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Report 

Abstract 
Introduction and Objectives 

This report describes research performed under the PNNL LDRD Project PN19061/3150: 
Future Response of Coastal Wetlands to Environmental Stresses: Algorithm Comparison 
of Numerical Models. The objective of this work is to build a model comparison platform 
for coastal wetland eco-geomorphological processes to evaluate the algorithm-level 
uncertainties in coastal wetland modeling. Further, this project is to identify the processes 
that need more research to better predict future response of coastal wetlands to 
environmental changes. This work will pave ways for integrating coastal wetlands into 
Earth system models. 

Technical Approach 

The basic technical approach is developing a multiple-algorithm model framework of 
coastal wetlands that represents coastal hydrodynamics (such as water level, significant 
wave height and bottom shear stress) and four eco-geomorphological processes: mineral 
accretion, organic matter accretion, storm surge erosion and landward migration. 

Results 

The capability of this model approach to reveal the structural uncertainties of coastal 
wetland models was demonstrated. The model was successfully applied at three 
representative coastal wetland sites (Venice Lagoon, Plum Island Estuary and Hunter 
Estuary) for simulating hydrodynamics, mineral accretion and organic matter accretion. 
Through model-data comparison, the model is shown to well capture the dynamics of 
hydrodynamical and eco-geomorphological conditions in the study sites. Importantly, 
analysis of the multiple-algorithm simulations suggests that differences in the process 
representation of mineral and organic matter accretion may contribute to the recent 
contradicting predictions of coastal wetland evolution under accelerated sea-level rise. 
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1. Introduction 

Coastal wetlands such as tidal marshes and mangroves are valued for providing many 
important ecosystem services, including coastline protection, storm surge attenuation, 
wildlife habitat, water quality improvement, and also carbon sequestration (Aburto-
Oropeza et al., 2008; Macreadie et al., 2019; Temmerman et al., 2013; Teuchies et al., 
2013). Despite the resilience of these ecosystems to past fluctuations in sea level and 
climate (Cahoon et al., 2006), recent observations of local wetland loss raise concerns 
over their acclimation to intensified natural and human-induced disturbances, such as sea 
level rise (SLR), storm surge, sediment reduction, eutrophication and drought (Blum & 
Roberts, 2009; Crosby et al., 2016; Deegan et al., 2012; Kirwan & Megonigal, 2013). Eco-
geomorphological processes such as mineral accretion, organic matter (OM) accretion, 
landward migration and storm surge erosion have crucial influence on the evolution of 
coastal wetlands (Craft et al., 2009; Howes et al., 2010; Kirwan et al., 2016; Leonardi et 
al., 2015; Schuerch et al., 2018). Therefore, many numerical models have been 
developed in recent decades to simulate the dynamics of coastal wetland eco-
geomorphology under the current environmental conditions and their response to future 
changes (D'Alpaos et al., 2011; Fagherazzi et al., 2012; Kirwan et al., 2010; Marani et al., 
2007; Mcleod et al., 2010; Rodríguez et al., 2017).  

Although previous numerical efforts have greatly advanced our understanding of the 
response of coastal wetlands to changing environment (Kirwan & Mudd, 2012; Leonardi 
et al., 2015; Mariotti & Fagherazzi, 2010; Reyes et al., 2000), important knowledge gaps 
remain. For example, existing numerical models of coastal wetland eco-geomorphology 
differ importantly in complexity and structure (Fagherazzi et al., 2012; Mcleod et al., 2010) 
and they have largely provided contradicting predictions on coastal wetland evolution 
under accelerated SLR (Craft et al., 2009; Kirwan et al., 2010, 2016; Rodríguez et al., 
2017; Schuerch et al., 2018). It is thus critical to understand the structural uncertainty of 
these numerical models for model improvement and applications, similar to efforts 
undertaken to address uncertainties in other Earth system processes (Guseva et al., 
2020; Huntzinger et al., 2013; Jin et al., 2016; Schellnhuber et al., 2014; Tan et al., 2018). 
Such work also aligns with the interest of the scientific community to represent the 
function and sensitivity of coastal ecosystems in Earth system models (ESMs) (Ward et 
al., 2020).  

A few studies have advanced understanding of the uncertainty of coastal wetland eco-
geomorphology models through model comparison (Kirwan et al., 2010) or model review 
(Fagherazzi et al., 2012; Mcleod et al., 2010). However, model comparison and review 
can only provide limited understanding of how structural model uncertainty maps onto 
uncertainty in the relevant model projections (Fisher & Koven 2020). First, previous model 
reviews mostly focused on analyzing eco-geomorphology models in terms of their 
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capability and complexity, inputs requirements, spatial- and temporal-scale 
accountability, and practical applicability instead of their fidelity in simulating coastal 
wetland dynamics in diverse environmental conditions (Fagherazzi et al., 2012; Mcleod 
et al., 2010). Second, previous model comparison experiments were never implemented 
at the process level so the uncertainties associated with individual processes could not 
be isolated (Kirwan et al., 2010). Third, previous model comparison experiments were 
only implemented at very few sites (Kirwan et al., 2010) and did not include our updated 
understanding of coastal wetland eco-geomorphology (Schuerch et al., 2018). 

To fill the aforementioned gaps, we developed an algorithm-level model comparison 
framework to investigate the structural uncertainty in representing four coastal wetland 
eco-geomorphological processes in widely-used numerical models: mineral accretion, 
OM accretion, landward migration and storm surge erosion. This algorithm-level approach 
has been found promising for assessing a particular process in numerical models 
(Donatelli et al., 2014; Jin et al., 2016; Tan et al., 2018). Through this work, we aim to 1) 
test the applicability of the algorithm-level framework for modeling coastal wetlands in 
diverse environments and 2) link the structural uncertainty of the four eco-geomorphology 
processes with uncertainty in the model response to SLR. This modeling work will also 
pave the way for appropriate representation of coastal wetland eco-geomorphology in 
ESMs and enable ensemble predictions of coastal wetland evolution. Our analysis 
focused on modeling mineral and OM accretion. Although the algorithms of landward 
migration and storm surge erosion have been implemented in the framework, their 
analysis will be done in the future. 

