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Abstract 

A major challenge in interpreting geophysical data is how to derive consistent three-dimensional (3D) 

earth models of different physical properties from spatially and temporally limited measurements. Joint 

inversion with cross-gradient constraints is an approach to find such models by imposing structural 

similarities between different physical parameters. We have developed a parallel distributed-memory joint 

inversion code for direct-current (DC) resistivity and traveltime data using the cross-gradient constraint 

on unstructured mesh. The code utilizes existing E4D framework for parallel forward simulation, 

distributed storage and computation of the Jacobian matrix of forward operator, and parallel execution of 

matrix-vector multiplication during inversion. Besides, the joint inversion is solved by nonlinear 

conjugate gradient algorithm parallelized for DC resistivity and traveltime data. The joint inversion 

capability of E4D was tested using synthetic data from cross-borehole DC resistivity and traveltime data. 

The results indicate that the shape and size of the anomalies from the joint inversion are more reliable 

than those from separate inversions. 
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Acronyms and Abbreviations 

3D  three-dimensional 

DC direct-current 

NLCG  nonlinear conjugate gradient 

PCG  preconditioned conjugate gradient 

PIJI  preconditioned iterative joint inversion 
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Figure 4. Cut-off plots of the recovered anomalies with background blanked off. The red 
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1.0 Introduction 

A variety of geophysical techniques are now available for non-intrusively interrogating the subsurface 

over large depth ranges (centimeters to kilometers) (Johnson et al. 2010; Lavoué et al. 2010; Martínez et 

al. 2010; Doolittle and Brevik 2014; Calamita et al. 2015; Johnson and Wellman 2015; Martini et al. 

2017). As the sophistication of geophysical exploration increases, there are often several independent data 

sets available within a survey area. These data provide information about different physical properties of 

the subsurface. In many cases, this information is mutually complementary, making it natural to consider 

a joint inversion of different geophysical data for multiple physical properties. Moorkamp et al. (2011) 

summarized two reasons why joint inversion can narrow the set of acceptable models. First, different 

methods have complementary resolving kernels, which decreases the nonuniqueness of geophysical 

inversions. Second, the impact of noise differs for different geophysical methods so that adding another 

method improves the result more than adding data of the same type. 

 There are different approaches to recover multiple physical properties in a joint inversion. In the case 

where the corresponding model parameters are empirically or statistically correlated, the joint inversion 

can utilize the specific form of the correlation to reduce the number of unknowns (Jegen et al. 2009). This 

direct approach provides a strong coupling between the different model parameters and improves the 

inversion results when the given correlation is accurate. If the given correlation deviates away from the 

true relationship, one may get distorted or spurious imaging artifacts. An alternative method is to use the 

empirical or statistical correlation as a constraint, which provides a looser coupling compared to the direct 

approach and is less prone to erroneous results(Colombo and Stefano 2007). 

 However, in practical applications, the empirical or statistical correlation may exist, but its specific 

form may be unknown. In this case, the joint inversion can be based on structural-coupled constraints 

(Haber and Oldenburg 1997; Molodtsov et al. 2013). A commonly-used method is the cross-gradient 

approach (Gallardo and Meju 2004), which is based on minimizing a value of the cross-gradient function 

between different model parameters. Zhdanov et al. (2012) introduced another structural-coupled joint 

inversion approach using the Gramian constraints, which is computed as determinants of the 

corresponding Gram matrices of the multimodal model parameters or their different attributes. The 

Gramian constraint in the case of element-to-element structural coupling becomes identical to the cross -

gradient function (Meju et al. 2019). 

 Structural-coupled joint inversion demands more computational resources than separate inversions. 

The computation and storage are doubled or tripled depending on how many physical properties are 

jointly inverted. In case of large-scale subsurface characterization and/or monitoring (time-lapse 

imaging), a parallel high-performance computing environment fits the joint inversion applications best. 

E4D is an open-source parallel geophysical modeling and inversion code with distributed-memory 

structure. It is beneficial to extend the existing E4D parallel capability for single geophysical methods, 

i.e., direct-current (DC) resistivity, spectral induced polarization, and traveltime imaging, to the next stage 

of parallel joint inversion. 

 Here we discuss a parallel joint inversion code for DC resistivity and traveltime data on unstructured 

mesh using the cross-gradient constraint. The objectives of this paper are to (1) outline numerical 

algorithm for solving the cross-gradient joint inversion on unstructured mesh, (2) develop parallel strategy 

for the joint inversion algorithm and implement it in the E4D (Johnson 2014), and (3) test the parallel 

joint inversion code using synthetic cross-borehole DC resistivity and traveltime data. The development 

provides the capability of E4D of integrating large-scale data collected from multiple geophysical 

methods. 
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2.0 Mathematical Formulations 

This section provides the mathematical formulations of the PIJI method with cross-gradient constraints 

that support the development of the joint inversion module for two different geophysical methods for 

unstructured mesh. The formulation can be extended to data from three or more geophysical methods. We 

first define the objective function for the joint inversion with cross-gradient constraints. The joint 

inversion is then translated to solving a system of linear equations with Taylor expansion of the nonlinear 

part of the objective function. After that, the PIJI method is presented to solve the linear system with two 

levels of iterations. Finally, numerical method to compute gradient on the unstructured tetrahedral mesh is 

derived in matrix notations. 

