	3.440518
ZnO	-0.146301	-0.021968	2.561625	-0.037479	-0.022086	3.733824	1.152590	4.123675	0.884438
ZrO ₂	0.358200	0.162855	-0.037479	1.232209	0.149132	8.427631	-1.672206	0.464629	-0.754340
Others	0.226455	-0.171296	-0.022086	0.149132	2.718699	0.183102	1.043290	-0.005333	2.427738
$Al_2O_3 \times Al_2O_3$	4.493527	-7.979264	3.733824	8.427631	0.183102	750.132224	-162.068997	150.269482	-72.455364
$CaO \times CaO$	-7.623558	4.204437	1.152590	-1.672206	1.043290	-162.068997	280.225444	-118.071928	41.532013
$\text{CaO} \times \text{V}_2\text{O}_5$	2.146839	-69.083049	4.123675	0.464629	-0.005333	150.269482	-118.071928	1335.671950	0.287181
$Al_2O_3 \times Na_2O$	0.729139	3.440518	0.884438	-0.754340	2.427738	-72.455364	41.532013	0.287181	133.226339

Table D.3. Variance-Covariance Matrix Associated With the Terms in the 20-term FLM model for VHT of LAW Glasses.

Term	Al_2O_3	B_2O_3	CaO	Cl	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO
Al_2O_3	72.864879	-14.590300	14.053565	-88.490250	86.325707	54.725349	31.389135	-31.140668	-93.099673	4.987143
B_2O_3	-14.590300	52.192106	5.748860	-62.811826	-67.250255	12.315954	-6.232835	-5.894931	-22.692268	-4.603197
CaO	14.053565	5.748860	64.152211	-91.970960	-77.097336	2.310341	21.356298	-53.445791	-141.852804	8.959698
Cl	-88.490250	-62.811826	-91.970960	4052.609838	-359.240055	99.650542	-10.645844	197.498239	72.797211	-130.678698
Cr ₂ O ₃	86.325707	-67.250255	-77.097336	-359.240055	8971.486235	670.184293	182.904967	-193.238977	418.225680	-130.950658
F	54.725349	12.315954	2.310341	99.650542	670.184293	10138.035673	-17.958360	-112.015916	-20.846543	42.532115
Fe ₂ O ₃	31.389135	-6.232835	21.356298	-10.645844	182.904967	-17.958360	148.418215	-60.776443	-106.269225	30.481611
K ₂ O	-31.140668	-5.894931	-53.445791	197.498239	-193.238977	-112.015916	-60.776443	158.678939	201.799410	-11.612310
Li ₂ O	-93.099673	-22.692268	-141.852804	72.797211	418.225680	-20.846543	-106.269225	201.799410	816.316978	-117.621594
MgO	4.987143	-4.603197	8.959698	-130.678698	-130.950658	42.532115	30.481611	-11.612310	-117.621594	367.285143
Na ₂ O	-55.356464	-2.726577	-55.936977	2.600902	-112.360728	-4.729553	-55.221074	99.540986	261.925622	-11.096405
P ₂ O ₅	13.427138	11.461489	16.020891	-11.117062	-1562.131879	-3446.152061	-19.012297	35.696351	-191.729721	50.914819
SO ₃	-40.769607	-118.939811	-167.681907	698.223128	628.690125	-406.848406	92.873643	151.830170	298.032522	54.677440
SiO ₂	14.564024	-5.563613	14.648474	-6.829484	40.408285	10.838818	5.517184	-32.561622	-78.059420	-2.402235
SnO ₂	21.528680	18.291291	49.286290	-87.876864	-595.296998	-61.762157	60.950908	-77.050161	-249.233490	17.887080
TiO ₂	18.067479	16.762980	53.732213	-257.279224	443.036874	-23.693839	-126.243352	-61.592753	-49.025405	-166.717098
V_2O_5	4.544394	-1.512083	-7.453724	176.529171	-65.798657	-237.658772	25.716499	32.107390	-102.022748	-9.541491
ZnO	1.936256	-11.983327	25.272883	104.140629	-55.310140	-202.274065	26.666410	-54.026795	-115.122616	-29.767031
ZrO ₂	30.186409	4.797640	72.492073	-58.422916	-106.393703	-2.692635	87.734213	-115.502069	-222.636050	16.554950
Others	-549.855631	270.692334	-100.781906	-1338.718704	-7607.056809	-7158.392700	-655.991772	1042.995627	809.939499	27.723706
Term	Na ₂ O	P_2O_5	SO ₃	SiO ₂	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others
Term Al ₂ O ₃	Na ₂ O -55.356464	P ₂ O ₅ 13.427138	SO ₃ -40.769607	SiO ₂ 14.564024	SnO ₂ 21.528680	TiO ₂ 18.067479	V ₂ O ₅ 4.544394	ZnO 1.936256	ZrO ₂ 30.186409	Others -549.855631
	2	2 5	3	2	2	2	2 5	-	- 2	
Al ₂ O ₃	-55.356464	13.427138	-40.769607	14.564024	21.528680	18.067479	4.544394	1.936256	30.186409	-549.855631
Al_2O_3 B_2O_3	-55.356464 -2.726577	13.427138 11.461489	-40.769607 -118.939811	14.564024 -5.563613	21.528680 18.291291	18.067479 16.762980	4.544394 -1.512083	1.936256 -11.983327	30.186409 4.797640	-549.855631 270.692334
$\begin{array}{c} Al_2O_3\\ B_2O_3\\ CaO \end{array}$	-55.356464 -2.726577 -55.936977	13.427138 11.461489 16.020891	-40.769607 -118.939811 -167.681907	14.564024 -5.563613 14.648474	21.528680 18.291291 49.286290	18.067479 16.762980 53.732213	4.544394 -1.512083 -7.453724	1.936256 -11.983327 25.272883	30.186409 4.797640 72.492073	-549.855631 270.692334 -100.781906
$\begin{array}{c} Al_2O_3\\ B_2O_3\\ CaO\\ Cl\end{array}$	-55.356464 -2.726577 -55.936977 2.600902	13.427138 11.461489 16.020891 -11.117062	-40.769607 -118.939811 -167.681907 698.223128	14.564024 -5.563613 14.648474 -6.829484	21.528680 18.291291 49.286290 -87.876864	18.067479 16.762980 53.732213 -257.279224	4.544394 -1.512083 -7.453724 176.529171	1.936256 -11.983327 25.272883 104.140629	30.186409 4.797640 72.492073 -58.422916	-549.855631 270.692334 -100.781906 -1338.718704
$\begin{array}{c} Al_2O_3\\ B_2O_3\\ CaO\\ Cl\\ Cr_2O_3\\ \end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728	13.427138 11.461489 16.020891 -11.117062 -1562.131879	-40.769607 -118.939811 -167.681907 698.223128 628.690125	14.564024 -5.563613 14.648474 -6.829484 40.408285	21.528680 18.291291 49.286290 -87.876864 -595.296998 -61.762157 60.950908	18.067479 16.762980 53.732213 -257.279224 443.036874	4.544394 -1.512083 -7.453724 176.529171 -65.798657	1.936256 -11.983327 25.272883 104.140629 -55.310140	30.186409 4.797640 72.492073 -58.422916 -106.393703	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809
$\begin{array}{c} Al_2O_3\\ B_2O_3\\ CaO\\ Cl\\ Cr_2O_3\\ F\end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728 -4.729553	13.427138 11.461489 16.020891 -11.117062 -1562.131879 -3446.152061	-40.769607 -118.939811 -167.681907 698.223128 628.690125 -406.848406	14.564024 -5.563613 14.648474 -6.829484 40.408285 10.838818	21.528680 18.291291 49.286290 -87.876864 -595.296998 -61.762157	18.067479 16.762980 53.732213 -257.279224 443.036874 -23.693839	4.544394 -1.512083 -7.453724 176.529171 -65.798657 -237.658772	1.936256 -11.983327 25.272883 104.140629 -55.310140 -202.274065	30.186409 4.797640 72.492073 -58.422916 -106.393703 -2.692635	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809 -7158.392700
$\begin{array}{c} Al_{2}O_{3} \\ B_{2}O_{3} \\ CaO \\ Cl \\ Cr_{2}O_{3} \\ F \\ Fe_{2}O_{3} \end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728 -4.729553 -55.221074	13.427138 11.461489 16.020891 -11.117062 -1562.131879 -3446.152061 -19.012297	-40.769607 -118.939811 -167.681907 698.223128 628.690125 -406.848406 92.873643	14.564024 -5.563613 14.648474 -6.829484 40.408285 10.838818 5.517184	21.528680 18.291291 49.286290 -87.876864 -595.296998 -61.762157 60.950908	18.067479 16.762980 53.732213 -257.279224 443.036874 -23.693839 -126.243352	4.544394 -1.512083 -7.453724 176.529171 -65.798657 -237.658772 25.716499	1.936256 -11.983327 25.272883 104.140629 -55.310140 -202.274065 26.666410	30.186409 4.797640 72.492073 -58.422916 -106.393703 -2.692635 87.734213	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809 -7158.392700 -655.991772
$\begin{array}{c} Al_{2}O_{3} \\ B_{2}O_{3} \\ CaO \\ Cl \\ Cr_{2}O_{3} \\ F \\ Fe_{2}O_{3} \\ K_{2}O \end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728 -4.729553 -55.221074 99.540986	13.427138 11.461489 16.020891 -11.117062 -1562.131879 -3446.152061 -19.012297 35.696351	-40.769607 -118.939811 -167.681907 698.223128 628.690125 -406.848406 92.873643 151.830170	14.564024 -5.563613 14.648474 -6.829484 40.408285 10.838818 5.517184 -32.561622	21.528680 18.291291 49.286290 -87.876864 -595.296998 -61.762157 60.950908 -77.050161	18.067479 16.762980 53.732213 -257.279224 443.036874 -23.693839 -126.243352 -61.592753	4.544394 -1.512083 -7.453724 176.529171 -65.798657 -237.658772 25.716499 32.107390	1.936256 -11.983327 25.272883 104.140629 -55.310140 -202.274065 26.666410 -54.026795	30.186409 4.797640 72.492073 -58.422916 -106.393703 -2.692635 87.734213 -115.502069	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809 -7158.392700 -655.991772 1042.995627
$\begin{array}{c} Al_{2}O_{3} \\ B_{2}O_{3} \\ CaO \\ Cl \\ Cr_{2}O_{3} \\ F \\ Fe_{2}O_{3} \\ K_{2}O \\ Li_{2}O \end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728 -4.729553 -55.221074 99.540986 261.925622 -11.096405 128.508237	13.427138 11.461489 16.020891 -11.117062 -1562.131879 -3446.152061 -19.012297 35.696351 -191.729721 50.914819 -27.302244	-40.769607 -118.939811 -167.681907 698.223128 628.690125 -406.848406 92.873643 151.830170 298.032522 54.677440 95.649054	14.564024 -5.563613 14.648474 -6.829484 40.408285 10.838818 5.517184 -32.561622 -78.059420 -2.402235 -38.506928	21.528680 18.291291 49.286290 -87.876864 -595.296998 -61.762157 60.950908 -77.050161 -249.233490 17.887080 -69.529161	18.067479 16.762980 53.732213 -257.279224 443.036874 -23.693839 -126.243352 -61.592753 -49.025405 -166.717098 -30.192058	4.544394 -1.512083 -7.453724 176.529171 -65.798657 -237.658772 25.716499 32.107390 -102.022748 -9.541491 -18.797139	1.936256 -11.983327 25.272883 104.140629 -55.310140 -202.274065 26.666410 -54.026795 -115.122616 -29.767031 -57.329850	30.186409 4.797640 72.492073 -58.422916 -106.393703 -2.692635 87.734213 -115.502069 -222.636050 16.554950 -114.276233	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809 -7158.392700 -655.991772 1042.995627 809.939499
$\begin{array}{c} AI_2O_3 \\ B_2O_3 \\ CaO \\ Cl \\ Cr_2O_3 \\ F \\ Fe_2O_3 \\ K_2O \\ Li_2O \\ MgO \\ Na_2O \\ P_2O_5 \end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728 -4.729553 -55.221074 99.540986 261.925622 -11.096405	13.427138 11.461489 16.020891 -11.117062 -1562.131879 -3446.152061 -19.012297 35.696351 -191.729721 50.914819	-40.769607 -118.939811 -167.681907 698.223128 628.690125 -406.848406 92.873643 151.830170 298.032522 54.677440	14.564024 -5.563613 14.648474 -6.829484 40.408285 10.838818 5.517184 -32.561622 -78.059420 -2.402235	21.528680 18.291291 49.286290 -87.876864 -595.296998 -61.762157 60.950908 -77.050161 -249.233490 17.887080	18.067479 16.762980 53.732213 -257.279224 443.036874 -23.693839 -126.243352 -61.592753 -49.025405 -166.717098	4.544394 -1.512083 -7.453724 176.529171 -65.798657 -237.658772 25.716499 32.107390 -102.022748 -9.541491	1.936256 -11.983327 25.272883 104.140629 -55.310140 -202.274065 26.666410 -54.026795 -115.122616 -29.767031	30.186409 4.797640 72.492073 -58.422916 -106.393703 -2.692635 87.734213 -115.502069 -222.636050 16.554950	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809 -7158.392700 -655.991772 1042.995627 809.939499 27.723706
$\begin{array}{c} Al_2O_3 \\ B_2O_3 \\ CaO \\ Cl \\ Cr_2O_3 \\ F \\ Fe_2O_3 \\ K_2O \\ Li_2O \\ MgO \\ Na_2O \end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728 -4.729553 -55.221074 99.540986 261.925622 -11.096405 128.508237	13.427138 11.461489 16.020891 -11.117062 -1562.131879 -3446.152061 -19.012297 35.696351 -191.729721 50.914819 -27.302244	-40.769607 -118.939811 -167.681907 698.223128 628.690125 -406.848406 92.873643 151.830170 298.032522 54.677440 95.649054	14.564024 -5.563613 14.648474 -6.829484 40.408285 10.838818 5.517184 -32.561622 -78.059420 -2.402235 -38.506928 -2.946078 -71.835865	21.528680 18.291291 49.286290 -87.876864 -595.296998 -61.762157 60.950908 -77.050161 -249.233490 17.887080 -69.529161	18.067479 16.762980 53.732213 -257.279224 443.036874 -23.693839 -126.243352 -61.592753 -49.025405 -166.717098 -30.192058	4.544394 -1.512083 -7.453724 176.529171 -65.798657 -237.658772 25.716499 32.107390 -102.022748 -9.541491 -18.797139	1.936256 -11.983327 25.272883 104.140629 -55.310140 -202.274065 26.666410 -54.026795 -115.122616 -29.767031 -57.329850	30.186409 4.797640 72.492073 -58.422916 -106.393703 -2.692635 87.734213 -115.502069 -222.636050 16.554950 -114.276233 70.350344 -2.864925	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809 -7158.392700 -655.991772 1042.995627 809.939499 27.723706 678.878388