2. Methods and material 

2.1. Model description 

We developed a Multiple-Algorithm Coastal wetland Eco-geomorphology Simulator 
(MACES) model framework to assess the impact of structural uncertainty of eco-
geomorphology models on the prediction of coastal wetland evolution under intensified 
natural and human-induced disturbances. The MACES model consists of two 
components (Figure 1): a one-dimensional (1-D) transect-based hydrodynamic module 
(MACES-hydro) and four eco-geomorphology modules with multiple algorithm 
implementations (MACES-geomor). MACES-hydro simulates water level, tide velocity, 
significant wave height, bottom shear stress, suspended sediment and other 
hydrodynamic conditions in a coastal transect along the elevation and land cover gradient 
with water level at the seaward boundary and wind speed over the transect as inputs 
(Figure 2). Based on the simulated hydrodynamics, MACES-geomor calculates sediment 
deposition and OM burial at each grid cell of the coastal transect and lateral erosion at 
the wetland edge grid cell. At the end of each year, MACES updates the transect elevation 
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profile and land cover. A basic feature of MACES is that different combinations of 
algorithms within four eco-geomorphology modules can be configured to test different 
model structures and evaluate their performances. 

 
Figure 1. Model framework for algorithmic comparison of model response of coastal 
wetland to future environmental stresses. The model comparison platform builds on a 1-
D coastal hydrodynamic model which simulates the dynamics of sediment, salinity, 
nutrients, water inundation, bottom shear stress and other hydrodynamic processes over 
three coastal landscapes. 

The 1-D transect-based hydrodynamics in MACES-hydro consists of a tide propagation 
component, a wind-induced wave generation and propagation component and a particle 
transport component which are mainly based on the work of Tambroni & Seminara (2012) 
and Carniello et al. (2005) for modeling the cross-section averaged physical variables 
over coastal landscapes. We chose the 1-D hydrodynamic model over more advanced 
two-dimensional (2-D) or three-dimensional (3-D) hydrodynamic models for two reasons. 
First, the prominent features of coastal wetlands (such as tidal channels and 
microtopography) that 2-D and 3-D hydrodynamic models can represent are usually at 
spatial scales of meters, which are much finer than the spatial resolution of current and 
even future ESMs. Second, compared to 2-D and 3-D hydrodynamic models, 1-D 
hydrodynamic models can be much more easily deployed for global simulations. In 
MACES-hydro, tide propagation is governed by the classical continuity and the Saint 
Venant equations, which express the principles of mass and momentum conservation, 
and the primitive formulation of Mudd et al. (2004) is used to represent the impact of bed 
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roughness and vegetation stem size and density on tidal current friction. Wave generation 
and propagation in shallow waters is governed by the conservation of the wave action 
based on the linear wave theory. Wave energy is generated by wind shear stress and 
dissipated by bottom friction, white capping and depth-induced breaking. Both tidal 
currents and wind wave contribute to the production of bottom shear stress with the 
nonlinear interaction between the two forces represented using the empirical formulation 
of Soulsby (1997). The concentration of suspended sediment in the tidal water is 
governed by the advection-dispersion continuity equation (Maan et al., 2015) with 
vertically averaged sediment erosion and deposition determined by MACES-geomor. 

 
Figure 2. Sketch of the coastal system and notations. L denotes the 1-D transect domain 
of coastal landscapes with Lf as the domain of tidal flats and Lw as the domain of coastal 
wetland. MSL is mean sea level, MHT is mean high tide water level, and WL is water 
level. The notations of H, h and η represent water level relative to MSL, water depth and 
bottom elevation relative to MSL. H0 is the water level at the seaward boundary and η0 is 
the bottom elevation at the seaward boundary. 

MACES-geomor includes seven numerical algorithms for mineral accretion, four 
numerical algorithms for OM accretion, one numerical algorithm for storm surge erosion 
(Leonardi et al., 2016) and three numerical algorithms for landward migration (Reyes et 
al., 2000; Rodríguez et al., 2017; Schuerch et al., 2018), respectively. In addition, for OM 
accretion, storm surge erosion and landward migration, another numerical algorithm 
corresponding to the null hypothesis of each process is included. The null hypothesis was 
added to test whether the examined eco-geomorphological process is insignificant for the 
evolution of coastal wetlands. Algorithms were selected through literature review based 
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on three criteria. First, they have previously been successfully applied in multiple studies 
(ideally in wetlands located in different environmental conditions). Second, the algorithms 
have substantial differences in mathematical formulation and conceptual understanding. 
Third, they are compatible to the 1-D hydrodynamic model. Table 1 summarizes all the 
MACES-geomor algorithms and their characteristics. 

Table 1. Summary of MACES eco-geomorphology algorithms. 

Eco-geomorphology Category Algorithm 

Mineral accretion 

Only sediment deposition F06 (French, 2006); T03 
(Temmerman et al., 2003) 

Both sediment deposition and 
vegetation trapping 

KM12 (Kirwan & Mudd, 2012) 

Both sediment deposition and 
erosion 

F07 (Fagherazzi et al., 2007); VDK05 
(van de Koppel et al., 2005) 

Sediment deposition, vegetation 
trapping and erosion 

DA07 (D’Alpaos et al., 2007); M12 
(Morris et al., 2012) 

OM accretion 

No growth seasonality and static 
shoot:root ratio 

M12 (Morris et al., 2012) 

Growth seasonality and static 
shoot:root ratio 

DA07 (D’Alpaos et al., 2007); K16 
(Kakeh et al., 2016) 

Growth seasonality, dynamic 
shoot:root ratio and dynamic carbon 
turnover 

KM12 (Kirwan & Mudd, 2012) 