2.1 Inverse equations 

Consider a structural-coupled joint inversion of two model parameters 𝐦(1) and 𝐦(2), discretized on the 

same mesh, using the cross-gradient constraint. The structural-coupled joint inversion has the advantage 

over the direct-coupled method where explicit relationship between 𝐦(1) and 𝐦(2) is unknown or subject 

to large uncertainty. In the joint inversion we minimize the objective function (Φ𝑡), which is defined as 

the summation of data misfit (Φ𝑑), model misfit (Φ𝑚), and cross-gradient (Φ𝑐𝑔) functions: 

Φ𝑡 = Φ𝑑 + Φ𝑚 + Φ𝑐𝑔 (1) 

where 

Φ𝑑 = ∑ ‖𝐖𝑑
(𝑖)(𝐀(𝑖)(𝐦(𝑖)) − 𝐝𝑜𝑏𝑠

(𝑖) )‖
2

𝑖=1,2

, (1a) 

Φ𝑚 = ∑ 𝛽(𝑖)‖𝐖𝑚
(𝑖)(𝐦(𝑖) − 𝐦𝑎𝑝𝑟

(𝑖) )‖
2

𝑖=1,2

, (1b) 

Φ𝑐𝑔 = 𝛽𝑐𝑔‖𝛕⃗ (𝐦(1),𝐦(2))‖
2
, (1b) 

with data weighting matrices 𝐖𝑑
(𝑖)

, nonlinear forward operators 𝐀(𝑖), observed data vectors 𝐝𝑜𝑏𝑠
(𝑖)

, 

regularization parameters 𝛽(𝑖), model weighting matrices 𝐖𝑚
(𝑖)

, apriori model vectors 𝐦𝑎𝑝𝑟
(𝑖)

, structural 

coupling parameter 𝛽𝑐𝑔, and cross-gradient function 𝛕⃗ (𝐦(1), 𝐦(2)), for 𝑖 = 1 and 2. 

The cross-gradient function 𝛕⃗ (𝐦(1), 𝐦(2))  in Eq. (1c) is a nonlinear vector function of 𝐦(1) and 𝐦(2), 

defined as the cross product of two gradient vectors 

𝛕⃗ (𝐦(1),𝐦(2)) = ∇𝐦(1) × ∇𝐦(2). (2) 

The vector function 𝛕⃗ (𝐦(1), 𝐦(2)) provides element-to-element measurement of the structural differences 

between 𝐦(1) and 𝐦(2). Smaller magnitude of 𝛕⃗ (𝐦(1), 𝐦(2))  means more similar structure between 𝐦(1) 

and 𝐦(2). Scalar components of 𝛕⃗ (𝐦(1), 𝐦(2)) are computed as 

𝛕𝑥 = (𝜕𝑦𝐦(1))(𝜕𝑧𝐦
(2)) − (𝜕𝑧𝐦

(1))(𝜕𝑦𝐦(2)), (3) 

𝛕𝑦 = (𝜕𝑧𝐦
(1))(𝜕𝑥𝐦

(2)) − (𝜕𝑥𝐦
(1))(𝜕𝑧𝐦

(2)), (4) 

𝛕𝑧 = (𝜕𝑥𝐦
(1))(𝜕𝑦𝐦(2)) − (𝜕𝑦𝐦(1))(𝜕𝑥𝐦

(2)). (5) 

For the case with data from three or more geophysical methods, the data sets need to be paired up and the 

cross-gradient function for each pair is calculated. 
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Localized linearization of the nonlinear functions 𝐀(𝑖)(𝐦(𝑖)) and 𝛕⃗ (𝐦(1), 𝐦(2)) are needed for solving 

the optimization problem Eq. (1). Given starting models 𝐦0
(𝑖)

, 𝐀(𝑖)(𝐦(𝑖)) and 𝛕⃗ (𝐦(1), 𝐦(2)) can be 

approximated using a first-order Taylor expansion as 

𝐀(𝑖)(𝐦(𝑖)) ≈ 𝐀(𝑖)(𝐦0
(𝑖)) + 𝐉(𝑖)Δ𝐦(𝑖), 𝑖 = 1,2, (6) 

𝛕⃗ (𝐦(1),𝐦(2)) ≈ 𝛕⃗ (𝐦0
(1)

,𝐦0
(2)

) + 𝐁(1)Δ𝐦(1) + 𝐁(2)Δ𝐦(2). (7) 

where 𝐉(𝑖) and 𝐁(𝑖) are the Jacobian matrices (i.e. first order partial derivatives) of 𝐀(𝑖)(𝐦(𝑖)) and 

𝛕⃗ (𝐦(1), 𝐦(2)) with respective to 𝐦(𝑖). Details concerning computations of 𝐉(𝑖) are beyond the scope of 

this paper but can be found in manuscripts addressing separate geophysical inversions (Johnson et al. 

