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Abstract 
The report presents results from the development of a cloud-based, Big Data analysis 
framework for power systems. The computational pipeline uses the Apache Spark framework 
running in an OpenStack cloud infrastructure. A real-world phasor measurement unit (PMU) 
dataset has been used to carry out the analysis. Several Machine Learning (ML) methods have 
been developed and implemented for event and anomaly detection and classification. Actual 
examples of power system events detection and analysis using synchrophasor data are 
presented. It has been shown that applications of the cloud-based computing environment and 
the Apache Spark framework enable a significant increase in the computational efficiency of 
large-scale PMU data analysis. 
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Summary 
Rising deployments of phasor measurement units (PMUs), smart meters, digital fault recorders 
(DFRs), and other contemporary measurement devices dramatically increase the size of data 
collected by electrical utilities. This digital information is frequently unstructured, has different 
time scales, and is stored on different servers and databases. The size of the collected datasets 
is growing rapidly, which complicates data processing and analysis. However, because the 
collected information contains many insights about the power system’s state and its dynamic 
behavior, extracting this knowledge can significantly increase situational awareness, detect 
system-wide or local anomalies (e.g., under- frequency or voltage events), validate system 
models, and discover/predict equipment malfunctions. 

This report presents results of synchrophasor information analysis conducted on a cloud-based 
Hadoop and Spark Big Data infrastructure. The framework is based on the Pacific Northwest 
National Laboratory’s (PNNL) Institutional Cloud Computing OpenStack installation. The 
Hadoop Distributed File System (HDFS) is used to store the raw PMU information, and then 
Spark is used for data analysis and ML. Analysis results presented here are based on the real 
synchrophasor data provided by the Bonneville Power Administration (BPA). Several statistical 
and ML methods were developed and applied to this synchrophasor dataset to detect different 
types of events (e.g., frequency or voltage) and abnormalities. The aim of this work is to develop 
technologies and techniques that improve power system situational awareness and reliability. 

We apply a set of signal processing and machine learning approaches aiming at deciphering the 
characteristic behaviors of multiple PMU attributes (e.g., voltage, frequency, rate of change of 
frequency, phase angle), including their auto-correlation, cross-dependence, similarities and 
discrepancies across units and temporal scales, and distributions of anomalies and their 
linkages to potential external factors such as weather events. The PMU measurements, 
recorded events, and weather extremes are all from real-world datasets. The findings from the 
study can help understanding the system dynamics. The derived metrics can be directly used 
for adjusting or filtering simulated PMU data used for advanced algorithm development. 

We adopted the Long Short-Term Memory  (LSTM) based Deep Neural Network (DNN) models 
to predict multiple steps ahead and detect abnormal events by address both the spatial and 
temporal variations in PMUs. Different model configurations were evaluated to yield an optimal 
model parameter set for the high resolution, complex, and dynamic PMU dataset. The decent 
relative error is obtained at each testing point which can be used for the abnormal event 
detections.  

We proposed and developed framework features a scoring system for the anomaly detection. 
We also evaluated the effect of an alternative scoring system on our detection framework. 
Compared with the additive scoring system, the alternative multiplicative scoring system is 
much stricter in that the score for each MRA scale at each unit is multiplied to obtain scores of 
either 0 or 1. Using this multiplicative scoring system, both false alarm rate and detection rate 
were reduced.  

We developed and evaluated a deep learning Convolutional Neural Network (CNN) model to 
identify locations and predict types of various faults in the power system. Faults in different 
spatial zones and locations was simulated with four distinct types and used for CNN training and 
testing. The CNN is composed of a number of layers, including convolutional, pooling, dropout 
and dense layer, which are designed to adaptively learn spatial hierarchies of features. 
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Hyperparameter search were performed to determine the optimal model configuration and the 
final model for fault classification and prediction.  

In future work, we plan to continue both a mathematical and software enhancement of this 
framework’s functionality by adding new analytical modules and additional data sources, like 
supervisory control and data acquisition (SCADA) data, and also weather information. We are 
also going to shift from PNNL institutional cloud to Amazon AWS or Microsoft Azure cloud 
platform to improve computational performance of the developed analytical framework.  
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Acronyms and Abbreviations 
ACF Auto-correlation function 
API Application programming interface 
ASOS Automated Surface Observing Systems 
BPA Bonneville Power Administration 
CDF Cumulative distribution function 
CNN Convolutional Neural Network 
DFR Digital fault recorder 
DNN Deep Neural Network 
DOE (U.S.) Department of Energy 
EIOC Electricity Infrastructure Operations Center 
HDFS Hadoop Distributed File System 
HPC High-performance-computing 
IaaS Infrastructure-as-a-Service 
LSTM Long Short-Term Memory 
ML Machine Learning 
MRA Multi-resolution analysis 
NOAA National Oceanic and Atmospheric Administration 
PACF Partial autocorrelation function 
PCA Principal component analysis 
PMU Phasor Measurement Units 
PNNL Pacific Northwest National Laboratory 
ROCOF Rate of change of frequency 
RMSE root mean square error 
SQL Structured query language 
SNR Signal to noise ratio 
WECC Western Electricity Coordinating Council 
WT Wavelet Transform (also called wavelet decomposition) 
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3.0 Introduction 
Rising deployments of phasor measurement units (PMUs), smart meters, digital fault recorders 
(DFRs), and other contemporary measurement devices dramatically increase the size of data 
collected by electrical utilities (Akhavan-Hejazi and Mohsenian-Rad 2018, Kezunovic et al. 
2020, Wang et al. 2016). This digital information is frequently unstructured, has different time 
scales, and is stored on different servers and databases. The size of the collected datasets is 
growing rapidly, which complicates data processing and analysis. However, because the 
collected information contains many insights about the power system’s state and its dynamic 
behavior, extracting this knowledge can significantly increase situational awareness, detect 
system-wide or local anomalies (e.g., under- frequency or voltage events), validate system 
models, and discover/predict equipment malfunctions. 

For the past decade, technologies for Big Data analytics, cloud computing and machine learning 
(ML) have been developing very rapidly, and have been applied in many different engineering 
areas, including power system studies (Zhou et al. 2016, Vajjala 2016). New methods and 
computer frameworks for Big Data collection and analysis are based on distributed storage and 
parallel processing of information. Many of the Big Data analytical frameworks are open-source 
software projects, making it possible to apply this technology to an organization’s existing 
commodity computing infrastructure without incurring new licensing costs. The per-unit cost of 
hardware components (e.g., central processing units, memory, and storage) has decreased 
dramatically as a function of computational performance. Combined with the lack of licensing 
costs for the state-of-the-art analytic solutions for Big Data analysis, it allows for use of either 
on-premise or Infrastructure-as-a-Service (IaaS) computer clusters by a broader community of 
researchers and industrial customers. In addition, popular commercial cloud services offered by 
multiple providers (e.g., Amazon Web Services, Google Cloud, Microsoft Azure, etc.) take this 
abstraction even further with the Platform-as-a-Service (PaaS) and Software-as-a-Service 
(SaaS) business models, which feature a high-degree of customization and a variety of pre-
packaged solutions for both data management, analytics, visualization, long-term secure 
storage, and many other operational and mission-impacting concerns.  

The Apache Hadoop (Apache 2017) framework has been successfully used as a foundation by 
many software solutions for distributed data analysis. An active community of Hadoop 
developers produced a thriving open-source software ecosystem for high-performance data 
analysis. It distributes (i.e., partitions) large datasets across multiple storage and computation 
nodes within a computer network. Using many common Hadoop-inspired technologies, Apache 
Spark is a popular and widely-used open source framework for Big Data analysis and ML 
(Apache 2020). ML is a method of data analysis that automates analytical model-building. ML 
techniques could build general analytical models based on the data analysis and find hidden 
insights without being explicitly programmed for each specific problem. Moreover, an ML engine 
can continuously improve its model from new data. Spark is based on a high-performance 
distributed memory architecture and it achieves exceptional performance in parallel data 
processing. Together, Spark and Hadoop have been used in different areas including power 
system applications (Zhou et al. 2015, Šutić and Varga 2017). 

