
Choose an item.

PNNL-29518

Characterizing
Vulnerabilities
Associated with
Connected Lighting

Exploring Authorization Protocols

December 2019

Paul Francik

In fulfillment of DOE Science Undergraduate Laboratory

Internships (SULI) program requirements

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Choose an item.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government nor any agency

thereof, nor Battelle Memorial Institute, nor any of their employees, makes any

warranty, express or implied, or assumes any legal liability or responsibility

for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or favoring by

the United States Government or any agency thereof, or Battelle Memorial

Institute. The views and opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the

Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;

ph: (865) 576-8401

fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service

5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)

email: orders@ntis.gov <https://www.ntis.gov/about>

Online ordering: http://www.ntis.gov

mailto:reports@adonis.osti.gov
https://www.ntis.gov/about
http://www.ntis.gov/

PNNL-29518

Characterizing Vulnerabilities Associated with
Connected Lighting

Exploring Authorization Protocols

December 2019

Paul Francik

In fulfillment of DOE Science Undergraduate Laboratory Internships (SULI) program
requirements

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

PNNL-29518

PNNL-29518

Abstract ii

Abstract

 Cities are upgrading their infrastructure and converting traditional indoor and outdoor

luminaires to Connected Lighting Systems equipped with sensors in an aggressive

effort to reduce energy consumption, increase sustainability, and improve the quality of

life. When you take something seemingly benign like a lighting system and connect it to

the internet, if improperly secured a potential attack vector for hackers is created.

Hackers could then access sensitive information, pivot into other networks, shut down

services, or enslave devices to do their bidding. In attempt to close this attack vector

and secure these systems, this paper extends previous work that investigated,

compared and contrasted authentication vulnerabilities in Connected Lighting Systems

that identified the need for additional testing and improved test method documentation.

One additional authentication test and four new authorization tests were developed

utilizing the Open Web Application Security Project (OWASP) as a test development

and documentation guide. The new tests were integrated with the previous work to

develop an updated test method with a focus on describing test procedures to make

them easy to understand and repeat. In addition, a first Connected Lighting System use

case was established to begin developing threat profiles that will aid in the identification

of vulnerabilities whose focus areas extend beyond authentication and authorization.

This use case describes the generation and flow of CLS data which assists in specifying

methods to harden CLSs from outside interference and exploitation that can be

implemented immediately on existing CLSs and as new products come to market.

PNNL-29518

Acknowledgments iii

Acknowledgments

I would like to thank Benjamin Feagin Jr. [PNNL] for his mentorship, providing this internship
opportunity with the Advanced Lighting Team in Portland Oregon.

I would also like to thank Michael Poplawski [PNNL] who provided guidance and insight that
greatly assisted this research and the basis for characterizing cybersecurity vulnerabilities of
connected lighting systems.

Thanks to Patrick O’Connell for his peer review of this paper,

Additional thanks to Kelly Gordon [PNNL], and Todd Samuel [PNNL] for their support of this
project and its implementation.

PNNL-29518

Acronyms and Abbreviations iv

Acronyms and Abbreviations

CLSs Connected Lighting Systems

IOT Internet of Things

LED Light Emitting Diode

NIST National Institute of Standards and Technology

PII Personally Identifying Information

PHI Protected Health Information

SDLC Software Development Lifecycle

SI Sensitive Information

URI Uniform Resource Identifier

URL Uniform Resource Locator (commonly referred to as a web address)