2010; Lelièvre et al. 2011). Matrices 𝐁(𝑖) are computed as 

𝐁(1) =

[
 
 
 diag(𝐃𝑧𝐦0

(2)
)𝐃𝑦 − diag(𝐃𝑦𝐦0

(2)
)𝐃𝑧

diag(𝐃𝑥𝐦0
(2)

)𝐃𝑧 − diag(𝐃𝑧𝐦0
(2)

)𝐃𝑥

diag(𝐃𝑦𝐦0
(2)

)𝐃𝑥 − diag(𝐃𝑥𝐦0
(2)

)𝐃𝑦]
 
 
 
, (8) 

and 

𝐁(2) =

[
 
 
 diag(𝐃𝑦𝐦0

(1)
)𝐃𝑧 − diag(𝐃𝑧𝐦0

(1)
)𝐃𝑦

diag(𝐃𝑧𝐦0
(1)

)𝐃𝑥 − diag(𝐃𝑥𝐦0
(1)

)𝐃𝑧

diag(𝐃𝑥𝐦0
(1)

)𝐃𝑦 − diag(𝐃𝑦𝐦0
(1)

)𝐃𝑥]
 
 
 
, (9) 

where diag(𝐯) returns a diagonal matrix with the elements of vector 𝐯 on the main diagonal. The matrices 

𝐃𝑥, 𝐃𝑦 and 𝐃𝑧 are discrete forms of differential operators 𝜕𝑥, 𝜕𝑦, and 𝜕𝑧 on a general unstructured mesh. 

Note that the matrices 𝐁(1) and 𝐁(2) share the same sparsity pattern of the discrete differential operators. 

Substituting Eq. Error! Reference source not found. and Error! Reference source not found. into Eq. 

(1a) and (1c) results the linearized objective function 

Φ𝑡 = Φ̃𝑑 + Φ𝑐𝑔, (10) 

where 

Φ̃𝑑 = Φ𝑑 + Φ𝑚 = ∑ ‖𝐉̃(𝑖)Δ𝐦(𝑖) + 𝐀̃(𝑖)(𝐦0
(𝑖)) − 𝐛(𝑖)‖

2

𝑖=1,2

, 

Error! 

Reference 

source 

not 

found.a) 

Φ𝑐𝑔 = 𝛽𝑐𝑔‖𝐁(1)Δ𝐦(1) + 𝐁(2)Δ𝐦(2) + 𝛕⃗ (𝐦0
(1)

,𝐦0
(2)

)‖
2
. 

Error! 

Reference 

source 

not 

found.b) 

with 𝐉̃(𝑖) = [
𝐖𝑑

(𝑖)
𝐉(𝑖)

√𝛽(𝑖)𝐖𝑚
(𝑖)

], 𝐀̃(𝑖) (𝐦0
(𝑖)

) = [
𝐖𝑑

(𝑖)
𝐀(𝑖) (𝐦0

(𝑖)
)

√𝛽(𝑖)𝐖𝑚
(𝑖)

𝐦0
(𝑖)

], and 𝐛̃(𝑖) = [
𝐖𝑑

(𝑖)
𝐝𝑜𝑏𝑠

(𝑖)

√𝛽(𝑖)𝐖𝑚
(𝑖)

𝐦𝑎𝑝𝑟
(𝑖)

], for 𝑖 = 1 and 

2. Eq. Error! Reference source not found. merges the data and model misfit functions (Φ𝑑 and Φ𝑚) 

into one generalized data misfit function Φ̃𝑑 for shorter expressions. 

Minimizing Eq. Error! Reference source not found. leads to solving the following linear system for Δ𝐦 

𝐇Δ𝐦 = 𝐬 (11) 

where 𝐇 is a symmetric positive-definite matrix 
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𝐇 = [
𝐉̃(1)T𝐉̃(1) + 𝛽𝑐𝑔𝐁(1)T𝐁(1) 𝛽𝑐𝑔𝐁(1)T𝐁(2)

𝛽𝑐𝑔𝐁(2)T𝐁(1) 𝐉̃(2)T𝐉̃(2) + 𝛽𝑐𝑔𝐁(2)T𝐁(2)
], (12) 

and 𝐬 is the right-hand side vector 

𝐬 = [
𝐉̃(1)T (𝐛̃(1) − 𝐀̃(𝑖)(𝐦0

(1)
)) − 𝛽𝑐𝑔𝐁(1)T𝛕⃗ (𝐦0

(1)
,𝐦0

(2)
)

𝐉̃(2)T (𝐛̃(2) − 𝐀̃(𝑖)(𝐦0
(2)

)) − 𝛽𝑐𝑔𝐁(2)T𝛕⃗ (𝐦0
(1)

,𝐦0
(2)

)
]. (13) 

From now on, we arrange vectors Δ𝐦(1) and Δ𝐦(2) into one big vector Δ𝐦 = [Δ𝐦(1)

Δ𝐦(2)
] for convenience, 

similarly for 𝐦0, 𝐝𝑜𝑏𝑠, 𝐀(𝐦0), etc. 