This report presents results of synchrophasor information analysis conducted on a cloud-based 
Hadoop and Spark Big Data infrastructure. The framework is based on the Pacific Northwest 
National Laboratory’s (PNNL) Institutional Cloud Computing OpenStack installation. The 
Hadoop Distributed File System (HDFS) is used to store the raw PMU information, and then 
Spark is used for data analysis and ML. Analysis results presented here are based on the real 
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synchrophasor data provided by the Bonneville Power Administration (BPA). Several statistical 
and ML methods were developed and applied to this synchrophasor dataset to detect different 
types of events (e.g., frequency or voltage) and abnormalities. The aim of this work is to develop 
technologies and techniques that improve power system situational awareness and reliability. 
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4.0 Synchrophasor Data Analytical Framework 
4.5 Computer cluster  
PNNL’s Institutional Cloud Computing system is based on the OpenStack open-source platform 
(OpenStack 2019) for cloud computing, and the Hadoop and Spark computational environment 
is provided by the Cloudera Express distribution (Cloudera 2020). The computer cluster network 
topology used in this study is shown in Figure 2. It consists of 20 nodes including one master 
head node. Each node is equipped with eight core processors, 32 GB of RAM, and 100 GB of 
disk storage space. Apache Spark for Big Data analysis and ML (Apache 2020), and the 
Apache Hive based structured query language (SQL) interface  for data storage, management 
are configured through the Cloudera Manager. 

 
Figure 1. Computer cluster network configuration. 

 
Our system’s main functional components are diagrammed in Figure 2. PNNL receives the 
synchrophasor measurements as a real-time data stream from BPA, storing it at the PNNL’s 
Electricity Infrastructure Operations Center (EIOC) (PNNL 2020) as a set of PDAT-formatted 
files. The PDAT format was developed by the BPA, and is used to capture PMU measurements 
from multiple devices in binary files (the format is based on the IEEE Standard C37.118.2-2011 
data frames) (Faris , IEEE 2011). Each file contains one minute of PMU data, collected at the 60 
samples per second rate. An approximate size of the dataset as a function of time is given in 
Table 1. 
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Figure 2. Suite of open source tools 

 
Table 1. Approximate dataset size 

1 minute 1hour 1 day 1 month 1 year 
5 MB 300 MB 7.2 GB 216 GB 2.6 TB 

 

4.6 Data extraction 

 
All the PDAT files with the synchrophasor data are stored and distributed among the cluster 
nodes via the Hadoop Distributed File System (HDFS). The Python programming language, 
because of its wide use by the Data Science community and the availability of a large number of 
open-source data-processing modules, was selected as the programming environment for our 
data processing pipeline. The pipeline itself is split into several stages, and the interaction with 
the Spark execution engine is implemented using the PySpark binding. The first processing 
stage reads data from the HDFS hosted PDAT binary files and creates Spark data frames 
(Apache 2020). Here, the use of Spark enables significantly increased speed of data extraction 
(extraction of a one-hour dataset takes only 10-12 seconds compared to the 3-5 minutes 
required on a single personal computer).  
 
As part of the second stage of data analysis, the Spark-processed data frames are saved as Hive 
tables in order to enable the use of Spark SQL application programming interface (API). Our 
design enables external modules, such as MS Windows standalone applications or web-based 
graphical user interfaces, to interact with Hive directly, further increasing the number of analytic 
and visualization options that can benefit from the cloud-based system architecture. 
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5.0 ML Methodology 
5.5 Spatiotemporal pattern recognition in PMU signals 

We apply a set of signal processing and machine learning approaches aiming at deciphering the 
characteristic behaviors of multiple PMU attributes (e.g., voltage, frequency, rate of change of frequency, 
phase angle), including their auto-correlation, cross-dependence, similarities and discrepancies across 
units and temporal scales, and distributions of anomalies and their linkages to potential external factors 
such as weather events. Data analytics are applied to PMUs from the U.S. Western Electricity 
Coordinating Council (WECC) system. The PMU measurements, recorded events, and weather extremes 
are all from real-world datasets. The findings from the study and mechanistic understanding of the PMU 
dynamics help provide guidance on system control or preventing blackouts. The derived metrics can be 
directly used for adjusting or filtering simulated PMU data used for advanced algorithm development. 

5.5.2 Time series pattern recognition  

Auto-correlation analysis is used to look at temporal continuity and periodicity in the PMU data 
series. Auto-correlogram, also called serial correlation, is the correlation of a time series 
sequence with a delayed copy of itself as a function of lag or delay. It measures the similarity 
between observations as a function of the time lag between them. The autocorrelation analysis 
extracts repeating patterns, such as the presence of a periodic signal obscured by noise or 
identifies the missing fundamental frequencies. The partial autocorrelation function (PACF) 
gives correlation of a stationary time series with its own lagged values, regressed the values of 
the series at shorter lags and helps determine the appropriate lags in the autoregressive 
patterns.  

Time-series auto-correlation and partial auto-correlation analyses are summarized for the 
multivariate PMU attributes across different months. Both the auto-correlation function (ACF) 
and partial ACF (PACF) quantify the strength of a relationship with an observation in a time 
series with observations at prior time steps with different time lags; but the latter tries to remove 
the indirect correlations. They are used together to determine the strength of temporal continuity 
and existence of periodicity in the PMU signals. The generality and transferability of these 
continuity characteristics are further evaluated with respect to temporal factors such as hour of 
the day or seasons. These information help provide guidance on short-term anomaly detection 
and/or mid- to long-term prediction. Figure 3 shows that the two hours on the same day can 
have quite different temporal continuities. Here we define a measure of such continuity called 
correlation range, which is the time lag beyond which the auto-correlation values drop below a 
threshold (i.e., 0.05). For the two example hours, such correlation ranges are 520 seconds and 
260 seconds, respectively. The second hour has much weaker temporal continuity.   
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Figure 3. ACF for two randomly selected hours on the same day with different temporal 

continuity. The blue deshed line is the threshold 0.05. 

 
Figure 4. Continuity – correlation ranges of PMU frequency in left panel and voltage in right 

panel, based on ACF analysis. 

Figure 4 summarizes the correlation ranges of PMU attributes as a function of hour of a day 
during different months. The daily pattern in PMU frequency is obvious with larger correlation 
ranges (around 600 seconds), that is, stronger continuity in the morning but 400-500 seconds 
correlation range (weaker continuity) in the afternoon. This is related to the relatively larger 
power system variability in the afternoons during the months of study. However, the other PMU 
attribute, voltage, is having a different but also consistent patterns across months. It has 
stronger continuity during the middle of the day (correlation range 600-1000 seconds), but 
weaker continuity at nights (correlation range 400-700 seconds). But note that the correlation 
range metric is varying from hour to hour for the PMU voltage. PACF provides guidance on the 
order of auto-regressive models for prediction purposes. Here PACF indicates that these PMU 
attributes is following an autoregressive order 1 (AR(1)) model. These correlation ranges and 
AR model order should be among the metrics for guiding anomaly detection, classifying and 
labeling anomalies, verifying extracted temporal patterns, or evaluating and filtering simulated 
PMU data.  
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Figure 5. The wavelet spectra of PMU attributes at unit #5. (a) the decomposed coefficients at 
various temporal scales for PMU frequency for the day September 14; (b) the corresponding 

wavelet power distribution; (c) the extracted dominant hourly component; (d) the decomposed 
coefficients at various temporal scales for PMU voltage for the day September 14; (e) the 

corresponding wavelet power distribution; and (f) the extracted dominant hourly component.  

Wavelet decomposition (WT) has widespread use in speech and image processing as well as 
time series analysis and is suited to nonstationary signals. The forward transformation 
separates the original signals into multiple components. At each step, the signal is decomposed 
simultaneously using a high-pass filter h and a low-pass filter g, resulting in detail coefficients 
and approximation coefficients (the remaining mixed signal), respectively. WT extracts dominant 
component in a mixture signal and localizes anomalies at multiple temporal scales (Daubechies 
1992). In addition, signal to noise ratio (SNR) analysis are conducted to extract and summarize 
the SNR attributes to complement the wavelet spectral information in the frequency domain. 

The ACF analysis shows that the correlation ranges are within one hour, which means that for 
detecting short-duration events, one does not need to look beyond one hour of data which 
would involve unnecessary computational burden; but in order to understand mid- to long-term 
behaviors, wavelet spectra analysis (see Fig. 5b and 5e) tells us that hourly, daily, even weekly 
signals should be examined. Figure 5e and Figure 5f also show that the hourly component is not 
just sinusoidal, but rather having higher peaks during mid-day time periods. These components 
are attributed to potential external drivers such as weather attributes. Both PMU and weather 
attributes can be wavelet-decomposed to help evaluate their associations at matching temporal 
scales.  

In addition, we perform signal to noise ratio (SNR) analysis and extracted/summarized the SNR 
attributes as a complementary metric to the wavelet spectra. The autoregressive AR(1) low-
frequency noise is generated with the maximum power spectrum 0.08  and applied to compute 
the SNR of PMU frequency and voltage signal for hours of a day in Figure 6. The ratios of SNR 
are relatively stable for frequency signals which vary within 1dB, but still have the two higher 
SNR peaks during the earlier morning and later mid-day and lower SNR at mid-day. For the 
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voltage attribute, both the values and variations of SNR ratios are much higher and subject to 
larger ranges.   

