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Pumped Storage Hydropower FAST Commissioning Technical 
Analysis Summary 

Report Overview: This report is designed to address barriers and solutions to modern pumped 
storage hydropower (PSH) development by establishing baseline project development 
knowledge, defining key aspects of project development, and identifying opportunities to reduce 
project timelines, costs, and risks. This report’s scope includes post-licensing activities and 
excludes factors related to permitting or licensing.  

Context: The U.S. PSH fleet is composed of 43 projects providing the majority (95%) of utility-
scale electricity storage in the US. However, only one new PSH facility has become operational 
in the past 20 years. Several factors contribute to diminishing PSH growth in the US, including 
the magnitude of project costs and financing interest during development and construction; the 
length of time from project investment until project revenue; permitting challenges and 
construction risks; competition from other storage technologies; and unrecognized energy 
storage valuation. 

Although innovative PSH concepts (including underground, small, and modular systems) have 
been investigated, widespread application has yet to occur. In short, the time, cost, and risk 
associated with modern PSH development has resulted in limited recent growth in the United 
States, despite the rising energy storage demand from increased deployment of variable 
renewable technologies.  

FAST Analysis and Prize: To address 
these challenges, the US Department of 
Energy’s (DOE) Water Power 
Technologies Office initiated the PSH 
Furthering Advancements to Shorten 
Time to (FAST) Commissioning project, 
aimed at catalyzing new solutions, 
designs, and strategies to accelerate PSH 
development. This report uses available 
data from previous license applications, 
ongoing project cost data, and other 
global PSH project information based on 
a typical closed-loop PSH project.  

Key Findings: Considering baseline 
costs, timelines, and risks associated 
with PSH facilities, this report indicates 
that across all project development 
categories, civil works, including the upper and lower reservoirs and water conveyance 
components, and equipment, most notably the powertrain, comprise the largest portions of 
overall project capital costs (67% and 26%, respectively; see pie chart). Similarly, the upper and 
lower reservoirs, water conveyances, and transmission interconnection components require the 
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longest development times, and the upper and lower reservoirs and water conveyance 
components have the greatest risk potential. 

These project development categories represent opportunity areas that have the most potential for 
both time and cost reductions. These reductions can be accomplished through innovative 
construction technologies and logistical approaches in terms of scheduling component 
construction. Although the potential exists for equipment-based cost reductions, it is relatively 
minor because major components (such as the powertrain) have been optimized over decades of 
innovation.  

The Prize: Twenty-two eligible participants entered the FAST prize competition and submitted 
their ideas. Nine finalists were selected to continue to an incubation round in which they received 
50 hours of technical support from the DOE national laboratories. Four winners were awarded up 
to $550,000 in cash prizes and research vouchers to further refine their ideas and advance the 
state of the PSH industry. For more information please visit https://www.herox.com/fast/updates. 

Next Steps:  

• Obtain refined cost and time data to establish a baseline case representing the full spectrum 
of the project scale and potential site-specific characteristics  

• Develop and obtain performance metrics to evaluate cost reductions, time improvements, and 
risks associated with applying various technologies to PSH components  

• Establish a techno-economic model to assess technologies’ effects on PSH project costs and 
identify component areas that would benefit the most from technological advancements  

• Develop focused communication to industry leaders, planners, and investors on information 
pertaining to project development areas (civil works and others) with the most potential to 
reduce project timelines, costs, and risks 

• Continue support for grand prize winners; develop assessments of winner’s ideas that can 
reduce commissioning timelines and costs and identify the feasibility and respective paths 
necessary for implementation 

• Use the lessons learned in this prize effort to develop a refined direction forward and focused 
specifications for technological advancement needs 

  

https://www.herox.com/fast/updates
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HydroWIRES 

In April 2019, WPTO launched the HydroWIRES Initiative1 to understand, enable, and improve 
hydropower and pumped storage hydropower (PSH) contributions to reliability, resilience, and 
integration in the rapidly evolving US electricity system. The unique characteristics of 
hydropower, including PSH, make it well-suited to provide a range of storage, generation 
flexibility, and other grid services to support the cost-effective integration of variable renewable 
resources.  

The US electricity system is rapidly evolving, bringing both opportunities and challenges for the 
hydropower sector. While increasing deployment of variable renewables such as wind and solar 
has enabled low-cost, clean energy in many US regions, it also creates a need for resources that 
can store energy or quickly change operations to ensure a reliable and resilient grid. Hydropower 
(including PSH) is not only a supplier of bulk, low-cost, renewable energy, but also a source of 
large-scale flexibility and a force multiplier for other renewable power generation sources. 
Realizing this potential requires innovation in several areas: incorporating new operations into 
planning and licensing decisions, predicting new operations and management patterns and costs 
to prevent unplanned outages, and designing new turbines and control systems for fast response 
and frequent ramping while maintaining high efficiency. 

HydroWIRES is distinguished in its close engagement with DOE national laboratories. Five 
national laboratories—Argonne National Laboratory, Idaho National Laboratory, National 
Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National 
Laboratory—work as a team to provide strategic insight and develop connections across the 
HydroWIRES portfolio as well as broader DOE and national laboratory efforts such as the Grid 
Modernization Initiative. 

Research efforts under the HydroWIRES Initiative are designed to benefit hydropower owners 
and operators, independent system operators/regional transmission organizations, regulators, 
original equipment manufacturers, and environmental organizations by developing data, analysis, 
model, and technology R&D that can improve their capabilities and inform their decisions. 

More information about HydroWIRES is available at https://energy.gov/hydrowires.  

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that 
its use would not infringe privately owned rights. Reference herein to 
any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute 
or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

 
1 Hydropower and Water Innovation for a Resilient Electricity System (“HydroWIRES”) 

https://energy.gov/hydrowires
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Executive Summary 

The US energy landscape has undergone major changes over the past 10 years and will continue 
to see significant changes in future decades as the power grid increases its reliance on variable 
renewable energy resources. Because of the inherent variability of these resources, renewable 
energy growth may require additional energy storage capacity to provide flexible load-following 
capabilities and other grid services that can quickly adjust to changes in energy demand and 
generation. 

Pumped storage hydropower (PSH)—one such energy storage technology—uses pumps to 
convey water from a lower reservoir to an upper reservoir for energy storage and releases water 
back to the lower reservoir via a powerhouse for hydropower generation. PSH facility pump and 
generation cycling often follows economic and energy demand conditions.  

Across the United States, 43 PSH facilities are in operation and 55 projects are in various 
permitting or licensing stages. Altogether, the 43 operational projects provide the wide majority 
(95%) of utility-scale electricity storage in the United States (Uría-Martínez et al., 2018). These 
facilities also provide significant power and nonpower grid benefits, including large-scale 
electrical system reserve capacity, grid reliability support, and electricity supply-demand 
balancing through quick-response capabilities and operational flexibility. PSH systems can 
accomplish these at a scale (e.g., size) and cost that makes these systems highly attractive from a 
technical standpoint. Although these research concepts are still in their infancy, they demonstrate 
promising potential as future PSH energy storage technologies. 

Although PSH has many advantages, development in the United States has effectively stalled 
since the 1990s, partially because of the magnitude of project costs and financing interest during 
development and construction, the length of time from project investment until project revenue 
begins, permitting challenges, construction risks, competition from other storage technologies 
(e.g., batteries, hydrogen storage), and electricity market evolution and uncertainty. In short, the 
time, cost, and risk associated with modern PSH development have resulted in limited growth in 
the United States recently, despite the growing energy storage demand stemming from increased 
wind and solar power deployment. Technology innovation is needed to help reduce PSH 
commissioning time, cost, and risk, particularly during the post-licensing phase of project 
development. 

To address challenges facing the PSH industry and to improve PSH commissioning timelines, 
the US Department of Energy (DOE) Water Power Technologies Office (WPTO) initiated the 
PSH Furthering Advancements to Shorten Time to (FAST) Commissioning Prize project.  

 

The Pumped Storage Hydropower FAST Commissioning Project aims to address 
commissioning challenges facing the PSH industry and reduce PSH project and 
commissioning timelines. The project’s scope is limited to post-licensing activities 
and excludes factors related to permitting or licensing. 
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The PSH FAST Commissioning Prize project included (1) a research effort to develop a baseline 
technical analysis (i.e., this report) and (2) a DOE-funded competition to catalyze new solutions, 
designs, and strategies to accelerate PSH development (i.e., the PSH FAST Commissioning 
Prize). The Prize was a collaborative research and outreach initiative with support from multiple 
DOE national laboratories (Argonne National Laboratory, National Renewable Energy 
Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) and 
recognized PSH industry experts. The key outcome of this project was to identify primary 
development barriers and solution categories that can be used to guide future research into 
developing high-impact technology innovations. The PSH FAST Commissioning Technical 
Analysis Report provides the technical rationale and framework for realizing these outcomes, 
whereas the Prize represents a first step toward realizing technology innovations. 

The technical analysis documented in this report is structured to provide insight into modern 
PSH development by establishing baseline PSH project development knowledge (Section 2.0), 
defining key aspects of PSH project development (Section 3.0), and identifying opportunities to 
reduce PSH project development time and costs (Section 4.0). Further insights for addressing 
PSH project development barriers and solutions are documented in Section 5.0. Ultimately, this 
report informs and serves as the technical basis for the parallel, ongoing PSH FAST 
Commissioning Prize. The Prize (described in detail in Section 6.0) aims to catalyze new 
solutions and designs to accelerate PSH development. This technical analysis and the Prize 
implementation will advance PSH development knowledge and promote innovative technology 
solutions, with the aims to address post-licensing PSH project commissioning challenges facing 
the industry and improve construction timelines. 

In summarizing baseline PSH project development knowledge, this Technical Analysis Report 
reveals that only one new PSH facility, the 40 megawatt (MW) multipurpose Olivenhain-Hodges 
Plant in California, has become operational in the US during the past 20 years. Of the 55 
proposed PSH projects, 85% are “pending preliminary permit” or “issued preliminary permit,” 
and only three have obtained a license in the past decade (the 1,300 MW Eagle Mountain, 400 
MW Gordon Butte, and 393 MW Swan Lake North). As of April 2020, none of these projects 
have started construction. Recent research has addressed various innovative approaches to PSH 
deployment—examples of recent research efforts include investigating: systems that use the 
ocean or a coal mine as the lower reservoir; modular reservoir systems that can float in and 
operate independently of an existing water body as a closed-loop system; modular PSH systems 
that take advantage of the extreme height differentials in high-rise buildings; and 
hydropneumatic energy storage technologies, among others. To assess PSH project time, cost, 
risk drivers, and technological improvement opportunities, while also informing the competition, 
three important project development component categories are assessed in this report: 

Civil Works generally comprises approximately 67% of total capital costs and includes 

• Upper and lower reservoirs—the upper and lower waterbodies used in a PSH 
project to provide a hydraulic head differential. Connected via water conveyances 
that provide water to a turbine and, in turn, enable electricity generation 



 

v 

• Water conveyances—engineered structures that enable flowing water transport 
from the upper reservoir to the lower reservoir. Typically accomplished using 
tunnels (underground) or penstocks (either buried or aboveground) 

• Site preparation—detailed planning/engineering and subsequent construction 
activities to support subsurface testing and seismic assessments, site access, 
foundation preparation, and broader civil works activities 

• Transmission interconnection—electrical equipment and infrastructure used to 
deliver a hydropower facility’s electrical output to the power grid 

• Powerhouse—a structure used to house powertrain and ancillary equipment needed 
to support hydropower operations 

Equipment generally comprises approximately 26% of total capital costs and includes  

• Powertrain—mechanical (turbine) and electrical (generator) equipment used to 
convert the hydraulic energy of flowing, pressurized water to mechanical energy (via 
physically spinning a turbine) and subsequently to electrical energy (via a generator) 

• Ancillary plant electrical—non-generating electrical energy necessary for plant 
operations 

• Ancillary plant mechanical—non-generating mechanical energy necessary for 
plant operations 

• Switchyard and substation—electrical equipment providing support and protection 
when converting low-voltage electricity from the generator to the higher voltage 
system required by the transmission line. Enables connection and disconnection of 
the hydropower facility from the power grid 

Engineering generally comprises approximately 7% of total capital costs and includes 
design and engineering.  

These three categories have particular timelines, costs, and risks associated with the material and 
labor required for development, and they are often integrally connected and interdependent. For 
example, equipment costs entail not only each component’s material costs, but also the 
corresponding procurement and planning labor needed for fabrication, transportation from the 
factory to the site, and installation; this process from engineered design to commissioning has 
implications on project timelines, costs, and risks to different degrees. Although time, cost, and 
risk reductions are important across the civil works, equipment, and engineering categories, 
reductions in some areas could have a greater overall effect on project development than others.  

To prioritize technology research and development efforts and identify opportunities for 
reducing post-licensing project development time, cost, and risk, this Technical Analysis Report 
uses available data from previous license applications and a high-level analysis from Knight 
Piésold Consulting based on historic project information, ongoing project cost data, and other 
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global PSH project information based on a typical closed-loop PSH project. Across all project 
development categories, the upper and lower reservoirs (civil works), along with the powertrain 
(equipment) and water conveyance (civil works) components, comprise the largest proportions of 
overall project capital costs (see Figure ES-1 for representative project cost breakdown). 
Similarly, the upper and lower reservoirs, water conveyances, and transmission interconnection 
(civil works) components require the longest time duration, and the upper and lower reservoirs 
and water conveyance components have the greatest risk potential for negatively affecting 
project completion through unexpected cost increases or schedule delays.  

 

 
Figure ES-1. A representative total capital cost breakdown for an example closed-loop PSH project. See 

Figure 22 in the main report for more information. 



 

vii 

Considering the baseline costs, timeline, and risks currently associated with PSH facilities, 
technological improvement to any of the components may impact the overall project cost and 
timeline. The results of this Technical Analysis Report indicate that technological improvements 
to the following components have the greatest potential for cost and time reduction: 

• The primary opportunity area for PSH project development improvement in both time and 
cost reductions is in the civil works category, primarily for upper/lower reservoirs, water 
conveyance, and transmission interconnection. 

• A secondary opportunity area focused primarily on PSH project development time reductions 
is in site preparation, powerhouse, switchyard/substation, and design and engineering. 
Opportunities exist for reducing both powertrain equipment and installation cost and time.  

These components have the most potential for both time and cost reductions, which can be 
accomplished through innovative construction technologies and logistical approaches in terms of 
scheduling component construction. Although cost reduction potential could emerge for 
equipment, the reduction potential is relatively small because major components (such as the 
powertrain) have been optimized over decades of innovation.  

By establishing PSH baseline knowledge, identifying important project development barriers and 
drivers, and presenting a technical analysis of modern US PSH project development, five topic 
areas have been identified as potential areas for reducing the time, cost, and risk associated with 
PSH commissioning. These solutions aim to stimulate industry-led technology innovations and 
are categorized as follows: 

Topic Areas 

Innovative Concept, Design, and Engineering 

Creative Construction Management and Contracting Strategies 

Improved Construction Equipment Design and Application 

Advanced Construction Materials and Manufacturing 

Standardized Equipment, Monitoring, and Control Technologies 

These five topic areas formed the basis for the PSH FAST Commissioning Prize competition, 
announced in April 2019. From April to June 2019, participants entered the competition and 
submitted their ideas to one or more of these five categories, and nine participants were selected 
in July to continue to the next round. In early October 2019, four finalists were awarded up to 
$550,000 in cash prizes and research voucher support over the next year to further refine their 
ideas and advance the state of the PSH industry. The grand prize winners and their concepts are 
in the following table (alphabetized by title).  

Title Team Innovation 

Accelerating PSH 
Construction with Steel 
Dams 

Gordon Wittmeyer, 
Southwest Research 
Institute 

Presented a modular steel concept for dams that cuts costs 
by one-third and cuts construction schedules in half 
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Title Team Innovation 

Modular Closed-Loop 
Scalable Pump Storage 
Hydro 

Tom Eldredge and Hector 
Medina, Liberty 
University 

Presented a modular closed-loop, scalable PSH system 
with a capacity range of 1–10 megawatts, adaptable to 
sites without natural bodies of water 

Reducing PSH Excavation 
Duration, Cost, & Risk 

Tracy Livingston and 
Thomas Conroy, Team 
Livingston 

Combined excavation equipment modifications and 
process optimizations to achieve up to 50% reduction in 
excavation timelines 

Use of Modern TBMs for 
Underground Pumped 
Storage 

Doug Spaulding, Nelson 
Energy and Golder 
Associates 

Proposed the use of tunnel-boring machines for 
underground excavation, which can decrease excavation 
time by 50% and reduce costs 

 

The next steps for moving toward reducing PSH commissioning timelines are as follows: 

• Obtain refined cost and time data possessing the granularity necessary for establishing the 
full spectrum of project scale and potential site-specific characteristics. With refined cost and 
time data, develop a techno-economic model to assess technologies’ effects on overall PSH 
project costs, and identify key component areas that would benefit the most from 
technological advancements and improvements. 

• Continue collaboration with prize winners to gain knowledge and meaningful information for 
effectively quantifying the impact of innovative technologies on time and cost reduction.  

• Focus communication to industry leaders, planners, and investors on information pertaining 
to opportunities within the civil works component of PSH development that has the most 
potential for time and cost reductions. 

The information and technical analysis contained in this report presents information on PSH 
project development baselines and identifies opportunity areas with the greatest potential to 
accelerate development while reducing cost, time, and risk. Together, this Technical Analysis 
Report and the Prize implementation will advance PSH development knowledge and promote 
innovative technology solutions, with the aims of addressing PSH project commissioning 
challenges facing the industry and improving construction timelines. 
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DOE US Department of Energy 
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1.0 Introduction  

This report provides insight into modern pumped storage hydropower (PSH) development by 
establishing baseline PSH project development knowledge in Section 2.0, defining key aspects of 
PSH project development in Section 3.0, and identifying opportunities to reduce PSH project 
development time and costs in Section 4.0. Further information is documented in Section 5.0 to 
address PSH project development barriers and solutions.  

Ultimately, this report informs and serves as the technical basis for the parallel, ongoing PSH 
Furthering Advancements to Shorten Time to (FAST) Commissioning Prize, funded by the US 
Department of Energy (DOE) Water Power Technologies Office (WPTO). The Prize (described 
in more detail in Section 6.0) aims to catalyze new solutions and designs to accelerate PSH 
development. Together, this technical analysis and the Prize implementation will advance PSH 
development knowledge and promote innovative technology solutions, with the aim to address 
post-licensing PSH project commissioning challenges facing the industry and improve 
construction timelines. 

This section provides introductory material about PSH development and is organized as follows: 

• Section 1.1 introduces background context on PSH technology and project development in 
the United States. 

• Section 1.2 identifies the objective of the PSH FAST Commissioning research documented in 
this report. 

• Section 1.3 clarifies this report’s scope and briefly highlights the remaining content included 
in this report. 

1.1 Research Context 

The US PSH fleet accounts for nearly all (95%) utility-scale electricity storage in the United 
States, provides large-scale electrical system reserve capacity, contributes to grid reliability, and 
supports electricity supply-demand balancing by offering quick response capabilities and 
operational flexibility. Historically, PSH projects have been economical by using low-cost 
pumping energy to generate higher-cost energy and obtain arbitrage, which is still an important 
economic consideration in any PSH project pro forma. 

 

Optimization of the pumping and generation cycles and the capability for flexible pumping and 
generation are also important in present-day PSH projects. Existing PSH projects have been 
increasingly called upon to complement and firm variable renewable generation and to provide 

PUMPED STORAGE CAPABILITIES 
“PSH provides higher power ratings and larger energy storage capabilities than 
most other energy storage technologies.” Thus, PSH has been increasingly 
considered to meet future energy demands (DOE, 2016). 
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energy storage and ancillary benefits for grid support and load balancing. This complementary 
implementation is especially the case when fossil and nuclear facilities are retired and the 
deployment of wind and solar generation are increased in conjunction with state-level renewable 
portfolio standards and other environmental policies. Since penetration of variable renewables is 
projected to increase in the United States, additional energy storage capacity is projected to be 
needed, highlighting the potential of PSH to meet this need. 