Storm surge erosion Linear function of wave power L16 (Leonardi et al., 2016) 

Landward migration Inundation and salinity thresholds 
R20 (Reyes et al., 2000); R17 
(Rodríguez et al., 2017); S18 
(Schuerch et al., 2018) 

2.2. Numerical methods 

We employed a 1-D Godunov-type central-upwind scheme (Kurganov & Levy, 2002) to 
discretize the spatial domain of the Saint Venant equations which include source terms 
due to bottom topography, the wave equation and the particle transport equation. This 
finite volume scheme introduces a linear piecewise approximation to each grid cell with 
the Superbee slope limiter (Roe, 1986) to achieve the solutions of both second-order 
accuracy in space and diminishing total variation. Because this scheme is very effective 
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in suppressing spurious oscillation of the simulated water level at the periodically flooded 
areas, it has been widely used as the numerical solver for coastal hydrodynamics (Liang 
& Marche, 2009). After spatial discretization, we employed a fourth-order adaptive Runge-
Kutta-Fehlberg method to discretize the hydrodynamic equations in the time domain to 
achieve second-order accuracy in time (Burden et al., 1978). In addition, to avoid negative 
particle concentrations, we incorporated a scheme described by Tan et al. (2015) into the 
Runge-Kutta-Fehlberg method to recursively curtail the running time step when large 
negative concentrations occur, until the negative values are small enough to be assigned 
safely as zero.   

One prominent feature of MACES is the use of a hybrid Fortran and Python programming 
approach to balance computational efficiency with software usability. The computational-
intensive hydrodynamic module was written in Fortran and then converted to a Python 
package using f2py (Python Software Foundation, Fredericksburg, VA, USA). All the 
other modules, including eco-geomorphology, I/O and settings, were written in Python 3 
directly. As such, new algorithms of eco-geomorphology can be easily integrated into 
MACES in the future. Model input and output files are written in the NetCDF and Excel 
format and model settings are written in the user-friendly XML (Extensible Markup 
Language) format. 

2.3. Model calibration and evaluation 

Model calibration of different MACES-geomor algorithms was conducted using the 
Python-version Parameter ESTimation tool (PyPEST). The PyPEST tool was developed 
by Liao et al. (2019) based on the model-independent parameter estimation code PEST 
(Doherty et al., 1994). PyPEST carries out the calibration process iteratively with six steps 
(parameter generation, model configuration, input data generation, model run in parallel, 
output extraction, and output post-processing) until the user-defined cost function 
threshold criteria is met (Figure 3). Depending upon data availability at different sites, 
different combinations of observed dataset were used to calibrate different 
geomorphology module algorithms with consideration of module dependency. For 
example, observed long-term mineral accretion rate and suspended sediment 
concentrations were used to calibrate the mineral accretion algorithms. And observed 
long-term OM accretion rate and aboveground biomass were used to calibrate the OM 
accretion algorithms. 
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Figure 3. Illustration of the PyPEST workflow. PyPEST follows several steps indicated by 
the indices within circles. (1) PPEST (parallel version of PEST) generates new 
parameters; (2) PyPEST calls model interface of MACES; (3) model interface converts 
parameters into model inputs; (4) PyPEST runs MACES in parallel; (5) model interface 
extracts model outputs; (6) PPEST collect outputs for next iteration. 

MACES-hydro was validated against observed or benchmark water level, significant wave 
height, suspended sediment and/or bottom shear stress without calibration. Because the 
related observations and benchmark estimates usually cover only a few days, during the 
MACES-hydro validation the model was only run for a few weeks. For MACES-geomor, 
we expect that most of the algorithms can reproduce the observed eco-geomorphology 
by calibration, so we did not focus our analysis on validating the individual algorithms 
explicitly. Instead, we focused on analyzing how the simulation uncertainty of fine 
spatiotemporal eco-geomorphology dynamics maps to the prediction uncertainty of long-
term coastal wetland evolution. For example, although two algorithms might both 
reproduce the observed mineral accretion which is the long-term average of net sediment 
deposition over a saltmarsh site after calibration, they could differ importantly in simulating 
the elevation and distance gradient of sediment deposition along the transect of varied 
land cover and thus predict conflicting saltmarsh evolution under SLR (Tambroni & 
Seminara, 2012). 
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2.4. Model input and evaluation data 

We evaluated the model at three representative coastal wetland sites with two located in 
midlatitude and one located in subtropics: Venice Lagoon, Plum Island Estuary and 
Hunter Estuary (Table 2). Venice Lagoon is a microtidal wetland with a large central 
waterbody and extensive intertidal salt marshes. The dominant saltmarsh species include 
Limonium serotinum, Puccinellia palustris, Arthrocnemum fruticosum and Spartina 
maritima. The long-term mineral and OM accretion rate of the saltmarsh are 3.5 mm yr-1 
and 132 gC m-2 yr-1, respectively (Bellucci et al., 2007; Roner et al., 2016). Plum Island 
Estuary is a macrotidal wetland with extensive areas of productive, tidal marshes. The 
dominant saltmarsh species include Spartina alterniflora at lower elevations and Spartina 
patens at higher elevations. The long-term mineral accretion rate can be as high as 
6.9±0.9 mm yr-1 (Wilson et al., 2014) and the long-term OM accretion rate is 69.9±9.4 gC 
m-2 yr-1 (Wang et al., 2019). Hunter Estuary is a microtidal wetland with grey mangrove 
Avicennia marina at lower elevations and Sporobolus virginicus–Sarcocornia 
quinqueflora mixed saltmarsh at higher elevations. The mineral accretion of mangroves 
and saltmarsh are 3.66 mm yr-1 and 3.37 mm yr-1, respectively (Howe et al., 2009). The 
OM accretion of mangroves and saltmarsh are 105 gC m-2 yr-1 and 137 gC m-2 yr-1, 
respectively (Howe et al., 2009).   

