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Summary 
There is an ever-increasing number of cyber-attacks targeted at cyber-physical systems vital to 
the operation of our critical infrastructure. Everything from disruption (Lee, Assante, and 
Conway 2016), destruction (Cyber.nj.gov 2017), data loss (Greenberg 2018), or general 
rampant internet threats (Honeywell 2018) have become a risk to cyber-physical systems that 
were once thought isolated and secure from cyber threats. As with the advent and proliferation 
of Internet in the 90s, deploying cyber defenses is critical to robust and resilient operation. 

 
Deception defense is a possible solution. Deception defense is a security technology that is low 
impact to the operations while providing benefits for both incumbering active threats and 
boosting defender awareness. Deception defense fits well within the limitations of OT 
environments. Integrating decoys into existing installments is low impact and relatively easy. 
Deceptions are installed and configured around existing system components limiting the risk of 
impacting availability and operational performance. In addition, decoys are designed to draw 
away the attention of attackers from existing systems with known weaknesses to reduce the 
likelihood of impact on operations due to threat infiltration. Decoys give valuable time to 
defenders to mitigate and respond to threats actively attempting to cause impact on their most 
critical systems. 

 
However, traditional deception needs enhancements to appear realistic and be effective within 
OT environments. In this whitepaper research and development into high fidelity deception of 
field devices using model driven simulations is presented. The features presented will be 
discussed in the context of an electrical distribution substation and as they have been 
implemented within the Attivo Networks BOTsink platform. 

 
A high-fidelity OT decoy has three main attributes which include services, variables, and 
behavior. Each of these attributes defines the characteristics of the decoy acting as a device. 
Breaking down each decoy into these three attributes allows for an abstraction of complex 
system architectures. A device in a real environment would speak one or more network 
protocols, control or monitor some set of variables, and perform actions based on a set of logic. 
To be effective, a decoy should also do the same. Each of these attributes are user defined to 
construct decoys that appear as a realistic device in their system. 

 
Due to the strong integration of real-world physics, OT deception platforms must operate 
differently than traditional IT deceptions. For instance, turning off a valve will be detected 
downstream by other sensors because the flow will reduce and stop. Additionally, controllers 
and applications leverage data from sensors to send control commands to each other. A 
believable deception must be integrated with the system to project the effects of events. An 
attack will likely attempt to control the physical process in a negative manner. To make the 
attacker believe they are achieving their objective, it must predict the effects of these actions, to 
a reasonable degree. Our approach to simulating a model to generate realistic decoy behavior 
is explored including description of two approaches: a physics model-based approach and a 
data driven approach. The performance of two machine learning techniques are investigated in 
their ability to learn a good enough model of the physics of the system. 
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1.0 Introduction 
There is an ever-increasing number of cyber-attacks targeted at cyber-physical systems vital to 
the operation of our critical infrastructure. Everything from disruption (Lee, Assante, and 
Conway 2016), destruction (Cyber.nj.gov 2017), data loss (Greenberg 2018), or general 
rampant internet threats (Honeywell 2018) have become a risk to cyber-physical systems that 
were once thought isolated and secure from cyber threats. As with the advent and proliferation 
of Internet in the 90s, deploying cyber defenses is critical to robust and resilient operation. 

 
Common IT cyber controls are not all equally effective within cyber-physical systems or 
operational technology (OT), however. The unique aspects of OT systems like unique protocols, 
limited resources, embedded system to system operation, and extreme high availability 
requirements limit the ability to apply common IT defensive techniques like continuous patching 
and ubiquitous and current cryptography. As such, new cutting-edge defenses are needed that 
easily integrate and provide high defensive value to combat the increasing cyber risks for OT 
systems. 

 
Deception defense is one possible solution to this situation. Deception defense is a security 
technology that is low impact to the operations while providing benefits for both incumbering 
active threats and boosting defender awareness. With deception defense, realistic decoys of 
systems and data that appear to be operational are deployed within an organization. These 
decoys are often designed with data or weaknesses to lure attackers to interact with them and 
waste their time and resources exploiting them and using their data to further exploit other 
decoys. These decoys act as canaries that alert defenders to the presence of threats within their 
networks. As the decoys are not truly operational, internal services and users should not be 
interacting with them resulting in high accuracy threat detection with very low false positive rates 
as compared to other situational awareness tools. 

 
Deception defense presents a solution that fits well with the limitations of OT environments. 
Integrating decoys into existing installments is low impact and relatively easy. Deceptions are 
installed and configured around existing system components limiting the risk of impacting 
availability and operational performance. In addition, decoys are designed to draw away the 
attention of attackers from existing systems with known weaknesses to reduce the likelihoodof 
impact on operations due to threat infiltration. Decoys give valuable time to defenders to 
mitigate and respond to threats actively attempting to cause impact on their most critical 
systems. 

 
However, traditional deception needs enhancements to appear realistic and be effective within 
OT environments. The rest of this whitepaper details the various features and capabilities 
developed to make high fidelity, model driven deception for defense of OT systems. The 
features presented will be discussed in the context of an electrical distribution substation and as 
they have been implemented within the Attivo Networks BOTsink platform. Experimental results 
of performance of these features is discussed at the end of the whitepaper. 
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2.0 Deception for OT 
Cyber deception has been an academic concept since the late 1980’s (Stoll 1989) and was first 
developed into a security tool by Cohen et. al (2001). Since inception, cyber deception has been 
commonly used as tools for cyber threat intelligence gathering on the internet. Low to high 
interaction honeypots have been operated to collect and study the current trend of malware and 
threat targets and tactics. The honeynet.org (Honeynet Project 2019) project has become a 
major community organization for organizing and cataloging honeypot contributions. Historically, 
research to develop and use honeypot technology has been focused on traditional IT 
environments. With the increasing interest in cyber-physical environments over the last decade, 
focus on deception research for these environments has also increased. 

 
It is understood that OT and IT systems have different operational and cyber security 
requirements (Stouffer et. al. 2011). The best practice of rolling updates and patch cycles that 
are now commonplace in enterprise operations are much more difficult to follow in OT 
environments due to the high availability requirement and subsequent rigorous and slow testing 
and validation processes. The high response time requirements to defuse physical safety risks 
has led to low penetration of strong access controls and cryptography that is ubiquitous in IT. As 
such, additional cyber security techniques are needed to provide OT defenders the ability to 
protect themselves from cyber threats. Cyber deception is a solution that works around and 
within these requirements that provides a tool to counter the efforts of threats and to enhance 
the detection and response times of defenders. 

 
The initial effort to develop an OT focused honeypot was the SCADA Honeynet Project 
(Pothamsetty and Franz n.d). This effort leveraged the honeyd low interaction honeypot daemon 
that provides the ability to create simulated hosts with network services on a system. The 
SCADA Honeynet project extended honeyd to model a common OT programmable logic 
controller (PLC). Since then a few more OT specific honeypots have been developed targeting 
different domains and use cases. The Conpot project (Rist et. al. 2018) is a docker based low 
interaction honeypot designed to mimic common industrial communication protocols to appear 
as process control devices. The GasPot project (Willhoit and Hilt 2015) created, from scratch, a 
special purpose python-based honeypot to emulate a Veeder Root Guardian AST. Both 
MiniCPS (Antonioli and Tippenhauer 2015) and HoneyPhy (Litchfield 2016) are research into 
frameworks to enable model backed ICS honeypots. MiniCPS utilizes the miniNET network 
emulator with an integrated database to enable the definition and execution of physical process 
algorithms to feed data to honeypots. HoneyPhy defines an architecture where honeypots can 
query a simulator to respond with realistic data. 