The preconditioned conjugate gradient (PCG) algorithm is used in this paper to solve the linear system 

Eq. Error! Reference source not found. (Shewchuk 1994; Ascher and Greif 2011). Although 𝐖𝑑
(𝑖)

, 

𝐖𝑚
(𝑖)

, and 𝐁(𝑖) are sparse with small storage requirements, 𝐉(𝑖) and hence 𝐇 matrices are large and dense. 

As a result, iterative gradient-type algorithms (e.g. conjugate gradient) are more feasible than direct 

solvers (e.g. Cholesky or QR) for Eq. Error! Reference source not found. in terms of computational 

cost and especially the memory requirement for large 3D inversion problems. A Jacobi preconditioner 

(i.e. diagonal of 𝐇) is suggested to use for scaling the different units/magnitudes of 𝐦(1) and 𝐦(2). 

2.2 Parallel Inversion Algorithm 

The nonlinearity of the objective function in Eq. (1) requires to iteratively formulate and solve the linear 

system Eq. Error! Reference source not found. using the PCG algorithm. That is, linearize the objective 

function in Eq. (1) at starting model 𝐦0 towards Eq. Error! Reference source not found., solve the 

linear system Eq. Error! Reference source not found. for Δ𝐦, add Δ𝐦 to 𝐦0 for new starting model 

𝐦1, and repeat this process until the observed data are matched to within some criteria determined by the 

data noise. This joint inversion process therefore has two levels (i.e. outer and inner) of iterations. The 

outer iteration updates 𝐇 and 𝐬 in Eq. Error! Reference source not found. and Error! Reference 

source not found.  and the inner iteration solves Eq. Error! Reference source not found. using the PCG 

algorithm. For computational efficiency, we do not explicitly formulate the 𝐇 and 𝐬 but break the 𝐇-

related computation of 𝐇𝐱 into smaller  matrix-vector multiplications involving 𝐉̃(𝑖), 𝐉̃(𝑖)T, 𝐁(𝑖), and 𝐁(𝑖)T, 

and split 𝐬 into two smaller vectors 𝐬(1) and 𝐬(2) . That is, 

𝐇𝐱 = [
𝐉̃(1)T 𝟎 𝐁(1)T

𝟎 𝐉̃(2)T 𝐁(2)T
] [

𝐉̃(1) 𝟎

𝟎 𝐉̃(2)

𝐁(1) 𝐁(2)

] [𝐱
(1)

𝐱(2)
]  and  𝐬 = [𝐬

(1)

𝐬(2)
] (14) 

 Assuming 𝐉̃(𝑖), 𝐁(𝑖), 𝐛̃(𝑖), 𝐀̃(𝑖) (𝐦𝑘
(𝑖)

), and 𝛕⃗ (𝐦𝑘
(1)

, 𝐦𝑘
(2)

), 𝑖 = 1,2, have been computed, the PCG 

algorithm (inner iterations of the joint inversion process) can be expressed by the following operations in 

equations (15)-(35). 

𝐫(𝑖) = 𝐛̃(𝑖) − 𝐀̃(𝑖)(𝐦𝑘
(𝑖)), 𝑖 = 1,2 (15) 

𝐯 = −𝛕⃗ (𝐦𝑘
(1)

,𝐦𝑘
(2)

) (16) 

𝐬(𝑖) = 𝐉̃(𝑖)T𝐫(𝑖) + 𝛽𝑐𝑔𝐁(𝑖)T𝐯, 𝑖 = 1,2 (17) 

𝐡(𝑖) = (𝐏(𝑖))−1𝐬(𝑖), 𝑖 = 1,2 (18) 

𝐩(𝑖) = 𝐡(𝑖), 𝑖 = 1,2 (19) 

𝛾 = Σ𝑖𝐬
(𝑖)T𝐡(𝑖) (20) 

𝑁0 = 𝛾1/2 (21) 
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Δ𝐦(𝑖) = 𝟎, 𝑖 = 1,2 (22) 

start loop  

𝐪(𝑖) = 𝐉̃(𝑖)𝐩(𝑖), 𝑖 = 1,2 (23) 

𝛿 = Σ𝑖𝐪
(𝑖)T𝐪(𝑖) (24) 

𝐮 = Σ𝑖𝐁
(𝑖)𝐩(𝑖) (25) 

𝛼 = 𝛾/(𝛿 + 𝛽𝑐𝑔𝐮T𝐮) (26) 

Δ𝐦(𝑖) = 𝛼𝐩(𝑖), 𝑖 = 1,2 (27) 

𝐫(𝑖) = 𝐫(𝑖) − 𝛼𝐪(𝑖), 𝑖 = 1,2 (28) 