PNNL-29518

Contents v

Contents

Abstract ... ii

Acknowledgments ... iii

Acronyms and Abbreviations ... iv

Contents .. v

1.0 Introduction ... 1

A. Background on CLSs .. 1

2.0 Authentication ... 2

A. Authentication Vulnerabilities .. 2

3.0 Authorization ... 4

A. Authorization Vulnerabilities .. 5

4.0 Test Setup ... 6

5.0 Authentication Tests Defined .. 9

6.0 Authorization Tests Defined .. 12

7.0 Authentication testing guide .. 13

A. Web Authentication Credentials Transported over an Unencrypted
Channel ... 13

B. Use of Default Web Credentials ... 13

C. Weak Web Lockout Mechanism ... 14

D. Authentication Schema Bypass .. 15

E. Insecure Authentication Credential Retention ... 16

F. Session Timeout ... 17

G. Session Cookie Destruction ... 18

H. Renewed Authentication for Lost or Terminated SSH Sessions over a Remote
Interface .. 19

I. Web Authentication Username Enumeration ... 20

J. Use of Zigbee Default Trust Center Link Key ... 21

K. JSON Web Token (JWT) 'none' Algorithm Validation ... 21

L. Weak JSON Web Token (JWT) HMAC SHA256 Secret ... 22

M. Missing JSON Web Token (JWT) 'jti', 'exp', and 'iat' Claims 23

N. Insecure Web-Based Credential Set Password Change .. 24

O. Assuming User Identity Through SAML Login ... 25

P. MQTT Authentication Credentials ... 26

Q. Bluetooth Replay and On-The-Fly Data Modification ... 27

R. Identifying Bluetooth Class of Device/Service .. 28

S. Bypass Authentication with SQL Injection .. 29

8.0 Authorization Testing Guide .. 31

A. Directory Traversal .. 31

PNNL-29518

Contents vi

B. Bypass Authentication Schema ... 32

C. Privilege Escalation ... 33

D. Insecure Direct Object References.. 34

9.0 Threat Profiles ... 36

10.0 CLS Use Case .. 38

11.0 Conclusion .. 41

12.0 References .. 42

Figures

Figure 1. Authentication Test Setup ... 6

Figure 2. Varying System Architectures ... 7

Figure 3. Authorization Test Setup ... 8

Figure 4. Authentication Tests Defined .. 11

Figure 5. Authorization Tests Defined .. 12

Figure 6. Additional Authentication Test Defined.. 12

Figure 7. Microsoft Stride Model ... 37

Figure 8. Fault Detection Use Case General Data Flows ... 38

Figure 9. Fault Detection Use Case / Regular Interval Driven by Clock 39

Figure 10. Fault Detection Use case / Event Driven Alert ... 39

Figure 11. Fault Detection Use Case / User lnitiated Request ... 40

PNNL-29518

Introduction 1

1.0 Introduction

 To enhance energy savings, increase performance and interoperability, and reduce the
impact on climate change, major cities are making the switch to connected lighting systems
(CLSs).

 With the emergence of light emitting diode (LEDs) technology, the opportunity to use 75%
less energy consumption and have these products last approximately 25 times longer than an
incandescent bulb is important to help decrease the load we put on our electrical grid and to
reduce CO2 emissions. (energy.gov n.d.) According to Toby Morgan, LED program manager of
The Climate Group “LED reach up to 80 percent savings when coupled with smart controls. This
is unprecedented for a direct replacement technology.” (Theclimategroup.org 2019)

 These findings are impressive, however if the goal is continued adoption of such systems
across the globe it is important to understand the risks and vulnerabilities associated with any
new technology or emerging platform. Further, it is of paramount importance to test these
connected lighting devices to harden such systems from outside interference. One way to test
systems that have come to market is to perform a risk assessment against known vulnerabilities
and perform a penetration test associated with the different CLSs devices and configurations to
determine if they pass well-known cyber security exploits.

A. Background on CLSs

 CLSs luminaries are essentially a grouping of LED lights that are enhanced digital devices
connected to the internet. It can be thought of like a basic computing device. When combined
on a network together they form a connected lighting system. CLSs provide the ability to not
only light a space, but with the right sensors attached can also collect data about traffic,
pedestrians, weather, radiation, pollution, gunshot triangulation, emergency services and more.
(lighting.philips.com 2019)

 With the advancement of this technology and the implementation of these lighting devices
on a network, they become part of the Internet of Things (IOT), an everyday object with
computing devices that can send and receive data via the internet. CLSs are allowing cities to
create an information highway of data that can be used to the cities benefit or if improperly
secured, lead to catastrophic loss of service and breached networks.

PNNL-29518

Authentication 2

2.0 Authentication

 Authentication is a class or family of security controls that ultimately constitutes one or more
processes to verify an identity claim. Defining the authentication process and needed
mechanisms typically begins with an appropriate threat model where the definition of trust
boundaries and identification of who or what may or may not traverse those boundaries in order
to interact with an entity of value (e.g. a system, network, or specific data) occurs. Once
authenticated, the subsequent actions an entity may perform is determined by authorization.
Authorization is the process of verifying a requested action is permitted by assessing the
privileges associated with or bound to the entity. Further, means must be developed for auditing
actions and changes to both.