 
With the strong progression of cloud technologies, more recently there has been a resurgence 
of using deception techniques to provide cyber network defense (Simoes et. al. 2013). 
Distributed deception platforms provide centralized control of resources to define, deploy, and 
manage decoys in operational environments for threat detection and defense (Pingree 2015). A 
key defining difference between distributed deception platforms and honeypots is that they are 
meant to be integrated into operational systems for defending against active threats and attacks 
where honeypots are traditionally used for threat intelligence gathering. In the rest of this paper 
we present our research into turning concepts from ICS honeypots into a distributed deception 
platform for integration of decoys into and defense of operational technology systems. 

 
However, two key features are still missing from the academic and commercial deception space 
to enable deception defense in OT systems: high fidelity OT focused decoys and model driven 
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behavior and response. A large part of OT environments are embedded computer systems with 
specific profiles of services and features. It is these specific services and features that are often 
the targets of OT malware and threats. 
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3.0 High Fidelity Decoys 
A cyber-physical system, by definition, integrates cyber components to monitor and control 
physical processes. The cyber components are, in general, controllers, sensors, communication 
infrastructure, and the software applications that use the data from the physical process to 
perform different functions such as optimization (Younis and Moayeri 2017), delegation of 
human agency (Subbarao et. al. 2013), or safe process management (Washington State 
University n.d). The physical systems include the mechanisms that interact with the physical 
world like actuators and instrumentation that are driven by physical processes. These 
components commonly consist of programmable logic controllers (PLCs), remote terminal units 
(RTUs), intelligent electronic devices (IEDs), and process specific sensors. Each type of device 
performs specific functions within a physical process and are all potential targets of cyber- 
attacks. 

 
The population of OT devices is broad and spans many industries. However, there are some 
consistent similarities that differentiate them from IT equipment that are important to understand 
when developing decoys. First, OT devices are generally embedded cyber-physical systems 
that have specialized hardware and application programming interfaced operating systems. 
Second, OT devices generally maintain a connection with a supervisory system for sharing 
status and enabling remote control. The protocols used for these connections are unique to OT 
environments and potentially to sectors. For instance, the DNP3 protocol is commonly used only 
in electrical sector and BACnet in building sector. Third, OT devices provide configuration 
management and provisioning application programming interfaces. The configuration 
management interfaces can range from controlled services behind common protocols like telnet 
and File Transfer Protocol (FTP) to proprietary protocol interfaces. Finally, attacks generally 
target the device and not just the service running on the device. Where malware in IT 
environments looks for vulnerable network service versions, OT malware looks for types of 
devices to target that interface with processes of interest. All these features must be considered 
when developing OT device decoy profiles. 

 
The three main attributes to our OT Decoys include services, variables, and behavior. Each of 
these attributes defines the characteristics of the decoy acting as a device. Breaking down each 
decoy into these three attributes allows for an abstraction of complex system architectures. A 
device in a real environment would speak one or more network protocols, control or monitor 
some set of variables, and perform actions based on a set of logic. To be effective, a decoy 
should also do the same. Each of these attributes are user defined to construct decoys that 
appear as a realistic device in their system. 

 
OT devices speak a multitude of different protocols depending on the domain in which they are 
performing control operations, a small sample of which includes DNP3, BACnet, and Modbus 
protocols. For instance, a decoy in a deception based on building automation and control would 
most likely communicate via BACnet in a way that relates to the physical process. Devices also 
support traditional protocols, like HTTP, SSH, Telnet, and FTP, for configuration management. 
A set of protocols should be associated with each decoy to provide interfaces for threat 
interaction. 

 
Decoys should expose through protocols one or more variables that correspond to the physical 
process they are emulating. Decoy variables can include things like temperature, voltage, or 
flow rate. Any number of variables can be assigned to a decoy and the variables can be newly 
defined from extrapolations of other existing variables learned from the physical system. A 
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decoy variable might be an input or an output. For instance, if we want a decoy that monitors 
pressure and triggers a control valve, we could extrapolate the pressure value by using two 
input variables from the values for temperature and flow rate from real sensors. A variable that 
is an output of one decoy device can be read by another device using the network protocol 
associated with those devices. This interaction generates traffic on the network and adds to the 
realism of the deception. 

 
The final attribute for an OT Decoy is a set of logic that directs the behavior of the device. A 
simple example of such logic would be the decision to turn on or off a fan in an HVAC system to 
allow cool air to flow into a room. A decoy device could act as the controller that monitors the 
room’s air temperature and triggers a fan to rotate if the temperature reaches a certain 
threshold. The logic of a device can be as simple as an if-then statement. For example, "if temp 
< X then turn off fan". The logic of decoy devices effects the operation of the simulation which in 
turn drives the values of the decoy. 

 
Configuring a supported set of these various attributes allows for a flexible mechanism to create 
decoys that represent a broad range of real devices. Profiles can be created to define those 
attributes that should be configured for high fidelity decoy representative of real equipment. A 
device profile is a collection of descriptive metadata and a set of network services which 
exposes that metadata along with operational system data. In simple terms, a device profile 
includes the definition of collection of items like model name, firmware ID, and configuration and 
log files. These metadata sources are then mapped to whatever network services that device 
supports. For instance, configuration and log files may be exposed through FTP or an HTTP 
service. There are also behavioral characteristics that are recorded in the metadata that inform 
how the network services should respond under various conditions. For instance, what 
commands are allowed in a terminal service telnet session, or what functions are supported in a 
supervisory control and data acquisition (SCADA) protocol. 

 
3.1 Decoy Services 

Services are the applications that provide interfaces and interaction on a network. Services are 
the method by which an OT device exposes the data it collects, controls to manipulate the 
process, and configurations on how it should behave. Every OT device supports a collection of 
services necessary to operate and perform its required functions. In general, there are three 
general categories that all OT device services fit within: configuration management, process 
control, and human machine interfacing (HMI). Configuration management services provide an 
interface to allow engineers to maintain and operate an OT device. Configuration management 
services practically provide some API to read and write data to a configuration file or database. 
The configuration file is then used to define what other features and services are utilized 
during operations. 

 
3.1.1 Configuration Management Examples 

 
In our examples, we have developed a few decoy services to represent equipment from multiple 
vendors including Schweitzer Engineering Laboratories (SEL), General Electric (GE), and ABB. 

 
3.1.1.1 Telnet and SSH 

 
Terminal services are often available features among OT devices. They are a way of interacting 
with a device remotely and the functionality available to users can vary wildly depending on the 
privilege level they log on with. Two different ways of accessing a terminal on a device are 
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through telnet and SSH. Depending on how the device is configured, telnet and SSH may lead a 
user to different or the same terminal session, complete with their own sets of login 
requirements and commands available to different user accounts. Legitimate operators of OT 
devices might use SSH or telnet as a means of connecting to a terminal on a device to manage 
settings and configuration. It is not out of the question that an adversary would seek access to a 
device’s terminals, either through telnet or SSH, for nefarious reasons. 

 
Of the devices that have a telnet or SSH service as part of their feature set, the exact behavior 
one would witness while interacting with it through a terminal has been mimicked as an 
additional layer within a decoy. A clone of the telnet or SSH service can help to fool an 
adversary that they have successfully gained access to a vulnerable part of an OT device. Initial 
efforts to copy telnet functionality consisted of manually going through the commands available 
to a device while logged on as a specific user account and taking note of the output of those 
commands. This approach was not quite scalable, as each device may contain dozens of 
uniquely behaving commands with large outputs. A transition to automation was made to 
accommodate the large quantity of devices that have telnet services in need of being copied, 
compounded by the variety in behavior between devices. 

 
The emulated behavior of each device’s telnet service is provided through a python script. The 
script refers to a json file comprised of the list of user accounts on the device, which commands 
each user has available, and the output of each command when executed at that specific 
privilege level. The users are mapped to default user accounts configured in the device. The 
contents of the json file for each device can be entered manually or by using another python 
script that helps quicken the process of learning telnet behavior. The helper script has two styles 
available for data collection. The first allows a user to manually connect to a telnet service and 
learn all behavior as the user interacts with the service as anyone would normally, that is by 
logging into accounts and sending all commands from those privilege levels. As the user sends 
commands, the script will save the responses in a json file under the corresponding user 
account. The second style is fully automated, given account credentials to log in as, along with 
either a “help” command to initially list the commands the script will go through or a custom list 
of commands given to the script in advance. Either method will result in a json file that contains 
the information needed to fully mimic the telnet service for that device. 