$\begin{array}{c} AI_2O_3 \\ B_2O_3 \\ CaO \\ Cl \\ Cr_2O_3 \\ F \\ Fe_2O_3 \\ K_2O \\ Li_2O \\ MgO \\ Na_2O \\ P_2O_5 \end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728 -4.729553 -55.221074 99.540986 261.925622 -11.096405 128.508237 -27.302244	13.427138 11.461489 16.020891 -11.117062 -1562.131879 -3446.152061 -19.012297 35.696351 -191.729721 50.914819 -27.302244 2819.657991	-40.769607 -118.939811 -167.681907 698.223128 628.690125 -406.848406 92.873643 151.830170 298.032522 54.677440 95.649054 164.463740	14.564024 -5.563613 14.648474 -6.829484 40.408285 10.838818 5.517184 -32.561622 -78.059420 -2.402235 -38.506928 -2.946078	21.528680 18.291291 49.286290 -87.876864 -595.296998 -61.762157 60.950908 -77.050161 -249.233490 17.887080 -69.529161 91.985339	18.067479 16.762980 53.732213 -257.279224 443.036874 -23.693839 -126.243352 -61.592753 -49.025405 -166.717098 -30.192058 1.245864	4.544394 -1.512083 -7.453724 176.529171 -65.798657 -237.658772 25.716499 32.107390 -102.022748 -9.541491 -18.797139 -22.524937	1.936256 -11.983327 25.272883 104.140629 -55.310140 -202.274065 26.666410 -54.026795 -115.122616 -29.767031 -57.329850 -6.985562	20.186409 4.797640 72.492073 -58.422916 -106.393703 -2.692635 87.734213 -115.502069 -222.636050 16.554950 -114.276233 70.350344	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809 -7158.392700 -655.991772 1042.995627 809.939499 27.723706 678.878388 4316.634230
$\begin{array}{c} Al_2O_3 \\ B_2O_3 \\ CaO \\ Cl \\ Cr_2O_3 \\ F \\ Fe_2O_3 \\ K_2O \\ Li_2O \\ MgO \\ Na_2O \\ P_2O_5 \\ SO_3 \\ \end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728 -4.729553 -55.221074 99.540986 261.925622 -11.096405 128.508237 -27.302244 95.649054	13.427138 11.461489 16.020891 -11.117062 -1562.131879 -3446.152061 -19.012297 35.696351 -191.729721 50.914819 -27.302244 2819.657991 164.463740	-40.769607 -118.939811 -167.681907 698.223128 628.690125 -406.848406 92.873643 151.830170 298.032522 54.677440 95.649054 164.463740 4408.171766	14.564024 -5.563613 14.648474 -6.829484 40.408285 10.838818 5.517184 -32.561622 -78.059420 -2.402235 -38.506928 -2.946078 -71.835865	21.528680 18.291291 49.286290 -87.876864 -595.296998 -61.762157 60.950908 -77.050161 -249.233490 17.887080 -69.529161 91.985339 -82.042694	18.067479 16.762980 53.732213 -257.279224 443.036874 -23.693839 -126.243352 -61.592753 -49.025405 -166.717098 -30.192058 1.245864 18.853895	4.544394 -1.512083 -7.453724 176.529171 -65.798657 -237.658772 25.716499 32.107390 -102.022748 -9.541491 -18.797139 -22.524937 -257.792652	1.936256 -11.983327 25.272883 104.140629 -55.310140 -202.274065 26.666410 -54.026795 -115.122616 -29.767031 -57.329850 -6.985562 -63.685197	30.186409 4.797640 72.492073 -58.422916 -106.393703 -2.692635 87.734213 -115.502069 -222.636050 16.554950 -114.276233 70.350344 -2.864925	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809 -7158.392700 -655.991772 1042.995627 809.939499 27.723706 678.878388 4316.634230 1409.779466
$\begin{array}{c} Al_2O_3 \\ B_2O_3 \\ CaO \\ Cl \\ Cr_2O_3 \\ F \\ Fe_2O_3 \\ K_2O \\ Li_2O \\ MgO \\ Na_2O \\ SO_3 \\ SiO_2 \end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728 -4.729553 -55.221074 99.540986 261.925622 -11.096405 128.508237 -27.302244 95.649054 -38.506928 -69.529161 -30.192058	13.427138 11.461489 16.020891 -11.117062 -1562.131879 -3446.152061 -19.012297 35.696351 -191.729721 50.914819 -27.302244 2819.657991 164.463740 -2.946078 91.985339 1.245864	-40.769607 -118.939811 -167.681907 698.223128 628.690125 -406.848406 92.873643 151.830170 298.032522 54.677440 95.649054 164.463740 4408.171766 -71.835865 -82.042694 18.853895	14.564024 -5.563613 14.648474 -6.829484 40.408285 10.838818 5.517184 -32.561622 -78.059420 -2.402235 -38.506928 -2.946078 -71.835865 18.971549	2 21.528680 18.291291 49.286290 -87.876864 -595.296998 -61.762157 60.950908 -77.050161 -249.233490 17.887080 -69.529161 91.985339 -82.042694 12.803635 245.129639 20.093168	18.067479 16.762980 53.732213 -257.279224 443.036874 -23.693839 -126.243352 -61.592753 -49.025405 -166.717098 -30.192058 1.245864 18.853895 0.870611 20.093168 805.859962	4.544394 -1.512083 -7.453724 176.529171 -65.798657 -237.658772 25.716499 32.107390 -102.022748 -9.541491 -18.797139 -22.524937 -257.792652 1.654148 35.827647 -12.354580	1.936256 -11.983327 25.272883 104.140629 -55.310140 -202.274065 26.666410 -54.026795 -115.122616 -29.767031 -57.329850 -6.985562 -63.685197 -5.385855	20.186409 4.797640 72.492073 -58.422916 -106.393703 -2.692635 87.734213 -115.502069 -222.636050 16.554950 -114.276233 70.350344 -2.864925 19.716956 67.853255 65.037801	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809 -7158.392700 -655.991772 1042.995627 809.939499 27.723706 678.878388 4316.634230 1409.779466 -320.098606
$\begin{array}{c} Al_2O_3 \\ B_2O_3 \\ CaO \\ Cl \\ Cr_2O_3 \\ F \\ Fe_2O_3 \\ K_2O \\ Li_2O \\ MgO \\ Na_2O \\ P_2O_5 \\ SO_3 \\ SiO_2 \\ SnO_2 \\ \end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728 -4.729553 -55.221074 99.540986 261.925622 -11.096405 128.508237 -27.302244 95.649054 -38.506928 -69.529161	13.427138 11.461489 16.020891 -11.117062 -1562.131879 -3446.152061 -19.012297 35.696351 -191.729721 50.914819 -27.302244 2819.657991 164.463740 -2.946078 91.985339	-40.769607 -118.939811 -167.681907 698.223128 628.690125 -406.848406 92.873643 151.830170 298.032522 54.677440 95.649054 164.463740 4408.171766 -71.835865 -82.042694	14.564024 -5.563613 14.648474 -6.829484 40.408285 10.838818 5.517184 -32.561622 -78.059420 -2.402235 -38.506928 -2.946078 -71.835865 18.971549 12.803635	21.528680 18.291291 49.286290 -87.876864 -595.296998 -61.762157 60.950908 -77.050161 -249.233490 17.887080 -69.529161 91.985339 -82.042694 12.803635 245.129639	18.067479 16.762980 53.732213 -257.279224 443.036874 -23.693839 -126.243352 -61.592753 -49.025405 -166.717098 -30.192058 1.245864 18.853895 0.870611 20.093168	4.544394 -1.512083 -7.453724 176.529171 -65.798657 -237.658772 25.716499 32.107390 -102.022748 -9.541491 -18.797139 -22.524937 -257.792652 1.654148 35.827647	1.936256 -11.983327 25.272883 104.140629 -55.310140 -202.274065 26.666410 -54.026795 -115.122616 -29.767031 -57.329850 -6.985562 -63.685197 -5.385855 64.049037	30.186409 4.797640 72.492073 -58.422916 -106.393703 -2.692635 87.734213 -115.502069 -222.636050 16.554950 -114.276233 70.350344 -2.864925 19.716956 67.853255	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809 -7158.392700 -655.991772 1042.995627 809.939499 27.723706 678.878388 4316.634230 1409.779466 -320.098606 198.398381
$\begin{array}{c} Al_2O_3 \\ B_2O_3 \\ CaO \\ Cl \\ Cr_2O_3 \\ F \\ Fe_2O_3 \\ K_2O \\ Li_2O \\ MgO \\ Na_2O \\ P_2O_5 \\ SO_3 \\ SiO_2 \\ SnO_2 \\ TiO_2 \\ V_2O_5 \\ ZnO \\ \end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728 -4.729553 -55.221074 99.540986 261.925622 -11.096405 128.508237 -27.302244 95.649054 -38.506928 -69.529161 -30.192058	13.427138 11.461489 16.020891 -11.117062 -1562.131879 -3446.152061 -19.012297 35.696351 -191.729721 50.914819 -27.302244 2819.657991 164.463740 -2.946078 91.985339 1.245864	-40.769607 -118.939811 -167.681907 698.223128 628.690125 -406.848406 92.873643 151.830170 298.032522 54.677440 95.649054 164.463740 4408.171766 -71.835865 -82.042694 18.853895	14.564024 -5.563613 14.648474 -6.829484 40.408285 10.838818 5.517184 -32.561622 -78.059420 -2.402235 -38.506928 -2.946078 -71.835865 18.971549 12.803635 0.870611 1.654148 -5.385855	2 21.528680 18.291291 49.286290 -87.876864 -595.296998 -61.762157 60.950908 -77.050161 -249.233490 17.887080 -69.529161 91.985339 -82.042694 12.803635 245.129639 20.093168	18.067479 16.762980 53.732213 -257.279224 443.036874 -23.693839 -126.243352 -61.592753 -49.025405 -166.717098 -30.192058 1.245864 18.853895 0.870611 20.093168 805.859962 -12.354580 -14.543634	4.544394 -1.512083 -7.453724 176.529171 -65.798657 -237.658772 25.716499 32.107390 -102.022748 -9.541491 -18.797139 -22.524937 -257.792652 1.654148 35.827647 -12.354580	1.936256 -11.983327 25.272883 104.140629 -55.310140 -202.274065 26.666410 -54.026795 -115.122616 -29.767031 -57.329850 -6.985562 -63.685197 -5.385855 64.049037 -14.543634	30.186409 4.797640 72.492073 -58.422916 -106.393703 -2.692635 87.734213 -115.502069 -222.636050 16.554950 -114.276233 70.350344 -2.864925 19.716956 67.853255 65.037801 -5.208153 65.605690	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809 -7158.392700 -655.991772 1042.995627 809.939499 27.723706 678.878388 4316.634230 1409.779466 -320.098606 198.398381 -161.974898 153.150652 274.002647
$\begin{array}{c} AI_2O_3 \\ B_2O_3 \\ CaO \\ Cl \\ Cr_2O_3 \\ F \\ Fe_2O_3 \\ K_2O \\ Li_2O \\ MgO \\ Na_2O \\ Na_2O \\ SO_3 \\ SiO_2 \\ SnO_2 \\ TiO_2 \\ V_2O_5 \\ \end{array}$	-55.356464 -2.726577 -55.936977 2.600902 -112.360728 -4.729553 -55.221074 99.540986 261.925622 -11.096405 128.508237 -27.302244 95.649054 -38.506928 -69.529161 -30.192058 -18.797139	13.427138 11.461489 16.020891 -11.117062 -1562.131879 -3446.152061 -19.012297 35.696351 -191.729721 50.914819 -27.302244 2819.657991 164.463740 -2.946078 91.985339 1.245864 -22.524937	-40.769607 -118.939811 -167.681907 698.223128 628.690125 -406.848406 92.873643 151.830170 298.032522 54.677440 95.649054 164.463740 4408.171766 -71.835865 -82.042694 18.853895 -257.792652	14.564024 -5.563613 14.648474 -6.829484 40.408285 10.838818 5.517184 -32.561622 -78.059420 -2.402235 -38.506928 -2.946078 -71.835865 18.971549 12.803635 0.870611 1.654148	2 2 2 2 2 2 2 2 2 2 2 2 2 2	18.067479 16.762980 53.732213 -257.279224 443.036874 -23.693839 -126.243352 -61.592753 -49.025405 -166.717098 -30.192058 1.245864 18.853895 0.870611 20.093168 805.859962 -12.354580	4.544394 -1.512083 -7.453724 176.529171 -65.798657 -237.658772 25.716499 32.107390 -102.022748 -9.541491 -18.797139 -22.524937 -257.792652 1.654148 35.827647 -12.354580 275.576987	1.936256 -11.983327 25.272883 104.140629 -55.310140 -202.274065 26.666410 -54.026795 -115.122616 -29.767031 -57.329850 -6.985562 -63.685197 -5.385855 64.049037 -14.543634 49.685271	30.186409 4.797640 72.492073 -58.422916 -106.393703 -2.692635 87.734213 -115.502069 -222.636050 16.554950 -114.276233 70.350344 -2.864925 19.716956 67.853255 65.037801 -5.208153	-549.855631 270.692334 -100.781906 -1338.718704 -7607.056809 -7158.392700 -655.991772 1042.995627 809.939499 27.723706 678.878388 4316.634230 1409.779466 -320.098606 198.398381 -161.974898 153.150652

