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Abstract 

Historical operations at the U.S. Department of Energy’s Hanford Site in southeastern Washington 

State included disposal of waste fluids via cribs and trenches, in the 200 West Area on the Hanford 

Central Plateau, with subsequent infiltration of these fluids resulting in groundwater contamination 

with carbon tetrachloride, nitrate, uranium, technetium-99, and other contaminants.  The 200 West 

pump-and-treat (P&T) system is a critical component of Central Plateau groundwater remediation 

efforts.  The P&T system, with an extraction/injection well network and an aboveground treatment 

plant, started operation in 2012 to treat 2,500 gallons per minute.  The HYPATIA single-page web 

application (part of the SOCRATES suite) is being developed to provide access to and analysis of 

chemistry data and the large quantity of sensor data that is generated for the P&T system.  

Analytical algorithms were developed for HYPATIA to perform summing, differencing, 

smoothing, outlier detection, change-point detection, mass flow rate, and injectivity calculations 

on the data.  Candidate algorithms were identified and tested, with the best-performing algorithms 

then assembled for implementation in HYPATIA.  Because HYPATIA is hosted on the Amazon 

Web Services (AWS) cloud computing platform, algorithms were implemented in a back-end 

AWS Lambda function that can be called by the HYPATIA front end.  The Lambda function 

applies the requested data processing to specified data via functions written in R, Python, and 

JavaScript.  Development, testing, and review of the data analysis algorithms was completed under 

an NQA-1 quality program.  This new HYPATIA functionality will allow Hanford Site contractors 

and DOE staff to better interpret the data, supporting site decisions regarding P&T system 

performance and optimization. 
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1.0 Introduction 

The Hanford Site, located in southeastern Washington State adjacent to the Columbia River, was 

the site of plutonium production operations as part of Manhattan Project weapons development 

during World War II.  Plutonium production operations continued through the latter half of the 

20th century during the nuclear arms race of the Cold War.  In the plutonium production process, 

spent uranium fuel rods were transferred to the 200 West Area of the Hanford Site for extraction 

of the plutonium (DOE, 2020).  Wastewater from the separations processes was discharged to the 

soil column via cribs and trenches, resulting in organic, inorganic, and radionuclide pollutants in 

the vadose zone and groundwater. 

Following termination of plutonium production operations in 1989, the U.S. Department of Energy 

(DOE), the U.S. Environmental Protection Agency, and the Washington State Department of 

Ecology entered into the Tri-Party Agreement (Hanford Federal Facility Agreement and Consent 

Order; WDOE et al., 1989) to remediate the site in compliance with the Comprehensive 

Environmental Response Compensation and Liability Act (CERCLA, 1980), better known as 

Superfund.  As part of these remediation efforts, DOE constructed the 200 West Area Pump-and-

Treat (P&T) facility to treat and hydraulically contain groundwater contaminant plumes in 

Hanford’s Central Plateau area.  The P&T facility is comprised of a series of extraction wells, 

injection wells, and an aboveground treatment facility, which initiated operations as the final 

remedy in mid-2012.  See Figure 1 for a map of the well system and, as an example, the carbon 

tetrachloride groundwater contaminant plume.  The contaminants of concern (COC) for the 200 

West Area are carbon tetrachloride, technetium-99, tritium,1 nitrate, total chromium, 

trichloroethene, uranium, cyanide, and iodine-129 (DOE, 2016).  The P&T treatment facility was 

designed to use a sequence of ion exchange, biotreatment, and air stripping to address the multiple 

contaminants, although biotreatment was discontinued in fiscal year (FY) 2020 to address injection 

well fouling issues.  The CH2M Hill Plateau Remediation Company (CHPRC) currently operates 

the P&T system.  The Deep Vadose Zone (DVZ) project at the Pacific Northwest National 

Laboratory (PNNL) provides support to the DOE’s Richland Operations Office with regards to 

subsurface contamination in the Central Plateau. 

 
1 However, the P&T system was not designed to treat tritium. 
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Figure 1.  Plan view of the 2018 carbon tetrachloride plume in the 200 West Area, showing locations of 
P&T system extraction (green) and injection (red) wells.  Figure adapted from PHOENIX 

(https://phoenix.pnnl.gov/phoenix/apps/gisexplorer/index.html). 