 
3.1.1.2 Web server 

 
OT devices generally leverage web servers for two functions: human-machine interface and 
configuration management. When providing human-machine interface functions, the webserver 
provides current status, such as register values and protection states, and possibly the ability to 
manually control, like tripping a relay breaker. The configuration management function allows 
monitoring and changing the current configuration details, for example communication port 
details (protocols, addresses, etc.), register to protocol mappings, protection and automation 
logic, and login credentials. Both functions provide valuable data access from a cyberthreat 
perspective and therefore must be replicated for high-fidelity decoys. 

 
From an information gathering perspective, the web servers provide a wealth of data about a 
device. Cyberthreats can use web server data for device targeting and system configuration. It 
is necessary to both clone the metadata about the device as well as fake the collected 
operational state of the system (model simulation discussed in future documents). Per these 
requirements it is necessary to scrape html pages from real devices to provide high-fidelity 
decoy profiles. 
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Some of the web pages require authentication and dynamic content. For the authentication it is 
important to capture what credentials are used to determine the tactics of the threat (stolen 
credentials, brute force guessing, default attempts, etc.). As such it is important to leave intact, 
in a limited operational form, the authentication services to collect the attacker actions for 
analysis. However, it is also important to let the threat progress to keep attackers interested in 
decoys and to see what additional tactics might be employed. It is therefore designed such that 
web server authentication mechanisms will allow access after a configured number of failed 
attempts. Once the threat has logged in it is necessary to fill in the dynamic data expected. Data 
from real configured devices were scraped to give a realistic starting point. Dynamically updated 
values need to be faked through server-side scripts or with a simulated physics model. 

 
3.1.1.3 FTP and variants 

 
FTP is a file transfer protocol that allows for uploading and downloading files from OT devices. 
There are multiple variants of FTP that have been developed overtime and most of them are 
present across the spectrum of OT devices. These variants include the trivial file transfer 
protocol (TFTP) which is a simplified version of FTP with less functionality. File transport 
protocol security (FTPS) and secure file transport protocol (SFTP) both add security to FTP. 
FTPS is the same as FTP but utilizes an SSL/TLS secure connection mechanism. SFTP on the 
other hand builds FTP like services on top of the Secure Shell (SSH) protocol. 

 
As mentioned previously, one of the ways in which devices are configured is through FTP or 
other similar file transfer services (TFTP, SFTP, etc.). The files pushed and pulled to and from 
the device specify configurations related to communication port details (protocols, addresses, 
etc.), register to protocol mappings, protection and automation logic, and login credentials. 
Similarly, to the perspective on web content, this information is valuable from a cyberthreat 
perspective. By uploading and overwriting a single configuration file an adversary could 
potentially force open or close a breaker. 

 
Emulating a device with such behavior requires content provided by the decoy FTP service to 
match the content of a real device. If an adversary lists the file and folder contents and expects 
to see a certain structure and content, and the decoy is inaccurate, the deception has failed. It is 
necessary to clone the real content of a device and produce meaningful data in the event of any 
interactions. For this reason, we scrape the contents of the file transferring services on devices 
when developing a profile. 

 
FTPs can require authentication and often do. For certain device models, varying access levels 
to files is dictated by user authentication. In order to both provide a higher fidelity decoy and 
assess the tactics of an attacker’s actions it is necessary to include any authentication methods 
and credentials in the content for FTPs on decoy devices. This provides the necessary 
functionality to analyze any authentication attempts and keeps the attacker engaged while 
interacting with the decoy. 

 
3.1.1.4 Network services 

 
Network services are used in IT systems to monitor and manage equipment. Generally, the 
services most used by OT equipment evolve around time synchronization and log collection. As 
time synchronization is critical to coordinating the information collected from many sensors and 
to make the appropriate control actions, time synchronization services are common in OT 
devices. As electrical system sensors and controllers require high-fidelity time synchronization, 
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they use services such as the simple network time protocol (SNTP) in broadcast mode or 
precision time protocol (PTP). To replicate these decoy services, it is either just leaving these 
ports open or creating real services to connect to network time synchronization services. In 
addition, some devices provide simple network management protocol (SNMP) access to allow 
the collection and monitoring of device performance. 

 
3.1.2 Process Control Service Examples 

 
There are a multitude of SCADA and process control protocols used among various industries. 
These protocols provide functionality to support data collection from distributed sensors and the 
ability to control the state of the physical process. While there are a lot of protocols used, we 
have scoped this effort to devices supporting common electrical and building system equipment. 
The list includes protocols such as Modbus, DNP3, IEC 61850, and BACnet. 

 
Most of the process control protocols define an expansive list of functions and data objects to 
support a wide range of use cases. As such, most devices do not support all the standard 
defined functions or objects. To develop decoys, it is necessary to scope down decoy services 
to only those functions and objects provided by a device profile. For example, a threat that is 
probing for a specific set of target devices may leverage knowledge of what is and is not 
supported to figure out when they have found their targets. If a decoy includes or does not 
include functionality expected in a real device, a target may ignore or bypass the decoy. 

 
Secondarily, as with all protocol standards, there are unique behaviors around unclear or 
unspecified behaviors of the protocols. For example, in DNP3 you can request a default set of 
data objects and the response from a device can take many forms. Devices respond in different 
ways, which helps differentiate from the various vendors equipment. Capturing these unique 
behaviors and replicating them for decoys is important to deceive threats. An example DNP3 
remote terminal unit (RTU) decoy profile is presented in Appendix A. 

 
As OT devices are developed for a wide range of use cases, they often exhibit a lot of variety in 
proprietary features designed for specific use case benefits. Often these proprietary protocols 
can represent features that are valuable from a threat’s perspective and provide high levels of 
access and control to a device. As such, it is important to mimic these proprietary ports at least 
at a minimal level. While it may not be known what process is running behind the port or what 
functionality is provided, it is important to represent the possibility of these ports. As such, these 
proprietary ports are logged in the profiles and instantiated as decoy ports that allow connection 
and interaction but do nothing else. Recording the actions taken by threats against these ports 
will not only inform that a threat is present but may also be informative of the threat’s objectives. 

 
3.2 Attivo OT Decoy Virtual Machines 

 
The Attivo BOTsink server is part of the Attivo ThreatDefend platform, architected to detect 
attackers inside the production networks and can cut attacker in-network loiter time by over 
90%. The BOTsink is a physical, virtual, or cloud appliance that converges virtual networking 
and virtual systems to offer a virtual network that provides a decoy environment to engage with 
attackers and capture their TTP. The BOTsink server ships with fully licensed operating systems 
that operators can customize to match the operating environment with a push of a button or 
replace with their golden images. The system supports Windows workstation images (XP, 7, 8, 
10) and Windows Server images (2008, 2012, 2016 & 2019) as well as Linux images (Ubuntu, 
CentOS, RedHat). 
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The solution is scalable, and each server can host over 2,000 decoy IPs across hundreds of 
VLANs/Subnets on layer 2 or layer 3 production, cloud, or datacenter networks. Having the 
flexibility to run full OS VMs as engagement servers, the BOTsink is fully customizable for 
authenticity. The system can customize its MAC addresses to match the other system in the 
subnet and allows the operator to install custom programs such as HMI, Historians, BigData, 
etc. on the stock VMs or import their own fully customized golden image. 