				2						810
Term	Al ₂ O ₃	B ₂ O ₃	CaO	F	K ₂ O	Li ₂ O	MgO	Na ₂ O	P ₂ O ₅	SiO ₂
Al ₂ O ₃	61.853735	-7.995062	11.994068	-26.224535	-18.268189	-402.107228	-3.913059	-50.704214	49.006524	12.518598
B ₂ O ₃	-7.995062	46.318296	3.117576	27.882688	-6.693278	-93.341664	-2.220724	-10.803966	-4.436338	-3.571706
CaO	11.994068	3.117576	66.078419	-12.679472	-56.193683	-455.858446	10.590620	-67.368698	17.160778	19.213611
F	-26.224535	27.882688	-12.679472	8919.670394	44.645687	1237.637900	66.077648	109.538919	-2803.354614	-41.288235
K ₂ O	-18.268189	-6.693278	-56.193683	44.645687	131.808032	554.660152	-10.653396	102.720522	-65.103318	-33.576814
Li ₂ O	-402.107228	-93.341664	-455.858446	1237.637900	554.660152	17886.056420	-485.020189	977.665269	9.022222	-363.634872
MgO	-3.913059	-2.220724	10.590620	66.077648	-10.653396	-485.020189	352.839596	-10.130859	35.983715	2.184334
Na ₂ O	-50.704214	-10.803966	-67.368698	109.538919	102.720522	977.665269	-10.130859	145.694467	-73.802189	-44.976646
P_2O_5	49.006524	-4.436338	17.160778	-2803.354614	-65.103318	9.022222	35.983715	-73.802189	2420.179474	10.977073
SiO ₂	12.518598	-3.571706	19.213611	-41.288235	-33.576814	-363.634872	2.184334	-44.976646	10.977073	21.405482
SnO ₂	17.591088	8.661558	40.306765	-50.774622	-71.404937	-410.460550	-0.664785	-70.808660	4.786175	16.303868
TiO ₂	108.221307	38.812779	74.584688	-313.777454	-77.742128	-1785.636655	-240.100302	-119.583465	137.321538	5.235819
V ₂ O ₅	-3.542689	-11.524668	-23.210599	-234.024886	31.680709	-73.947152	-27.189419	3.066306	-57.577241	-2.356876
ZnO	-3.818794	-24.696057	20.541658	-110.689350	-53.702022	419.183968	-38.948076	-40.531242	-26.724807	-6.292719
ZrO ₂	27.436951	17.637137	72.398328	-121.138054	-102.829243	-594.314068	-12.777566	-126.280873	125.267503	19.803919
Others	9.241988	4.130961	10.658384	-104.030176	-27.739303	-52.086287	9.854105	-35.248093	68.198556	-1.797571
Li ₂ O × Na ₂ O	1316.070399	290.748160	1187.761355	-3872.860693	-1166.521691	-53811.961478	1367.670724	-2625.879428	289.865719	874.765044
$TiO_2 \times ZrO_2$	-1350.943215	-956.595328	721.774789	6463.054670	-802.111211	21130.363769	2903.072101	527.549794	-1297.710941	690.450911
$Li_2O \times Li_2O$	3168.018611	647,424934	3329,926080	-12695.902142	-4305.328516	-199028.461978	4643,348867	-7578.547971	-5386.851469	3553.404158
Term	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others	$Li_2O \times Na_2O$	$TiO_2 \times ZrO_2$	$Li_2O \times Li_2O$	
Al ₂ O ₃	17.591088	108.221307	-3.542689	-3.818794	27.436951	9.241988	1316.070399	-1350.943215	3168.018611	
B ₂ O ₃	8.661558	38.812779	-11.524668	-24.696057	17.637137	4.130961	290.748160	-956.595328	647.424934	
CaO	40.306765	74.584688	-23.210599	20.541658	72.398328	10.658384	1187.761355	721.774789	3329.926080	
F	-50.774622	-313.777454	-234.024886	-110.689350	-121.138054	-104.030176	-3872.860693	6463.054670	-12695.902142	
K ₂ O	-71.404937	-77.742128	31.680709	-53.702022	-102.829243	-27.739303	-1166.521691	-802.111211	-4305.328516	
Li ₂ O	-410.460550	-1785.636655	-73.947152	419.183968	-594.314068	-52.086287	-53811.961478	21130.363769	-199028.461978	
MgO	-0.664785	-240.100302	-27.189419	-38.948076	-12.777566	9.854105	1367.670724	2903.072101	4643.348867	
Na ₂ O	-70.808660	-119.583465	3.066306	-40.531242	-126.280873	-35.248093	-2625.879428	527.549794	-7578.547971	
P ₂ O ₅	4.786175	137.321538	-57.577241	-26.724807	125.267503	68.198556	289.865719	-1297.710941	-5386.851469	
SiO ₂	16.303868	5.235819	-2.356876	-6.292719	19.803919	-1.797571	874.765044	690.450911	3553.404158	
SnO ₂	171.471306	27,988348	13.714619	47,384932	44.005541	50.036521	883.360276	1450.644484	2403.915485	
TiO ₂	27,988348	2547.506704	-15.872043	-73,590286	347,777258	-153.848532	8197.672255	-42761.872997	10840.093574	
V ₂ O ₅	13.714619	-15.872043	230.266027	16.884889	-10.329896	18.207349	-29.773818	1169.128215	882.703566	
ZnO	47.384932	-73.590286	16.884889	393.341135	53.822375	25.544746	-1974.023596	682.042188	-5287.589919	
ZrO ₂	44.005541	347.777258	-10.329896	53.822375	256.135473	61.777670	2178.867193	-5973.986292	1641.327386	
Others	50.036521	-153.848532	18.207349	25.544746	61.777670	130.179622	375.195976	-55.057410	-1587.016141	
$Li_2O \times Na_2O$	883.360276	8197.672255	-29.773818	-1974.023596	2178.867193	375.195976	204039.285870	-136648.820610	489992.997092	
$TiO_2 \times ZrO_2$	1450.644484	-42761.872997	1169.128215	682.042188	-5973.986292	-55.057410	-136648.820610	1194858.926551	-97934.146142	
$IIO_2 \times ZIO_2$ $Li_2O \times Li_2O$	2403.915485	10840.093574	882,703566	-5287.589919	1641.327386	-1587.016141	489992.997092	-97934.146142	2794365.341855	
$L_{12}O \times L_{12}O$	2403.913483	10640.095574	882.705500	-3287.389919	1041.52/380	-1387.010141	409992.99/092	-97934.140142	2/94303.341833	

PNNL-30932, Rev. 2 Table D.5. Variance-Covariance Matrix Associated With the Terms in the 18 Term Reduced Linear Mixture Model for