To simulate the hydrodynamics and eco-geomorphology of coastal wetlands, MACES is 
driven by the seaward-side water level and suspended sediment conditions and averaged 
wind speed and air temperature over the coastal transect. We extracted water level and 
wind conditions from high-frequency (10-minute or 15-minute) measurements for the 
three sites. Suspended sediment was extracted from high-frequency (15-minute) 
measurements for Hunter Estuary and from the global coastal Database for Impact and 
Vulnerability Analysis to sea-level rise (DIVA) (Schuerch et al., 2018; Vafeidis et al., 2008) 
for the other two sites. Daily air temperature was extracted from measurements for Venice 
Lagoon and Plum Island Estuary and the European Center for Medium-Range Weather 
Forecasts (ECMWF) Interim reanalysis (ERA-Interim) (Dee & Uppala, 2009) for Hunter 
Estuary. For each site, we constructed its 1-D transect from high-resolution Digital 
Elevation Model (DEM) and land cover maps (Hopkinson & Valentine, 2005; Rodríguez 
et al., 2017; Tambroni & Seminara, 2012; Ye & Pontius, 2016) by: 1) dividing all grid cells 
into 17 elevation groups spanning from -12.5 m to 16.5 m (some elevation groups can be 
empty); 2) calculating the average slope and land cover fractions of each elevation group; 
3) calculating the transect length of each elevation group based on its slope and elevation 
range. For the first step, the elevation range of the 17 groups is the largest (i.e., 4 m) near 
to the land and sea edges and the smallest (i.e., 0.5 m) near to the sea level. For the third 
step, the slope of a grid cell is calculated by dividing its elevation by its distance to the 
nearest river network. The constructed 1-D transects of the three sites are shown in 
Figure 4. 
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Table 2. Characteristics and observational data of the three coastal wetland sites. 

Site Name Location Tidal 
range Wetland Evaluation data Data source 

Venice 
Lagoon 45°33′N/12°27′E 0.84 m Salt 

marshes 

Water level, 
significant wave 
height, suspended 
sediment, bottom 
shear stress, long-
term mineral 
accretion, long-
term OM accretion 

Bellucci et al. 
(2007); Carniello et 
al. (2011, 2012); 
Roner et al. (2016)  

Plum 
Island 
Estuary 

42°49′N/70°49′W 4.45 m Salt 
marshes 

Water level, 
suspended 
sediment, 
aboveground 
biomass, long-
term mineral 
accretion, long-
term OM accretion 

Coleman & Kirwan 
(2020); Giblin 
(2018, 2019); 
Morris & Sundberg 
(2006, 2020); 
Vallino (2018); 
Wang et al. (2019); 
Wilson et al. (2014) 

Hunter 
Estuary 32°55′S/151°48′E 1.11 m Mangroves, 

salt marshes 

Water level, 
suspended 
sediment, long-
term mineral 
accretion, long-
term OM accretion 

Howe et al. (2009); 
Sandi et al. (2018); 
Rodríguez et al. 
(2017) 

For Venice Lagoon, we used observed water level, suspended sediment and significant 
wave height and benchmark bottom shear stress estimates from a 2-D hydrodynamic 
model Wind Wave Tidal Model (WWTM) (Carniello et al., 2011) at two tidal flat stations 
(1BF: -1.1 masl; 2BF: -2.1 masl) for model evaluation. For Plum Island Estuary, we used 
observed water level at the channel (-0.73 masl) and marsh edge (1.25 masl) of Nelson 
Island, observed suspended sediment at the channel (-1.45 masl) and marsh interior 
(1.69 masl) of Law’s Point, observed mineral accretion at three saltmarsh stations (LAC: 
a Spartina alterniflora-dominated high saltmarsh with an elevation of 1.1 masl; LPC: a 
Spartina patens-dominated high saltmarsh with an elevation of 1.4 masl; MRS: a Spartina 
alterniflora-dominated high saltmarsh with an elevation of 0.89 masl), and observed 
aboveground biomass at LAC and MRS for model evaluation. For Hunter Estuary, we 
used benchmark estimates of water level and suspended sediment at four stations 
(channel: 0.22 mAHD; mangrove edge: 0.05 mAHD; mangrove interior: 0.38 mAHD; 
saltmarsh edge: 0.65 mAHD) of the wetland for model evaluation. For a specific site, 
when validating our model over a station, we always chose the grid cell with the closest 
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elevation to the station for comparison. For the model, mineral accretion is defined as the 
long-term average of net sediment deposition in the units of kg m-2 yr-1 and OM accretion 
is defined as the long-term average of net OM deposition in the units of kg C m-2 yr-1. To 
compare with the observed mineral accretion, the modeled long-term average of net 
sediment deposition is divided by sediment bulk density. 

 
Figure 4. The elevation of 1-D MACES transects (solid lines) for Venice Lagoon, Plum 
Island Estuary and Hunter Estuary. Horizontal dash lines represent sea levels and vertical 
dash lines represent the ocean edge of coastal wetland. 

3. Results 

3.1. Venice Lagoon 

Modeled hydrodynamics at Venice Lagoon were validated during two periods 
(12/10/2002–12/11/2002 and 4/2/2003–4/4/2003) when the boundary conditions were 
very different (Figure 5). The high tide and maximum wind speed in the second period 
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were 64 cm asl and 17.3 m s-1, respectively, which are much larger than those (38 cm asl 

 
Figure 5. Measured water level and wind speed at the seaward boundary of Venice 
Lagoon during two time periods: 12/10/2002–12/11/2002 and 4/2/2003–4/4/2003. 