As part of PNNL’s DVZ support, the Suite Of Comprehensive Rapid Analysis Tools for 

Environmental Sites (SOCRATES)2 software toolkit (PNNL, 2018) is being developed to provide 

analytical tools for evaluating Hanford site environmental data.  Such analysis, in turn, supplies 

input for making site remedial decisions.  Within SOCRATES, the HYdraulic Pump-And-Treat 

Information Analytics (HYPATIA) tool is designed to provide access and data analytics for 200 

West P&T system chemistry and sensor data.  The objective of HYPATIA is to make data from 

the 200 West P&T system more accessible and interpretable for DOE staff and Hanford Site 

contractors.  Data analysis tools are needed to facilitate this interpretation of the sensor and 

chemistry data.  The development of specific analysis tools and the approach to their 

implementation in HYPATIA are described in this report. 

2.0 Development and Implementation of Analysis Functions 

Key data for the 200 West P&T system consists of a mix of chemistry, flow sensor, and pressure 

sensor data from across the treatment system.  Sensor data from the P&T system is characterized 

 
2 SOCRATES is available at:  www.socratespnnl.com (only CRATES is currently publicly available as of 
August 2020) 

http://www.socratespnnl.com/
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by noise and extreme outliers, as well as sudden changes and gaps in the data (e.g., due to 

maintenance activities).  A range of functions/calculations are needed for understanding and 

analyzing the system data, including summing, differencing, smoothing, outlier detection, 

changepoint detection, mass flow rate calculation, and an injectivity calculation.  Code samples 

are included in Appendix A and the full code is in project records.  The data analysis functionality 

will be implemented via an Amazon Web Services (AWS) Lambda function, which is a serverless, 

event-driven service to run code in response to events such as HTTP requests. 

2.1 Pump-and-Treat System Data 

Three types of data are combined in the HYPATIA application:  extraction well chemistry, in-

plant chemistry, and Supervisory Control and Data Acquisition (SCADA) system sensor data.  

Chemistry data comes from periodic (generally monthly, quarterly, or less frequent) water samples 

collected from extraction wells and in-treatment-plant locations, with the associated sample and 

analysis result information stored in two tables of the Hanford Environmental Information System 

(HEIS) database.  A snapshot of the HEIS data tables is updated daily and pulled into the 

SOCRATES AWS relational database system (RDS), which uses Microsoft SQL Server.  The 

SCADA software for operating the 200 West P&T system collects and archives sensor data from 

across the system.  Sensor data for relevant parameters (e.g., flow rates, pressures, levels, etc.) is 

being extracted from the SCADA archive databases and stored in the SOCRATES AWS 

DynamoDB database.  The sensor data extraction process includes aggregation (averaging) of data 

values for every 15-minute time interval, except when the data for that interval includes values 

marked as bad or questionable by the SCADA system.  The most efficient (fastest) way to load 

data for an analysis function is to query the AWS databases directly from within the function, 

instead of sending data across the network in a request from the HYPATIA front end. Once the 

data is loaded from the query, a sequence of multiple functions can be applied to achieve the 

desired data transformation and help the user extract meaningful information about the data set. 

2.2 Summing and Differencing 

Summing and differencing functionality provides a way to add together multiple data sets or 

determine the difference between two data sets.  This procedure is useful for combining flow rates 

(volumetric or mass) of separate pipelines in the facility to see the total values for a given process 

stream.  The differencing function is useful for evaluating differences between sensors.  For 

example, a difference calculation could reveal discrepancies between redundant sensors.  For most 

of the extraction and injection wells, there are two flow sensors providing measurements of the 

same process stream at different locations, so the differencing function could, in this case, be used 

to evaluate the nature of differences and the potential for pipe leaks between the sensors. 

The summing and differencing functions are written in Python, which is natively supported by 

AWS Lambda.  The interface between Python and DynamoDB is implemented with the boto3 

Python package (AWS, 2020).  Once the data sets are loaded from the DynamoDB database into 

Python, the 15-minute averages are added or subtracted for matched 15-minute timestamps.  If 
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there are missing values in either of the input data sets for a given timestamp, then no value is 

returned for that time in the output dataset.  An example of two data sets and their sum and 

difference is shown in Figure 2. 

 

Figure 2.  Plot showing examples of summing (green) and differencing (red) for two flow rate datasets 
from sensor A (blue) and B (orange). 

2.3 Smoothing 

Smoothing is the process of removing noise from a data set to create a smoother and more 

interpretable data visualization.  This is helpful for HYPATIA data analysis because the sensor 

data is noisy and contains many large spikes that make it difficult to identify trends in the data.  

There are many different approaches to smoothing, so the function that was developed for 

HYPATIA has multiple options, including moving average (mean), moving median, Gaussian, 

Epanechnikov, tricube, triangular, and locally weighted scatterplot smoothing (LOWESS). 