The SNR ratios in both frequency and voltage attributes vary with months but are consistent 
across the units. SNR is another useful and commonly used measure particularly for 
characterizing the level of noises in the data. The measure can be directly used for adding 
noises to PMU data generated by physics-based data simulators, with the purpose to augment 
the existing PMU databases to be adequate for reliable artificial intelligence model development 
and evaluations.  

 
Figure 6. The diuanal rythem of SNR obtained from frequency and voltage PMU attributes for 

different months. 
 

5.5.3 Similarities and differences across units 

PCA is used to evaluate the similarities and differences across the PMU units, that is, the spatial 
cross-dependence. A scree plot is used to determine the number of principal components 
needed to capture the major variability in the data matrix. A biplot may show clusters of samples 
based on their similarity, and with loading projections to show how strongly each characteristic 
influences a principal component. Figure 7 is a summary of block-wise (5-min time window-
based) PCA results. It is an example of tracking the real-time changes of PMU signal behavior, 
in terms of the system complexity (number of critical principal components and their relative 
contributions) and similarity (clustering). From Figure 7Figure 5, PMU frequency is generally 
dominated by the first two or three components, and the units can be grouped into 3-4 groups 
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based on their similarities, and such groups are spatially coherent as geographically-adjacent 
units tend to be clustered together. These findings have two implications: (1) although the units 
have strong cross-dependence given the nature of power system, there are still local/regional 
behaviors of PMUs that subject to local/regional external factors such as weather impacts; (2) 
for simulation-based data augmentation, the computational effort can be reduced by simulating 
cluster behaviors then superimposing within-cluster variabilities.  

Figure 7 also shows that the relative changes and contribution/dominance of the first four 
principal components are changing but very slightly with time, and such changes are more 
related to the hour to hour variations in the original signals, but not much affected by the 
occurrences of a number of recorded events each of which lasts about 20 seconds. Therefore, 
although there are many practices using PCA for anomaly detection, one can use PCA for 
anomalies at the corresponding dominant temporal scales, but not for real-time PMU pulse 
event detection.  

 
Figure 7. Block-wise PCA.  Top row shows the rough spatial locations of the units, scree plot, 

biplot, auto-correlation, respectively. The bottom row shows the changes of the first four 
principal components with respect to time. A 5-min moving window is used to conduct PCA. 

5.5.4 Similarities/discrepancies between days/months  

Next, we look at the deviations of time series under different conditions (e.g., days, seasons), 
and use Taylor Diagram to integrate/compare differences in phase angle and magnitude, and 
combines Pearson correlation, root- mean-square error, and individual standard deviations. The 
time series are grouped in clusters based on distances (combined similarity measure) on the 
diagram. Figure 8 shows that angle differences change dramatically from day to day, around -10 
on Nov 1 but around -25 on Nov 5, and there seems to be a gradual shift day by day and 
beyond a week. This suggests the lack of mid-term continuity and periodicity in the PMU data. 
The long-term behaviors are expected to be attributed to factors at the corresponding scales 
associated with weather attributes. The between-day variability is bigger than within-day 
variation ranges in magnitudes but not in phases (patterns), although Nov 6 behaves differently 
representing a change of system status. Taylor Diagram also shows that when cross-correlation 
coefficient goes up to 0.6 in a cluster, their deviations in terms of root mean squared errors are 
not necessarily small. 
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Figure 8. PMU angle difference time series during several adjacent days, and the corresponding 

Taylor Diagram. 

5.5.5 Companion of Weather and PMU Anomalies  

Next, we identify and localize anomalies using Multiresolution Analysis (MRA)-based anomaly 
detection (Ren et al. 2018), given potentially strong impacts of weather extremes on the PMU 
signal anomalies at various temporal scales.  

Weather data at adjacent weather stations are downloaded from Automated Surface Observing 
Systems (ASOS) under National Oceanic and Atmospheric Administration (NOAA). The 
weather attributes including precipitation, temperature, wind speed, gust, humidity, pressure, 
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and so on, have been analyzed using a measure of outliers’ likelihood calculated over a range 
of the observations. In this study, although wind gust has a clear and easy-to-interpret linkage to 
the identified PMU anomalies (with deviations and durations passing pre-set anomaly 
thresholds), other attributes, particularly their extracted anomalies, have good matches with 
PMU anomalies as well, as shown in Figure 9.  

Figure 9 shows the recorded actual historical PMU events (red lines) and the weather events 
(green triangles) and durations of weather events (blue dashed lines by lumping the adjacent 
weather anomalies). As the recorded PMU events have a high chance of occurring with weather 
anomalies and usually occur at certain durations into the identified weather events, the identified 
weather anomalies can serve as an early awareness indicator. Quantitatively, the conditional 
probabilities of PMU event occurrences can be derived and integrated with anomalies classified 
from weather forecast for anomaly prediction purpose or for adding pulse event signals to the 
normal condition time series generated in PMU data simulation efforts, such that the simulated 
data contains appropriate timing and realistic probability of pulse inputs (non-noises) to the 
signals. It is expected that anomalies added this way are similar within a cluster with similar 
weather factor(s) or climate types. 

 

 
Figure 9. Correspondence of localized anomalies with extreme weather events, the green 

triangle dot is the extreme weather event obtian from the ASOS monitoring, the blue dashed line 
shows the timing and duration of the weather anomalies by lumping the adjacent anomalies 

identified. 

5.6 Offline anomaly detection  

The wavelet transform separates 1-D signals into 2-D components overlapping in time-
frequency domain. The wavelet techniques have been widely used because of its multiple time-
frequency resolution (Mallat 1999, Lounsbery, DeRose, and Warren 1997). Wavelet transforms 
has been proven to be very efficient (Benedetto and Li 1998) in signal analysis with the 
reduction of coefficients numbers as the scaling factor increases. Discrete wavelet transform 
(DWT) is sufficient to decompose and reconstruct most power quality problems, which can 
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provide information adequately and efficiently (Gaouda et al. 1999). Wavelet-based anomaly 
detection has been successfully applied for detecting network anomalies (Alarcon-Aquino and 
Barria 2001, Lu and Ghorbani 2009, Aradhye et al. 2004, Wang et al. 2013, Bhuyan, 
Bhattacharyya, and Kalita 2014) for various systems and problems. Wavelet-based multi-
resolution analysis (MRA) uses wavelet function and scaling function to decompose and 
construct the signal at different resolution levels. The anomaly phenomena can be detected and 
localized at each resolution level.  

5.6.2 Multi-resolution analysis (MRA)  

Wavelet process using DWT can filter the input signal with lowpass and highpass filters. 
Lowpass filter is defined by scale function, that is, 

𝜑𝜑𝑗𝑗,𝑘𝑘(𝑥𝑥) =  2
𝑗𝑗
2𝜑𝜑�2𝑗𝑗𝑥𝑥 − 𝑘𝑘�  (1) 

where 𝑘𝑘 is the translation coefficient and j is the scale factor (Mallat 1989). The expansion 
function of any subspace can be built from double-resolution copies of themselves, so the 
scaling function can be transformed to (Burrus, Gopinath, and Guo 1997) 

𝜑𝜑(𝑥𝑥) =  ∑ ℎ𝜑𝜑(𝑛𝑛)𝑛𝑛 √2𝜑𝜑(2𝑥𝑥 − 𝑛𝑛)  (2) 

where ℎ𝜑𝜑 is the scaling function coefficients. The highpass filter is defined by wavelet function, 
that is 

𝜓𝜓𝑗𝑗,𝑘𝑘(𝑥𝑥) =  2
𝑗𝑗
2𝜓𝜓�2𝑗𝑗𝑥𝑥 − 𝑘𝑘�  (3) 

Then it can be expanded to   

𝜓𝜓(𝑥𝑥) =  ∑ ℎ𝜓𝜓(𝑛𝑛)𝑛𝑛 √2𝜓𝜓(2𝑥𝑥 − 𝑛𝑛)  (4) 

where ℎ𝜓𝜓 is the wavelet function coefficients. The DWT decomposes signals into its 
approximation (A) and detail (D) components, respectively. Approximation of the signal at 
resolutions 2−𝑗𝑗 , 𝑗𝑗 = 0, 1, 2 … can be obtained at decreasing levels of details. A detailed theory of 
MRA has been developed by Meyer (Meyer 1985), and can be mathematically presented as 

