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Executive Summary 
The overall goal of the Mesoscale-to-Microscale Coupling (MMC) project is to improve coupling 
between mesoscale and microscale simulations via improved guidance and new strategies for 
setting up simulations and for the development of new tools that can be used across the 
community. Including the mesoscale forcing is critical to modeling the full energy transfer across 
scales in the atmosphere. The project-specific objectives include the following: 

• Apply rigorous verification and validation (V&V) techniques to the new modeling tools that 
are developed as part of the project to ensure the accuracy of our codes and results and to 
develop estimates of the relative uncertainty. 

• Improve computational performance of the coupled MMC models through the development 
of methods that can be used to reduce turbulence spin-up time and, hence, the size of 
computational domains. 

• Improve representation of the surface layer in microscale models to enhance simulations of 
hub-height wind speed. 

• Develop guidance for the community describing the best ways to couple mesoscale and 
microscale models, including specific spatial scales at which the handoff to the microscale 
model should occur. 

• Prepare documentation and a suite of software tools that can be used across the 
community. 

• Transition MMC research to the offshore environment. 

Major progress was made in each of these areas during fiscal year (FY) 2020. The land-based 
portion of the project is reported herein, while the offshore portion will be reported separately. 
The team continued to advance the MMC tools and methodologies, as well as to document their 
performance in journal papers and conference presentations, although several planned 
conferences were canceled due to the COVID-19 pandemic.  

The team continued the approach of selecting case studies from field programs or observational 
data to identify challenging atmospheric conditions and test methods to simulate them, allowing 
for a V&V approach that is grounded in data. Uncertainty quantification emphasized determining 
parametric uncertainty in microscale simulations—large-eddy simulations (LES) within the 
Weather Research and Forecasting (WRF) model—through examining sensitivities within 
128 members of an ensemble of perturbed simulations. Both a direct method and using feature 
and permutation importance maps within a random forest framework indicate that the eddy 
viscosity coefficient displays the largest sensitivity. 

Continued study of microscale turbulence initiation slowed in FY 2020 as research was 
redirected to an offshore case. Work completed this year involved improving the common code 
bases used to simulate and assess the flows, which are now available on the public MMC 
GitHub, as well as to execute and analyze simulations of several perturbation techniques during 
a case study representing canonical convective conditions. 

Models and parameterizations were advanced during FY 2020. The three-dimensional (3D) 
planetary boundary-layer (PBL) scheme was extended to a 2.5-level model and tested in the 
terra incognita, or gray zone, for complex terrain. The 3D PBL scheme appears to alleviate 
spurious convectively induced secondary circulations visible in simulations that use traditional 
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one-dimensional PBL parameterization. Another parameterization advancement is a machine 
learning model of the surface layer that was trained on datasets from Cabauw, the Netherlands, 
and from Idaho. Both random forest and artificial neural network models agreed better with 
observed data than did the traditional Monin-Obukhov similarity theory (MOST). In fact, in nearly 
all cases, the model trained on one site performed better at the other site than did MOST, 
suggesting transferability. Initial trials of this parameterization in WRF are promising. 

A method was constructed to characterize turbulence scales from scanning lidar data collected 
during the Wind Forecast Improvement Project 2 experiment in the Columbia Gorge. This 
method allows post-processing with both spectral and principal orthogonal decomposition 
techniques. The turbulence shapes become more streaky and slender for negative heat flux 
conditions compared to cases with positive heat flux. These variations of flow structures can 
significantly impact the energy distribution throughout the boundary layer. 

During FY 2019, the team discovered gravity waves reflected from boundaries in the microscale 
domains of offline-coupled models. Although the gravity waves are physical phenomena, their 
reflection is not. Damping methods were explored to alleviate this problem. Study of an 
idealized hill case indicates that Rayleigh damping methods can be effective, but one must 
carefully tune the size, strength, and placement of the damping layer. 

Team members also modeled a diurnal case from the Wake Dynamics project field campaign at 
Peetz Table Wind Energy Center. By assimilating temperature and wind data, the changes in 
temperature were effectively simulated at the site, including producing realistic turbulence 
intensity. This demonstrated the effectiveness of MMC methods for a complex case, which 
included large-scale temperature advection.  

To ensure that the MMC efforts remain relevant to the wind industry, the team formed an 
industry advisory panel, with active members representing wind plant developers, turbine 
manufacturers, and wind power forecasters. This panel helped to plan an industry workshop, 
Atmospheric Challenges for the Wind Energy Industry, which was held on October 19 and 20, 
2020, and is more fully described in a separate report. 

Finally, during FY 2020, the team began the pivot toward studying MMC processes for the 
offshore environment. An initial challenge case off northern Europe was begun, which we 
expect to complete during FY 2021 under the Offshore Wind Atmospheric Coupling project, 
which has branched off from this MMC project. 

The MMC team continues to work collaboratively and has determined strategies to work through 
the remaining issues required to optimally provide coupled model simulations. These 
simulations and advances in technologies will provide the wind industry with new tools that can 
be used in the planning, design, layout, and optimization of wind plants, thus facilitating greater 
wind power penetration. 
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Acronyms and Abbreviations 
1D one-dimensional 

2D two-dimensional 

3D three-dimensional 

A2e Atmosphere to Electrons 

ABL atmospheric boundary layer 

AGL above ground level 

ANN artificial neural network 

CPM cell perturbation method 

DAP Data Archive and Portal 

DOE Department of Energy 

FI feature importance 

FINO Forschungsplattformen in Nord- und Ostsee (translation: Research 
platforms in the North and Baltic Seas) 

FY fiscal year 

GHI global horizontal irradiance 

h hours 

K kelvin 

km kilometers 

LANL Los Alamos National Laboratory 

LES large-eddy simulation 

LLNL Lawrence Livermore National Laboratory 

m meter 

MAE mean absolute error 

ML machine learning 

MMC Mesoscale-to-Microscale Coupling 

MOST Monin-Obukhov similarity theory 

MSE mean square error 

NCAR National Center for Atmospheric Research 

NOAA National Oceanic and Atmospheric Administration 

NREL National Renewable Energy Laboratory 

PBL planetary boundary-layer 

PI permutation importance 

PNNL Pacific Northwest National Laboratory 

POD proper orthogonal decomposition  

PPE perturbed parameter ensemble 

PPI plan position indicator 
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R2 square of the Pearson correlation coefficient 

RF random forest 

SGS subgrid-scale 

SOWFA Simulator fOr Wind Farm Applications 

SWiFT Scaled Wind Farm Technology 

TKE turbulence kinetic energy 

V&V verification and validation 

U.S. United States 

WFIP 2 Wind Forecast Improvement Project 2 

WRF Weather Research and Forecasting 
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1.0 Introduction 
1.1 Purpose of the Mesoscale-to-Microscale Coupling Project 

The overall goal of the Mesoscale-to-Microscale Coupling (MMC) project is to improve coupling 
between mesoscale and microscale simulations via improved guidance and new strategies for 
setting up simulations, as well as the development of new tools that can be used across the 
community. Accomplishing this goal will enable substantive improvements in wind plant design, 
operation, and performance projections. While significant progress was made during Phase 1, 
there remain a number of open science questions that are being addressed during Phase 2. 
This second phase will culminate in producing well-validated tools with the uncertainty 
quantified, as well as validation cases that will be useful to industry. The project-specific 
objectives include: 

• Apply rigorous verification and validation (V&V) techniques to the new modeling tools that 
are developed as part of the project to ensure the accuracy of our codes and results and to 
develop estimates of the relative uncertainty. 

• Improve computational performance of the coupled MMC models through the development 
of methods that can be used to reduce turbulence spin-up time and, hence, the size of 
computational domains. 

• Improve representation of the surface layer in microscale models to enhance simulations of 
hub-height wind speed. 

• Develop guidance for the community describing the best ways to couple mesoscale and 
microscale models, including specific spatial scales at which the handoff to the microscale 
model should occur. 

• Prepare documentation and a suite of software tools that can be used across the 
community. 

• Transition MMC research to the offshore environment. 

This second phase of the MMC project has been designed to address these six objectives.  

Realizing these objectives will enable simulation of the full suite of mesoscale and microscale 
flow characteristics affecting turbine and wind plant performance and uncertainties, thereby 
allowing for substantive improvements in wind plant design, operation, and performance 
projections. Figure 1.1 diagrams the MMC approach to the project and demonstrates the 
integration among the objectives. The work is grounded in data from field sites and experiments 
and culminates in guidelines for best-practice modeling, software tools, datasets for testing, and 
full documentation.  
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Figure 1.1. Diagram of the MMC project approach of using case studies to address the 
challenges of mesoscale-to-microscale wind plant simulation challenges. 

In addition, to facilitate the transition to the offshore environment, in FY 2021, the project is 
transitioning to two separate but related research projects: 1) a continuation and closeout of the 
land-based MMC research, and 2) the Offshore Wind Atmospheric Coupling project. This report 
details the FY 2020 efforts for the land-based portion of the research. A separate report will be 
prepared to report on an offshore case using data from the FINO (Forschungsplattformen in 
Nord- und Ostsee [translation: Research Platforms in the North and Baltic Seas]) towers off the 
European coast that began in FY 2020 and is expected to be completed during FY 2021. An 
additional report being prepared in parallel with this one details the MMC team-led Atmospheric 
Challenges for the Wind Energy Industry Workshop that was held in October 2020.  

1.2 Motivation for Coupled Modeling 

Coupling mesoscale (horizontal grid spacing on the order of kilometers) and microscale 
(horizontal grid spacing on the order of meters to tens of meters) models is an important step 
forward for the wind power industry. Appropriate techniques and tools are needed to better 
understand the turbulent wind flow into and within the wind plant, which impacts energy transfer 
between scales—and ultimately the amount of energy available to harvest. The ability to couple 
these scales is particularly important for nonstationary meteorological conditions (such as frontal 
passages, thunderstorm outflows, and low-level jets) or when considering changes in 
atmospheric stability associated with the diurnal cycle. Improved estimates of the driving flow 
are needed to optimize wind plant and turbine siting, design, and operation. During the first 
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phase of the Atmosphere to Electrons (A2e) MMC project, important progress was made by our 
team in a number of key areas that are highlighted later in this section.  

Even with these advances, however, some significant challenges remain, which include 
1) providing appropriate and consistent boundary and initial conditions; 2) bridging the so-called 
terra incognita (Wyngaard 2004), the range of spatial scales between about 100 meters (m) and 
the depth of the boundary layer that is problematic for boundary-layer parameterizations applied 
in mesoscale models; 3) initializing turbulence at the correct spatial and temporal scales in the 
microscale models; 4) testing appropriate coupling methodologies; 5) quantifying the uncertainty 
of the methods; and 6) exploring the applicability of the techniques for the offshore environment. 
The MMC team’s integrated approach to addressing these challenges has been, and will 
continue to be, grounded in data. The team seeks to leverage United States (U.S.) Department 
of Energy (DOE)-supported field studies—including at the Scaled Wind Farm 
Technology (SWiFT) facility site in Texas and the Wind Forecast Improvement Project 2 
(WFIP 2) (Shaw et al. 2019) in the complex terrain of the Pacific Northwest—to select case 
studies that facilitate addressing the challenges. Through these case studies, the different 
approaches can be systematically tested and assessed using metrics specific to wind plant 
operations. Figure 1.2 illustrates key elements of the project approach. 

 

Figure 1.2. Depiction of overarching project goal, tasks, and planned outcome. 

1.3 MMC Project Context within DOE Research  

DOE stood up a major A2e initiative within the DOE Office of Energy Efficiency and Renewable 
Energy Wind Energy Technologies Office, whose goal is to optimize power production from 
wind plants. To that end, the initiative explicitly integrates advances in atmospheric sciences, 
wind plant aerodynamics, and wind plant control technologies, taking advantage of current and 
emerging capabilities for high-performance computing. Because atmospheric inflow is the fuel 
that powers wind plants, containing both the energy available for conversion into electricity, as 
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well as characteristics that modulate that conversion, the development and validation of first-
principles-based, high-fidelity physics models in an open-source simulation environment has 
been identified as a crucial part of DOE A2e science goals and objectives. Furthermore, there 
has been an overwhelming consensus in the research community that these models must be 
developed and systematically validated using a formal V&V process that includes uncertainty 
quantification. The MMC project includes an initial demonstration of the V&V-guided approach 
to model development specifically applied to the mesoscale-microscale coupling problem. This 
is a joint collaborative project among DOE national laboratories, with the National Center for 
Atmospheric Research (NCAR) leadership as a subcontractor, and it incorporates external 
feedback from members of other DOE research teams, a merit review panel, industry, DOE 
leadership, and other stakeholders. The A2e program and the MMC project are now working 
toward completion. During FY 2020, the MMC project began to explore applying the project’s 
techniques in the offshore environment. 

The MMC project is grounded in data provided by other DOE facilities and projects. For the first 
two years, the data emphasized measurements taken at the DOE/Sandia National Laboratories 
SWiFT facility in West Texas. The MMC modeling helped characterize and inform the wake 
dynamics experiments being accomplished at that site, and its results are expected to contribute 
to modeling wake dynamics. In years three and four, the MMC project focused on coupled 
modeling in complex terrain, using data derived from observations taken in the Pacific 
Northwest as part of WFIP 2. 

Including mesoscale forcing in microscale models is critical to the success of the A2e project 
that focuses on wind plant controls. Most prominently, the very specific coupling and modeling 
philosophies and technologies being developed by the MMC project are necessary for building 
the high-fidelity modeling tools that are needed by researchers and industry. The results of the 
MMC modeling and case studies are being archived in DOE’s Data Archive and Portal (DAP), 
and code is being provided via a GitHub repository. Each of the models and techniques we 
used are validated against a range of metrics to determine their accuracy for a mix of wind-
energy-related applications. A key outcome of this project is concrete guidance to both industry 
and research communities regarding the potential strengths and weaknesses of various MMC 
approaches. Additionally, the best performing of the approaches assessed will be incorporated 
into the High-Fidelity Modeling project’s Exawind environment for future design and testing, as 
well as the mesoscale-focused Energy Research and Forecasting model being developed. 

1.4 Progression of the MMC Project 

During the first phase of the MMC project, our team made a number of significant 
accomplishments: 

• Down-selected the mesoscale model to be the Weather Research and Forecasting (WRF) 
model and initiated plans to transition changes to the A2e Energy Research and Forecasting 
model (via a separately funded project). 

• Compared various microscale models and found that they performed similarly. 

• Established metrics for V&V of these models relevant to wind plant simulations and the 
coupling mechanism, including evaluating turbulence.  

• Developed, tested, and evaluated various methods to couple mesoscale-to-microscale 
simulations, determining that online coupling is needed within WRF to the large-eddy 
simulation (LES) scales and that applying tendency mesoscale forcing in the National 
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Renewable Energy Laboratory’s Simulator fOr Wind Farm Applications (SOWFA) allows the 
LES model to follow the nonstationary behavior of WRF for diurnal cycle cases in flat terrain. 

• Developed, tested, and evaluated various methods of initializing turbulence in the 
microscale models that is subgrid to the mesoscale models, finding that perturbations that 
are a combination of temperature and momentum induce turbulence at the correct scales. 

• Developed, tested, and evaluated methods to deal with spurious rolls resulting from models 
with grid spacing in the terra incognita. Showed that the upper end of the terra incognita is 
roughly equal to the convective boundary-layer depth. Found that in most cases it is 
possible to configure WRF to skip grid spacings in the terra incognita.  

• Demonstrated and evaluated running coupled simulations for complex terrain associated 
with WFIP 2. 

• Explored methods to better represent the surface layer in both mesoscale and microscale 
simulations. 

• Advanced a fully three-dimensional (3D) planetary boundary-layer (PBL) scheme that allows 
horizontal heterogeneity. 

Over the life of the project, these results have been presented to the community through a 
series of articles in the peer-reviewed literature (Rai et al. 2016, 2017, 2019; Mirocha et 
al. 2018; Haupt et al. 2019b; Rodrigo et al. 2016; Muñoz-Esparza and Kosović 2018; Muñoz-
Esparza et al. 2017, 2018; Quon et al. 2018; Mazzaro et al. 2017, 2019; Allaerts et al. 2020; 
Draxl et al. 2020); through presentations at conferences, including those of the American 
Meteorological Society, WindTech, Torque, Wind Energy Science, and International Conference 
on Energy and Meteorology; in Pacific Northwest National Laboratory technical reports 
(Haupt et al. 2015, 2017, 2019c,d); and in a series of industry webinars. 

During FY 2020, MMC team members have also been actively engaged in organizing and 
presenting papers at major wind industry conferences that were used as forums for bringing the 
research community together with industry during FY 2020. This was successfully accomplished 
at the North American Wind Energy Academy/WindTech in Amherst, Massachusetts, in 
October 2019, and at the Eleventh Conference on Weather, Climate, and the New Energy 
Economy held as part of the American Meteorological Society Annual Meeting in Boston, 
Massachusetts, in January 2020. These meetings included presentations about the MMC 
project and afforded ample opportunity for industry representatives and team members to 
discuss the team’s progress and plans. Due to the COVID-19 pandemic, in-person participation 
at several other conferences was canceled or delayed until travel is again allowed, although 
research continued, and presentations were delivered in a virtual environment.  

1.5 Expected Impacts on Industry 

The expected impact of the MMC project is to advance the science and engineering of coupled 
mesoscale-microscale modeling in order to provide industry with more advanced wind plant 
optimization capabilities. Industry stakeholders have made it clear what must be done in terms 
of better modeling of power output. This issue is complex and involves many factors beyond 
applying a simple power curve to a simulated mean wind speed and making small adjustments 
for turbulence. Uncertainties come from many different aspects of the coupling, including 
interannual variability due to longer-term climatic variability, variability in the outer scales that 
are resolved by the mesoscale models, variability due to wake effects, inner variability due to 
the heterogeneity within the wind plant, variability due to coherent structures, inherent 
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uncertainty due to the chaotic nature of turbulent flow, and finally, impacts through the surface-
layer treatment and its interactions with characteristics of the underlying surface. The MMC 
project addresses these issues directly and will culminate in specific guidance to industry.  

Both the improved computational methodologies and the knowledge gained through their 
assessment and validation will enable substantive improvements in wind plant design, 
operation, and performance projections, all of which are required to attract continued investment 
in wind power as a viable means of meeting national goals of mitigating climate change and 
establishing energy independence. 

The successful outcome of the MMC project will result in improved computer simulation 
capability that accurately incorporates the impact of mesoscale weather on wind power plant 
performance. Meeting this goal will require microscale simulations driven by realistic mesoscale 
forcing, knowledge of when the additional complexity of mesoscale coupling is beneficial, and 
recommendations for best practices for modeling across spatial and temporal scales. Over the 
course of this project, the tools and knowledge developed during each phase, outlined above, 
will continue to be made available to industry and the broader research community.  

The MMC team has engaged with industry by holding a first-year workshop in September 2015 
at NCAR, at which industry representatives were invited to comment on the approach and the 
results, as well as to suggest changes. In FY 2016, the MMC team conducted an industry 
survey. During FY 2017, the team conducted a first webinar with industry to inform them of our 
progress and solicit input. During FY 2019, three more webinars with industry 
(September 20, 2018, and February 14 and April 18, 2019) demonstrated industry’s interest in 
the team’s research results. The team also formed an industry advisory panel, which currently 
consists of: 

• Mark Ahlstrom, NextEra Energy, Inc., Energy Systems Integration Group president 

• Greg Oxley, Siemens/Gamesa 

• Philippe Beaucage, UL/AWS Truepower. 

During FY 2020, the advisory committee and the project team worked to plan an industry 
workshop to share results with the community and as an opportunity to receive feedback. The 
workshop was originally planned to be a face-to-face meeting in June 2020, but COVID-19 
travel restrictions forced us to move to an online format for the workshop, which was conducted 
early in FY 2021. That workshop was quite successful and is reported on separately. 