The HYPATIA smoothing function is written in Python and uses the same querying procedure as 

the summing and differencing function to obtain HYPATIA data.  The user must also input a time 

interval that defines the smoothing window size, which influences the degree of the smoothing.  

Larger window sizes will incorporate more of the dataset at each evaluation point and will result 

in a smoother curve, but will have more local bias.  Choosing a small window size will result in a 

very close-fitting curve, but may not achieve the desired noise reduction or smoothness. 

The moving average and median algorithms are implemented almost identically.  For each point 

in the time series data, the sliding window is extended symmetrically from that point to include 

nearby points within the window.  The values of points in the time window are then averaged or 

the median is taken.  The average or median of all points in the sliding window then become the 

value for that point in the smoothed time series.  The sliding window then shifts to the next point 

and the process is repeated.  This is distinct from other moving average or moving median 

algorithms in that the window is a time window and does not select a specific number of points. 
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In this work, kernel smoothing (or kernel regression) uses the Nadaraya–Watson estimator (e.g., 

Jones et al., 1994) to apply a locally weighted average across a sliding time window, using a so-

called kernel function as the weighting function.  Multiple kernels can be used for the weighting 

function, such as the Gaussian, Epanechnikov, tricube, or triangular kernels (Figure 3).The 

selected kernel is set to fill the size of the time window.  For instance, the standard deviation on 

the Gaussian kernel is set to one-eighth the length of the window, so the weights of values near 

the edge of the window are approximately zero.  The kernel function is used to determine the 

relative weight of each value in the window with respect to its contribution to the smoothed result 

at that point (in the center of the window).  All of the kernels weight values closest to the center 

of the window more heavily than points near the edge of the window. 

 

Figure 3.  Example kernels for use with the kernel smoothing algorithm. 

LOWESS is also included in the HYPATIA smoothing function, but it does not utilize a sliding 

time window.  LOWESS smoothing performs local linear regression with a nearest neighbors 

sliding window.  Currently, the LOWESS implementation is achieved via the statsmodels package 

for Python (Perktold et al., 2020).  Instead of a sliding time window, this algorithm selects a 

fraction of the total points.  This fraction is set as the user-specified time window duration divided 

by the total duration of the HYPATIA time series.  For input series with evenly spaced values and 

no gaps or missing data, the fraction is the same as the time window, but may not be entirely 

equivalent if those conditions are not met. 

Figure 4 shows an example of several of the smoothing methods on flow rate data.  Notice how 

the moving mean (orange) is dramatically influenced by outliers and sudden changes.  The 

Gaussian (green) and LOWESS (red) smoothing both have smooth curves and no sharp corners 

like median smoothing (blue).  Although, the median smoothing tracks the center of the data even 

through large discontinuities and near outliers. 
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Figure 4.  Example of several smoothing algorithms, each with a moving 12-hour window. 

2.4 Outlier Detection 

Anomaly detection is the identification of individual or clusters of data points that deviate 

significantly from the bulk of the data.  There are many types of anomalies that could be found in 

a data set.  However, those of most relevance for HYPATIA are additive outlier points that deviate 

substantially from the remainder of the time series, which are most often referred to as outliers.  

Outlier detection algorithms are diverse and are more difficult to write from scratch than the 

algorithms described above, so existing algorithms available in the R language were tested for 

their suitability for HYPATIA.  Four packages that provide anomaly detection algorithms for one-

dimensional time series data were tested:  tsoutliers, anomalize, AnomalyDetection, and otsad.  

Additional information for each of these packages is provided in Appendix B. 

The algorithms were tested on three sets of test data to evaluate their performance and usability.  

tsoutliers was immediately excluded because it took about 9 minutes to complete computations 

for one of the test data sets.  AnomalyDetection was also ruled out for slow computation speed 

because it took nearly 15s on a 17,000-point test data set and much longer than 10 minutes on a 

150,000-point test data set.  The otsad implementation was acceptably fast in all cases; however, 

it was less accurate than the anomalize implementation in all cases.  The anomalize algorithm was 

fast and easily achieved accurate results for all the initial test data sets.  The anomalize algorithm 

was then tested on an additional nine data sets with different characteristics such as gaps, 
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discontinuities, large size, periodicity, and more.  It was determined that the algorithm performed 

well on a wide range of input data but struggled when handling changes in variance and large 

discontinuities. 

