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It is of great interest to the US government to be able to identify and locate illicit 
nuclear material for protecting the public and preventing the proliferation of nuclear weapons. 
Some forms of detection involve a stationary detector, such as portal monitors at ports and 
borders or air samplers on top of buildings. Others involve a moving detector attached to a 
truck or airplane or handhelds used by human operators. The data is read in as listmode counts 
at various frequencies, so the operator must rely on software to interpret the results and give 
feedback in real time. The results, then, must have appropriate accuracies for identifying a 
threat, and for ignoring background noise. 

 As an exercise toward innovations for vehicle-mounted detectors in an urban setting, a 
dataset was created by researchers at Oak Ridge National Laboratory (ORNL) as part of the 
MUSE (Multi-Agency Urban Search Experiment) project. The data was generated using Monte 
Carlo transport models through a combination of SCALE, MAVRIC, MCNP, and GADRAS on a 
simulated city street. The street is empty of all pedestrians and cars, neither driving nor parked. 
The detector moves down the street 1m off the ground at a constant speed that varies each 
run. Three example runs are shown in Figure 1, with the sources located in different locations 
for each run. It is important to note however that the building locations and materials were 
changed on different runs in order to prevent the algorithm from learning specific to a given 
street layout. 

 

Figure 1: Example city street model and gamma-ray flux from three sources at different 
locations in the model (Taken from ORNL’s Data for Training and Testing Radiation Detection 
Algorithms in an Urban Environment) 

The detector has an energy resolution of 7.5% at 661 keV and is a 2 by 4 by 16 inch 
NaI(Tl) gamma detector. Each run also includes natural background radiation from the concrete 
and other materials in the model. The dataset was originally created for a competition hosted 
on Topcoder, of which the winning algorithm scored an accuracy of 76.4% for source 
identification. This work seeks to build upon this work and improve the results through the 
application of novel machine learning techniques. 



The provided data was separated into two sets: one training set and one testing set. The 
training set includes a file containing the corresponding correct source labels and source 
location (given by time at which the detector passes the source) for each run to be used for 
training a machine learning model. The goals of the created algorithm were to output the 
correct source or correctly identify no source present, and to give the time in seconds since the 
beginning of the run at which the truck passed the source, thus providing the location of the 
source. The dataset includes six source types plus no source present, totaling seven possible 
labels. The six sources included are:  

1. HEU: Highly enriched uranium 
2. WGPu: Weapons-grade plutonium 
3. 131I: Iodine, a medical isotope 
4. 60Co: Cobalt, an industrial isotope 
5. 99mTc: Technetium, a medical isotope 
6. A combination of 99mTc and HEU 

It is common to use counts vs time spectra to identify nuclides. The spectra for these 
isotopes are shown in Figure 2, and the locations of their peaks act as an identifier for each. 

 



 

Figure 2: Bare (solid) and shield (dashed) example spectra from all five sources. (Taken from 
ORNL’s Data for Training and Testing Radiation Detection Algorithms in an Urban Environment) 

  

 To begin, the data was binned into a 224 by 224 matrix for each run, resulting in 
multiple counts per energy at various times. These matrices were plotted as “waterfall plots” to 
give a visual representation of the data. Figure 3 shows these waterfall plots for three different 
bin spacings: linear, logarithmic, and square root spacing. Each plot is from the same run to 
demonstrate the differences between the bin spacings. 

 

Figure 3: Waterfall plots for a single run with linear, logarithmic, and square root bin spacing. 
Each horizontal slice is a spectrum with energy on the horizontal axis in keV and number of 
counts represented in color. These spectra are stacked vertically in time (in microseconds). 

 The training data provided was then split into training and validation data (80% and 20% 
of the original training data respectively) to train and evaluate the model with. Each waterfall 
plot in both set were then mirrored on the time axis to create an identical run that happened in 
reverse, since the same run should be able to be performed by the truck starting at the other 
end of the street. A mirrored waterfall plot is shown next to its original in Figure 4. 