1.6 Report Contents and Organization 

The remainder of this report documents the results of the MMC project’s FY 2020 land-based 
effort. Section 2 describes advances made in 3D PBL that began under the WFIP 2 and 
continues under the MMC framework. A simulator to compare LES with lidar measurements is 
described in Section 3. Section 4 discusses a machine learning (ML) approach to modeling the 
surface layer. Section 5 compares turbulence generation methods at the microscale for neutral 
conditions. The microscale modeling team discovered challenges with spurious gravity waves in 
their simulations during FY 2019 that have now been studied, and recommendations were made 
to alleviate this issue, as described in Section 6. The team has also emphasized that the 
coupled atmospheric modeling directly impacts the power produced at wind plants. Section 7 
provides an example case study at Peetz Table in Colorado. A key issue addressed in the MMC 
modeling efforts is quantifying the uncertainty in our techniques. To that end, Section 8 
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discusses applying ensemble methods to provide such uncertainty quantification. The final 
chapter, Section 9, synthesizes the results of the team’s land-based research and its expected 
impact. Appendix A lists the team’s ongoing contributions to the peer-reviewed literature and the 
conference papers which they have presented. Appendix B details each laboratory’s 
contributions to the FY 2020 efforts.  
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2.0 Advancing the Three-Dimensional Planetary Boundary-
layer Parameterization 

2.1 Introduction and Motivation 

Representing PBL processes in numerical weather prediction models remains an outstanding 
challenge. In mesoscale models, subgrid-scale (SGS) PBL turbulence must be parameterized; 
however, a problem arises when the turbulence has an integral length scale ($) similar to that of 
the grid cell spacing (∆&) of the model. In these scenarios, the most energetic turbulent eddies 
are neither fully parameterized nor fully resolved, and thus, the model is performing in a regime 
known as the “gray zone,” or terra incognita (Wyngaard 2004). 

As computing advancements allow for an increase in model resolution, more numerical weather 
prediction models are being run with resolutions in the gray zone; however, current PBL 
parameterizations are typically one-dimensional (1D); that is, they handle only the vertical 
mixing, and they leave the horizontal diffusion to be treated by a Smagorinsky-type approach 
(Smagorinsky 1963). While this approach is convenient and appropriate for relatively large grid 
cell spacings (∆& >> (!, where (! is the PBL depth), it is not valid when ∆& lies in the gray zone, 
because the relative contribution of horizontal gradients in turbulent quantities becomes 
important; therefore, a more unified method that considers 3D turbulence is required in order to 
improve simulations of the PBL wind field. To address this issue—which becomes even more 
apparent in regions of complex terrain and heterogeneous land surfaces—we developed a new 
3D PBL scheme for the WRF model (Skamarock et al. 2019). 

During FY 2020, we published a manuscript detailing the new parameterization and its use in 
the context of wind energy forecasting (Kosović et al. 2019). Moreover, the research group 
currently has two manuscripts in preparation that examine the surface boundary condition 
developments (Eghdami et al., in press) and the application of the new scheme to various 
heterogeneous PBL regimes simulated at gray zone resolutions (Juliano et al., in press). In the 
remainder of this report, we provide details of the PBL parameterization development and 
recent results from simulations conducted with the WRF model in FY 2020. 

2.2 Development of the New Parameterization 

The new 3D PBL scheme, which is based on the algebraic model developed by Mellor (1973) 
and Mellor and Yamada (1974, 1982), accounts for the 3D effects of turbulence by calculating 
explicitly the momentum, heat, and moisture flux divergence, in addition to the turbulence kinetic 
energy (TKE). The parameterization involves solving a system of 13 linear algebraic equations 
at each model grid cell to extract the turbulent stresses and scalar fluxes. Once all six 
components of the turbulent stresses and three components of turbulent scalar fluxes are 
calculated, the 3D divergences of the stresses and fluxes are computed and added to the right-
hand side of the prognostic equations for momentum, potential temperature, and specific 
humidity. 

Using the model of Mellor (1973), higher moment velocity and temperature terms can be written. 
After determining these higher moment terms, closure assumptions (i.e., scaling and eliminating 
higher order terms) of various levels of complexity may be applied to the mean and turbulent 
momentum equations, eventually leading to the level 2.5 model (Mellor and Yamada 1982). To 
arrive at the level 2.5 model, material derivative and diffusion terms are neglected in the 
prognostic equation for potential temperature variance in the level 3 model. This assumption 
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leads to diagnostic equations for potential temperature variance and any other scalar quantities 
(e.g., water vapor and hydrometeor mixing ratios) that may be included in the model. The 
level 2.5 model is the most commonly used closure assumption for TKE-based schemes due to 
its reasonable trade-off between accuracy and complexity. Moreover, prognostic TKE allows for 
a relatively smooth evolution of the turbulence field compared to the level 2 model (diagnostic 
TKE). For these reasons, we chose to base our 3D PBL parameterization developments on the 
level 2.5 model, as described in Mellor and Yamada (1982). 

2.3 Three-Dimensional Level 2.5 Model 

As of the FY 2019 report, we had implemented the level 2.5 model with the PBL approximation, 
which neglects horizontal gradients and is, therefore, not appropriate for gray zone simulations 
nor consistent with our implementation of a full 3D turbulence closure. During FY 2020, under 
the MMC project, we implemented the full 3D prognostic equation for TKE in the level 2.5 
model: 
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where < is the coefficient of thermal expansion, Λ* is a length scale, and *" is twice TKE. 
Term [A] is the local tendency of TKE, [B] is the advection of TKE by the mean wind, [C] is the 
turbulent transport, [D] is the shear production of TKE, [E] is the buoyancy production of TKE, 
and [F] is the dissipation of TKE. 

The remaining equations that define the level 2.5 model with moisture are: 

 

(3) 

 

(4) 

 
(5) 



PNNL- 30841 

Advancing the Three-Dimensional Planetary Boundary-layer Parameterization 10 
 

 

where ℓ*, ℓ", and Λ" are length scales. These three length scales, in addition to Λ*, are 
proportional to each other and can be expressed in terms of a master length scale	ℓ: 

(ℓ*, Λ*, ℓ", Λ") = (@*, A*, @", A")ℓ (6) 

The master length scale in the Mellor-Yamada model is adopted from Blackadar (1962) and 
defined as: 

 
(7) 

with $+ given as: 

 

(8) 

where α is an empirical constant set to 0.010. The original values for constants @*, A*, @", A", 
and B* are provided by Mellor and Yamada (1982): 

(@*, 	A*, 	@", 	A", 	B*) = (0.92, 16.6, 0.74, 10.1, 0.08). (9) 

These values are derived from experiments for neutral stability conditions, which occur relatively 
infrequently in the real-world land-based PBL. Moreover, we find that using this original set of 
parameters results in a diabatic profile of potential temperature, and in some instances, 
numerical stability is not maintained; therefore, we use high-resolution LES of a convective 
boundary layer over homogeneous terrain to arrive at the following values for these model 
parameters: 

(@*, 	A*, 	@", 	A", 	B*) = (0.3, 8.4, 0.33, 6.4, 0.08) (10) 

which are used in all the simulations presented herein. 

2.4 Solving the System of Linear Equations 

Once *", ℓ, and the 3D derivatives of the mean quantities are calculated, the second-order 
moments are computed by inverting a system of linear algebraic equations at each grid cell. We 
use the subroutine dgesvx from the Linear Algebra PACKage (Anderson et al. 1999) to compute 
the solution to the set of linear equations. For a dry WRF simulation that includes only heat as 
the scalar variable, the full system is defined by 10 simultaneous algebraic equations. Here, we 
present this system of 10 equations for six turbulent stresses, three turbulent sensible heat 
fluxes, and the potential temperature variance. Three additional equations, similar in nature to 
the equations for heat flux, are solved for the turbulent fluxes of each additional scalar variable 
of interest (water vapor mixing ratio, liquid water mixing ratio, etc.; not shown here). After all six 
components of turbulent stress and three components of turbulent scalar fluxes are available, 
the full divergences of stresses and fluxes are computed and added to the right-hand side of the 
mean prognostic equations for momentum, potential temperature, water vapor mixing ratio, and 
any other prognostic scalar variables of interest. 
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(11) 

2.5 The PBL Approximation 

In the situation where the horizontal length scale is much greater than the PBL vertical length 
scale height (i.e., ∆& >> (!), the PBL approximation may be invoked (e.g., Mellor 1973). Under 
this assumption of horizontal homogeneity, horizontal gradients of turbulent stresses and fluxes 
are identically zero. Additionally, the vertical gradient of L":::: may be neglected. This means that 
only the vertical gradients of two components of turbulent stress, 9L:::: and ML::::, and one 
component of turbulent flux, L>::::, affect the evolution of the mean fields. This approach is 
commonly followed in current TKE-based 1D PBL parameterizations. 

As an intermediate step to implementing the full 3D PBL parameterization, we develop a hybrid 
approach where all the six components of the turbulent stress tensor and three components of 
the sensible heat gradient vector are diagnosed, and the full divergence of both stress tensor 
and flux vector computed. However, in this case, the PBL approximation (i.e., neglecting 
horizontal derivatives) is used to develop the diagnostic equations. In the context of the full 
matrix solution, the PBL approximation assumes that any horizontal gradients, in addition to the 
vertical gradient of the vertical velocity, appearing in the matrix can be set equal to zero, leading 
to the below simplified set of linear algebraic equations. 
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(12) 

2.6 Idealized Simulations to Test the New Parameterization 

In order to test the capabilities of the 3D PBL scheme, we use the WRF model to configure an 
idealized mountain-valley case of a growing convective boundary layer. We describe the 
specific model configuration, in addition to the results of this case. Motivation for this particular 
case study stems from the fact that horizontally varying topography represents one of the main 
situations under which the PBL approximation is not an appropriate assumption. During periods 
of solar insolation in mountain-valley terrain, the variation in elevation induces a thermally driven 
valley circulation and, therefore, horizontally heterogeneous conditions; thus, it is necessary to 
consider horizontal gradients in such a scenario in order to accurately calculate the turbulent 
stress divergence. 

To examine the impact of the new 3D PBL parameterization in complex terrain, we configured 
an idealized mountain-valley case based on the studies by Schmidli and Rotunno (2010), 
Schmidli (2013), and Wagner at al. (2014). The spatial dimensions of our domain are (x, y, z) =
(40, 20, 5) kilometers (km), and we assign periodic boundary conditions in both the x and y 
directions. The choice of topography follows Schmidli and Rotunno (2010; Figure 2.1), and we 
use the following analytical expression to determine the elevation, (, as follows: 

 (13) 
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with 

 

(14) 

where ℎ, = 1.5 km is the valley depth, and 1- = 9 km is the slope width. We maintain 
consistency with Schmidli and Rotunno (2010) by setting S* = 0.5	km, S" = 9.5	km, S) =
10.5	km, and S. = 19.5	km to create a valley floor and mountain ridge width of 1 km. The 
highest resolution topography is generated at ∆& = 50 m before interpolating to the respective 
coarser resolution domains. 

 

Figure 2.1. Idealized topography used for the simulations. Top and bottom panels show x-y 
and x-z cross sections of the surface elevation. 

We run a suite of sensitivity simulations whereby we alter the horizontal grid cell spacing, as 
well as the turbulence closure option. The different turbulence closure options are shown in 
Table 2.1. For each closure option, we run simulations at ∆& = (1000, 500, 250) m in order to 
capture differences between simulations in the gray zone. We set the model top to 5,000 m and 
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use 76 specified eta levels in the vertical with grid cell spacing, ∆( ≈ 10 − 50 m in the lowest 
2 km, stretching up to ~100 m thereafter. We prescribe a horizontally homogeneous surface 
heat flux, U = 145	W	W/". As in Wagner et al. (2014), our simulations are initialized with an 
atmosphere at rest, a surface potential temperature of 297 kelvin (K), and a constant potential 
temperature lapse rate of 3 K km-1. We ignore humidity (dry atmosphere) and set the Coriolis 
parameter to zero. We trigger turbulence at initialization by assigning randomly distributed 
potential temperature perturbations of 0.5 K to the lowest four model grid cells. The simulations 
are integrated for five hours (h) to focus on the well-developed mountain-valley thermal 
circulation. 

Table 2.1. Various model configurations using the 3D PBL scheme for the idealized mountain-
valley simulation. 

Reference Name Closure Approach 
SMAG 3D PBL w/PBL approximation (vertical mixing) and 

Smagorinsky (horizontal mixing) 
3D-APPROX 3D PBL w/PBL approximation (vertical and 

horizontal mixing) 
3D-FULL 3D PBL (vertical and horizontal mixing) 

We now present vertical cross sections of the u-wind component (i.e., cross-valley) wind speed 
from the simulations with Δx = 500 m at t = 5 h (Figure 2.2). Each of the three different closure 
options, which handle the 3D mixing in different ways, are able to reproduce the double thermal 
circulation cells generated by the combined terrain and surface heating. The first circulation 
pattern is seen within the valley, where surface heating leads to upslope flow and the 
development of an inversion at ~1,200 m above ground level (AGL). There is a maximum in 
upslope wind speed confined to a thin layer near the surface, and this structure will be 
examined in more detail in Figure 2.4. The thermal circulation leads to return flow directed 
toward the center of the valley and just below the inversion. The second circulation pattern is 
seen above the valley, whereby a secondary inversion develops at ~2,400 m AGL and causes 
westward (eastward) flow on the east (west) side of the valley with return flow below. In general, 
the 3D-APPROX simulation shows the weakest thermal inversion strengths and related cross-
valley wind speeds; this is especially evident within the circulation cell above the mountain 
peaks. Additionally, the circulation cells are more coherent in the SMAG and 3D-FULL 
simulations. 
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Figure 2.2. Vertical cross sections of the entire east-west mountain-valley domain 

(Δx = 500 m) showing along-valley averaged contour fill of u-wind component 
(m/s) and contour lines of potential temperature (K) at t = 5h. Top-left, top-right, 
and bottom panels show output from SMAG, 3D-APPROX, and 3D-FULL, 
respectively. 

Figure 2.3 shows vertical cross sections of the eastern portion of the domain (18 < x < 32 km) to 
highlight the mountain-valley thermal circulation. Here, we plot color contours of vertical velocity 
along with potential temperature contours and wind arrows. Two main features are evident in 
this figure. First, the vertical velocity field at x = 30 km is weakest in the 3D-APPROX 
configuration and strongest in the 3D-FULL configuration. Also, structures in the lower portion of 
the valley are more apparent in the SMAG and 3D-APPROX simulations compared to the 3D-
FULL simulation. These motions are likely a result of so-called modeled convectively induced 
secondary circulations (Ching et al. 2014), which arise in gray zone simulations when the 3D 
turbulent mixing is not handled appropriately. Therefore, it appears as though the more 
theoretically accurate closure technique (3D-FULL) may result in a better solution; however, 
additional analysis, including conducting LES, is required in order to examine this hypothesis in 
more detail. 
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Figure 2.3. Vertical cross sections of the eastern portion of the domain (Δx = 500 m) showing 

along-valley averaged contour fill of vertical velocity (m/s), contour lines of 
potential temperature (K), and wind flow in the two-dimensional (2D) x-z plane at 
t = 5 h. The wind vectors are scaled based on the x:z aspect ratio, and a 3-m/s 
reference vector is shown above each panel. Top-left, top-right, and bottom panels 
show output from SMAG, 3D-APPROX, and 3D-FULL, respectively. 

In order to better examine the vertical structure of the upslope wind flow along the eastern slope 
of the valley, in addition to the return flow above the valley inversion, we plot vertical profiles of 
the along-valley averaged u-wind component (Figure 2.4). Here, we show results for all 
simulations conducted to elucidate any differences between those configurations with different 
mixing options, as well as horizontal grid spacing. For all simulations at x = 22 km (+2 km from 
the center of the valley), a peak in upslope (positive u) winds is seen near the surface with a 
return flow (negative u) below the valley inversion. For the profiles at both x = 22 and 224 km, 
both the upslope and return flow wind speeds are strongest for the simulations with 
Δx = 1,000 m, and there is also a spatial displacement of the peak in return flow wind speed. At 
x = 28 km, the spatial displacement is not as apparent; however, as the horizontal grid spacing 
decreases, the u wind speed becomes weaker. Large differences in the wind profiles are not as 
evident when comparing the mixing options, suggesting that these results are more sensitive to 
the horizontal grid spacing compared to the closure option. We will conduct further analysis to 
understand the fundamental reasons for these differences. 
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Figure 2.4. Vertical profiles of along-valley averaged u-wind component (m/s) at different 
locations in the cross-valley direction. Left, middle, and right panels show profiles 
at x = 22, 24, and 28 km (+2, +4, and +8 km from the center of the valley), 
respectively. Black, red, and green lines represent simulations with Δx = 1,000, 
500, and 250 m simulations, respectively. Star, diamond, and circle markers 
represent simulations using SMAG, 3D-APPROX, and 3D-FULL mixing options, 
respectively. Note that the x-axis scales are different in all three panels. 

While the results presented in this report are preliminary and show only comparisons among 
various mixing options within the new 3D PBL scheme, they compare well with the results from 
Schmidli and Rotunno (2010), Schmidli (2013), and Wagner at al. (2014). A more in-depth 
analysis for this particular case, including conducting high-resolution LES and examining 
turbulence statistics, is under way. Moreover, a manuscript synthesizing these results, in 
addition to results from other idealized configurations (i.e., sea breeze case and convective 
cell/roll convection case), is currently in preparation (Juliano et al., in press). 
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3.0 Characterization of Turbulence Scale from Scanning 
Lidar Data 

Flow structures of the atmospheric boundary layer (ABL) close to the surface depend on the 
forcing conditions they receive from the surface, as well as the winds in the ABL. These 
structures help transfer mass and energy in space and impact the growth of the ABL. Details of 
flow structures are often studied using resolved flow from numerically simulated flow fields, such 
as from LES. Instruments, including remote sensing devices (e.g., lidar) can provide only sparse 
data in space. Because of this, the validation of numerically simulated flow with spatiotemporally 
resolved observational data is challenging. Similarly, the detailed study of flow structures using 
observations is a difficult task due to a lack of resolved data. This work employs an ensemble of 
velocity data collected from Doppler scanning lidar to investigate the turbulent flow structures 
near the surface. The following paragraphs describe the method of selecting the lidar data, the 
tools used to analyze the data, and a brief discussion of the results.  

3.1 Lidar Data 

This study uses lidar data that were collected from 2015 to 2017 during the WFIP2 field 
experiment (Shaw et. al 2019). The scanning lidar provided the radial velocity data at three 
scanning modes: plan position indicator (PPI), range height indicator, and vertically staring. 
Figure 3.1a shows the location of the scanning lidar in Oregon, near the Columbia Gorge, and 
the surrounding terrain from the lidar. The data from the lidar were considered only from the 
sector depicted in Figure 3.1b—solid dots on the top of the terrain height contour. In this report, 
however, we analyzed only the PPI scanned data, which were further down-selected using the 
following criteria: 1) westerly flow, 2) 2.5° beam elevation angle, 3) 50° sector (due east from the 
lidar, hereafter called the east-sector), and 4) radial distance of 2.5 km from lidar. The temporal 
resolution of the lidar is 0.5 second, and the lidar scans azimuthally at 1° resolution, requiring 
25 seconds to complete the east-sector shown in Figure 3.1b. The spatial resolution along the 
radial direction is 100 m. These PPI scans were further categorized based on the magnitude of 
the surface heat flux and the wind velocity, both obtained from nearby measurement sites. The 
categories used to bin the velocity data are based on 1) stability: stable, surface heat flux 
between -50 and -10 Wm-2; near-neutral, surface heat flux between -5 and 10 Wm-2; weakly, 
moderately, and strongly unstable surface heat flux between 50 and 150, 150 and 250, and 
250 and 350 Wm-2, respectively; and 2) the mean horizontal wind velocities, less than 5 ms-1, 
between 5 and 10 ms-1, and between 10 and 15 ms-1. The combination of surface heat flux and 
wind velocity provide 15 groups that are used in the analysis. In addition, we considered only 
categories that have at least 150 cases to ensure stable statistics. The wind data from the lidar 
from various cases were analyzed using spectral and proper orthogonal decomposition (POD) 
(Holmes et al. 2012) methods.  
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Figure 3.1. a) Location of scanning Doppler lidar in the terrain; b) the sector of scanned data 
by the lidar on the top of the terrain heigh contour. 