The anomalize algorithm first uses Seasonal and Trend decomposition using Loess (STL) to split 

the time series into seasonal, trend, and residual components.  Because the HYPATIA data is not 

seasonal, this portion of the decomposition does not provide much benefit.  Removing the trend 

component, though, is crucial and is achieved by locally estimated scatter plot smoothing 

(LOESS).  Once the trend is removed from the data, the interquartile range (IQR) of the remaining 

residuals is used to define the outliers.  The default setting is that any point with a residual three 

times greater than the IQR of the residuals is classified as an outlier, but this factor can be adjusted.  

The LOESS curve fitting and the IQR definition of the outlier for the residuals work well in most 

cases.  A specific drawback of the algorithm is that the LOESS curve fitting assumes a continuous 

function and does not satisfactorily handle discontinuities in the time series.  Additionally, because 

the IQR is taken for all residuals in the entire time series, the band of inliers has constant width 

and does not work well when the variance of the time series changes over time.  These issues can 

be seen in the data depicted in Figure 5. 

 

Figure 5.  Plot of results from outlier detection using the anomalize algorithm. 

To remedy the deficiencies in the anomalize algorithm, a novel outlier detection algorithm was 

written.  The algorithm uses median smoothing with a sliding time window to remove the trend.  

This method works well, even with outliers present and with discontinuities, but the size of the 

sliding time window must be selected appropriately.  By using a sliding median, the trend removal 

is much more responsive to discontinuities in the series, while still robust to outliers.  Once the 

trend is removed, the inliers are defined within the sliding window.  The upper bound on the inlier 

range is proportional to the range between the 75th percentile and median of values within the time 

window.  Symmetrically, the lower bound on the inlier range is proportional to the range between 

the 25th percentile and median of values within the time window.  By defining the inlier range 

based on the second and third quartile ranges, the algorithm responds well to changes in variance 

within the series.  The principle drawback is that this algorithm is currently much slower than the 
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anomalize algorithm.  When tested on a HYPATIA flow sensor data set with ~28,000 data points, 

it took about 30 seconds to compute.  Figure 6 depicts the result of this revised algorithm on the 

same set of data as shown in Figure 5. 

 

Figure 6.  Revised outlier detection with median smoothing and modified IQR inlier criteria. 

2.5 Changepoint Detection 

For changepoint detection, there are multiple types of changes to consider, including changes in 

mean, in variance, in linear trend, in periodic frequency, in periodic amplitude, etc.  The type of 

changes most meaningful for HYPATIA are changes in mean and variance because there is no 

significant seasonal or cyclical trend, and the data is characterized by rapid transitions between 

states with (in most instances) no discernible trend between these states.  Changes in mean and 

variance for flow or pressure sensor data indicate changes in the state of P&T plant operations.  A 

sudden change in the variance of one sensor could also indicate a problem with measurements 

from that sensor, perhaps indicating a need for maintenance. 

Changepoint detection for both mean and variance is implemented with the changepoint package 

for R (Killick and Eckley, 2014; Killick et al., 2016).  The Pruned Exact Linear Time (PELT) 

algorithm is used for detecting multiple changepoints.  This algorithm iteratively checks the entire 

data set for changes, then checks each partition until no more changes exceed the threshold defined 

by the cost function (Killick et al., 2012).  The coefficient on the cost function can be manually 

specified by the user and is the primary means of tuning the algorithm’s sensitivity to changes.  

The PELT algorithm is used for both detecting changes in mean and changes in variance.  An 

example of changepoint detection is depicted in Figure 7. 
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Figure 7.  Example of changepoint detection, showing changes in the mean. 

2.6 Mass Flow Rate Calculation 

Mass flow rate is broadly defined to encompass both constituent mass and radionuclide activity.  

The calculation for mass flow rate is simply flow rate multiplied by chemical concentration to 

yield a quantity in either mass per time or activity per time, as shown in Equation 1. 

 
𝑣𝑜𝑙𝑢𝑚𝑒

𝑡𝑖𝑚𝑒
×  

𝑚𝑎𝑠𝑠 𝑜𝑟 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑣𝑜𝑙𝑢𝑚𝑒
=

𝑚𝑎𝑠𝑠 𝑜𝑟 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑡𝑖𝑚𝑒
 (1) 

 
While the definition is simple, the difficulty lies in the disparate frequencies of sensor 

measurements and chemistry data.  Sensor measurements are available at a 15-minute frequency, 

while chemistry data is generally collected at a monthly or quarterly frequency.  A matching 

approach was required to combine the chemistry and flow sensor information.  Three approaches 

were developed:  carry forward, linear interpolation, and nearest-neighbor.  The carry forward 

approach takes the most recent known chemistry value and uses that value for all points afterward 

until the next known chemistry value in time.  The linear interpolation approach creates line 

segments between all known chemistry values and uses the values of this linear estimation between 

the known values.  The nearest-neighbors approach uses the nearest known chemistry point 

looking forward and backward in time.  These three options are all reasonable strategies, so the 

approach that is used for matching chemistry and sensor data is a matter of preference/engineering 

judgement for the HYPATIA user.  Figure 8 shows the flow rate sensor series (top panel) and the 

three interpolation approaches for combing chemistry data (brown) and flow to obtain mass flow 

rate (green). 
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Figure 8.  Example of mass flow rate calculation, showing three interpolation approaches for chemistry data. 