𝑓𝑓(𝑥𝑥) =  ∑ 𝐶𝐶𝑜𝑜(𝑛𝑛)𝜑𝜑(𝑥𝑥 − 𝑛𝑛) +𝑛𝑛

∑ ∑ 𝐷𝐷𝑗𝑗(𝑛𝑛)2
𝑗𝑗
2

𝑗𝑗−1
𝑗𝑗=0𝑛𝑛 𝜓𝜓�2𝑗𝑗𝑥𝑥 − 𝑛𝑛�  (5) 

  

where 𝐶𝐶𝑜𝑜 is the 0 level scaling coefficient and 𝐷𝐷𝑗𝑗 is the wavelet coefficient at scale j. The scaled 
and translated wavelet 𝜓𝜓�2𝑗𝑗𝑥𝑥 − 𝑛𝑛� in MRA is decomposed signals in time-frequency domain. 
Orthogonal wavelets expanded by 2𝑗𝑗 carry signal variations at the resolution 2−𝑗𝑗. A number of 
wavelet families have been developed with different characteristics, and a well-known family is 
Daubechies (db) (Avdaković and Čišija 2015). In our paper, Haar (db1) wavelet is employed in 
the MRA. Haar’s wavelet has 1 moment of wavelet function which has linear phase and 
complete localization in time domain (Avdaković and Čišija 2015) (Daubechies 1992).  
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5.6.3 Wavelet-based anomaly detection framework  

We used a 30-day real-world PMU datasets to test our framework.  32 historical events were recorded 
during the 30-day testing time period. We analyzed four attributes including the voltage, angle variation, 
frequency and ROCOF for each PMU dataset. In general, the ROCOF attribute has nosier signals than 
the rest attributes and the detected candidates have weak spatiotemporal correlations. As observed in 
(Konakalla and de Callafon 2016), ROCOF has large variance which reduces the event detection 
accuracy due to sensor and grid dynamics. The angle variation attribute contains similar and relative 
redundant information to the frequency attribute because the frequency is derived from the angel 
variation. Therefore, it is warranted to focus on the voltage and frequency attributes for event detection in 
this study. The framework of wavelet-based anomaly detection and classification is illustrated in Figure 
10.  

 

 
Figure 10. Wavelet-based PMU anomaly detection and classification framework. 

 

5.6.4 Anomaly detection and classification  
 

The developed detection framework was applied to the actual western interconnection 
synchrophasor data. The raw PMU signals were down-sampled to 1Hz, so the time resolution 
for the MRA procedure was 1 second, and the first three levels of MRA, D1, D2 and D3, have 
resolutions of 2-, 4- and 8-seconds, respectively. The 2-D time-frequency representation of real-
world PMUs has significant benefits compared to the regular 1-D data in time domain for event 
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detection perspective. Figure 11 illustrates MRA and moving-window outlier detection results for 
the first unit of PMUs (PMU1) using the frequency attribute. Given the observations of the signal 
and detailed wavelet coefficients, the events are more evidenced from the D3, D2, and D1 
coefficients than from the original, therefore, it helps increase event localization accuracy. This 
increase with detail coefficients is the key-component of our event detection algorithm. The 
recorded historical events were marked in red in Figure 11(a), which shows that the anomalous 
candidates have been identified at each resolution level using our proposed detection 
framework. 

In this study, we used a 30-day real-world PMU datasets to test our framework.  32 historical 
events were recorded during the 30-day testing time period. We analyzed four attributes 
including the voltage, angle variation, frequency and ROCOF for each PMU dataset. In general, 
the ROCOF attribute has nosier signals than the rest attributes and the detected candidates 
have weak spatiotemporal correlations. As observed in (Konakalla and de Callafon 2016), 
ROCOF has large variance which reduces the event detection accuracy due to sensor and grid 
dynamics. The angle variation attribute contains similar and relative redundant information to 
the frequency attribute because the frequency is derived from the angel variation. Therefore, it 
is warranted to focus on the voltage and frequency attributes for event detection in this study. 

 
Figure 11. An MRA example using PMU 1 frequency attribute. The detected events at each 

scale are marked in red. 
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In our study, all recorded events have been detected with high scores. For example, Figure 
12(a) illustrates one event occurred at all 12 units, which is detected based on the frequency 
attribute. At the time of event, the frequency amplitude jumped from 59.96 to 60.01 Hz within 10 
seconds. The 12 units behave consistently at the event resulting in strong spatial correlations. 
This indicates systematic behavior and area-wide situation to be aware of. The same event was 
also detected from the voltage attribute with strong correlations across all units as shown in 
Figure 12(b). The amplitude of voltage for each unit increased by over 1000 Volts within 10 
seconds. After the event, the voltage gets stabilized, but not necessarily return to the voltage 
level prior to the event. 
 
       
 

 

 

 
Figure 12. An example of abnormal event occurred across all units for (a) frequency attribute; 

(b) voltage attribute. The detected events for each unit are marked in red. The recorded 
historical events are marked in green. 

 

PCA were applied to evaluate and classify the identified events. The PCA result is illustrated in 
Figure 13. The left panel shows the first two principal components of three attributes (voltage, 
angle variation and frequency). The events can be grouped easily based on the Biplot, for 
example, anomalies #83, #108, #109 and #142 have outstanding differences in both frequency 
and angle variation compared to other anomalies; while anomalies #11 and #141 have 
outstanding voltages among the anomalies. Another unsurprising observation is that angle 
variation has strong correlation with frequency, and the two have redundant information with 
very similar behaviors contributing mainly to the first principal component. The variability of 
voltage is the major contributor to the second component. By removing the redundant angle 
variation in PCA, the voltage and frequency are nearly orthogonal factors as shown in the right 
panel in Figure 13. PCA helps classify the identified events to be either frequency-related or 
voltage-related. However, there are a few exceptions, for example, events #2, #85, #113 and 
#116 are clearly identifiable using both frequency and voltage factors. And three of them were 
actually the historical recorded events which were detected using both voltage and frequency 
attributes. 

 
(a) (b) 
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Figure 13. PCA Biplots of detected events using different PMU attributes. The historical 

recorded events are circled in blue. 

5.7 Online anomaly detection  
 

Dynamical machine learning solutions including state space model and Kalman filter are 
presented in this study to learn the nonlinear and nonstationary PMU measurements and 
accurately predict system behaviors in real-time. The anomalies can be detected within seconds 
by comparing the predicted system behaviors with the real system observations. The method 
proposed in this framework uses PMU data with a given time window (e.g., 5 seconds) using a 
dynamic nonlinear model, and then predicts system behaviors during the following time window. 
High prediction accuracy is achieved by applying the dynamic nonlinear model to the real-world 
PMU measurements – the anomalies detected are successfully validated given the recorded 
real-world events. High-performance-computing (HPC) techniques are utilized to further reduce 
computational time to provide real time power system situational awareness.  

5.7.2 State space model 

General dynamic linear models are a particular class of state space model which can be 
formulated by observation and model equations. 

𝑦𝑦𝑡𝑡 =  𝐹𝐹𝑡𝑡𝜃𝜃𝑡𝑡 +  𝜗𝜗𝑡𝑡 , 𝜗𝜗𝑡𝑡  ~ 𝑁𝑁(0,𝑉𝑉𝑡𝑡)yt=Ftθt+ϑt,ϑt~N(0,Vt)                   (6) 

𝜃𝜃𝑡𝑡 =  𝐺𝐺𝑡𝑡𝜃𝜃𝑡𝑡−1 +  𝑤𝑤𝑡𝑡 ,𝑤𝑤𝑡𝑡  ~ 𝑁𝑁(0,𝑊𝑊𝑡𝑡)xt=Gtxt-1+wt,wt~N(0,wt)              (7) 

In most applications, 𝑦𝑦𝑡𝑡 are the time series observations, 𝜃𝜃𝑡𝑡 is the state vector, and 𝐹𝐹𝑡𝑡 is the 
regression vector at time t in the observation equation (1). 𝐺𝐺𝑡𝑡 is the state matrix at time t, and 
𝜃𝜃𝑡𝑡−1 is the state vector at time t-1 in the system equation (2). The state vector 𝜃𝜃𝑡𝑡 changes with 
time, which is an important feature to model nonstationary time series. The associated errors 
are assumed to follow normal distribution with mean zero and variance𝑉𝑉𝑡𝑡. 𝑊𝑊𝑡𝑡 is the time-
dependent state evolution covariance matrix for 𝜃𝜃𝑡𝑡; it captures the evolutionary changes in the 
regression parameters. The formulation of the above dynamic linear models are flexible for 
obtaining main features of the training time series.  
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In practice, 𝑊𝑊𝑡𝑡the state space model parameters are estimated using maximum likelihood 
estimation techniques. Marginal likelihood function 𝑝𝑝(𝑦𝑦1:𝑡𝑡|𝜃𝜃) can be obtained sequentially by 
Kalman filter𝑝𝑝(𝑦𝑦1:𝑡𝑡|𝜃𝜃). In dynamic linear models, the Kalman filter passed the likelihood function 
𝑝𝑝(𝑦𝑦1:𝑡𝑡|𝜃𝜃𝑡𝑡) at the current time 𝑡𝑡, to 𝑝𝑝(𝑦𝑦1:𝑡𝑡+𝑘𝑘|𝜃𝜃𝑡𝑡+𝑘𝑘) at the next 𝑡𝑡 + 𝑘𝑘 time steps, with updated 
inference on the state vector. It is the prediction step via state estimation.  