In(η_{1150} , P) of LAW Glasses

Torm	Al_2O_3	PO	CaO	Cr O	F	Fe ₂ O ₃	K O	I i O	MaO
Term	0.090300	B ₂ O ₃ -0.010841	-0.004987	Cr ₂ O ₃ -0.056727	г 0.076948	0.010154	K ₂ O -0.003006	Li ₂ O -0.072427	MgO -0.015731
Al_2O_3									
B_2O_3	-0.010841	0.094033	0.000027	0.067390	0.051160	0.004455 0.000392	-0.000087	-0.018256	-0.011450
CaO	-0.004987	0.000027		-0.057397	-0.086564		0.001341	-0.019628	0.010834
Cr_2O_3	-0.056727	0.067390	-0.057397	14.182375	-2.398374	0.164112	-0.234597	0.030457	0.270709
F	0.076948	0.051160	-0.086564	-2.398374	20.736063	0.051684	-0.203616	-0.308474	-0.110585
Fe_2O_3	0.010154	0.004455	0.000392	0.164112	0.051684	0.106780	-0.015462	-0.021507	-0.025511
K_2O	-0.003006	-0.000087	0.001341	-0.234597	-0.203616	-0.015462	0.163970	0.060012	0.005464
Li_2O	-0.072427	-0.018256	-0.019628	0.030457	-0.308474	-0.021507	0.060012	0.580757	-0.031689
MgO	-0.015731	-0.011450	0.010834	0.270709	-0.110585	-0.025511	0.005464	-0.031689	0.502320
Na ₂ O	-0.031666	-0.005443	0.004370	-0.056863	-0.087798	-0.005375	0.014336	0.146675	0.022707
P ₂ O ₅	0.019807	-0.008239	0.012227	-0.788853	-2.777425	-0.023835	0.056323	0.045288	-0.047967
SiO ₂	0.003532	-0.014576	-0.005369	-0.020194	0.020703	-0.012189	-0.007699	-0.041124	-0.015721
SnO ₂	0.013639	0.011137	0.014707	-0.459111	-0.245432	0.022714	-0.052818	-0.131862	-0.054356
TiO ₂	0.012783	0.033329	0.037820	0.469778	0.057322	-0.067348	-0.052356	-0.006581	-0.110331
V_2O_5	0.016646	-0.001273	-0.015447	0.233125	-0.343865	0.037570	-0.016854	-0.117611	-0.020331
ZnO	-0.002188	-0.018960	-0.002368	0.015053	-0.158478	0.016671	0.005554	-0.046028	0.000454
ZrO ₂	-0.013428	-0.006038	0.005359	-0.371492	0.224655	0.029615	-0.030825	-0.051799	-0.018617
Others	-0.043476	-0.067190	-0.072896	0.179918	-0.639464	0.114477	0.090754	-0.245791	-0.036662
Torm	No O	PO	SiO	SnO	TiO	VO	7:0	7:0	Others
Term	Na ₂ O	P_2O_5	SiO ₂	SnO ₂	TiO ₂	V_2O_5	ZnO	ZrO_2	Others
Al ₂ O ₃	-0.031666	0.019807	0.003532	0.013639	0.012783	0.016646	-0.002188	-0.013428	-0.043476
$\frac{\text{Al}_2\text{O}_3}{\text{B}_2\text{O}_3}$	-0.031666 -0.005443	0.019807 -0.008239	0.003532 -0.014576	0.013639 0.011137	0.012783 0.033329	0.016646	-0.002188 -0.018960	-0.013428 -0.006038	-0.043476 -0.067190
$\begin{array}{c} \mathrm{Al}_2\mathrm{O}_3\\ \mathrm{B}_2\mathrm{O}_3\\ \mathrm{CaO} \end{array}$	-0.031666 -0.005443 0.004370	0.019807 -0.008239 0.012227	0.003532 -0.014576 -0.005369	0.013639 0.011137 0.014707	0.012783 0.033329 0.037820	0.016646 -0.001273 -0.015447	-0.002188 -0.018960 -0.002368	-0.013428 -0.006038 0.005359	-0.043476 -0.067190 -0.072896
$\begin{array}{c} Al_2O_3\\ B_2O_3\\ CaO\\ Cr_2O_3 \end{array}$	-0.031666 -0.005443 0.004370 -0.056863	0.019807 -0.008239 0.012227 -0.788853	0.003532 -0.014576 -0.005369 -0.020194	0.013639 0.011137 0.014707 -0.459111	0.012783 0.033329 0.037820 0.469778	0.016646 -0.001273 -0.015447 0.233125	-0.002188 -0.018960 -0.002368 0.015053	-0.013428 -0.006038 0.005359 -0.371492	-0.043476 -0.067190 -0.072896 0.179918
$\begin{array}{c} Al_2O_3\\ B_2O_3\\ CaO\\ Cr_2O_3\\ F\end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798	0.019807 -0.008239 0.012227 -0.788853 -2.777425	0.003532 -0.014576 -0.005369 -0.020194 0.020703	0.013639 0.011137 0.014707 -0.459111 -0.245432	0.012783 0.033329 0.037820 0.469778 0.057322	0.016646 -0.001273 -0.015447 0.233125 -0.343865	-0.002188 -0.018960 -0.002368 0.015053 -0.158478	-0.013428 -0.006038 0.005359 -0.371492 0.224655	-0.043476 -0.067190 -0.072896 0.179918 -0.639464
$\begin{array}{c} Al_2O_3\\ B_2O_3\\ CaO\\ Cr_2O_3\\ F\\ Fe_2O_3\\ \end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798 -0.005375	0.019807 -0.008239 0.012227 -0.788853 -2.777425 -0.023835	0.003532 -0.014576 -0.005369 -0.020194 0.020703 -0.012189	0.013639 0.011137 0.014707 -0.459111 -0.245432 0.022714	0.012783 0.033329 0.037820 0.469778 0.057322 -0.067348	0.016646 -0.001273 -0.015447 0.233125 -0.343865 0.037570	-0.002188 -0.018960 -0.002368 0.015053 -0.158478 0.016671	-0.013428 -0.006038 0.005359 -0.371492 0.224655 0.029615	-0.043476 -0.067190 -0.072896 0.179918 -0.639464 0.114477
$\begin{array}{c} Al_2O_3\\ B_2O_3\\ CaO\\ Cr_2O_3\\ F\\ Fe_2O_3\\ K_2O\\ \end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798 -0.005375 0.014336	0.019807 -0.008239 0.012227 -0.788853 -2.777425 -0.023835 0.056323	0.003532 -0.014576 -0.005369 -0.020194 0.020703 -0.012189 -0.007699	0.013639 0.011137 0.014707 -0.459111 -0.245432 0.022714 -0.052818	0.012783 0.033329 0.037820 0.469778 0.057322 -0.067348 -0.052356	0.016646 -0.001273 -0.015447 0.233125 -0.343865 0.037570 -0.016854	-0.002188 -0.018960 -0.002368 0.015053 -0.158478 0.016671 0.005554	-0.013428 -0.006038 0.005359 -0.371492 0.224655 0.029615 -0.030825	-0.043476 -0.067190 -0.072896 0.179918 -0.639464 0.114477 0.090754
$\begin{array}{c} Al_2O_3\\ B_2O_3\\ CaO\\ Cr_2O_3\\ F\\ Fe_2O_3\\ K_2O\\ Li_2O\\ \end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798 -0.005375 0.014336 0.146675	0.019807 -0.008239 0.012227 -0.788853 -2.777425 -0.023835 0.056323 0.045288	0.003532 -0.014576 -0.005369 -0.020194 0.020703 -0.012189 -0.007699 -0.041124	0.013639 0.011137 0.014707 -0.459111 -0.245432 0.022714 -0.052818 -0.131862	0.012783 0.033329 0.037820 0.469778 0.057322 -0.067348 -0.052356 -0.006581	0.016646 -0.001273 -0.015447 0.233125 -0.343865 0.037570 -0.016854 -0.117611	-0.002188 -0.018960 -0.002368 0.015053 -0.158478 0.016671 0.005554 -0.046028	-0.013428 -0.006038 0.005359 -0.371492 0.224655 0.029615 -0.030825 -0.051799	-0.043476 -0.067190 -0.072896 0.179918 -0.639464 0.114477 0.090754 -0.245791
$\begin{array}{c} Al_2O_3\\ B_2O_3\\ CaO\\ Cr_2O_3\\ F\\ Fe_2O_3\\ K_2O\\ Li_2O\\ MgO \end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798 -0.005375 0.014336 0.146675 0.022707	0.019807 -0.008239 0.012227 -0.788853 -2.777425 -0.023835 0.056323 0.045288 -0.047967	0.003532 -0.014576 -0.005369 -0.020194 0.020703 -0.012189 -0.007699 -0.041124 -0.015721	0.013639 0.011137 0.014707 -0.459111 -0.245432 0.022714 -0.052818 -0.131862 -0.054356	0.012783 0.033329 0.037820 0.469778 0.057322 -0.067348 -0.052356 -0.006581 -0.110331	0.016646 -0.001273 -0.015447 0.233125 -0.343865 0.037570 -0.016854 -0.117611 -0.020331	-0.002188 -0.018960 -0.002368 0.015053 -0.158478 0.016671 0.005554 -0.046028 0.000454	-0.013428 -0.006038 0.005359 -0.371492 0.224655 0.029615 -0.030825 -0.051799 -0.018617	-0.043476 -0.067190 -0.072896 0.179918 -0.639464 0.114477 0.090754 -0.245791 -0.036662
$\begin{array}{c} Al_{2}O_{3} \\ B_{2}O_{3} \\ CaO \\ Cr_{2}O_{3} \\ F \\ Fe_{2}O_{3} \\ K_{2}O \\ Li_{2}O \\ MgO \\ Na_{2}O \end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798 -0.005375 0.014336 0.146675 0.022707 0.054350	0.019807 -0.008239 0.012227 -0.788853 -2.777425 -0.023835 0.056323 0.045288 -0.047967 -0.001402	0.003532 -0.014576 -0.005369 -0.020194 0.020703 -0.012189 -0.007699 -0.041124 -0.015721 -0.014070	0.013639 0.011137 0.014707 -0.459111 -0.245432 0.022714 -0.052818 -0.131862 -0.054356 -0.037262	0.012783 0.033329 0.037820 0.469778 0.057322 -0.067348 -0.052356 -0.006581 -0.110331 -0.012259	0.016646 -0.001273 -0.015447 0.233125 -0.343865 0.037570 -0.016854 -0.117611 -0.020331 -0.041814	-0.002188 -0.018960 -0.002368 0.015053 -0.158478 0.016671 0.005554 -0.046028 0.000454 -0.003974	-0.013428 -0.006038 0.005359 -0.371492 0.224655 0.029615 -0.030825 -0.051799 -0.018617 -0.030741	-0.043476 -0.067190 -0.072896 0.179918 -0.639464 0.114477 0.090754 -0.245791 -0.036662 -0.114871
$\begin{array}{c} Al_{2}O_{3} \\ B_{2}O_{3} \\ CaO \\ Cr_{2}O_{3} \\ F \\ Fe_{2}O_{3} \\ K_{2}O \\ Li_{2}O \\ MgO \\ Na_{2}O \\ P_{2}O_{5} \end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798 -0.005375 0.014336 0.146675 0.022707 0.054350 -0.001402	0.019807 -0.008239 0.012227 -0.788853 -2.777425 -0.023835 0.056323 0.045288 -0.047967 -0.001402 1.654660	0.003532 -0.014576 -0.005369 -0.020194 0.020703 -0.012189 -0.007699 -0.041124 -0.015721 -0.014070 -0.009648	0.013639 0.011137 0.014707 -0.459111 -0.245432 0.022714 -0.052818 -0.131862 -0.054356 -0.037262 0.015612	0.012783 0.033329 0.037820 0.469778 0.057322 -0.067348 -0.052356 -0.006581 -0.110331 -0.112259 0.001725	0.016646 -0.001273 -0.015447 0.233125 -0.343865 0.037570 -0.016854 -0.117611 -0.020331 -0.041814 -0.018681	-0.002188 -0.018960 -0.002368 0.015053 -0.158478 0.016671 0.005554 -0.046028 0.000454 -0.003974 0.015460	-0.013428 -0.006038 0.005359 -0.371492 0.224655 0.029615 -0.030825 -0.051799 -0.018617 -0.030741 0.040561	-0.043476 -0.067190 -0.072896 0.179918 -0.639464 0.114477 0.090754 -0.245791 -0.036662 -0.114871 0.132397
$\begin{array}{c} Al_{2}O_{3} \\ B_{2}O_{3} \\ CaO \\ Cr_{2}O_{3} \\ F \\ Fe_{2}O_{3} \\ K_{2}O \\ Li_{2}O \\ MgO \\ Na_{2}O \\ P_{2}O_{5} \\ SiO_{2} \end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798 -0.005375 0.014336 0.146675 0.022707 0.054350 -0.001402 -0.014070	0.019807 -0.008239 0.012227 -0.788853 -2.777425 -0.023835 0.056323 0.045288 -0.047967 -0.001402 1.654660 -0.009648	0.003532 -0.014576 -0.005369 -0.020194 0.020703 -0.012189 -0.007699 -0.041124 -0.015721 -0.014070 -0.009648 0.015865	0.013639 0.011137 0.014707 -0.459111 -0.245432 0.022714 -0.052818 -0.131862 -0.054356 -0.037262 0.015612 0.004642	0.012783 0.033329 0.037820 0.469778 0.057322 -0.067348 -0.052356 -0.006581 -0.110331 -0.012259 0.001725 -0.015419	0.016646 -0.001273 -0.015447 0.233125 -0.343865 0.037570 -0.016854 -0.117611 -0.020331 -0.041814 -0.018681 0.006958	-0.002188 -0.018960 -0.002368 0.015053 -0.158478 0.016671 0.005554 -0.046028 0.000454 -0.003974 0.015460 -0.035733	-0.013428 -0.006038 0.005359 -0.371492 0.224655 0.029615 -0.030825 -0.051799 -0.018617 -0.030741 0.040561 -0.004449	-0.043476 -0.067190 -0.072896 0.179918 -0.639464 0.114477 0.090754 -0.245791 -0.036662 -0.114871 0.132397 -0.016653
$\begin{array}{c} Al_{2}O_{3} \\ B_{2}O_{3} \\ CaO \\ Cr_{2}O_{3} \\ F \\ Fe_{2}O_{3} \\ K_{2}O \\ Li_{2}O \\ MgO \\ Na_{2}O \\ P_{2}O_{5} \\ SiO_{2} \\ SnO_{2} \\ \end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798 -0.005375 0.014336 0.146675 0.022707 0.054350 -0.001402 -0.014070 -0.037262	0.019807 -0.008239 0.012227 -0.788853 -2.777425 -0.023835 0.056323 0.045288 -0.047967 -0.001402 1.654660 -0.009648 0.015612	0.003532 -0.014576 -0.005369 -0.020194 0.020703 -0.012189 -0.007699 -0.041124 -0.015721 -0.014070 -0.009648 0.015865 0.004642	0.013639 0.011137 0.014707 -0.459111 -0.245432 0.022714 -0.052818 -0.131862 -0.054356 -0.037262 0.015612 0.004642 0.318774	0.012783 0.033329 0.037820 0.469778 0.057322 -0.067348 -0.052356 -0.006581 -0.010331 -0.012259 0.001725 -0.015419 0.046492	0.016646 -0.001273 -0.015447 0.233125 -0.343865 0.037570 -0.016854 -0.117611 -0.020331 -0.041814 -0.018681 0.006958 -0.020533	-0.002188 -0.018960 -0.002368 0.015053 -0.158478 0.016671 0.005554 -0.046028 0.000454 -0.003974 0.015460 -0.035733 0.037796	-0.013428 -0.006038 0.005359 -0.371492 0.224655 0.029615 -0.030825 -0.051799 -0.018617 -0.030741 0.040561 -0.004449 0.008652	-0.043476 -0.067190 -0.072896 0.179918 -0.639464 0.114477 0.090754 -0.245791 -0.036662 -0.114871 0.132397 -0.016653 0.168298
$\begin{array}{c} Al_2O_3 \\ B_2O_3 \\ CaO \\ Cr_2O_3 \\ F \\ Fe_2O_3 \\ K_2O \\ Li_2O \\ MgO \\ Na_2O \\ P_2O_5 \\ SiO_2 \\ SiO_2 \\ SiO_2 \\ TiO_2 \\ \end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798 -0.005375 0.014336 0.146675 0.022707 0.054350 -0.001402 -0.014070 -0.037262 -0.012259	0.019807 -0.008239 0.012227 -0.788853 -2.777425 -0.023835 0.056323 0.045288 -0.047967 -0.001402 1.654660 -0.009648 0.015612 0.001725	0.003532 -0.014576 -0.005369 -0.020194 0.020703 -0.012189 -0.007699 -0.041124 -0.015721 -0.014070 -0.009648 0.015865 0.004642 -0.015419	0.013639 0.011137 0.014707 -0.459111 -0.245432 0.022714 -0.052818 -0.131862 -0.054356 -0.037262 0.015612 0.004642 0.318774 0.046492	0.012783 0.033329 0.037820 0.469778 0.057322 -0.067348 -0.052356 -0.006581 -0.110331 -0.112259 0.001725 -0.015419 0.046492 0.716180	0.016646 -0.001273 -0.015447 0.233125 -0.343865 0.037570 -0.016854 -0.117611 -0.020331 -0.041814 -0.018681 0.006958 -0.020533 0.090310	-0.002188 -0.018960 -0.002368 0.015053 -0.158478 0.016671 0.005554 -0.046028 0.000454 -0.003974 0.015460 -0.035733 0.037796 -0.012272	-0.013428 -0.006038 0.005359 -0.371492 0.224655 0.029615 -0.030825 -0.051799 -0.018617 -0.030741 0.040561 -0.004449 0.008652 0.029174	-0.043476 -0.067190 -0.072896 0.179918 -0.639464 0.114477 0.090754 -0.245791 -0.036662 -0.114871 0.132397 -0.016653 0.168298 -0.162073
$\begin{array}{c} Al_2O_3 \\ B_2O_3 \\ CaO \\ Cr_2O_3 \\ F \\ Fe_2O_3 \\ K_2O \\ Li_2O \\ MgO \\ Na_2O \\ P_2O_5 \\ SiO_2 \\ SiO_2 \\ SiO_2 \\ TiO_2 \\ V_2O_5 \\ \end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798 -0.005375 0.014336 0.146675 0.022707 0.054350 -0.0014020 -0.014070 -0.037262 -0.012259 -0.041814	0.019807 -0.008239 0.012227 -0.788853 -2.777425 -0.023835 0.056323 0.045288 -0.047967 -0.001402 1.654660 -0.009648 0.015612 0.001725 -0.018681	0.003532 -0.014576 -0.005369 -0.020194 0.020703 -0.012189 -0.007699 -0.041124 -0.015721 -0.014070 -0.009648 0.015865 0.004642 -0.015419 0.006958	0.013639 0.011137 0.014707 -0.459111 -0.245432 0.022714 -0.052818 -0.131862 -0.054356 -0.037262 0.015612 0.004642 0.318774 0.046492 -0.020533	0.012783 0.033329 0.037820 0.469778 0.057322 -0.067348 -0.052356 -0.006581 -0.110331 -0.012259 0.001725 -0.015419 0.046492 0.716180 0.090310	0.016646 -0.001273 -0.015447 0.233125 -0.343865 0.037570 -0.016854 -0.117611 -0.020331 -0.041814 -0.018681 0.006958 -0.020533 0.090310 0.386148	-0.002188 -0.018960 -0.002368 0.015053 -0.158478 0.016671 0.005554 -0.046028 0.000454 -0.003974 0.015460 -0.035733 0.037796 -0.012272 0.030666	-0.013428 -0.006038 0.005359 -0.371492 0.224655 0.029615 -0.030825 -0.051799 -0.018617 -0.030741 0.040561 -0.004449 0.008652 0.029174 0.037593	-0.043476 -0.067190 -0.072896 0.179918 -0.639464 0.114477 0.090754 -0.245791 -0.036662 -0.114871 0.132397 -0.016653 0.168298 -0.162073 -0.101142
$\begin{array}{c} Al_2O_3 \\ B_2O_3 \\ CaO \\ Cr_2O_3 \\ F \\ Fe_2O_3 \\ K_2O \\ Li_2O \\ MgO \\ Na_2O \\ P_2O_5 \\ SiO_2 \\ SiO_2 \\ SiO_2 \\ TiO_2 \\ V_2O_5 \\ ZnO \\ \end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798 -0.005375 0.014336 0.146675 0.022707 0.054350 -0.001402 -0.014070 -0.037262 -0.012259 -0.041814 -0.003974	0.019807 -0.008239 0.012227 -0.788853 -2.777425 -0.023835 0.056323 0.045288 -0.047967 -0.001402 1.654660 -0.009648 0.015612 0.001725 -0.018681 0.015460	0.003532 -0.014576 -0.005369 -0.020194 0.020703 -0.012189 -0.007699 -0.041124 -0.015721 -0.014070 -0.009648 0.015865 0.004642 -0.015419 0.006958 -0.035733	0.013639 0.011137 0.014707 -0.459111 -0.245432 0.022714 -0.052818 -0.131862 -0.054356 -0.037262 0.015612 0.004642 0.318774 0.046492 -0.020533 0.037796	0.012783 0.033329 0.037820 0.469778 0.057322 -0.067348 -0.052356 -0.006581 -0.110331 -0.012259 0.001725 -0.015419 0.046492 0.716180 0.090310 -0.012272	0.016646 -0.001273 -0.015447 0.233125 -0.343865 0.037570 -0.016854 -0.117611 -0.020331 -0.041814 -0.018681 0.006958 -0.020533 0.090310 0.386148 0.030666	-0.002188 -0.018960 -0.002368 0.015053 -0.158478 0.016671 0.005554 -0.046028 0.000454 -0.003974 0.015460 -0.035733 0.037796 -0.012272 0.030666 0.528159	-0.013428 -0.006038 0.005359 -0.371492 0.224655 0.029615 -0.030825 -0.051799 -0.018617 -0.030741 0.040561 -0.004449 0.008652 0.029174 0.037593 -0.009204	-0.043476 -0.067190 -0.072896 0.179918 -0.639464 0.114477 0.090754 -0.245791 -0.036662 -0.114871 0.132397 -0.016653 0.168298 -0.162073 -0.101142 0.170709
$\begin{array}{c} Al_2O_3 \\ B_2O_3 \\ CaO \\ Cr_2O_3 \\ F \\ Fe_2O_3 \\ K_2O \\ Li_2O \\ MgO \\ Na_2O \\ P_2O_5 \\ SiO_2 \\ SiO_2 \\ SiO_2 \\ TiO_2 \\ V_2O_5 \\ \end{array}$	-0.031666 -0.005443 0.004370 -0.056863 -0.087798 -0.005375 0.014336 0.146675 0.022707 0.054350 -0.0014020 -0.014070 -0.037262 -0.012259 -0.041814	0.019807 -0.008239 0.012227 -0.788853 -2.777425 -0.023835 0.056323 0.045288 -0.047967 -0.001402 1.654660 -0.009648 0.015612 0.001725 -0.018681	0.003532 -0.014576 -0.005369 -0.020194 0.020703 -0.012189 -0.007699 -0.041124 -0.015721 -0.014070 -0.009648 0.015865 0.004642 -0.015419 0.006958	0.013639 0.011137 0.014707 -0.459111 -0.245432 0.022714 -0.052818 -0.131862 -0.054356 -0.037262 0.015612 0.004642 0.318774 0.046492 -0.020533	0.012783 0.033329 0.037820 0.469778 0.057322 -0.067348 -0.052356 -0.006581 -0.110331 -0.012259 0.001725 -0.015419 0.046492 0.716180 0.090310	0.016646 -0.001273 -0.015447 0.233125 -0.343865 0.037570 -0.016854 -0.117611 -0.020331 -0.041814 -0.018681 0.006958 -0.020533 0.090310 0.386148	-0.002188 -0.018960 -0.002368 0.015053 -0.158478 0.016671 0.005554 -0.046028 0.000454 -0.003974 0.015460 -0.035733 0.037796 -0.012272 0.030666	-0.013428 -0.006038 0.005359 -0.371492 0.224655 0.029615 -0.030825 -0.051799 -0.018617 -0.030741 0.040561 -0.004449 0.008652 0.029174 0.037593	-0.043476 -0.067190 -0.072896 0.179918 -0.639464 0.114477 0.090754 -0.245791 -0.036662 -0.114871 0.132397 -0.016653 0.168298 -0.162073 -0.101142