2.7 Injectivity Monitoring 

Injectivity monitoring is the performance tracking of the P&T systems’ more than two dozen 

injection wells that pump treated water back into the groundwater aquifer.  The injection wells can 

suffer from chemical and/or biological fouling that clogs the wells over time.  To monitor well 

performance, flow and pressure sensors are installed on each well and are used to generate a metric 

called the Injectivity Quotient (IQ).  IQ is a ratio between flow rate and the difference between the 
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dynamic water table measurement and the static water table, which is a measurement of injection 

pressure (Equation 2). 

𝐼𝑄 =
𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 − 𝑠𝑡𝑎𝑡𝑖𝑐 𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙
 ∝  

𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
 (2) 

 
Because flow rate and dynamic water level are both sensor measurements, they are noisy and 

therefore cause large fluctuations in the IQ.  While the IQ can illuminate some trends in injectivity, 

they are often difficult to observe. 

The Hall Plot method for injectivity monitoring is a possible alternative to the IQ that relies on 

cumulatively integrating both the flow and pressure sensor data to smooth out noise and help reveal 

long term trends.  The horizontal axis of the Hall Plot is cumulative flow volume, while the vertical 

axis is the running integral of pressure with time (units of pressure × time).  Changes in the slope 

of the Hall Plot then indicate changes in well injectivity.3  An increasing slope that bends upward 

indicates a decline in injectivity because the ratio of pressure to flow is increasing.  Conversely, a 

slope that becomes less steep over time indicates an improvement in injectivity.  The advantage of 

the Hall Plot is that the resulting curve is smooth, making long-term changes in injectivity clearly 

visible as deviations in the slope of the curve. 

Figure 9 depicts an example of flow, pressure (injection well water level), IQ, and Hall Plot data. 

 
3 “Applications for the Hall Plot Method for Monitoring and Prediction of PWRI Performance.” (website).  

Advanatek International.  
http://www.advntk.com/pwrijip2003/pwri/final_reports/task_1/hall_plots/hall_plot_method_2.htm. 
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Figure 9.  Example data for IQ and Hall Plot injectivity monitoring approaches. 

2.8 Implementing R in AWS Lambda 

AWS Lambda is a serverless platform for executing code in response to events such as HTTP 

requests.  Lambda has built-in support for Python and JavaScript, but not for the R language.  Thus, 

to host the outlier detection, changepoint algorithms, or any other R script, a method was required 

for running R in Lambda.  There are a few open source packages available that allow execution of 

R code from a Python runtime environment.  PypeR and rpy2 were both considered, but rpy2 had 
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too many required files and proved difficult to use.  Therefore, PypeR (Xia, 2014) was adopted as 

the chosen package. 

When the R-base libraries are installed, there are many internal references to file locations, so it is 

important to install R-base in the location where it will be used.  This cannot be done within a 

Lambda function, so a Docker container was used to simulate a Lambda environment.  Docker is 

a service that allows Windows to host Linux containers that can then simulate the Lambda 

environment with the open source ‘docker-lambda’ container image.  R-base and PypeR were 

installed inside the simulated Lambda container and the files for both were then copied from the 

Linux container to the Windows host machine.  Once copied, file permissions were set to allow 

execution of binary files.  The copied files were zipped into a single file and uploaded to the AWS 

Console.  Once uploaded, the file was linked to a Lambda function as a layer.  Execution of a 

simple R code was conducted to verify that the layer files and R computational engine were 

accessible and functioning properly. 

3.0 Issues and Future Considerations 

Not all of the functions developed in this work were given equal time or attention, and all could 

be improved.  The issues and suggested improvements to each function are detailed below. 

3.1 Summing and Differencing 

For the convenience of plotting, all millisecond timestamps are converted to Python DateTime 

objects which are then used to align the input time series for addition or subtraction.  The same 

output could be achieved without this conversion and might improve the efficiency of the 

algorithm. 