3.2 Turbulent Energy in the Flow 

Spectral energy was used to evaluate the turbulent energy in the flow of various cases. Figure 
3.2 shows the spectra for 14 cases, derived using radial velocity data from 25 radial locations at 
an azimuthal angle of 100° (relative to north). The mean spectra for each case was obtained by 
averaging the spectra from at least 150 east-sectors. The results show that the magnitude of 
spectral energy is dependent on the magnitude of both wind speed and surface heat flux. For 
cases with wind velocity < 5 ms-1, 5 to 10 ms-1, and 10 to 15 ms-1, the spectral energy—
particularly in the higher wave number space—decreases when the magnitude of the heat flux 
decreases and when the heat flux changes from positive to the negative values. The rate of 
decrease of spectral energy in the three velocity cases, however, are different: the cases with 
smaller wind velocity show a large drop in magnitude. Similar behavior of energy decrease can 
be seen for cases with different heat fluxes (see the inset). The large drop in spectral energy is 
seen for the cases with negative heat flux. For a higher wave number, the spectra follow a -5/3 
slope for most of the cases, showing the inertial subrange in the data. In the case of positive 
heat flux conditions, the -5/3 slope starts near the wavelength that corresponds to ~1.2 km, a 
typical characteristic length scale for the unstable atmospheric conditions; however, the inertial 
subrange in the case with negative heat flux appears to follow the -5/3 slope differently: the 
slope displays the inertial range characteristics in the larger wave number region (< 500 m). The 
spectral energy in the lowest wave numbers for the case with negative heat flux is larger than 
that for the case with positive heat flux. This indicates that the kinetic energy of the flow 
accumulates more in the lower wave numbers when the heat flux is negative. The spectral 
energy of the various cases shows that the kinetic energy of the turbulent flow is sensitive to 
larger wind velocity and heat flux quantities.  
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Figure 3.2. Spectral energy for the cases with varying heat flux conditions for radial wind 
velocity a) < 5 ms-1, b) 5–10 ms-1, and c) 10–15 ms-1. Inset shows the spectral 
energy for varying wind velocity for the heat fluxes [-5,10] Wm-2, [50,150] Wm-2, 
and [250,350] Wm-2. 

An alternative method to consider the kinetic energy contained in the flow uses coherent energy 
estimated using PODs. In contrast to the spectral energy approach discussed above, 2D or 3D 
data have been used to compute the spatial modes and coefficients of PODs. The energy 
estimated by POD for each mode represents the energy associated with the coherent structure 
of that mode. Figure 3.3 shows the POD energy of the first 15 spatial POD modes for those 
cases described above. The POD energy was calculated using an ensemble of radial wind 
velocity from at least 150 east-sectors. It is noted that the POD energy of mode numbers in 
each case was normalized by the POD energy of the first mode from the case with heat flux 
between 250 and 350 Wm-2. Similar to the spectral energy, the results show that the POD 
energy in the higher mode numbers is sensitive to the magnitude of wind velocity and surface 
heat flux. For instance, cases with the largest velocities (10 to 15 ms-1) and heat flux (250 to 
350 Wm-2; see inset) revealed similar POD energy among the cases in the high mode numbers. 
The POD energy for the case with heat flux between -5 and 10 Wm-2 increased by one order of 
magnitude as heat flux increased to between 10 and 15 Wm-2, showing a large drop of energy. 
This shows that POD energy represents the kinetic energy of the turbulent flow similar to the 
spectral energy but in terms of coherent structures. This variation of spectral and POD energy 
over wave and mode number near the surface with varying forcing conditions indicates that 
structures play a significant role in distributing energy within the boundary layer.  

 
Figure 3.3. POD energy for the cases with varying heat flux conditions for wind velocity 

a) < 5 ms-1, b) 5–10 ms-1, and c) 10–15 ms-1. Inset shows the POD energy for 
varying wind velocity for the heat fluxes [-5,10] Wm-2, [50,150] Wm-2, and [250,350] 
Wm-2. 
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3.3 Spatial Structures 

The magnitudes of the turbulent energy for the given wave number (in spectral energy) and 
mode number (in POD energy) are associated with the size of the spatial structures 
corresponding to those wave and mode numbers; therefore, the spatial POD modes herein are 
used to estimate the size of the coherent structures for the given mode number. Figure 3.4 
shows the spatial POD modes for five representative mode numbers (i.e., 1, 4, 8, 12, and 20) 
for three surface heat flux conditions representing the stable, near-neutral, and unstable 
conditions. Note that all the spatial POD modes in Figure 3.4 are computed from the case with 
radial wind velocity between 5 and 10 ms-1. The spatial structures of the first two modes 
(e.g., 1 and 4) from the three heat flux conditions (first and second column) are similar in regard 
to their shape and size—occupying the area with large coherent structures. This reveals that 
most of the energy of the flow is carried by the low mode number, and that is why all cases 
predicted similar ranges of POD energy in the first few modes (see Figure 3.3). Once the POD 
mode number increases, the shape and size of the coherent structures change noticeably with 
the surface heat flux. For the higher mode number, the structures become slenderer and 
streakier as the magnitude of surface heat flux decreases and becomes negative. The flow 
structures in stable conditions (negative heat flux) are dictated primarily by the shear that 
produces a streak-like structure close to the surface. On the other hand, the unstable condition 
has the effect of buoyancy in addition to the shear generation near the surface, producing 
different structures compared to the stable conditions. The near-neutral conditions show the 
shape and size of flow structures in between those two structures. In all three heat flux 
conditions, the streak-like structures are common, with slight change in slenderness, resulting 
from the slow- and fast-moving wind. In fact, the POD is able to reveal the shape and size of the 
coherent structures near the surface using the ensemble of velocity data.  

 
Figure 3.4. Spatial POD modes for various mode numbers, 1 through 20, for three surface 

heat flux conditions [-50,-10] Wm-2, [-5,10] Wm-2, and [150,250] Wm-2 for radial 
wind velocity 5–10 ms-1. 
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4.0 A Machine Learning Approach to Modeling the Surface 
Layer 

4.1 Introduction 

Flows in the ABL are turbulent, characterized by a large Reynolds number, the existence of a 
roughness sublayer, and the absence of a viscous layer. Exchanges with the surface are, 
therefore, dominated by turbulent fluxes. In numerical models of atmospheric flows, turbulent 
fluxes of momentum, heat, and moisture must be specified at the surface. Because surface 
fluxes are not known a priori, they must be parameterized. Surface fluxes are currently 
parameterized using a semiempirical approach. 

Theoretical underpinnings of the surface exchanges with the atmosphere were laid out by Monin 
and Obukhov (1954). They developed a similarity theory linking measurements of wind speed 
and temperature at a level near the surface to the friction velocity and surface flux of sensible 
heat. Assuming that two relevant length scales (distance from the surface, z, and Obukhov 
length, L) account for the effect of a solid boundary and for competing effects of shear and 
buoyancy, Monin and Obukhov defined a nondimensional stability parameter, z/L. A number of 
field studies under nearly homogeneous and stationary conditions were carried out to determine 
universal stability functions that modify velocity and temperature profiles under nonneutral 
conditions. These stability functions are determined as simple linear and nonlinear regression 
fits for stably stratified and unstable conditions, respectively; however, different regression 
parameters are obtained from different field studies (e.g., Businger et al. 1971, Dyer and 
Hicks 1970). Even when extreme care is taken to control the quality of the data, the scatter is 
large. Additionally, uncertainty emerges in parameters that are assumed to be constant, the von 
Karman constant, and surface roughness length. Simple regression cannot capture the 
relationship between governing parameters and surface layer structure under the wide range of 
conditions to which Monin-Obukhov similarity theory (MOST) is commonly applied. 
Nevertheless, in practice, these stability functions are commonly used even when the conditions 
of homogeneity and stationarity are not satisfied in a range of atmospheric models from global 
models to turbulence-resolving LES of ABL flows. We, therefore, developed an ML model for an 
improved surface layer parameterization using long-term surface layer observations.  

To estimate surface fluxes of momentum, sensible heat, and moisture based on measurements 
of wind speed, temperature, humidity, as well as surface temperature and soil moisture, we 
developed, trained, and tested two ML models. The ML models are based on the artificial neural 
network (ANN) and random forest (RF) algorithms. To train and test these ML algorithms, we 
used several years of observations from the Cabauw mast in the Netherlands and from the 
National Oceanic and Atmospheric Administration’s (NOAA’s) Field Research Division tower in 
Idaho.  

Even when we train the ML models on one set of data and apply them to the second set, they 
provide more accurate estimates of all the fluxes than MOST. Estimates of sensible heat and 
moisture flux are significantly improved. We have now implemented the ML model based on the 
RF algorithm in the WRF model. Here, we demonstrate its performance in a single column 
model simulation based on the GABLS 2 model intercomparison study (Svensson et al. 2011). 
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4.2 Monin-Obukhov Similarity Theory 

MOST states that, under nonneutral stratified atmospheric conditions, the logarithmic profile is 
modified as a function of a stability parameter, z/L, where L is Obukhov length scale, defined as 
(Obukhov 1948: 
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Here, (= is the momentum roughness length, and 9∗ is the surface friction velocity, defined as: 
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where  and  are components of turbulent stress near the surface. 

Due to significant differences in the structure of velocity and temperature profiles under 
convective and stably stratified conditions, the stability functions are estimated separately for 
two cases. 

For a stably stratified boundary layer based on Dyer and Hicks (1970), the stability functions for 
momentum and heat are equal: 
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and: 
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Figure 4.1 depicts Dyer and Hicks (1970) and Businger et al. (1971) stability functions, two of 
the most commonly used sets of empirical stability functions for momentum and sensible heat 
flux.  

  

Figure 4.1. MOST momentum (left) and heat (right) universal stability functions as a 
function of a nondimensional stability parameter z/L. Blue lines represents Dyer-
Hicks (1970) stability functions, while red lines represent Businger et al. (1971) 
stability functions. 

The value of the von Karman constant they used was [ = 0.41. After integrating equation (2) we 
have: 
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For stably stratified boundary layers: 
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where: 
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so that the difference in wind speeds at two levels is: 
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For a potential temperature, we can obtain similar relations: 
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Here, for stably stratified conditions:  
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While for unstable conditions:  
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so that the difference in potential temperatures at two levels is: 
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Here, (B, is the heat flux roughness length, which is often about an order of magnitude smaller 
than the momentum roughness length. Finally, the expression for moisture mixing ratio 
difference has the same form as the one for potential temperature; therefore, for the stably 
stratified boundary layer, the difference in moisture mixing ratio at two levels in a surface layer 
can be estimated using the following equation: 
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while for the convective ABL, the difference is: 
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Equations (11), (14), (17), (19), (20), and (21) will be used to compute surface friction velocity, 
9∗, temperature scale, >∗, and moisture scale, *∗.  
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4.3 Machine Learning Methods 

We selected two ML algorithms to develop an ML model for surface layer parameterization: an 
ANN and an RF. These two algorithms represent different approaches to ML in terms of 
complexity and training requirements. In general, the RF training process is simpler, and it 
requires less preprocessing. The ANN algorithm includes many hyperparameters that must be 
tuned and, therefore, requires more experience in ML model development; however, ANNs 
produce much more compact models than RFs and produce smoother predictions.  

4.3.1 Artificial Neural Network 

An ANN is an ML method modeled after how neurons in the human brain process and learn 
information. The specific ANN used for this application is a multilayer perceptron trained with 
backpropagation (Reed and Marks 1999, Rosenblatt 1958). In a multilayer perceptron, the input 
data or predictors are mapped to each neuron in a hidden layer that adjusts parameters to 
output learned values, which in this study are the moisture scale, temperature scale, and friction 
velocity. The complexity of the nonlinear relationships and predictability that can be modeled are 
a function of the number of neurons in the hidden layer(s) and the number of hidden layers. 
Each neuron relies on a nonlinear activation function to modulate its output. Activated neurons 
show more of an effect on the model’s prediction than on neurons that are not activated. The 
training process iteratively adjusts the weights and biases until the error is minimized or the 
specified number of training iterations, or epochs, is reached. This final configuration is used to 
make predictions, and a minimal difference in error between training and testing datasets 
indicates a lack of overfitting the data. The model used here is built with the Python TensorFlow 
Keras framework and contains three hidden layers of 64 neurons each, 25 training epochs, a 
batch size of 32, ReLU activation functions, an Adam optimizer, and a learning rate of 0.001. 

4.3.2 Random Forest 

The RF algorithm belongs to the decision tree family of algorithms. It consists of an ensemble of 
decision trees where each tree in the forest is trained on a subset of the resampled original 
training data. The trees grown as random subsets of predictors are evaluated at each decision 
node (Breiman 2001) by iterating over candidate combinations of input variables and splitting 
thresholds at a given branch. For each input-threshold combination, the training data are split 
into two subsets, and the mean square error (MSE) is computed between the observed values 
and the means of the subset labels. The input-threshold combination with the lowest MSE is 
retained. The iterative process proceeds recursively until, in the final branch—i.e., the leaf—the 
number of examples in the subset reaches a minimum threshold or has a minimum error. The 
final prediction is the mean of the training instances in the final leaf node for a given sample of 
predictors. The RF is efficient at interpolating; however, it does not extrapolate beyond the 
range of training set outputs, and it performs poorly on extreme values, because it uses the 
mean value of the training samples in the leaf of the tree. The final prediction from the RF 
represents an ensemble average of the predictions from each tree in the forest that generalized 
well on the test data and typically has a lower error on average than any single tree in the forest. 
The RF regressor used in this analysis is in Python’s scikit-learn package (Pedregosa et al. 
2011). We determined the optimal configuration of the RF based on evaluating the results on a 
subset of the training data with limitations of the size of the forest that could be implemented 
within WRF. The RF configuration used in this study had 200 trees, 200 maximum leaf nodes, 
50 minimum samples per split and per leaf, and an MSE loss function.  
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4.4 Comparing the Machine Learning Surface Layer Parameter 
Estimates to MOST 

To train the ML models, we use surface layer observations from two sites: the Cabauw mast in 
the Netherlands and NOAA’s Field Research Division site in Idaho. To compare model 
predictions based on models trained at two sites, we needed to determine a common set of 
predictors. The common set of predictors and associated observation levels are listed in Table 
4.1. While the observation levels are different between two sites, for the purpose of our analysis, 
we will ignore these differences.  

We trained ANNs and RFs for each site, independently. We first applied the resulting ML model 
to test datasets from the same site from which the training dataset was derived. We then 
applied the models trained on the dataset from the first site to the test datasets from the second 
site to evaluate if a model trained in one climate could perform in another climate and, thus, 
determine if models can be generalized. Finally, we trained the ML models on a training dataset 
that merged the Idaho and Cabauw training datasets. The Cabauw dataset was split into years 
2003 to 2010 for training and years 2011 to 2015 for testing, which resulted in 403,140 10-
minute-averaged sets of observations in the training data and 251,805 sets in the testing data. 
For the Idaho dataset, we used years 2016 to 2017 for training and year 2015 for testing, which 
included 28,918 10-minute-averaged sets of observations in the training data and 11,770 sets in 
the testing data. Any instances where any of the variables were missing were removed from the 
datasets. The mean absolute error (MAE) and the square of the Pearson correlation 
coefficient (R2) were computed for the ML model predictions and the MOST estimates with 
respect to observations of the friction velocity and temperature scale. The MAE and R2 results 
for the independent testing datasets are shown in Table 4.2 for the Idaho test dataset and in 
Table 4.3 for the Cabauw dataset. These results highlight the generally superior performance of 
both the ANN and the RF model over MOST, with lower MAEs and higher R2. These results 
also demonstrate the capability of the ML models trained in one climate to be successfully 
applied to another climate. Although forecast skill degrades when an ML model trained in one 
climate is applied to the other, the MAEs are, in general, still lower than MAEs for MOST. An 
exception is the ANN model for temperature scale trained with data from one site but applied to 
the other site. This model did not produce results as good as MOST. There are no other 
significant differences between the performance of the ANN versus RF.  

Table 4.1. Observations from Idaho and Cabauw used as predictors in ML models. Height 
levels at which observations are made are indicated in the second and the third 
column for Idaho and Cabauw, respectively.  

Observation [Units] 
Idaho 

Height Level [m] 
Cabauw 

Height Level [m] 
Potential Temp [K] 10 10 
Potential Temp [K] 15 20 
Potential Temp [K] 45 40 
Low-Level Wind Speed [ms-1] 10 10 
Low-Level Wind Dir [°] 10 10 
Mid-Level Wind Speed [ms-1] 15 20 
Mid-Level Wind Dir [°] 15 20 
Top-Level Wind Speed [ms-1] 45 40 
Top-Level Wind Dir [°] 45 40 
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Observation [Units] 
Idaho 

Height Level [m] 
Cabauw 

Height Level [m] 
RH [%] 2 2 
Global Horizontal Irradiance (GHI) [Wm-2] 0 0 
Pressure [hPa] 2 2 
Solar Zenith Angle [°] 0 0 
 Depth Level [cm] Depth Level [cm] 
Top-Level Soil Water Content [m-3m-3] 5 3 
Top-Level Soil Temp [K] 5 3 
 Difference Between Levels  
Bulk Richardson Number 10m-2m 10m-2m 

The models were also trained on a combined (Idaho and Cabauw merged) training dataset and 
applied to each test dataset independently. These results indicate that the additional data allow 
both the ANN and the RF model to learn the representative patterns and perform well. It would 
be expected that as more sites and data are added, both models would continue to generalize 
better to additional areas with minimal degradation compared to a site-specific model. Note that 
we did not compute the moisture scale value for MOST for either dataset due to the lack of 
multiple moisture levels, which did not allow for a fair comparison of MOST against the RF 
and ANN. 

Table 4.2. MAE and R2 of the ANN and RF models trained on each dataset and applied to the 
Idaho test dataset using all common variables as predictors. 

Idaho Test Dataset 
 MAE R2 

!∗ "∗ #∗ !∗ "∗ #∗ 
MOST 0.110 0.174 --- 0.72 0.38 --- 
ANN Trained on Idaho 0.051 0.085 0.025 0.83 0.79 0.16 
ANN Trained on Cabauw 0.071 0.203 0.107 0.85 0.47 0.21 
ANN Trained on Both 0.046 0.079 0.021 0.91 0.67 0.49 
RF Trained on Idaho 0.047 0.079 0.023 0.91 0.80 0.41 
RF Trained on Cabauw 0.094 0.131 0.332 0.88 0.55 0.20 
RF Trained on Both 0.052 0.084 0.029 0.89 0.66 0.26 

Table 4.3. MAE and R2 of the ANN and RF models trained on each dataset and applied to the 
Cabauw test dataset using all common variables as predictors. 

Cabauw Test Dataset 
 MAE R2 

!∗ "∗ #∗ !∗ "∗ #∗ 
MOST 0.129 0.068 --- 0.35 0.27 --- 
ANN Trained on Idaho 0.031 0.028 0.056 0.86 0.55 0.34 
ANN Trained on Cabauw 0.056 0.108 0.118 0.93 0.81 0.70 
ANN Trained on Both 0.031 0.030 0.053 0.93 0.64 0.70 
RF Trained on Idaho 0.073 0.049 0.112 0.93 0.53 0.44 
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Cabauw Test Dataset 
 MAE R2 

!∗ "∗ #∗ !∗ "∗ #∗ 
RF Trained on Cabauw 0.031 0.030 0.056 0.90 0.79 0.67 
RF Trained on Both 0.031 0.032 0.053 0.92 0.63 0.70 

The distribution of the ML model predictions compared to the predicted surface flux variables 
shows how the data-driven results predict the surface flux variables differently than MOST. 
Figure 4.2 is a 2D histogram (lighter blue color indicates higher density of instances than the 
darker color) that displays the differences between the observed and predicted temperature 
scale for Idaho from the RF (left), ANN (center), and MOST (right). Here, we can see that the 
ANN and the RF generally show similar distributions for the fluxes, although the RF has a more 
pronounced positive distribution peak for the temperature scale than the ANN. The MOST 
distribution differs substantially, showing no negative values below 0.5 and a well-defined mode 
of the distribution near zero value. For the friction velocity predictions (Figure 4.3), the RF, ANN, 
and MOST produce generally similar distributions. The RF shows a sharper cutoff around 0.05, 
while MOST gets closer to zero, and the ANN values include a few unphysical negative 
predictions. It would be expected that the RF has a sharper cutoff given that the hyperparameter 
configuration required 50 minimal samples per split and per leaf. The moisture scale distribution 
(Figure 4.4) is similar between the RF and ANN. The RF has most of the predictions centered 
very close to 0.0, but it did display a distribution of positive predictions out to 0.2. The ANN 
predictions were centered slightly negative around 0.02, with generally more negative than 
positive predictions. These results indicate that the ML models may be better at capturing the 
real distribution of the moisture scale, temperature scale, and friction velocity compared to the 
results computed from MOST. 