 
If the system to defend cannot install on standard Linux or Windows VMs, the BOTsink can 
host emulation of these systems to offer as a target to attackers. Additionally, it can emulate 
vulnerabilities of such OT/SCADA systems to engage the attacker without these systems being 
vulnerable themselves. 

 
The ThreatDefend platform can identify early reconnaissance activity and credential harvesting 
efforts like MiTM attacks to thwart the attacker’s efforts from reaching a production system and 
instead deflects the attack to the decoy environment for further engagement and analysis. The 
ThreatDefend platform gives high fidelity alerts that cut through the noise and enable the 
operator to quickly identify attackers and collect troves of highly actionable intelligence to hunt 
inside the network and eliminate any foothold they might have established. 

 

Figure 1: Attivo Networks SCADA VM 1.0 Services 
 

To demonstrate the high-fidelity decoy services, PNNL collaborated with Attivo Networks to 
integrate proof of concept implementations into the BOTsink ecosystem. This effort involved the 
integration of new services into the Attivo decoy SCADA VM. This effort included the creation of 
10 high fidelity decoy profiles modeled after real equipment within the PNNL powerNET testbed. 
Using these profiles, the features, and capabilities of the of the SCADA VM were extended to 
include realistic web pages, realistic service mappings, and function and objective profiles for 
SCADA protocols, and new decoy services with realistic responses like telnet configuration 
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management services. All these features were put together into a deception of a holistic device 
using the Attivo campaigns capability. 

 
3.3 Attivo OT campaigns 

Leveraging the BOTsink capabilities, PNNL and Attivo collaborated to develop out-of-the-box 
deception campaigns for electrical substations and building markets. These campaigns enable 
the BOTsink to dynamically match the decoy environment to the operational ones where it is 
deployed. 

 
 

Figure 2: Defining a BOTsink Campaign Template for an OT Device 
 

The campaigns consist of relevant devices like control systems, PLCs, Feeder Protection 
Relays, Transformer Management Relays, and others, along with the expected protocols like 
DNP3, Modbus, IEC61850, etc., populated with decoy operational data. 

 
Each campaign can list the types of equipment to construct decoys which include the network 
services they support and the types of data service functionality and responses they provide. A 
campaign can encapsulate a single device or multiple depending on the objectives of the 
deception. An example use case for the flexibility and ways to define a campaign are further 
discussed in the physics-based simulation subsection of the model driven deception section 
below. 

 
3.4 Low impact operational safety 

Impacts on operations is a high-risk concern when utilities investigate deploying new features 
like security tools. The cost of sending engineers into the field; sometimes many miles away, 
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can often be much more than the cost of the security tools themselves. Therefore, not adding 
risk of increased failure rate outweighs the benefit of increased security and is often 
preventative of deploying new security tools. Therefore, security that does not impact the 
performance or failure rate of OT systems are valuable and easier to make the argument to 
deploy. 

 
Deception technology installs within and around existing systems but not in the middle of any 
communication paths. Decoys are extra additions to the system that operate in low maintenance 
modes awaiting a threat to interact with them. Deception defense does not require the 
modification of any existing system to operate. As deceptive decoys are by their nature ancillary 
systems that are not necessary to operate a physical process, they are low impact to the 
performance of the real system that are deployed to protect. 
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4.0 Model driven deception 
Due to the strong integration of real-world physics, OT deception platforms must operate 
differently than traditional IT deceptions. For instance, turning off a valve will be detected 
downstream by other sensors because the flow will reduce and stop. Additionally, controllers 
and applications leverage data from sensors to send control commands to each other. A 
believable deception must be integrated with the system to project the effects of events. An 
attack will likely attempt to control the physical process in a negative manner. To make the 
attacker believe they are achieving their objective, it must predict the effects of these actions, to 
a reasonable degree. 

 
Traditional cyber deception platforms integrate into a system through the generation of realistic 
looking data, access/identity control accounts, and/or honey tokens and the deployment of 
decoy services such as web applications, file shares, or remote access. Each of these 
components can be made to appear as part of the system with realistic banners, directory, and 
filenames related to the business or corporate branding. This data can be distributed onto real 
workstations and servers to be found by attackers and direct them to the decoy services. These 
capabilities are useful and could be used within cyber-physical deceptions, but they alone are 
insufficient. 

 
The threat model driving this research is an adversary knowledgeable in cyber-physical systems 
with a targeted objective to affect the operation of the physical process. Under this threat model 
the attacker will be aware of, and searching for, specific categories of equipment to understand 
how they interface with the physical process and how they can be controlled or manipulated. 
The objective of this research is to delay the attack from successful completion while increasing 
the probability of detecting the threats presence and actions. Achieving these goals under this 
threat model requires sufficient fidelity. 

 
To provide enough fidelity there are additional requirements that must be met by cyber-physical 
deception platforms. First, the deception platform must provide the ability to simulate a model of 
the physics of a real system process. This includes supporting the ability to generate realistic 
variable data from decoy device responses. Second, a deception platform must provide the 
ability to define new devices and connect them to the physics model being simulated. We will go 
into more depth about the attributes of these decoy devices later. Finally, the decoys should 
appear as tempting, easy to exploit targets, that are part of the real operating cyber-physical 
system. We propose that these three requirements are necessary for an adequate deception of 
cyber-physical decoys in a real system. 

 
4.1 Types of Deception 

There are multiple ways in which a model driven deception can be deployed. These include 
cloning, copies, and integrated deceptions. Each type of deception is useful under different 
circumstances. Their use and utility are a function of the location of the deception in relation to 
the real system and what type of threat is being countered. A brief overview of each type of 
deception and microgrid examples of how they could be utilized are provided. 
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4.1.1 Clone 
 
 

Figure 3: Decoy clone of existing system 
 

A clone deception is when an exact replica is presented as the real system to deceive an 
attacker that they are interacting with the real system components. This type of deception traps 
the attacker into a fictional world that is directly related to the real system. The model for this 
type of deception can be driven directly from observed data of the real system. Only upon 
control or other altering interactions by the attacker is the projection of effect necessary. In a 
microgrid, a deceptive clone could be developed that mimics an entire building HVAC cyber- 
physical system as shown in Figure 3. The clone, represented by the mirage building, is posing 
as the adjacent building in this deception. In this type of deception there would be some 
mechanism, like a firewall, IPS, or VPN, that would determine when to send connections to the 
cloned system instead of the real system. 
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4.1.2 Copy 
 

Figure 4: Decoy copy of additional system 
 

A copy deception is like the clone where replicas of a real system are presented. However, the 
difference with this deception is that one or more replicas are presented within the same 
network perspective as the real system. This type of deception makes it appear to observers 
that there are multiple running cyber-physical systems and provides an obfuscation style 
defense where an attacker must determine which system is the real system. Each decoy copy 
interacts with a simulation of the real system model and can be driven at offset times or with 
some form of data fuzzing such that the data does not appear to be exactly the same, further 
obfuscating which system is the correct system. Each copy can respond and react to 
interactions independently. 

 
An example of this type of deception in our microgrid example would be to create a copy, or 
multiple copies of a building on the microgrid and deploy deceptive ones in different locations. 
The copied building could have the same components as the original or differences to add to 
the confusion. 
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4.1.3 Integrated Decoys 

Figure 5: Integrated decoy of new system 
 

Integrated deceptions places newly conceived decoys within the real system where the decoy 
modeled data is defined such that it logically relates to real data within the system. For example, 
in a chemical process, a decoy could be made that controls a fictional valve downstream that 
controls the flow to a decoy sensor. The modeled values output from these decoys are 
extrapolated or derived as some function of the real system values. Through these 
extrapolations it appears that the decoy produces data related through physics to the real 
system and thereby providing a high-fidelity target of value to an attacker that has already 
bypassed other defenses and infiltrated the OT network. Figure 5 depicts integrate decoys for 
PLCs controlling new variable air volume (VAV) and chiller pumping systems for an additional 
structure, like a floor or zone, related to the real building HVAC systems. 