𝐯 = 𝐯 − 𝛼𝐮 (29) 

𝐬(𝑖) = 𝐉̃(𝑖)T𝐫(𝑖) + 𝛽𝑐𝑔𝐁(𝑖)T𝐯, 𝑖 = 1,2 (30) 

𝐡(𝑖) = (𝐏(𝑖))−1𝐬(𝑖), 𝑖 = 1,2 (31) 

𝛾1 = 𝛾 (32) 

𝛾 = Σ𝑖𝐬
(𝑖)T𝐡(𝑖) (33) 

𝑁 = 𝛾1/2 (34) 

𝐩(𝑖) = 𝐡(𝑖) + 𝛾/𝛾1𝐩
(𝑖), 𝑖 = 1,2 (35) 

if convergence criteria satisfied then exit loop  

end loop  

 The PCG or inner iteration convergence criteria referenced after equation (35) typically is based upon 

the magnitude of the decrease in 𝑁 with respect to 𝑁0 between iterations or until some user-specified 

maximum number is reached. Each of equations (15) to (35) can be computed independently for physics 1 

(i.e. DC resistivity) and physic 2 (i.e. traveltime) except equations (20), (24), (25), and (33). 

Consequently, we conduct the joint inversion by two main parallel processes. One is executed by master 

processor 0 and slave processors 1 to 𝑛; the other is executed by master processor 1 and slave processors 

𝑛 + 1 to 𝑛 + 𝑚. The number of slave processors 𝑛 for physics 1 and 𝑚 for physics 2 are determined by 

users. Master processors 0 and 1 compute equations (15) through (35) independently in parallel except 

equations (20), (24), (25), and (33), where communications between the two physics through master 

processors are involved. In addition, the matrix-vector multiplications involving 𝐉̃(𝑖) and 𝐉̃(𝑖)T in equations 

(17), (23), and (30) are computed on slave processors for each physics. Johnson et al. (2010) has full 

description about the distributed parallel computations of 𝐉̃(𝑖)𝐩(𝑖) and 𝐉̃(𝑖)T𝐫(𝑖). (To mention that, all 

communications between the two physics are managed by master processors only. That is, there is no 

communication of slave processors between different physics.) 

Solution to the joint inversion is subject to the initial model 𝐦0 because of possible local minima 

associated with Eq. (1). To make best guess of 𝐦0, 𝛽𝑐𝑔 is set to zero in the first few outer iterations until 

the data misfit Φ𝑑 drops to certain user specified value. This strategy is equivalent to using an initial 

model 𝐦0 close to results obtained from separate inversions. During the iterative inversion process, 

parameters 𝛽(𝑖) and 𝛽𝑐𝑔 are adjusted to provide solutions that maintain the data fit but also maximize the 

model constraints and structural similarities between 𝐦(1) and 𝐦(2) to the extent possible. 

The matrix 𝐇 in Eq. Error! Reference source not found. can be written as the sum of two matrices as 

𝐇 = 𝐇𝑝 + 𝐇𝑠, (36) 

where 
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𝐇𝑝 = [
𝐉̃(1)T𝐉̃(1) + 𝛽𝑐𝑔𝐁(1)T𝐁(1) 𝟎

𝟎 𝐉̃(2)T𝐉̃(2) + 𝛽𝑐𝑔𝐁(2)T𝐁(2)
], 

Error! 

Reference 

source 

not 

found.a) 

𝐇𝑠 = [
𝟎 𝛽𝑐𝑔𝐁(1)T𝐁(2)

𝛽𝑐𝑔𝐁(2)T𝐁(1) 𝟎
]. 

Error! 

Reference 

source 

not 

found.b) 

The 𝐇𝑝 (principal 𝐇) and 𝐇𝑠 (secondary 𝐇) are related to the non-mixed and mixed second-order 

derivatives of Φ𝑡. In the NLCG method, one can use the exact 𝐇 matrix, or approximate it with 𝐇𝑝 by 

dropping the term 𝐇𝑠. Note that, the linear system Eq. Error! Reference source not found. becomes 

easier to solve by replacing 𝐇 with 𝐇𝑝 because it can break down into two smaller linear systems. As a 

result, the coding effort for the NLCG method using 𝐇𝑝 is smaller than 𝐇. 

 In our PCG algorithm, we use the full 𝐇 matrix. It’s also fine to drop the 𝐻𝑠 part and approximate 𝐻 

by 𝐻𝑝. The benefits of doing so are (1) The matrix-inverse can now be divided into two smaller linear 

systems (put equations here), which may suit for some specific software framework, and (2) 

communication between the two physics can be limited to the outer iteration of the inversion, which may 

save communication time/coding effort where communication/coding overhead is a big concern. 