 
Figure 4.2. 2D histograms of the observed vs. predicted temperature scale for the Idaho 

dataset from RF (left), ANN (center), and MOST (right). Lighter blue represents 
more instances, while darker blue represents fewer instances. 
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Figure 4.3. 2D histograms of the observed vs. predicted surface friction velocity for the Idaho 

dataset from RF (left), ANN (center), and MOST (right). Lighter blue represents 
more instances, while darker blue represents fewer instances. 

 
Figure 4.4. 2D histograms of the observed vs. predicted moisture scale for the Idaho dataset 

from RF (left), ANN (center), and MOST (right). Lighter blue represents more 
instances, while darker blue represents fewer instances. 

4.5 Random Forest Interpretability 

ML algorithms and resulting models are often mischaracterized as black boxes; however, ML 
algorithms include capabilities for interpretation of their results and, thus, provide physical 
insight that could be used for further development. One of the benefits of the RF ML 
methodology is its inherent interpretability. Here, we perform and evaluate one ML 
interpretability technique: predictor importance for the dataset from Subsection 4.4 that uses all 
common predictors with 10-min average data. The predictor importance plots—Figure 4.5 for 
the Idaho site and Figure 4.6 for the Cabauw site—show the relative importance of each of the 
predictors in determining the variance reduction from the decisions in the tree. It is clear from 
the moisture scale analysis that GHI is the most important variable, followed by the stability as 
measured by the bulk Richardson number. The next most important predictors capture the 
temperature and moisture content of the surface, which is logical given that the moisture scale 
quantifies the moisture flux from the surface of the earth to the surface layer of the atmosphere. 



PNNL- 30841 

A Machine Learning Approach to Modeling the Surface Layer 31 
 

 

We also note that the wind speed has minimal to no importance for moisture scale, which would 
be expected, because winds at higher levels would have minimal impact on the flux of moisture. 
The temperature scale results also make physical sense with a significant dependence on the 
GHI, followed by the stability, temperature, and relative humidity near the surface. The 
importance of GHI and stability for the estimation of temperature and moisture scale is related to 
the fact that these predictors encode the diurnal cycle. Finally, the friction velocity results 
indicate that the wind speed at the lowest two levels—especially the lowest level—supply the 
vast majority of the value of the predictors, with minor value coming from the stability and soil 
temperature.  
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Figure 4.5. Predictor importance rankings for RF with the Idaho dataset using all common 
variables and the 10-min average fluxes. 
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Figure 4.6. Predictor importance rankings for RF with the Cabauw dataset using all common 
variables and the 10-min average fluxes. 
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5.0 Inflow Turbulence Generation in Convective, Stable, and 
Neutral Conditions Over Flat Terrain 

Progress was made on the inflow perturbation characterization task during FY 2020; however, 
the task was not completed as planned, for a variety of reasons, including code development 
issues, lack of data availability for one of our test cases, and staffing being redirected to other 
project priorities. As described in the overview, the MMC project team pivoted strongly toward 
offshore applications during FY 2020 to support programmatic reprioritization. This shift of 
emphasis, in the absence of additional staffing, necessitated a redirection of staff and 
resources, which came, in part, from the inflow turbulence generation task. This transfer of 
staffing optimized overall team productivity in light of delays within the perturbation task, 
including a requirement for further development of the common source code used by the team 
to conduct the perturbation intercomparison simulations and to examine the results, as well as 
an inability of the team to acquire data for one of the case studies selected to examine the 
performance of the perturbation methods under near-neutral conditions. The progress that was 
made, and the strategy to complete the task during FY 2021, are described below. 

5.1 Source Code Modifications for Idealized ABL Flow 

The MMC WRF model source code (https://github.com/a2e-mmc/WRF) used by the participants 
to conduct the simulations was modified to enable further flexibility in setting up and conducting 
the idealized simulations required to complete the task. Further modifications include 
implementing two different methods to specify the surface heat flux through the WRF 
namelist.input file, an option to supply a surface skin temperature heating or cooling rate, and 
an ability to enable or disable initial condition perturbations (not the same as inflow 
perturbations). 

A user-defined value of the surface sensible heat flux (spec_hfx) in Wm-2 can be specified two 
different ways: either pointwise (spec_ideal=1) or as a constant, domain average value 
(spec_ideal = 2). These idealized forcing approaches are relayed into the Monin-Obukhov 
similarity surface layer physics option (sf_sfclay_physics = 1), whose source code is contained 
within module_sf_sfclayrev.F. Each of the approaches is based upon inversion of the equation 
for the surface sensible heat flux defined within module_sf_sfclayrev.F.: 

hfx(I,j) = flhc(i,j) *(t_surf(i,j) – t_air(i,1,j)). (1) 

Here, hfx(i,j) is the surface sensible heat flux, flhc(i,j) is the exchange coefficient, t_surf(i,j) is the 
surface skin temperature, and t_air(i,1,j) is the air temperature at the first model grid cell above 
the surface, with (i,j) indicating the two horizontal dimensions of each variable and (i,1,j) 
indicating the first grid cell value above the surface. We note that flhc(i,j) is a function of several 
other variables (e.g., mol(i,j), ust(i,j), t_air(i,j) and t_surf(i,j)), all of which vary in space and 
change with each advancement of the model time step.  

Our algorithm applies the specified heat flux value spec_hfx indirectly via an assigned value of 
t_surf(i,j) that is consistent with the spec_hfx value, based on the current values of the other 
dependent variables, flh(i,j) and t_air(i,1,j). This is accomplished by rearranging equation (1) as:  

t_surf(i,j) = spec_hfx/flhc(i,j) + t_air(i,1,j). (2) 
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Here, the desired value, spec_hfx, replaces the computed value, hfx(i,j). This formulation 
permits horizontal variability of the applied surface temperature based on the horizontal 
variability of flhc(i,j) and t_air(i,1,j).  

To enable a capability to force simulations using horizontally homogeneous values of the 
surface temperature, a typical approach in prior idealized LES setups, the above 
implementation also contains an option (spec_ideal = 2) to first compute domain average values 
of flhc and t_air, resulting in a constant, horizontally homogeneous value of t_surf. The 
computation of horizontal averages requires the use of internal WRF message passing 
subroutines that collect the information from across all processors to compute the global sums 
(wrf_dm_maxval_real8). This is required in order to compute domain average values of 
variables when the domain is decomposed across multiple processors. Due to limitations of the 
standard single-precision accuracy commonly configured when using WRF, the local sums 
computed on each patch and the patch summation must instead be computed locally using 
double precision in order to provide the same values over arbitrary domain decompositions 
(because the sum on each patch varies with patch size). This results in a small increase in 
memory requirements and run time versus the local approach. 

The implementation also enables a user-specified surface temperature tendency (warming or 
cooling rate) through namelist variable spec_sf_heatrate, in K per minute. That implementation 
works by computing the domain-averaged value of t_surf the first time the surface temperature 
tendency option is invoked, after which the tendency is subsequently applied. Due to WRF’s 
above-described use of single-precision accuracy, the tendency must be applied at one-minute 
(or larger) intervals during execution, because any smaller time increment results in very small 
values of the tendency (less than 1 K per hour) that fall beneath the threshold for single 
precision, and hence, they do not affect the temperature evolution. 

These above-described capabilities are implemented via a new module that gathers the 
required information and specifies variables such that the lowest level subroutines, such as 
phys/module_sf_sfclayrev.F, do not need to be modified at all. This removes the need to also 
modify multiple argument lists comprising the suite of calls to phys/module_sf_sfclayrev.F, as 
was required in the previous implementation of some of these procedures during FY 2019. 

These new methods are both run-time options that are enabled via entries in the namelist.input 
file’s “dynamics” block. First, the user sets spec_ideal > 0 to use the capabilities. Next, if one 
desires the surface temperature tendency option, one supplies a nonzero value of 
spec_sf_heatrate. Otherwise, if spec_sf_heatrate = 0, then the specified value of the surface 
heat flux, spec_hfx, is applied. Hence, these procedures may be used to specify any value of 
the surface heat flux, including zero for neutral conditions, and any value of the surface 
temperature tendency, except zero; however, a zero surface temperature tendency can be 
practically invoked by using a very small value (e.g, 0.001). 

The team also improved a set of Python Jupyter notebook processing scripts developed in 
FY 2019 to analyze and plot output from the WRF simulations. One of the modifications was to 
decrease the amount of memory required to read in data prior to analysis by reducing the 
number of vertical levels selected. This allows the scripts to perform identically across different 
high-performance computing platforms. An additional modification was to specify spatial limits in 
the portion of the output domain being processed to avoid incorporating irrelevant data that can 
skew results. For example, our perturbation analysis setup applies the perturbations only along 
the x-direction inflow boundary. If the flow is not perfectly aligned in the east-west direction, a 
portion of the domain along one of the lateral edges will not be influenced by the perturbations. 
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Incorporating these unperturbed portions of the flow into the histograms of velocity, for example, 
indicates an enhanced probability of values near zero, which is not due to the perturbation 
method but to the incorporation of portions of the flow field to which the perturbation were not 
applied. 

One additional feature added to the WRF code is an ability to write instantaneous values of the 
u, v, and w velocities, as well as temperature, at one user-specified vertical height above the 
surface for the entire domain. This is implemented via the namelist variable slice_height = x, 
where x is a height above the surface in meters, to which the output data are interpolated during 
run time. This provides an ability to examine slices of data at high spatiotemporal resolution 
without slowing down code execution due to writing full 3D fields or creating large files that are 
slow to read and or process. 

All of the above-mentioned codes and analysis scripts are available on the project GitHub site, 
with WRF input decks archived at https://github.com/a2e-mmc/WRF-
setups/tree/master/sWiFT_20131108_PertMethodsGroup.  

5.2 Inflow Perturbation Analysis 

One goal for FY 2020 was to examine different inflow perturbation methods over the SWiFT 
field site under three different stability classes: convective, near-neutral, and stable. This work 
began in FY 2019, with anticipated completion in FY 2020; however, due in part to reasons 
discussed above, the work remains ongoing, with planned completion in FY 2021.  

The basis of this study is shown in Figure 5.1, which indicates a two-day diurnal cycle occurring 
November 8–9, 2013, at the SWiFT field site near Lubbock, Texas. Figure 5.1 shows potential 
temperature, wind speed, TKE, and wind direction at eight of the ten heights across the 
instrumented tower at the SWiFT facility (the two lowest heights were omitted, because those 
were nearly indistinguishable with the third lowest height that is shown). The colored shaded 
bands indicate time periods for which idealized case studies are being constructed, including 
two near-neutral periods (N1 and N2), two stable periods (S1 and S2), and a convective period 
(C).  

The first case study that the team examined was the convective period (C). The team worked 
together to define the initial and boundary conditions to force the case study using a series of 
WRF simulations with varying ranges of geostrophic wind, surface heat fluxes, and surface 
roughness values that resulted in the best agreement between the simulation and the measured 
values during a two-hour subset of the period. The best set of forcing parameter values were 
then distributed back out to the team for forcing the different perturbation methods developed 
across the participating institutions. 

Two different inflow perturbation approaches were examined during the convective case study. 
The stochastic cell perturbation method (CPM) was applied to potential temperature, horizontal 
velocity components, vertical velocity components, and both horizontal and vertical velocity 
components, simultaneously. These perturbations were all applied within online nested WRF 
simulations; they were applied to the inflow in an LES domain that was nested within a 
mesoscale domain. An alternative perturbation approach based on the Mann (1998) method 
was applied to an offline LES using open boundary conditions, with the perturbations also 
applied at the x-direction inlet to the mesoscale flow specified at the inflow plane. Additional 
approaches based on the TurbSim stochastic turbulence generator and Gabor kinematic 
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simulation approaches (Quon et al. 2018) were also planned for FY 2020, but they were 
delayed due to the shift of team resources to execution of the offshore challenge case. 

Figure 5.2 shows results using the new WRF code from the MMC GitHub and analysis scripts, 
along with the setup from FY 2020, for the convective period using no perturbations on the left 
and the CPM applied to potential temperature on the right. The plots contain several panels that 
depict different flow information as the flow advects across the domain from left to right, 
following the mean flow. The top-left panels depict instantaneous cross sections of horizontal 
wind speed, with the colored vertical lines indicating locations at which various flow quantities 
are computed along the y-direction. Below those panels are spectra of the horizontal velocity, 
followed by the vertical velocity, instantaneous cross sections of vertical velocity, followed by 
skewness and kurtosis. To the right are histograms of the vertical velocity. All results are shown 
from approximately 100 m above the surface and averaged over four hours of simulation time. 

Comparison of the unperturbed (right) versus perturbed (right) flow field indicates that the 
perturbations significantly accelerate the development of turbulence, with all quantities 
becoming nearly indistinguishable in time or distance after about the midpoint of the domain, 
relative to the unperturbed flow parameters, which continue to evolve toward equilibrium values.  

 

Figure 5.1. Measurements at eight heights on an instrumented tower during a two-day period 
at the SWiFT site, from which idealized case studies comprising different stability 
conditions (Neutral N1 and N2; Stable S1 and S2; and convective, C) were 
constructed to evaluate various inflow perturbation methods. 
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Figure 5.2. Performance metrics from the perturbation simulations during convective conditions. The left set of panels shows data 

with no perturbations, as a baseline, while those on the right depict the CPM method applied to potential temperature, 
as described in the text. 
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Figure 5.3 shows the same analyses from simulations using the CPM applied to the horizontal 
and vertical velocity components, rather than the temperature, on the left, as well as application 
of an entirely different approach, based on the Mann (1998) method, on the right. These data 
show that different perturbation approaches influence the evolution of turbulence differently, 
although the transients all give way to similar equilibrated behavior approaching the end of the 
domain. These differences will be further quantified and compared during FY 2021.  

The team intended to also examine the above perturbation methods in both near-neutral and 
stable conditions during the same two-day period from which the convective case study was 
constructed; however, portions of the observational data from the time period were not archived 
on the DAP, as was supposed to occur. Further attempts to retrieve the data from the source 
were complicated by the COVID-19 pandemic, preventing access to the facilities in which the 
raw data are surmised to exist. This two-day period contains two stable nocturnal boundary 
layers and several near-neutral conditions during the morning and evening boundary-layer 
transitions from which case studies could potentially be constructed.  
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Figure 5.3. Performance metrics from the perturbation simulations during convective conditions, as in Figure 5.2, here with the left 
set of panels showing data using the CPM method applied to the horizontal and vertical velocities, with those on the 
right using the Mann method. 
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Figure 5.4 shows simulation results relative to observations from two potential case studies: the 
near-neutral period N1 on the left and the stable period S1 on the right. The solid lines show 10-
minute average observed values from the tower, while the dashed colored lines show WRF 
simulation results. The neutral period was simulated for 60 hours to investigate the timescale of 
damping of the inertial oscillation. While only three observed profiles are shown, the equilibrium 
WRF simulations match the observations quite well, with the temperature showing the same 
slope above about 70 m. The different slopes between the simulated and observed profiles 
below about 70 m are due to the observation period occurring just after the surface began 
cooling, subsequently cooling a shallow layer of the atmosphere above it. We hypothesize that 
the observations from the two-hour period prior to the data shown, before the surface began to 
cool, would provide excellent agreement with the simulated profiles; however, those are among 
the data that are not available on the DAP. In the event that these data cannot be obtained, 
alternate time periods will need to be used to construct a near-neutral period for assessment. 

 
Figure 5.4. Simulated (dashed) and observed (solid) profiles of temperature and wind speed 

from near-neutral period N1 (left two panels) and stable period S1 (right two 
panels) showing the potential of these periods to provide additional assessment 
data of the inflow perturbation methods.  

The panels on the right of Figure 5.4 show results comprising a stable case study based on S1. 
Here, eight hours of observed 10-minute average profiles are shown, indicating stabilization of 
the temperature profile, as well as acceleration of the winds. The simulated WRF profiles show 
excellent agreement in the vertical gradients of temperature and wind shear, which are factors 
that strongly impact the turbulence field. The offset of the simulated relative to the observed 
temperature is based on the initial condition, and it can be reduced to more closely match the 
actual observed temperatures. While the wind speed profiles do not capture the very strong 
observed shear occurring just above the surface, the overall bulk shear from the surface to a 
height of about 100 m is well captured. While S1 represents a potentially useful stable case 
study period, the second stable period S2 will also be examined, because it shows higher 
values of TKE (see Figure 5.1), possibly due to the slower rate of cooling of the surface during 
the evening transition. 

During FY 2021, the team will leverage the work under way to complete this task, further 
developing the stable case, and either obtaining the missing data for the near-neutral 
case or selecting a different dataset. The work will culminate in a team publication in a high-
impact journal.  
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6.0 Dealing with Gravity Waves at the Microscale 

Atmospheric gravity waves have been found to form within the microscale domain, particularly 
when the solver is separate from any type of coupling. Typical conditions in which they develop 
are stable temperature stratification, the presence of complex terrain, or a combination of both. 
Gravity waves were identified in previous years, and during FY 2020, we investigated them 
further, assessing the effectiveness of using damping layers to mitigate some of the challenges 
encountered. 

Note that gravity waves are physical phenomena, and their appearance should not be 
completely removed. We do need to understand, however, how these waves behave in a finite-
domain microscale setting. In the previous years, we found that these large-scale waves interact 
with domain boundaries and are reflected back into the domain. This is especially relevant at 
the top boundary of the computational domain. These reflections are not physical and should be 
addressed. In this section, we present some results of the efforts to investigate damping layers 
to alleviate these issues. 

The idea behind damping the undesirable interaction of the gravity waves with domain 
boundaries is to use either a viscous layer or a Rayleigh damping layer. Although we have 
implemented both capabilities, viscous damping has shown to require values for viscosity that 
are not realistic. Rayleigh damping, however, performed better upon initial investigations, and 
we consider only Rayleigh layers in this work. 

The Rayleigh layers function by imposing an additional body force in the momentum equations. 
The body force is computed as a function of the local velocity and a parameter related to the 
strength of the damping. Applying such damping in the vertical component of the velocity means 
that we are imposing a body force that attempts to drive the local vertical velocity to a known 
value—in this case, zero. In this work, the damping layers are set such that the strength 
coefficient varies as a cosine within the thickness of the layer region as it approaches a 
boundary, being maximum at the outer boundary; the maximum damping strength is a user 
input. 

The results so far have been mainly focused on a visual inspection of the flow field to gauge the 
effectiveness of the damping layer in mitigating the spurious reflections. Preliminary work 
accomplished in FY 2019 indicated that the position of the layers has a significant effect on the 
results. In light of this, the design variables considered in this study included the following: 

• Position of the layers (top only, inlet and outlet, all four sides) 

• Thickness of the layer (3-, 5-, or 7-km thick) 

• Relative height of the undamped region for top-located layer 

• Strength of the Rayleigh damping 

• Bottom surface geometry (simple hill or a real complex terrain case). 

6.1 Biglow Canyon Case 
To determine how the gravity waves behave in a real complex terrain scenario, we begin by 
investigating the flow over the Biglow Canyon/WFIP 2 terrain. The case consists of a 30- by 20-
km domain (longer in the streamwise direction), with variable height. The Cartesian grid is such 
that blocks of uniform cell sizes are stacked, resulting in coarser regions toward the upper 
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boundary. The temperature stratification is stable throughout the domain, and wind has a 
uniform wind speed of 8 m/s aligned with the domain. 