 
In all three deception types, it is necessary to have a model of a real system to drive the 
behavior and responses of the deceptions to make them appear realistic and relevant. There 
are two general methods for creating a model and driving a simulation to feed realistic data to 
decoys: data driven and physics-based models. 

 
4.2 Physics based simulation 

The first type of model driven deception is physics-based models. Physics based models 
incorporate mathematical representations of the physics behind any given physical process. 
Through these mathematical models it is possible to simulate the behavior of physical 
processes under various conditions. Utilizing physics-based models it is possible to develop 
some common pre-defined system models that can simulate and generate data to drive 
variations of decoy deployments around different domains. 

 
An example pre-canned model would be an electrical distribution substation. Within distribution 
substations are electrical feeders which are the systems that provide the final leg of distribution 
to houses and businesses. While every utility can construct their feeders in whatever 
configuration they desire, when creating a pre-canned example, it is desirable to select a 
broadly applicable case such as prototypical feeders (Schneider et. al. 2018). Prototypical 
feeders are models of commonly reoccurring features from a survey of the United States 
distribution utilities. Figure 6 displays a generic one-line diagram for a feeder that shows the 
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flow of electricity from the transmission system on the left, through a transformer to lower the 
voltage to safe levels for distributing to consumers, multiple electrical safety (like breakers and 
reclosers to cut power to the segment) and conditioning (like tap changers and capacitors for 
managing stable voltages) devices, and out to the circuit of power lines to neighborhoods and 
commercial buildings. 

 

Figure 6: Generic feeder one-line diagram 
 

Most of the components for an electrical feeder are housed with a substation yard. Within a 
substation there are sensors and controllers connected to the feeder to monitor and manage the 
safe and reliable flow of electricity. Supervisory control and data acquisition (SCADA) are the 
communication architecture through which data is collected from local devices and 
communicated to one or more supervisory systems controlled by operators. At the top of the 
hierarchical SCADA communication architecture is a control center where operators and 
dispatchers monitor all or large areas for a distribution utility’s assets. Each substation generally 
has a communication gateway called an RTU for aggregating all the information from the 
substation and provides it back to the central control room. Within the substation, the RTU 
aggregates data from multiple intelligent electronic devices (IEDs) such as meters and relays 
that interface with physical substation components like transformers and switches. Figure 7 
depicts a general SCADA architecture for a distribution utility. The DNP3 is the most common 
SCADA communication protocol currently used within the United States. Other protocols are 
prominent in other locals like IEC 61850 and 60870-5 in Europe. 
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Figure 7: SCADA communication hierarchy 

 
Based on the specific feeder construction there is some number of inputs/outputs (I/O) present 
for monitoring and controlling all the components in the substation. For example, the R2-1247-2 
prototypical feeder has 26 analog input and 6 output variables and 51 binary input and output 
variables. These variables are those that are available to be mapped to the decoy devices. 

 
These physics-based models enable deployment of different decoy configurations based on a 
user’s needs including the number of decoys, configuring which protocols are used, and the 
mapping of variables to protocol points in each decoy. The number of decoys is configurable 
bounded by the number of logically separable pieces but in real systems a single relay can 
monitor many points and provide multiple functions like metering, reclosing, and protection. The 
minimum and easiest decoy campaign possible with these feeder models is a single RTU that 
represents the communication gateway to the substation and all variables are mapped to that 
single unit. This configuration is common in distribution substations where the communication 
between the IEDs is all legacy serial communication and wired analog signals and the long- 
distance communication between the RTU and the control room is Ethernet based. The most 
complex campaign scenario is to map all of the variables to relays such as a high side relay to 
break the current coming from the sub-transmission system, a feeder overcurrent protection 
relay, a differential relay on the transformer, and some number of recloser relays mid-circuit. A 
decoy RTU can be created to poll all the decoy relays over an Ethernet network to make the 
substation environment appear active and operational. An example listing of variables from a 
prototypical feeder substation is provided in Appendix B. 

 
Once a mapping of data for a campaign is complete, it is possible to execute the decoys. The 
PNNL developed GridLAB-D simulator is used to execute the prototypical feeder models. 
Through wrapper code the values for the variables are captured and inserted into a database 
every simulation cycle, such as every second. The database acts as a persistent memory of 
what is happening within simulated system. With a real time updating state of the system it is 
then possible to leverage the campaign decoy mappings to update the decoy data states from 
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the database to present a high fidelity and realistic set of data to the network and to active 
threats probing the system. If a threat discovers a point within a decoy that it would like to 
control, like a switch to cut power to part of the whole feeder, the database also provides a data 
path to send state changes from SCADA protocol control commands to state changes in the 
simulation. The wrapper code also checks for requested state changes every cycle and pushes 
them to the GridLAB-D simulation to alter the system state and generate resultant data 
expected, such as 0 voltage downstream of the switch that was opened. Now a threat observing 
the decoys responses will believe that their attack was successful, and they have achieved their 
goals. 

 
4.3 Data driven simulation 

While physics-based simulations are powerful tools able to produce highly accurate results to 
enable high fidelity of decoy response, the development of physics-based models is resource 
intensive requiring domain expertise. This limits the ability to develop custom built models that 
generalize across and within industries and fit a specific organization’s unique characteristics. 
Therefore, another solution is necessary to enable highly tuned OT deception campaigns. We 
have been investigating and developing a data driven approach using machine learning (ML) to 
generate “good enough” models of operational OT systems. 

 
ML has been successfully implemented in many different areas in recent years. ML applications 
range from handwriting recognition, image classification, self-driving cars, and more. Many of 
the algorithms and techniques used in ML were developed in the late 1990’s and early 2000’s. 
But recently, because of the advances in hardware (CPU’S, TPU’s, GPU’s, etc.), we have the 
computational power to implement these algorithms. The field of ML keeps evolving at an ever- 
faster pace and new techniques and areas of application are being discovered. In this work we 
explored the application of ML in cyber-deception. It is not only computers and phones that are 
connected to the internet or a cyber-network. Our approached investigated the use of Long-
Short Term Memory network (LSTM) and a novel shallow neural network Equation Learner 
(EQL) (Sahoo, Lambert, and Martius 2018), on surrogate time series data representing the 
outputs of different building sensors. 

 
Data collected from an operational system, from methods like network SPAN ports or data 
historians, can be used with these ML approaches to generate models and simulate their 
responses under different states. These models can be used just like the previous physics 
models to create the data to drive realistic responses of decoys. However, generating models 
from collected data presents a challenge in creating accurate models because the data 
collected will likely not provide data on all variables incorporating the full system dynamics. The 
goal of our machine learning solution is to generate “good enough” to deceive threats long 
enough, minutes to hours, to provide incident responders enough time to take mitigative actions. 

 
To find the most effective method we have studied two ML approaches; a common recurrent 
neural network approach and a newer cutting-edge extrapolative approach. A building control 
system test case was used to compare the performance of the two approaches and highlight 
which methodology is better suited to generate sufficient models for simulating realistic 
responses. The rest of this section discusses the results of this study. 

 
4.3.1 Surrogate Time Series Sensor Data Description 
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To study the performance of the two ML approaches it is necessary to generate data for 
training, validating, and testing. The surrogate time series data was obtained using the software 
package Modelica (University of California n.d). Modelica is an open source software package 
developed by people in the Lawrence Berkley National Laboratory. This software can model 
dynamic systems for buildings and energy control systems. For the purposes of this work we 
use the 5 parameters in Table 1 below for the monitoring and control of water temperature for a 
building cooling system. 

 
Feature Variables 
Chilled Water Flow Rate 
Chilled Water Transfer Rate 
Chilled Water Return 
Temperature 
Chilled Water Supply 
Temperature 
Chilled Water Valve Position 

Table 1: Feature variables. 
 