New PSH project development faces significant upfront capital costs and long commissioning 
times and has stalled because of competition from low price natural gas, perceived development 
risks, and the difficultly associated with quantifying PSH benefits. PSH development timelines 
(including permitting) frequently last up to a decade or more. During this timeline, PSH projects 
often face both investment and long-term revenue uncertainty due to numerous issues, including 
a lack of awareness of the true capabilities of PSH, the length of time from initial project 
investment until project revenue begins, permitting uncertainties, construction risks, a perceived 
risk of construction cost escalation, public policies favoring competing technologies (e.g., battery 
technology), and electricity market evolution and lack of predictability.  

1.2 Research Objective 

To address new project commissioning challenges facing the PSH industry and to reduce 
construction timelines, WPTO formed the PSH FAST Commissioning project. The project was a 
collaborative research and outreach initiative with support from multiple DOE national 
laboratories, including Oak Ridge National Laboratory (ORNL), Argonne National Laboratory 
(ANL), National Renewable Energy Laboratory (NREL), and Pacific Northwest National 
Laboratory (PNNL). Based on this research effort, five topic areas are identified in Section 6.0 as 
potential solutions for reducing the time, cost, and risk associated with PSH commissioning via 
technology innovation.  

 

REPORT OBJECTIVE AND USE 
This report establishes baseline knowledge, identifies opportunity areas, and 
presents a qualitative technical analysis for modern PSH project development 
in the United States. Given the challenges currently facing PSH development, 
the key outcome of this research effort is identification of primary 
development barriers and solution categories. These solution categories aim to 
stimulate industry-led technology innovations for reducing the time, cost, and 
risk associated with modern PSH commissioning. 
To facilitate PSH commissioning innovation, this report serves as the technical 
basis for the DOE-funded Pumped Storage Hydropower FAST Commissioning 
Prize competition. The competition’s goal was to catalyze new solutions, 
designs, and strategies to accelerate PSH development. Successful proposals 
generated new ideas to solve the post-licensing-to-commissioning technical 
challenges currently facing PSH project development. 
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1.3 Research Scope 

This research effort explicitly applies to the post-licensing phase of PSH project development 
(i.e., the period between Federal Energy Regulatory Commission [FERC] license issuance and 
the onset of commercial operation). The project scope is limited to post-licensing activities and 
excludes factors related to permitting or licensing. 

The PSH FAST Commissioning project focuses on a variety of topic areas rarely attempted in 
such a coordinated fashion, with the goal of spurring innovative ideas for improving traditional 
techniques and conventional approaches. Success of the project’s outcome will be measured in 
the quality of the technology and innovation developed from this research, and in the awareness 
raised in the US PSH development and investment community of the need to improve traditional 
techniques and approaches associated with PSH project delivery and commissioning.  

This research effort strives to initiate the next generation of PSH development. This effort is 
achieved by (a) performing data collection and analysis that defines a baseline reference model 
of PSH development, (b) identifying major technical and construction barriers experienced from 
licensing to commissioning, and (c) identifying and recognizing innovations that other industries 
have implemented that could serve the PSH development community. Figure 1 illustrates the 
overall roadmap driving this report’s structure and technical approach. 

 
Figure 1. Overview of primary tasks involved in the research, development, and demonstration of the PSH 

FAST Commissioning technical approach.  

A preliminary analysis (Hadjerioua et al., 2019b) informed the PSH Prize competition, which 
seeks innovation from entities for which the barrier to entry would otherwise be too high, 
including small businesses, universities, and others. WPTO is uniquely suited to support such a 
competition because it can leverage the technical expertise, facilities, and marketing reach of the 
national laboratory network to ensure maximum visibility and impact. 

This report establishes a baseline development model and evaluation framework for classifying 
and comparing PSH development efforts both in the United States and abroad, and identifies key 
technical factors affecting PSH development time, risk, and cost from post-licensing to 
commissioning. The report is organized into the following sections: 
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• Section 2.0 provides baseline information about historical PSH development in the United 
States and internationally, PSH technologies and configurations, and PSH development 
classification. 

• Section 3.0 describes the main features of PSH facilities, including physical infrastructure 
components and project development tasks, and defines the types of PSH facilities. 

• Section 4.0 presents the relative timeline and cost associated with each of the major PSH 
project development components based on industry data for cost and time and considers 
opportunity areas to accelerate PSH project development.  

• Section 5.0 presents the PSH development barriers, introduces a pathways framework for 
arriving at the solution topic areas, and highlights the PSH FAST Commissioning Prize, 
including the five topic areas. 

• Section 6.0 summarizes outcomes of the PSH FAST Commissioning Prize competition. 

• Section 7.0 highlights key conclusions and next steps from the PSH FAST Commissioning 
research effort. 
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2.0 Baseline Knowledge of PSH Project Development  

Although traditional PSH facilities have provided substantial energy storage in the United States, 
innovative technology and project development considerations are needed to help overcome the 
development barriers. The PSH FAST Commissioning project aimed to address this challenge, 
specifically by addressing the time, cost, and risk from concept to commissioning, excluding 
permitting and licensing, for PSH development.  

This section establishes baseline knowledge related to PSH development and is organized as 
follows: 

• Section 2.1 describes the primary PSH categories (traditional, underground, and 
small/modular), including functions and features of PSH projects. 

• Section 2.2 documents historical US and international PSH development, including a 
summary of operational and proposed PSH facilities in the United States and recent trends in 
international development. 

• Section 2.3 classifies PSH development practices by summarizing baseline development 
timelines and costs and exemplifies development experiences through case study discussions. 

• Section 2.4 summarizes opportunities and challenges associated with PSH development in 
the United States. 

2.1 PSH Categories 

In this section, the main functions of PSH are introduced and described, including concepts that 
have been documented in literature but not widely applied to PSH development. The PSH 
categories discussed include the following: 

• Section 2.1.1 introduces typical PSH facility layout features and distinguishes between open-
loop and closed-loop configurations. 

• Section 2.1.2 describes the use of underground reservoirs for PSH. 

• Section 2.1.3 describes recent PSH R&D efforts that evaluate small and modular PSH 
systems. 

2.1.1 Traditional PSH 

As mentioned in Section 1.1, PSH represents the largest source of electricity storage in the 
United States and provides several key benefits, including contributing to large-scale electrical 
system reserve capacity, grid reliability (e.g., frequency regulation and voltage support), and 
electricity supply-demand balancing (including black start capability). These PSH benefits 
broadly support ancillary grid services, which FERC (2019a) defines as “those services 
necessary to support the transmission of electric power from seller to purchaser, given the 
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obligations of control areas and transmitting utilities within those control areas, to maintain 
reliable operations of the interconnected transmission system.” For reference and a sense of the 
project scale, Figure 2 provides an aerial photo of an existing PSH project (the Rocky Mountain 
PSH project in Georgia). 

 

Figure 2. Photograph of the Rocky Mountain Pumped Storage Project located in Georgia. Source: Image 
courtesy of Southern Company and Georgia Power.  

Most existing PSH plants in the United States provide significant energy storage, with the 
majority (67% of operational US plants) having installed capacities above 100 MW and many 
operating at hydraulic heads (i.e., the difference between the upstream and downstream water 
levels) above 500 ft.1 The majority of operational plants provide peaking power during periods of 
high demand and are typically operated on daily and weekly cycles. Most plants operate between 
4 and 20 hours per day depending on local energy demands (Antal, 2004). Figure 3 provides 
examples of historical load balancing data typical for a balancing authority with low renewable 
energy penetration. The graphs show (left) how energy storage helps effectively flatten power 
demand and (right) how energy storage can take advantage of electric power price fluctuations 
throughout the day. Previous and ongoing DOE R&D efforts (Botterud et al., 2014 [ANL]; 
Koritarov et al., 2014a and 2014b [ANL]) address PSH market services and valuation. 

 
1 Based on ORNL Existing Hydropower Assets data (as of December 31, 2018).  
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Figure 3. Examples of (left) power demand influenced by energy storage and (right) variation of power 

demand throughout the day (right). Source: Energy Information Administration.  

Although many PSH projects have been proposed over the past two decades, only a few have 
begun construction. Consequently, recent R&D efforts have sought to improve the performance 
and cost of other energy storage technologies, including compressed air, battery, and hydrogen 
storage, among others. Although other technologies will continue to evolve in the future, PSH 
has proven itself a mature, reliable, sustainable technology capable of providing completely 
predictable electricity with very fast response times and, according to DOE (2016), “is the only 
grid-scale energy storage technology that has been used extensively for more than 100 years.” 
Based on information provided by Mongird et al. (2019), PSH can provide significantly higher 
power and energy (and discharge durations) than other energy storage technologies including 
electrochemical energy storage (e.g., batteries) and other mechanical energy storage technologies 
(e.g., compressed air energy storage and flywheels). Additional analysis is needed to demonstrate 
the benefits of large-scale and long-term use of PSH in comparison with the scaling and duration 
of battery storage technology with respect to the impact on grid stability, power regulation, and 
the electricity market.  

2.1.1.1 PSH Facility Layout 

Traditional PSH facilities consist of several main features that are integrally connected to 
provide energy and water storage, bidirectional water conveyance, power production, and 
electrical transmission, as shown in Figure 4 (traditional) and Figure 5 (open- and closed-loop). 
These features function together to provide hydroelectricity, support grid reliability, and resupply 
water for upper reservoir storage. Facility layouts for traditional PSH vary depending on site-
specific constraints in geology, topography, and hydrology, as well as economic considerations.  

In the case of traditional PSH, a site with an elevation difference between the upper and lower 
reservoirs2 is used to establish a pressure head for power generation. Both reservoirs can source 

 
2 In contrast to traditional PSH, some alternative designs, such as the GLIDES system described in Section 2.3.3, 
use compressed air to achieve a high-pressure head. 
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and store water, and in many cases, construction of at least one new reservoir is needed. Water is 
delivered between the two reservoirs via some type of water conveyance structure (a tunnel or an 
exposed or buried penstock). This water conveyance structure delivers the water to and from the 
reservoirs while passing through the powerhouse, which contains a turbine for power generation 
and a pump for delivering lower reservoir water back to the upper reservoir for storage. 
Historically, various pump-turbine arrangements have been used, with some plants using 
reversible pump-turbine units and some using a dedicated turbine and dedicated pump. The 
transmission infrastructure contains equipment used for enabling the delivery of PSH energy to 
the electrical grid during the generation phase and the delivery of energy to the facility from the 
electrical grid to power the PSH pumps during the pumping phase. Additional information on 
civil works and electromechanical equipment is provided in Sections 3.3 and 3.4, respectively. 

 
Figure 4. Traditional PSH facility layout. Not to scale. Source: Reprinted from Witt et al. (2015). 

Similar to conventional hydropower, PSH projects (e.g., the John W. Keys plant at the Grand 
Coulee Dam in Washington) have also served multiple purposes beyond hydropower, most 
notably water supply and irrigation. 

One of the key considerations when developing a PSH project is to estimate the timing and 
magnitude of energy storage needed to provide for planned generation. Based on this demand, 
different combinations of reservoir storage volume (if new construction is needed) and unit 
selection can be assessed. A cost-benefit analysis can be performed to assess what combination 
of storage, flow rates, and unit arrangements (i.e., the number and size of turbine-generator units) 
would provide the greatest benefit. 
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2.1.1.2 Open-Loop and Closed-Loop Configurations 

PSH configurations can be either open-loop or closed-loop, depending on whether they are 
continuously connected to a naturally flowing water feature. FERC3 provides the following 
definitions of open- and closed-loop PSH: 

Open-loop: projects that are continuously connected to a naturally flowing water feature 
(Figure 5, left) 

Closed-loop: projects that are not continuously connected to a naturally flowing water 
feature (Figure 5, right) 

To reduce new reservoir storage construction, many PSH developers and owners/operators have 
leveraged conventional hydroelectric facilities or existing reservoirs to integrate as the lower 
storage reservoir in an open-loop configuration (e.g., the Duke Energy Bad Creek plant in South 
Carolina). PSH project development that uses an existing reservoir benefits from reduced 
construction time and costs associated with avoiding new reservoir construction. On the other 
hand, use of an existing reservoir in an open-loop configuration could have more significant 
impacts on existing environmental resources in and around the reservoir. 

Open-loop projects are often subject to lengthy environmental reviews and long-term monitoring 
to ensure the connection to a naturally flowing water feature produces no significant 
environmental impact to the local aquatic ecosystem. In contrast, closed-loop projects are 
typically self-contained and isolated from naturally flowing water features. Such closed-loop 
systems would conceptually have lower environmental impacts compared with open-loop 
systems, so faster commissioning timelines are possible. Technologies and configurations that 
can better protect aquatic resources and minimize environmental impacts from a PSH 
intake/outflow in a naturally flowing water feature can help improve open-loop project timelines, 
which is worthy of future R&D. 

FERC has developed an expedited hydropower review licensing process for qualifying closed-
loop PSH.4 A final rule was established in April 2019 to expedite the licensing process for 
closed-loop PSH projects and was implemented as a part of the America’s Water Infrastructure 
Act of 2018. The rule (Docket No. RM19-6-000)5 aims to shorten closed-loop PSH development 
timelines and “seeks to ensure a final licensing decision no later than two years after receipt of a 
completed application.” 

Even though all existing US PSH facilities except one (the 40 MW Olivenhain-Hodges project) 
are open-loop (Uría-Martínez et al., 2015), many of the currently proposed PSH projects would 
use a closed-loop configuration, as described by Uría-Martínez et al. (2018): 

 
3 Available from https://www.ferc.gov/industries/hydropower/gen-info/licensing/pump-storage.asp (Accessed 
March 12, 2020). 
4 Available from https://elibrary.ferc.gov/idmws/file_list.asp?accession_num=20190418-3047 (Accessed March 12, 
2020). 
5 Available from https://www.ferc.gov/media/news-releases/2019/2019-2/04-18-19-H-1.asp#.XYipV_lKi70 
(Accessed March 12, 2020). 

https://www.ferc.gov/industries/hydropower/gen-info/licensing/pump-storage.asp
https://elibrary.ferc.gov/idmws/file_list.asp?accession_num=20190418-3047
https://www.ferc.gov/media/news-releases/2019/2019-2/04-18-19-H-1.asp#.XYipV_lKi70
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“The closed-loop configuration is being favored by regulators and developers alike 
because it minimizes environmental impacts on watershed ecosystems and provides 
unconstrained flexibility to provide grid benefits. In addition, closed-loop systems allow 
for more flexibility in site selection. As long as water can be piped for the initial reservoir 
fill and periodic refills to compensate for evaporation losses, these systems could be 
placed wherever appropriate topographical features can be found. On the other hand, if 
the chosen site involves construction of new reservoirs, the cost becomes significantly 
larger than if at least one of the reservoirs is already in place.” 

 
Figure 5. Diagrams of main PSH facility features for (left) open-loop and (right) closed-loop configurations. 

Not to scale. Note: For closed-loop configurations, initial fill and periodic makeup periods would require water 
delivered from groundwater wells or from natural water bodies via a pipeline or other water conveyance system. 

2.1.1.3 PSH Technologies 

Figure 5 illustrates the main features of a PSH facility. The technologies that comprise a PSH 
facility are largely mature, with moderate advancements over the past few decades (e.g., more 
efficient tunneling approaches and the introduction of variable-speed [VS] units). PSH 
powertrain equipment can include fixed-speed (FS), VS, or ternary units. FS units operate at a 
fixed, synchronous speed in both pumping and generating modes. VS units include a 
motor/generator with an adjustable rotational speed, enabling load-following and regulation 
capabilities. Ternary units include a pump, turbine, and motor/generator connected to a single 
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shaft, enabling flexible operation. Additional details on powertrain equipment are provided in 
literature (e.g., Botterud et al., 2014; Koritarov et al., 2014a) and summarized in Section 3.4.1. 

Additional information on PSH technologies is provided in Section 3.0. The remainder of 
Section 2.1 discusses two categories of less traditional PSH development—underground PSH 
and small/m-PSH—which are highlighted in currently proposed PSH projects and in recent PSH 
R&D literature.  

2.1.2 Underground PSH 

Although traditional PSH facilities use an upper and lower surface reservoir, various literature 
(e.g., Allen et al., 1984; Witt et al., 2015; Strang, 2017) and a few proposed PSH developments 
have considered the use of abandoned surfaces or underground mines with an underground 
powerhouse. Such PSH configurations would use the upper mine pit (above or below ground) for 
reservoir containment and use the existing underground mine shaft opening for access and water 
conveyance, thereby minimizing civil works construction. Most conceptualizations (e.g., Figure 
6) include the underground water body as a lower reservoir and place a powerhouse underground 
to generate hydroelectricity and pump water to a surface reservoir. In some cases, preexisting 
electrical transmission and access roads are available to further reduce development costs (Witt 
et al., 2015).  

 
Figure 6. Example layout of an underground PSH plant. Source: Reprinted from Allen et al. (1984).  

As mentioned in MWH (2009), if a lower reservoir does not exist, underground configurations 
are typically selected for higher-head projects to help reduce costs associated with high-pressure 
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waterways and leverage lower-cost, higher-speed units that do not require deep submergence; 
surface configurations are typically selected for lower-head projects. The remainder of this 
section focuses on the application of PSH to underground mines. To reduce submergence design 
requirements, ORNL determined that using a separate pump and hydraulic turbine configuration 
within an abandoned mine could provide technical and economic benefits. 

In a 2019 workshop, FERC (2019b) presented a status of historical and active PSH permitting 
and licensing activities related to abandoned mine sites. The workshop indicated that licenses 
were issued for three closed-loop PSH projects at abandoned mines in the 1990s, with all three 
being terminated. Since then, a license was issued for the Eagle Mountain PSH project, located at 
an abandoned iron-ore mine; however, no construction activity has occurred. FERC (2019b) also 
showed that one license application was being processed, and nine preliminary permit 
applications were pending at the time of the workshop. 

2.1.2.1 Advantages of Underground PSH  

With excavation typically extending hundreds (or even thousands) of feet underground, mines 
offer a source of large head differential suitable for PSH energy production (Witt et al., 2015). 
Many abandoned mines also have no immediate repurpose use and might have less strict 
environmental mitigation requirements if operated as closed-loop systems. Additionally, they can 
accumulate a substantial volume of water throughout the post-decommissioning years, 
potentially alleviating the need for an extensive initial water fill. Commonalities among mine 
designs (e.g., shaft and gallery size) could enable standardized PSH designs to be applicable 
across multiple locations, thereby potentially saving design, construction, and procurement costs. 

Various advantages associated with adding PSH to an underground mine include: 

• Space—Existing infrastructure, such as a lower reservoir, shaft for access, and conduit, is 
already present. 

• Access—Some access is already provided via the existing shaft, thereby reducing tunneling 
needs for water conveyance. 

• Existing lower reservoir water—The lower reservoir may already contain water, which could 
reduce the initial water storage fill required. 

2.1.2.2 Limitations and Challenges of Underground PSH  

Despite the advantages of underground PSHs listed previously, challenges arise from housing the 
bulk of the facility subsurface. For instance, depending on the porous medium constituting the 
mine’s walls, groundwater exchanges between the reservoir and the surrounding aquifers could 
occur, altering the storage capacity of the facility and its ability to generate effectively. These 
challenges could be further complicated by sedimentation if facility operation induces the 
erosion of mine walls (Pujades et al., 2017a). Typically, underground mines are designed for the 
safe extraction of coal or ore and not for the exchange of water needed for PSH operation. 
Therefore, ensuring geologic integrity is paramount. Additionally, chemicals left over from 
mining could create new environmental concerns regarding local water supplies and could 
increase maintenance responsibilities. Because coal mines typically contain greater 
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concentrations of sulfides, the chemical reactions induced by water could cause the water to 
become more acidic, thereby making the water unsafe for human consumption and corrosive to 
materials within the PSH facility. Proper reservoir lining and water quality testing might be 
required, resulting in higher development costs (Pujades et al., 2017b).  

The following list summarizes various limitations and challenges associated with adding PSH to 
an underground mine: 

• Shaft diameter—Generating potential is limited by equipment size, which is limited by the 
shaft diameter used to place and access generating equipment.  