Within the domain, the most important boundary is the top because the spurious reflecting 
waves can modify the flow in a significant way. With that in mind, we first evaluate results based 
on the test matrix shown in Figure 6.1 using a maximum strength of 0.01 s–1. The figure shows a 
slice along the 30-km side with the flow going from left to right. The shaded boxes represent the 
Rayleigh layers. Note that they are set to be above the capping inversion in every case. 

 
Figure 6.1. Illustration of the initial test matrix for the assessment of the gravity waves 

dampening over the Biglow Canyon. The shaded layer on the top represents the 
damping layer imposed, with the gradient representing the cosine distribution of 
the effective strength of the damping region. 

An instantaneous snapshot of the results is shown in Figure 6.2. All eight cases developed 
gravity waves, and each broke down into strong turbulence levels after 20,000 seconds. From 
the snapshot shown, it appears that the shorter the undamped region is, the longer it takes for 
the gravity waves to develop. It is important to note that these are not standing waves but rather 
complex propagating waves. No indication of a steady-state solution was observed in the 
30,000 seconds of simulation time. 
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Figure 6.2. Instantaneous snapshot of flow field after 17,000 seconds. The grid is arranged 

following Figure 6.1. The black box is a visual indication of the location of the 
layers. 

From Figure 6.1 and Figure 6.2, we conclude that a 12-km-high domain seems appropriate to 
investigate further, because it represents a realistic simulation domain size while being able to 
accommodate different thicknesses of Rayleigh layers. We also down-selected 3- and 5-km 
thick layers for further investigation. The 7-km thick layer was excluded, because it represents a 
significant part of the domain and, thus, a non-negligible added computational cost. The 
thickness of the layer needs to be adjusted according to the strength of the damping, because a 
thinner-but-stronger damping layer may provide similar results at lower cost than a thicker-but-
weaker one. 

Next, we investigate cases that contain damping layers on the sides of the domain in addition to 
the top boundary (see illustration in Figure 6.3). 

 
Figure 6.3. Illustration of the test matrix for the scenarios that contain Rayleigh layers on the 

side boundaries as well as on the top boundary. 
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Analyzing the results (not shown) of the scenarios illustrated in Figure 6.3, with the same flow 
direction from left to right, it becomes obvious that a damping present only on the outlet is not 
effective. For the Biglow Canyon scenario, the gravity waves appear to develop and propagate 
from the inlet side of the domain; therefore, we focus on the case with layers on all sides and 
top. Figure 6.4 depicts the resulting flow field of a simulation with the settings that worked best 
for the realistic Biglow Canyon case. Rayleigh damping layers that are 3-km thick are present 
on all sides, as well as the top boundary. Gravity waves develop but do not reflect off 
boundaries or break down into turbulence. The scenario was executed for 30,000 seconds, and 
the damping layers were effective in suppressing unphysical disturbances from the reflection of 
the waves. Figure 6.4 displays a top view of the terrain, where the Columbia River Gorge, near 
the actual Biglow Canyon, can be seen clearly. We note that the 5-km-thick layers showed 
similar behavior; however, their thickness resulted in a significant part of the domain being 
dedicated to the damping layer, ultimately resulting in a large computational effort to resolve the 
flow field of a region that is not useful for analysis. 

While the solution is visually acceptable, it is difficult to quantify how effective the damping 
layers really are and what the actual gravity waves over that region look like; thus, we choose to 
take a step backward and analyze the witch of Agnesi hill geometry, which is a simple bump for 
which an analytical solution is available. Its simplicity allows more rapid investigation. 

  

Figure 6.4. Instantaneous flow field present at the Biglow Canyon case with Rayleigh layers 
on all sides and top (indicated by the black boxes). The upper part of the figure 
shows a horizontal slice at two different heights, and the bottom part shows the 
cross section at the location indicated by green/yellow marks. 

6.2 Witch of Agnesi Hill 
For the witch of Agnesi cases, we maintain the settings largely the same as discussed above, 
with the exception of the mean wind speed. Now, a uniform velocity of 10 m/s is used. We vary 
the strength of the damping coefficient, investigating both 0.005 and 0.01 s–1. The lower value 
has been used in previous studies. Upon experimenting with the strength coefficient, we found 
that the larger value worked better than the smaller one. The gravity waves observed in this 
case are stronger than those present in the previous Biglow scenario. The results at different 
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times, as well as the analytical solution for this case, are shown in Figure 6.5. Note that the 
solution reaches a steady-state solution, as indicated by the last two times shown. 

  

Figure 6.5. Gravity wave development over the witch of Agnesi hill geometry. The bump is in 
the center of a 100-km-long domain. An analytical solution is shown at the top. 

The flow field as presented at the instant 28,000 seconds is reached more quickly if the 
damping coefficient is lower. In that case, an interaction of reflected waves also occurs. It is 
suggested that a stronger coefficient may keep the steady-state flow field closer to the analytical 
solution. The final solution appears to be very sensitive to the strength of the damping 
coefficient. 

With this better understanding of what appears to work, we plan to further investigate and 
quantify the effectiveness of these Rayleigh layers. A sweep of damping coefficient strength and 
a quantification of the vertical flux of energy are the next steps to be taken. 

6.3 Vertical Filter on the Damping Layers and Moving Forward 
In the results presented above, the damping layers present on the side of the domain are active 
throughout its height (see Figure 6.3). The test cases had a constant-velocity profile, which is 
not realistic. When coupling by means of any of the several different methods, it is not desirable 
to dampen the incoming turbulent inflow. To circumvent the issue of inflow turbulence 
dampening, we impose a filter on the side layers. The filter acts much like one damping layer 
within another. Simply put, the user can specify the height at which the dampening begins. This 
approach effectively removes any damping up to a specified height. 

We are currently assessing the effectiveness of the damping layer approach with the vertical 
filter, including making use of the developed MMC coupling strategies, which represents the 
work of this team. 
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7.0 Modeling of Atmospheric Conditions During a Wind 
Turbine Wake Steering Field Campaign 

The wake steering field campaign at Peetz Table Wind Energy Center in northeastern Colorado 
provided an excellent opportunity to apply and evaluate our current MMC capabilities. Our 
objective, given meteorological mast and lidar measurements of the instantaneous atmospheric 
state, is to reproduce the corresponding unsteady 3D flow field with fully resolved turbulence 
from LES. This flow field would then provide a realistic inflow under nonstationary conditions for 
high- and mid-fidelity simulations. 

Under the DOE Wake Dynamics project, a nine-hour study period on December 26, 2019, was 
selected for in-depth investigation. Down-selection criteria included flow being from the north 
over mildly varying terrain, conditions being amenable to wake steering, and availability of loads 
measurements. The periods of interest begin at 12:48 a.m. local time and continue until 
9:18 a.m. For the purposes of this study, we focus on the periods before sunrise during which 
stable atmospheric conditions—corresponding to higher wake persistence—are expected to 
clearly highlight the impact of wake steering. 

7.1 Approach 

7.1.1 MMC with Mesoscale Model Forcing 

Our approach is to use the microscale profile assimilation (Allaerts et al. 2020) implemented in 
the SOWFA LES solver. This MMC technique was originally developed and validated for 
simulation with SOWFA using mesoscale forcing from the WRF model. In this approach, the 
SOWFA microscale domain is fully enclosed within the WRF domain; therefore, every height 
level simulated by SOWFA corresponds to a level in the WRF mesoscale solution. As such, 
initial and boundary conditions are fully defined by WRF. 

Initially, we performed an ensemble of WRF simulations for a variety of reanalysis datasets 
(Global Forecast System, ERA5, and MERRA2), simulation initialization times (8, 14, and 
20 hours prior to the periods of interest), and in some cases the PBL scheme (MYNN2.5, 
MYNN3, and YSU). These resulted in 15 different mesoscale model realizations that generally 
failed to capture the hub-height wind speed trends observed by the profiling lidar at Peetz 
(Figure 7.1). The mesoscale skill can also be illustrated by a Taylor diagram (Figure 7.2), which 
indicates that the wind speed variability is not captured; moreover, the 2-m air temperature 
trends are not predicted, as indicated by the negative correlation for some mesoscale model 
realizations. The model deficiencies may be attributed to one or more of the following: 
1) a dominant mesoscale phenomenon that is not captured, 2) inadequate grid resolution (3-km 
spacing), and 3) the impact of terrain (turbines and instruments were located atop an 
escarpment). 
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Figure 7.1. Mesoscale hub-height winds predicted by various initial and boundary conditions in 

comparison with lidar measurement. 



PNNL- 30841 

Modeling of Atmospheric Conditions During a Wind Turbine Wake Steering Field Campaign 49 
 

 

 
Figure 7.2. Taylor diagrams for hub-height wind speed (top panel) and near-surface (2-m) air 

temperature (bottom panel).  

Evaluating the surface analyses from NOAA’s Weather Prediction Center shows the presence 
of a stationary front at the start of the simulated day (Figure 7.3) and during the period of 
interest after the following midnight (Figure 7.4). Such a mesoscale weather feature in the 
vicinity of the region of interest is likely to induce localized velocity and temperature fluctuations 
due to the interactions between the warm and cold air masses—these will be difficult to capture 
with WRF at the spatial scales typically modeled (approximately 3 km) to support a coupled 
microscale simulation. 
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Figure 7.3. NOAA surface analysis at the simulation start (December 25, 2019, 5 a.m. 

local time). 
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Figure 7.4. NOAA surface analysis during the period of interest (December 26, 2019, 2 a.m. 

local time). 

7.1.2 MMC with Observational Forcing 

We instead turn to the measurements provided by a 60-m meteorological mast and a ground-
based profiling lidar. These instruments were complementary, with two sonic anemometers and 
a cup anemometer providing high-frequency point measurements of the wind field near the 
ground and the lidar providing wind and turbulence information up to 180-m AGL. Due to 
sampling limitations of the lidar technology, the lidar-measured turbulence intensity had to be 
corrected by comparison with the cup anemometer velocity spectra. 

The SOWFA microscale simulation used doubly periodic lateral boundaries, assuming flat 
terrain around Peetz Table. The influence of mesoscale weather was included by assimilating 
known velocity and temperature histories at a single reference height or at all simulated height 
levels. Assimilating time histories at a single height corresponds to a time-varying body force 
that is uniform with height. Assimilating time-varying profiles corresponds to time- and height-
varying body forces that either directly or indirectly enforce the desired instantaneous profile 
(Allaerts et al. 2020). In addition to evaluating the different forcing techniques (discussed in 
Section 7.2.3), we also considered two lower surface boundary conditions: specified heat flux 
and specified temperature. 
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The assimilated wind speed and direction profiles were reconstructed from limited field 
measurements. Missing wind speed data from lidar were infilled using a power-law fit at 10-min 
intervals. At times, when a reasonable fit was not achieved, cubic spline interpolation was 
applied in the height dimension. If data were not available, then linear interpolation was 
performed in time. The wind direction profiles were infilled at each time in a similar manner with 
splines or linear interpolation. Last, zero-order extrapolation was used to fill in the remaining 
simulating heights.  

7.2 Results 

All results have been calculated from planar-averaged quantities.  

7.2.1 Sensitivity to Initial Conditions 

Exact initial conditions are not known for the beginning of the study period. In order to have 
measurements of the temperature profile through the depth of the ABL, a radiosonde or radio 
acoustic sounding system would have to be deployed. Preliminary simulations with coarse 
resolution (20-m grid spacing) indicated different sensitivities to initial and boundary conditions 
at different times of day (Figure 7.5). All simulations applied the indirect profile assimilation 
method of Allaerts et al. 2020. During the daytime, assuming a shallow boundary layer (250-m 
depth) with a strong versus weak capping inversion at the start of the simulation (with or without 
a 5-K/100-m layer below a stable layer with 3-K/km lapse rate), in conjunction with specified 
surface temperature versus heat flux boundary conditions, yields four very different realizations 
of turbulence. In the evening, however, the differences between the initial and boundary 
conditions are much less pronounced, and the data assimilation strategy becomes more 
important.  

Subsequent studies used temperature data from a radiosonde launched from Rapid City, South 
Dakota, shortly before the simulation start time, at 5 a.m. local time. Even though the launch site 
is more than 300 km away, it is upwind of the test site and provides, in the absence of other 
data, a reasonable estimate of the capping inversion height and strength. Pressure data from 
the soundings were used to estimate scale height and, thus, instantaneous pressure profiles 
from field measurements of surface pressure, which enabled temperature to potential 
temperature conversion.  



PNNL- 30841 

Modeling of Atmospheric Conditions During a Wind Turbine Wake Steering Field Campaign 53 
 

 

 
Figure 7.5. Simulated turbulence intensity for initial coarse-resolution simulations compared to 

two different instruments at different heights; initial/boundary conditions include: 
specified surface temperature with a strong (blue) or weak (green) inversion and 
specified heat flux with a strong (orange) or weak (red) inversion. 

7.2.2 Temperature Advection 

Preliminary simulations of the ABL from early morning through early evening showed that 
neither the specified heat flux nor specified surface temperature boundary conditions were able 
to reproduce the observed temperature evolution at 2 m and 59 m AGL (see dashed blue curve 
in Figure 7.6). This supports the observation of a stationary front in the vicinity of the test site. 
Considering the magnitude of the difference between the simulation and the observation, the 
temperature change is likely attributable to large-scale advection induced by frontal dynamics. 
Additional evidence is the rapid cooling at 3 p.m. local time, which would be unlikely to occur 
without external forcing. 

This temperature advection may be accounted for by applying single-level assimilation, as with 
the daytime winds. A profile assimilation approach was not taken because the available 
temperature profile data is even more limited than the wind data. The choice remains to 
assimilate the temperature at either 2 m or 59 m; the higher height was used to avoid possible 
adverse interactions with the surface forcing. As seen in Figure 7.6, the temperature history at 
59 m is recovered exactly in all cases, independent of the wind assimilation strategy. During the 
daytime, the applied surface forcing (based on measured kinematic heat flux from the 
meteorological mast) is compatible with the specified temperature advection, seen in the 
excellent agreement in the 2-m temperature history between 9 a.m. and 9 p.m. local time. 
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Figure 7.6. Evolution of temperature at two heights above the ground; unless stated 

otherwise, simulations used single-point temperature assimilation (“assim”) at 59-
m AGL. 

7.2.3 Different Wind Assimilation Techniques 

Subsequent simulations used 10-m grid spacing. Four different assimilation approaches were 
evaluated to calculate the microscale momentum source terms in SOWFA that represent the 
mesoscale pressure gradient force and large-scale advection: 

1. Single-level: The time history at a single reference height is used to calculate a time-varying 
source term that is uniform with height. 

2. Direct profile assimilation: Time-varying profiles that span the full height of the 
computational domain are used to calculate time- and height-varying source terms that 
produce the exact reference profile at each time. 

3. Indirect profile assimilation: The same approach as direct profile assimilation, except that 
a polynomial regression is performed at each time to produce a forcing profile that varies 
smoothly with height. 

– If using WRF as an inflow provider, full profiles—compatible with under-resolved 
turbulence fields—are available; in this case, cubic polynomials are recommended 
(Allaerts et al. 2020) to allow for deviation from the reference mesoscale profiles due to 
the resolution of additional turbulence and to mitigate problems with excessive 
turbulence generation when applying the direct approach. 

– In this case, the full profiles are not known, and the uncertainties introduced when 
reconstructing wind time-height profiles from limited data can be exacerbated by a cubic 
polynomial; to stabilize the solution, a linear regression was used. 

– During the nighttime period, the regression was weighted to favor the portions of the 
profiles corresponding to actual measurements; however, this creates the possibility of 
the forcing profile running away at higher levels and merits further investigation. 
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4. Partial-profile assimilation: This approach combines the direct profile assimilation 
technique with a uniform forcing approach; direct assimilation is applied up to the height of 
the highest available input data—above this height, the forcing profile is blended to a 
constant value with height. 

Figure 7.7 shows representative wind speed, direction, and temperature profiles at 1 p.m. local 
time, five hours after the simulation starts. At this time, the ABL is unstable and well mixed. As a 
result, there is very low wind shear (except near the ground). The direct profile assimilation 
results are constant with the height above the highest measurement value, with interpolation 
artifacts visible. The indirect profile assimilation results in smooth profiles but with the possibility 
of the wind speed and/or direction being unbounded with increasing height; therefore, the 
single-level assimilation is taken to be the most accurate. This conclusion is also reflected in the 
time histories of the turbulence quantities, which will be discussed in Section 7.3. 

 
Figure 7.7. Example daytime convective boundary-layer profiles at 1 p.m. local time 

(seven hours after simulation start) for various assimilation techniques. 

Figure 7.8 shows the same quantities as Figure 7.7 but at 1 a.m. local time during the study 
period under stable conditions. The partial profile assimilation result was restarted from the 
single-level assimilation case at 9 p.m. local time, prior to a shear instability occurring and the 
temperature histories differentiating for the different approaches—this will be discussed in the 
following sections. The indirect method produces wind profiles with inflection points that do not 
appear to be realistic. In contrast, the partial-profile approach exactly recovers all input 
measurements near the ground and approaches the uniform forcing result aloft; however, there 
is no way to validate either the jet-nose profile or the direct profile that assumes a constant wind 
speed with height. 

 
Figure 7.8. Example nighttime stable boundary-layer profiles, at 1 a.m. local time during 

period of interest, for various assimilation technique. 
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Relevant mean wind and turbulence quantities of interest are shown in Figure 7.9. The mean 
assimilated wind quantities closely match the experiment, as provided by the assimilation 
technique. A known shortcoming of the direct profile assimilation approach has been confirmed: 
under daytime convective conditions, the direct approach can lead to excessive turbulence 
generation (as shown by the turbulence intensity and friction velocity plots). Additional features 
of interest are the turbulence bursts attributed to internal shear instability around 8 p.m. and 
11 p.m. local time. Turbulence intermittency is a characteristic of stable boundary layers, may 
be localized or larger than the integral length scale, and may be caused by a variety of 
mechanisms (Mahrt 2014).  

 
Figure 7.9. Comparison of selected MMC techniques with available measured quantities: hub-

height wind speed and direction, turbulence intensity at 50 m, friction velocity at 
10 m, and kinematic heat flux at 10 m; note that the partial profile assimilation 
simulation was restarted from the single-level case at 8 p.m. 

7.3 Discussion 

We have demonstrated the effectiveness of a number of techniques from our MMC simulation 
toolbox. From the numerical investigations conducted in FY 2020, we have learned the following 
about our assimilation capabilities: 

• All approaches reliably reproduce the measured hub-height winds for the duration of the 
simulation. 
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• The combination of specified surface heating for all periods of the diurnal cycle, combined 
with temperature assimilation, was an effective approach to incorporating the effects of 
mesoscale temperature advection. 

• A shortcoming of all profile assimilation approaches is that knowledge of the full profile 
spanning the entire simulation domain is required; an alternative is a new partial profile 
assimilation technique. The partial approach is a blend between direct assimilation at lower 
height levels—where field data are available—and the uniform background forcing that 
would result from a single-level approach. 

• Given the uncertainties in the profile-based approaches when using limited observational 
data, the single-level approach appears appropriate for use under daytime, well-mixed 
conditions, and it can produce more realistic profiles than a direct or indirect approach. 

• The indirect approach appears to be applicable during all periods of a diurnal cycle, but the 
presence of a shear instability poses a significant challenge due to the extreme sensitivity to 
wind shear. In this case, reproducing the exact measured profile, especially near the 
ground, appears to be critical for capturing the observed elevated turbulence. 

• The partial approach produces the most realistic results for the shear instability and ensuing 
nearly neutral ABL, despite some error in both the maximum turbulence intensity following 
the turbulence burst and the timing of the intermittent turbulence that followed. 