and 11.6 m s-1) of the first period. As shown in Figure 6, MACES-hydro performs well in 
reproducing the observed tide and wave dynamics in both periods. The root-mean-
square-errors (RMSE) of simulated water depth at 1BF and 2BF during the low wind and 
tide period are 5.8 cm and 4.2 cm, respectively, which correspond to only 5% and 2% of 
the observed mean water depth. The RMSE of simulated significant wave height at 1BF 
and 2BF during the low wind and tide period are 4.7 cm and 4.6 cm, respectively, which 
correspond to 35% and 19% of the observed mean significant wave height. During the 
morning of 12/10/2002, when wind speed exceeded 11 m s-1, the simulated significant 
wave height reached its peak value at the two stations: 22.6 cm and 39.4 cm, respectively. 
Correspondingly, the simulated bottom shear stress also reached its peak value at the 
two stations: 0.19 Pa and 0.31 Pa, respectively. During the high wind and tide period, the 
simulated significant wave height and bottom shear stress are much higher, which 
probably drove substantial sediment resuspension over tidal flats. On April 3, 2003, when 
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wind speed frequently exceeded 15 m s-1, the simulated significant wave height reached 
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Figure 6. Dynamics of simulated (black) and observed or benchmark (red) water level, 
significant wave height and bottom shear stress at the two stations (1BF and 2BF) of 
Venice Lagoon during two time periods: 12/10/2002–12/11/2002 and 4/2/2003–4/4/2003. 

its peak value at the two stations: 31.4 cm and 52.4 cm, respectively. The difference of 
significant wave height between 1BF and 2BF should be mainly attributed to the 
attenuation of wave energy by friction during the wave movement toward land. As shown 
in Figure 6, the model well reproduced the temporal variability of the benchmark 
estimated bottom shear stress at 1BF and 2BF during the high tide and wind period, with 
RMSE of 0.13 Pa and 0.15 Pa, respectively. In particular, by comparing the temporal 
variability of simulated bottom shear stress, significant wave height and water depth, we 
found that the wave component dominated the generation of the bottom shear stress in 
the high wind and tide period. Notably, the benchmark estimates are based on the 
simulation of WWTM instead of observations, so evaluation of the simulated bottom shear 
stress is marked by some uncertainty. 

 
Figure 7. Comparison of observed column-integrated suspended sediment concentration 
(black) with simulated suspended sediment concentration simulated by seven mineral 
accretion algorithms at the 1BF station of Venice Lagoon during 12/10/2002–12/11/2002. 

During the low wind and tide period, the observed suspended sediment concentration at 
1BF ranged from 7.3 mg l-1 to 92.0 mg l-1 (Figure 7), with one larger peak value occurring 
in the turbulent morning of 12/10/2002 (Figure 5) and one smaller peak value occurring 
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in the morning of 12/11/2002. As shown in the figure, the dynamics of simulated 
suspended sediment varied remarkably among the seven MACES-geomor mineral 
accretion algorithms (OM accretion algorithm is fixed at DA07). Only three algorithms 
(M12, F07 and VDK05) reproduced the observed two peak values of suspended 
sediment. Among them, the algorithm M12 has the lowest RMSE of 12.5 mg l-1. Notably, 
previous studies also demonstrated that the dynamics of suspended sediment in the 
coast is notoriously difficult to model (Le Hir et al., 2007; Temmerman et al., 2003). The 
algorithm DA07 only simulated the larger peak suspended sediment concentration in the 
observations. The simulated suspended sediment by F06, T03 and KM12 is almost 
constant because these algorithms do not represent the sediment resuspension process. 
In MACES, we set the suspended sediment concentration in F06, T03 and KM12 at the 
site’s reference value (9.4 mg l-1) which was extracted from the DIVA database. 

 
Figure 8. Comparison of the MACES-geomor algorithms in simulating mean plant 
aboveground biomass in July 2002 (a), mean annual OM accretion during 2002–2003 
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(b), and mean annual mineral accretion during 2002–2003 (c) over the saltmarsh of 
Venice Lagoon. Black stars in the subplots represent observations. 

With calibration, all MACES-geomor algorithms can predict the observed long-term 
mineral (3.54 mm yr-1) and OM accretion rate (132 gC m-2 yr-1) at the observation station 
of Venice Lagoon (Figure 8). Also, the maximum aboveground biomass of saltmarsh 
species at Venice Lagoon simulated by the OM accretion algorithms M12, DA07, KM12 
and K16 were 1821 gC m-2 yr-1, 1000 gC m-2 yr-1, 1055 gC m-2 yr-1 and 1016 gC m-2 yr-1, 
respectively, which are within the range of 1–3 kg m-2 reported by Tambroni & Seminara 
(2012). Although the simulated mineral accretion by different algorithms converge at the 
observation station, their elevation and gradient across the transect of the saltmarsh 
platform differ importantly (Figure 8c). For the algorithm F06 and KM12, the simulated 
mineral accretion increased moderately along the elevation gradient from the saltmarsh 
edge to the inland area. This is because the suspended sediment concentration was kept 
at a constant value in the two algorithms while the bottom shear stress declined with water 
depth along the elevation gradient. For T03, because sediment deposition is modeled to 
decrease exponentially with the increase of elevation and distance, the simulated mineral 
accretion decreased along the elevation gradient from the saltmarsh edge to the inland 
area. For the other algorithms (M12, F07, VDK05 and DA07), their simulated mineral 
accretion also decreased along the elevation gradient, because strong sediment 
deposition and weak sediment resuspension over the vegetated saltmarsh caused a 
decline of suspended sediment concentration when tidal water advanced landward. 
Notably, although the simulated mineral accretion by the five algorithms (T03, M12, F07, 
VDK05 and DA07) all displays a negative relationship with distance, it differs remarkably 
among the algorithms at different locations. For example, at the saltmarsh edge, the 
simulated mineral accretion rate by DA07 was over 6 mm yr-1 but the value by VDK05 
was less than 4 mm yr-1. Similarly, the simulated OM accretion by the four OM accretion 
algorithms also varied differently over the saltmarsh platform (Figure 8b). In M12, OM 
accretion was larger in the more landward portions of the saltmarsh, but in the other three 
algorithms, it was larger at the saltmarsh edge. As shown in Figure 8a, this spatial 
difference could be mainly driven by the distinct spatial variability of simulated saltmarsh 
aboveground biomass of these algorithms. 