The last entry in the time series is used to predict the next value. These values are simulated to 
be recorded every second using weather data recorded from March-July 2018. We used the 
data from March-May for training, June for validation, and July data is used for testing and 
comparison purposes. 

 
4.3.2 Long-Short Term Memory Approach 

 
LSTM’s are a subset of what are known as Recurrent Neural Networks (RNN). LSTM are very 
useful when trying to model processes where the next value in the series depends on previous 
ones. Our network consisted of a LSTM layer with 1024 units connected to four Dense layers 
with 512, 256, 256, 5 neurons, respectively. Figure 8 depicts the design of the network. 

 

Figure 8: Graphical representation of the LSTM based network. 
 
 

Table 2 shows the training times and corresponding validation losses at the end of 25 epochs. 
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Sample 
Size 

Time Val. Loss 

44,359 3.69 0.001400 
87,030 7.02 0.001300 

122,426 8.494 0.001400 
165,625 11.421 0.002100 

Table 2: LSTM Based Net Training Times and Validation Losses 
 

The following graphs in Figure 9 and 10 show the true, versus the predicted, values and the 
point wise error on the test data. The point wise error is defined as the true value minus the 
prediction at time t0. Thus, a perfect prediction would be a straight line at x=0. 

Figure 9: LSTM training times and validations losses. 
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Figure 10: Plots for the 5 different Chilled Water variables. 
 

4.3.3 Equation Learner Approach 
 

This method was developed by Subham Sahoo, Christoph Lampert, and Georg Martius (2018). 
This is a shallow neural network that tries to learn the underlying mathematical equation(s) that 
best represents the data. Each node in the network represents a mathematical operation (e.g. 
addition, subtraction, etc.). The advantage of this method over other equation learners is that it 
overcomes the obstacles to be able to learn the division operation. The same training, 



PNNL-30387 

Model driven deception 22 

 

 

 
 

validation, and test data splits were used as in the LSTM approach. Table 3 shows the training 
times and validation loss at the end of 25 epochs. 

 
Sample Size Time Val. Loss 

44359 0.864 0.017 
87030 1.29 0.022 

122426 1.638 0.015 
165625 2.158 0.026 

Table 3: Training times and validation error at the end of 25 epochs for the EQL base network. 
 

The following graphs in Figures 11 and 12 show EQL’s predictions versus the test data. The 
point wise error is shown as well. 
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Figure 11: EQL's predicted values against the true values. 
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Figure 12: EQL's based training times and validation error. 

 
Like we have described above this method generates the equations that describe the data and 
can make a graph of these equations using the software package Graphviz. An example 
graphing is shown in Figure 13 below. 
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Figure 11: Equations learned by the EQL algorithm. Each equation corresponds to the 

variables in table 1, respectively. 
 

4.3.4 LSTM vs EQL 
 

In general, the EQL method was able to do better predictions than the LSTM; moreover, it also 
trained faster. However, the EQL method required more training epochs to achieve a desired 
validation loss. The following graphs in Figure 14 show the comparison of the predicted values 
of both approaches versus the test data. 



PNNL-30387 

Model driven deception 26 

 

 

 
 

 
Figure 12: LSTM and EQL predicted values versus test data 

 
We can observe graphically that in general the EQL net had more success in capturing the test 
data features. It seemed that the LSTM had a hard time predicting the spikes on the data. Some 
of these spikes seem like an artifact since we are using surrogate/generated data. Future work 
could benefit from using real world data for training. However, both methods had relative 
success in demonstrating that we can generate sensor, time series data. The EQL method was 
more successful at capturing the complex features of a chilled water return system. Moreover, 
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since the EQL generates the equations these are better suited to be run in a loop unlike the 
LSTM that required corrections after some time steps. 

 
4.4 Simulation performance 

The resources utilized to run simulations of the physics of an OT system take away from the 
pool available to run decoys. Therefore, it is important to understand how much resources are 
necessary to execute the model simulations and how they scale with decoys. In this section we 
present the results evaluating the performance of the two model driven approaches. 

 
4.4.1 Physics based simulation performance 

 
Understanding the performance of the simulation tools as they operate is crucial to 
understanding their scalability. We performed some performance testing to characterize the 
amount of resources; CPU and memory, necessary to run a model. Because the physics-based 
simulations include much more complex integrated dynamics cancelations than the learned 
models; in this section we focus on the performance of the physics-based models to provide an 
expectation for an upper bound of performance. Figure 13 shows the performance results of 
executing the model described in our use case above. 

 
 CPU % RAM % 
Application Mean Min Max Mean Min Max 
python 13.5 8.0 21.9 0.4 0.4 0.4 
GridLAB-D 0.0 0.0 0.0 9.6 9.6 9.6 
FNCS 
broker 

0.3 0.0 1.0 0.1 0.1 0.1 

Figure 13: Physics based model simulation performance 
 

4.4.2  
 

Three programs are involved with running the physics-based model simulation. The GridLAB-D 
application runs the actual simulation of the distribution feeder. The FNCS broker is a 
middleware communication platform that enables the exchange of data with the running 
GridLAB-D application. Finally, a python wrapper provides the code to collect and send data to 
the FNCS broker and push and pull data from the database. As you can see, in aggregate the 
amount of resources necessary to run all these applications is very minimal. The python 
wrapper requires the most resource utilization because it is constantly active polling for data 
from the database and the message bus. The FNCS broker consistently uses a small amount of 
resources to exchange the small amount of data involved. Finally, the GridLAB-D does not 
utilize much CPU at all and maintains a consist amount of memory based on the model being 
simulated. The 0.0 CPU utilization is believed to be an artifact of our data collection 
methodology in that samples were only taken every 3 seconds and the spikes of CPU usage for 
GridLAB-D are brief. The reason for this is because we are operating GridLAB-D in real-time 
mode, so it only must calculate the system state every second which is fast and then it waits 
until the next state calculation. Therefore, GridLAB-D is waiting most of the time leading to a 
very low CPU utilization. 

 
The process we used to calculate this data was to utilize the Linux top utility in batch mode 
which samples the CPU and RAM utilization every 3 seconds. We sampled for 160 cycles to 
generate the data in the table. The system specifications for this performance study are as 
follows: 
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Processor: Intel® Core™ i7-6920HQ CPU @ 2.90GHz 2.90GHz 
RAM: 32.0 GB 

 
4.4.3 Data driven simulation performance 

 
Running the simulations in real time requires minimal resources as can be seen from the 
physics-based simulation performance results. However, the learning process for the data 
driven approach is also potentially an expensive process. As each scenario will require a unique 
number of samples to adequately train a model, we ran the two ML approaches with 4 different 
sample sizes to discover the resource utilization range and averages listed in Table 4 and Table 
5. All the tests were performed on the same system, the specifications of which are detailed in 
Table 6. 

 
As can be seen, and in staying consistent with our previous results, the EQL based learning 
method was more efficient across the board when compared with the LSTM based learning 
method. The LSTM displays more variability in CPU utilization (over 100% CPU utilization 
means using additional processor cores) and is on approximately 2x as processor intensive 
compared to EQL. Both processes increase in memory utilization as the sample size increases 
which makes sense because they must hold more data in memory. The minimum percentages 
are all fairly consist which likely represents the actual processing memory requirement not 
including a data storage for samples during processing. The resident memory follows closely to 
the memory percent utilization and the virtual memory stays consistent across all tests for both 
approaches. EQL is overall less memory intensive than LSTM. 