 

Figure 4: Original and time-flipped waterfall plots for a single run 

 After each plot was doubled via mirroring, each plot and its mirrored clone were used to 
create nine more plots each by using Poisson random sampling. The probability of some 
number of counts being detected far away from the source can be approximated using a 
Poisson distribution. Each bin of the original data is treated as an independent Poisson 
Distribution for all instances for which there are sufficient counts (defined as greater than or 
equal to 5 counts). For all instances of insufficient counts (fewer than 5 counts), the number of 
counts will vary as 1/𝑟𝑟2 plus background radiation. Using this knowledge, smoothing was 
applied along the time axis to generate an estimate of the distribution mean. This was done by 
taking the average of the current bin and three bins both forward and back in time from that 
bin for the same energy. Once all the distribution parameters have been determined, the 
distribution can be resampled to generate new inputs. Figure 5 shows a Poisson copy of a run 
next to its original.  

 

 

Figure 5: Original and Poisson-sample cloned waterfall plots for a single run. 

 



 A residual convolutional neural network was chosen as the algorithm to handle the data 
for this project. Specifically, a pretrained network called ResNet50 from the Keras module in 
Python. This network attempts to take advantage of the massively successful capability of 
convolutional networks for image identification and allow it to go deeper by creating “skip 
connections” that preserve the backpropagating gradient calculations that can become 
weakened in deep-layered conventional networks. The output layer of ResNet50 was removed 
and replaced with a custom layer containing the seven output labels for the corresponding 
isotopes after being processed through a global average pooling layer. Early stopping was also 
implemented with a patience of 20 epochs, meaning if there is no improvement on the 
accuracy for 20 epochs, the model will stop training. The best model’s weights are also saved 
and can be loaded at any time. 

 A data generator was also created to load the data into the network in a specific way. To 
save memory, all of the data was stored in a different file for each run, so the data generator 
was designed to only load the necessary runs into memory for any given batch. There were also 
an unbalanced number of runs for different labels, with “no source” dominating almost half of 
all the data. The data generator was written to choose a label and then randomly select a run 
corresponding to that label to give each label the same probability of getting selected and 
therefore a more equal spread of data for each source to prevent the network from choosing 
any one over others more often than it should. 

 In training the network, the maximum validation accuracy was 87.97% with a minimum 
validation loss of 0.4574. The graphs for the training loss and accuracies are shown in Figure 6 
for 30 epochs due to the best result being at epoch 10 and early stopping having a patience of 
20. 

 

Figure 6: Loss and accuracy during training for both training values (red) and validation values 
(blue) 

 The validation accuracies were also investigated deeper using confusion matrices, which 
show exactly what the model is predicting compared to the correct labels. This was performed 
on the original data as well as the Poisson clones. These and the total validation confusion 
matrices are shown in Figure 7. 



 

Figure 7: Confusion matrices for original data, Poisson clones, and total validation data. 

 

 After training the model, the best model (saved at epoch 10) was loaded and tested 
with the testing data provided with no labels. It performed with an accuracy of 60.14%, making 
it much lower than the validation accuracy of 87.97%. This disparity is the subject of 
investigation for the rest of this project, and several methods have been identified that may be 
solutions. One method to investigate would be L1 and L2 regularization, which places limits on 
how much weights can grow to prevent overfitting. Dropout will also be investigated, where 
certain nodes are removed entirely from the network in order to train the model as an 
ensemble of skilled subnetworks rather than all of the decisions being made by a single 
subnetwork. Providing the total elapsed time to the network may also improve it, effectively 
providing it with the speed the detector was moving at for the run. This data would be fed 
directly to the output layer to add an extra piece of data with which to make the decision rather 
than just relying on the activations of the last layer of the neural network. Finally, an adversarial 
network approach may be taken, where two networks work against each other: one trying to 
generate new data from the given data, and one trying to determine if the data is real or fake. 
This would, in theory, create very realistic artificial data that could then be used by the 
classification network to better train.  
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