 An identity is a unique representation of someone or something, such as a person or a node
on a network. Common terms used to describe identities are users and machines. The most
common authentication mechanism is the traditional username and password combination, also
referred to as a credential set, with the password typically being a secret. Verification is
typically performed by assessing one or more provided secret credentials against a stored
representation or a stored copy of the secret. Successful authentication provides a reasonable
assurance that an identity claimant is a legitimate entity and allowed to perform subsequent
actions available only to authenticated entities. Humans and machines are both capable of
using credential sets as well as other mechanisms such as cryptographic keys and tokens.

 Once authenticated, an entity generally desires subsequent access to other local or remote
entities (i.e., systems, networks, data, etc.). This subsequent access, referred to as
authorization, is controlled by an access control policy that enumerates the permissions or rights
associated with each entity and results in an access decision (i.e., allowed or denied) based on
a set of rules. Policies may be simple, for example, a specific entity may access another specific
entity, or complex, an entity with specific characteristics and conditions may access another
entity with specific characteristics and conditions. The access control model utilized determines
the simplicity or complexity of authorization and its implementation (e.g., through configuration)
serves as another area of focus for security testing.

A. Authentication Vulnerabilities

 Attackers looking to exploit authentication vulnerabilities target weaknesses in the
communication medium used to transport secret credentials, the secrets storage mechanism,
and/or in the authentication mechanism itself. Communication mediums, wired and wireless,
may be susceptible to what are known as sniffing attacks where an attacker is able to observe
secret credentials in an intelligible manner due to a lack of adequate cryptographic protections.
Inadequacy may come in the form of a failure to implement available cryptographic protections,
insecure (i.e., misconfigured) implementation, or weakness in the cryptographic mechanism
itself (e.g., weak or broken ciphers). The same cryptographic concepts apply to secrets storage.
If secret credentials are stored without cryptographic protections, an attacker can observe
intelligible secrets within the storage mechanism.

PNNL-29518

Authentication 3

 Provided enough time and resources, an attacker could brute force any secret credential. A
brute force attack against a secret credential may involve authentication attempts using all
possible combinations that comprise the secret credential scheme (i.e., complexity
requirements) and/or attempting to authenticate with credentials from one or more predefined
dictionaries until a successful authentication occurs. A brute force attack may also involve
attempts to reverse one or more cryptographic representations of the secret credential (e.g.
cracking a password hash). The success of brute force attacks is largely a function of secret
strength (i.e., length, character set, and/or cryptographic protections). Weaknesses in
authentication can be identified and assessed using various methods such as static and/or
dynamic code analysis, software composition analysis, vulnerability assessments, and
penetration testing. Each method has its use cases and may be performed during development,
post-release, by staff, or by independent third-parties.

 Static and/or dynamic code analysis involves evaluating application source code and/or run
time behavior for errors or conditions that may cause anomalous behavior. This is often done
using automated tools but may also be performed manually using code reviews (e.g. pair
programming or reviewing pull requests). Static and/or dynamic code analysis is often
performed by development teams or security teams supporting development to catch as many
potential vulnerabilities prior to release. An example may include the use of a debug option
during development that when set would bypass authentication. Such an option is likely not
meant to be included in a production release and static analysis, manual or automated, should
catch this vulnerability. Software composition analysis is a method of attempting to determine
software components used within an application and known vulnerabilities associated with those
components. For example, software composition analysis is performed on an application and
the analysis results reveal it uses a specific software library (i.e. version) vulnerable to an
authentication bypass as reported in the National Vulnerability Database. Software composition
analysis is typically an automated process that analyzes available source and binaries

PNNL-29518

Authorization 4

3.0 Authorization

 Authorization is the management of users' access to resources after being authenticated,
sometimes referred to as access control. The primary function of an authorization management
system is to control which users or processes can access certain objects and available
files. The Access control model filters users into assigned roles and associated groups to
efficiently manage authorization by applying privileges to these categories. These Privileges
control what a user is authorized to do on the network. There are four main types of
Authorization models that are often utilized in conjunction with one another to impose greater
control and safeguards, but also serve as a means of accountability to assess which users and
processes are accessing which objects.