3.2. Plum Island Estuary 

The simulated hydrodynamics at Plum Island Estuary were validated in both summer and 
fall periods (7/19/2017–7/22/2017 and 10/7/2017–10/10/2017) when the boundary 
conditions were different (Figure 9). In the summer period, the tide level varied 
substantially, while the wind speed never exceeded 6 m s-1. In contrast, in the fall period, 
the wind speed sometimes exceeded 8 m s-1, while the tide level varied moderately. For 
both periods, MACES-hydro predicted the dynamics of water depth at both a river channel 
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station (-0.73 masl) and a saltmarsh station (1.25 masl) accurately (Figure 10). The 
RMSE of the simulated water depth at the river channel station were 9.1 cm for the 
summer period and 7.5 cm for the fall period. The RMSE of the simulated water depth at 
the saltmarsh station were 2.2 cm for the summer period and 1.5 cm for the fall period. 

 
Figure 9. Measured water level and wind speed at the seaward boundary of Plum Island 
Estuary during two time periods: 7/17/2017–7/23/2017 and 10/6/2017–10/12/2017. 

 Suspended sediment simulated by MACES-hydro was validated at a river channel station 
(-1.45 masl) and a saltmarsh station (1.69 masl) of Plum Island Estuary for the summer 
period (Figure 11). The model did not reproduce the dynamics of suspended sediment at 
the two stations well, which further emphasizes the challenge of modeling suspended 
sediment over the coastal wetland landscape (Le Hir et al., 2007; Temmerman et al., 
2003). Among the algorithms, the simulated suspended sediment by F06, T03 and KM12 
was set at the site’s reference value (2.7 mg l-1) extracted from the DIVA database. The 
simulated suspended sediment by F07 and VDK05 has similar magnitude compared to 
the observations but the temporal variability of the simulation and observations differed. 
As mentioned in previous studies (Le Hir et al., 2007; Temmerman et al., 2003), the 
spatial heterogeneity of sediment and vegetation characteristics could be the major 
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causes for the low simulation accuracy presented here. Additionally, two limitations in the 
model could also be responsible for the poor simulation skill: 1) the 1-D MACES-hydro 
model does not represent channel processes and the 1-D discretization also probably 
does not reproduce accurately the site domain; and 2) we lack data to set the sediment 
flux across the seaward boundary for this site. 

 
Figure 10. Comparison of simulated (black) and observed (red) water depth at the 
channel station at an elevation of -1.45 masl (a and b) and the Spartina-dominated 
saltmarsh station at an elevation of 1.69 masl (c and d) in Plum Island Estuary during two 
time periods: 7/19/2017–7/22/2017 and 10/7/2017–10/10/2017. 

Despite the limitations in modeling suspended sediment, the MACES-geomor algorithms 
can still well reproduce the observed mineral accretion, aboveground biomass and OM 
accretion at stations of different elevations and saltmarsh species (Figures 12–13). As 
shown in Figure 11a, the mineral accretion algorithms T03, M12 and VDK05 accurately 
predicted the decrease of mineral accretion from the tall Spartina alterniflora-dominated 
low saltmarsh at an elevation of 0.89 masl (MRS: 6.9±0.9 mm yr-1) to the Spartina 
alterniflora-dominated high saltmarsh at an elevation of 1.1 masl (LAC: 5.3±0.1 mm yr-1) 
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to the Spartina patens-dominated high saltmarsh at an elevation of 1.4 masl (LPC: 

 
Figure 11. Comparison of observed column-integrated suspended sediment 
concentration (black) with suspended sediment concentration simulated by seven mineral 
accretion algorithms at the channel station at an elevation of -1.45 masl (a) and the 
Spartina-dominated saltmarsh station at an elevation of 1.69 masl (b) in Plum Island 
Estuary during the period of 7/19/2017–7/22/2017. 

2.3±0.1 mm yr-1). The algorithm F07 predicted the mineral accretion at the MRS and LAC 
stations but underestimated the mineral accretion at the LPC station. The algorithm DA07 
overestimated the mineral accretion at the MRS station but correctly predicted it at the 
LAC and LPC stations. As discussed in Section 3.1, because the concentration of 
suspended sediment was set at a constant value in F06 and KM12 and the bottom shear 
stress declined with the advance of tide water, the simulated mineral accretion by these 
two algorithms was slightly larger in the saltmarsh interior. All the OM accretion algorithms 
successfully predicted the elevation gradient of the mean aboveground biomass of 
saltmarsh species in July 2018 (Figure 12b). They also successfully predicted the 
observed mean OM accretion (69.9±9.4 gC m-2 yr-1) of the saltmarsh within the elevation 
range of 0–1.5 masl (Figure 13). We also tested how the model simulated the seasonality 
of aboveground biomass at the LAC station, which is a Spartina alterniflora-dominated 
high saltmarsh (Figure 12c). Among the four OM accretion algorithms, only DA07 and 
KM12 represent the seasonal variability of aboveground biomass using sinusoidal 
functions of month or day of year. As shown in the figure, this sinusoidal-function-based 
approach performed much better in simulating the aboveground biomass of saltmarsh in 
summer and fall but severely overestimated it in spring. 
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Figure 12. Comparison of the MACES-geomor algorithms in simulating mean annual 
mineral accretion at the station MRS, LAC and LPC during 2017–2018 (a), mean plant 
aboveground biomass in July 2018 at three elevation ranges (b), and monthly mean plant 
aboveground biomass during 2017–2018 at the LAC station (c). Bars in the subplots 
represent observations. 
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Figure 13. Comparison of simulated and observed average OM accretion within the 
elevation range of 0–1.5 m at the saltmarsh of Plum Island during 2017–2018. M12, 
DA07, KM12 and K16 are four different OM algorithms. 