An R Package DLM (Petris 2010) is adopted in our paper and the second order polynomial 
dynamic regression model is chosen considering the nonlinearity and nonstationarity of the 
PMU measurements. Polynomial dynamic linear models can well describe trend-nonstationarity 
of a time series (Petris, Petrone, and Campagnoli 2009).The second order polynomial model 
has a two-dimensional state space, and can be described by the matrices 

 

𝐹𝐹 = 𝑐𝑐(1, 0)                              

𝐺𝐺 =  �1 1
0 1�                        (8) 

 

𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑊𝑊1,𝑊𝑊2)        (9) 

 

5.7.3 Online anomaly detection framework  

In the proposed framework, the second order polynomial dynamic regression model is built 
sequentially for PMU measurements of subsequent 5-minute time windows, where Kalman filter 
is applied to compute filtered values of the state vectors, together with their covariance 
matrices. The training errors are the differences between values fitted by dynamic regression 
model with Kalman filter and the actual PMU measurements within 5-minutes time window, and 
the prediction errors are defined as the differences between the expected values of future 
observations via prediction and actual system observations for the following 5 seconds. For the 
short-term predictions, we assume that the prediction errors and the training errors follow the 
same distributions. The cumulative probability distribution (CDF) of prediction errors is 
approximated to be normal and characterized by the mean and variance of the training errors. 
The CDF is defined as  

 

𝐹𝐹(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥) =  ∑ 𝑓𝑓(𝑡𝑡)𝑡𝑡≤𝑥𝑥         (10) 

The exceedance probability of a prediction error is then computed as  

 

𝑃𝑃𝑖𝑖(𝑋𝑋 ≤ 𝑥𝑥) = max (𝑃𝑃𝑖𝑖(𝑋𝑋 ≤ 𝑥𝑥), 1 − 𝑃𝑃𝑖𝑖(𝑋𝑋 ≤ 𝑥𝑥))       (11) 

A threshold of 𝑃𝑃𝑖𝑖 can be used to screen the anomaly candidate points in the PMU data, based 
on whether its corresponding exceedance probability is greater than the threshold. Another 



PNNL-30452 

ML Methodology 18 
 

threshold for anomaly candidate screening is the duration of the anomalies. Considering that the 
recorded anomaly events usually last between 5 and 20 seconds, the anomaly candidates are 
further screened accordingly; specifically, the candidates pass the screening with durations 
longer than the duration threshold. With both exceedance probability and duration thresholds, 
anomalies can be confirmed within 5 seconds of occurrence.  

The developed online anomaly detection framework was applied to the 28-day actual WECC 
synchrophasor data with 25 historical recorded events. The raw PMU data contains 12 units 
representing signals at 12 different locations in the WECC system. There are four attributes 
including the voltage, angle variation, frequency and the rate of changes of frequency (ROCOF) 
at each PMU. The PMU data is stored in PDATA format (Faris) based on IEEE Std. C37.118.2-
2011 data frames(IEEE 2011). PMU measurements were re-sampled at 1Hz. 

Given the tremendous amount of data, the framework can be implemented on HPC clusters to 
facilitate real-time implementation. The framework is tested and compatible with the Constance 
cluster supported by the Pacific Northwest National Laboratory (PNNL) Institutional Computing 
(PIC) program. The Constance cluster has 520-node; each node contains 24 cores running at 
2.3GHz, with 64 GB of 2300 MHz memory. Analyses of PMU signals can be done in parallel to 
accelerate the dynamic regression model development and Kalman filter calculation. 

The flow chart of online anomaly detection framework is shown in Figure 14. In the next section, 
we demonstrate the training and prediction evaluation of the dynamic regression model, and 
evaluate the anomaly detection results by comparing with the recorded actual events.  

 

 
Figure 14. Flow chart of the online detection framework for PMU measurements. 

The proposed framework was applied on the frequency attribute of the WECC PMU signals. 
The detected events were validated against frequency event database maintained by North 
American Electric Reliability Corporation (NERC) Resource.  

First, the developed dynamic linear model was evaluated. The root mean square errors (RMSE) 
were computed as a measure of both training and prediction errors. The averaged RMSEs 
across 12 PMUs over a 1-day training time period are shown in Figure 15, demonstrating 
satisfactory goodness of fit of the dynamic regression models. Specifically, the averaged 
RMSEs are generally under 0.12% for the non-events time period.  
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5.7.4 Online anomaly detection results 

 
Figure 15. Averaged RMSE across the 12 units between observations and dynamic model fitting 

in sequential 5-minute training periods. The red vertical lines show temporal locations of 
recorded events. 

 

When actual events occurred in the system (near the three red vertical lines), the RMSEs 
increase slightly. The averaged RMSEs are also calculated for the prediction time period, and 
are shown in Figure 16. The prediction RMSEs are higher than training RMSEs but the 
averaged prediction RMSEs across 12 units still be managed in a relative low range. The 99.9% 
quantile of averaged prediction PMSEs across 12 units is 1% which illustrates the accurate 
predictions of the dynamic model. The periods with RMSEs over 1.5% are highly likely to have 
some abnormal system behaviors. All three historical recorded events shown in Figure 3 have 
the relatively high RMSEs which are over 2%. 



PNNL-30452 

ML Methodology 20 
 

 

Figure 16. Averaged RMSE across the 12 units between observations and 5-second predictions 
using the fitted dynamic model. The red vertical lines show temporal locations of recorded 

events. 

Figure 17 illustrates the one-step-ahead predictions of the PMU frequency measurements at 
Unit 1 using the second order polynomial dynamic model during a 5-min time period, during 
which no events occurred.  We can see that the fitted model well matches historical 
observations. This is a typical time period with ‘normal’ variations that can be described and 
predicted by the second order polynomial dynamic model; when an event occurs, however, the 
prediction errors will be large and the deviations between the model predictions and 
observations can be used to quantify the likelihood of an abnormal event, as illustrated in Figure 
18. For such an actual event, the deviations or relative errors increase with the time into the 
events, as shown in Figure 18, where the vertical line corresponds to the event starting time and 
the blue line denotes observations during the event. The exceedance probability of the relative 
errors and the duration are compared to the thresholds to confirm anomalies. The proposed 
framework detected and confirmed this event 4 seconds after it occurs.  
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Figure 17. Original PMU frequency measurement at Unit 1 and the predictions with second 

order polynomial dynamic model 

The detection rates of historical recorded events with different combinations of probability and 
duration thresholds on 28-day PMU data are shown in Figure 19. The optimal thresholds setting 
seems to exist as follows: The optimal exceedance probability threshold corresponds to 3.5σ 
(i.e., the prediction error is beyond 3.5 times of the corresponding standard deviation σ). The 
optimal duration threshold is set to be 5-points (i.e., seconds), which means at least 5 
sequential points need to pass the screening in order to confirm an event. A total of 25 historical 
recorded events during the tested time period were all detected across the 12 Units by the 
proposed framework using the optimal threshold setting (see the black line in Figure 19).  

 

 
Figure 18. Historical recorded event and anomaly event detected by the framework 
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This optimum threshold setup allows all of the historical events to be detected (i.e., 100% 
detection rate or zero false negative rate) with a limited number of total detected event for each 
day. When the duration threshold is increased to 6 points/seconds, while keeping the probability 
threshold to 3.5σ, the confidence to confirm two weak events decreases (see the green line in 
Figure 19). The two events (event #9 and #12) can still be seen at 11 units. The red line in 
Figure 6 shows the detection results when we keep the duration threshold to be 5 
points/seconds but increase the probability threshold to 4.5σ. The overall number of detected 
events is reduced (~15 per day), which would yield a lower false positive rate. However, in this 
case, three events (events #9, #12 and #14) can be detected only at 11 units, and events #6 
and #25 can be detected only at 10 units. The more rigorous threshold setup lowers the 
confidence in the confirmed events per unit, but is still adequate to achieve a high detection rate 
by considering all units for anomaly detection.  
 