The simulations performed here will provide a good foundation for turbine simulations and a 
load validation study. Current follow-on research focuses on understanding the physical 
processes that initiate, drive, and result from the shear instability. These have been difficult to 
capture, with sensitivities to the quality of the forcing data and chosen assimilation strategy. In 
the time periods before and after the turbulence burst, the measured winds were characterized 
by near-surface wind direction changes, from veering to backing. Because these variations are 
observed only near the ground (less than 50 m AGL), this suggests the possibility of a shallow 
air mass advecting through the region and, in the process, inducing turbulent motions in the 
resident air mass (inducing and/or sustaining the observed intermittency). In addition, some of 
the near-surface velocity and temperature fluctuations that have been observed may result from 
downwind drainage flow, which would require modeling of the actual terrain.  
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8.0 Uncertainty Quantification of Large-Eddy Simulations in 
Complex Terrain 

A number of factors contribute to the uncertainty of high-fidelity modeling of atmospheric flows 
for wind energy applications. These factors include uncertainty in the specification of boundary 
and initial conditions, uncertainty in model parameterizations or closures, and (for mesoscale-to-
microscale coupled simulations) uncertainties introduced by the coupling techniques 
themselves. Assessment of this uncertainty is challenging, in part because many of these 
sources of uncertainty are structural in nature and less amenable to conventional uncertainty 
quantification techniques; however, parametric uncertainties, associated with uncertain 
parameter values within model closures, are also important because both mesoscale models 
and LES models of microscale turbulence require parameterizations to represent unresolved 
scales of turbulent motions, surface layer interactions, and other physical processes. 
Conceptually, at least, these parametric uncertainties are more tractable for analysis, and a 
number of approaches and tools exist for this purpose. 

Ideally, uncertainties propagating from both mesoscale and microscale modeling components 
should be taken into account when attempting to quantify the overall uncertainty in mesoscale-
to-microscale coupled simulations; however, due to the large number of parameters plus the 
relatively high computational cost of LES, it is more feasible to employ a tiered strategy to 
assessing the uncertainty of coupled simulations by first identifying the most critical parameters 
in each of the mesoscale and LES closures before attempting a combined analysis. There has 
been significant progress made in examining parameter sensitivities within mesoscale 
simulations. For example, using WRF in a mesoscale configuration to simulate wintertime 
conditions in the Columbia Basin region, Yang et al. (2017) analyzed the sensitivity of predicted 
turbine-height wind speeds to 12 parameters of the MYNN PBL scheme and 14 parameters of 
the MM5 surface-layer scheme. Promisingly, this study found that most of the uncertainty in 
predicted wind speeds was attributable to just a few of the parameters in each of the boundary- 
and surface-layer schemes. Berg et al. (2019) confirmed this finding for springtime conditions, 
while Yang et al. (2019) showed that the sensitivity of WRF’s YSU PBL scheme is also largely 
attributable to just a few parameters. 

Here, using nested WRF/WRF-LES simulations, we evaluate the sensitivity of predicted 
boundary-layer winds and turbulence to parameters of a 1.5-order, TKE-based SGS turbulence 
closure, plus the surface roughness. We sample a range of parameter values to generate an 
ensemble of mesoscale-to-microscale coupled model runs using a nested WRF/WRF-LES 
computational approach. This perturbed parameter ensemble (PPE) of WRF/WRF-LES model 
runs is then used to determine which LES closure parameters most strongly influence 
predictions of hub-height winds and turbulence. 

8.1 Parameter Identification for an LES Turbulence Closure 

Although a few SGS turbulence closures are available in WRF-LES, we opted to study the 1.5-
order TKE-based closure that largely follows the model presented by Deardorff (1980), because 
similar types of closures are implemented in many atmospheric LES models. For clarity of the 
following discussion, we present some of its key relations below.  

The Deardorff TKE-based closure relies on the commonplace assumption that SGS turbulent 
stresses are proportional to resolved scale strains, in analogy to viscous stresses, but with 
molecular viscosity replaced by an eddy viscosity. In particular, eddy viscosity, !!,	is 
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determined (at each LES grid point) from the SGS TKE,  and an eddy-length scale in 

the form !! = %"&#/%'. The eddy-length scale, l, equals the grid-based filter scale, (, when (grid-
scale) stratification is neutral or unstable and is reduced under stable stratification according to 
l= %&&#/%)'#/%, where ) is the Brunt- Väisälä frequency. The ratio '('# is used in the closure as 
a measure of the local level of flow stability. 

The SGS TKE itself is determined by solving a prognostic equation that includes terms for 
resolved and SGS transport, production of TKE by resolved shear, production/destruction of 
TKE through buoyancy, and viscous dissipation of e, denoted by *. The closure for dissipation is 
* = %(&)/%''#, and the coefficient %( is modified in response to local stability according to %( =
(%(* − %(+)'('# + %(,, where subscripts ) and / refer to neutral and stable stratification, 
respectively. The coefficient %(, is difficult to directly constrain through physical arguments; 
however, the coefficients of the closure can be related to a critical Richardson number 01- 	(de 
Roode et al. 2017), and then %(, can be determined, as illustrated in Figure 8.1(a). 

This closure is also used to model turbulent fluxes of heat, moisture, and other scalar quantities 
via invocation of a turbulent Prandtl number, Prt. An eddy diffusivity can be formed by dividing 
the eddy viscosity by the turbulent Prandtl number, then subgrid-scale scalar fluxes can be 
modeled using a gradient diffusion hypothesis. From theoretical considerations, Prt is expected 
to increase from 1/3 to 1 as thermal stratification increases, but the functional form of its 
variation is an open question. In the Deardorff TKE-based closure, Prt = [1 +2(	'('#)]-1 and no 
additional parameters are introduced; thus, uncertainty owing to the modeling of scalar fluxes 
may be masked. To remedy this, we introduced an additional parameter, nPr, and we modified 
the turbulent Prandtl number expression to be Prt = [1 +2(	'('#)&!" 	]-1. Figure 8.1(b) shows how 
this parameter affects the variation of Prt with changing local stability. 

 
Figure 8.1. Relationships between perturbed parameters and turbulence closure inputs. 

(a) Relation between the stable stratification regime dissipation coefficient and the 
SGS critical Richardson number Ric. (b) Variation of the turbulent Prandtl number, 
Prt, with the exponential factor nPr. 

The SGS TKE scheme interacts with the surface layer scheme in several ways but most directly 
through setting the near-surface value of &; therefore, we also consider the effect of varying the 
surface roughness. This is accomplished by enhancing the default roughness length by a 
multiplicative factor 2. ranging between 1 and 2, following Yang et al. (2017). We frame our 

' 'i ie u u=
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analysis in terms of the logarithm of 2. to be more consistent with how this factor is used within 
the surface scheme. 

Modifications to the WRF source code were required to explicitly define and expose all 
parameters (except %") as options in the namelist input file. This code is available at 
https://github.com/cmkaul/WRF/tree/les_uq and is a fork of the A2e MMC version of WRF. The 
parameters tested, their uncertainty ranges, and their default values in WRF are summarized in 
Table 8.1. 

Table 8.1. Parameters varied in the uncertainty analysis. Symbols are defined in the text. The 
UQ range is the range of values input to the Latin hypercube sampling algorithm. 
The WRF default is the default version used in WRF v 4.1.2. Note that in the 
standard WRF release, only %" 	is available as a namelist option. The other 
parameters are not explicitly defined but rather implicitly fixed within the code base. 

Parameter UQ Range WRF Default 
ck 0.08—0.3 0.15 
cn 0.5—0.82 0.76 
ceN 0.8—1.5 0.93 
Ric 0.1—1 0.23 
nPr 0.01—100 1 
zf 1—2 1 

 
 

8.2 Case Selection and Setup 

We simulate periods on July 22, 2016, and August 21, 2016, during the WFIP 2 in the Columbia 
Basin region of Washington and Oregon (Shaw et al. 2019). Both of these days were annotated 
in the WFIP 2 event log as being associated with marine push events. They feature strong 
westerly winds (see Figure 8.2) and large surface heat fluxes (Figure 8.4). The August 21 case 
has also been simulated and compared to lidar observations using a POD technique by MMC 
project team members, as described in the FY 2019 project report (Haupt et al. 2019c). The 
event log and observational data may be obtained from the A2e DAP site. 

The simulations use three levels of nested domains. The outermost domain has a horizontal 
grid spacing of 1.35 km and uses a typical suite of physical parameterizations appropriate to 
mesoscale resolutions. Initial and boundary conditions of this domain are generated from the 
Global Forecast System reanalysis. We also evaluated the National Centers for Environmental 
Prediction North American Regional Reanalysis for this purpose but did not find consistent 
improvement in the agreement between observed and simulated wind speeds. The mesoscale 
domains are initialized at 12:00 UTC for both case periods and integrated forward for six hours 
before launching two nested domains. These domains have horizontal grid spacings of 150 m 
and 50 m, respectively, and both are treated as LES. Then all three domains are run for four or 
more additional hours. Specifically, the time window 20:20–22:20 UTC is used for detailed 
analysis of the July 22 case, while the window 20:00–22:00 UTC is used for the August 21 case. 
These intervals were selected to obtain periods when the simulated wind speeds were relatively 
uniform, while also allowing spin-up of the nested domains.  
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The simulation domains are positioned so that all three encompass two measurement locations 
from the WFIP 2 campaign. Sonic anemometer measurements of wind and temperature at 50-m 
and 80-m levels were collected at Physics Site-12 (PS-12), while additional observations were 
obtained at the Wasco, Oregon, airport a few kilometers away. The analysis presented here 
focuses on comparisons with the PS-12 data. 

8.3 Simulation Results 

We generated an ensemble of 64 nested WRF/WRF-LES simulations for each case period. 
These dozens of simulations are needed to adequately sample across the uncertainty ranges 
of the six parameters identified for our analysis, even when the sample values are selected 
through an efficient technique. Here, we employ a Latin hypercube sampling algorithm 
(Stein 1987; Helton and Davis 2003). 

All ensemble runs use an identical configuration of the outermost mesoscale domain, and each 
uses the same set of LES parameter values in the 150-m and 50-m domains; thus, uncertainty 
quantification analysis can be performed using output from either domain. For brevity, we will 
refer to the sets of simulations for each case period and at each resolution in the form PPE-
date-resolution; for example, PPE-22July-50m indicates the ensemble of results on the finest, 
50-m resolution nest for the July 22, 2016, case period. 

Time series of the 10-minute average wind speed U10min and corresponding wind direction at the 
PS-12 location are shown in Figure 8.2. We show results of averaging over the members of the 
PPE, as well as the full ranges of the ensemble members. Simulated wind speeds on the 
mesoscale nests are biased low relative to the observed wind speeds for both case periods, as 
is the mean wind speed of the PPE at 150-m resolution. Additionally, the mean of the 50-m 
resolution PPE shows better agreement with observations, and the ensemble ranges of both 
PPEs overlap with the observations during most of the case study periods. The range of wind 
speed predictions among members of the PPE (either resolution) can be as large as several m 
s-1 and increases rapidly after the LES runs are initiated at 18:00 UTC each day. Sudden 
troughs in the PPE-21Aug-50m wind speed range are related to the presence of longitudinally 
extensive coherent structures in the flow, which can also be diagnosed from observations by 
examining streamwise and cross-stream turbulence timescales. Certain parameter values tend 
to enhance those structures so that shifts in their position produce a large signal in the velocity 
time series at a fixed location. Such structures are not significant for July 22. 
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Figure 8.2. Ten-minute averaged wind speeds at 80-m vertical level from the PS-12 location, 

as observed and simulated. Measurements are shown in black. Gray lines show 
predictions on the mesoscale domain. The rose (green) solid line is the mean of 
the PPE at 50-m (150-m) resolution, and the rose (green) shading is the range of 
the PPE. 

Wind direction predictions (Figure 8.3) are in general agreement with observations. The means 
over the PPEs are rather insensitive to the LES horizontal resolution for both case periods. The 
ensemble ranges are smaller on August 21 and likely can also be related to the coherent 
structures of the flow on that day. On July 22, the magnitude and structure of the turbulent 
fluctuations showed weaker directional dependence, leading to a greater spread. 

 
Figure 8.3. Direction of the 10-minute averaged winds at 80-m vertical level from the PS-12 

location. Line styles and colors as in Figure 8.2. 

Surface sensible heat flux H exceeds 300 W m-2 throughout the periods simulated by LES 
(Figure 8.4). The relative range of U10min at a height of 80 m among the ensemble members is 
three to six times greater than the relative range of H, which suggests that the spread in wind 
speed is attributable to factors besides the spread in surface heat fluxes (note also that the 
intra-ensemble range of surface latent heat fluxes is commensurate or weaker than the spread 
in H). 
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Figure 8.4. Surface sensible heat flux at PS-12. Colors as in Figure 8.2. Note that surface flux 

measurements are not available at PS-12. 

In addition to mean wind speed and direction, simulations were evaluated on how well they 
captured the intensity and structure of turbulence at hub height and how well they represented 
the vertical structure of the wind profile (e.g., its shear). These quantities were computed at 
several heights (50 m, 80 m, 120 m, 190 m) to allow overlap with the available measurements at 
PS-12 (50 m, 80 m) and to permit analysis of higher levels (120 m, 190 m), which are more 
relevant to recent and future generations of taller land-based turbines.  

Here, we will focus on results at 80-m height for three quantities: the TKE associated with 
timescales less than 10 minutes, the integral timescale of the turbulence, and the mean wind 
shear between 50 m and 80 m. First, we discuss a visual assessment of the sensitivity, 
presented in Figure 8.5 through Figure 8.7. In these figures, the prediction of each member of 
PPE-22July-50m is represented as a point for each of the two sites versus the value of one of 
the perturbed parameters. Qualitatively similar conclusions can be reached by examining the 
August 21 results.  

Figure 8.5 shows the total TKE of the horizontal winds associated with timescales less than 
10 min, E<10min. For reference, the value obtained from observations at PS-12 is 1.14 m2 s-2. 
Only for the eddy viscosity parameter ck is a trend in values apparent, with E<10min declining as ck 

increases, until at high values the flow is essentially nonturbulent. Figure 8.6 shows the integral 
timescale associated with the horizontal winds. The observed value at PS-12 is 90 s. Again, 
only for ck can a trend be identified by visual inspection, with timescales tending to increase with 
ck. Figure 8.7 shows the average horizontal wind shear between 50 m and 80 m. The observed 
value at PS-12 is 0.0125 s-1. Once again, ck dominates the sensitivity, and shear generally 
increases with increasing eddy viscosity (albeit with some complexities in the relationship at the 
Wasco site). 
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Figure 8.5. Relationship between perturbed parameters and the sub-10-minute TKE of the 

horizontal winds at 80-m height. Results are shown for the finest (50-m) resolution. 



PNNL- 30841 

Uncertainty Quantification of Large-Eddy Simulations in Complex Terrain 65 
 

 

 
Figure 8.6. Relationship between perturbed parameters and the integral timescale of the 

horizontal winds at 80-m height. Results are shown for the finest (50-m) resolution. 
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Figure 8.7. Relationship between perturbed parameters and mean horizontal wind shear 
between 50-m and 80-m heights. Results are shown for the finest (50-m) 
resolution. 



PNNL- 30841 

Uncertainty Quantification of Large-Eddy Simulations in Complex Terrain 67 
 

 

Because the strong dependence on ck could impede analysis of more subtle relationships with 
other parameters, and because simulation predictions were clearly degraded at high values of 
that parameter, we undertook to create a subsample of ensemble members. Rather than 
directly select specific members for inclusion in the subsample, we ranked the results of the 
finest resolution (50-m) simulations on the basis of the sum of the relative errors in their 
predictions of the three quantities shown in Figure 8.5 through Figure 8.7, considering both the 
July and August case periods, and we selected the simulations ranked first through thirty-
second. Although there is no explicit dependence on ck in this procedure, it has the effect of 
roughly halving the range of ck, because all members of the subsample have ck < 0.2. 

To further develop and quantify the parameter sensitivity findings presented on a qualitative 
basis in this section, we undertook a feature importance (FI) analysis using ML tools, as 
described in the following section. This analysis was performed using both the original 
ensemble of 64 perturbed parameter combinations and the 32-member subsample with reduced 
range of ck. 

8.4 Parameter Importance Ranking 

ML tools can be used to create models of how the LES results respond to input parameters, 
referred to as features. Various model types can be used, offering different strengths and 
weaknesses. Here, we focus on regression with RFs. A description of the method can be found 
in Genuer et al. (2010), and the implementation in the R environment is discussed by Liaw and 
Wiener (2002). An advantage of the RF approach is its suitability for identifying parameters that 
affect the model output nonlinearly. 

Briefly, our methodology begins with the construction of a set of data with vectors of explanatory 
variables, or features, Xi, and vectors of responses, Yi. Here, the 3/	are defined to include the 
values of the closure parameters (%" , 	%&, %(* , 	01- , 412 , 546	2.), as well as nonparametric 
features: the day or date (July 22 or August 21), site (PS-12 or Wasco), resolution (50 m or 
150 m), and height level. In our study, the 7/ 	are various quantities computed from the WRF-
LES simulation data.  

The method proceeds by growing regression trees using a subset of the data referred to as the 
training data. The other data are reserved as testing data to allow the accuracy of the RF model 
to be assessed. Once the RF model has been constructed, techniques can be applied to assess 
the importance of a feature. RF FI is an impurity-based measure of importance that looks at the 
relative depth at which different features are used as decision nodes in the trees composing the 
RF. Two main weaknesses of FI are, first, that it is based entirely on the training data and does 
not depend on the testing data; and second, that it can overestimate the importance of many-
valued features. The RF FI technique can be complemented by an alternative, more general 
(i.e., nonspecific to RF models) procedure called permutation importance (PI) ranking 
(Genuer et al. 2010). In the PI technique, feature values are, by turn, randomly permuted, and 
the change in the model score is computed. The greater the decrease in the model’s score, the 
more important the permuted parameter is deemed to be. We present results using FI (Figure 
8.8), but we also performed PI analysis as a check. In all the figures in this section, the upper 
panel shows results using the full 64 combinations of parameter value samples, while the lower 
panel shows results with the subset of 32 parameter combinations (identified as described in 
Section 8.3). 
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Figure 8.8. Feature importance for moments of the 10-minute averaged horizontal winds 

considering (a) the full 64-member ensemble and (b) the reduced 32-member 
ensemble.  

Figure 8.8 depicts FI for prediction of the mean and variance of the 10-minute averaged wind 
speed over the analysis windows specified in Section 3.2. Predictions of the means is 
(unsurprisingly) dominated by the case day. In the full set of data, the importance of ck is similar 
to that of the site or height, while its importance is diminished in the subsample, and the 
importance of the site is relatively increased. Turning to the variance of U10min, ck has the 
greatest FI rating among all features in the full sample, followed by the nonparametric features, 
and ck remains important in the subsample (but less so than the day and about equally 
important as height). Interestingly, resolution is always among the least important of the 
nonparametric features. 

Influence on the shape of the energy spectra is examined in Figure 8.9. To isolate shape, we 
normalized each PPE member’s spectrum by its total energy (i.e., the quantity plotted in Figure 
8.5), then looked how that total energy was divided among ranges of frequencies (or inverse 
timescales). The eddy viscosity coefficient stands out as the dominant parameter for both the 
full and reduced samples and remains an important feature overall even in the reduced sample. 
We also observe a high importance of resolution, especially for determining the relative energy 
content at higher frequencies (shorter timescales). 

Finally, FI prediction for mean and variance of wind shear (change of wind speed with height) 
and wind veer (change of wind direction with height) are plotted in Figure 8.10. These quantities 
were computed between 50 m and 80 m, between 50 m and 120 m, and between 120 m and 
190 m (the latter two combinations being reflective of hub heights and blade lengths of a large 
land-based turbine). Mean veer is strongly site-dependent in both the full and subsamples, while 
ck is the dominant parameter and has roughly equal importance to the remaining nonparametric 
features. In contrast, mean shear is most dependent on height. Again, as for the veer, ck is the 
dominant parameter and has roughly equal importance to the remaining nonparametric 
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features. For variances of shear and veer, attribution of importance is more complex, but it is 
generally dominated by the nonparametric features and ck. 

 
Figure 8.9. Feature importance for the relative contributions of different timescale ranges to 

the TKE of the horizontal winds for (a) the full 64-member ensemble and (b) the 
reduced 32-member ensemble.  