• Upper reservoir—The upper reservoir must be constructed, or an existing reservoir in the 
vicinity must be used. Either option might require proper containment and liner design for 
the potential leakage of chemicals and/or toxins resulting from using an existing coal mine as 
the lower reservoir.  

• Existing lower reservoir water storage volume—Generating potential is limited by the 
constraints of the shaft depth (head), lower reservoir size (volume), and ability to convey 
water to the pump (e.g., the bathymetry of the mine floor could impact water flow).  

• Water quality—Potential issues exist concerning chemicals and/or toxins being introduced to 
the upper reservoir due to the mine’s historical purpose, with potential concerns for 
groundwater contamination and leakage into the surrounding environment.  

• Structural support, stability, and installation are compromised by mine age.  

2.1.2.3 Underground Mine Locations 

Figure 7 (left) shows the locations of over 1,500 abandoned underground mines under the 
jurisdiction of the Mine Safety and Health Administration (MSHA), and Figure 7 (right) shows 
the locations of nearly 8,000 additional abandoned underground mines that have also been 
sealed. The maps reveal that the highest concentration of abandoned underground mines is in 
western Pennsylvania, West Virginia, and eastern Kentucky, with other mines scattered 
throughout the West, Midwest, and Southeast. Although these maps show the location for only a 
fraction of all abandoned mines under MSHA’s jurisdiction, they help illustrate the potential 
market for PSH application at abandoned underground mines. 
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Figure 7. Maps of abandoned underground coal and metal/nonmetal mines in the contiguous United States 

under MSHA’s jurisdiction. Source: Data from the US Department of Labor, Mine Safety and Health 
Administration, obtained March 2019. 

2.1.3 Small/Modular PSH 

Most historical PSH development has involved the construction of facilities that provide large 
energy storage and capacity. With large PSH development virtually nonexistent in the United 
States in recent decades, small-scale PSH (below 100 MW) development has been frequently 
considered. Small-scale projects require shorter overall development timelines and lower overall 
investments compared with large projects. However, since small projects typically suffer from 
economies of scale (i.e., higher $/kW and levelized cost of energy), reduced development costs 
must be realized for small-scale PSH development to be economically viable.  

To address this challenge, several previous and ongoing research efforts (e.g., Witt et al, 2015, 
2016; Hadjerioua and DeNeale, 2018) have evaluated the potential for using modular 
technologies to improve small-scale PSH feasibility and siting flexibility. So-called modular 
PSH (m-PSH) could offer several advantages to address key challenges associated with 
traditional PSH development. As described by Witt et al. (2015), “modular PSH refers to both 
the compactness of the project design and the proposed nature of product fabrication and 
performance. A modular project is assumed to consist of prefabricated standardized components 
and equipment, tested and assembled into modules before arrival on site.” In this way, m-PSH 
systems could streamline the development process by reducing the duration of on-site 
construction and improving the financial feasibility for small, nonutility-scale PSH development. 
Such modular systems could offer cost efficiencies if the design is standardized and able to be 
replicated across multiple sites.  

Figure 8 illustrates some of the challenges associated with traditional PSH and how m-PSH 
concepts could help address those challenges. Beyond the time and cost savings associated with 
using replicable technology, m-PSH concepts could reduce procurement and installation 
timelines, streamline regulatory reviews, and minimize site-specific design needs. 

More information on DOE-funded m-PSH research efforts is provided in the development 
experience case studies in Section 2.3.3. 
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Figure 8. Comparison of traditional (conventional) PSH challenges with m-PSH concepts. 

2.1.3.1 Advantages of Small/M-PSH  

Compared with conventional, large PSH development, small and m-PSH development would 
require much smaller up-front capital investment, which could reduce the perceived financial 
risk for investment. By using modular concepts (e.g., compact or skid-mounted equipment; pre-
engineered up-front designs; modular or precast civil works and equipment; and scalable site 
design and construction), designs could be replicated at multiple sites and potentially yield 
reduced site specificity, project costs, and development timelines. 

2.1.3.2 Limitations and Challenges of Small/M-PSH 

The primary challenge associated with small and m-PSH systems is the relatively higher per-kW 
cost associated with smaller-scale technology and development. Additionally, whereas large-
scale PSH technologies have been used reliably for decades and can possibly influence the 
energy market price (“price maker”). Small m-PSH technologies will have a limited price impact 
(“price taker”) and have not been operationally deployed for PSH application and are therefore 
of relatively lower maturity.  

2.2 Historical PSH Development  

Historically, lengthy construction and commissioning timelines have thwarted interest and 
investment in PSH facilities and have resulted in the continued decline in the number of PSH 
facilities being constructed over the past few decades. This section provides a summary of 
historical US and international PSH development, including a summary of operational and 
proposed facilities in the United States and recent trends in international development. In some 
areas of the country, deregulation has impacted PSH project developments.  
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2.2.1 US Development  

2.2.1.1 Existing PSH 

According to the 2017 DOE Hydropower Market Report (Uría-Martínez et al., 2018), the US 
hydropower fleet consists of 43 PSH plants with a total capacity of 21,600 MW. The US PSH 
fleet accounts for nearly all (95%) utility-scale electricity storage in the country. Of these 43 
operational PSH plants, 28 are dedicated PSH plants and 15 are hybrid plants (i.e., plants that 
provide both conventional hydropower and PSH capacity).6 According to Uría-Martínez et al. 
(2015), all but one (the 40 MW Olivenhain-Hodges) of the existing US PSH plants are open-
loop. The Olivenhain-Hodges project, although documented by Uría-Martínez et al. (2015) as 
closed-loop, is continuously connected (i.e., it meets the FERC definition of open-loop) to the 
San Dieguito River but received a FERC conduit exemption. 

Figure 9 shows decadal PSH additions in terms of total capacity and total number of plants. Most 
(33 plants representing 88.3% of total fleet capacity) of the current US PSH fleet capacity was 
added during the 1960s to 1980s, with a large fraction (13 plants representing 48% of total fleet 
capacity) installed during the 1970s. Much of this historical PSH development was added to 
complement nuclear and coal power in an arrangement to use cheap baseload power to refill 
storage via pumping at night when power demand is low and releasing water to generate 
hydropower during the day when power demand is high. Since the 1970s, construction of plants 
larger than 500 MW has decreased more significantly than small- and medium-sized plants. Only 
one new multipurpose PSH facility (the 40 MW Olivenhain-Hodges plant, which is primarily 
purposed for water storage and supply) has become operational in the past 20 years. 

A map of the existing 43 operating PSH plants is provided in Figure 10. The largest facility is the 
nearly 3,000 MW Bath County project in Virginia, and the oldest facility is the Rocky River 
project, completed in 1929 (NHA, 2018).  

 
6 Based on ORNL Existing Hydropower Assets data (as of December 31, 2018). 
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Figure 9. Operational PSH additions by decade. Note: The number of plants in each size category are represented 

by vertically stacked rectangles and are not to scale. The total capacity and total number of plants added in each 
decade are listed along the top of the figure. 

 
Figure 10. Existing PSH projects in the United States (as of December 31, 2018). Gray-colored states contain at 
least one operational PSH project. Source: ORNL Existing Hydropower Assets Plant Dataset FY19 (Johnson et al., 

2019) and U.S. Hydropower Development Pipeline Data FY19 (Johnson and Uria-Martinez, 2019). 
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2.2.1.2 Proposed PSH Development 

To help meet energy and grid reliability needs, many new PSH facilities are being considered for 
development. As of December 31, 2018, the US PSH development pipeline consisted of 55 
projects in various proposal phases (i.e., projects with pending or issued FERC preliminary 
permits, licenses, or exemptions). These 55 projects total 30,100 MW of potential new PSH 
capacity and, as shown in Figure 11, are located across much of the contiguous United States, 
particularly in the eastern and western United States where water resources and elevation 
contrast exist.  

 
Figure 11. Existing and proposed PSH projects in the United States (as of December 31, 2018).7,8 Gray-colored 

states contain at least one operational or proposed PSH project. Source: ORNL Existing Hydropower Assets Plant 
Dataset FY19 (Johnson et al., 2019) and U.S. Hydropower Development Pipeline Data FY19 (Johnson and Uria-

Martinez, 2019). 

 
7 Projects in the Pending Permit and Issued Permit stages have high attrition rates. Pending Permit includes projects 
pending issuance of a preliminary permit. Issued Permit includes projects that have obtained a FERC preliminary 
permit and projects whose preliminary permit has expired but that have submitted a Notice of Intent to file a license 
or a draft license application.  
8 Pending Application includes projects that have applied for an original FERC license. Issued Authorization 
includes projects that have been issued an original FERC license. 
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Only three PSH projects, all closed-loop (the 1,300 MW Eagle Mountain project in California, 
400 MW Gordon Butte project in Montana, and 393 MW Swan Lake North projects in Oregon), 
are currently licensed by FERC, although none have started construction. Five projects (four in 
the western United States and one in the Northeast) have license applications. Since Figure 11 is 
based on data from 2018 and Swan Lake North was not licensed until April 2019, the Pending 
Application and Issued Authorization entries in the Number of Pumped Storage Projects by 
Development Stage (MW) chart require a slight adjustment to align with this information. For 
instance, Pending Application would decrease to five at 2,108 MW, and Issued Authorization 
would increase to three at 2,093 MW. 

Of the 55 proposed projects, 85% are at the “pending preliminary permit” or “issued preliminary 
permit” stages. In several cases, a project developer has a pending or issued permit for multiple 
nearby locations, which enables some cost sharing in performing multiple studies and 
stakeholder engagement activities across multiple sites under a portfolio approach. Ultimately, 
only one project could be further pursued in the licensing phase, per Uría-Martínez et al. (2018). 

Documentation for many of the proposed projects describes the prospective development as 
“contributing to the integration of increased levels of variable renewables” (Uría-Martínez et al., 
2018). Per Uría-Martínez et al. (2018), “the proposed mode of operation would involve 
producing peaking energy and supplying storage capacity to close the gaps between electricity 
demand and electricity supply from variable renewables throughout the day as well as providing 
ancillary services—spinning reserves, frequency regulation, black start, voltage support—to 
ensure grid reliability.”  

Uría-Martínez et al. (2018) found that “most proposed PSH projects are in western or 
northeastern states, typically in or adjacent to states with ambitious [renewable portfolio 
standard] objectives [and] access to competitive markets is an attractive feature for the private 
developers pursuing most new PSH projects.” The report also found that the regional distribution 
of proposed and existing PSH projects is quite different (as shown in Figure 11), with the 
Northwest having the most proposed projects and the Southeast having only one proposed 
project.  

For additional information about the US PSH market, including existing plants and proposed 
development, see the DOE Hydropower Market Report (Uría-Martínez et al., 2014, 2018) and 
the National Hydropower Association (NHA) Pumped Storage Report (NHA, 2017, 2018). 

2.2.2 International Development  

Although PSH development has largely stalled in the United States, data from international PSH 
development can impart knowledge and inform development considerations. This section uses 
available data and literature to describe existing and proposed international PSH development, 
with additional information contained in Appendix A. 

Based on data from the International Hydropower Association (IHA) Hydropower Pumped 
Storage Tracking Tool (Rogner and Law, 2019), the installed capacity of operational PSH 
facilities worldwide currently totals more than 163,000 MW across 375 facilities, with more than 
half of the capacity coming from China, Japan, and the United States. The first PSH facility 
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began operation in Schaffhausen, Switzerland, in 1909 (Witt et al., 2015), with additional PSH 
development slowly increasing from the 1920s to 1950s before increasing substantially in the 
1960s. 

Figure 12 (bottom) shows the world regions used to evaluate international PSH development in 
the remainder of this section. As shown in Figure 12 (top), East Asia and Europe collectively 
represent the regions with the most operational PSH capacity and that have experienced the 
largest growth in recent decades. While the cumulative capacity in the United States is shown to 
have stalled since the mid-1990s, PSH growth in East Asia and Europe has steadily increased. 
Multiple factors have likely contributed to the continued growth of PSH in these regions, 
including the growth of variable renewable energy resources and different energy regulations and 
market policies that favor PSH development. Environmental targets, tax incentives, energy 
efficiency initiatives, and other policies and configurations have contributed to successful PSH 
development overseas (IHA, 2018).  

 
Figure 12. (top) PSH operational capacity over time by world region, (bottom) with a map of associated world 

regions. Sources: Top graphic based on data from Rogner and Law (2019). Bottom map modified from Uría-
Martínez et al. (2018). 
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Further evaluation of data from Rogner and Law (2019) reveals that the majority (94%) of 
operational international PSH plants use FS machines (Figure 13). Only 12 operating plants 
totaling 9,900 MW (all in Japan or Europe) use VS machines, and only 5 operating plants 
totaling 3,500 MW (all in Europe) use ternary machines. Of the proposed PSH projects, 7 plants 
totaling 5,100 MW would use VS machines, and none would use ternary machines. None of the 
existing PSH facilities in the United States use VS machines. This trend in both the United States 
and across the world primarily results from the cost of VS machines—the benefits gained from 
using VS do not always outweigh the high initial capital costs (ICCs). More information 
regarding FS and VS machines is detailed in Section 3.4. 

 
Figure 13. PSH capacity by turbine type and world region for (top) existing and (bottom) proposed projects. 

Source: Based on data from Rogner and Law (2019). 
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Rogner and Law (2019) also provide information on proposed PSH development across three 
stages of development (under construction, planned, and announced). Reportedly, 61,700 MW of 
PSH development is under construction, 54,600 MW are planned, and 38,000 MW have been 
announced (Rogner and Law, 2019). As with US development, projects in the planned and 
announced phases of development have high attrition rates. Refer to Appendix A for information 
on existing and proposed PSH for selected countries across the world. Content is alphabetized by 
region. 

2.3 PSH Development Experiences 

This section further summarizes the current state of PSH development by identifying typical 
development timelines and costs and illustrating various development case studies. Information 
in this section helps establish a baseline from which innovation impacts can be measured for 
improving PSH development conditions.  

As mentioned previously, the focus of the PSH FAST Commissioning project is on PSH 
development from concept to commissioning, excluding permitting and licensing. 

2.3.1 Baseline Timeline for Development 

Typical development timelines for new utility-scale PSH projects often approach a decade or 
more. Figure 14 shows an accelerated (i.e., efficient timing) typical (conventional) hydropower 
development timeline that could be adaptable to PSH development. This accelerated timeline is 
intended to represent an efficient project development timeline in which the developer logically 
sequences activities to reduce the development timeline; it would require larger up-front capital 
investments compared with the “fiscally conservative” (i.e., low financial risk) approach noted in 
Meier et al. (2010). Meier et al. (2010) included the accelerated timeline with an overall 
representative (example) timeline of nearly 9 years (4 years from license issuance to 
commissioning) and the alternative, fiscally conservative approach with an overall representative 
timeline of 13 years (9 years from license issuance to commissioning).  

Such lengthy timelines are caused by several factors, including lack of investment/capital, 
environmental concerns, complex construction features, and regulatory delays, with a significant 
portion of the timeline comprising commissioning activities after a FERC license has been 
obtained. Although individual project timelines are often site-specific and vary based on a 
project’s infrastructure, design, and scale, typical development time for a conventional open-
loop, midsized (e.g., ~500 MW) PSH project is around 6 to 10 years (NHA, 2018) and can be 
closer to 13 years for fiscally conservative development (Meier et al., 2010). Although pre-
licensing and nontechnology activities are outside the scope of this project, many post-licensing 
activities require several years to complete, with some activities having opportunities to 
accelerate completion (i.e., the activity must be completed before other activities can start). 
Some large, remote infrastructure projects require one and a half to two years to construct site 
access, temporary power, and worker facilities before even considering the project features.  

After obtaining a license, detailed engineering, site preparation, equipment procurement, and 
construction activities are integrated and typically span well over five years. Shortening any of 
these activities could result in reduced overall project timelines and lower project costs. Among 
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these activities, construction is the largest time-involved component for commissioning. Whereas 
costs are not always directly correlated with timelines, the timeline and cost of civil work 
represents the most significant component of resource expenditure for PSH construction. 
Additionally, unconventional technologies (e.g., standardized or modular technologies) have the 
potential to greatly reduce these timelines.  

  
Figure 14. Example of an accelerated hydropower development timeline for a project licensed by FERC.  

2.3.2 Baseline Costs for Development 

Development costs (often referred to as ICCs) associated with new PSH development vary 
widely depending on the project’s location, site-specific conditions, existing infrastructure 
availability, and facility design. Additionally, PSH cost estimates generally vary with an 
economy of scale, meaning larger projects are typically developed at a lower unit cost ($/kW) 
than smaller projects.  

Figure 15 provides an approximate range of PSH cost estimates in 2018 $/MWh based on a 2009 
study (MWH, 2009). Additional DOE-funded research (Witt et al., 2016) to assess PSH 
development costs provides cost estimates similar to this range and indicates that a project’s 
hydraulic head and storage capacity significantly affect the ICCs. The cost curves shown in 
Figure 15 were escalated to 2018 dollars using the US Bureau of Reclamation Construction Cost 
Trends composite index.9 

Higher-head projects (500+ ft) typically have lower per-kilowatt ICCs than lower-head projects 
(under 500 ft) because of the overall higher energy density resulting in dimensionally smaller 

 
9 Available from https://www.usbr.gov/tsc/techreferences/mands/cct.html (Accessed March 12, 2020). 

https://www.usbr.gov/tsc/techreferences/mands/cct.html
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units, smaller powerhouse footprints, and smaller-diameter water conveyances to achieve the 
same installed capacity. Although head and flow determine installed capacity, the reservoir 
volume determines the energy storage capacity (in megawatt hours), which is the typical measure 
of storage projects. Higher-head projects typically have smaller reservoir volumes than lower-
head projects having the same operation hours of water storage. Larger storage reservoirs incur 
higher construction costs while not necessarily providing increased hydropower capacity; 
however, these larger storage reservoirs provide greater energy capacity (in terms of megawatt 
hours) and revenue potential. 

To further explore PSH cost drivers, Figure 16 provides a representative cost breakdown for PSH 
development based on licensing application information for four projects submitted to FERC (all 
closed-loop PSH) and two industry (information from Knight Piésold Consulting) case studies 
(one closed-loop and one open-loop). The information reveals that civil works (including 
structures, reservoirs, and water conveyances) and equipment represent the costliest components. 
The plot also reveals that civil works costs contain the highest variability, whereas equipment 
costs vary depending on different equipment design decisions (including whether to use single-
speed or VS machines, dedicated pumps or reversible pump-turbine technology, and Pelton or 
Francis turbines). Transmission interconnection costs can also vary widely depending on the 
selected project location and new transmission line requirements. 

PSH project financing can be a significant barrier to investors without a long-term capacity and 
energy contract in place prior to the start of construction. PSH projects must endure long-term 
continuing payments for project costs with no guaranteed revenue opportunity for positive cash 
flow until the PSH project is fully commissioned and turned over for commercial operations. 
After commissioning has begun, earning positive annual cash flows often takes many years or 
even decades for a PSH project, and few market products exist that investors can depend on to 
reliably estimate revenue sources. 
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Figure 15. Preliminary ICC estimates for PSH in 2018 dollars. Source: MWH (2009).  

 

 

Figure 16. Preliminary ICC breakdown estimates for a PSH project based on license application information. 
Sources: Based on information from Knight Piésold Consulting in collaboration with ORNL, 2019.  

2.3.3 Development Experience Case Studies 

As evidenced in the preceding sections, recent PSH development has been subject to major 
barriers related to time, cost, and risk. Several case studies are subsequently summarized to 
highlight experiences and barriers affecting recent PSH development activities and research.  



 

2.22 

2.3.3.1 Currently Licensed PSH Projects in the United States  

As mentioned in Section 2.2.1.2, three PSH projects (Gordon Butte, Eagle Mountain, and Swan 
Lake North) have received FERC licenses but have not yet begun construction. Iowa Hill was 
another licensed project but was ultimately cancelled because of cost and technology risks. These 
and other projects are described in the following text to exemplify recent PSH development 
experiences. 