 Attribute Based Access Control (ABAC) uses Access Control Lists (ACLs) to validate
attributes associated with specific users in alignment with the set of rules it has established. If
the required attribute (name, employee ID, birth date) associated with that user and that object
match up with what is on the ACL the user is authorized and granted access. If the user’s
attributes don't match the rules of the ACL, access is denied.

 Mandatory Access Control (MAC) is the strictest of all authorization models and is a rule-
based system where confidentiality is a primary concern, therefore the rules must be
implemented without exception. A primary example of this would be in the governmental sector
related to security clearance levels. All objects are assigned a label associated with clearance
level (top secret, secret, confidential, etc.) and given a category (department, work-group,
manager, project). Each user on this system is also assigned a label and category affiliation
that corresponds to the naming schema and rules set forth by the administrators. When a user
attempts to access objects on the system, the MAC checks that both the category and label
associated with the object matches the labels and categories associated with the user. If both
criteria are met the user is authorized to access that particular object, if one or none of the
criteria match then the user is denied access to that resource. These policies are set forth by
the system administrator and individual users cannot change access labels or categories.

 Discretionary Access Control (DAC) allows the owner of an object to assign permissions and
privileges at their discretion. In this model each object or file is given an individual ACL with user
names and work groups. Users or groups are allowed certain privileges as assigned by the
owner of the object. This model is employed on many desktop operating systems. A user
creates a file or document and then assigns what other users can read, modify, share etc.

 Role Based Access Control (RBAC) and Group based Access Control (GBAC) assign
attributes to a specific job position or role or group type rather than the individual user. A user
must be assigned a certain job role to access the associated documents and systems with that
role. A good example would be an individual is hired on as a human resource
administrator. That user would then have access to all documents associated with the role of
human resource administrator. In GBAC a user must be a member of a group to access the
objects associated with that group attribute. The user assigned the role of human resource
administrator would also get placed in the human resources group and have access to
associated objects housed under that group. If a user doesn't belong to the group or job role as
specified in the RBAC and GBAC they are denied permission to those objects.

PNNL-29518

Authorization 5

A. Authorization Vulnerabilities

 Often authorization vulnerabilities are a flaw located within the security architecture of the
vulnerable system when authorization models are not applied consistently if at all.
(CWE.mitre.org 2019) This type of vulnerability allows the user to access data or perform
actions they otherwise should not be permitted to do. An example of how this flaw is introduced
during implementation of new security architecture could be a developer not thinking like an
aggressor and not having the knowledge that headers and cookies can be modified to gain
access to objects. This can be a simple oversight or lack of knowledge in a developer’s skill
set. Further complicating the matter, if attributes or permissions aren't mapped out carefully in
the RBAC model, inherited permissions could allow access that should otherwise be denied.
Often these are tested initially during the development implementation before release, with
ongoing testing throughout the development life cycle.

 Authorization vulnerabilities are of major concern as they violate the CIA triad, a model
designed to help implement security policies within organizations. CIA stands for
Confidentiality, Integrity, and Availability. (Purcell 2018) Applied to this scenario Confidentiality
would be the set of rules allowing access to the intended object. Integrity would apply to the
data or objects being trustworthy and accurate without outside manipulation. Availability would
relate to reliable access to those objects for authorized users. With big data comes big
responsibility as often unauthorized access can lead to violations of personally identifying
information (PII), Protected Health Information (PHI), or Sensitive Information
(SI). Authorization vulnerabilities can incur catastrophic repercussions for companies and
organizations whose sensitive or classified information is at risk as well as individuals whose
PII, PHI, or SI is being compromised and used. These types of violations can lead to hefty
financial penalties from governmental agencies and require mandatory compliance of a
corrective action plan that will remediate such violations for the company or stakeholder who
wasn't able to protect the information.

 Attackers targeting vulnerabilities in authorization sometimes have already been
authenticated with legitimate user credentials and are generally looking for a way to bypass the
restrictions placed on that legitimate account in order to escalate privileges or gain access to
objects they shouldn't be able to view. Through privilege escalation the attacker can increase
their access on the compromised system and make changes and modifications to files and
objects or other user permissions, leading to further compromise.