 
Figure 8.10. Feature importance for moments of the vertical derivatives of the horizontal wind 

direction (veer) and speed (shear) for (a) the full 64-member ensemble and (b) the 
reduced 32-member ensemble.  
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8.5 Summary and Next Steps 

We created a database of 128 nested WRF/WRF-LES simulations, comprising 64 combinations 
of perturbed parameters related to the LES subgrid-scale turbulence closure evaluated over two 
case periods during the WFIP 2 campaign. Due to the large-scale weather pattern in the region 
on these two days associated with marine push events, both cases exhibit high westerly winds 
and strong surface fluxes; however, spatial organization of turbulence and other detailed 
features differed between the two days. From the simulation data, we computed a number of 
quantities relevant to wind energy associated with wind speed, direction, turbulence 
characteristics, and vertical variations.  

Both qualitative analysis of the results and quantitative assessments of FI using ML techniques 
highlighted that, among all the tested parameters, ck stands out in importance. Even when the 
original 64-parameter combinations were subset to 32 (roughly having the range of ck), it 
remains more influential than any other parameter. Our findings also indicate WRF’s default 
value of this parameter, 0.15, is larger than ideal for these cases, and a value around 0.1 
(commonly recommended for LES) yields better results. 

Lest it be concluded that the usefulness of LES is impeded by this sensitivity to the eddy 
viscosity, we note that our results indicate the range of values likely to work well is actually fairly 
narrow, and even for these highly nonidealized simulations, they are consistent with 
recommendations in the literature for idealized LES. This suggests a useful suite of sensitivity 
tests can actually be conducted with a limited number of simulations. Furthermore, 
nonparametric features (especially date and site) are also typically very important, indicating 
there is a high value to accounting for mesoscale variability and details of terrain by performing 
realistic, mesoscale-to-microscale coupled simulations. 

Finally, we remark that further work is needed to examine how these parameter sensitivities and 
FI rankings change under a wider array of case studies, especially considering conditions of 
stable stratification such as might be encountered nocturnally over land or offshore. By 
undertaking the present study, however, we have developed a framework of approaches and 
techniques that can enable such new efforts. 
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9.0 Synthesis and Summary 

9.1 Summary Overview 

Understanding and providing modeling capabilities of the atmospheric forcing of the flow into 
and around a wind farm is critical to optimizing use of this important energy resource. To that 
end, the MMC project has been performing research to provide that knowledge and modeling 
capacity. The team has worked together over a 5-year period to study details of the science 
needed by industry, both in the near term and looking forward to the challenges and 
opportunities that will emerge as wind power penetration grows. 

During FY 2020, the MMC team has continued to collaborate to advance the science and 
application of coupling mesoscale models to microscale models for the purpose of better 
simulating wind plants. The team has made major advances in FY 2020, advancing our land-
based modeling techniques in terms of enhancing the 3D PBL parameterization, evaluating 
LES with lidar, evolving a new ML approach to modeling the surface layer, continuing to 
evaluate best methods to generate turbulence at the microscale, studying how to best damp 
gravity wave growth in microscale simulations, modeling a realistic case at the Peetz Table 
Wind Energy Center in Colorado in collaboration with the Wake Dynamics team, and quantifying 
the parametric uncertainty of microscale modeling for highly sheared convective flow in complex 
terrain. Each of these is summarized briefly below. In addition, the team worked with our 
industry advisory panel to plan and execute the Atmospheric Challenges for the Wind Energy 
Industry Workshop, which is reported on separately. Furthermore, the team tested the 
application of our MMC techniques to an offshore challenge case that will also be reported 
on separately. 

9.2 Advancing the Three-Dimensional Planetary Boundary-Layer 
Parameterization 

Our MMC team has extended the new 3D PBL parameterization to include the complete 
level 2.5 model based on the developments of Mellor and Yamada (1982). The most notable 
enhancement to the parameterization in FY 2020 includes implementation of the full 3D 
prognostic equation for TKE. We anticipate that this advancement will improve simulations in 
the “gray zone” (horizontal grid spacings from about 100 m to 1000 m), also known as the terra 
incognita. In order to test the capability of the new parameterization, we configure an idealized 
mountain-valley case of a growing convective boundary layer. This case is selected because, 
during periods of solar insolation in mountain-valley terrain, the variation in elevation induces a 
thermally driven valley circulation and, thus, heterogeneous conditions. We expect to see 
differences between the 1D and 3D PBL solutions. Indeed, while the valley circulation is 
depicted in both the 1D and 3D PBL simulations, the 1D PBL solution produces motions 
consistent with so-called modeled convectively induced secondary circulations, which arise in 
gray zone simulations when the 3D turbulent mixing is not handled correctly. These results are 
preliminary and will, therefore, be extended by conducting high-resolution LES and examining 
turbulence statistics. Moreover, a manuscript synthesizing these results, in addition to results 
from other idealized configurations (i.e., sea breeze case and convective cell/roll convection 
case), is currently in preparation. 
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9.3 Characterization of Turbulence Scale from Scanning Lidar 

Scanning lidar data collected during the WFIP 2 campaign from 2015 to 2017, near the 
Columbia Gorge, Oregon, were used to evaluate the turbulent energy and flow structures near 
the surface under different atmospheric conditions. We employed both spectral and POD 
methods to evaluate the kinetic energy present in the turbulent flow and flow structures under 
varying surface flux conditions using ensembles of radial wind velocity measured by scanning 
Doppler lidar. Both methods predict similar variation of turbulent energy in the higher 
mode/wave number space for different cases. The spatial POD mode using ensemble data 
reveals shapes and sizes of coherent structures that depend on the forcing conditions. The 
shapes become streakier and more slender for negative heat flux conditions, as compared to 
cases with positive heat flux. These variations of flow structures significantly impact the energy 
distribution throughout the boundary layer and to the man-made structures near the surface, 
such as wind turbines.  

9.4 Machine Learning Approach to Modeling the Surface Layer  

Surface fluxes of momentum, sensible heat, and moisture in virtually all numerical models for 
simulation of high-Reynolds ABL flows are estimated using MOST (Monin and Obukhov 1954). 
While MOST is based on the assumption of horizontal homogeneity and stationarity, it is 
commonly applied even when these conditions are violated. This often results in large 
differences between predicted and observed fluxes. Application of an ML approach using high-
quality, long-term observations represents a possibility to develop a more general surface layer 
model. We have, therefore, developed two ML models for surface layer parameterization based 
on ANN and RF algorithms trained and tested using surface layer observations at two locations: 
the Cabauw mast in the Netherlands and the NOAA Air Resources Laboratory’s Field Research 
Division site in Idaho. ML estimates of surface friction velocity, temperature scale, and moisture 
scale are compared to MOST estimates. ML models were trained on both datasets, as well as 
their combination. Both ML models outperformed MOST in terms of MAE and R2 metrics, even 
when they were trained on one dataset and tested on the other. The only exception is for the 
ANN temperature scale model trained on the Cabauw dataset and tested on the Idaho dataset. 
While models tested on a different dataset from the one they were trained on performed worse 
than when tested on the same dataset they were trained on, they still outperformed MOST. The 
models trained on the combined dataset performed better than those trained on one dataset 
and tested on another. Our analysis demonstrates the potential for ML models to replace 
MOST. The next steps will include implementation and evaluation of the ML models in the 
WRF model. 

9.5 Turbulence Generation Methods Over Simple Terrain  

Further progress was made on the task to evaluate various inflow turbulence perturbation 
methods, developed to accelerate the formation of turbulence in turbulence-resolving LES 
domains forced with mesoscale inflow. Work completed this year involved improving the 
common code bases used to simulate and assess the flows, which are now available on the 
public MMC GitHub, as well as to execute and analyze simulations of several perturbation 
techniques during a case study representing canonical convective conditions. The goal this year 
was to extend the evaluation to near-neutral and stable conditions, as well; however, this work 
was delayed, in part, due to an inability to retrieve some of the data required to specify one of 
the case studies and, in part, to redirection of efforts of key members of the perturbation team to 
setting up and executing a new offshore challenge case. Despite the setbacks, the team has 



PNNL- 30841 

Synthesis and Summary 73 
 

 

developed a stable case study, provided the source code to execute the case study via an 
imposed surface cooling rate, and also has a path forward to develop a near-neutral case study. 
The team will complete the perturbation analysis in all three stability classes during FY 2021. 

9.6 Gravity Wave Issues and Resolutions  

Further investigation of the use of Rayleigh damping layers to suppress spurious reflection of 
gravity waves on the boundaries of the domain were conducted during FY 2020. Visual 
inspections of the flow field indicate that they were effective, but solutions were sensitive to their 
placement, thickness, and strength. It was observed that an effective approach is to use 3-km-
thick Rayleigh damping layers on all side boundaries of the domain in addition to the top 
boundary. The appropriate strength is problem-dependent and seems to be related to the wind 
speed magnitude. These initial investigations were conducted using damping layers that 
extended all the way to the bottom boundary. The use of such damping layers is inappropriate 
for MMC practices, because turbulent flow entering the domain is also damped. Future effort will 
include imposing a vertical filter on the damping layers present on the side of the domain and 
assessing its effectiveness in more realistic cases that make use of the MMC team’s strategies. 
Preliminary testing indicates that the filter is effective in damping the undesired fluctuations, 
while not disturbing turbulent inflow entering the domain. 

9.7 Modeling for Wind Turbines—Peetz Table Case Study  

The Wake Steering field campaign at Peetz Table Wind Energy Center in northeastern 
Colorado provided an excellent opportunity to demonstrate our MMC capabilities. Given 
meteorological mast and profiling lidar measurements of the instantaneous atmospheric state, 
we were able to successfully reproduce the corresponding nonstationary turbulence with LES. 
This was accomplished by assimilating the hub-height wind history during the daytime and 
assimilating the time-height wind profiles reconstructed up to the maximum lidar range of 180 m 
AGL. In addition, temperature assimilation at 59-m AGL was necessary to reproduce the 
observed near-surface temperature evolution—this is likely driven by the dynamics of a 
stationary front. A 23-hour period was simulated, starting from 5 a.m. local time, with a period of 
interest after midnight on the following day. Simulated nighttime turbulence levels agree 
reasonably well with measurements and capture the effect of an observed shear instability.  

9.8 Uncertainty Quantification of Large-Eddy Simulations in 
Complex Terrain 

Uncertainty quantification methodologies were used to understand parametric sensitivities of 
realistic LES of highly sheared, convective flows in complex terrain, which were performed via 
nesting from mesoscale WRF to WRF-LES. Sensitivities to parameters of a 1.5-order, TKE-
based subgrid-scale turbulence closure, and to the surface roughness were assessed by 
performing 128 simulations to populate a set of perturbed parameter ensembles. The prediction 
of a number of quantities relevant to wind energy applications—such as hub-height winds, 
turbulence, and shear—were found to be overwhelmingly sensitive to a single parameter (the 
eddy viscosity coefficient) of the turbulence closure. RF representations of the simulation output 
were also constructed and used to quantitatively assess parameter sensitivity using FI and PI 
methods. This analysis confirmed the importance of the eddy viscosity coefficient and also 
allowed examination of sensitivities to factors such as the case study identity, measurement 
location and vertical level, and simulation resolution. 
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9.9 Effectiveness of Cross-Laboratory Collaboration  

The success of the research highly depends on our collaborative efforts across labs and across 
topics. This team currently comprises four DOE laboratories plus NCAR. The team has learned 
to communicate well and to help each other when we identify challenges. This process is 
convergent, in the sense that it brings together researchers with different but complementary 
academic and research backgrounds to study very complex, societally relevant problems. 
Through the deeply synergistic working relationships that have developed over multiple years of 
teaming, the team has honed our ability to effectively aid each other as we progress the science 
needed to provide the knowledge and understanding to expand wind energy deployment. 

9.10 Plans for the Future 

The land-based portion of the MMC team’s research will be wrapping up over the coming two 
years. During FY 2021, the team plans to complete comparative studies of the different 
perturbation technologies and coupling methodologies, providing recommendations for best 
practices. The team will continue to advance the land-based application of the 3D PBL model 
and ML-based surface parameterization. We will also define cases of shallow convective 
boundary layers in the U.S. Great Plains, as well as studies on low-level jets, an important but 
inadequately understood phenomenon that greatly impacts energy harvesting in that wind-rich 
region of the country. In addition, the MMC team will harden and document our codes so that 
they can be made widely available to industry, along with providing a series of 
recommendations for best practices under different conditions. In parallel, the same team will 
test our methods in the offshore environment under the Offshore Wind Atmospheric Coupling 
project. We look forward to maturing and disseminating this body of work so that it can help to 
fulfill the vision of efficiently and abundantly harvesting the clean, renewable wind resource. 
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Journal Papers: 

Allaerts, D., C. Draxl, E. Quon, and M. Churchfield, 2020: Large-Eddy Simulation of a Diurnal 
Cycle Driven by Assimilation of Mesoscale Time-Height Profiles, Boundary-Layer Meteorology, 
176, 329–348. doi: 10.1007/s10546-020-00538-5. 

Abstract: Mesoscale-to-microscale coupling aims to address the limited scope of traditional 
large-eddy simulations by driving the microscale flow with information concerning large-scale 
weather patterns provided by mesoscale models. This paper presents a new offline mesoscale-
to-microscale coupling technique for horizontally homogeneous microscale flow conditions in 
which adequate mesoscale internal source terms are computed based on mesoscale time-
height profiles of mean flow quantities. The advantage of such an approach is that it does not 
rely on mesoscale budget components, which are not outputted by default by most mesoscale 
solvers, and that it could also be used to drive microscale simulations with observational data. 
The performance of the proposed profile assimilation technique is assessed based on the 
simulation of a quiescent diurnal cycle over the Scaled Wind Farm Technology Facility site in 
West Texas. Results indicate that simple data assimilation techniques lead to unphysically high 
levels of shear and turbulence caused by the algorithm’s inability to cope with inaccuracies in 
the mesoscale time-height profiles. Modifying the algorithm to account for vertical coherence in 
the mesoscale internal source terms allows the microscale solver to take over and correct the 
provided mesoscale time-height profiles, leading to improved predictions of turbulence statistics 
in line with meteorological tower observations and simulation results obtained with standard 
internal forcing coupling techniques. 
 

Arthur, R. S., J. D. Mirocha, and K. A. Lundquist, 2018: Using a Canopy Model Framework to 
Improve Large-Eddy Simulations of the Atmospheric Boundary Layer in the Weather Research 
and Forecasting Model, Monthly Weather Review, 147(1), 31–52. doi: 10.1175/MWR-D-18-
0204.1.  

Abstract: A canopy model framework is implemented in the Weather Research and 
Forecasting model to improve the accuracy of large-eddy simulation (LES) of the atmospheric 
boundary layer (ABL). The model includes two options that depend on the scale of surface 
roughness elements. A resolved canopy model, typically used to model flow through vegetation 
canopies, is employed when roughness elements are resolved by the vertical LES grid. In the 
case of unresolved roughness, a modified “pseudo-canopy model” is developed to distribute 
drag over a shallow layer above the surface. Both canopy model options are validated against 
idealized test cases in neutral stability conditions and are shown to improve surface layer 
velocity profiles relative to simulations employing Monin-Obukhov similarity theory (MOST), 
which is commonly used as a surface boundary condition in ABL models. Use of the canopy 
model framework also leads to increased levels of resolved turbulence kinetic energy and 
turbulent stresses. Because LES of the ABL has a well-known difficulty recovering the expected 
logarithmic velocity profile (log-law) in the surface layer, particular focus is placed on using the 
pseudo-canopy model to alleviate this issue over a range of model configurations. Tests with 
varying surface roughness values, LES closures, and grid aspect ratios confirm that the pseudo-
canopy model generally improves log-law agreement relative to simulations that employ a 
standard MOST boundary condition. The canopy model framework thus represents a low-cost, 
easy-to-implement method for improving LES of the ABL. 



PNNL- 30841 

Appendix A A.2 
 
 

 

Draxl, C., D. Allaerts, E. Quon, and M. Churchfield, 2020: “Coupling Mesoscale Momentum and 
Temperature Budget Components to Large-Eddy Simulations for Wind Energy Applications,” 
Boundary-Layer Meteorology, accepted. 

Abstract: Wind plants are exposed to a variety of weather phenomena on many scales—from 
synoptic to mesoscale to microscale conditions. Mesoscale phenomena are described by 
mesoscale numerical weather prediction models and drive large horizontal variations on the 
microscale. Microscale turbulence and flow structures can be predicted by large-eddy simulation 
(LES) models and are important because their variability impacts the operating environment of 
wind plants. To simulate wind flow through a wind plant across a wide range of atmospheric 
conditions that drive wind plant performance, microscale models have to be coupled with 
mesoscale models, because microscale models lack atmospheric physical processes to 
represent local forcing. 

Here, we couple mesoscale model output to a LES solver by applying mesoscale momentum 
and temperature budget components from the Weather Research and Forecasting model to the 
governing equations of Simulator fOr Wind Farm Applications (SOWFA). We test whether 
averaging the budget components impacts the LES simulations with regard to quantities of 
interest to wind energy. Results show that averaging reduces the spatiotemporal variability of 
the mesoscale momentum budget components; however, when coupled with LES, the 
mesoscale bias (in comparison with observations in wind speed, wind direction, and potential 
temperature) is not corrected by the LES simulation. On the contrary, LES can correct for shear 
and veer. In both cases, however, averaging the budget components showed no significant 
impact on mean flow quantities in the microscale and is not necessary when coupling 
mesoscale budget components to LES. 
 

Haupt, S.E., B. Kosović, W. Shaw, L. Berg, M. Churchfield, J. Cline, C. Draxl, B. Ennis, E. Koo, 
R. Kotamarthi, L. Mazzaro, J. Mirocha, P. Moriarty, D. Muñoz-Esparza, E. Quon, R.K. Rai, M. 
Robinson, G. Sever, 2019: On Bridging a Modeling Scale Gap: Mesoscale to Microscale 
Coupling for Wind Energy, Bulletin of the American Meteorological Society, 100(12), 2533–
2550. doi: 10.1175/BAMS-D-18-0033.1. 

Abstract: Accurately representing flow across the mesoscale to microscale is a persistent 
roadblock for completing realistic microscale simulations. The science challenges that must be 
addressed to coupling at these scales include: 1) What is necessary to capture the variability of 
the mesoscale flow, and how do we avoid generating spurious rolls within the terra incognita 
between the scales? 2) Which methods effectively couple the mesoscale to the microscale and 
capture the correct nonstationary features at the microscale? 3) What are the best methods to 
initialize turbulence at the microscale? 4) What is the best way to handle the surface layer 
parameterizations consistently at the mesoscale and the microscale? 5) How do we assess the 
impact of improvements in each of these aspects and quantify the uncertainty in the 
simulations? 

The U.S. Department of Energy Mesoscale-to-Microscale-Coupling project seeks to develop, 
verify, and validate physical models and modeling techniques that bridge the most important 
atmospheric scales determining wind plant performance and reliability, which impacts many 
meteorological applications. The approach begins with choosing case days that are interesting 
for wind energy for which there are observational data for validation. The team has focused on 
modeling nonstationary conditions for both flat and complex terrain. This paper describes the 
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approaches taken to answer the science challenges, culminating in recommendations for best 
approaches for coupled modeling.  

 

Mirocha, J.D., M.J. Churchfield, D. Munoz-Esparaza, R. Rai, Y. Feng, B. Kosović, S.E. Haupt, 
B. Brown, B.L. Ennis, C. Draxl, J.S. Rodrigo, W.J. Shaw, L.K. Berg, P. Moriarty, R. Linn, R.V. 
Kotamarthi, R. Balakrishnan, J. Cline, M. Robinson, and S. Ananthan, 2017: Large-Eddy 
Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical 
Boundary-Layer Flows for Wind Energy Applications, Wind Energy Science, 3, 589–613. 
doi: 10.5194/wes-3-589-2018.  