In October 2015, GB Energy Park submitted its license application to FERC for the proposed 
400 MW Gordon Butte PSH facility in Montana and promptly received approval barely more 
than a year later in December 2016 (FERC, 2016). Gordon Butte was sited on entirely private 
lands, simply requiring an agreement with the landowner for project use, further simplified by 
the lack of endangered species and cultural or archaeological issues. Additionally, because 
Gordon Butte is a closed-loop facility, the water quality certification could be waived since the 
only water exchanges occur for the initial fill and routine maintenance, which simplified the 
permit between GB Energy and the Montana Department of Natural Resources and 
Conservation. Furthermore, GB Energy actively engaged stakeholders early to obtain their 
support for the project and to minimize any local resistance (Borgquist and Hurless, 2017). 
Although construction is not expected to commence until 2020 after on-site geotechnical 
investigations and equipment optimizations have been completed, the Gordon Butte project has 
shown the characteristics necessary to ensure promptness in schedule and reduction in financial 
risk (FERC, 2018b). 

In June 2009, Eagle Crest Energy applied through FERC for a license to construct and operate its 
proposed 1,300 MW Eagle Mountain PSH facility in Southern California. FERC approved the 
Eagle Mountain project in June 2014, nearly five years later (FERC, 2014). Contrasting 
historical US development, Eagle Mountain exemplifies a closed-loop configuration and uses an 
abandoned iron ore mine for the lower reservoir. Since the mine’s closure in 1983, a significant 
portion of infrastructure remains intact, reducing some of the project’s costs and financial risk.10 
Unfortunately, Eagle Crest has had challenges with acquiring land rights throughout the past 
decade since the properties are owned by the Kaiser Steel Corporation and the US Bureau of 
Land Management, which includes conservation lands requiring a statutory amendment. Even 
with these setbacks, by August 2018, Eagle Crest had nearly acquired all the necessary land and 
is pursuing an exemption from FERC regarding the single two-year extension for construction 
commencement, which expired in June 2018 (FERC, 2018a). Therefore, the ease of acquiring 
land rights is a significant factor in determining the overall project timeline, expenses, and risk.  

In April 2019, FERC granted a 50-year license to Swan Lake North Hydro, LLC, for 
construction and operation of the proposed 393 MW Swan Lake North PSH in Oregon, nearly 
3.5 years after the application was submitted (FERC, 2019). Swan Lake North is a closed-loop 
PSH facility that encompasses lands owned by various federal, state, and private entities, 
including the US Bureau of Land Management and the US Bureau of Reclamation. Even though 

 
10 Available from https://www.sandia.gov/ess-ssl/global-energy-storage-database/ (Accessed March 12, 2020). 

https://www.sandia.gov/ess-ssl/global-energy-storage-database/
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ownership of the project has changed several times over the course of initial project inception to 
licensure, Swan Lake North PSH is expected to begin construction during the next few years.11  

2.3.3.2 Iowa Hill PSH Project, California, USA 

In 2005, the Sacramento Municipal Utility District (SMUD) applied through FERC for a new 
license to construct a 400 MW PSH facility within the 688 MW Upper American River 
Hydroelectric Project in California. SMUD’s rationale was threefold: (1) forecasts predicted 
increased regional electricity demand, (2) production from wind and solar energy with necessary 
additional flexibility within the SMUD balancing area was expected to increase, and (3) 
imported natural gas use throughout the United States was expected to result in increased gas 
prices and gas price volatility. Higher gas prices raise the price of electricity and thus effectively 
ensure the profitability of PSH through energy storage. Over the next several years, SMUD 
conducted many studies related to the licensing of the Iowa Hill project and by 2010, had 
developed an opinion of probable construction cost (OPCC) totaling $611 million, which was 
based on the limited preliminary studies performed thus far. Accordingly, the following year, 
SMUD applied for a DOE assistance agreement and received funding through February 2012 to 
March 2014 for further investigations into a few of the more important aspects of project 
viability—geotechnical features, transmission system impacts, and operational profit margins. 
The findings from these studies led to the project’s cancellation in 2016 since major increases in 
project costs—both those addressed and not addressed in the 2010 OPCC—added well over 
$250 million in expenses. Furthermore, the studies projected the near-term capacity needs to be 
approximately 50 MW, much lower than the 400 MW envisioned for the Iowa Hill project, 
because of improvements in energy efficiency and rooftop solar effectively reducing electricity 
demand. This capacity requirement creates a significant risk because the additional electricity 
would need to be sold in the market, which does not guarantee a return on investment. 
Additionally, a drop in natural gas prices and the recognition that alternative technologies 
associated with electrochemical battery storage for the perceived scale needed by SMUD further 
reduced project viability; consequently, nearly every reasoning for this project was eliminated. 
Table 1 and Table 2 summarize the project construction cost estimate and incremental cost 
increases from 2010 to 2015, respectively (Hanson, 2016).  

Although the Iowa Hill project was ultimately cancelled, there are valuable lessons to learn from 
SMUD’s experiences. Use of existing resources, particularly reservoirs and transmission 
systems, can lower both construction and environmental mitigation costs and quicken the overall 
project timeline, consequently lowering the project risk. Additionally, obtaining accurate and 
reliable geotechnical information early in the project is extremely important. From its latest 
study, SMUD ascertained that because of the favorable quality and condition of the geologic 
materials present, the project’s contingency (high because of previous geologic uncertainty) 
related to constructing water conveyance tunnels and the underground powerhouse cavern could 
be reduced. This finding decreased the construction cost contingency from 35% in 2010 to 
21.5% in 2015, which refers to a blending of the financial risk associated with each component 
composing the project’s construction portfolio.  

 
11 Available from https://www.heraldandnews.com/news/local_news/swan-lake-hydro-s-future-awaits-ferc-
decision/article_569832ea-28f2-5fd3-bc24-2d95978e8cc7.html (Accessed March 12, 2020). 

https://www.heraldandnews.com/news/local_news/swan-lake-hydro-s-future-awaits-ferc-decision/article_569832ea-28f2-5fd3-bc24-2d95978e8cc7.html
https://www.heraldandnews.com/news/local_news/swan-lake-hydro-s-future-awaits-ferc-decision/article_569832ea-28f2-5fd3-bc24-2d95978e8cc7.html
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In addition to performing geotechnical studies early in the project, actively engaging 
stakeholders throughout each project stage and understanding state and federal permitting 
requirements are paramount in maintaining a schedule. The Iowa Hill project was located 
adjacent to agricultural areas dominated by vineyards and orchards, prompting initial resistance 
from local communities. Fortunately, SMUD engaged stakeholders early on and was able to 
minimize negative impacts on project cost and schedule. On the other hand, major delays in 
acquiring federal and state permits severely delayed the project. The US Forest Service owned 
part of the land for the proposed project, subjecting SMUD to additional permitting requirements 
and delays not anticipated in the initial project plan (Hanson, 2016). 

Table 1. Estimated Iowa Hill PSH project cost to SMUD. Source: Hanson (2016).  

Cost estimate components Cost (in millions of 2015 $) 
Direct construction costs 743 
Indirect construction costs 206 
Construction management 28 
SMUD labor 32 
Construction cost contingency (21.5%*) 201 
Financing costs (allowance for funds used during construction) 162 to 243 
Total 1,372 to 1,453 

*Reduced to 21.5% because of geotechnical investigations, which showed decrease in cost of water conveyance tunnels and 
increase in cost of powerhouse construction.  

 

Table 2. Summary of direct cost increases between 2010 and 2015. Source: Hanson (2016).  

Direct cost increases from 2010 OPCC* Cost (in millions of 2015 $) 
Upper reservoir civil works 41 
Upper/lower reservoirs inlet/outlet 2 
Underground civil works 28 
Powerhouse mechanical/electrical 32 
Variable-speed motor/generator 8 
Direct Costs Not Included in 2010 OPCC*  
SF-6 transformers 15 
Transmission and switchyard upgrades 88 
Access roads 20 
Total 240 

*OPCC = Opinion of probable construction cost. 

2.3.3.3 Yanbaru PSH Seawater Project, Japan 

Another design consideration is what type of water source to use to supply a PSH facility. 
Although all of the existing US PSH fleet uses freshwater for water storage and supply, one 
decommissioned PSH plant in Japan (the Yanbaru Seawater Pumped Power Station) used 
seawater, and several proposed international PSH developments would use seawater for storage 
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and supply. This design feature could introduce additional operations and maintenance 
challenges when exposing the water conveyances and equipment to an environment that is more 
susceptible to corrosion and marine biological growth. As with freshwater PSH plants, seawater 
PSH plants would ideally be sited along coastlines with large elevation differences over short 
distances to help avoid the large material and construction costs associated with long water 
conveyances. 

In 1991, Japan’s Electric Power Development Company (J-POWER) commenced construction 
of the world’s first, and (to date) only, seawater-based PSH facility. Conventionally, developers 
use freshwater because of the corrosive effect of saltwater on plants’ electromechanical and 
water conveyance structures. Accordingly, J-POWER began conducting site and material 
investigations in 1981 for a pilot seawater PSH facility and by 1986, ascertained enough 
information to progress into the licensing and construction stages (J-POWER, 2006). To mitigate 
the corrosive effects of seawater, the penstock was composed of a fiber-reinforced plastic and the 
remaining water conveyance components (e.g., wicket gate, turbine runner, main turbine shaft, 
and draft tube) were composed of austenitic stainless steel (Whittmeyer, n.d.). Because the 
project incorporated the ocean as the lower reservoir, no impoundment was necessary, which 
significantly reduced construction costs and shortened the overall construction timeline. 
However, numerous endangered and rare species of plants and animals were found, requiring 
extensive resource allocation throughout the construction process. For instance, disturbance of 
these creatures’ habitat had to be minimized to ensure their well-being. Thus, provisions were 
enacted to prevent any accidental animal or landscape harm, including housing most of the 
facility underground and authorizing only low-noise construction equipment since vibration 
could be damaging. Additionally, the area surrounding the project had to be returned to its 
original state immediately upon the conclusion of construction in 1999 (J-POWER, 2006). The 
Yanbaru plant operated successfully for the subsequent 16 years, only closing because of a lapse 
in regional electricity demand growth (Whittmeyer, n.d.). 

The Yanbaru plant clearly demonstrated the potential for innovations in PSH, especially as it 
operated for six years longer than the initial trial intended (Whittmeyer, n.d.). Yet, for 
groundbreaking facilities such as the Yanbaru project to remain feasible, extensive research into 
advancements in facility design and construction materials and methods are imperative. For 
instance, environmental mitigation is a common component of all hydropower development. 
Thus, when measures such as habitat destruction must be minimized, construction equipment 
technologies and operational practices that reduce the project’s ecological footprint, as well as 
innovations in site layout and design, are advantageous. Additionally, hazardous materials could 
be found in the project’s water supply and/or geology (e.g., salts, acids, or water-reactive 
chemicals), requiring the use of more robust materials to protect the water conveyance and 
pump-turbine facility components. J-POWER conducted extensive research into materials at the 
Yanbaru plant in terms of preventing corrosion in crevices by covering bolts and sealing 
connection joins with ceramics and rubber gaskets. They also lined facility components with 
special paints to prevent barnacle buildup, which would severely reduce flows through pipes and 
reduce the facility’s operational capability (Fujihara et al., 1998).  
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2.3.3.4 Modular Floating Reservoir for PSH 

In 2017, WPTO announced funding12 for a project to investigate the feasibility of a closed-loop 
PSH concept in which a floating membrane would act as a storage reservoir (see conceptual 
design schematic in Figure 17). The project, awarded to Shell Energy North America, with lead 
technical support from ORNL and market assessment support from PNNL, aims to reduce the 
costs associated with traditional PSH development by using an innovative, modular, closed-loop 
design.  

Following months of developing conceptual design criteria and sketches, hydrodynamic, 
computational fluid dynamics, and finite element modeling were used to simulate prototype 
performance and refine the conceptual design. The conceptual design “is now protected under an 
invention disclosure with a patent pending, offers a potential low-cost, low-impact solution to 
address the high costs, long investment return periods, and environmental disruptions 
encountered with traditional pumped storage development while offering modularity to enable 
replication at many locations” (Hadjerioua et al., 2019a). In 2019, ORNL plans to acquire and 
assemble a prototype floating membrane reservoir to test its performance and functionality in a 
river environment; the prototype would be a standalone reservoir with testing limited to filling 
and emptying the reservoir to simulate operation. If prototype testing proves successful, further 
investigation into the technology for PSH applications could be warranted. 

 
12 https://www.energy.gov/eere/water/articles/energy-department-awards-98-million-next-generation-hydropower-
technologies (Accessed March 12, 2020). 

https://www.energy.gov/eere/water/articles/energy-department-awards-98-million-next-generation-hydropower-technologies
https://www.energy.gov/eere/water/articles/energy-department-awards-98-million-next-generation-hydropower-technologies
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Figure 17. Preliminary conceptual design schematic of prototype floating reservoir for loading and unloading 

conditions. Source: Hadjerioua et al. (2019a). 

2.3.3.5 Research on m-PSH for Underground Coal Mine 

As stated in Section 2.1.2, various literature and proposed PSH development has considered the 
use of underground storage, particularly for use in underground coal mines. In 2015, ORNL 
published the results of a study evaluating the feasibility of installing m-PSH at an abandoned 
coal mine in Kentucky (Witt et al., 2015). The m-PSH application considered in the study is of 
relatively small scale (5 MW) and would therefore suffer from high project costs due to 
economies of scale. However, such modular systems could offer cost efficiencies if the design 
were standardized and able to be replicated across multiple sites.  

To provide an initial evaluation, the ORNL case study researchers considered adding a 5 MW 
closed-loop m-PSH facility (shown in Figure 18) to an existing, decommissioned coal mine in 
the PJM (Pennsylvania, Jersey, Maryland) regional transmission organization in Kentucky. 
Revenue from energy generation and ancillary services was considered. Given the market 
conditions in the PJM regional transmission organization, results from the case study were 
considered to provide an upper revenue limit for what could be achieved in the United States. 
Primary findings from the case study are summarized as follows: 

• The resulting equipment and civil cost estimates were found to be favorable compared with 
other existing storage technologies (project ICC of $1,700/kW to $2,400/kW in 2015 
dollars). 
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• A low-cost m-PSH unit (75% round-trip efficiency) would be profitable when energy prices 
and volatility are high.  

• For units with lower round-trip efficiency, economic viability was not demonstrated.  

• When considering a typical market year, economic feasibility was not achieved under any 
simulation. 

• Revenue from pure energy arbitrage was found to be unviable. 

• The most economically feasible m-PSH arrangements at an abandoned coal mine would 
require a preexisting vertical shaft to house the electric and water conveyance infrastructure, 
in addition to a prefilled lower reservoir. 

The study used measured mine dimensions to estimate the maximum installed capacity and 
generation capability of the site, in addition to the dimensions of the penstocks and powerhouse. 
The facility was designed to separate the pump and turbine units and locate both subsurfaces on 
the mine floor, which was assumed to be flat. When sites are considered for development, 
extensive geotechnical investigations into the mine floor’s bathymetry should be performed since 
excavating rubble or preventing leakage could dramatically increase project costs and associated 
financial risks. ORNL researchers also performed cost-benefit analyses and estimated a small-
scale m-PSH to cost between $1,700/kW and $2,400/kW (in 2015 dollars), meaning m-PSH is 
not cost prohibitive. The researchers noted that these values did not include additional costs from 
environmental impact assessments and geotechnical/structural stability issues (Witt et al., 2015).  

Additional available literature on underground PSH studies include 

• Michigan Technological University and the city of Negaunee, Michigan are conducting a 
two-year pilot study at the Mather B Mine site to assess the technological, environmental, 
and economic feasibility of installing a PSH facility within an underground mine.13 

• The University of Minnesota-Duluth conducted research to evaluate PSH development 
within abandoned mine pits in the Mesabi Iron Range of Minnesota (Fosnacht, 2011). 

 
13 Available from https://www.bridgemi.com/michigan-environment-watch/michigans-full-closed-mines-
technology-may-give-them-new-life (Accessed March 12, 2020). 

https://www.bridgemi.com/michigan-environment-watch/michigans-full-closed-mines-technology-may-give-them-new-life
https://www.bridgemi.com/michigan-environment-watch/michigans-full-closed-mines-technology-may-give-them-new-life
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Figure 18. Schematic configuration of a closed-loop PSH design in an abandoned coal mine. (Modified from 

Witt et al., 2015). 

2.3.3.6 Research on m-PSH for High-Rise Buildings 

An innovative m-PSH solution expands use to urban settings by siting the lower reservoir and 
pump-turbine unit subsurface, or below street level, and the upper reservoir on either the top 
floor or rooftop level of a nearby building. This topic was further explored in 2015 by ORNL 
researchers who determined that high-rise buildings exhibit the most economically viable 
development opportunities since the immense hydraulic head differential created allows for 
greater electric power production and smaller reservoir storage capacities. Accordingly, they 
investigated a case study site in New York City with the goal of understanding the requirements 
for a micro (<1 MW) m-PSH system to meet at least 15% of the building’s electricity demand. 
Since New York City is one of the tallest cities in the world, exhibiting an average skyline height 
of more than 1,000 ft, it is a robust baseline case for determining overall project feasibility. 
Researchers found the major limiting variables to be the cost and risk associated with the 
engineering feasibility of constructing the upper reservoir, the storage capacity of which directly 
correlates with power output. The dimensions and weight load restrictions of the top floor and 
rooftop severely constrain reservoir volume, which must be a minimum of 250,000 gallons to 
produce enough electricity to meet approximately 15% of the building’s energy demand. 
Additionally, a reservoir of the same volume would need to be constructed subsurface, subject to 
extensive size constraints. Incorporating these factors, researchers determined that the ICCs for a 
250 kW facility would be at least $3,500/kW (in 2015 dollars). Because of these factors, high-
rise m-PSH is economically infeasible even under ideal conditions, especially coupled with the 
additional engineering analyses required to properly ensure building safety and to prevent 
collapse (Witt et al., 2015).  
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2.3.3.7 Research on GLIDES Hybrid m-PSH Technology  

ORNL is developing an innovative low-cost, high–round-trip efficiency hydropneumatic energy 
storage technology called GLIDES, or Ground-Level Integrated Diverse Energy Storage (Figure 
19). The estimated installed capacity range of a GLIDES system is 1.5 to 2.5 kW, making it ideal 
for microscale residential applications or commercial applications such as buildings.14 Such 
small-scale deployment is particularly applicable when deployed in a m-PSH context since the 
inherent clusterability of buildings simplifies design and construction and highlights the 
importance of modularity and scalability in achieving low-cost implementation (Witt et al., 
2015). Using excess or low-cost electricity, a fluid is pumped from a storage tank into a pre-
pressurized container, thereby raising the internal air pressure and air temperature. At a certain 
pressure threshold, fluid inflow is stopped and the vessel is sealed off. When power is needed, 
the container reopens and the highly pressurized air forces the fluid to flow out of the vessel 
through a high-head Pelton turbine and recollect in the storage tank. If available, waste heat from 
the operation of nearby systems (i.e., an air-conditioning unit) can be used to increase the air 
pressure and outflow of liquid from the vessel, amplifying the system’s energy production 
capability and round-trip efficiencies. Additionally, the liquid can be composed of water or some 
hydraulic oil, with the latter favored because it would remove the additional lubrication 
requirements of water-based pumped storage systems and thus increase efficiencies 
(Odukomaiya et al., 2018). Currently, GLIDES is economically infeasible with a large ICC of 
$18,000/kW (in 2015 dollars), primarily due to the costs of the pressurized tanks (Hadjerioua, 
2017). However, ongoing small-scale research shows that there could be distribution-scale 
opportunities. 

 
Figure 19. Conceptual layout of the GLIDES system. Source: Odukomaiya et al. (2015). 

2.3.3.8 Summary of Developmental Experience Case Studies 

Learning from the project experiences discussed previously (in Section 2.3.3) is vital in ensuring 
successful future PSH development throughout the United States. A few key considerations 
include the following: 

• Though the PSH FAST Commissioning project focuses on post-licensing activities, 
conventional PSH development can be severely hampered by licensing and permitting 
delays, including acquirement of land and water rights such as for the Eagle Mountain and 

 
14 Because the GLIDES system uses a pressurized energy system, its storage potential relates to its pressure density 
and not an elevation differential. 
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Iowa Hill projects. Conducting detailed engineering analyses as early in the development 
timeline as possible could help assess project viability.  