3.2 Smoothing 

The main deficiency in the smoothing algorithms are the computation speeds.  For instance, the 

Gaussian smoother takes about 10s on a time series with only ~5000 points.  The slow step is likely 

the indexing to create the sliding time window.  This process does not need to be done sequentially, 

so it is possible it could be parallelized.  It might also be possible to perform this task without the 

use of a “for” loop. 

3.3 Outlier Detection 

In the anomalize algorithm, the data is detrended using a LOESS smoothed curve and the inlier 

range is proportional to the IQR of all the residuals.  The LOESS smoothing method fails where 

there are discontinuities in the trend, so the data near the edges of discontinuities are clipped.  In 

the revised outlier detection algorithm, this problem is avoided by using a running median, which 

handles discontinuities well.  The other issue with the anomalize algorithm was its inability to 

handle changes in variance.  The revised algorithm utilizes a sliding window approach and defines 

the inlier range using the ranges of the second and third quartiles for setting the lower and upper 
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bounds, respectively.  However, the revised algorithm is slow and takes 50-100 times longer than 

the anomalize algorithm, so work is needed to improve its efficiency. 

3.4 Changepoint Detection 

The changepoint detection algorithm is very sensitive to outliers and readily detects them as 

changes.  It would be prudent to supply the user with information about this tendency, so they can 

manually remove outliers before using changepoint detection.  The changepoint algorithm itself 

does not automatically remove outliers. 

3.5 Mass Flow Rate Calculation 

The mass flow rate calculation does not currently handle measurement units intelligently.  The 

only unit conversion applied is to convert from gallons to liters.  Thus, volumetric flow rate, 

reported in gallons per minute, and concentration, measured in quantity per liter, will cancel 

appropriately and yield no volume units.  It would be good to implement a logical algorithm that 

converts/scales incoming measurements to a readable format for the number. 

3.6 Injectivity Monitoring 

The method for plotting the slope of the Hall plot curve against time is failure prone.  Taking a 

simple numerical derivative of the Hall curve results in an uninterpretable cloud of points.  

Therefore, a model must be fitted to the Hall curve to allow a smooth derivative to be extracted.  

Currently, the Hall curve is fitted using LOESS smoothing and its derivative is reasonably smooth.  

However, there are enigmatic curves in the derivative plot (e.g., Figure 10) that seem erroneous 

and appear to be caused by a property of the LOESS smoothing, but no good explanation for their 

cause is known.  Additionally, for implementation in Lambda, the Hall plot script could easily be 

written in Python. 

 

Figure 10.  Example depicting artifacts in the Hall slope plot. 

3.7 Lambda Layer for R 

The current layer for running R on AWS Lambda is relatively large and uses about half of the 

allowable size for a Lambda layer.  There are many files within the R-base library providing 
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functions that are not currently needed.  If layer size becomes an issue, it would be helpful to 

manually explore the R-base files and remove those that are not required. 

4.0 Software Testing 

The functions described in this report will be tested and reviewed in accordance with the Software 

Quality Assurance Plan for the SOCRATES software (PNNL, 2020), which implements NQA-1 

software quality.  Testing of these analytic functions will encompass calculation tests, as well as 

associated reviews of the data sources and testing of the HYPATIA interface functionality. 

5.0 Summary 

The objective of this study was to develop analytical algorithms to be implemented in HYPATIA, 

a module of the SOCRATES tool suite aimed at supporting Hanford Site contractors and DOE 

staff in the remediation of the Hanford Plateau. Historical operations at the Hanford Site resulted 

in the contamination of groundwater at the 200 West Area with carbon tetrachloride and other 

contaminants.  As part of remediation efforts for the site, DOE constructed the 200 West Pump-

and-Treat System to contain and treat the contaminated groundwater.  Within the P&T system, 

sensors continuously monitor flow and pressure at many points, and chemistry data is sampled 

intermittently throughout the plant.  The Deep Vadose Zone Project at PNNL is developing the 

HYPATIA module within the SOCRATES tool suite to provide access and analysis tools for the 

P&T data.  The HYPATIA module will benefit DOE staff and site contractors interested in 

evaluating the data with respect to P&T plant treatment performance, optimization, or other 

remedial decisions.  Several functions were developed to provide data analytics functionality for 

HYPATIA.  These functions included summing, differencing, smoothing, outlier detection, 

changepoint detection, mass flow rate calculation, and injectivity monitoring.  These functions will 

be incorporated for use in HYPATIA through deployment in AWS Lambda, for which a method 

was developed to allow R code to execute within Lambda.  Lambda already supports Python and 