3.3. Hunter Estuary 

The hydrodynamics simulated at Hunter Estuary where the tidal range mangrove species 
reside in low elevations and saltmarsh species reside in high elevations were validated in 
the period of 9/28/2004–9/30/2004 with dynamic water level and suspended sediment 
boundary conditions (Figures 14a and 14b). During the period, MACES-hydro well 
reproduced the benchmark estimated water depth at four representative locations of the 
wetland: a river channel station at an elevation of -0.22 mAHD (Figure 14c), a mangrove-
dominated station at an elevation of 0.05 mAHD (Figure 14d), a mangrove-dominated 
interior station at an elevation of 0.38 mAHD (Figure 14e), and a saltmarsh-dominated 
station at an elevation of 0.65 mAHD (Figure 14f). The RMSE of the simulated water 
depth at the four stations are 4.6 cm, 5.4 cm, 2.7 cm and 0.4 cm, respectively. 



PNNL-30523 

 

 
Figure 14. Measured water level (a) and suspended sediment concentration (b) at the 
seaward boundary of Hunter Island Estuary and comparison of simulated (black) and 
benchmark (red) water depth at the channel station at an elevation of -0.22 mAHD (c), 
the mangrove edge station at an elevation of 0.05 mAHD (d), the mangrove interior station 
at an elevation of 0.38 mAHD (e) and the saltmarsh edge station at an elevation of 0.65 
mAHD (f) in Hunter Estuary during 9/28/2004–9/30/2004. 



PNNL-30523 

 

By accounting for the sediment flux from the river inlet of the wetland site (Figure 14b), 
MACES-geomor performed much better in simulating the dynamics of suspended 
sediment at the Hunter Estuary wetland than that at the Plum Island Estuary wetland 
(Figure 15). In particular, the RMSE of the simulated suspended sediment by the 
algorithm F07 at the four stations mentioned above from low to high elevation are only 
1.8 mg l-1, 2.0 mg l-1, 2.5 mg l-1 and 0.3 mg l-1, respectively (we removed data points in 
the comparison when the simulated water depth was zero). The algorithms M12 and 
DA07 also simulated the reduction of suspended sediment with the advance of tide water 
due to sediment deposition. However, it is clear that in these two algorithms, the trapping 
capability of wetland vegetation on suspended sediment is probably underestimated. For 
the algorithms F06, T03 and KM12, as their simulated suspended sediment is not 
influenced by sediment deposition, the dynamics of suspended sediment were fully 
controlled by the boundary conditions. For the algorithm VDK05, although its simulated 
suspended sediment is influenced by sediment deposition, the deposition rate seemed to 
be strongly underestimated at the Hunter Estuary wetland. 
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Figure 15. Comparison of observed column-integrated suspended sediment 
concentration (black) with suspended sediment concentration simulated by seven mineral 
accretion algorithms at the channel station at an elevation of -0.22 mAHD (a), the 
mangrove edge station at an elevation of 0.05 mAHD (b), the mangrove interior station at 
an elevation of 0.38 mAHD (c) and the saltmarsh edge station at an elevation of 0.65 
mAHD (d) in Hunter Estuary during 9/28/2004–9/30/2004. 
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Figure 16. Comparison of the MACES-geomor algorithms in simulating mean annual 
mineral accretion (a) and mean annual OM accretion (b) at the mangrove-dominated 
station at an elevation of 0.56 mAHD in Hunter Estuary in 2004. Black stars in the subplots 
represent observations. 

With calibration, the MACES-geomor algorithms successfully predicted the observed 
long-term mineral accretion (3.66 mm yr-1) and OM accretion (105 gC m-2 yr-1) at a 
mangrove-dominated station at an elevation of 0.56 mAHD in Hunter Estuary (Figure 16). 
As discussed in Section 3.1, although the simulated mineral accretion from all the mineral 
accretion algorithms converges at the observation location, their elevation and distance 
gradient across the wetland platform differ importantly (Figure 16a). For the algorithms 
F06, T03 and KM12, the simulated mineral accretion only changed moderately within the 
tidal range of the wetland. For the other algorithms, the simulated mineral accretion 
declined strongly with the increase of elevation and distance, showing the reduction of 
suspended sediment from the wetland edge to the interior area due to deposition. As 
such, the simulated mineral accretion at the wetland edge differs remarkably among these 
algorithms. Similarly, the elevation and distance gradient of simulated OM accretion are 
very different among the OM accretion algorithms (Figure 16b). In MACES-geomor, the 
spatial variability of simulated OM accretion is mainly controlled by two factors: plant 
aboveground biomass and root:shoot quotient. For example, for M12, because the 
aboveground biomass is modeled as a quadratic function and the root:shoot quotient of 
saltmarsh species is higher than that of mangrove species (Kakeh et al., 2016), the 
simulated OM accretion reached a maximum value at the wetland interior and increased 
at the mangrove-saltmarsh boundary. 

4. Discussion 

4.1. Application of MACES to coastal wetlands of diverse environments 

Coastal wetlands are an important ecosystem type spanning broad geographic regions, 
from tropical and subtropical mangroves, midlatitude saltmarshes to arctic coastal tundra 
(Keddy, 2000). Through the comprehensive validations described above, we showed that 
the multiple-algorithm model framework we developed has the potential to predict the 
eco-geomorphology of coastal wetlands in diverse environments. First, the three 
validation sites are representative for a large spectrum of coastal wetlands on earth. They 
include the most common plant species of coastal wetlands that were widely studied for 
assessing the response of ecosystem to SLR (Crase et al., 2013; Day Jr et al., 1999; 
Kirwan & Mudd, 2012; Liu et al., 2020; Morris et al., 2002; Mudd et al., 2010; Temmerman 
et al., 2003b): Spartina alterniflora, Spartina patens, Puccinellia palustris, Spartina 
maritima and Avicennia marina. These three sites are also located in zones of different 
tidal ranges (microtidal and macrotidal) and climate (Mediterranean climate, humid 
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continental climate and humid subtropical climate). Additionally, very few modeling 
studies of eco-geomorphology have included both saltmarshes and mangroves. Second, 
our model accurately predicted the dynamics of water depth over the entire wetland 
domain for all the three sites. Accurate simulation of water depth over the wetland domain 
is important for projection of many wetland eco-geomorphological processes such as 
mineral accretion, primary production and landward migration under future SLR (Kirwan 
& Mudd, 2012; Reyes et al., 2000; Rodríguez et al., 2017). Third, beyond the prediction 
of mineral and OM accretion at single locations, the model framework is also able to 
predict the elevation and distance gradient of mineral and OM accretion over the wetland 
domain. 