 
Figure 19. Indices of 25 historical recorded events during the study time period against the 

number of units where the anomaly event is confirmed, given particular probability and duration 
threshold settings for anomaly detection. 

 

In this section, a framework for online detection of PMU anomalies with HPC techniques was 
proposed and developed by implementing dynamic regression models and Kalman filter. The 
second order of polynomial model was adopted to capture the nonlinear and nonstationary 
features of the PMU measurements. The model is straightforward and yields adequately low 
training and prediction errors, which is required for effective and efficient real time anomaly 
detection. The anomaly detection thresholds can be tuned adaptively to yield optimal anomaly 
detection and false alarm rates. Overall, the framework is accurate and effective for real-time 
PMU anomaly detection using the frequency attribute. Abnormal system behaviors can be 
identified within a few seconds.  
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5.8 Long Short-Term Memory (LSTM)-based deep neural network 
(DNN) 

Various statistical methods have been developed to forecast PMU time series, such as state 
space model, regression tree, and support vector machine (Leonardi and Ajjarapu 2010, Gomez 
et al. 2010, Zheng, Malbasa, and Kezunovic 2012, Liu and Venkatasubramanian 2008, Ren, 
Hou, and Etingov 2018). The approaches can generally produce accurate short-term (e.g., 
several time steps ahead) predictions. But for predictions of larger time steps ahead, neural 
network has been shown in different research areas to be superior to state space models and 
hidden Markov model, since it enables to capture long-term nonlinear patterns in both spatial 
and temporal components in the distributed time series (Längkvist, Karlsson, and Loutfi 2014).  
The flexibility of neural network is that users can develop adaptive and unique models with 
respect to different datasets and problems from numerous categories of neural network 
architectures. For instance, Recurrent neural network (RNN) (Connor, Martin, and Atlas 1994) is 
specially designed for time series analysis by taking temporal sequences as input and output. In 
practices, an RNN might be difficult to train due to the problem of vanishing gradients which is 
limited by time windows (Hochreiter et al. 2001). To address this issue, Long Short-Term 
Memory (LSTM) is designed which can learn to bridge at a minimum 1000 discrete  time lags 
between relevant events by using memory cells to retain information (Hochreiter et al. 2001). 
LSTM has been successfully used in language modeling (Sundermeyer, Schlüter, and Ney 
2012), pattern recognition and image analysis (Chen 2015) involving various time series data. In 
this section, a Long Short-Term Memory (LSTM)-based deep neural network (DNN) is adopted 
and evaluated to identify the most appropriate models for event detection and longer-term 
anomalous pattern extraction. The proposed DNN model show the potential on long-term 
predictions with the ability to capture nonlinear and nonstationary mixture complex patterns in 
PMU datasets.  

5.8.2 Model architecture 

We then design the neural network architecture to train models of different configurations to 
evaluate the model performances with respect to the configuration parameters such as number 
of layers, dropout rate, number of units in LSTM layer, batch size, and so on. The architecture of 
our model is shown in Figure 1, which contains LSTM layers, followed by dropout layers, 
convolutional layers, and a final output dense layer. This model architecture is flexible by adding 
layers for each component, for example, one can add multiple LSTM layers to create a stacked 
LSTM model, where the LSTM layers are "stacked" on top of each other. In this study, each 
input and predicted output contain the PMU measurements from 12 units, allowing the model to 
generalize nonlinear connections among the units. Stacked LSTM layers can also take the 
advantage of the temporal correlations of the measurements to improve model performance. 
The output dense layer is a neural network where every input neuron is connected to every 
output neuron with a weight matrix and bias vector. Dropout is a regularization technique that 
randomly disables a select fraction of neurons during training to enhance robust model 
performance and prevent overfitting (Hinton et al. 2012b). A 1D Convolutional layer is added 
next due to its effectiveness when you expect to derive interesting features from shorter (fixed-
length) segments of the overall segment is not of high relevance. 
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Figure 20. Architecture of the DNN with LSTM, dropout, convolutional and dense layers. 

 

Figure 20 illustrates the standard LSTM cell using three gates including forget, input and output 
gates, to control the flow of information from one memory cell to another and learn long-term 
dependencies (Hochreiter and Schmidhuber 1997). LSTM networks have the chain form of 
repeating modules of neural network same as RNN but contain four neural network layers for 
each LSTM memory cell. A sigmoid neural net layer with output value between 0 and 1 as well 
as a multiplication operation is composed to each gate. The cell state is the memory of the 
LSTM cell which is the key feature to LSTM and the regular RNNs do not have. The horizontal 
top line across LSTM cell in Figure 21 represents the cell state and the connected three gates 
are used to protect and control it. A forget gate (Ft) layer decides what information to throw 
away from the previous cell and the decision is made by the sigmoid function composed, where 
0 represents completely get rid of the information and 1 represents completely keep it. To 
determine the information that needs to be updated in the current cell, an input gate (It) layer is 
needed. Combined with It layer, a tanh layer through pointwise multiplication generates 
information to be added to the current cell state. Finally, an output gate (Ot) decides the output 
information based on the input and previous memory state. The sigmoid output layer decides 
what parts of the cell state will be output, while the tanh layer scales the current cell state by 
pushing the values to between -1 and 1. The sigmoid output layers multiplied with the tanh layer 
leads to the output of current cell (Olah 2015, Ma et al. 2015, Malhotra et al. 2015). The output 
of an LSTM cell is the hidden state, together with the cell input which control what to do with 
memory. 
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Figure 21. The diagram of LSTM memory cell with the forget (Ft), input (It), and output gate (Ot). 

 

5.8.3 Training and testing models 

To build and train the proposed DNN model, Keras (Chollet 2015) is adopted given its highly 
customizable interface. It also provides an additional layer of DNN primitives with Theano (Al-
Rfou et al. 2016) and TensorFlow (Abadi et al. 2016) as its back-end. PMUs time series are split 
to training, validation, and testing datasets for the 12 units. Training data for the LSTM-based 
neural network models are created by separating the temporal segments of input and output. 
The PMUs datasets are preprocessed by normalizing all measurements to be between 0 and 1 
with scaling. During the model fitting process, an LSTM model is trained for 10 epochs over the 
training dataset. The optimizer with adaptive learning rates is chosen to be Adam (Kingma and 
Ba 2014), the loss function is defined as mean square error (MSE), and activations functions 
which reduce gradient issues  is set to ReLu (Nair and Hinton 2010). The model configuration 
contains input and output vector length, the number of units in the neural network, layers of 
stacked LSTM and dropout rate. Given a model configuration, the model is evaluated to predict 
multiple steps ahead and compared with testing dataset with the sliding window. The accuracy 
of the model is calculated by mean absolute error (MAE) at each PMU between predicted 
values and true observations for each prediction length: 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
�|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑛𝑛

1
− 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂| (12) 

Where n is the testing data length. 
 

5.8.4 LSTM model evaluation 
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The first 18 hours of one-day PMU frequency attribute is selected for deploying the proposed 
DNN models. The time period contains three recorded historical events.  The first 70% of the 
data is training set, the next 15% data is used to validate, and the last 15% data is for testing. 
As a result, there are two historical recorded events in the testing time period. As an example, 
the frequency time series at Unit#1 is shown in Figure 3a with the three events marked as red 
vertical lines. The subset testing data is shown in Figure 22b, which clearly shows that the PMU 
signals are a mixture of variations at multiple temporal scales. The nonstationarity and lack of 
continuity in the time series make it challenging to perform accurate long-term predictions.  

 
Figure 22. Time series of PMUs frequency and EDA results at Unit #1. The recorded historical 

events are marked as red lines on the time series. 

Time series have been performed on PMU frequency attributes across the units including auto-
correlation, cross correlation and Fast Fourier Transform (FFT). All the units yield consistent 
results, and example results at Unit#1 are shown in Figure 22c-e.  It is obvious that strong 
temporal continuity exists in the PMU dataset which indicates that the time series forecasting is 
applicable. Approaches from the state space model family, e.g., autoregressive integrated 
moving average (ARIMA), may work for predictions, but cannot take into account the long-term 
patterns, e.g., as shown by the second peak in the auto-correlogram indicating non-negligible 
periodicities in the time series. In fact, the energy spectrum from FFT shows multiple peaks, 
indicating multiple periodicities at low and high frequencies. The design of the “remembering” 
previous events in LSTM is suitable for this type of time series. To evaluate the ability of long-
term predictions, different DNN model configurations are tested to avoid over fitting and improve 
the prediction accuracy.  
 