PNNL-30932, Rev. 2 Table D.6. Variance-Covariance Matrix Associated With the Terms in the 21 Term Partial Quadratic Mixture Model for In(h₁₁₅₀, P) of LAW Glasses

Term	Al_2O_3	B_2O_3	CaO	Cr_2O_3	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P_2O_5
Al ₂ O ₃	0.717602	-0.043274	-0.060347	-0.166514	-0.332527	-0.049073	-0.098431	0.063224	-0.070843	0.230974	-0.088181
B ₂ O ₃	-0.043274	0.084652	0.001822	0.048150	0.077623	0.006009	0.005494	0.028415	-0.008866	-0.013741	-0.001308
CaO	-0.060347	0.001822	0.050912	-0.019399	-0.076547	0.007605	0.007499	-0.251668	0.019311	-0.034138	0.020154
Cr ₂ O ₃	-0.166514	0.048150	-0.019399	12.934980	-2.287970	0.178625	-0.196710	-0.872359	0.292973	-0.199350	-0.682494
F	-0.332527	0.077623	-0.076547	-2.287970	18.677641	0.061504	-0.102945	1.257702	-0.102957	-0.117396	-2.361222
Fe ₂ O ₃	-0.049073	0.006009	0.007605	0.178625	0.061504	0.100173	-0.005760	-0.126897	-0.014068	-0.036323	-0.011642
K ₂ O	-0.098431	0.005494	0.007499	-0.196710	-0.102945	-0.005760	0.158651	0.127070	0.011291	-0.019819	0.065013
Li ₂ O	0.063224	0.028415	-0.251668	-0.872359	1.257702	-0.126897	0.127070	10.629705	-0.254035	0.865027	0.007577
MgO	-0.070843	-0.008866	0.019311	0.292973	-0.102957	-0.014068	0.011291	-0.254035	0.450713	-0.020535	-0.033087
Na ₂ O	0.230974	-0.013741	-0.034138	-0.199350	-0.117396	-0.036323	-0.019819	0.865027	-0.020535	0.203073	-0.043448
P ₂ O ₅	-0.088181	-0.001308	0.020154	-0.682494	-2.361222	-0.011642	0.065013	0.007577	-0.033087	-0.043448	1.465013
SiO ₂	-0.061862	-0.010703	0.006128	0.021969	0.019815	-0.002271	0.000853	-0.279771	-0.002544	-0.055053	0.002318
SnO ₂	-0.037026	0.012435	0.016658	-0.394182	-0.180529	0.024106	-0.038644	-0.102527	-0.043622	-0.050926	0.021706
TiO ₂	-0.018061	0.029772	0.037513	0.440930	0.050297	-0.054810	-0.042207	-0.093994	-0.091031	-0.029896	0.005911
V ₂ O ₅	-0.050998	0.003184	-0.007317	0.185134	-0.254142	0.037819	-0.005059	-0.140020	-0.013462	-0.061521	-0.004509
ZnO	-0.024184	-0.017716	0.003673	0.082567	-0.165541	0.020076	0.006557	-0.209757	0.009093	-0.028741	0.015873
ZrO ₂	-0.023604	-0.007463	0.013950	-0.258016	0.136009	0.031715	-0.028659	-0.415270	-0.005341	-0.059891	0.036868
Others	0.143878	-0.070206	-0.077307	0.177713	-0.702338	0.086261	0.051037	-0.281713	-0.043339	-0.038186	0.084534
Al ₂ O ₃ xNa ₂ O	-3.946554	0.198512	0.380492	0.942510	2.199756	0.376149	0.577486	-2.331489	0.391123	-1.712168	0.651165
Li ₂ OxLi ₂ O	0.584707	-0.373448	2.480365	1.562524	-16.346837	0.741448	-1.139271	-115.320597	1.884166	-6.776355	0.277500
Li ₂ OxNa ₂ O	-1.641575	-0.162145	0.889889	5.965481	-5.076567	0.571180	-0.069100	-33.700401	1.030654	-3.204304	0.225991

Term	SiO ₂	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others	Al ₂ O ₃ xNa ₂ O	Li ₂ OxLi ₂ O	Li2OxNa2O
Al ₂ O ₃	-0.061862	-0.037026	-0.018061	-0.050998	-0.024184	-0.023604	0.143878	-3.946554	0.584707	-1.641575
B_2O_3	-0.010703	0.012435	0.029772	0.003184	-0.017716	-0.007463	-0.070206	0.198512	-0.373448	-0.162145
CaO	0.006128	0.016658	0.037513	-0.007317	0.003673	0.013950	-0.077307	0.380492	2.480365	0.889889
Cr ₂ O ₃	0.021969	-0.394182	0.440930	0.185134	0.082567	-0.258016	0.177713	0.942510	1.562524	5.965481
F	0.019815	-0.180529	0.050297	-0.254142	-0.165541	0.136009	-0.702338	2.199756	-16.346837	-5.076567
Fe ₂ O ₃	-0.002271	0.024106	-0.054810	0.037819	0.020076	0.031715	0.086261	0.376149	0.741448	0.571180
K ₂ O	0.000853	-0.038644	-0.042207	-0.005059	0.006557	-0.028659	0.051037	0.577486	-1.139271	-0.069100
Li ₂ O	-0.279771	-0.102527	-0.093994	-0.140020	-0.209757	-0.415270	-0.281713	-2.331489	-115.320597	-33.700401
MgO	-0.002544	-0.043622	-0.091031	-0.013462	0.009093	-0.005341	-0.043339	0.391123	1.884166	1.030654
Na ₂ O	-0.055053	-0.050926	-0.029896	-0.061521	-0.028741	-0.059891	-0.038186	-1.712168	-6.776355	-3.204304
P_2O_5	0.002318	0.021706	0.005911	-0.004509	0.015873	0.036868	0.084534	0.651165	0.277500	0.225991
SiO ₂	0.025900	0.008531	-0.008314	0.012722	-0.024304	0.006307	-0.029918	0.438343	2.432383	0.979568
SnO ₂	0.008531	0.282608	0.042735	-0.013014	0.034438	0.007684	0.133060	0.299146	-0.308944	0.053712
TiO ₂	-0.008314	0.042735	0.629105	0.080855	-0.006301	0.030390	-0.147430	0.196828	0.577983	0.459827
V_2O_5	0.012722	-0.013014	0.080855	0.347009	0.025636	0.032487	-0.110279	0.402344	0.848683	0.038429
ZnO	-0.024304	0.034438	-0.006301	0.025636	0.471413	0.002238	0.149906	0.173039	0.885280	0.928863
ZrO ₂	0.006307	0.007684	0.030390	0.032487	0.002238	0.216095	0.076864	0.136196	3.560076	1.455479
Others	-0.029918	0.133060	-0.147430	-0.110279	0.149906	0.076864	3.302962	-1.099502	0.480692	0.158056
Al ₂ O ₃ xNa ₂ O	0.438343	0.299146	0.196828	0.402344	0.173039	0.136196	-1.099502	24.643517	12.450573	15.813503
Li ₂ OxLi ₂ O	2.432383	-0.308944	0.577983	0.848683	0.885280	3.560076	0.480692	12.450573	1480.941397	326.761218
Li ₂ OxNa ₂ O	0.979568	0.053712	0.459827	0.038429	0.928863	1.455479	0.158056	15.813503	326.761218	132.241786

Term	Al ₂ O ₃	B_2O_3	CaO	K ₂ O	Li ₂ O	MgO	Na ₂ O	SiO ₂	SnO ₂	V ₂ O ₅	Others
Al_2O_3	0.081882	-0.014443	-0.005120	-0.004573	-0.065923	-0.009382	-0.030893	0.004436	0.001023	-0.003125	-0.000148
B_2O_3	-0.014443	0.099955	-0.003503	0.005523	-0.026001	-0.002017	-0.008393	-0.017001	0.012620	-0.004376	0.003670
CaO	-0.005120	-0.003503	0.045449	0.004088	-0.032848	0.018474	-0.000356	-0.005517	0.011583	-0.015748	0.008470
K ₂ O	-0.004573	0.005523	0.004088	0.165860	0.061642	-0.004586	0.012627	-0.007023	-0.073823	0.001812	-0.016387
Li ₂ O	-0.065923	-0.026001	-0.032848	0.061642	0.569147	-0.038212	0.134537	-0.044965	-0.117092	-0.103918	-0.014490
MgO	-0.009382	-0.002017	0.018474	-0.004586	-0.038212	0.497074	0.024987	-0.016708	-0.026786	-0.022974	-0.033478
Na ₂ O	-0.030893	-0.008393	-0.000356	0.012627	0.134537	0.024987	0.046270	-0.014609	-0.033931	-0.033478	-0.004874
SiO ₂	0.004436	-0.017001	-0.005517	-0.007023	-0.044965	-0.016708	-0.014609	0.015973	0.009271	0.007062	-0.013955
SnO ₂	0.001023	0.012620	0.011583	-0.073823	-0.117092	-0.026786	-0.033931	0.009271	0.277348	-0.048842	0.011147
V ₂ O ₅	-0.003125	-0.004376	-0.015748	0.001812	-0.103918	-0.022974	-0.033478	0.007062	-0.048842	0.349663	0.029712
Others	-0.000148	0.003670	0.008470	-0.016387	-0.014490	-0.033478	-0.004874	-0.013955	0.011147	0.029712	0.055589