JavaScript.  Thus, these functions can all be migrated to Lambda with only minor adjustments to 

optimize their performance.  Once in Lambda, the HYPATIA front end will provide the interface 

for the user to call the functions on their data set of interest. However, the functions are not perfect 

or complete and can be further improved. 
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Appendix A – Code Excerpts for Analytical Functions 

Python statement for querying the HYPATIA DynamoDB database 

1. # Attach Packages 
2. import boto3 
3. from boto3.dynamodb.conditions import Key 
4. import pandas as pd 
5.  
6. # Query Data Base 
7. dynamodb = boto3.resource('dynamodb') 
8. table = dynamodb.Table('hypatiaSensorData') 
9. response = table.query(KeyConditionExpression= 
10.                       Key('PK').eq(sensorName) & 
11.                       Key('SK').between(startDateMilliseconds, endDateMilliseconds)) 
12.  
13. # Clean up and return 
14. return pd.DataFrame(response['Items']) 

Differencing function in Python 

1. # attach pandas 
2.     import pandas as pd 
3.  
4.     # Call the query function 
5.     df1 = get_sensor_data_from_dynamodb(sensorName1, startDateMilliseconds, endDateMilliseconds) 
6.     df2 = get_sensor_data_from_dynamodb(sensorName2, startDateMilliseconds, endDateMilliseconds) 
7.  
8.     # Convert to time series 
9.     ts1 = pd.Series(data=df1.AvgVal.tolist(), index=pd.DatetimeIndex(df1.SK.apply( 
10.                                               convert_milliseconds_to_date)), name="ts") 
11.     ts2 = pd.Series(data=df2.AvgVal.tolist(), index=pd.DatetimeIndex(df2.SK.apply( 
12.                                               convert_milliseconds_to_date)), name="ts") 
13.  
14.     return ts1 - ts2 

Median smoothing algorithm in Python 

1. # Call the query function 
2.     df = get_sensor_data_from_dynamodb(sensorName, startDateMilliseconds, 
3.                                                               endDateMilliseconds) 
4.  
5.     # Convert to time series 
6.     ts = pd.Series(data=df.AvgVal.tolist(), index=pd.DatetimeIndex(df.SK.apply( 
7.                                               convert_milliseconds_to_date)), name="ts") 
8.  
9.     # Median Smoothing 
10.     if method == 'median': 
11.         window = dt.timedelta(hours=windowHours) 
12.         arr = np.empty(ts.size) 
13.         for i in range(0,ts.size): 
14.             idx = (ts.index < ts.index[i] + window)*(ts.index > ts.index[i] - window) 
15.             if np.sum(pd.isnull(ts[idx])) > .5*np.sum(idx): 
16.                 arr[i] = None 
17.                 continue 
18.             arr[i] = np.median(ts[idx][np.invert(pd.isnull(ts[idx]))]) 
19.         # Convert to time series 
20.         return pd.Series(data=arr, index=ts.index) 
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Revised outlier detection in R 

1. median.outliers = function(data, window="default", sensitivity=5) { 
2.   ptm <- proc.time() # Start clock 
3.   data = na.omit(data) # remove missing values 
4.   dates = as.vector(as.numeric(data$date)) 
5.   values = as.vector(as.numeric(data$value)) 
6.   if (window == "default") { 
7.     window = as.numeric(difftime(data$date[length(data$date)], data$date[1], 
8.                                  units = "secs")/50) 
9.   } else { 
10.     window = window* 
11.       as.numeric(difftime(data$date[length(data$date)], data$date[1], 
12.                           units = "secs")) # scale the window 
13.   } 
14.  
15.   # initialize objects 
16.   idxs = vector(mode = "list", length = length(data$value)) 
17.   med = numeric(length(data$value)) 
18.   upper = numeric(length(data$value)) 
19.   lower = numeric(length(data$value)) 
20.  
21.   # define functions 
22.   date.window = function(date) { 
23.     which((dates > date - window) & (dates < date + window)) 
24.   } 
25.   median.window = function(idx) { 
26.     median(values[idx]) 
27.   } 
28.  
29.   # define window indices and calculate running median 
30.   print("Beginning"); print(proc.time() - ptm); ptm <- proc.time() # Read&Reset Clock 
31.   idxs = lapply(dates, date.window) 
32.   print("Indexes"); print(proc.time() - ptm); ptm <- proc.time() # Read&Reset Clock 
33.   med = sapply(idxs, median.window) 
34.   print("Medians"); print(proc.time() - ptm); ptm <- proc.time() # Read&Reset Clock 
35.  
36.   # Define Inlier range 
37.   upfcn = function(idx) { (quantile(values[idx] - med[idx], 0.75))^0.4 } 
38.   lowfcn = function(idx) { (-quantile(values[idx] - med[idx], 0.25))^0.4 } 
39.   upper = sapply(idxs, upfcn) 
40.   lower = sapply(idxs, lowfcn) 
41.   print("Inliers"); print(proc.time() - ptm); ptm <- proc.time() # Read&Reset Clock 
42.  
43.   # label outliers 
44.   outliers = data$value > med + sensitivity*upper| 
45.     data$value < med - sensitivity*lower 
46.  
47.   # combine into data frame 
48.   df.out = data.frame(data$date,data$value, med, upper, lower, outliers) 
49.   names(df.out) = c("date","value","med", "upper","lower", "outliers") 
50.   print("End"); print(proc.time() - ptm); ptm <- proc.time() # Read&Reset Clock 
51.  
52.   return(df.out) 
53. } 
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Linear interpolation for chemistry data in mass flow rate calculation in JavaScript 