Table 2 summarizes the model evaluation results for each model configurations with a batch 
size of 30, the number of units of LSTM is 512 and the dropout rate is 0.3 with two-stacked 
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LSTM layers. The durations of the recorded actual events in the WECC system last between 5 
and 20 seconds; therefore, the lengths of our output vectors are set to be within 20 seconds to 
match the events durations for different DNN model configurations. The model is quite accurate 
when the output vector length is five-time steps which could serve as the bench mark when 
different model configurations are compared. It is not surprising that both training and validation 
error are growing as the output vector length increases. Longer input vector length does not 
help reduce the training errors but is beneficial for reducing the validation errors when the output 
vector length is 10. Also, it is noticeable that when the output vector length is 15, the loss errors 
are ~30% higher than the training errors indicating the model might be overfitting. The model 
performances are also evaluated with model configurations by fixing the dropout rate to be 0.8, 
and the number of units to be 128 and 256, for the same input and output vector length as 
shown in Table 1 to address underfitting and overfitting issues. There seem to be little 
improvements based on both the training and validation errors by varying the dropout rate and 
the number of units, but the enhancements are trivial. Thus, the optimal model configuration is 
having an input vector length of 240 and output vector length of 10 with the dropout rate of 0.3 
and containing 512 units in the LSTM neural network. With this optimal model configuration, we 
can evaluate the accuracy of predictions at different time steps ahead as well as the model 
architecture.  

 
Table 2. DNN model training and validation against model configuration parameters 

 
Input 
vector 
length 

Output 
vector 
length 

Training 
loss 

(MSE%) 

Validation 
loss 

(MSE%) 
30 5 0.21 0.24 
60 5 0.20 0.24 
120 5 0.20 0.23 
180 5 0.20 0.25 
240 5 0.21 0.24 
300 5 0.21 0.25 
30 10 0.73 0.93 
60 10 0.68 0.83 
120 10 0.68 0.90 
180 10 0.68 0.89 
240 10 0.68 0.86 
300 10 0.68 1.06 
30 15 1.31 1.42 
60 15 1.17 1.47 
120 15 1.16 1.46 
180 15 1.15 1.51 
240 15 1.15 1.56 
300 15 1.15 1.59 

 

Three different stacked LSTM layers are evaluated, and the prediction window length is set from 
5 to 60 steps ahead. The MAE of each PMU is calculated for each unit and the mean of MAE is 
obtained among the 12 units as shown in Figure 23. When the prediction time window is shorter 
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than 20 steps, the 3-stacked and 2-stacked LSTM model has the best and worst performances, 
respectively. All three types of LSTM models have similar level of MAE when the prediction 
length is around 20 to 30 steps. However, if the prediction window is increasing to longer than 
30 steps, the mean MAE raises dramatically for the 3-stacked LSTM. In this case, both the 1-
layer and 2-stacked LSTM models still have good performances with MAEs within 1% for up to 
60-steps-ahead predictions. For the 2-stacked LSTM model in particular, the MAE is 0.86% for 
60-steps-ahead predictions, which is satisfactory for PMU-based mid- and long-term power 
system planning. The model performances beat the state space models we developed 
previously (Ren, Hou, and Etingov 2018), particularly for longer-term time series forecasting 
purpose. For long-term PMUs predictions, we found that the 2-stacked LSTM model is the 
choice with desired levels of accuracy cross all the PMU units.  

 
 

 
Figure 23. The prediction performance for the three different stacked LSTM models. The grey 

line corresponds to the error level (MAE) of 1%. 

In addition to the statistical errors evaluated for the predictions, the dynamic patterns of the 
dataset in terms of high nonlinearities and periodicities are also examined. The 30-step-ahead 
predictions with the 2-stacked LSTM model for PMU Unit #1 is illustrated in Figure 24 with true 
observations and relative errors as a function of time. The relative errors are calculated using 
formula (predations–observations)/observations to present the accuracy for each data point in 
the testing set.  It can be seen that the proposed DNN model has the ability to handle the non-
stationarity during the relatively long-term prediction time window. The relative errors are within 
the range of ±0.05% for almost the entire testing time period except for a short time interval 
around the historical recorded events, which means the events can be detected successfully, 
even with the relatively long prediction time window.   
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Figure 24. The model prediction of PMU frequency at Unit #1 for 30-step-ahead using the 
optimal model configuration with 2-stacked LSTM layers. The black line is the frequency 

observations; the green line is the model predictions; the blue line is the relative errors (%) 
between the predictions and observations. The historical recorded events are marked as red 

vertical lines. 

In this section, a methodology for frequency predictions for the mid- and long-term time window 
and detection of abnormal events has been developed. In this study, we adopted the LSTM-
based DNN models to predict multiple steps ahead and detect events by address both the spatial 
and temporal variations in PMU time series. Different model configurations were evaluated to 
yield an optimal model parameter set for the high resolution, complex, and dynamic PMU 
dataset. The prediction ability was also examined with various forecasting time window sizes. 
The results showed that satisfactorily low prediction errors can be achieved in the prediction up 
to 60 steps ahead. The decent relative error is obtained at each testing point which can be used 
for the abnormal event detections.  

Due to the computational demand, we developed and tested the LSTM-based DNN framework 
using one-day data in the current study. For the future work, the model transferability will be 
tested on PMU dataset across dates and seasons, by integrating more data in the training 
model. We also fully evaluate the different DNN model configurations for predicting with even 
longer time windows, and to explore the upper limit of predictability of PMU data with deep 
learning and the most advanced computational resources involving graphical processing units 
(GPUs). 
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5.9 Events classification and localization through Convolutional 
Neural Network (CNN) 

Observation-based event detection, classification, and localization using real world data are 
usually challenging due to lack of labelled data. Such data inadequacy cannot support training 
of deep neural networks. One solution is by way of data augmentation by generating ensemble 
simulation-based training dataset. In this study, we evaluate the feasibility of using ensemble 
simulation-based data with various types of faults, this will provide adequate labelled data for 
supervised learning.  Dynamic simulations have been performed on a Polish 3120-bus system 
with four types of faults in five geophysical zones. The multi-channel time series of machine 
speed data are extracted and encoded to images for evaluating the feasibility of CNN models 
for classification (fault types) and localization (occurred zones). Time series stacking is 
straightforward, which requires the least computational resources—it serves as the benchmark 
dataset for our proposed CNN model. Three other time series encoding approaches including 
time-domain stacking, wavelet decomposition-based frequency-domain stacking and polar 
coordinate system-based GAF stacking, are adopted to evaluate and compare the CNN model 
performances. VGG model architecture is adopted in our CNN to take the advantage of pushing 
model depth towards a high accuracy (Simonyan and Zisserman 2014).  

5.9.2 Polish system testbed and data preparation 

Simulation tests are performed on the 3120-bus Polish system (“case3120sp.m”) (MATPOWER 
2008). Dynamic data have been developed in PSS/E format that includes generator, governor, 
stabilizer and exciter models for generator dynamics. Several protection models are prepared in 
PSS/E format; this includes protection models including distance relays, generator-based 
voltage and frequency relays, and under frequency and under voltage load-shedding relays and 
are added to the existing relay protection models in the Polish case. The Polish system has 
3120 buses, 3487 branches, 2314 loads, ,505 generators and consists of 5 zones. The zonal 
model for total generations of each zone and the connections between zones is illustrated on 
Figure 25. Zone 3 is the largest zone connected with zone 1, 2 and 4. While the zone 5 is the 
smallest zone with only 841MW which has the connection with zone 1 and 4 only.  
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Figure 25. Zonal model of Polish system. 

5.9.3 Fault types and implementation 

Various power system faults were simulated using the PSS/E software. These faults can be 
categorized into four types and the outages characteristics of each type have been summarized 
in Table 3. The Fault 1 is the single generator and multiple line fault. In this scenario, each 
generator and consequently with two transmission lines were tripped in the system. A total of 
298 contingencies were simulated for Fault 1. For Fault 2, a three-phase fault at a bus during 
dynamic simulations was applied to polish system with 3120 contingencies. Different numbers 
of generations were set to out-of-service during dynamic simulation for the system as Fault 3 
and 4 with 298 contingencies for each fault type. The former scenario set each generator out-of-
service and the latter one has the two neighboring generators out-of-service.  
  