Term	Al ₂ O ₃	B_2O_3	CaO	K ₂ O	Li ₂ O	MgO	Na ₂ O	SiO ₂	SnO ₂	V ₂ O ₅	Others	Li ₂ OxNa ₂ O	Na ₂ OxNa ₂ O
Al ₂ O ₃	0.085018	0.006285	0.012039	0.021850	-0.364754	-0.003096	-0.205586	0.023759	0.012718	0.007418	0.019571	2.220197	0.503974
B_2O_3	0.006285	0.112567	0.018670	0.043215	-0.369219	0.002254	-0.260731	0.011849	0.025968	0.020370	0.028485	2.485316	0.741263
CaO	0.012039	0.018670	0.055195	0.032624	-0.331601	0.019455	-0.198190	0.016540	0.022175	0.001957	0.027756	2.177907	0.566888
K ₂ O	0.021850	0.043215	0.032624	0.189341	-0.432872	0.002011	-0.329562	0.029476	-0.040475	0.031666	0.020922	3.463494	0.987252
Li ₂ O	-0.364754	-0.369219	-0.331601	-0.432872	6.185229	-0.117155	3.486860	-0.411289	-0.318652	-0.285832	-0.378889	-40.915923	-9.490854
MgO	-0.003096	0.002254	0.019455	0.002011	-0.117155	0.415294	-0.022195	-0.008823	-0.019303	-0.017974	-0.022868	0.612103	0.116664
Na ₂ O	-0.205586	-0.260731	-0.198190	-0.329562	3.486860	-0.022195	2.317938	-0.252249	-0.170747	-0.215730	-0.239133	-24.149635	-6.573481
SiO ₂	0.023759	0.011849	0.016540	0.029476	-0.411289	-0.008823	-0.252249	0.039059	0.022990	0.023638	0.013626	2.676408	0.686153
SnO ₂	0.012718	0.025968	0.022175	-0.040475	-0.318652	-0.019303	-0.170747	0.022990	0.239952	-0.030042	0.024244	1.583304	0.407499
V ₂ O ₅	0.007418	0.020370	0.001957	0.031666	-0.285832	-0.017974	-0.215730	0.023638	-0.030042	0.315278	0.042039	1.421132	0.568413
Others	0.019571	0.028485	0.027756	0.020922	-0.378889	-0.022868	-0.239133	0.013626	0.024244	0.042039	0.071016	2.626137	0.671572
Li ₂ OxNa ₂ O	2.220197	2.485316	2.177907	3.463494	-40.915923	0.612103	-24.149635	2.676408	1.583304	1.421132	2.626137	293.120337	67.898493
Na ₂ OxNa ₂ O	0.503974	0.741263	0.566888	0.987252	-9.490854	0.116664	-6.573481	0.686153	0.407499	0.568413	0.671572	67.898493	19.038633

PNNL-30932, Rev. 2 **Table D.9**. Variance-Covariance Matrix Associated With the Terms in the 10 Component Reduced Linear Mixture Model for Melter SO₃ Tolerance, wt% of LAW Glasses

-	a D	0750		D 0	G 0	C1			D 0	<i>a</i> : 0		0.1
Term	SR	3TS	Al_2O_3	B_2O_3	CaO	Cl	Li ₂ O	Na ₂ O	P_2O_5	SiO ₂	V_2O_5	Others
SR	0.000637	0.000495	-0.000140	0.000347	-0.000108	-0.008400	0.000056	0.000022	0.000489	-0.000965	0.000387	-0.001021
3TS	0.000495	0.001127	0.000892	-0.000209	-0.001337	0.017849	-0.001781	-0.001823	-0.030053	0.000077	-0.002065	-0.001188
Al ₂ O ₃	-0.000140	0.000892	0.117832	-0.025843	-0.007552	-0.056442	-0.074092	-0.038118	0.013647	0.004544	-0.017689	-0.002528
B ₂ O ₃	0.000347	-0.000209	-0.025843	0.111503	-0.009082	-0.152745	-0.013175	-0.001626	0.060215	-0.021128	-0.004550	0.008459
CaO	-0.000108	-0.001337	-0.007552	-0.009082	0.060771	-0.052798	-0.018885	0.006402	0.036872	-0.009342	-0.002724	0.010933
C1	-0.008400	0.017849	-0.056442	-0.152745	-0.052798	8.324525	0.092096	-0.155348	-1.709251	0.083292	0.265201	-0.073693
Li ₂ O	0.000056	-0.001781	-0.074092	-0.013175	-0.018885	0.092096	0.522786	0.114845	-0.079399	-0.041238	-0.085304	-0.005564
Na ₂ O	0.000022	-0.001823	-0.038118	-0.001626	0.006402	-0.155348	0.114845	0.046852	0.036286	-0.015242	-0.026507	0.002955
P_2O_5	0.000489	-0.030053	0.013647	0.060215	0.036872	-1.709251	-0.079399	0.036286	4.370267	-0.029369	-0.140084	-0.010662
SiO ₂	-0.000965	0.000077	0.004544	-0.021128	-0.009342	0.083292	-0.041238	-0.015242	-0.029369	0.018686	0.002496	-0.012765
V ₂ O ₅	0.000387	-0.002065	-0.017689	-0.004550	-0.002724	0.265201	-0.085304	-0.026507	-0.140084	0.002496	0.439848	0.013174
Others	-0.001021	-0.001188	-0.002528	0.008459	0.010933	-0.073693	-0.005564	0.002955	-0.010662	-0.012765	0.013174	0.034431

Term	SR	3TS	Al ₂ O ₃	B ₂ O ₃	CaO	Cl	Li ₂ O	Na ₂ O	P ₂ O ₅	SiO ₂	V ₂ O ₅	Others	Li ₂ O x Na ₂ O
SR	0.000562	0.000437	-0.000121	0.000306	-0.000095	-0.007402	-0.000001	0.000016	0.000423	-0.000850	0.000338	-0.000900	0.000391
3TS	0.000437	0.000994	0.000818	-0.000197	-0.001174	0.015845	-0.002290	-0.001663	-0.026623	0.000087	-0.001873	-0.001035	0.005625
Al ₂ O ₃	-0.000121	0.000818	0.106166	-0.023641	-0.006321	-0.042622	-0.116415	-0.037560	0.003878	0.005365	-0.019318	-0.001282	0.399300
B_2O_3	0.000306	-0.000197	-0.023641	0.098671	-0.008139	-0.137443	0.007740	0.000059	0.056206	-0.019151	-0.002605	0.007102	-0.151396
CaO	-0.000095	-0.001174	-0.006321	-0.008139	0.053655	-0.045479	-0.024439	0.005047	0.031280	-0.008033	-0.002969	0.009788	0.060851
Cl	-0.007402	0.015845	-0.042622	-0.137443	-0.045479	7.365518	-0.082514	-0.149650	-1.533789	0.077818	0.222002	-0.061961	1.280449
Li ₂ O	-0.000001	-0.002290	-0.116415	0.007740	-0.024439	-0.082514	1.628478	0.191322	0.116498	-0.067394	0.009706	-0.026574	-9.128442
Na ₂ O	0.000016	-0.001663	-0.037560	0.000059	0.005047	-0.149650	0.191322	0.048268	0.046391	-0.015836	-0.016830	0.000936	-0.703963
P_2O_5	0.000423	-0.026623	0.003878	0.056206	0.031280	-1.533789	0.116498	0.046391	3.884548	-0.030861	-0.109986	-0.012867	-1.458618
SiO ₂	-0.000850	0.000087	0.005365	-0.019151	-0.008033	0.077818	-0.067394	-0.015836	-0.030861	0.017306	-0.000056	-0.010683	0.242571
V ₂ O ₅	0.000338	-0.001873	-0.019318	-0.002605	-0.002969	0.222002	0.009706	-0.016830	-0.109986	-0.000056	0.394144	0.010043	-0.664261
Others	-0.000900	-0.001035	-0.001282	0.007102	0.009788	-0.061961	-0.026574	0.000936	-0.012867	-0.010683	0.010043	0.030772	0.169424
Li ₂ OxNa ₂ O	0.000391	0.005625	0.399300	-0.151396	0.060851	1.280449	-9.128442	-0.703963	-1.458618	0.242571	-0.664261	0.169424	71.381920

Term	Al ₂ O ₃	B_2O_3	CaO	Cr ₂ O ₃	K ₂ O	Li ₂ O	Na ₂ O	SiO ₂	V ₂ O ₅	ZrO ₂	Others
Al ₂ O ₃	1.424275	-0.196368	-0.181561	0.256397	0.147292	-1.184685	-0.621428	0.127750	-0.000326	-0.193765	-0.066503
B ₂ O ₃	-0.196368	1.266439	-0.330739	1.456241	-0.093675	0.249682	0.004383	-0.244115	-0.054948	-0.049840	0.066017
CaO	-0.181561	-0.330739	0.897014	-1.161892	0.183376	-0.827434	-0.014343	-0.055768	-0.190127	0.526020	0.210556
Cr ₂ O ₃	0.256397	1.456241	-1.161892	113.804199	-4.719855	-6.007136	-1.495310	0.231267	-0.452838	-4.890241	2.137992
K ₂ O	0.147292	-0.093675	0.183376	-4.719855	1.804941	0.801154	0.078904	-0.039017	-0.293128	0.137461	-0.389528
Li ₂ O	-1.184685	0.249682	-0.827434	-6.007136	0.801154	11.504028	2.890170	-0.880563	-3.259264	-2.440359	-0.686403
Na ₂ O	-0.621428	0.004383	-0.014343	-1.495310	0.078904	2.890170	0.961620	-0.260520	-0.923089	-0.844381	-0.093419
SiO ₂	0.127750	-0.244115	-0.055768	0.231267	-0.039017	-0.880563	-0.260520	0.228765	0.105843	-0.064394	-0.192954
V_2O_5	-0.000326	-0.054948	-0.190127	-0.452838	-0.293128	-3.259264	-0.923089	0.105843	6.320087	1.500310	0.810594
ZrO ₂	-0.193765	-0.049840	0.526020	-4.890241	0.137461	-2.440359	-0.844381	-0.064394	1.500310	3.851941	0.485569
Others	-0.066503	0.066017	0.210556	2.137992	-0.389528	-0.686403	-0.093419	-0.192954	0.810594	0.485569	0.739875

Term	Al ₂ O ₃	B ₂ O ₃	CaO	Cr ₂ O ₃	K ₂ O	Li ₂ O	Na ₂ O	SiO ₂	V ₂ O ₅	ZrO ₂	Others	Li ₂ O x Li ₂ O	Na ₂ O x SiO ₂
Al ₂ O ₃	3.573147	1.519970	1.516088	3.246322	0.772305	-2.515171	-7.987438	-1.889312	0.253034	2.145784	1.712778	60.388215	19.666766
B_2O_3	1.519970	2.357941	0.938047	3.479048	0.388767	-0.899775	-5.441480	-1.681855	0.137742	1.649922	1.354328	45.375048	14.402735
CaO	1.516088	0.938047	2.094815	0.769452	0.667521	-2.870531	-5.483996	-1.532965	0.038030	2.117489	1.468916	71.699047	14.594724
Cr ₂ O ₃	3.246322	3.479048	0.769452	106.220365	-3.511597	-2.447411	-10.651697	-2.258378	-0.169643	-1.185556	4.200548	-45.335949	24.097781
K ₂ O	0.772305	0.388767	0.667521	-3.511597	1.791339	-0.193112	-2.032416	-0.605337	-0.178361	0.752612	0.147252	29.579515	5.617009
Li ₂ O	-2.515171	-0.899775	-2.870531	-2.447411	-0.193112	24.233045	8.299026	0.902785	-3.315438	-3.316944	-1.728650	-379.754076	-16.764174
Na ₂ O	-7.987438	-5.441480	-5.483996	-10.651697	-2.032416	8.299026	24.832372	6.235704	-1.651070	-8.167206	-5.775041	-220.734103	-63.532158
SiO ₂	-1.889312	-1.681855	-1.532965	-2.258378	-0.605337	0.902785	6.235704	1.946707	-0.134198	-2.051280	-1.702693	-62.902963	-17.144585
V ₂ O ₅	0.253034	0.137742	0.038030	-0.169643	-0.178361	-3.315438	-1.651070	-0.134198	5.617225	1.572596	0.909986	13.760979	2.242051
ZrO ₂	2.145784	1.649922	2.117489	-1.185556	0.752612	-3.316944	-8.167206	-2.051280	1.572596	5.729554	2.202219	52.414480	19.584270
Others	1.712778	1.354328	1.468916	4.200548	0.147252	-1.728650	-5.775041	-1.702693	0.909986	2.202219	2.009430	46.172721	15.050488
Li ₂ O x Li ₂ O	60.388215	45.375048	71.699047	-45.335949	29.579515	-379.754076	-220.734103	-62.902963	13.760979	52.414480	46.172721	10449.375970	624.494574
Na ₂ O x SiO ₂	19.666766	14.402735	14.594724	24.097781	5.617009	-16.764174	-63.532158	-17.144585	2.242051	19.584270	15.050488	624.494574	168.489058

Appendix E Example Temperature and Composition Models for Viscosity and Electrical Conductivity

The recommended viscosity (Section 5) and EC (Section 6) models are based on isothermal 1150°C values. Although these values are appropriate for formulation of glasses to be produced at the WTP, there are occasions in which a model user would desire viscosity or electrical conductivity predictions at alternative temperatures. This appendix supplies example models to predict viscosity and EC as functions of both composition and temperature.