Importantly, a particular advantage of this multiple-algorithm framework is that it allows 
the selection of appropriate eco-geomorphology algorithms for coastal wetlands of 
different environments. As the model validations implied, it is very unlikely that single 
algorithms of mineral accretion, OM accretion and other eco-geomorphological processes 
can work well for all coastal wetlands across the globe. Instead, a possibly better strategy 
is to use data to inform the selection of different optimal algorithms for coastal wetlands 
of different environments. Currently, there have already been many published datasets 
of mineral and OM accretion from coastal wetlands across broad regions (Breithaupt et 
al., 2012; Chmura et al., 2003; Crosby et al., 2016; Lovelock et al., 2015; Parkinson et 
al., 2017). The next step would be to identify and survey geographic and ecological factors 
that are crucial for the classification of coastal wetlands. We believe that the development 
of this multiple-algorithm coastal wetland eco-geomorphology framework can greatly 
facilitate this optimization strategy in global applications. 

4.2. Impacts of algorithm-level uncertainties on modeling coastal wetland eco-
geomorphology  

Our numerical experiments at the three coastal wetland sites revealed substantial 
algorithm-level uncertainties in mineral and OM accretion models that could have 
significant impacts on the projection of the response of coastal wetlands to future 
environmental changes. For example, since landscape elevation usually increases from 
the wetland edge to the interior area, more sediment may be trapped at the edge of 
coastal wetlands to buffer the influence of SLR. As indicated in the analysis of Plum Island 
Estuary, mineral accretion algorithms that simulate clear elevation gradients of sediment 
deposition probably provide more realistic projections of mineral accretion and thus the 
ecosystem’s habitat change. In contrast, although F06 and KM12 were widely used in 
previous studies (French, 2006; Kirwan & Mudd, 2012; Schuerch et al., 2013; 
Temmerman et al., 2003a), they would likely underestimate the capability of saltmarshes 
to cope with SLR if sediment supply is sufficient because they simulate nearly uniform 
sediment deposition within the vegetated periodically flooded area. Also, comparing the 
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elevation gradient of the simulated mineral and OM accretion, many algorithms simulated 
an increase of the ratio of OM accretion to mineral accretion with elevated topography, 
implying a larger impact of OM accretion to the geomorphological dynamics of coastal 
wetlands in the interior areas. But this spatial pattern does not exist for the mineral 
accretion algorithms F06 and KM12.   

Besides SLR, macroclimatic drivers (particularly air temperature) are also important for 
coastal wetland vulnerability assessments to climate change (Osland et al., 2016). In the 
OM accretion algorithms, only DA07 and KM12 represent the seasonality of coastal 
wetland vegetation growth. Further, only KM12 represents the response of vegetation 
growth to air temperature. For algorithms that do not represent the seasonality of 
vegetation growth, they would inevitably overestimate sediment deposition, OM 
deposition and the shoreline protection potential of coastal wetlands in the cold seasons 
(Schoutens et al., 2019). Importantly, they are unable to fully resolve the impact of climate 
warming on the vulnerability of coastal wetlands. 

Based on our model validations, there are two possible approaches to reduce the 
algorithm-level uncertainty in the simulation of coastal wetland evolution. First, it is 
important to constrain mineral and OM accretion models using observations from at least 
two locations with different elevations and vegetation species in a wetland site. New 
observations should be prioritized to capture such gradients. Second, as discussed in the 
above section, it is better to choose optimal algorithms based on the unique environment 
of specific coastal wetlands. We believe that these approaches would help resolve 
contradicting predictions on coastal wetland evolution under accelerated SLR (Craft et 
al., 2009; Kirwan et al., 2010, 2016; Rodríguez et al., 2017; Schuerch et al., 2018). 

4.3. Limitations and future development 

The model validations reported here showed that the dynamics of suspended sediment 
cannot always be well reproduced by MACES. As discussed in Section 3.2, this model 
deficiency could be caused by the ignoring of channel processes in the 1-D hydrodynamic 
framework and also the possibly imperfect delineation of the coastal wetland transects. 
Since the dynamics of suspended sediment is controlled by some factors that are 
extremely heterogeneous, rather than improving the process parameterizations directly, 
a better strategy may be to use satellite-based suspended sediment data to drive mineral 
accretion algorithms, such as the satellite-borne GlobColour data (http://globcolour.info). 
To improve the delineation of the coastal wetland transect, we plan to use the high-quality 
coastal Digital Elevation Model (CoastalDEM) (Kulp & Strauss, 2018) and the high-
resolution global distribution map of mangroves and saltmarshes compiled by US 
Geological Survey and the World Conservation and Monitoring Centre (http://data.unep-
wcmc.org/) for global applications.  
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Another limitation in the model is the poor representation of aboveground biomass in cold 
seasons. Based on our analysis, this is mainly due to the use of simple sinusoidal 
functions to represent the response of vegetation growth to temperature. To assess how 
this model uncertainty affects the simulation of coastal wetland evolution, we will include 
more comprehensive representations of coastal wetland phenology as those 
implemented in more complex land surface models (Oleson et al., 2013). 
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