• Geotechnical engineering challenges could increase overall project costs and construction 
timelines. However, use of existing resources (i.e., reservoirs) can greatly reduce costs and 
timelines related to that aspect of construction. Additionally, factors outside of a PSH 
developer’s control can play a major role in project viability, notably in the emergence of 
new technologies or low growth in energy demand. Iowa Hill encountered both factors with 
extreme price drops in natural gas, in addition to less installed capacity being required than 
what was initially envisioned.  

The following summarizes the innovative PSH case studies described in this section: 

• J-POWER’s Yanbaru seawater PSH project, the modular floating reservoir concept, and the 
three research case studies shed light on potential avenues, each with corresponding 
advantages and disadvantages. The Yanbaru plant faced three main issues—stringent 
environmental mitigation requirements and the corrosive and biological effects of using 
seawater, all of which increased project costs. Therefore, innovations in construction 
equipment technologies and operational practices, facility site layout and design, and 
component materials are extremely advantageous for pursing future marine facilities that are 
economically viable.  

• Ongoing investigation into a modular closed-loop floating membrane reservoir system 
provides an example technological innovation targeted to reduce PSH development timelines 
and cost while reducing environmental impact. Additional performance testing and economic 
assessment is forthcoming. 

• ORNL researchers found that to ensure economic feasibility at abandoned coal mines, 
numerous preexisting factors are necessary, including the near elimination of any cavern 
excavation and water fill. Yet, even if the cavern and corresponding access shaft are of 
appropriate sizes, small-scale facilities are cost-prohibitive unless significant cost reductions 
can be achieved through standardization and modularization or for sites with high hydraulic 
heads, which could drastically reduce the storage and thus reservoir construction cost.  

• Similarly, high-rise building m-PSH incurs substantial size constraints because the top floor 
or rooftop of large skyscrapers can only accommodate reservoirs below a certain volume and 
weight threshold, thereby limiting the facility’s generation potential. Coupled with the high 
ICCs, this limitation makes microscale high-rise m-PSH economically challenging to 
develop, even with the added benefits of standardization and modularization. Consequently, 
even with favorable market conditions, which can depend on location, and high round-trip 
efficiency, achieving economic feasibility proves quite difficult.  

• Although technologically innovative, the proposed GLIDES system developed at ORNL, too, 
has exorbitant ICCs and thus will require extreme modularization and standardization to 
become economically feasible. 
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2.4 Opportunities and Challenges for PSH Development 

With the notable lack of PSH development in the United States over the past 20 years, the 
opportunities and challenges PSH developments face are worth exploring. One of the greatest 
drivers for new PSH development is to support increased energy generation from variable 
renewables. Among the most notable challenges for new PSH development are lengthy 
regulatory periods, investment and market uncertainty, and unrecognized energy storage 
valuation. The following sections discuss these opportunities and challenges in more detail.  

2.4.1 Opportunities for New PSH Development 

As mentioned in Section 1.1, PSH provides large-scale electrical system reserve capacity, 
contributes to grid reliability, and supports electricity supply-demand balancing by offering 
quick response capabilities and operational flexibility. With the increasing use of variable 
renewable energy sources (i.e., wind and solar power) over the past decade, the need for 
additional energy storage capacity, including PSH, to provide operational flexibility and enhance 
grid reliability has been an ongoing topic of discussion. This need is particularly applicable for 
regions where wind and solar power represent, or are projected to represent, a sizable part of the 
energy mix.  

The recent increase in the use of variable renewables presents energy challenges, particularly for 
solar generation, which provides energy during the day but not at night. In regions where solar 
power deployment has grown, the risk of overgeneration during the day and the need for 
alternative energy sources during the night have led to an increased need for flexible energy 
resources for fast response and grid reliability. The challenge is projected to continue to grow as 
solar energy deployment increases. Energy storage technologies offer such capabilities to 
respond quickly to changing loads.  

As an example of the challenge posed by increased solar generation, Figure 20 shows net load 
curves for March 31 in California in 2012 and 2013, with projected future curves through 2020. 
The intraday cycling pattern requires increased energy output from other sources to meet 
electrical demand at night as noted by the “increased ramp” label. Such a large increase in 
energy demand over a short period requires significant capacity with fast response, both of which 
are provided by PSH.  
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Figure 20. California’s “duck” curve showing net-of-renewables grid load in California on March 31, 

projected to 2020. Source: California Independent System Operator, reprinted from DOE (2017). 

The use of VS or ternary machines, which are not used in currently operational US PSH 
facilities, could enable improved ancillary service capabilities (e.g., grid stability and frequency 
regulation) compared with traditional FS machines. Studies regarding the capability and value of 
VS and ternary machines have been conducted by ANL and other DOE national laboratories—
Botterud et al., 2014 (ANL), and Koritarov et al., 2013a, 2013b, 2013c, 2013d, 2013e, 2014a, 
and 2014b (ANL). In Europe and parts of Asia where wind and solar are more prevalent than in 
the United States, some VS machines have been commissioned for PSH use. As highlighted in 
Section 2.1.3, other technological innovations such as modular components could improve small 
PSH feasibility. Detailed discussion of technological innovation in the electromechanical sphere 
of PSH is described further in Section 3.4. 

2.4.2 Challenges for New PSH Development 

Although PSH technology is proven and supports nearly all (95%) utility-scale electricity storage 
in the United States, it faces several key challenges: environmental issues with siting, lengthy 
regulatory timelines, and unrecognized energy storage and ancillary services valuation. Since the 
PSH FAST Commissioning project focused on technology and innovation applicable to post-
licensing activities (i.e., excluding factors related to permitting or licensing), these key 
challenges are beyond the scope of this report. 

Moreover, the lengthy timelines and high costs associated with PSH development present key 
challenges and contribute to investment uncertainty. Time, cost, and risk form the primary 
barriers to current PSH commissioning and are described in more detail in Section 5.0. 
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3.0 Key Aspects of PSH Project Development  

The development and construction of a PSH facility requires careful planning, execution, 
monitoring, and control and follows a generalized process that begins with conceptual 
engineering, permitting, and licensing. As mentioned in Section 1.3, the permitting and pre-
licensing activities are outside the scope of this project but are briefly described in Section 3.1 
for context and clarity, and in appreciation of the overall PSH project development scope.  

Key PSH facility components are described in the following sections and inform the framework 
upon which the subsequent assessment for opportunities to accelerate PSH development 
(Section 4.0) and PSH FAST Commissioning Prize topic areas (Sections 5.0 and 6.0) are based. 
Sections 3.1 through 3.4 serve as informative background material on the processes, activities, 
and key components of PSH development. These sections support the information contained in 
Section 4.0, which introduces and discusses cost breakdowns. This section is organized as 
follows: 

• Section 3.1 offers a brief, partial overview of PSH project regulatory, permitting, and pre-
licensing activities (which are otherwise beyond the scope of this Technical Analysis 
Report). 

• Section 3.2 includes a brief discussion on post-licensing requirements/activities associated 
with PSH project development but, per this report’s scope (Section 1.3), not considered 
further for improving post-licensing PSH commissioning timelines.  

• Sections 3.3, 3.4, and 3.5 provide overviews of PSH facility components, including key 
information on civil works engineering and construction (Section 3.3), electrical and 
mechanical equipment (Section 3.4), and electrical infrastructure (Section 3.5).  

3.1 Regulatory, Permitting, and Pre-licensing Activities 

As stated in Section 1.3, this Technical Analysis Report focuses on post-licensing activities. As 
such, activities related to permitting, licensing, or pre-licensing, and the information detailed in 
Section 3.1, are provided for informational purposes only.  

PSH projects require regulatory permitting at the state and federal levels. At the federal level, 
FERC maintains responsibility for issuing preliminary permits and licenses and for enforcing the 
conditions throughout the project lifetime. The process entails scoping meetings, public 
comments, and specific studies (e.g., environmental, dam safety), if required. To address study 
findings and/or public concerns, applicants are typically required to submit environmental 
mitigation measure proposals. FERC enforces National Environmental Policy Act requirements 
and procedures to ensure all environmental issues are addressed, with coordination from federal 
and state land managing agencies, Indian tribes, and state water quality agencies. Depending on 
the project’s site conditions, prior study status, and other complexities, these regulatory 
permitting activities can take up to five to eight years. 

Before and during the permitting process, conceptual design and engineering are typically 
developed for clarifying the planned project scope. Before developing detailed engineering and 
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definitive construction plans, project developers often perform conceptual engineering for 
evaluating the site location, overall layout (e.g., closed- or open-loop, locations of the upper and 
lower reservoirs, tunneled or aboveground penstock, location of intake and powerhouse), and 
high-level design. Other early-phase evaluations typically include assessing the proposed site’s 
conditions/characteristics and its potential to support the necessary PSH infrastructure. Since 
unforeseen circumstances (e.g., subsurface, geological, and other site-specific issues) can present 
significant development challenges, consideration of these factors is essential for managing 
project development time, cost, and risk. If not addressed early and properly, these challenges 
can increase a project’s timeline and cost and could jeopardize its completion.  

After determining the site location, general layout, and main facility components, more detailed 
engineering is performed to specify construction resources and methodologies, water conveyance 
arrangements, pumping/generating equipment, and overall project needs, among other features. 
Completion of these analyses provide more definitive reservoir and penstock sizes, site 
preparation needs, labor resource demands, and equipment procurement plans.  

An ongoing research study20 in partnership between NREL and ORNL is investigating the FERC 
hydropower licensing process. As noted in Section 2.1.1.2, FERC recently issued a final rule to 
shorten the licensing process for closed-loop PSH projects. If a project is not on public land, does 
not use navigable waters, and only uses groundwater, it does not require licensing through 
FERC. 

3.2 Post-licensing Requirements and Activities 

Post-licensing requirements, interconnection studies and power marketing, financing, and 
incentives are important to PSH project development. However, innovative PSH technology 
solutions (which this report aims to promote) are not directly applicable to these post-licensing 
requirements and activities. Therefore, the information detailed in Section 3.2 is provided for 
informational purposes only.  

Following the pre-licensing activities, PSH project development typically entails follow-up and 
continuing activities/studies to support regulatory and statutory requirements. Such requirements 
are typically related to the Clean Water Act (i.e., license compliance plan), Endangered Species 
Act, and National Historic Preservation Act, among other statutes. Interconnection studies, 
independent system operator transmission studies, and power marketing activities are also 
typically conducted.  

Transmission planning and interconnection studies are performed to assess the PSH project’s 
role in providing more efficient and reliable power system operations, which may include 
evaluating current and future projected power system portfolios (e.g., a future power mix with 
increased use of variable renewable resources). Dynamic simulation models are often used for 
modeling PSH unit responses to power system conditions and for estimating the project’s 
valuation within a diverse power system portfolio. Previous (e.g., Koritarov et al., 2014) and 
ongoing WPTO–funded research efforts aim to accurately assess PSH service provision and the 

 
20 Available from https://www.ornl.gov/project/holistic-examination-ferc-hydropower-licensing-process (Accessed 
March 12, 2020). 

https://www.ornl.gov/project/holistic-examination-ferc-hydropower-licensing-process
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power system and respective market valuation by developing and leveraging dynamic modeling 
and production cost/revenue simulations. 

Given the large up-front capital costs and typically long return periods associated with PSH 
projects, PSH investments require a high level of confidence in how revenue forecasts are 
estimated. This requirement can be challenging since introducing the project’s new energy 
storage to the market can, ironically, influence the market it serves and could adversely affect the 
project’s utility and financial returns over time (Ingram, 2018). Since PSH projects typically face 
a construction lead time exceeding four years (depending on site-specific conditions), financial 
institutions may be reluctant to offer long-term financing throughout this period. This challenge 
can present a major financial risk for project developers but could present an opportunity for 
public-private partnerships in which a project’s early-phase financial risks, interest, and 
financing costs could be reduced, thereby decreasing barriers to entry. Investing in a new PSH 
project development requires some interest for high risk, and further research may prove 
valuable in quantifying expected rates of return that will appeal to investors. 

3.3 Detailed Civil Works Engineering and Construction 

This section presents engineering and construction activities pertaining to each of the main 
components of a PSH project’s infrastructure, which is shown in Figure 21. This section helps to 
illustrate in a more specific manner some of the finer details and important areas of the 
engineering and construction timeline that could potentially benefit from improved technologies 
and innovative approaches.  

 
Figure 21. Diagrams of open-loop (left) and closed-loop (right) PSH configurations. Not to scale. Source: US 

Department of Energy. 



 

3.4 

Site infrastructure construction that is unrelated to principal project structures could take 
anywhere from six months to two years to complete but could be implemented in advance of a 
FERC license and authorization for construction. Some of these construction activities can 
include the following:  

• Temporary construction power (typically need a 69 kV or 115 kV supply) 
• Temporary water supply 
• Workforce camps and support 
• Site access (site security, temporary roads, bridges, staging areas)  

3.3.1 Site Engineering Concept and Preparation 

Site selection is typically made in the prefeasibility phase of a project, before the application for 
and issuance of an original FERC license, which is outside the scope of this project. 
Technological methods for optimum siting to save time and costs compared with conventional 
methods can essentially be accomplished using geographical information system–based 
approaches (Ahmadi and Shamsai, 2009). These approaches account for a multitude of factors 
including head, ratio of water conveyance length to head, terrain slopes, water supply, power 
grid, land ownership, road accessibility, and geology. Once a site is selected, engineering 
analyses and decisions regarding the more exact placement of the main features are conducted. 
Though some preliminary geological testing might have already been performed for site 
selection, more thorough investigations, assessments, and testing would occur in subsequent 
feasibility studies to support site-specific engineering for basic design configurations and 
placement. Recently, reservoir volume and desired hours of storage are of importance when 
selecting capacity and storage of more than eight hours. 

In general, the main site engineering and preparation considerations of interest are 

• Geological/subsurface testing/drilling/exploratory and seismic assessments 

• Providing access to the site (water sources, site clearing, drainage, road construction, 
proximity to transmission, and so on) 

• Detailed planning and engineering for PSH main feature/component locations (development 
of designs/drawings for foundational, structural, civil works; i.e., earth removal and fill)  

3.3.2 Upper Reservoir 

In traditional PSH cases, the upper reservoir is located on a high-elevation feature such as a 
mountain or mountain ravine or existing high-elevation reservoir. For new upper reservoir 
developments, access and transportation of construction equipment can be challenging, as well as 
the removal and disposal of significant amounts of cut material resulting from excavation. Some 
of the main activities and areas of interest associated with upper reservoir construction are 

• Use and/or disposal of cut material excavated to construct an upper reservoir embankment  
• Placement and construction of an intake structure/tower  
• Design and installation of a reservoir liner  
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3.3.3 Lower Reservoir 

For conventional open-loop PSH project configurations, the lower reservoir is typically 
connected to an existing free-flowing water body. For a closed-loop case, the lower reservoir is 
instead connected to some type of contained storage not connected to a free-flowing body of 
water. In some cases, alternative arrangements for lower reservoirs can be used, for example, 
existing features such as a mine or other existing underground features may be able to function 
as a lower reservoir. In these cases, only the necessary intake structure for supporting pumping 
and generating flows would be needed. Typically, construction of an upper reservoir is likely 
required unless the project uses an existing pit or abandoned surface mine (e.g., Eagle 
Mountain). Some of the main activities and areas of interest associated with lower reservoir 
design and construction are 

• Use and/or disposal of cut material excavated to construct a lower reservoir and/or 
embankment  

• Placement and construction of an intake structure/tower  

• Design and installation of a reservoir liner and/or seepage collection system 

• Incorporation of a water supply component (e.g., surface water diversion or groundwater 
pumping system) for closed-loop systems 

3.3.4 Water Conveyances 

Here, water conveyance refers to the pressurized infrastructure used in moving the water 
between each reservoir during the generating and pumping phases with the least possible loss of 
head. Water conveyance design accounts for the flow required for generating and pumping as 
well as the installation methods used for safe construction and maintenance. Locating, designing, 
and constructing the water conveyance system depends on several factors including site geology, 
soil conditions, slope, balance of length of the water conveyances with corresponding head loss, 
and structural and foundation considerations.  

Some key considerations associated with the design and construction of the water conveyances 
for PSH facilities are as follows: 

• Determination of tunneled (underground) vs. buried or exposed penstock primarily depends 
on geology, seismicity, constructability, site conditions, and access.  
– Surface penstocks are easy to inspect and can prove to be more economical to install in 

rocky or uncertain terrain as major excavation can be eliminated, resulting in lower cost 
and construction time compared with those of tunneled penstocks. 

– Projects requiring large-diameter penstocks might benefit from using exposed penstocks 
to avoid extensive and costly excavation but are directly exposed to environmental and 
weather conditions and might require specific design considerations.  

– Buried penstocks do not require as extensive external and applied structural supports as 
those of exposed penstocks. 
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• Accessibility can be a key factor in the location and type of penstock used. Sites with limited 
accessibility to a mountainside or characterized by an extreme slope and/or difficult terrain 
and soil conditions can be important considerations for design/selection criteria and the 
construction techniques used.  

• Penstock material, sizing, and construction techniques are important factors for the design 
installation of penstocks.  

3.3.5 Powerhouse 

The powerhouse refers to the infrastructure that houses the turbine, generating equipment, and 
balance of systems and peripheral controls. It is typically located between the two reservoirs but 
closer to or at the lower reservoir and is generally constructed of poured-form concrete or precast 
panels. In many instances, the powerhouse is located underground, and underground access to 
the building is required through tunnels. For high-pressure tunnel applications, the powerhouse 
location depends on rock cover criteria.  

3.4 Electrical and Mechanical Equipment Selection  

In this section, the main electromechanical components related to operating a PSH facility are 
examined, including currently available and proposed innovative technologies. This discussion 
will help facilitate an adequate understanding of the roles of each piece of equipment and its 
potential for reducing overall project time, cost, and risk.  

3.4.1 Powertrain Equipment 

In a PSH context, the powertrain refers to the complete system responsible for generating 
electricity, from the turbine isolation valves upstream of the units to the step-up transformers that 
receive and transmit power to connecting transmission lines. Reversible pumped turbines and 
motor generators may not be the most economical equipment arrangement because of 
submergence and other factors. Although technological upgrades have been made to all 
components throughout the decades, the bulk of major breakthroughs have occurred in the 
turbine-pump and motor-generator spheres. A key innovation was the introduction of the VS–
doubly fed induction machine and the increased size and ratings of converter-fed synchronous 
machine pump-turbine motor-generators in the 1990s. Compared with the previous FS units, the 
VS units exhibit larger operational ranges with greater efficiencies, thereby reducing the “rough 
zone” in which turbine vibration and cavitation is prominent. Equally important, VS units can 
vary their power consumption when pumping water and allow for greater grid stabilization by 
enhancing ramping rates to accommodate variable renewable energies via incorporation of 
frequency converters (DOE, 2016). Accordingly, VS PSH can provide ancillary services to the 
grid during pump mode and absorb excess energy in terms of increasing spinning reserves, non-
spinning reserves, and regulation (HDR, 2014). In addition to VS technologies, ternary PSH 
units have been developed to enable simultaneous operation of the pump and turbine at varying 
power consumption and generation levels, respectively. This operation is accomplished by 
connecting the pump, turbine, and motor-generator with a single shaft and then using a clutch to 
separate the turbine and pump. (DOE, 2016).  
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Companies such as Voith, GE, Andritz Hydro, Obermeyer Hydro, and other suppliers have 
dedicated considerable resources to R&D of innovative reversible pump-turbine and motor-
generator units. For example, Andritz Hydro devised a standardized assortment of VS 
powertrains that are operational over a wide range of hydraulic heads and flows, significantly 
reducing installation timelines and costs. This adaptability was accomplished by minimizing the 
number of different pump-turbine units necessary to fulfill the operational range, standardizing 
electromechanical components, and reducing machine size and submergence requirements 
(Krenn et al., 2013). A second example is the small-scale VS pump-turbine and motor-generator 
unit developed by Obermeyer that reduces the costs and timelines associated with powertrain 
installation for facilities under 100 MW, for which costs have consistently proven prohibitive. 
Obermeyer’s technological concept resembles a submersible well pump, commonly employed in 
rural and suburban residential areas since it uses an inexpensive vertical shaft to reduce the size, 
and the corresponding cost, of the powertrain equipment. Additionally, standardized and scalable 
electromechanical components are incorporated and readily available “off-the-shelf,” further 
reducing system costs (Obermeyer, 2018). Consequently, great advancements have been made in 
pump-turbine and motor-generator technologies, but challenges exist for incorporation into PSH 
facilities. VS technologies are significantly larger and heavier than their FS predecessors because 
of different rotors and power electronics, posing a considerable civil engineering challenge for 
integration in existing subsurface powerhouses (Botterud et al., 2014). Moreover, depending on 
their size and capabilities, VS units cost ~25 to 30% more (total plant costs are 7 to 15% more) 
than corresponding FS systems and might necessitate additional powerhouse real estate 
(Botterud et al., 2014).  