Abstract: The sensitivities of idealized large-eddy simulations (LES) to variations of model 
configuration and forcing parameters on quantities of interest to wind power applications are 
examined. Simulated wind speed, turbulent fluxes, spectra, and cospectra are assessed in 
relation to variations of two physical factors—geostrophic wind speed and surface roughness 
length—and several model configuration choices, including mesh size and grid aspect ratio, 
turbulence model, and numerical discretization schemes, in three different code bases. Two 
case studies representing nearly steady neutral and convective atmospheric boundary-layer 
(ABL) flow conditions over flat terrain, occurring at the Sandia Scaled Wind Farm Technology 
test facility, were used to force and assess idealized LES using periodic lateral boundary 
conditions. Comparison with fast-response velocity measurements at five heights within the 
lowest 50 m indicates that most model configurations performed similarly overall, with 
differences between observed and predicted wind speed generally smaller than measurement 
variability. Simulations of convective conditions produced turbulence quantities and spectra that 
matched the observations well, while those of neutral simulations produced good predictions of 
stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower 
wakes influencing the measurements during the neutral case. While sensitivities to model 
configuration choices and variability in forcing can be considerable, idealized LES are shown to 
reliably reproduce quantities of interest to wind energy applications within the lower ABL during 
quasi-ideal, nearly steady neutral and convective conditions. 
 

Rai, R. K., Berg, L. K., Kosović, B., Haupt, S. E., Mirocha, J. D., Ennis, B. L., & Draxl, C., 2019: 
Evaluation of the Impact of Horizontal Grid Spacing in Terra Incognita on Coupled Mesoscale–
Microscale Simulations Using the WRF Framework. Monthly Weather Review, 147(3), 1007–
1027. doi: 10.1175/MWR-D-18-0282.1.  

Abstract: Coupled mesoscale-microscale simulations are required to provide time-varying 
weather-dependent inflow and forcing for large-eddy simulations under general flow conditions. 
Such coupling necessarily spans a wide range of spatial scales (i.e., ~10 m to ~10 km). Herein, 
we use simulations that involve multiple nested domains with horizontal grid spacings in the 
terra incognita (i.e.,  km) that may affect simulated conditions in both the outer and inner 
domains. We examine the impact on simulated wind speed and turbulence associated with 
forcing provided by a terrain with grid spacing in the terra incognita. We perform a suite of 
simulations that use combinations of varying horizontal grid spacings and turbulence 
parameterization/modeling using the Weather Research and Forecasting (WRF) model using a 
combination of planetary boundary layer (PBL) and large-eddy simulation subgrid-scale (LES-
SGS) models. The results are analyzed in terms of spectral energy, turbulence kinetic energy, 
and proper orthogonal decomposition (POD) energy. The results show that the output from the 
microscale domain depends on the type of turbulence model (e.g., PBL or LES-SGS model) 
used for a given horizontal grid spacing but is independent of the horizontal grid spacing and 
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turbulence modeling of the parent domain. Simulation using a single domain produced less 
POD energy in the first few modes compared to a coupled simulation (one-way nesting) for 
similar horizontal grid spacing, which highlights that coupled simulations are required to 
accurately pass the mesoscale features into the microscale domain. 
 

Rai, R.K., L.K. Berg, M. Pekour, W.J. Shaw, B. Kosović, J.D. Mirocha, B.L.Ennis, 2017: Spatio-
Temporal Variability of Turbulence Kinetic Energy Budgets in the Convective Boundary Layer 
Over Both Simple and Complex Terrain. Journal of Applied Meteorology and Climatology, 
56(12), 3285–3302. doi: 10.1175/JAMC-D-17-0124.1.  

Abstract: The assumption of subgrid-scale (SGS) horizontal homogeneity within a model grid 
cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes 
increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many 
emerging high-resolution applications. Herein, we use the turbulence kinetic energy (TKE) 
budget equation to study the spatiotemporal variability in two types of terrain—
complex (Columbia Basin Wind Energy Study [CBWES] site, northeastern Oregon) and flat 
(Scaled Wind Farm Technology [SWiFT] site, West Texas)—using the Weather Research and 
Forecasting (WRF) model. In each case, six-nested domains (three domains each for 
mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal grid spacing 
from ∼10 km to ∼10 m using the WRF model framework. The model output was used to 
calculate the values of the TKE budget terms in vertical and horizontal planes as well as the 
averages of grid cells contained in the four quadrants (a quarter area) of the LES domain. The 
budget terms calculated along the planes and the mean profile of budget terms show larger 
spatial variability at CBWES site than at the SWiFT site. The contribution of the horizontal 
derivative of the shear production term to the total shear production was found to be ≈45% and 
≈15% at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives 
applied in the budget equation should not be ignored in mesoscale model parameterizations, 
especially for cases with complex terrain with < 10-km scale. 
 

Rai, R.K., L.K. Berg, B. Kosović, J.D. Mirocha, M.S. Pekour, and W.J. Shaw, 2016: Comparison 
of Measured and Numerically Simulated Turbulence Statistics in a Convective Boundary Layer 
Over Complex Terrain. Boundary-Layer Meteorology, 163, 69–98. doi: 10.1007/s10546-016-
0217-y. 

Abstract: The Weather Research and Forecasting (WRF) model can be used to simulate 
atmospheric processes ranging from quasi-global to tens of meters in scale. Here, we employ 
large-eddy simulations (LES) using the WRF model, with the LES domain nested within a 
mesoscale WRF model domain with grid spacing decreasing from 12.15 km (mesoscale) to 0.03 
km (LES). We simulate real-world conditions in the convective planetary boundary layer over an 
area of complex terrain. The WRF-LES model results are evaluated against observations 
collected during the U.S. Department of Energy-supported Columbia Basin Wind Energy Study. 
Comparison of the first- and second-order moments, turbulence spectrum, and probability 
density function of wind speed shows good agreement between the simulations and 
observations. One key result is to demonstrate that a systematic methodology needs to be 
applied to select the grid spacing and refinement ratio used between domains to avoid having a 
grid resolution that falls in the grey zone and to minimize artefacts in the WRF-LES model 
solutions. Furthermore, the WRF-LES model variables show large variability in space and time 
caused by the complex topography in the LES domain. Analyses of WRF-LES model results 
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show that the flow structures, such as roll vortices and convective cells, vary depending on both 
the location and time of day as well as the distance from the inflow boundaries. 

Simon, J. S., B. Zhou, J. D. Mirocha and F. K. Chow, 2019: Explicit Filtering and Reconstruction 
to Reduce Grid Dependence in Convective Boundary Layer Simulations Using WRF-LES, 
Monthly Weather Review, 147(5), 1805–1821. doi: 10.1175/MWR-D-18-0205.1. 

Abstract: As model grid resolutions move from the mesoscale to the microscale, turbulent 
structures represented in atmospheric boundary-layer simulations change dramatically. At 
intermediate resolutions, the so-called gray zone, turbulent motions are not resolved accurately, 
posing a challenge to numerical simulations. The representation of turbulence is also highly 
sensitive to the choice of closure model. Here, we examine explicit filtering and reconstruction in 
the gray zone as a technique to better represent atmospheric turbulence. The convective 
boundary layer is simulated using the Weather Research and Forecasting model with horizontal 
resolutions ranging from 25 m to 1 km. Four large-eddy simulation turbulence models are 
considered: the Smagorinsky model, the TKE-1.5 model, and two versions of the dynamic 
reconstruction model (DRM). The models are evaluated by their ability to produce consistent 
mean potential temperature profiles, heat and momentum fluxes, velocity fields, and turbulent 
kinetic energy spectra as the grids become coarser. The DRM, a mixed model that uses an 
explicit filtering and reconstruction technique to account for resolvable subfilter-scale stresses, 
performs very well at resolutions of 500 m and 1 km without any special tuning, whereas the 
Smagorinsky and TKE-1.5 models produce heavily grid-dependent results. 

 

Conference Papers: (presenter in Bold) 

Allaerts, D., C. Draxl, and M. Churchfield, 2018: “Large-Eddy Simulations of a Diurnal Cycle 
Driven by Mesoscale and Observational Profile Assimilation, American Physical Society Division 
of Fluid Dynamics Meeting,” Nov. 18-20, Atlanta, Georgia. 

Allaerts, D., C. Draxl, E. Quon, and M. Churchfield, “Evaluation of Internal Forcing Techniques 
for Mesoscale-to-Microscale Coupling,” 2019 Wind Energy Science Conference, June 16-20, 
Cork, Ireland. 

Arthur, R.S., J.D. Mirocha, N. Marjanovic, B. D. Hirth, J. L. Schroeder, and F. K. Chow, 2019: 
Multi-Scale Simulations of Wind Farm Performance with Complex Terrain and Weather Events, 
NAWEA/WINDTECH, Amherst, MA, October 14–16. 

Churchfield, M., D. Allaerts, P. Hawbecker, and E. Quon, “Treatment of Gravity Waves in Wind 
Energy Atmospheric Large-Eddy Simulation,” June 16-20, 2019, Cork, Ireland. 

Cline, J.W., W. J. Shaw and S.E. Haupt, 2018: Meteorology Research in DOE’s Atmosphere to 
Electrons (A2e) Program, Ninth Conference on Weather, Climate, and the New Energy 
Economy, AMS Annual Meeting, January 8. 

Cline, J., S.E. Haupt, and W. Shaw, 2017: Meteorology Research in DOE’s Atmosphere to 
Electrons (A2e) Program, WindTech International Conference on Future Technologies in Wind 
Energy, Boulder, Co, October 24. 
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Connolly, A., W. H. M. Wendels, L. van Veen, L., J. M. T. Neher, B. Geurts, J. D, Mirocha, and 
F. K. Chow, 2020: Development of Fine Scale Structures in Large Eddy Simulations Over 
Complex Terrain, 19th Conference on Mountain Meteorology Virtual Meeting, 15 July. 

Draxl, C., M. Churchfield, J. S. Rodrigo, 2017: Coupling the Mesoscale to the Microscale Using 
Momentum Budget Components, North American Wind Energy Symposium, Ames, USA, 
September 2017. 

Draxl, C., M. Churchfield, J. S. Rodrigo, 2017: Coupling the Mesoscale to the Microscale Using 
Momentum Budget Components, AMS Annual Meeting, Seattle, USA, January. 

Haupt, S.E., B. Kosović, L. Berg, W. Shaw, J. Mirocha, M. Churchfield, 2020: Mesoscale to 
Microscale Coupling for Wind Energy, 11th Conference on Weather, Climate, & the New Energy 
Economy, AMS Annual Meeting, Boston, MA, Jan. 14. 

Haupt, S.E., L. Berg, M. Churchfield, B. Kosović, W. Shaw, J. Mirocha, 2019: Mesoscale to 
Microscale Coupling for Wind Energy Applications: Addressing the Challenges, J. Physics 
Conference Series (2020) 012076 1452, NAWEA/WindTech Conference, Amherst, MA, October 
15, 2019. doi: 10.1088/1742-6596/1452/1/012076. 

Haupt, S.E., 2019: Advances in Mesoscale to Microscale Coupling for Wind Energy 
Applications, 6th International Conference on Energy and Meteorology, Lyngby, Denmark, 
June 25.  

Haupt, S.E., 2019: Mesoscale to Microscale Coupling for Wind Energy Applications, Energy 
Systems Integration Group Meteorology & Market Design for Grid Services Workshop, Denver, 
CO, June 5.  

Haupt, S.E., B, Kosović, W. Shaw, L. Berg, R. Rai, J. Mirocha, M. Churchfield, C. Draxl, M. 
Robinson, 2018: Recent Advances in Mesoscale to Microscale Coupling, AMS Conference on 
Boundary Layers and Turbulence, Oklahoma City, OK, June 14. 

Haupt, S.E., 2018: Progress in Mesoscale to Microscale Coupling: Modeling Nonstationary 
Conditions in Flat and Complex Terrain, International Conference on Energy & Meteorology, 
Shanghai, China, May 22, 40 min. lecture. 

Haupt, S.E., 2018: Meteorology, Climate, and the Electric Sector – Forecasting for an 
Integrated Energy System, ESIG Forecasting Workshop, St. Paul, MN, June 19 (Invited Panel 
talk). 

Haupt, S.E., L. Berg, M. Churchfield, J. Cline, J. Mirocha, B. Kosović, C. Draxl, R. Rai, R. 
Kostmarthi, M. Robinson, W. Shaw, 2017: The US DOE A2e Mesoscale to Microscale Coupling 
Project: Nonstationary Modeling Techniques and Assessment, International Conference on 
Energy and Meteorology, Bari, Italy, June 28. 

Haupt, S.E., J. Cline, W. Shaw, L. Berg, M. Churchfield, J. Mirocha, B. Kosović, C. Draxl, R. 
Rai, R. Kotamarthi, 2017: The US DOE A2e Mesoscale to Microscale Coupling Project: 
Nonstationary Modeling Techniques and Assessment, European Geophysical Union, Vienna, 
Austria, April 26. 
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Haupt, S.E., W. Shaw, B. Kosović, 2016: The DOE A2e Mesoscale to Microscale Coupling 
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 – Contributions of Individual Laboratories 

Lawrence Livermore National Laboratory (LLNL): LLNL staff contributed to several 
components of the MMC project, including development of team source codes and analysis 
scripts, further examination of inflow perturbation methods, and execution of sensitivity studies 
of multiscale WRF simulations applied to a new offshore challenge case. The new source 
codes, which expand the ability to force WRF model simulations in idealized setups applicable 
to canonical boundary-layer flows, are available on the MMC GitHub for team and public use. 
The inflow perturbation analysis study completed the setup of a convective case—and 
developed potential stable and near-neutral cases, as well—with the intention of completing the 
analysis in all three stability classes during FY 2021 (see Section 8 for details). The LLNL team 
also worked with collaborators to execute a multiscale WRF simulation of a wind ramp passing 
through an operating wind plant, using actuator disk model for the turbines and inflow 
perturbations and published that work in Atmosphere. LLNL also contributed to the examination 
of multiscale WRF setups over complex terrain at the Perdigao field site, including simulation of 
stability and terrain impacts on flow and turbine wake characteristics, as well as efficacy of 
inflow perturbations relative to terrain resolution to instigate turbulence. The work was presented 
at the American Meteorological Society Mountain Meteorology conference, and journal 
manuscripts are under development, with planned submission in FY 2021. LLNL also 
contributed to the planning and execution of the industry workshop, which occurred in early 
FY 2021, as well as project reporting and integrated annual operating plan development. Finally, 
LLNL participated in planning future MMC project applications in both land-based and offshore 
settings, including the development of a coupled air-sea interaction framework for WRF-LES, 
investigation of low-level jet impacts in both offshore and land-based settings, and the use of ML 
to facilitate microscale turbulence generation and downscaling.  

Los Alamos National Laboratory (LANL): During FY 2020, LANL continued to support the 
effort to assess various inflow perturbation methods used to accelerate turbulence development 
on turbulence-resolving microscale simulation domains forced by mesoscale inflow, as 
described in Section 5. As part of this effort, LANL team members Alex Jonko and Mukesh 
Kumar contributed WRF simulations using the momentum flavor of the cell perturbation method 
based on case study datasets for unstable atmospheric conditions provided by LLNL. This work 
will be continued in FY 2021 with the examination of turbulence generation under stable and 
neutral atmospheric conditions. 

NCAR: NCAR continued to serve in a leadership role for the MMC project, which includes 
leading biweekly team telecons, representing the team at A2e meetings, presenting MMC 
research to DOE Office of Energy Efficiency and Renewable Energy Wind Energy Technologies 
Office leadership (March 3, 2020), and facilitating and publicizing the work. Dr. Haupt served as 
project principal investigator and contributed to the A2e uber principal investigator meetings as 
well as to overall project leadership, including work planning and tracking. NCAR hosted team 
workshops in Boulder in October 2019 and virtual workshops in April and December 2020. 
NCAR also led the planning and execution of an industry workshop that culminated in the 
Atmospheric Challenges for the Wind Energy Industry, held in October 2020, and reported on 
separately. That planning effort included leading monthly discussions with the industry advisory 
panel. Dr. Haupt was also responsible for summaries in quarterly reports and leading production 
of this FY 2020 annual report. The NCAR team members presented papers on MMC work at the 
North American Wind Energy Academy/WindTech conference in Amherst, Massachusetts, in 
October 2019, and at the Eleventh Conference on Weather, Climate, and the New Energy 
Economy held as part of the American Meteorological Society Annual Meeting in Boston, 
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Massachusetts, in January 2020. Several other planned conference presentations were 
canceled or delayed due to the COVID-19 pandemic.  

NCAR led the assessment planning and implementation. In FY 2020, that process was 
formalized (in collaboration with the National Renewable Energy Laboratory and the other 
laboratories) and new standardized processes were initiated. NCAR led the mesoscale 
modeling portion of the project in FY 2020, obtaining data from the FINO towers and doing first 
mesoscale simulations, including modifying the WRF model. NCAR also advanced the 3D PBL 
scheme that was initiated in the Wind Forecast Improvement Project 2. NCAR also began 
incorporating new ML models for the surface layer as part of the MMC project in FY 2020. 
NCAR is providing leadership in transitioning the MMC project to two separate projects: 1) 
continuation toward closeout of the land-based MMC project and 2) the Offshore Wind 
Atmospheric Coupling project.  

National Renewable Energy Laboratory (NREL): NREL researchers contributed to the MMC 
project in various ways. Matt Churchfield serves as the NREL lab-level principal investigator of 
the project, and he coordinates the microscale efforts of the FINO1/Alpha Ventus offshore 
coupling comparisons. Dries Allaerts, a former NREL-postdoc, now a faculty member at TU-
Delft, continues to coordinate the microscale efforts of the SWiFT diurnal cycle land-based 
coupling comparison. Eliot Quon is involved in the inflow perturbation study effort, bringing 
experience with synthetic turbulence generation methods, such as the Mann or Veers methods. 
Caroline Draxl and Regis Thedin have contributed greatly to the effort to use a stand-alone 
microscale solver to simulate mesoscale-forced flow over complex terrain in the Wind Forecast 
Improvement Project 2/Biglow Canyon region. Caroline Draxl, Regis Thedin, and Eliot Quon 
have further explored the concept of internal coupling and applied it to the land-based SWiFT 
diurnal cycle case (resulting in a Boundary-Layer Meteorology publication), the offshore 
FINO1/Alpha Ventus case, and the land-based Peetz Table Wind Energy Center, in conjunction 
with the A2e Wake Dynamics project. Regis Thedin has advanced our methods for gravity wave 
treatment in stand-alone microscale solvers. Eliot Quon has led an effort to use mesoscale-
influenced microscale LES data to examine simulated wind turbine loads and how those 
compare to simulated loads that result from the use of International Electrotechnical 
Commission-standard turbulence models. 

In addition to this science work, the NREL team actively took part in the in-person and virtual 
team workshops, the Atmospheric Challenges for the Wind Energy Industry Workshop, and the 
planning for work in FY 2021 and beyond, which includes the new Offshore Wind Atmospheric 
Coupling project starting in FY 2021. NREL also contributed to both the FY 2019 and FY 2020 
year-end reports, and NREL’s communications team performs the first round of editing on these 
documents. The NREL team published an article in Boundary-Layer Meteorology and worked 
toward having a second article published in FY 2021 in the same journal. 

Pacific Northwest National Laboratory (PNNL): Staff at PNNL contributed to many facets of 
the MMC project focused on land-based wind applications, including the development and 
testing of coupling methods, the development and testing of perturbation methods, the 
development and application of a lidar simulator and the evaluation of turbulent flow structure 
using lidar data (see Section 3 of this report), and the uncertainty quantification of microscale 
simulations in complex terrain (see Section 8 of this report). PNNL team members were also 
engaged in work to expand the MMC project purview to modeling for offshore wind energy, 
including engaging with PNNL wave modeling experts to generate wave state data for coupling 
to atmospheric simulations and participating in offshore environment microscale modeling 
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intercomparisons. This work will be continued under the new Offshore Wind Atmospheric 
Coupling project in FY 2021. 

In FY 2020, the team presented MMC research at the North American Wind Energy 
Academy/WindTech conference in Amherst, Massachusetts, in October 2019, and at the 
Eleventh Conference on Weather, Climate, and the New Energy Economy held as part of the 
American Meteorological Society Annual Meeting in Boston, Massachusetts, in January 2020. 
The team also worked toward preparing peer-reviewed publications for submission in FY 2021. 

Additionally, as the lead DOE national laboratory of the project, PNNL coordinated submission 
of the project’s FY 2019 annual report as the FY 2020 Q1 joint deliverable, helped to coordinate 
quarterly reporting, and led efforts to develop FY 2021 annual operating plans.  
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