Table 3. Fault types simulated in polish system 
   

Types Outage of 
single 

generator 

Outage of 
two 

generators 

Three-phase 
bus fault 

Multiple line 
fault 

Total 
contingencies 

Fault 1     298 
Fault 2     3120 
Fault 3     298 
Fault 4     298 
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5.9.4 CNN model development 

We design the CNN architecture to train models for faulty type prediction and zonal 
classification for the Polish 3120-bus system. The inputs to the CNN model training are the 
image sets produced by three different data encoding schemes. Model training and testing are 
done for each data encoding scheme separately and the corresponding model performances 
are then compared. Each image data set has been divided into three independent subsets: 
training, validation, and testing. Training and validation are used during model development for 
determining the optimized model configuration and hyperparameters. The training data also 
include the multi-class labels data which has been determined during the ensemble simulation 
setup. The multi-class labels are fault types for fault classification and can be fault locations or 
zones for training CNN models for approximating fault locations.  
 

The CNN model architecture conducted in this study is based on Visual Geometry Group 11 
(VGG11) (Simonyan and Zisserman 2014) illustrated in Figure 26. The input to the first 2D 
convolutional layer is fixed size 128 x 128 RGB image sets. Each image is passed through a 
series of blocks of convolutional layers (orange layers). Totally three sets of convolutional layers 
are adopted, which contain 2, 3, and 3 consecutive convolutional layers respectively. Different 
numbers of neural nodes are used for convolutional blocks and the receptive field is consistent 
for each convolutional layer.  Spatial pooling is carried out by three max-pooling layers, 
following each convolutional block. Its function is to progressively reduce the spatial size of the 
representation to reduce the number of parameters and computation demand in the network. 
Max-pooling is performed over a 2×2-pixel window, with a stride of 2. A drop out layer follows 
each max-pooling layer. Dropout is a regularization technique that randomly disables a selected 
fraction of neurons during training to enhance robust model performance and prevent overfitting 
(Hinton et al. 2012a). The output from the three blocks of convolutional layers is converted into 
1D feature array by flattening each layer to feed the next layers. Finally, three fully connected 
(FC) layers, also known as dense layers, are added followed by the soft-max activation to yield 
multi-class predictions in the end. The soft-max layer outputs the values between 0 and 1 
quantifying the probability and confidence of  which class each image belongs to. ReLU (i.e., 
rectified linear unit) activation is one of the most commonly used activation functions in neural 
networks especially in CNNs with its linear property for positive values and zero for negative 
inputs. In our CNN model architecture, ReLU activation function is deployed in each layer 
except for the last dense layer. The optimizer is Stochastic Gradient Descent (SGD) which 
estimates the error gradient for the current state of the model using the training dataset, then 
updates the weights of the model with backpropagation. The categorical cross-entropy class is 
chosen for the multi-label classification problems. It computes the cross-entropy loss between 
the labels and model predictions, and calculation of the loss function requires that the last dense 
layer is configurated with the total number of classes which allows soft-max activation to predict 
the probability for each class.  
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Figure 26. The CNN model architecture. 

5.9.5 CNN model evaluation 

To evaluate the CNN model performance with respect to zonal and faulty classification, 
confusion matrix is introduced for multinomial classification. The confusion matrix provides the 
numbers of the target class values that are assigned to the positive and the negative class. Four 
types of events are counted for multi-class confusion matrix including: (1) True Positive (TP) 
which is the cells identified by the row and column for the positive class and correctly classified 
as such. The TP cells are located at top left corner of the confusion matrix; (2) False Negative 
(FN) is recognized as the row for the positive class and columns for the negative class. It 
belongs to the positive class and incorrectly classified as negative which is located at the top 
right cells of the confusion matrix; (3) False Positive (FP) is determined by rows for the negative 
class and the column for the positive class. It belongs to the negative class and incorrectly 
classified as positive which is placed in the lower left on the confusion matrix; (4) True 
Negatives (TN) is known with the cells outside the row and column for the positive class. It is 
belonging to the negative class and correctly classified as such. It is placed at the lower right of 
the confusion matrix. Using the four counts in the confusion matrix, the class statistics metrics 
can be calculated to quantify the model performance. Sensitivity measures how proper the 
model is to detecting events in the positive class. Specificity measures how exact the 
assignment to the positive class is. Precision measures how good the model is at assigning 
positive events to the positive classes. Accuracy represents the percentage of correctly 
classified applications compared with the total number of applications. 

The well-trained CNN model has been applied on the third independent testing dataset for zonal 
classification using time-stacking images. The class statistics are calculated and illustrated in 
Figure 27. The overall averaged accuracy reaches 91% with the straightforward time series 
stacking approach.  The zone 1 and zone 3 have the lowest and highest accuracy which are 
88% and 96%. The specificity is high for all zones with averaged value 97% which means the 
model has satisfied performance on assigning the extract the positive class.  For sensitivity and 
precision measurements, the averaged values are about 86% for both and zone 3 stands out 
among five zones.  All the measured metrics show the high performance level which means the 
polish system has well defined zonal structures which makes the CNN model can accurately 
predict the fault locations. Generally, the fault added on other zones outside of the target zone 
can impact the power flows in the target zones if the zones are physically connected with each 
other. The physical connections and impacts between zones will slightly increase the FT and FN 
in model predictions. However, if the zones are not connected, the model can provide accurate 
TN predictions.  Zone 1 has the worst prediction results especially for sensitivity and accuracy 
since the model tends to predict a small portion of zone 1 events to the rest zones, especially to 
zone 2 and zone 5. One of the reasons might be that zone 1 has the connections with all the 
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rest zones which means the flows within the zone 1 is complex and can be impact by the faults 
added to other zones.  As the largest zone, zone 3 has no transmission lines going to zone 5 
and our model results has shown that the none of the predictions of zone 3 fall in zone 5. 
Similar pattern can be noticed for the model predictions for zone 5 that there is no prediction 
goes to zone 2 or 3 because zone 5 does not have the physical connections with these two 
zones.   
 
 
 

 
Figure 27. Zonal CNN model performance confusion matrix using time-domain stacking 

encoding approach. 
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6.0 Conclusions 
The framework for PMU data analysis based on the Apache Spark technology has been 
developed and tested using real system synchrophasor measurements. Software modules to 
efficiently read large volumes of PMU information from BPA PDAT files and pre-process raw 
data for event detection have been implemented using the Python programming language and 
the PySpark interface. We showed that application of a cloud-based platform and Apache Spark 
significantly increases the computational throughput of the application. Analysis of several 
months of PMU data using the 20 node computer cluster with commodity hardware takes up-to 
several hours. By comparison, a similar job executed on a single personal computer can take 
several days to complete. 

The team developed and adopted multiple metrics to evaluate and understand the data-to-day 
variations and similarities of multiple PMU attributes. Such metrics included cross-correlations, 
Euclidean-distanced clusters, and Taylor Diagrams (it integrates/compares differences in phase 
angle and magnitude, and combines Pearson correlation, root-mean-square error, and 
individual standard deviations). Performed comprehensive spatiotemporal analyses can help for 
PMU data reconstruction or simulation, which could enable development of next-generation 
PMU-focused machine learning algorithms. 

We adopted the LSTM-based DNN models to predict multiple steps ahead and detect abnormal 
events by address both the spatial and temporal variations in PMUs. Different model 
configurations were evaluated to yield an optimal model parameter set for the high resolution, 
complex, and dynamic PMU dataset. The decent relative error is obtained at each testing point 
which can be used for the abnormal event detections.  

We proposed and developed framework features a scoring system for the anomaly detection. 
We also evaluated the effect of an alternative scoring system on our detection framework. 
Compared with the additive scoring system, the alternative multiplicative scoring system is 
much stricter in that the score for each MRA scale at each unit is multiplied to obtain scores of 
either 0 or 1. Using this multiplicative scoring system, both false alarm rate and detection rate 
were reduced.  

We developed and evaluated a deep learning CNN model to identify locations and predict types 
of various faults in the Polish 3120-bus test system. The Polish system in different spatial zones 
and locations was simulated with four distinct types of faults, and the outputs provided adequate 
and balanced data for CNN training and testing. Our CNN is composed of a number of layers, 
including convolutional, pooling, dropout and dense layer, which are designed to adaptively 
learn spatial hierarchies of features. Hyperparameter search were performed to determine the 
optimal model configuration and the final model for fault classification and prediction.  

In future work, we plan to continue both a mathematical and software enhancement of this 
framework’s functionality by adding new analytical modules and additional data sources, like 
supervisory control and data acquisition (SCADA) data. We are also going to shift from PNNL 
institutional cloud to Amazon AWS or Microsoft Azure cloud platform to improve computational 
performance of the developed analytical framework.  
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