E.1 Viscosity-Composition-Temperature Models

Considerable effort has been devoted to the development of models describing silicate melt viscosities as functions of temperature and composition. Reviews and in-depth assessments of modeling approaches and technical underpinnings are readily found in the literature as summarized by Heredia-Langner et al. (2022) and Ferkl et al. (2022). Heredia-Langner et al. (2022) fitted the LAW glass viscosity-temperature-composition database to each of the model forms listed in Table E.1. and recommended the AR version of the model with a PQM form describing the composition dependence of the *B* term as most appropriate for use in design of glasses and control of melter operation at the Hanford Site. They also recommended an AR version of the model with good predictability. The coefficients and fit statistics for these models are summarized in Table E.2. and the variance-covariance matrices are listed in Tables E.3. and E.4.

waste	Glass Science. The table	e is not intended to be a	II-IIICIUSIVE.
Model	Functions	Pros	Cons
Arrhenius (AR)	$\ln(\eta) = A + \frac{B}{T}$	Fewer parametersLinear fit	• Only applicable over narrow range
Vogel, Fulcher, and Tammann (VF)	$\ln(\eta) = A + \frac{B}{T - T_0}$	 Reproduces curvature in data Most widely used in literature 	• Requires non- linear fit
Mauro, Yue, Ellison, Gupta, and Allan (MY)	$\ln(\eta) = A + \frac{B}{T} exp\left(\frac{C}{T}\right)$	 Reproduces curvature in data Represents data well near glass transition 	• Non-linear fit
Avramov and Milchev (AM)	$\ln(\eta) = A + \left(\frac{B}{T}\right)^a$	• Reproduces curvature in data	 Non-linear fit Oddly scaled parameters

 Table E.1. Some of the Most Frequently Referenced Viscosity-Temperature Models in Nuclear waste Glass Science. The table is not intended to be all-inclusive.

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

(After Heredia-Langner et al. 2022)									
Term	AM PQM	AR RLM							
Α	-2.1483	-10.63733							
Al ₂ O ₃	4522.3515	37356.844							
B_2O_3	1020.4357	6527.8997							
CaO	1260.0231	7494.2639							
Fe ₂ O ₃	2762.4187	17545.756							
K ₂ O	1673.1286	10224.607							
Li ₂ O	-5264.2734	-33402.96							
MgO	2373.9846	14905.896							
Na ₂ O	291.4697	3393.0905							
P_2O_5	3984.1403	24547.678							
SiO ₂	4921.0864	31721.392							
SnO ₂	4388.7692	27793.878							
TiO ₂	2401.3011	15507.64							
V ₂ O ₅	1985.4762	12212.411							
ZnO	1826.5884	11553.131							
ZrO ₂	3659.8543	30364.115							
Others	3503.1550	23380.133							
$Al_2O_3 \times Na_2O$	7674.5414	n/a							
$SiO_2 \times ZrO_2$	2602.8079	n/a							
$Na_2O \times Na_2O$	-996.9091	n/a							
a	2.2520	n/a							
Fit R ²	0.9843	0.9797							
Fit RMSE	0.1736	0.1973							
Val R ²	0.9755	0.9643							
Val RMSE 0.1762 0.2127									
	*Component concentrations expressed in mass fraction, temperature in K, and viscosity in P.								

Table E.2. Component Coefficients for the AR and AM Viscosity-Temperature-Composition Models*

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

			anance-Cov	analice Mai	IIX IOI ANI-		21	
Term	Α	Al ₂ O ₃	B_2O_3	CaO	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO
Α	0.0162	-13.1402	-3.3438	-4.1711	-8.7570	-5.6134	15.1141	-7.6599
Al ₂ O ₃	-13.1402	21659.8171	2512.8958	2691.8855	6752.9313	3478.1091	-14485.5691	5454.6300
B_2O_3	-3.3438	2512.8958	2128.7728	1220.6814	2160.9769	1603.4869	-2910.0889	1715.6931
CaO	-4.1711	2691.8855	1220.6814	2063.8432	2666.5243	1889.8270	-3748.5171	2627.0251
Fe ₂ O ₃	-8.7570	6752.9313	2160.9769	2666.5243	6087.3329	3284.5881	-8177.4862	4248.3517
K ₂ O	-5.6134	3478.1091	1603.4869	1889.8270	3284.5881	4131.5049	-3976.8921	3361.4442
Li ₂ O	15.1141	-14485.5691	-2910.0889	-3748.5171	-8177.4862	-3976.8921	21904.4624	-7171.6780
MgO	-7.6599	5454.6300	1715.6931	2627.0251	4248.3517	3361.4442	-7171.6780	10187.3463
Na ₂ O	-1.0512	1068.6323	-373.7232	144.7962	295.1780	-144.2031	774.6070	1249.0340
P_2O_5	-12.6456	8892.9549	3005.5496	3816.5364	7066.3802	5106.8265	-10864.3786	6058.2314
SiO ₂	-15.0135	11639.3957	2615.8675	3457.8669	7777.8110	4900.1690	-15084.2454	6444.1596
SnO_2	-14.0372	10801.5727	3549.0224	4344.5799	8388.4399	4467.2470	-14289.7969	6822.5684
TiO ₂	-7.7291	6131.2096	2442.3784	2879.4552	4101.6460	2894.5251	-7003.6709	3153.9123
V_2O_5	-6.4437	4362.9325	1723.9419	1950.9839	4236.2164	2798.3556	-6735.3747	3279.0878
ZnO	-5.4476	4348.6204	1005.4142	1547.1672	3257.4972	1909.2329	-5616.6558	2928.2777
ZrO_2	-9.9879	6510.6360	-4745.2354	-5211.7491	-986.8173	-3556.5166	-16253.9151	-5414.1455
Others	-10.8314	9881.1784	2106.6178	1947.1158	6967.4298	3583.4813	-12961.2649	5359.0413
Al ₂ O ₃ ×Na ₂ O	-26.3415	-35864.1984	6483.0503	11387.5808	18445.2176	16513.6644	-18106.8282	18397.4063
SiO ₂ ×ZrO ₂	-11.6628	12829.2791	19542.3232	23140.8831	23725.7034	20805.9783	4543.9378	31803.9077
Na ₂ O×Na ₂ O	2.8731	7317.8314	2029.9834	42.3444	-859.6593	865.6558	2395.3448	-3152.8864
а	0.0053	-4.3598	-1.0833	-1.3616	-2.8989	-1.8413	5.1036	-2.5301

Table E.3. Variance-Covariance Matrix for AM-PQM Model

Table E.3. Variance-Covariance Matrix for AM-PQM Model, Cont.

						,		
Term	Na ₂ O	P_2O_5	SiO ₂	SnO ₂	TiO ₂	V_2O_5	ZnO	ZrO_2
Α	-1.0512	-12.6456	-15.0135	-14.0372	-7.7291	-6.4437	-5.4476	-9.9879
Al ₂ O ₃	1068.6323	8892.9549	11639.3957	10801.5727	6131.2096	4362.9325	4348.6204	6510.6360
B_2O_3	-373.7232	3005.5496	2615.8675	3549.0224	2442.3784	1723.9419	1005.4142	-4745.2354
CaO	144.7962	3816.5364	3457.8669	4344.5799	2879.4552	1950.9839	1547.1672	-5211.7491
Fe ₂ O ₃	295.1780	7066.3802	7777.8110	8388.4399	4101.6460	4236.2164	3257.4972	-986.8173
K ₂ O	-144.2031	5106.8265	4900.1690	4467.2470	2894.5251	2798.3556	1909.2329	-3556.5166
Li ₂ O	774.6070	-10864.3786	-15084.2454	-14289.7969	-7003.6709	-6735.3747	-5616.6558	-16253.9151
MgO	1249.0340	6058.2314	6444.1596	6822.5684	3153.9123	3279.0878	2928.2777	-5414.1455
Na ₂ O	3832.5612	311.5619	351.2347	397.6426	-48.7547	-723.8749	649.3130	-1743.7549
P_2O_5	311.5619	21405.1278	11542.1379	11076.5469	6863.3102	5234.7058	4215.6480	1658.5054
SiO ₂	351.2347	11542.1379	14726.9797	12793.3155	6573.3623	5802.2989	4435.3060	17412.7313
SnO ₂	397.6426	11076.5469	12793.3155	16408.6563	8165.8386	6075.9101	5259.8792	-820.1045
TiO ₂	-48.7547	6863.3102	6573.3623	8165.8386	10792.2528	4492.3227	2741.2570	-4547.5009
V_2O_5	-723.8749	5234.7058	5802.2989	6075.9101	4492.3227	7392.0787	2584.8941	-2340.1281
ZnO	649.3130	4215.6480	4435.3060	5259.8792	2741.2570	2584.8941	7895.0286	-1059.5727
ZrO_2	-1743.7549	1658.5054	17412.7313	-820.1045	-4547.5009	-2340.1281	-1059.5727	176726.4001
Others	-341.5298	4743.4599	9816.8673	9138.4216	5732.9323	3298.1157	5066.0167	3622.5901
Al ₂ O ₃ ×Na ₂ O	-1502.8651	31952.9783	27785.2360	29580.7802	15292.8541	17124.4971	9969.2964	-4933.2250
SiO ₂ ×ZrO ₂	6813.7446	25870.9721	-9868.6006	34216.2908	30813.6201	22080.9285	15067.0503	-421890.1172
Na ₂ O×Na ₂ O	-10253.1139	-1738.0363	-3062.6994	-2317.8431	682.8208	936.2050	-1874.9293	-12579.0660
а	-0.3129	-4.1778	-4.9900	-4.6569	-2.5454	-2.1060	-1.7869	-3.2594

Table E.3. Variance-Covariance Matrix for AM-PQM Model, Co										
Term	Others	Al ₂ O ₃ ×Na ₂ O	$SiO_2 \times ZrO_2$	Na ₂ O×Na ₂ O	а					
Α	-10.8314	-26.3415	-11.6628	2.8731	0.0053					
Al ₂ O ₃	9881.1784	-35864.1984	12829.2791	7317.8314	-4.3598					
B_2O_3	2106.6178	6483.0503	19542.3232	2029.9834	-1.0833					
CaO	1947.1158	11387.5808	23140.8831	42.3444	-1.3616					
Fe ₂ O ₃	6967.4298	18445.2176	23725.7034	-859.6593	-2.8989					
K ₂ O	3583.4813	16513.6644	20805.9783	865.6558	-1.8413					
Li ₂ O	-12961.2649	-18106.8282	4543.9378	2395.3448	5.1036					
MgO	5359.0413	18397.4063	31803.9077	-3152.8864	-2.5301					
Na ₂ O	-341.5298	-1502.8651	6813.7446	-10253.1139	-0.3129					
P_2O_5	4743.4599	31952.9783	25870.9721	-1738.0363	-4.1778					
SiO ₂	9816.8673	27785.2360	-9868.6006	-3062.6994	-4.9900					
SnO ₂	9138.4216	29580.7802	34216.2908	-2317.8431	-4.6569					
TiO ₂	5732.9323	15292.8541	30813.6201	682.8208	-2.5454					
V_2O_5	3298.1157	17124.4971	22080.9285	936.2050	-2.1060					
ZnO	5066.0167	9969.2964	15067.0503	-1874.9293	-1.7869					
ZrO ₂	3622.5901	-4933.2250	-421890.1172	-12579.0660	-3.2594					
Others	34230.5621	11881.4070	16160.3760	-1263.0471	-3.6062					
Al ₂ O ₃ ×Na ₂ O	11881.4070	386554.6211	77062.5819	-61788.7091	-8.8705					
SiO ₂ ×ZrO ₂	16160.3760	77062.5819	1105814.3575	21479.5389	-4.0404					
Na ₂ O×Na ₂ O	-1263.0471	-61788.7091	21479.5389	49094.4657	0.9727					
a	-3.6062	-8.8705	-4.0404	0.9727	0.0018					

Table E.3. Variance-Covariance Matrix for AM-PQM Model, Cont.