1. function massFlowCalcLin(data) { 
2.     // Calculate Mass Flow with Linear interpolation 
3.  
4.     // variable declaration 
5.     let massFlow = []; 
6.     let interpData = []; 
7.     let concLog = []; 
8.     let currentConc = 0; 
9.     let mass; 
10.     let idx = 0; 
11.  
12.     // Use linear interpolation to determine the current concentration 
13.     for (i=0; i<data.flowData.length; i++) { 
14.         flowDate = data.flowData[i][0]; 
15.         // iterate through the dates on the flow date until within the correct time range 
16.         if (flowDate >= data.startDate && flowDate <= data.endDate) { 
17.             if (flowDate >= data.concData[idx][0]) { 
18.              // Increase the date on the concentration data until it exceeds the flow date 
19.                 while (flowDate >= data.concData[idx][0]) { 
20.                     idx++; 
21.                 } 
22.             } 
23.             // Calculate the concentration using a line 
24.             slope = (data.concData[idx][1]-data.concData[idx- 
25.                             1][1])/(data.concData[idx][0]-data.concData[idx-1][0]); 
26.             currentConc = slope*(flowDate-data.concData[idx-1][0]) + 
27.                                                           data.concData[idx-1][1]; 
28.             concLog.push(currentConc) 
29.             interpData.push([flowDate, currentConc]) 
30.             // Unit conversion from gallons to liters here 
31.             mass = currentConc*data.flowData[i][1]*3.785; 
32.             massFlow.push([flowDate, mass]); 
33.         } 
34.     }; 
35. } 

Flow rate and pressure integration for Hall plot analysis in R 

1. # integrate the flow data 
2.     plotdf$fsum[1] = 0 
3.     for (i in 2:length(plotdf$time)) { 
4.       plotdf$fsum[i] = plotdf$fsum[i-1] + 0.5*(plotdf$flowA[i]+ 
5.                        plotdf$flowA[i-1])*(plotdf$time[i]-plotdf$time[i-1]) 
6.     } 
7.     # Integrate the pressure data 
8.     plotdf$psum[1] = 0 
9.     for (i in 2:length(plotdf$time)) { 
10.       plotdf$psum[i] = plotdf$psum[i-1] + 0.5*(plotdf$head[i]+ 
11.                        plotdf$head[i-1])*(plotdf$time[i]-plotdf$time[i-1]) 
12.     } 
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Appendix B – Outlier Detection Algorithms 

 

B.1 tso from tsoutliers 

Implements the procedure described in Chen and Liu (1993) for automatically detecting 

innovational outliers, additive outliers, level shifts, temporary changes, and seasonal level shifts. 

B.2 anomalize from anomalize 

A ‘tidy’ implementation of methods from the forecast and AnomalyDetection packages.  Tidy is a 

workflow style utilizing pipes to link functions together.  This algorithm allows for time 

decomposition via seasonal decomposition of time series by loess and seasonal decomposition by 

piecewise medians.  It also allows for anomaly detection of residuals by either inner quartile range 

or generalized studentized deviation.  There are four combinations for matching these methods in 

addition to adjustable parameters. 

B.3 AnomalyDetectionTs from AnomalyDetection 

This package is developed by twitter and employs trend decomposition with piecewise median 

approximation.  Outliers are then detected from the decomposition residual using the Generalized 

Extreme Studentized Deviation test. The anomalize algorithm can implement this same algorithm 

with a faster computational speed. 

B.4 OcpSdEwma from otsad 

This function calculates anomalies with the Shift Detection – Exponentially Weighted Moving 

Average (SD-EWMA) algorithm.  The method is derived from Raza et al. (2015). 
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