2.3 Gradient Calculation 

Gradients are necessary for computing the cross-gradient function in the joint inversion, more specifically 

constructing the matrices 𝐁(𝑖) in Eq. Error! Reference source not found. and Error! Reference source 

not found.. For structured orthogonal grids, the gradient can be easily computed using the standard finite 

difference approximations (i.e. forward, backward, and central differences). The case becomes more 

complicated when general unstructured mesh is involved, for example the tetrahedral cells that are used 

by E4D. Typical methods to evaluate the gradient ∇𝑚 of a given scalar 𝑚 include the Green-Gauss 

method and the least squares method. The Green-Gauss method is an intuitive, explicit method to 

compute gradient that utilizes the Green-Gauss theorem. For unstructured meshes, the accuracy of this 

method decreases with increasing irregularity of the cells. In this case, the least squares method can be 

used for accurate evaluation of the gradient, although it is an implicit method requiring matrix inversion. 

Consider a tetrahedral cell with centroid 𝐜0 and four neighboring cells with centroid 𝐜𝑖, 𝑖 = 1,4. The 

change in 𝑚 between 𝐜0 and 𝐜𝑖 is assumed to vary linearly along the vector Δ𝐜𝑖 = 𝐜𝑖 − 𝐜0 as 

(∇𝑚)𝑐0
⋅ Δ𝐜𝑖 = (𝑚𝑐𝑖

− 𝑚𝑐0
), 𝑖 = 1,4 (37) 

Eq. Error! Reference source not found. can be arranged into the following linear system in compact 

form 

𝐂 [

(𝜕𝑥𝑚)𝑐0

(𝜕𝑦𝑚)
𝑐0

(𝜕𝑧𝑚)𝑐0

] = 𝐋

[
 
 
 
 
𝑚𝑐0

𝑚𝑐1

𝑚𝑐2

𝑚𝑐3

𝑚𝑐4]
 
 
 
 

, (38) 

where 𝐂 is a 4 × 3 coefficient matrix which is purely a function of geometry 

𝐂 = [

𝑥𝑐1
− 𝑥𝑐0

𝑦𝑐1
− 𝑦𝑐0

𝑧𝑐1
− 𝑧𝑐0

𝑥𝑐2
− 𝑥𝑐0

𝑦𝑐2
− 𝑦𝑐0

𝑧𝑐2
− 𝑧𝑐0

𝑥𝑐3
− 𝑥𝑐0

𝑦𝑐3
− 𝑦𝑐0

𝑧𝑐3
− 𝑧𝑐0

𝑥𝑐4
− 𝑥𝑐0

𝑦𝑐4
− 𝑦𝑐0

𝑧𝑐4
− 𝑧𝑐0

], (39) 
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and 𝐋 is a 4 × 5 constant matrix 

𝐋 = [

−1 1
−1 1
−1 1
−1 1

]. (40) 

Eq. Error! Reference source not found. is an over-determined linear system. Its least squares solution is 

given by 

[

(𝜕𝑥𝑚)𝑐0

(𝜕𝑦𝑚)
𝑐0

(𝜕𝑧𝑚)𝑐0

] = (𝐂T𝐂)−1𝐂T𝐋

[
 
 
 
 
𝑚𝑐0

𝑚𝑐1

𝑚𝑐2

𝑚𝑐3

𝑚𝑐4]
 
 
 
 

, (41) 

where the 3 × 3 matrix inverse (𝐂T𝐂)
−1

 can be efficiently computed due to its small size. Denoting the 

rows of the 3 × 5 matrix (𝐂T𝐂)
−1

𝐂T𝐋 with row vectors (𝐃𝑥)𝑐0
, (𝐃𝑦)𝑐0

, and (𝐃𝑧)𝑐0
, Eq. Error! 

Reference source not found. can be rewritten as 

[

(𝜕𝑥𝑚)𝑐0

(𝜕𝑦𝑚)
𝑐0

(𝜕𝑧𝑚)𝑐0

] = [

(𝐃𝑥)𝑐0

(𝐃𝑦)𝑐0

(𝐃𝑧)𝑐0

]

[
 
 
 
 
𝑚𝑐0

𝑚𝑐1

𝑚𝑐2

𝑚𝑐3

𝑚𝑐4]
 
 
 
 

, (42) 

Eq. Error! Reference source not found. is then assembled into a larger linear system by computing 

(𝐃𝑥)𝑐0
, (𝐃𝑦)𝑐0

, and (𝐃𝑧)𝑐0
, for every cell of the mesh, resulting 

[

𝜕𝑥𝐦
𝜕𝑦𝐦

𝜕𝑧𝐦

] = [

𝐃𝑥

𝐃𝑦

𝐃𝑧

]𝐦, (43) 

where 𝐃𝑥, 𝐃𝑦, and 𝐃𝑧 are global matrices of (𝐃𝑥)𝑐0
, (𝐃𝑦)𝑐0

, and (𝐃𝑧)𝑐0
. For a given mesh, the square 

matrices 𝐃𝑥, 𝐃𝑦, and 𝐃𝑧 are computed once and reused in the joint inversion. The cost to build and store 

the matrices 𝐃𝑥, 𝐃𝑦, and 𝐃𝑧 are cheap. First, the operation counts to construct 𝐃𝑥, 𝐃𝑦, and 𝐃𝑧 are 

proportional to the number of elements of the mesh, which is fast in terms of floating-point operations. 