Table E.4. Variance-Covariance Matrix for AR-RLM Model

						-		
Term	A	Al ₂ O ₃	B_2O_3	CaO	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO
Α	0.0016	-2.0927	-2.1857	-2.1669	-2.0844	-2.2829	-2.2270	-2.1980
Al ₂ O ₃	-2.0927	56342.8492	-4845.2086	-1903.3782	8142.1475	4554.3968	-35943.3106	-2199.5755
B_2O_3	-2.1857	-4845.2086	56717.4522	2561.7520	4829.8564	4655.7938	-6521.4627	-4799.5070
CaO	-2.1669	-1903.3782	2561.7520	31460.5950	4904.7677	3319.9122	-11739.1902	11489.1995
Fe ₂ O ₃	-2.0844	8142.1475	4829.8564	4904.7677	59610.9301	-4325.7674	-7780.5002	-15132.7784
K ₂ O	-2.2829	4554.3968	4655.7938	3319.9122	-4325.7674	91934.2885	43446.6941	19439.3080
Li ₂ O	-2.2270	-35943.3106	-6521.4627	-11739.1902	-7780.5002	43446.6941	339532.6650	-20998.7647
MgO	-2.1980	-2199.5755	-4799.5070	11489.1995	-15132.7784	19439.3080	-20998.7647	310055.4582
Na ₂ O	-2.2741	-15647.4036	2.2753	5692.4728	-398.3989	12487.2291	87947.6220	13877.7692
P_2O_5	-3.3289	23016.0905	7784.2870	10249.9848	-8318.6761	11407.4799	34385.1576	-17335.6370
SiO ₂	-2.1227	5133.5345	-5552.1821	-274.2281	-3916.3035	-2139.5709	-20761.2756	-7655.0664
SnO ₂	-2.6224	10331.5177	16392.2812	15305.1433	19179.6301	-40758.2977	-68552.8613	-22714.2204
TiO ₂	-2.5328	6189.4689	21657.3224	23475.1352	-29604.6808	-15805.7428	-6530.9734	-52679.1347
V_2O_5	-2.9330	12033.3570	2092.7041	-4788.6138	24384.4761	1808.0133	-63548.7674	-6089.7450
ZnO	-2.2580	630.3841	-9433.6711	1233.9436	10748.2218	-244.3242	-29659.4981	3386.6484
ZrO ₂	-1.9564	-8458.6054	2468.1207	8997.1450	22568.7535	-17436.3674	-23041.3357	2755.3961
Others	-1.3494	-9518.9682	-12429.2741	-43616.0978	60099.1609	-5691.5620	-131110.7176	4891.0770

PNNL-30932, Rev. 2 EWG-RPT-029, Rev. 2

Table	E.4. Variand	ce-Covariance	e Matrix for	AK-KLM M	odel, Cont.
Term	Na ₂ O	P_2O_5	SiO ₂	SnO ₂	TiO ₂
Α	-2.2741	-3.3289	-2.1227	-2.6224	-2.5328
Al_2O_3	-15647.4036	23016.0905	5133.5345	10331.5177	6189.4689
B_2O_3	2.2753	7784.2870	-5552.1821	16392.2812	21657.3224
CaO	5692.4728	10249.9848	-274.2281	15305.1433	23475.1352
Fe ₂ O ₃	-398.3989	-8318.6761	-3916.3035	19179.6301	-29604.6808
K ₂ O	12487.2291	11407.4799	-2139.5709	-40758.2977	-15805.7428
Li ₂ O	87947.6220	34385.1576	-20761.2756	-68552.8613	-6530.9734
MgO	13877.7692	-17335.6370	-7655.0664	-22714.2204	-52679.1347
Na ₂ O	34367.1046	7710.2014	-4912.0832	-16490.7390	-5608.3452
P_2O_5	7710.2014	648024.5199	227.9365	-25767.9619	22865.4932
SiO ₂	-4912.0832	227.9365	11913.5498	6453.1250	-5917.7798
SnO_2	-16490.7390	-25767.9619	6453.1250	189290.3081	48703.9191
TiO ₂	-5608.3452	22865.4932	-5917.7798	48703.9191	370738.1678
V_2O_5	-20258.2764	-15314.1677	7974.7414	2250.8090	53368.0713
ZnO	1297.1175	-6354.0255	-17272.0492	15368.4540	-1950.5957
ZrO_2	-13531.1631	26016.7020	-1901.0303	-4641.1864	34071.0729
Others	-63162.6313	-220458.1370	-3840.0681	-11628.2872	14896.0724

Table E.4. Variance-Covariance Matrix for AR-RLM Model, Cont.

Table E.4. Variance-Covariance Matrix for AR-RLM Model, Cont.

Term	V ₂ O ₅	ZnO	ZrO ₂	Others
Α	-2.9330	-2.2580	-1.9564	-1.3494
Al_2O_3	12033.3570	630.3841	-8458.6054	-9518.9682
B_2O_3	2092.7041	-9433.6711	2468.1207	-12429.2741
CaO	-4788.6138	1233.9436	8997.1450	-43616.0978
Fe ₂ O ₃	24384.4761	10748.2218	22568.7535	60099.1609
K ₂ O	1808.0133	-244.3242	-17436.3674	-5691.5620
Li ₂ O	-63548.7674	-29659.4981	-23041.3357	-131110.7176
MgO	-6089.7450	3386.6484	2755.3961	4891.0770
Na ₂ O	-20258.2764	1297.1175	-13531.1631	-63162.6313
P_2O_5	-15314.1677	-6354.0255	26016.7020	-220458.1370
SiO ₂	7974.7414	-17272.0492	-1901.0303	-3840.0681
SnO ₂	2250.8090	15368.4540	-4641.1864	-11628.2872
TiO ₂	53368.0713	-1950.5957	34071.0729	14896.0724
V_2O_5	230950.5780	19772.5709	35123.2430	-46394.7637
ZnO	19772.5709	318242.8355	-3601.5985	71529.7521
ZrO ₂	35123.2430	-3601.5985	136029.0332	7236.9486
Others	-46394.7637	71529.7521	7236.9486	1420446.7621

E.2 Electrical Conductivity-Composition-Temperature Models

Electrical conductivity-composition-temperature models of silicate-based waste glass melts as functions of temperature and composition are typically of the forms AR and VF (as those described in Table E.1. with ε replacing η). These two model forms were fitted to the LAW glass EC-temperature-composition database. An AR based model with the composition effects on the *B* term represented by a PQM is recommended as most appropriate for use in design of glasses and control of melter operation at the

Hanford Site. Table E.5. lists the model coefficients and summary statistics and Table E.6 gives the variance-covariance matrix.

Term	Coefficient		Statistic	Value		
Α	4.2142345		\mathbb{R}^2 Fit	0.9371		
Al ₂ O ₃	-11799.56		R ² Adj	0.9368		
B_2O_3	-9911.015		R ² Press	0.9314		
CaO	-11790.3		R^2 Val	0.8773		
Fe ₂ O ₃	-7829.393		RMSE Fit	0.1404		
K ₂ O	-6743.649		RMSE Press	0.1463		
Li ₂ O	30637.593		RMSE Val	0.1755		
MgO	-12411.88		n	3586		
Na ₂ O	5895.8381		Mean of response	-1.1257		
P_2O_5	-10398.91					
SiO ₂	-10764.34					
SnO ₂	-12859.96					
TiO ₂	-9275.658					
V_2O_5	-8540.411					
ZnO	-10217.12					
ZrO ₂	-10388.09					
Others	-7937.69					
Li ₂ O×Na ₂ O	-98110.49					
* EC in S/cm and component concentrations in mass fractions.						

Table E.5. Component Coefficients for the AR EC-Temperature-Composition Models^{*}

Table E.6. Variance-covariance Matrix for EC AR PQM Model

Term	Α	Al_2O_3	B_2O_3	CaO	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO
A	0.0009	-1.1669	-1.3026	-1.1509	-1.2654	-1.1831	-1.3733	-1.1211
Al ₂ O ₃	-1.1669	28327.3814	-2495.4926	78.3926	3557.1500	1999.8238	-33494.7463	-2080.4450
B_2O_3	-1.3026	-2495.4926	30391.5185	960.0687	1780.6233	2455.3009	4954.0218	-335.8192
CaO	-1.1509	78.3926	960.0687	15831.6033	3010.7666	2215.8793	-11867.4651	6355.8914
Fe ₂ O ₃	-1.2654	3557.1500	1780.6233	3010.7666	31666.8330	-1097.4079	-9033.4167	-7142.6801
K ₂ O	-1.1831	1999.8238	2455.3009	2215.8793	-1097.4079	47886.9787	29857.2739	4952.5237
Li ₂ O	-1.3733	-33494.7463	4954.0218	-11867.4651	-9033.4167	29857.2739	532419.8003	-36998.9861
MgO	-1.1211	-2080.4450	-335.8192	6355.8914	-7142.6801	4952.5237	-36998.9861	163729.9574
Na ₂ O	-1.1843	-8699.1518	1000.7743	1703.2333	-2.0754	6864.2961	83694.4627	4665.6880
P_2O_5	-1.3931	10705.8265	3891.8899	4417.0981	-6370.1909	6295.4958	29849.2871	-10784.9985
SiO ₂	-1.2123	3489.2210	-2792.6990	234.2552	-1415.4531	-1276.6376	-21737.4823	-2886.2719
SnO ₂	-1.0927	3170.5242	7167.2575	6966.8189	7183.2890	-20884.2573	-32185.9583	-10004.1554
TiO ₂	-1.6608	3125.0795	11019.4397	13120.4251	-17097.5141	-7260.3529	4512.0288	-30974.7283
V ₂ O ₅	-1.3011	-410.7453	2316.9782	-1375.5684	8744.7550	3373.7354	7690.8650	-7428.0884
ZnO	-1.2296	930.3032	-5971.9689	1290.9756	6486.0579	88.3255	-36284.6400	-4597.3209
ZrO ₂	-1.2595	-3563.1609	638.1794	5663.7293	11514.5383	-8584.6525	-50735.9953	5422.6905
Others	-0.5692	-8796.5997	-9910.8522	-19907.4938	36912.5653	-3131.0202	-94210.1378	3225.8602
Li ₂ O×								
Na ₂ O	1.6951	123174.0817	-61552.3140	32788.8288	45000.2075	-65922.8199	-2505816.9192	176235.7770

Term	Na ₂ O	P_2O_5	SiO ₂	SnO ₂	TiO ₂	V_2O_5	ZnO
A	-1.1843	-1.3931	-1.2123	-1.0927	-1.6608	-1.3011	-1.2296
Al ₂ O ₃	-8699.1518	10705.8265	3489.2210	3170.5242	3125.0795	-410.7453	930.3032
B_2O_3	1000.7743	3891.8899	-2792.6990	7167.2575	11019.4397	2316.9782	-5971.9689
CaO	1703.2333	4417.0981	234.2552	6966.8189	13120.4251	-1375.5684	1290.9756
Fe ₂ O ₃	-2.0754	-6370.1909	-1415.4531	7183.2890	-17097.5141	8744.7550	6486.0579
K ₂ O	6864.2961	6295.4958	-1276.6376	-20884.2573	-7260.3529	3373.7354	88.3255
Li ₂ O	83694.4627	29849.2871	-21737.4823	-32185.9583	4512.0288	7690.8650	-36284.6400
MgO	4665.6880	-10784.9985	-2886.2719	-10004.1554	-30974.7283	-7428.0884	-4597.3209
Na ₂ O	21464.3517	4839.5087	-4022.3247	-6868.2968	-143.6704	-3422.1068	-624.0778
P ₂ O ₅	4839.5087	358144.2499	-676.2999	-15268.6849	14332.8574	-5236.1338	-3369.1550
SiO ₂	-4022.3247	-676.2999	6765.6393	3611.7532	-2211.0052	2430.3796	-8219.2292
SnO ₂	-6868.2968	-15268.6849	3611.7532	87330.2172	20298.2562	-4272.4410	2432.5827
TiO ₂	-143.6704	14332.8574	-2211.0052	20298.2562	195425.5732	26902.0357	-2798.8374
V ₂ O ₅	-3422.1068	-5236.1338	2430.3796	-4272.4410	26902.0357	110953.9374	5803.1233
ZnO	-624.0778	-3369.1550	-8219.2292	2432.5827	-2798.8374	5803.1233	166764.5976
ZrO ₂	-10494.0907	13139.8693	624.1073	-3415.2389	15174.5904	10339.5963	4140.9476
Others	-34589.5739	-125733.1555	-140.1960	-14010.4353	-10541.5068	-26134.3716	27661.2293
Li ₂ O×							
Na ₂ O	-271957.9704	-85655.1834	69971.7418	22655.0071	-27270.2141	-240988.8445	206309.3138

Table E.6. Variance-covariance Matrix for EC AR PQM Model, Cont.

Table E.6. Variance-covariance Matrix for EC AR PQM Model, Cont.

Term	ZrO_2	Others	Li ₂ O×Na ₂ O				
Α	-1.2595	-0.5692	1.6951				
Al_2O_3	-3563.1609	-8796.5997	123174.0817				
B_2O_3	638.1794	-9910.8522	-61552.3140				
CaO	5663.7293	-19907.4938	32788.8288				
Fe ₂ O ₃	11514.5383	36912.5653	45000.2075				
K ₂ O	-8584.6525	-3131.0202	-65922.8199				
Li ₂ O	-50735.9953	-94210.1378	-2505816.9192				
MgO	5422.6905	3225.8602	176235.7770				
Na ₂ O	-10494.0907	-34589.5739	-271957.9704				
P_2O_5	13139.8693	-125733.1555	-85655.1834				
SiO ₂	624.1073	-140.1960	69971.7418				
SnO ₂	-3415.2389	-14010.4353	22655.0071				
TiO ₂	15174.5904	-10541.5068	-27270.2141				
V ₂ O ₅	10339.5963	-26134.3716	-240988.8445				
ZnO	4140.9476	27661.2293	206309.3138				
ZrO ₂	71957.2052	15104.1194	272265.9151				
Others	15104.1194	729994.9756	185900.9952				
Li ₂ O×							
Na ₂ O	272265.9151	185900.9952	17645290.8306				

E.3 References

Heredia-Langner A, V Gervasio, SK Cooley, CE Lonergan, DS Kim, AA Kruger, and JD Vienna. 2022. "Hanford Low-Activity Waste Glass Composition-Temperature-Melt Viscosity Relationships," in *International Journal of Applied Glass Science*, **Under Revision**.

Ferkl P, P Hrma, and A Kruger. 2022. "Parsimonious viscosity–composition relationships for high-temperature multicomponent glass melts," in *Journal of Asian Ceramic Societies*, DOI: 10.1080/21870764.2021.2012903.

Pacific Northwest National Laboratory

902 Battelle Boulevard P.O. Box 999 Richland, WA 99354 1-888-375-PNNL (7665)

www.pnnl.gov