3.4.2 Ancillary Plant Electrical Systems 

Comprising all non-generating electrical equipment, the ancillary electrical system encompasses 
the various electrical equipment and controls software necessary for PSH plant operation, 
monitoring, and control—ensuring grid reliability and stable distribution of electricity to 
transmission systems. Whereas most early PSH schemes required more manual intervention, 
modern technology allows for greater automation and near-instantaneous feedback. One such 
instrument and control software is Supervisory Control and Data Acquisition (SCADA), which is 
widely used across all facets of hydropower development for plant maintenance, safety, and 
remote operation. Accordingly, operations and maintenance costs decreased and facility 
performance metrics improved with the introduction of SCADA (FERC, 2007b). In addition to 
SCADA, other major systems include the station power system, notably comprised of the station 
service unit and direct current power network. The station power system is chiefly responsible 
for the “black-start” designation of PSH, and hydropower in general, or the capability to start up 
and generate power without reliance on external grid interconnections, which is invaluable 
during grid blackouts (NHA, 2017). Station power systems transfer the minimal electricity 
necessary to operate the hydraulic systems to open the wicket gates and excite the generators, 
allowing water to flow through the units and begin electricity generation (Kurup and Ashok, 
2015). For proper function, these major systems consist of various electrical components, 
communication and annunciation systems, and protective relaying equipment.  
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3.4.3 Ancillary Plant Mechanical Systems 

In addition to electrical systems, PSH plants require a balance of plant ancillary mechanical 
systems to support facility operations. These include drainage and dewatering systems to remove 
any leakage and seepage water from within the plant and dam corridors, cooling and lubricating 
systems for major plant components, fire protection systems, and station maintenance equipment. 
Historically, oil and grease have been used for lubricating a hydroelectric turbine’s internal 
bearings, creating the potential for leakage and harm to the surrounding environment with 
varying associated costs depending on the extent of damage and the remoteness of the site. 
Accordingly, R&D has been performed to replace the petroleum-based lubrication with water, 
especially because of the likelihood of leakage increasing with facility age. In 2010 and 2012, 
Thordon Bearings retrofitted two bearing guides and a modular dewatering system for drilling 
applications at an older conventional hydroelectric facility in the western United States, 
successfully reducing the risk of environmental pollution (Richard and Groves, n.d.). 

3.5 Electrical Infrastructure 

This section describes the main electrical infrastructure components used to support PSH facility 
operation, including the switchyard and substation, along with the transmission interconnection. 
These components enable the electrical energy captured by generators to be delivered safely and 
reliably to the power grid.  

3.5.1 Switchyard and Substation 

Electricity generated at PSH plants is transported to consumers via an interconnected system of 
substations and transmission lines. To access this network, located adjacent to the power plant is 
a switchyard that links the powertrain’s step-up transformers to the nearest substation. A 
switchyard comprises various high-voltage busways, surge arrestors, and insulators, among other 
devices, which are all necessary to ensure a safe and secure connection to the power grid. Since 
the electricity generated at the plant is an order of magnitude different in voltage from the main 
transmission system, both the powertrain’s and substation’s transformers are responsible for 
increasing the outflow and decreasing the inflow voltages of electricity as necessary (Western 
Area Power Administration, 2011). In addition to transformers, substations also have circuit 
breakers, relays, busbars, and grounding systems to protect the flow of electricity across the 
transmission system.  

Because one of the most expensive and valuable components of a substation is the transformer, 
increasing its reliability and operational lifespan is extremely important to ensure the protection 
of the overall electrical grid. One proposed solution is a unified modular transformer converter 
system, which serves as a flexible safeguard against transformer failure by regulating active and 
reactive power flows that are ever-present in a distributed energy system. Modular transformer 
converters are composed of scalable, modular components and can be incorporated relatively 
simply into existing substations, consequently reducing cost, procurement timelines, and overall 
project risk (Parkhideh and Bhattacharya, 2011). 
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3.5.2 Transmission Interconnection 

Transmission systems are responsible for transferring electricity produced at PSH plants to the 
consumer and have varying levels of interconnectedness from intra-city to inter-state. The state 
of interconnectedness is extremely important because it concentrates generation resources and 
consequently reduces the cost of electricity. The interconnection technologies employed for PSH 
facilities directly correlate with their size or generation capacity since larger quantities of power 
output require more extensive and robust transmission equipment (Smith et al., 2017). During the 
pre-licensing phase of PSH development, studies are initiated to understand what and where 
transmission upgrades are needed, which lasts well into the construction portion of the project. 
To facilitate the timely submission and approval of these studies, acquiring generator 
performance data early in the project cycle is an important consideration but can involve costly 
collection efforts or early engagement of equipment suppliers to which some developers are not 
ready to commit. One of the challenges is that generator performance data is needed early to 
support interconnection studies because of the long lead time of transmission before the 
turbine/generator supplier is selected. An additional challenge is the uncertainty in estimating 
transmission system costs because of varying difficulties in acquiring right-of-way permits, 
upgrades required by the existing system, and the project-specific portion of transmission costs 
placed on the developer according to state and local laws (Andrade and Baldick, 2016). 
Additionally, acquiring the right-of-way for transmission lines can be challenging because of 
environmental and land ownership constraints (FERC, 2007a).  

Standardized interconnection systems have great potential for reducing costs and development 
timelines associated with integrating a new PSH facility into existing electric grid systems. 
Research in advanced distribution automation is being conducted with an overarching goal to 
standardize how the technology is applied across the industry. Advanced distribution automation 
integrates distributed resources, intelligent electronic and compensation devices, and 
communication and control systems with the capability to continuously optimize overall system 
performance (McGranaghan and Goodman, 2005). Additionally, researchers are exploring 
flexible alternating current transmission systems (FACTSs) and resilient alternating current 
distribution systems to help facilitate the integration of renewable energies and maintain grid 
reliability with increasing electricity demand. FACTS is an innovative power-electronics control 
system that allows for real-time regulation of various transmission line electrical parameters such 
as phase angle, voltage, and impedance. Although comprising similar electrical components and 
having a power-electronics control system classification, resilient alternating current distribution 
systems improve interconnections between distribution-level feeders at three functional levels: 
the microgrid, controllable distribution network, and meshed distribution system (Peng, 2017). 
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4.0 Opportunities to Accelerate PSH Project Development 

To assess PSH project time, cost, and risk drivers and technological improvement opportunities, 
this section presents example breakdown costs across three main project development 
components: (1) civil works, (2) engineering, and (3) equipment. Based on data from the 
industry, Figure 22 illustrates an example capital cost breakdown (in percent of total capital 
costs) for a typical closed-loop PSH project in which civil works, engineering, and equipment 
comprise approximately 67%, 7%, and 26%, respectively, of total project capital costs. The focus 
here primarily concerns closed-loop projects because of their large share of the proposed projects 
in the developmental pipeline, per Uría-Martínez et al. (2018). However, open-loop PSH projects 
would have similar costs, with the main differences being in reservoir civil works and 
environmental mitigation costs, for which the latter can potentially comprise all components—
civil works, engineering, and equipment. Each project development category is shown (by color) 
with corresponding components: 

• The civil works category (comprising 67% of total capital costs in the example) includes 
upper and lower reservoirs (Section 3.3.2 and 3.3.3), water conveyances (Section 3.3.4), site 
preparation (Section 3.3.1), transmission interconnection (Section 3.5.2), and powerhouse 
(Section 3.3.5).  

• The engineering category (comprising 7% of total capital costs in the example) includes 
design and engineering (Section 3.3.1).  

• The equipment category (comprising 26% of total capital costs in the example) includes 
powertrain (Section 3.4.1), ancillary plant electrical and mechanical systems (Section 3.4.2 
and 3.4.3), and switchyard and substation (Section 3.5.1).  

To better understand the cost drivers, identify the potential avenues for PSH project cost 
reduction, and inform technology advancement R&D initiatives, understanding relative 
component costs and how they scale across overall project costs is important.  

To this end, Knight Piésold Consulting has prepared in collaboration with ORNL Table 3 and 
Figure 22. The high-level analysis shown in Table 3 includes a typical PSH project time, cost, 
and risk breakdown for various PSH components within the civil, equipment, and engineering 
categories. This effort compiles a single table showing indicative cost as a percentage of total 
project cost, consideration of component construction schedule duration, and related risk based 
on listed constraints, cost drivers, and cost mark-ups. The designations for low, medium, and 
high costs are based on an equal division of percentages of total project costs ranging from 4 to 
16%. The cost percentages of 8% and 12% serve as the transition points for low to medium and 
from medium to high, respectively. The designations for short, medium, and long time durations 
are based on expert opinion gained through experience in the consulting industry.  

Figure 22 and Figure 23 depict the component cost percentage of overall project costs from 
Table 3 and maximum potentials for cost and time reductions. Whereas Table 3 includes industry 
perceived opportunity for component cost and time reduction potential for components based on 
current technologies, Figure 23 illustrates the maximum opportunity reduction potentials based 
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on the percentages of cost and time with respect to the overall project cost and timeline. In this 
manner, it provides some baseline or general indication of the potential value that new and/or 
additional research could have in these respective component areas.  

To assemble the information contained in Table 3, historic project information (existing 
domestic fleet capital cost), ongoing project costing data, and other global PSH project 
information were considered. Typically, project construction cost and schedule duration data are 
closely held information by owners and are protected by confidentiality agreements. To avoid 
sharing what might be considered confidential or closely held information, Table 4 expresses 
indicative pumped storage component cost as a percentage of total construction capital cost 
realized as low, medium, and high. Likewise, time durations are expressed in relative 
assessments of short, medium, and long. Owners’ development, licensing, and land acquisition 
costs can vary widely, and these costs have not been considered or included. 

There are many variations in pumped storage project configurations, and it is impossible to 
capture every variation without site-specific analyses. Pumped storage project configurations that 
include a preexisting reservoir or are an addition at a preexisting operating project should require 
appropriate percentage adjustments. This indicative work is intended to show where there are 
greatest opportunities for cost and schedule reduction. This work is not intended to replace 
rigorous, site-specific engineering, scheduling, or cost-estimating work. 
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Table 3.Typical PSH project time, cost, and risk breakdown. Source: Information from Knight Piésold Consulting in collaboration with ORNL, 2019.  

Category Components Cost 
Component cost 

% of total 
project costs 

Time 
duration Risk 

Component 
cost reduction 

potential 

Component 
time 

reduction 
potential 

Constraints Cost drivers Cost makeup 

Civil works 

Upper reservoir High 16 Long High High High 
Location, volume, 

terrain, and 
geotechnical 

Material type 
and volume 

Labor and 
equipment 

Lower reservoir High 16 Long High High High 
Location, volume, 

terrain, and 
geotechnical 

Material type 
and volume 

Labor and 
equipment 

Water 
conveyance High 12 Long High High High 

Reservoir distance, 
terrain, 

geotechnical, and 
siting 

Siting Materials, labor, 
and equipment 

Transmission 
interconnection Med 9 Long Med Med Med Routing and 

voltage 
Length and 

voltage 
Materials and 

equipment 

Site preparation Low 6 Med Med Med Low Geotechnical and 
site layout 

Site access 
and area 

Labor and 
equipment 

Powerhouse Med 8 Med Med Med Med 
Terrain, 

geotechnical, and 
siting 

Siting Materials, labor, 
and equipment 

Equipment 

Powertrain Med 11 Med Low Low Low Procurement Unit type and 
capacity Procurement  

Switchyard and 
substation  Low  6 Med Low Low Med Geotechnical and 

site layout 
Quantity and 

voltage 
Materials, labor, 
and equipment 

Ancillary plant 
(mechanical) Low 5 Short Low Low Low Site layout Quantity and 

voltage Procurement 

Ancillary plant 
(electrical) Low 4 Short Low Low Low Site layout Quantity and 

voltage Procurement 

Engineering Design/ 
engineering Low 7 Med Low Low Low Geotechnical and 

site layout 
Siting and 
project size Labor 

Table notes: 
1. Costs can vary depending upon location and site-specific characteristics. 
2. Time, cost, and risk are greater for underground than aboveground projects (e.g., siting), subject to the economies of scale.  
3. Very little manufacturing and installation risk is associated with major equipment suppliers. 
4. Reservoir dam height and site conditions/terrain drive the cost of civil subcomponents. 
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Figure 22. A representative total capital cost breakdown for an example closed-loop PSH project.(top) 

Representative breakdown as a pie chart and (bottom) representative breakdown shown with a relative timeline for 
component completion date (timeline is not precise or scaled). Sources: Based on information from Knight Piésold 

Consulting in collaboration with ORNL, 2019.  
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The cost breakdowns presented in Table 3 are illustrated in Figure 22 as the relative cost 
significance among the three categories of civil works, engineering, and equipment, in which 
costs are incurred through both the material and labor costs to achieve work in each category. 
For civil works, this cost includes the preparation work for initiating construction, materials used 
during construction, the machines used to perform the construction, and the labor used to 
perform the construction. The engineering category costs include all the design labor and site 
testing required for constructing the PSH facility. For the equipment component, cost includes 
the material cost of the equipment itself and the labor associated with ordering, shipping, 
installing, and commissioning the equipment.  

The baseline project development timeline illustrated earlier in Figure 14 and in Table 3 shows 
construction as requiring the longest time to complete, which is due to civil works construction 
being a dominant aspect of the commissioning process of a PSH facility, especially when new 
reservoir construction is required. Construction comprises machine and/or construction 
equipment usage time and the actual labor associated with performing tasks, operating 
construction equipment and machinery, and so on. The time associated with engineering refers to 
the length of time dedicated to planning, designing, and prepping the site for construction. The 
equipment category, for purposes of consistency with how time is regarded with civil works and 
engineering, refers to the time associated with the installation and start-up of the equipment. 
Although procurement of equipment is important, the purpose of this report and effort is focused 
on time with respect to how technology may improve and reduce the time of installation and 
start-up processes and not the procurement process of whether or not a piece of equipment 
arrives to the site when it is needed.  

According to Figure 22, the upper and lower reservoirs, along with powertrain and water 
conveyance components, comprise the largest portions of overall project capital costs. The high 
cost of civil works also aligns with the dominant timeframe of construction. Reductions of time 
in categories that represent the largest proportions of overall costs may also reduce costs. 
However, in granular and more specific cases, the situation may be more complex depending on 
how new equipment technologies affect the interplay of time and cost offsets with labor.  

Time and risk are integrally connected and partially interdependent on cost. As such, improving 
PSH feasibility can prove very complex as improvements in time, cost, or risk do not necessarily 
imply a positive correlation. Therefore, case-by-case evaluations may be required to determine 
the overall net effect. Ideally, a technology can yield improvements in all areas, but that might 
not be readily apparent until a thorough offset analysis is made. The following prospective 
examples illustrate this complexity: 

• A technological improvement in material design for an upper reservoir liner may be more 
expensive than a traditional design, but the technological improvement may yield other 
benefits through reduced installation timelines compared with a traditional approach. In this 
case, the increase in material cost is offset with decreased construction labor cost. Specific 
technological improvement costs may or may not always be offset with decreased time or 
labor costs. 

• An innovative reservoir excavator that can reduce construction timelines is perceived as a 
positive improvement, but if its manufacturing, procurement, and transport costs exceed the 
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respective labor costs that it offsets, a net negative cost would result compared with 
traditional techniques.  

Opportunity areas for improving PSH facility commissioning refers to the identification of the 
component areas in Figure 22 that have the greatest opportunity for improvement and that could 
yield the most significant absolute reductions to time and cost savings resulting from 
technological improvements. Considering the baseline costs, timelines, and associated risks 
currently associated with PSH facilities, the overall effects and contributions of a technological 
improvement to any of the components may result in combinations of changes to the overall cost 
and total timeline. These factors also have to balance with the risk tolerance and the willingness 
and ability to endure the consequences, which can be difficult to quantify.  

Realizing the relative time and cost magnitudes of the components for the categorical areas helps 
to identify the opportunities for the most significant time and cost reduction potential. Figure 23 
illustrates the scatter of each component with respect to its time and cost color-coded by the civil 
works, equipment, and engineering categories. Clustering the components illustrates that most 
civil works (upper and lower reservoirs along with water conveyance and transmission 
interconnection) reside in the upper right quadrant for the “high” designation for both time and 
cost.  
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Figure 23. Opportunity potential for cost and time reduction for PSH components. 

Although most components in the equipment category are clustered in the low designation for 
cost and low to medium designation for time, the powertrain component resides in the medium 
designation for both cost and time. The relatively high representation of the civil works time and 
cost is consistent with the fact that construction of the reservoirs, water conveyance (or 
tunneling) structures, and transmission interconnection requires lengthy labor times since these 
are massive structures and, likewise, cost the most considering both the need for construction 
machinery use and labor.  
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In contrast to the civil works is the relatively lower costs and time associated with the equipment 
components. The relatively reduced time required is consistent with the fact that the install time 
and minor construction support for these components is lower and not as significant as those 
associated with the civil construction items. Though the cost for the powertrain equipment is 
relatively the same as the civil works, most of the cost is strictly due to the purchase cost of the 
equipment instead of labor, as is the case for civil works. 

Figure 23 identifies the components that have the greatest potential for benefiting from 
technology improvements aimed to reduce the time and cost aspects of PSH commissioning. 
From this figure, the following inferences can be made: 

• Primary consideration should be made for technologies in both time and cost reduction in the 
civil works category for upper/lower reservoir, water conveyance, and transmission 
interconnection. 

• Secondary consideration should be made for technologies with time reductions only for site 
preparation, powerhouse, switchyard/substation, and design and engineering, but with 
potential for both cost and time reductions for powertrain equipment and installation.  

For the civil works grouping and the site preparation, significant potential exists for both time 
and cost improvement, not only because they represent the highest magnitude, but also because 
both reductions can be made in two unique opportunistic ways.  

First, innovation technology for construction equipment and machinery is a potential avenue for 
improvement. For example, improvements to physical designs and operational efficiencies of 
cutting and boring methods could reduce digging and tunneling activity timelines. This 
improvement would, in essence, also reduce the number of labor hours dedicated to those 
activities for operating the machinery, supervision, and other support-related activities, which 
reduces overall time and could reduce cost if labor hours were reduced.  

Second, construction-related logistical approaches and planning activities could be improved to 
reduce overall timelines. For example, performing simultaneous construction activities in 
different locations on the site to maintain minimal site traffic and interference is a logistical 
improvement that could reduce overall timelines. The optimized scheduling of congruent 
activities in both time and space could vastly improve overall timeline efficiencies and overall 
labor costs. 