Second, 𝐃𝑥, 𝐃𝑦, and  𝐃𝑧 are sparse with only five nonzero entries per row (one for the element itself and 

the rest for its four neighbors), which is efficient in terms of memory storage. Also, operations involving 

𝐃𝑥, 𝐃𝑦, and  𝐃𝑧 can be executed quickly using the element sparse operations. The above formulas can be 

extended to the gradient calculation for arbitrary polyhedron by adjusting the number of neighboring 

cells. 

 

 

 



PNNL-29966 

Parallel Implementation 8 
 

3.0 Parallel Implementation 

E4D (Johnson et al. 2010; Johnson and Wellman 2015) is a parallel 3D finite element modeling and 

inversion code for subsurface imaging and monitoring using static and time-lapse DC resistivity data. To 

address the computational demands of inverting large-scale 3D (either static or time-lapse) data sets, E4D 

runs on high-performance computing systems with distributed memory. E4D also supports modeling and 

inversion of traveltime data using the fast marching method (Lelièvre et al. 2011). 

We developed a new E4D module for structural-coupled joint inversion of DC resistivity and traveltime 

data. This joint inversion module utilizes existing E4D parallel computations for single geophysical 

methods, including forward simulation, distributed storage and computation of the Jacobian matrix of 

forward operator, and parallel execution of matrix-vector multiplication during inversion (Johnson et al., 

2010). Besides, the joint inversion is divided into two parallel NLCG processes, one for DC resistivity 

and the other for traveltime data, each with its own master and slave processors (Figure 1).  

The NLCG parallel process stores observed and predicted data, model parameters, Jacobian matrix of 

forward operator, data and model weightings for each physics on the designated master processor. In the 

outer loop of NLCG, the two master processors compute predicted data and Jacobian matrix 

independently in parallel and exchange the model parameters of different physics to construct the 

Jacobian matrix of cross-gradient operator. In the inner loop of NLCG, the master processors run the PCG 

algorithm for the two physics in parallel and communicate with each other for the step length and 

coefficient of the conjugate direction in each inner iteration (Figure 1). 

 

Figure 1. Generalized flow diagram demonstrating the (a) joint inversion process and (b) NLCG method. 

Gray box shows parallel tasks distributed among masters or slaves.  Parallel computations of the 

forward simulation and Jacobian of the forward operator are distributed evenly among slaves 

and details can be found in Johnson et al. (2010). 

 

The NLCG process runs in parallel between the two groups (Figure 1b). In one outer iteration of NLCG, 

the two groups compute Jacobian in dependently and simultaneously. After the Jacobian computations, 

the master nodes of the two groups exchange the current model parameters and compute data weighting, 

model weighting, and cross-gradient 𝐁 matrices for the assigned physics. In the last step of one NLCG 
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outer iteration, the two master processors update the model parameters using the PCG algorithm in 

parallel. During this model update, the two master processors communicate the step length and conjugate 

direction. The NLCG process is repeated until the data are appropriately fit (Figure 1a).) 
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4.0 Synthetic Study 

4.1 Synthetic Model Setup 

The synthetic model consists of two rectangular anomalies, each of size 8 m x 8 m x 5 m, buried in a 

homogeneous half-space as shown in Figure 2a. One of the anomalies had larger conductivity and lower 

velocity and the other had smaller conductivity and higher velocity than the surroundings. The 

conductivity and velocity of the two anomalies and surrounding half-space are given in Figure 2b. 

Computational mesh for the DC resistivity and traveltime modeling and inversion were the same, with 

central part shown in Figure 2a. The entire mesh extended to a much larger volume (1000 m × 1000 m × 

500 m) than the observation domain to reduce the boundary effects in the DC resistivity modeling. The 

mesh was refined near electrode locations to accommodate large potential gradients nears sources and 

sinks. The mesh contained 164,672 tetrahedral elements in total. 

   

 

Figure 2. Central computational domain and electrode positions. The traveltime receivers and transmitters 

are co-located with the electrodes. (a) Geometry of the two 8 m x 8 m x 5 m blocks. (b) 

Conductivity and velocity of the two blocks and surrounding area. 

Synthetic DC resistivity and traveltime surveys were conducted along two vertical boreholes that were 15 

m apart.  Each borehole had 8 electrodes (16 in total) evenly spaced between 𝑧 = −6 and 𝑧 = −34 m. 

Two consecutive electrodes were used as current source and sink (i.e. electrodes A and B) and another 

two consecutive electrodes (i.e. electrodes M and N) were used to measure the potential difference. A 

total of 79 transfer resistance data were collected for such a DC resistivity survey configuration. 
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Traveltime sources/receivers were co-located at the positions of the borehole electrodes. With 8 sources 

in one borehole and 8 receivers in the other, a total of 64 traveltime data were collected. 