 
Table 4: EQL resource utilization when learning per sample size 

 EQL Based 
CPU % MEM % VIRTUAL (M) RESIDENT (M) 

Sample 
Size mean max min mean max min mean max min mean max min 

44,359 84.04 175.00 7.30 5.80 6.00 5.10 3009.73 3033.78 2986.36 467.71 485.57 410.66 
87,030 143.11 177.10 41.50 6.45 6.90 5.80 3043.43 3065.03 3019.98 517.71 555.05 461.97 

122,426 145.11 176.80 67.10 7.05 7.60 5.60 3078.19 3101.58 3017.38 566.70 606.52 449.20 
165,625 143.77 168.40 66.40 7.47 8.10 5.40 3105.03 3156.36 2803.58 600.02 647.14 430.75 

 
 

Table 5: LSTM resource utilization when learning based on differing amounts of samples 
 LSTM Based 

CPU % MEM % VIRTUAL (M) RESIDENT (M) 
Sample 

Size mean max min mean max min mean max min mean max min 

44,359 235.14 285.80 110.90 8.76 10.00 7.70 3116.43 3240.88 3044.27 705.64 800.45 621.42 
87,030 279.80 309.60 205.00 8.52 9.80 7.90 3109.39 3267.69 3038.06 682.74 785.49 632.77 

122,426 254.95 311.00 161.50 8.92 10.40 7.90 3126.97 3238.54 3041.12 718.75 831.41 634.78 
165,625 245.42 313.60 139.20 9.20 10.20 7.50 3160.83 3275.38 3045.49 738.06 819.03 600.98 
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Table 6: Experiment setup for data driven performance tests 
lscpu  
CPU(S) 4.00 
Thread(s) per core: 1.00 
Core(s) per socket: 4.00 
Model name: Inter(R) Core (TM) i5-7300HQ CPU @ 2.50GHz 
CPU MHz: 900.12 

lsmem  

Memory block size: 128M 
Total online memory: 8G 
Total offline memory: 0B 

dmidecode --type memory 
Total Width: 64 bits 
Size: 8192 MB 
Type: DDR4 
Type Detail: Synchronous 
Speed: 2400 MT/s 
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5.0 Conclusion 
Deception defense is a useful solution to ensnare and abate active threats activities. Deception 
can be a solution to help our critical infrastructure detect and respond faster to ongoing cyber- 
attacks against their most critical systems. However, as we have shown, traditional IT deception 
techniques need to be enhanced and extended to create real enough decoys for defense of 
cyber-physical systems. With profiles of services for high fidelity mimicking of embedded 
equipment and simulated models of physical systems to drive their responses, deception 
campaigns can be crafted that are enticing and convincing. 

 
A deception defense solution for OT environments provides a flexible capability that enables 
users to customize their defenses based on their current system configuration and threat tactics 
to increase the likelihood of detecting active attacks. All these capabilities are possible without 
the potential to increase system mean time to failure that other security solutions do. Cyber 
deceptions are instantiated amidst and around operational systems but do not occlude their 
communication or performance. 

 
The R&D outcomes of increasing decoy fidelity and creating a process for model driven 
deception from this project move the bar on how cyber deception can be utilized for critical 
infrastructure defense. We have demonstrated proof of concept capabilities to highlight the 
value of these capabilities. Through performance analysis we have shown that these 
approaches scale and can be utilized within the existing Attivo Networks BOTsink platform. 
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Appendix A – Example DNP3 variables from R2-1247-2 
prototypical feeder model 

The variables in the table below all map to this generic picture of feeder components. 

 
 
 

Feeder 
Object Name 

Prototypical Feeder 
Property 

DNP3 Parameter Type Notes 

Network 
Node 

voltage_A_mag analog input  

Network 
Node 

voltage_B_mag analog input  

Network 
Node 

voltage_C_mag analog input  

Substation 
Transformer 

current_A_mag analog input  

Substation 
Transformer 

current_B_mag analog input  

Substation 
Transformer 

current_C_mag analog input  

Substation 
Transformer 

power_out_real analog input  

Substation 
Transformer 

power_out_imag analog input  

Substation 
Transformer 

power_out_A_real analog input  

Substation 
Transformer 

power_out_B_real analog input  

Substation 
Transformer 

power_out_C_real analog input  

Substation 
Transformer 

power_out_A_imag analog input  

Substation 
Transformer 

power_out_B_imag analog input  

Substation 
Transformer 

power_out_C_imag analog input  

LV voltage_A_mag analog input  
LV voltage_B_mag analog input  
LV voltage_C_mag analog input  
Regulated voltage_A_mag analog input  
Regulated voltage_B_mag analog input  
Regulated voltage_C_mag analog input  
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Regulator 2 
Up-stream 

voltage_A_mag analog input Regulator is located mid-circuit 
and is not represented in diagram 

Regulator 2 
Up-stream 

voltage_B_mag analog input Regulator is located mid-circuit 
and is not represented in diagram 

Regulator 2 
Up-stream 

voltage_C_mag analog input Regulator is located mid-circuit 
and is not represented in diagram 

Regulator 2 
Down-stream 

voltage_A_mag analog input Regulator is located mid-circuit 
and is not represented in diagram 

Regulator 2 
Down-stream 

voltage_B_mag analog input Regulator is located mid-circuit 
and is not represented in diagram 

Regulator 2 
Down-stream 

voltage_C_mag analog input Regulator is located mid-circuit 
and is not represented in diagram 

Voltage 
Regulator 

tap_pos_A analog input and output  

Voltage 
Regulator 

tap_pos_B analog input and output  

Voltage 
Regulator 

tap_pos_C analog input and output  

Regulator 2 tap_pos_A analog input and output Regulator is located mid-circuit 
and is not represented in diagram 

Regulator 2 tap_pos_B analog input and output Regulator is located mid-circuit 
and is not represented in diagram 

Regulator 2 tap_pos_C analog input and output Regulator is located mid-circuit 
and is not represented in diagram 

Breaker 
Switch 

phase_A_state binary input and output  

Breaker 
Switch 

phase_B_state binary input and output  

Breaker 
Switch 

phase_C_state binary input and output  

Capacitor 1 switchA binary input and output Capacitor is located mid-circuit and 
is not represented in diagram 

Capacitor 1 switchB binary input and output Capacitor is located mid-circuit and 
is not represented in diagram 

Capacitor 1 switchC binary input and output Capacitor is located mid-circuit and 
is not represented in diagram 

Capacitor 2 switchA binary input and output Capacitor is located mid-circuit and 
is not represented in diagram 

Capacitor 2 switchB binary input and output Capacitor is located mid-circuit and 
is not represented in diagram 

Capacitor 2 switchC binary input and output Capacitor is located mid-circuit and 
is not represented in diagram 

Capacitor 3 switchA binary input and output Capacitor is located mid-circuit and 
is not represented in diagram 

Capacitor 3 switchB binary input and output Capacitor is located mid-circuit and 
is not represented in diagram 

Capacitor 3 switchC binary input and output Capacitor is located mid-circuit and 
is not represented in diagram 

Capacitor 4 switchA binary input and output Capacitor is located mid-circuit and 
is not represented in diagram 

Capacitor 4 switchB binary input and output Capacitor is located mid-circuit and 
is not represented in diagram 

Capacitor 4 switchC binary input and output Capacitor is located mid-circuit and 
is not represented in diagram 
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Switch 1 phase_A_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 1 phase_B_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 1 phase_C_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 2 phase_A_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 2 phase_B_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 2 phase_C_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 3 phase_A_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 3 phase_B_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 3 phase_C_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 4 phase_A_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 4 phase_B_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 4 phase_C_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 5 phase_A_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 5 phase_B_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 5 phase_C_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 6 phase_A_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 6 phase_B_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 6 phase_C_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 7 phase_A_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 7 phase_B_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 7 phase_C_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 8 phase_A_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 8 phase_B_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 8 phase_C_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 9 phase_A_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 9 phase_B_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 9 phase_C_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 
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Switch 10 phase_A_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 10 phase_B_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 10 phase_C_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 11 phase_A_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 11 phase_B_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 11 phase_C_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 12 phase_A_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 12 phase_B_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 