For the equipment category, the costs are generally lower than those of civil works. Unlike civil 
works, less labor is generally associated with equipment installation. Installation and start-up 
process timelines for equipment are significantly lower; likewise, any timeline reduction due to 
technological improvement would not be as proportionally significant to overall project savings. 
The greatest opportunity for equipment cost reduction appears to be associated with the 
powertrain. Currently, for items such as the powertrain, which includes the turbine runner and 
supporting infrastructure, the realizable cost reduction potential is relatively low since the 
designs for these types of equipment are mature and have historically been optimized for cost 
effectiveness and performance improvement. However, ongoing research in material science, 
coating, 3D printing, and more can potentially improve equipment costs.  
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Although the potential exists for cost and time reduction for technological advancements (as 
Figure 23 illustrates), risk cannot be ignored. Since there is little to no available data to quantify 
the effect of innovative technologies in the area of PSH construction, absolute comparisons of 
technologies cannot be made regarding cost and time. However, as development of targeted 
technologies continues, the concept of technological maturity can be used to understand and 
communicate potential relative effects regarding cost and time.  

The two types of risk significant to this discussion are baseline risk and technology risk. Baseline 
risk is historically associated with project issues such as unknown underground site conditions, 
uncertainty in weather conditions, equipment and machine reliability, and more. Technology risk 
is associated with the potential for a given technology to perform as expected. The expectation 
and risk level associated with the successful operation of a technology can be assessed in relative 
terms by consideration of the technology maturity level. A technology with a low maturity level 
is one that is still within the conceptual phase of design and planning, which contrasts a 
technology with a high maturity level that has endured thorough testing and evaluation in a 
laboratory setting and has been well vetted and proven in its in-field application. Employing a 
technology with a low maturity level creates a higher risk to cost and time.  

The effects on cost and time of applying potential technological advancements to each of the 
components in Figure 23 are currently unknown. Respectable and absolute assessments of risks 
and their effects on costs and time can only be more meaningfully analyzed and assessed when 
specific technology applications are developed, tested, and used in the industry. The relationship 
between technological maturity and risk levels are illustrated in Figure 23.  

The data used to inform relative cost distributions in this report are informed from limited data 
available from previous license applications and industry; they represent an assessment with 
variability depending on the project scale and site-specific characteristics. The nature and 
response of time, cost, and risk of these industry projects regarding technological improvements 
is unrealizable since data supporting new technology application to the PSH industry do not 
exist. To adequately address and quantify PSH post-licensing, potential time, cost, and risk 
reduction, it is necessary to have both baseline data for the cost and time of PSH development 
and knowledge of innovative technology effects and their respective impacts on time, cost, and 
risk reduction. When these two aspects become available, an engineering-based, bottom-up 
techno-economic model could be used to establish an improved baseline and capacity for 
assessing the effects of technological improvements on cost and time. This modeling capability 
can then be used to further refine the areas that could benefit most from technology innovation 
while yielding reduced PSH commissioning time, cost, and risk.  

Section 5.0 provides more detail regarding the briefly aforementioned three main barriers to PSH 
development—time, cost, and risk—and details how these barriers informed the PSH FAST 
Commissioning Prize competition topic areas and solution categories.  
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5.0 PSH Development Barriers and PSH FAST 
Commissioning Prize Solutions 

This section presents the barriers to development of PSH facilities, the methodology used for 
arriving at the Prize areas, and the five Prize topic areas accompanied by examples and/or 
solutions that could potentially support the Prize areas. This section is organized as follows: 

• Section 5.1 presents PSH development barriers, along with considerations for PSH project 
development opportunity areas. 

• Section 5.2 offers the rationale used for selecting the Prize topic areas. 

• Section 5.3 identifies solution categories and examples for reducing the time, cost, and risk 
associated with PSH commissioning via technology innovation. These categories directly 
informed the PSH FAST Commissioning Prize topic areas, as documented in Section 6.0. 

The barriers of time, cost, and risk serve as the metrics by which the success of an opportunity 
area (defined in Section 4.0) is defined. Minimization or the advantageous net offset of these 
barriers is desired by investors and owners, especially as new technologies are being considered. 
As presented in Section 4.0, civil works (primarily upper/lower reservoirs, water conveyance, 
and transmission interconnection) have the most potential for both time and cost reductions, 
which can be accomplished through innovative construction technologies and logistical 
approaches in terms of scheduling construction activities. Site preparation, powerhouse, design 
and engineering, and switchyard/substation have a secondary potential for time reduction. 
Improvements in these components, along with the civil works, are primarily driven by labor. 
Although equipment also has potential for cost reductions, this will not be universally applicable 
since components such as the powertrain have been the focus of much innovation over the past 
few decades; thus, it is highly unlikely that major cost reductions can be realized. Consequently, 
the greatest opportunity for technology improvement for cost and time may likely reside in these 
components, but opportunities could possibly reside in others depending on the significance of 
the technologies’ effect on time and cost. As is typical in large civil works projects, the time and 
cost can be significantly and integrally dependent, and reductions of time will likely have 
corresponding cost reductions, as well. Therefore, the barriers of time, cost, and risk serve as 
gauges for the development, comparison, and measure of effectiveness of technological 
improvements. 

The development of the solution categories presented at the end of this section is based on the 
intention of addressing the aspects of time and cost. The categories represent opportunities for 
minimizing and reducing time and cost with some level of acceptable risk.  

5.1 Barrier Identification  

In an effort to systematically assess and arrive at those key items necessary for reducing 
commissioning timelines, barriers to development are presented with consideration of 
opportunity areas for PSH project development acceleration. The three barriers are time, cost, 
and risk and are discussed qualitatively herein as supportive data for in-depth study.  
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5.1.1 Time 

PSH development requires monetary investments over lengthy periods of “at risk,” “no gain,” or 
“negative cash flow.” Extended periods of negative cash flow and “lack of or delayed” debt 
repayment and equity payments are challenging for investors to commit to for the long period of 
time required for PSH development. Most investors in energy-related projects prefer a positive 
cash flow within one to three years of the time of an investment, which typically has not been 
possible for new PSH projects developed in the United States. Reducing commissioning 
timelines could help encourage long-term investment by enabling earlier positive cash flow, debt 
repayment, and equity payments. Also, longer construction timelines equate to higher costs due 
to interest during construction.  

5.1.2 Cost  

Reducing construction time does not always result in cost savings and could potentially increase 
construction cost and risk. For example, innovative technologies might help reduce 
commissioning time but at a construction or equipment cost, that could outweigh the cost-saving 
benefits. The scale of improvement costs compared with the overall cost to the project is an 
important consideration. Cost-effective improvements reside in reducing major equipment or 
construction costs in relation to overall project costs. The project schedule must be evaluated to 
determine whether the improvement shortens the overall path to project delivery, which is an 
important overall schedule-cost concern. Technological improvements yielding small or even 
medium percentages of cost improvements are not worth the investment, especially for high-
capital projects with lengthy timelines in which small-to-medium cost savings could get diluted 
in the lengthy and sometimes risky timeline costs.  

5.1.3 Risk 

Risk is defined as conditions affecting overall project completion, reliability/performance, or 
project economics. These risks can be attributed to increases in costs and time; project delivery 
that does not meet the desired project installed capacity or pumping and generation; natural 
disasters; unplanned warranty work; and the commissioning timeline or post-commissioned 
operation of the PSH facility. Attempts to reduce time and cost barriers with respect to new 
technologies, innovative approaches, and fast construction methods have certain levels of risk 
that might result in a potential increase in overall project costs or operating costs. The geologic 
site conditions represent one of the most significant project risks. When working underground, 
establishing an early understanding of the site’s geology and geotechnology is important in 
reducing the risk of unexpected costs or time delays. As described in Section 4.0, the two types 
of risk significant to this discussion are baseline risk, which is associated with the uncertainty of 
project site issues, and technology risk, which is associated with the potential for a given 
technology with a certain maturity level to perform as expected.  

5.2 Prize Topic Area Selection Rationale 

Considerations for solution topic area categories—civil works, engineering, and equipment, with 
the development barriers presented in Section 5.1 yield a need for innovation to address the 
improvement of the commissioning timeline and cost with consideration for risk. To achieve this 
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improvement, most importantly, the timeline must be minimized and accompanied by potential 
overall net improvements in costs—hopefully with some level of manageable risk.  

The aspects of construction and design emerge from the solution topic area categories with 
respect to the development of a PSH facility, the consideration of the physical and tangible 
aspects of a facility’s infrastructure (Figure 5), and the issues surrounding the barriers that could 
stunt their development. Based on the timeline depicted in Figure 14, with construction activities 
occupying the greatest percentage of the development of a PSH facility, it follows that 
construction would be a primary focus, whereby innovative and technological improvements 
could most effectively address improvements in timeline commissioning. Naturally, following 
timeline improvement aspects in construction presents opportunities for cost reductions. 
Likewise, the design is an important facet because of its uniquely close relationship with 
construction. Innovative and well-developed design and engineering approaches can have a 
profound impact on construction from the design of the actual components to the design and 
innovative use of the construction equipment itself. Therefore, careful and systematic planning in 
the design phase can have significant impacts when synergies for construction activities are 
taken into consideration.  

 
Figure 24. Holistic methodology for arriving at solution topic areas for addressing improved 

commissioning timelines of PSH.  

An overall approach methodology (Figure 24) for arriving at the solutions for addressing the 
commissioning timeline are driven by the use of innovation to minimize time, cost, and risk 
associated with the design and construction of PSH infrastructure components. Prize topic areas 
were aimed at achieving optimal solutions to improve the commissioning timeline for PSH.  
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For development of the specific five topic areas (presented in Section 5.3), a pathways 
framework was developed from which the specific five topic areas were contrived. This 
framework resides within the Solutions category of the methodology depicted in Figure 24, 
which is the category in which the specific topic areas for the prizes are developed. The pathway 
framework was based on the lineage of a civil works project development process. This 
framework, depicted in Figure 25, included the pathways of project inception, project design and 
engineering, project execution (construction), and project procurement. These themes served as 
the basic framework of the specific Prize topic areas, as shown in Figure 25. 

“Project inception” refers to the initiation of the PSH project—in this case, the appropriate 
considerations/planning for the activities that begin in post-licensing and approaches taken to 
minimize and manage risk in an environment with potential unknowns and unforeseen site and or 
geological conditions. The inception phase of a project can be a crucial part of the project; 
typically, the decisions and choices made at that time can have long-term consequences and far-
reaching effects throughout the project construction and even operation. Decisions made at this 
point can usually make or break a project. Tasks are performed to support initial construction at 
the site and although site selection, general layout, and some site testing will have been 
performed in the pre-licensing phase, many subsequent issues and continuation of activities are 
relevant in the post-licensing phase. As detailed placement and construction of the PSH 
infrastructure (reservoirs, penstock, powerhouse, and so on) begin, additional geological and site 
condition testing might be performed to either fine-tune the understanding of the site 
characteristics or to help address unforeseen conditions not previously identified. Reacting to and 
accommodating these issues can require adjustments to existing design and engineering. 
Facilitating these changes with respect to unforeseen circumstances and potential unknowns can 
sometimes be risky to the overall timeline and costs. Innovative assessment and careful planning 
of these contingencies are important to overall project success. 
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Figure 25. Pathways framework used to develop the specific five topic areas within the 

Solutions methodology. 

Project design and engineering goes hand in hand with project inception. “Design and 
engineering” in this context is a consideration for the methodologies and approaches taken to 
ensure that smart and efficient choices are being considered at the beginning of a project. These 
approaches should take into consideration innovative and creative methodologies employed in 
testing protocols and decisions guided by effective strategies supported by statistical and risk 
analyses. These methods can present the most effective paths forward given current conditions 
and the level of risk with which developers and investors are comfortable.  

“Project execution/construction” herein refers to the construction phase of the project, which is 
typically the longest phase, which entails the construction of the PSH component infrastructure 
itself. “Project procurement” herein refers to planning and staging with respect to purchasing, 
delivering, and installing major equipment and necessary controls, which includes the relevance 
of standardization of equipment in conjunction with sequential commissioning of individual 
units for monitoring purposes to establish baseline performance, which can be used to inform 
subsequent equipment and installation specifications. Within the context of this presented 
framework, the different topic areas that emerge in the area of construction attempt to address the 
potential for improvement on several fronts. Logistics and efficiencies of construction practices, 
management, and the efficacy of design and engineering technology—regarding not only the 
design of PSH infrastructure components but also the design and use of the construction 
equipment itself—are key undertones throughout the five topic areas. Figure 25 illustrates the 
unique overlap of the pathway framework themes with that of the topic areas.  



 

5.6 

5.3 Solution Categories and Examples 

Based on the pathway framework, the five topic areas identified as potential areas for reducing 
the timeline and cost with consequential considerations for risk associated with PSH 
commissioning are shown in the subsequent sections. The objective of the Prize competition was 
to seek innovation and creative ideas. The pathway items are reflected in the overall structure of 
the five topic areas, whereby the improvement in commissioning timelines is the main focus. 
Topic area 1 addressed the project inception, design, and engineering with a focus on the 
physical characteristics of the facility and its relationship with the site itself. Topic areas 2, 3, 
and 4 holistically addressed project execution, overlapping with design, with further refinement 
for construction logistics and strategies, construction equipment, and construction material and 
technology. Topic area 5 addressed project procurement with considerations for standardization 
and technologies to improve equipment staging and planning to enable quicker and informative 
periods of time leading to plant start-up.  

5.3.1 Concept, Design, and Engineering 

This topic area focuses on new approaches and methods for conducting optimal and efficient site 
layout, design, and engineering, with strategic and holistic construction and operational 
considerations for assessing and balancing risks and unknown conditions (e.g., geologic and 
geotechnical investigations, underground work). 

Example considerations/solutions include but are not limited to the following (Table 4): 

Table 4. Example considerations/solutions for PSH concept, design, and engineering. 

Examples 
Site selection 

Site selection methods and tools 
Site selection optimization process 

Holistic site layout, design, and engineering 
Project type selection based on location characteristics 
Closed- vs. open-loop design 
Tunneling vs. aboveground penstock 
Modular reservoir consideration 
Selection of upper/lower reservoir 
Project footprint and layout optimization 

5.3.2 Creative Construction Management and Contracting Strategies 

This topic area focuses on improved methodologies for project delivery, which includes 
strategies for assessing and improving the logistics (planning and scheduling) and efficiencies 
(optimization) associated with managing construction and contracting processes, work activities, 
and personnel. 

To reduce construction times, engaging a construction contractor in the design process could be 
not only necessary but also significantly beneficial. 
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Example considerations/solutions include but are not limited to the following (Table 5): 

Table 5. Example considerations/solutions for PSH creative construction management and contracting 
strategies. 

Examples 
Planning and scheduling 

Use of optimization techniques to address the spatial and temporal scheduling and 
assignment of workers, equipment, on-site maneuvers, and opportunities to increase the 
number of parallel and noninterfering activities 

Innovative contracting strategies  
Strategies (i.e., that are proven in large civil infrastructure projects to mitigate potential 
reluctance to adopt) that provide early contractor engagement and balanced risk sharing 

On-site resource management 
Improved material cut, load, and transport methodologies 
Local material sourcing 
On-site concrete production 

5.3.3 Improved Construction Equipment Design and Application 

This topic area focuses on developing innovative construction equipment technologies and 
improving applications of existing construction technologies that outperform conventional 
equipment. 

The US market can leverage global lessons learned and technical advances from large civil 
infrastructure projects. Some project managers have considered swapping out fixed equipment in 
favor of VS equipment to capture operational flexibility and to maximize revenues. 

Example considerations/solutions include but are not limited to the following (Table 6): 

Table 6. Example considerations/solutions for PSH improved construction equipment design and application. 

Examples 
Crane design, positioning, assembly, movement, and disassembly 
Improved technologies and machinery for tunnel boring and cut and removal activities 
Improved temporary rigging and support technologies 
Equipment and/or component development using 3D printing 
Simplification of design and project configuration 
Elimination of overdesign details 
Elimination of features or components that do not add to the purpose of the project 

5.3.4 Advanced Construction Materials and Manufacturing 

This topic area focuses on the selection and use of advanced construction materials (e.g., 
fiberglass, plastics, new types of concrete, high-strength concrete and steels, steel welding 
developments, novel material applications) and advanced manufacturing technologies. 

Example considerations/solutions include but are not limited to the following (Table 7): 
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Table 7. Example considerations/solutions for PSH improved construction materials and manufacturing. 

Examples 
Advanced materials 

Penstock (e.g., lighter weight, reduced head losses, improved connectivity) 
Upper and lower reservoir selection and use 
Concrete (e.g., quicker setting) 
Improved materials aimed at enhancing size and weight efficiencies to ultimately improve 
time-sensitive transportation, delivery, staging, and installation of components and materials 
Improved reservoir lining technologies on the scale of pumped storage reservoirs to mitigate 
water loss via seepage and groundwater infiltration (a challenge for many western US 
projects) 

Advanced manufacturing 
Additively manufactured turbine-generator components (e.g., rotor, stator shaft, wicket gate, 
turbine blades) 
Precast concrete modules and/or improved construction forming technology for concrete 
pouring and placing 
Concrete printing 

5.3.5 Standardized Equipment, Monitoring, and Control Technologies 

This topic area focuses on the standardization and/or modularization of equipment technology 
and monitoring and control components. 

Example considerations/solutions include but are not limited to the following (Table 8): 

Table 8. Example considerations/solutions for PSH standardized equipment, monitoring, and control 
technologies. 

Examples 
Turbine/pump design and technology 
Standardized penstock layout optimization (e.g., size, joints) 
Built-in monitoring and control packages 
Standardized testing equipment 

 

 



 

6.1 

6.0 Summary of the PSH FAST Commissioning Prize  

The PSH FAST Commissioning Prize competition was announced21 by WPTO in April 2019, 
with applications due in June 2019. To inform Prize applicants for their proposals, a PSH FAST 
Commissioning Preliminary Analysis (Hadjerioua et al., 2019b)—effectively a preliminary 
executive summary of the technical analysis provided in this report—was developed by ORNL 
with support from ANL, NREL, and PNNL. Additional Prize details are available through the 
Prize website.22 Applicant proposals could address one or more of the five topic areas identified 
(as shown in Table 9). These topic areas are aligned with the solution categories documented in 
Section 5.3. Per the Prize announcement: 

 

Table 9. PSH FAST Commissioning Prize topic areas. 

Topic Areas 
Innovative concept, design, and engineering 
Creative construction management and contracting strategies 
Improved construction equipment design and application 
Advanced construction materials and manufacturing 
Standardized equipment, monitoring, and control technologies 

Applicants submitted their concepts to meet a June 2019 submission deadline. On July 23, 2019, 
nine concept stage winners (Table 10) were announced.23 To support the Prize’s goal to 
“catalyze new solutions and designs to accelerate PSH development,” the Prize offered the 
finalists and grand prize winners support from DOE national laboratories during an incubation 
stage. National laboratory support was designed to leverage laboratory expertise and knowledge 
to further refine the applicants’ concepts. Following the incubation phase, applicants presented 
their final concepts through a PSH FAST Commissioning Prize Pitch Contest on October 7, 2019. 
Immediately following the Pitch Contest, WPTO announced four grand prize winners24 (first 
four entries in Table 10), who were awarded up to $550,000 in cash prices and research voucher 

 
21 Available from https://www.energy.gov/eere/articles/energy-department-announces-new-prize-accelerate-
pumped-storage-hydropower (Accessed March 12, 2020). 
22 Available from https://americanmadechallenges.org/fast/ (Accessed March 12, 2020). 
23 Available from https://www.nrel.gov/news/press/2019/nrel-names-fast-prize-concept-stage-winners.html 
(Accessed March 12, 2020). 
24 Available from https://www.energy.gov/eere/articles/energy-department-announces-grand-prize-winners-fast-
prize-competition (Accessed March 12, 2020). 

PSH FAST COMMISSIONING PRIZE OBJECTIVE & GOAL 

“the prize seeks novel solutions and technologies that address the non-
regulatory challenges PSH developers face deploying new storage projects and 

supports the goal to reduce the time to commission PSH from its current 10 
years to less than five… the goal of the prize is to catalyze new solutions, 

designs and strategies to accelerate PSH development.” 

https://www.energy.gov/eere/articles/energy-department-announces-new-prize-accelerate-pumped-storage-hydropower
https://www.energy.gov/eere/articles/energy-department-announces-new-prize-accelerate-pumped-storage-hydropower
https://americanmadechallenges.org/fast/
https://www.nrel.gov/news/press/2019/nrel-names-fast-prize-concept-stage-winners.html
https://www.energy.gov/eere/articles/energy-department-announces-grand-prize-winners-fast-prize-competition
https://www.energy.gov/eere/articles/energy-department-announces-grand-prize-winners-fast-prize-competition
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support to cover a roughly 11-month voucher support period from November 2019 to September 
2020.  