 

4.2 Separate and Joint Inversion Results 

The synthetic DC resistivity and traveltime data were inverted separately and jointly for logarithmic of 

conductivity log(𝜎) and slowness 𝑠 (reciprocal of velocity). That is, 

𝑚(1) = log 𝜎 ,𝑚(2) = 𝑠. 

Each element in the modeling mesh was used as an inversion parameter characterized by 𝑚(1) and 𝑚(2). 

We recommend using initial conductivity and velocity values close to the solutions of the separate 

inversions to overcome local minima associated with the nonlinearity of the cross-gradient function. 

 

Figure 3. Conductivity and velocity recovered from the separate and joint inversions. (a) Conductivity 

from the separate inversions. (b) Velocity from the separate inversions. (c) Conductivity from 

the joint inversion. (d) Velocity from the joint inversion. 

 

 The synthetic DC resistivity and traveltime data were jointly inverted using exact 𝐇 matrix in Eq. 

Error! Reference source not found. and initial models close to the separate inversion results. Figure 3 

shows the spatial distribution of the conductivity and velocity from the separate and joint inversions. For 

this synthetic case, either the separate inversion of conductivity or velocity or the joint inversion of both 
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produced reasonable results. Both the upper and lower blocks were clearly identified. This means that 

either of the datasets is sufficient to identify the two anomalies in the subsurface.  

 However, there are some differences between the inverted results from separate and joint inversions. 

For all cases, if the property value of an anomaly was higher than that of the surrounding area, the 

property value was underestimated by all the inversions, but at a relatively less magnitude by the joint 

inversion than the separate inversions. For example, the upper block had the true conductivity of 0.01 

S/m. The maximum value was 0.0024 S/m from the separate inversion (Figure 3a) and was 0.0036 S/ m 

from the joint inversion (Figure 3c). Vice versa, if the property value of an anomaly was lower than that 

of the surrounding area, the value was overestimated, but again at a relatively less magnitude by the joint 

inversion than separate inversion. For example, the upper block had the true velocity of 0.5 km/s. The 

minimum value was 0.97 km/s from the separate inversion (Figure 3b) and 0.94 km/s from the joint 

inversion (Figure 3d). These results indicate that the results from joint inversion gave a stronger signal of 

the existence of the anomalies than those from separate inversions. 

 Figure 4 shows the shape and size of the identified anomalies with the background values blanked off. 

Because of the different sensitivity of different geophysical methods, by comparing Figure 4a and Figure 

4c, it can be clearly seen that the shape and size of the identified anomalies were different from the two 

separate inversions. The discrepancy in shape and size of anomalies created a problem because the results 

do not tell which one is more reliable. In contrast to the separate inversions, the shape and size of the 

anomalies from the joint inversion, which imposed structural similarities between log(𝜎) and 𝑠, were 

relatively similar (Figure 4b and Figure 4d). These results indicate that the shape and size of the 

anomalies from the joint inversion are more reliable than those from the separate inversions. 

 

  

Figure 4. Cut-off plots of the recovered anomalies with background blanked off. The red rectangles 

indicate the true size and location of the two blocks. The shape and size of the anomalous 

conductivity and velocity are more correlated in the joint inversion results. 

4.3 Relationships Between Conductivity and Velocity 

The properties of subsurface anomalies are often correlated but the correlation relationship may be 

different for different anomalies. These relationships can be shown by cross plots of conductivity versus 

slowness (Figure 5). The two separate inversions were conducted without imposing any correlation, the 
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correlation levels were relatively low (Figure 5a). During the joint inversion, the correlation between the 

two properties was enforced, as expressed by the cross-gradient function in Eq. (2). As a result, the 

correlation between the two properties was considerably improved (Figure 5b). For the upper anomaly, R2 

increased from 0.598 of the separate inversion to 0.894 of joint inversion. For the lower anomaly, R2 

increased from 0.399 of the separate inversion to 0.876 of joint inversion. The improvement of R2 

indicates that joint inversion can better distinguish different anomalies in the subsurface. 

 

Figure 5. Cross plots of conductivity versus slowness (reverse of velocity) derived from the (a) separate 

and (b) joint inversions. Each dot represents an inversion element characterized by conductivity (x-axis) 

and slowness (y-axis). The blue and yellow dots represent the upper and lower anomalies and their 

surround areas, respectively. 
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5.0 Conclusions 

We have presented a parallel distributed-memory joint inversion code for DC resistivity and traveltime 

data on unstructured mesh. The code inherits the parallel framework of E4D and is suitable for large scale 

3D subsurface characterization for multi-physics data. (how and when different physics communicate 

with each other.) We have demonstrated through a synthetic cross-borehole model that the shape and size 

of the anomalies from the joint inversion are more reliable than those from the separate inversions. The 

joint inversion detected smaller property contrast in the conductivity and velocity models. The cross-

gradient constraint in the joint inversion enforced element-to-element structural coupling and thus 

allowed to recover anomalies characterized by nonuniform relationships between the different physical 

properties (i.e. multiple slopes in the cross plots). 
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