Switch 12 phase_C_state binary input and output Switch is located mid-circuit and is 
not represented in diagram 
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Appendix B – Example DNP3 JSON device profile 
{ 

"local_addr": 2, 
"remote_addr": 1, 
"allowUnsol": false, 
"device": { 
"vendor": "SEL", 

"model": "SEL3530", 
"hardware_ver": 1193240101, 
"software_ver": SEL-3530-R145-V0-Z000001-D20190830, 

"functions": [ 1, 2, 13, 14, 20, 21 ], 
"points": { 

"analog_inputs": [ 
{ "point": 0, "class": 1, "name": "voltage_A_mag", "input_location": "database" }, 
{ "point": 1, "class": 1, "name": "voltage_B_mag", "input_location": "database" }, 
{ "point": 2, "class": 1, "name": "voltage_C_mag", "input_location": "database" }, 
{ "point": 3, "class": 1, "name": "current_A_mag", "input_location": "database" }, 
{ "point": 4, "class": 4, "name": "current_B_mag", "input_location": "database" }, 
{ "point": 5, "class": 1, “name": "current_C_mag", "input_location": "database" }, 
{ "point": 6, "class": 1, "name": "power_out_real", "input_location": "database" }, 
{ "point": 7, "class": 1, "name": "power_out_imag", "input_location": "database" }, 
{ "point": 8, "class": 1, "name": "power_out_A_real", "input_location": "database" }, 
{ "point": 9, "class": 1, "name": "power_out_B_real", "input_location": "database" }, 
{ "point": 10, "class": 1, "name": "power_out_C_real", "input_location": "database" }, 
{ "point": 11, "class": 1, "name": "power_out_A_imag", "input_location": "database" }, 
{ "point": 12, “class": 1, "name": "power_out_B_imag", "input_location": "database" }, 
{ "point": 13, "class": 1, "name": "power_out_C_imag", "input_location": "database" }, 
{ "point": 14, "class": 1, "name": "voltage_A_mag", "input_location": "database" }, 
{ "point": 15, "class": 1, "name": "voltage_B_mag", "input_location": "database" }, 
{ "point": 16, "class": 1, "name": "voltage_C_mag", "input_location": "database" }, 
{ "point": 17, "class": 1, "name": "voltage_A_mag", "input_location": "database" }, 
{ "point": 18, “class": 1, "name": "voltage_B_mag", "input_location": "database" }, 
{ "point": 19, "class": 1, "name": "voltage_C_mag", "input_location": "database" }, 
{ "point": 20, "class": 1, "name": "voltage_A_mag", "input_location": "database" }, 
{ "point": 21, "class": 1, "name": "voltage_B_mag", "input_location": "database" }, 
{ "point": 22, "class": 1, "name": "voltage_C_mag", "input_location": "database" }, 
{ "point": 23, "class": 1, "name": "voltage_A_mag", "input_location": "database" }, 
{ "point": 24, "class": 1, "name": "voltage_B_mag", "input_location": "database" }, 
{ "point": 25, "class": 1, "name": "voltage_C_mag", "input_location": "database" }, 
{ "point": 26, "class": 1, "name": "tap_pos_A", "input_location": "database" }, 
{ "point": 27, "class": 1, "name": "tap_pos_B", "input_location": "database" }, 
{ "point": 28, "class": 1, "name": "tap_pos_C", "input_location": "database" }, 
{ "point": 29, "class": 1, "name": "tap_pos_A", "input_location": "database" }, 
{ "point": 30, "class": 1, “name": "tap_pos_B", "input_location": "database" }, 
{ "point": 31, "class": 1, "name": "tap_pos_C", "input_location": "database" } 

], 
"analog_outputs": [ 
{ "point": 26, "class": 1, "name": "tap_pos_A", "input_location": "database" }, 
{ "point": 27, "class": 1, "name": "tap_pos_B", "input_location": "database" }, 
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{ "point": 28, "class": 1, "name": "tap_pos_C", "input_location": "database" }, 
{ "point": 29, "class": 1, "name": "tap_pos_A", "input_location": "database" }, 
{ "point": 30, "class": 1, "name": "tap_pos_B", "input_location": "database" }, 
{ "point": 31, "class": 1, "name": "tap_pos_C", "input_location": "database" } 

], 
"binary_inputs": [ 
{ "point": 0, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 1, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 2, “class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 3, "class": 1, "name": "switchA", "input_location": "database" }, 
{ "point": 4, "class": 1, "name": "switchB", "input_location": "database" }, 
{ "point": 5, "class": 1, "name": "switchC", "input_location": "database" }, 
{ "point": 6, "class": 1, "name": "switchA", "input_location": "database" }, 
{ "point": 7, "class": 1, "name": "switchB", "input_location": "database" }, 
{ "point": 8, "class": 1, "name": "switchC", "input_location": "database" }, 
{ "point": 9, "class": 1, "name": "switchA", "input_location": "database" }, 
{ "point": 10, "class": 1, "name": "switchB", "input_location": "database" }, 
{ "point": 11, "class": 1, "name": "switchC", "input_location": "database" }, 
{ "point": 12, "class": 1, "name": "switchA", "input_location": "database" }, 
{ "point": 13, "class": 1, "name": "switchB", "input_location": "database" }, 
{ "point": 14, "class": 1, "name": "switchC", "input_location": "database" }, 
{ "point": 15, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 16, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 17, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 18, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 19, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 20, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 21, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 22, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 23, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 24, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 25, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 26, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 27, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 28, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 29, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 30, "class": 1, “name": "phase_A_state", "input_location": "database" }, 
{ "point": 31, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 32, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 33, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 34, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 35, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 36, "class": 1, "name": "phase_A_state", “input_location": "database" }, 
{ "point": 37, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 38, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 39, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 40, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 41, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 42, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 43, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 44, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
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{ "point": 45, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 46, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 47, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 48, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 49, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 50, "class": 1, "name": "phase_C_state", "input_location": "database" } 

], 
"binary_outputs": [ 
{ "point": 0, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 1, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 2, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 3, "class": 1, "name": "switchA", "input_location": "database" }, 
{ "point": 4, "class": 1, "name": "switchB", "input_location": "database" }, 
{ "point": 5, "class": 1, "name": "switchC", "input_location": "database" }, 
{ "point": 6, "class": 1, "name": "switchA", "input_location": "database" }, 
{ "point": 7, "class": 1, "name": "switchB", "input_location": "database" }, 
{ "point": 8, "class": 1, "name": "switchC", "input_location": "database" }, 
{ "point": 9, "class": 1, "name": "switchA", "input_location": "database" }, 
{ "point": 10, "class": 1, “name": "switchB", "input_location": "database" }, 
{ "point": 11, "class": 1, "name": "switchC", "input_location": "database" }, 
{ "point": 12, "class": 1, "name": "switchA", "input_location": "database" }, 
{ "point": 13, "class": 1, "name": "switchB", "input_location": "database" }, 
{ "point": 14, "class": 1, "name": "switchC", "input_location": "database" }, 
{ "point": 15, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 16, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 17, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 18, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 19, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 20, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 21, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ “point": 22, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 23, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 24, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 25, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 26, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 27, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 28, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 29, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 30, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 31, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 32, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 33, "class": 1, "name": "phase_A_state", “input_location": "database" }, 
{ "point": 34, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 35, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 36, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 37, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 38, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 39, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 40, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 41, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 42, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
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{ "point": 43, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 44, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 45, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 46, "class": 1, "name": "phase_B_state", “input_location": "database" }, 
{ "point": 47, "class": 1, "name": "phase_C_state", "input_location": "database" }, 
{ "point": 48, "class": 1, "name": "phase_A_state", "input_location": "database" }, 
{ "point": 49, "class": 1, "name": "phase_B_state", "input_location": "database" }, 
{ "point": 50, "class": 1, "name": "phase_C_state", "input_location": "database" } 

] 
} 

} 
} 
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