Table 10. PSH FAST Commissioning Prize concept stage and grand prize winners. 

Awardee Affiliation Description 
Tom Eldredge and 
Hector Medina*  

Liberty University Presented a modular closed-loop, scalable PSH system with 
a capacity range of 1 to 10 MW, adaptable to sites without 
natural bodies of water 

Tracy Livingston*  Kinetic Power, LLC Combined excavation equipment modifications and process 
optimizations to achieve up to a 50% reduction in excavation 
timelines 

Doug Spaulding*  Nelson Energy and Golder 
Associates 

Proposed the use of tunnel boring machines for underground 
excavation, which can decrease excavation time by 50% and 
reduce costs 

Gordon 
Wittmeyer*  

Southwest Research Institute Presented a modular steel concept for dams that cuts cost by 
one-third and cuts construction schedules in half 

David Gatto  Ames Construction Combined several modern construction business acumen and 
advanced management techniques 

Nicholas Jaffa and 
John Cimbala 

Pennsylvania State University 
Applied Research Laboratory 

Developed a pump-turbine concept that is modular, rapidly 
deployable, scalable, and configurable, and that operates 
flexibly to enable distributed low-head PSH 

Peter Schubert  Indiana University – Purdue 
University Indianapolis 

Analyzed the use of existing mine voids for housing 
hydraulic wind turbines to loft water to provide quickly 
commissioned PSH while tenting the upper lake for 
nonelectric revenues 

Charlie Smith, 
Mike Beyerle and 
Steve McKinley 

Move the Peak, LLC Analyzed the use of storm water storage tunnels during non-
storm event periods in conjunction with local natural bodies 
of water for PSH energy generation 

Eric Thompson, 
Kevin Supak, 
Gordon Wittmeyer 

Southwest Research Institute Analyzed promising opportunities for closed-loop PSH in 
west Texas using interconnected reservoirs, package turbine 
units, and fracking wastewater 

* Grand prize winners  
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7.0 Conclusions  

Although PSH is the most widely used energy storage technology across the world and provides 
numerous power and ancillary benefits (as described in Sections 1.0 and 2.1.1), recent PSH 
development in the United States has been severely hampered by a variety of challenges. 
Competition from other low-cost energy sources (such as natural gas, solar, and wind) can make 
traditional PSH development unattractive by comparison, primarily owing to the lengthy 
development timelines and significant upfront capital costs. To best address these challenges and 
help support PSH competitiveness, ongoing and future R&D should focus on the post-licensing 
activities in which technological innovations can make the greatest impact.  

Key takeaways from the baseline knowledge in this report include 

• Among challenges facing new PSH development, the most notable are lengthy regulatory 
periods, investment and market uncertainty, and unrecognized energy storage valuation. 

• Innovative PSH development approaches (including underground, small, and modular 
systems) have been investigated but lack widespread application. 

• Historical PSH development in the United States has largely stalled since the 1990s. 

• International PSH development has increased in recent decades, especially in East Asia and 
Europe where variable renewable energy sources are increasingly deployed. 

• Baseline (typical) development timelines for new utility-scale PSH projects in the United 
States often approach a decade or more. 

• Baseline development costs associated with new PSH development vary widely depending 
on the project’s location, site-specific conditions, existing infrastructure availability, and 
facility design. Besides site-specific siting and design considerations, a project’s hydraulic 
head and storage capacity significantly affect development costs. 

• Civil works (primarily upper/lower reservoirs, water conveyance, and transmission 
interconnection) have the most potential for both time and cost reductions, which can be 
accomplished through innovative construction technologies and logistical approaches in 
terms of scheduling construction activities. Site preparation, powerhouse, design and 
engineering, and switchyard/substation have a secondary potential for time reduction. 
Improvements in these components, along with the civil works, are primarily driven by labor. 
Although equipment also has potential for cost reductions, this will not be universally 
applicable since components such as the powertrain have been the focus of much innovation 
over the past few decades, making major cost reductions highly unlikely to be realized.  

Based on the technical analysis documented in this report, opportunity areas for reducing PSH 
development time, cost, and risk includes civil works, equipment, and engineering. Additionally, 
five key topic areas (documented in Section 6.0) were identified as potential mechanisms for 
reducing the time, cost, and risk associated with PSH commissioning through technological 
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innovation. These topic areas are being used to test drive innovative industry concepts through 
the PSH FAST Commissioning Prize, as described in Section 6.0. 

The next crucial steps for moving toward reductions in commissioning timelines of PSH are as 
follows: 

• Obtain more refined cost and time data possessing the granularity necessary for establishing 
the full spectrum of the project scale and potential site-specific characteristics.  

• Obtain performance metrics used for evaluation of cost and time improvements and risk 
associated with applying various maturity-level technologies to PSH components.  

• If and when the two first bullets are achieved, develop a techno-economic model to assess 
technologies’ effects on overall PSH project costs and identify those key component areas 
that would benefit the most from technological advancements and improvements. 

• Quantitatively assess how the awards winners’ ideas can reduce commissioning timelines 
and costs and identify the feasibility and respective paths necessary for the potential 
implementation of ideas.  

• Use the lessons learned in this current prize effort to develop a refined direction forward and 
focused specifications for technological advancement needs.  

• Focus communication to industry leaders, planners, and investors on information pertaining 
to those areas requiring the most improvement such that collaborative and transparent efforts 
are addressed effectively. 

• Develop and foster a strong initiative for including involvement and guidance from research 
communities and leaders in the planning and development phases of potential PSH facilities.  

The information in this report provides valuable, relevant insight into modern PSH development, 
including establishing baseline knowledge and identifying the opportunity areas with the greatest 
potential for improving the industry barriers of cost, time, and risk. This report’s motivation is 
further complemented through the parallel, ongoing PSH FAST Commissioning Prize, which 
aims to catalyze new solutions and designs to accelerate PSH development. Together, this 
technical analysis and the Prize implementation will advance PSH development knowledge and 
promote innovative technology solutions, with the aim of improving construction timelines and 
addressing PSH project commissioning challenges facing the industry. 
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Appendix A.  
International PSH Development by Region 

As discussed in Section 2.2.2, there have been significant strides in PSH development across the 
world, with different policy initiatives and market drivers affecting PSH deployment. Refer to 
Figure A.1 for a map of PSH plants with at least 10 MW capacities spread across the world, 
separated by region (Africa, Central and South America, East Asia, Europe, Russia, South Asia, 
Southeast Asia and Oceania, and Western and Central Asia). Below is detailed discussion on 
existing, planned, and announced PSH development in each of these regions, with several 
prominent countries (not necessarily all with PSH development) highlighted within. Content is 
alphabetized by world region. 

 

Figure A.1. Map of world regions used in Appendix A. Source: Uría-Martínez et al. (2018).  

Africa 

Africa has a total of 3,400 MW of operational PSH capacity, located in Morocco and South 
Africa. An additional 3,100 MW of PSH are planned, and 1,500 MW have been announced 
(Rogner and Law, 2019). 

Morocco 

Morocco has one operational PSH plant totaling 464 MW in installed capacity (Rogner and Law, 
2019). Since power demand is expected to double by 2025, Morocco is investing significant 
resources into renewable energy development (IHA, 2018). To complement the inherent 
intermittencies in the growing wind and solar power fleet and provide balance and flexibility to 
the grid, Morocco is constructing one 350 MW project and investigating two additional projects 
totaling 600 MW (Renewable Energy Solutions for the Mediterranean, 2017).  
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South Africa 

South Africa has four operational PSH plants totaling 2,900 MW in installed capacity, with no 
projects currently under construction, planned, or announced (Rogner and Law, 2019). Because 
South Africa is a water-scarce country, PSH facilities have typically been constructed in 
connection with other water priorities, such as supplying water to industrial and urban centers 
(Eskom, 2005). More recently, PSH development has transitioned objectives to focus more on 
electricity generation intertwined with sustainable environmental practices. Recent development 
of the 1,300 MW Ingula PSH plant has focused on providing peak electrical demand during the 
morning and evening hours while doubling as a wildlife and environmental conservation site 
(Eskom, 2013).  

Central and South America 

Central and South America have a total of 1,000 MW of operational PSH capacity, located in 
Argentina and Brazil. One additional 300 MW PSH plant is planned in Chile (Rogner and Law, 
2019). 

Brazil  

Brazil has only one operational PSH plant, with an installed capacity of 30 MW despite having 
the third largest hydropower fleet in the world (Rogner and Law, 2019). However, Brazil will 
likely face several pressing challenges in the future, when PSH would be needed and could play 
a key role. For instance, peaks in daily demand are expected to increase and exhibit greater 
differences when compared with the minimum daily demand due to the increased use of summer 
air conditioning. These problems are worsened by the growing integration of variable wind and 
solar power and could be partially addressed through increased PSH deployment (Libanori et al., 
2018). Additionally, with conventional hydropower constituting most of Brazil’s electricity 
generation, long periods of drought can have significant impacts on the electric grid, as 
exemplified in the multiyear water-energy crisis in the early 2000s. By complementing 
conventional hydropower with PSH, Brazil could increase storage and generation efficiencies 
while adding supplementary peak load generation capacity (Hunt et al., 2014).  

Chile 

Chile has no operational PSH capacity and has one planned project (Rogner and Law, 2019). The 
proposed Espejo de Tarapacá project would be a 300 MW seawater PSH facility operating in 
tandem with a proposed 600 MW solar power facility (Valhalla, 2016).  

Argentina  

Argentina has two operational PSH facilities totaling 974 MW in installed capacity, the largest 
capacity among all South American countries (Rogner and Law, 2019). Argentina’s government 
is seeking energy storage technologies to complement its growing penetration of wind and solar 
energy but is focusing more on electrochemical storage technology options (Yaneva et al., 2018). 
Per Rogner and Law (2019), Argentina has no PSH projects under construction, planned, or 
announced. 
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East Asia 

East Asia has 66,900 MW of operational PSH capacity, the largest among all world regions and 
largely driven by development in China and Japan, which are discussed below. An additional 
26,200 MW of PSH is planned, and 13,100 MW has been announced. PSH capacity has been 
steadily added in the region since the 1960s (Rogner and Law, 2019).  

China 

China has 48 operational PSH plants totaling 31,800 MW in installed capacity, the largest among 
all countries (Rogner and Law, 2019). In the past two decades, China has led the world in PSH 
development, adding more than 26,000 MW from 1999 to 2018. However, before the 1990s, 
PSH development was stagnant, partially due to general reliability problems with electricity 
supply and unfavorable market conditions. Once these issues were resolved and the Chinese 
economy improved, PSH development increased dramatically, with PSH being placed as a focal 
point of several five-year renewable energy plans (Xu and Yang, 2018). Most development has 
occurred in the north, east, and central portions of the country, unlike wind energy adoption, 
which is taking place in the north and west. Whereas some countries have used PSH to help 
facilitate the integration of wind power into the electric grid, this geographical difference in 
China has limited the ability of PSH to broadly complement increased wind power. 
Governmental legislation in 2004 helped alleviate some of the difficulties pertaining to PSH 
investments by allowing grid companies to primarily take charge of all upfront investment costs, 
which they could then easily recover through transmission and distribution sales. By 2007, 
additional legislation was passed that combined the costs of construction and operation into the 
overall power grid operation cost, decreasing the income of the grid companies and curtailing 
many PSH projects not invested in by local and state governments, as a company’s existence is 
more precarious than a government entity (Ming et al., 2013). Per Rogner and Law (2019), 
China has 38 projects (totaling 50,700 MW) under construction, 22 projects (totaling 25,800 
MW) planned, and 10 projects (totaling 13,100 MW) announced. 

Japan 

Japan has 48 operational PSH plants totaling 27,800 MW in installed capacity, which is the 
second largest among all countries (Rogner and Law, 2019). Similar to the US expansion of PSH 
throughout the mid-to-late 20th century, Japan employed PSH to provide flexibility to its 
growing nuclear power fleet, which was facilitated by Japan’s abundant mountainous terrain 
(Barbour et al., 2016). Instead of relying on traditional combustion turbines to supply peaking 
and intermediate power, Japan continued deploying PSH throughout the turn of the century, 
including the introduction of VS machines to help regulate energy (NHA, 2017). One of Japan’s 
most recently commissioned VS projects is the 1,200 MW Omarugawa PSH facility, which 
began construction in 1999 and had the first generating unit of four come online in 2007. By 
2011, all units were operational (Tanaka, 2008). Unfortunately, because of its geographic size, 
Japan has used nearly every potential location inland for PSH development. Consequently, with 
variable renewable deployment increasing, Japan has sought to complement the inherent 
intermittency from wind and solar by exploring innovative energy storage solutions using PSH 
and electrochemical battery storage (Barbour et al., 2016). One example is the 30 MW Yanbaru 
seawater PSH facility, which operated from 1999 to 2016. Whittmeyer (n.d.) cites a lack of 
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electricity demand growth as a primary factor for the facility’s closure. Per Rogner and Law 
(2019), Japan has one project (1,880 MW) under construction, one project (400 MW) planned, 
and no projects announced. 

Europe 

Europe has 55,400 MW of operational PSH capacity, which is the second largest among all 
world regions and driven by fairly uniform development across numerous countries throughout 
the region. An additional 12,000 MW of PSH is planned, and 3,100 MW has been announced; 
however, the countries discussed below have the largest capacities throughout Europe, but have 
no planned or announced projects. PSH capacity has steadily increased in the region since the 
1960s, although the rate of additions has slowed since the 1990s (Rogner and Law, 2019). 

Austria 

Austria has 22 operational PSH plants totaling 4,900 MW in installed capacity (Rogner and Law, 
2019). Because of its mountainous terrain and wet climate, Austria has abundant resources for 
hydropower and PSH development. In 2017, the Austrian government enacted the Grid 
Development Plan, which promotes hydropower development as the facilitator to the integration 
of solar and wind power; the following year, two PSH plants commenced operation (IHA, 2018). 
Per Rogner and Law (2019), Austria has two projects (totaling 430 MW) under construction, six 
projects (totaling 3,650 MW) planned, and no new projects announced. 

Portugal 

Portugal has 12 operational PSH plants totaling 3,900 MW in installed capacity (Rogner and 
Law, 2019). For decades, Portugal has imported electricity to fulfill most of its energy needs. In 
2007, the government commissioned a nationwide program to expand hydropower development 
with an emphasis on PSH to complement its ever-growing solar and wind energy fleet. This 
program was prompted heavily by the greatest wind energy generation periods occurring 
primarily during the night and early morning periods when electricity demand is lowest, forcing 
Portugal to adopt energy storage technologies to avoid wasting this electricity production (Deane 
et al., 2010). Per Rogner and Law (2019), Portugal has one project (880 MW) under construction 
and no planned or announced projects.  

Switzerland 

Switzerland has 19 operational PSH plants totaling 3,200 MW in installed capacity, with two 
projects (totaling 1,560 MW) under construction, one project (1,050 MW) planned, and no 
projects announced (Rogner and Law, 2019). Switzerland is home to the first operational PSH 
plant, which began operation in 1909 (Witt et al., 2015). Most recent Swiss PSH activity has 
focused on upgrading existing facilities to help Switzerland reach the European Union (EU) 
Parliament’s goal of 35% of energy generation being renewable by 2040, even though 
Switzerland is a non-EU country (IHA, 2018).  
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North America 

North America has 23,900 MW of operational PSH capacity, which is the third largest among all 
world regions and driven mostly by PSH in the US and the rest by Canada, the latter of which is 
discussed below (refer to Section 2.2.1 for discussion regarding US development). An additional 
3,300 MW of PSH is planned, and 7,200 MW has been announced.1 PSH capacity was steadily 
added from the 1940s through 1990s, and additions have since stalled (Rogner and Law, 2019). 

Canada 

Canada has one operational PSH facility totaling 174 MW in installed capacity (Rogner and 
Law, 2019). Canada is expanding its PSH fleet to accommodate the increased penetration of 
wind and solar power into the grid, in addition to using PSH as a tool to spur economic growth. 
Canada has no projects under construction, one project (Canyon Creek Project2: 75 MW) 
planned, and one project (Marmora Project3: 400 MW) announced. Both proposed projects 
would operate as closed-loop systems and would leverage existing infrastructure from 
abandoned underground mines. Furthermore, Canada uses its large reservoir storage projects to 
provide many of the benefits that PSH can provide. 

Russia 

Russia has four operational PSH plants totaling 1,400 MW in installed capacity and no planned 
or announced projects (Rogner and Law, 2019). 

South Asia 

All operational, planned, and announced PSH in South Asia are located in India. 

India  

India has 12 operational PSH plants totaling 5,100 MW in installed capacity, with one project 
(1,000 MW) under construction, four projects (totaling 3,700 MW) planned, and one project 
(1,500 MW) announced (Rogner and Law, 2019). Many countries throughout the world have 
stable electric grids that can fully satisfy the power needs of their citizens. India’s electric grid, 
on the other hand, is challenged with producing enough power to satisfy their citizens’ power 
demands. Hence, increased energy storage deployment, including PSH, has been sought to 
reduce outages and ensure reliable electricity production to match the demand (Tongia and 
Mehta, 2015).  

 
1 These proposed PSH values are much lower than the 21,600 MW of proposed US PSH development mentioned in 
Section 2.2.1. 
2 Available from http://www.auc.ab.ca/regulatory_documents/ProceedingDocuments/2019/24247-D01-2019.pdf 
(Accessed March 12, 2020). 
3 Available from https://www.quintenews.com/2019/08/29/215039/ (Accessed March 12, 2020). 

http://www.auc.ab.ca/regulatory_documents/ProceedingDocuments/2019/24247-D01-2019.pdf
https://www.quintenews.com/2019/08/29/215039/
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Southeast Asia and Oceania 

Southeast Asia and Oceania have a total of 5,100 MW of operational PSH capacity, located in 
Australia, the Philippines, and Thailand. An additional 4,800 MW of PSH is planned, and 9,100 
MW has been announced (Rogner and Law, 2019). 

Australia 

Australia has six operational PSH plants totaling 2,400 MW in installed capacity (Rogner and 
Law, 2019). Australia is the only country within Oceania with PSH facilities. Similar to the 
United States, Australia has had minimal PSH development in the past few decades but has 
conducted studies identifying nearly 22,000 potential off-river PSH sites throughout the country. 
This renewed interest has led to several proposed PSH developments, many of which would be 
closed-loop, underground, and targeted to provide grid stability and flexibility services, 
especially during extreme weather conditions where there are prolonged wind and solar 
generation absences (Snowy Hydro, 2019). Additionally, in 2017, a baseline feasibility study 
was conducted for a 225 MW seawater facility based on Japan’s Yanburu project, and the project 
was found to be financially and technically feasible. The project was funded into the next stage 
of detailed technological analysis with the aim of project commissioning by 2023 (ARENA, 
2017). Per Rogner and Law (2019), Australia has one project (235 MW) under construction, one 
project (300 MW) planned, and seven projects (totaling 5,700 MW) announced. The Snowy 2 
project (2,000 MW) has been approved for engineering design.4  

Western and Central Asia 

Western and Central Asia have two operational PSH plants, both located in the Middle East (one 
in Iran and one in Iraq), totaling 1,300 MW in installed capacity. Two facilities (totaling 
644 MW and located in Israel) are under construction, two projects (totaling 1,250 MW) are 
planned, and two projects (totaling 2,400 MW) have been announced (Rogner and Law, 2019).

 
4 Available from https://www.hydroworld.com/articles/2018/12/snowy-hydro-board-approves-snowy-2-0-pumped-
storage-expansion.html (Accessed March 12, 2020). 

https://www.hydroworld.com/articles/2018/12/snowy-hydro-board-approves-snowy-2-0-pumped-storage-expansion.html
https://www.hydroworld.com/articles/2018/12/snowy-hydro-board-approves-snowy-2-0-pumped-storage-expansion.html
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