 If web applications cache their pages, and don't use active secure session tokens to validate
credentials, another way an attacker might evade authorization checks is simply through
requesting direct access to that resource by typing in the specific destination or URL being used
to cache that specific file or object. This can be avoided though the use of active and
authenticated session tokens and making sure that all pages containing sensitive data are not
cached and visible externally

PNNL-29518

Test Setup 6

4.0 Test Setup

Authentication test setup

 The high-level setup that was established to perform the authentication tests is shown in
Figure 1. In this setup, the tests are conducted through a user interface device that has both
Windows and Kali Linux operating systems with at least one web browser installed. The user
interface device must also have software installed for a login cracker, web vulnerability scanner,
and a packet analyzer software. The user interface device must also be capable of performing
over-the-air Zigbee hardware packet analyzer. The user interface is located on the private
network connecting to a wireless gateway. On the private network is an Ethernet switch in which
CLS are connected, a router, and a firewall. An example of how varying system architectures
might be integrated into a network is shown in Figure 2, including a wireless system connected
to a private network via a local gateway, a wireless system connected to a Public network via a
shared gateway, a wired system that utilizes Ethernet or Power-over-Ethernet (PoE) based
communication and can be configured using a mobile device connected via a Wi-Fi gateway,
and a wireless system that utilizes Bluetooth Mesh both for communication and configuration via
a mobile device.

Figure 1. Authentication Test Setup

PNNL-29518

Test Setup 7

Figure 2. Varying System Architectures

Authorization Test Setup

 The test setup used to identify authorization vulnerabilities consist of a user interface device
with multiple operating systems, multiple web browsers, encoding and decoding software
applications, directory traversal fuzzing software, string searcher software, multi-threaded java
application designed to brute force directories and files names, an attack proxy, a java
framework for analyzing applications that communicate using the HTTP and HTTPS protocols,
and a web vulnerability scanner. On the private network is an Ethernet switch in which CLSs are
to be connected, a router, and a firewall.

PNNL-29518

Test Setup 8

Figure 3. Authorization Test Setup

PNNL-29518

Authentication Tests Defined 9

5.0 Authentication Tests Defined

 A total of eighteen tests were developed by Underwriters Laboratories (UL) and implemented by

PNNL in the connected lighting testbed to characterize the authentication vulnerabilities of

Connected Lighting Systems (CLSs). The tests explore the implementation of basic authentication

best practices (e.g., encrypting user credentials before transmitting them on the network) as well as

known technology-specific (e.g., the use of Zigbee default trust center, or the implementation

of JSON Web Token a.k.a. JWT replay protections) vulnerabilities.

Test Type Description

Test 1: Web

Authentication

Credentials

Transported over an

unencrypted Channel

Authentication Determine whether authentication credentials (e.g.,

username, password) are encrypted (e.g., using

HTTPS) prior to being transmitted on the network.

Additional detail is provided in the OWASP Testing

Guide1.

Test 2: Use of Default

Web Credentials

Authentication Determine whether system has default accounts (e.g.

admin) that, following installation, authenticate with

a default account username/password. Additional

detail is provided in the OWASP Testing Guide2.

Test 3: Weak Web

Lockout Mechanism

Authentication Determine whether a user account is locked within

10 minutes after the initiation of a brute-force

attack, or following 6 or more consecutive

authentication failures. Additional detail is provided

in the OWASP Testing Guide3.

Test 4: Authentication

Schema Bypass

Authentication Determine whether authentication credentials that

are included in the request header after a successful

login are removed from the header after an

authorized user logs out. Additional detail is

provided in the OWASP Testing Guide4.

Test 5: Insecure

Authentication

Credential Retention

Authentication Determine whether session cookies store insecure

(e.g., clear-text, unencrypted) authentication

credentials. Additional detail is provided in the

OWASP Testing Guide5.

Test 6: Session Timeout Authentication Determine whether a user is automatically logged

out from an active session following a period of

inactivity of more than 15 minutes. Additional detail

is provided in the OWASP Testing Guide6.

https://en.wikipedia.org/wiki/Zigbee
https://en.wikipedia.org/wiki/JSON_Web_Token

PNNL-29518

Authentication Tests Defined 10

Test Type Description

Test 7: Session Cookie

Destruction

Authentication Determine whether session cookies are properly

destroyed upon de-authentication or session

termination due to inactivity. Additional detail is

provided in the OWASP Testing Guide7 and

elsewhere8.

Test 8: Renewed

Authentication for Lost

or Terminated SSH

Sessions over a Remote

Interface

Authentication Determine whether stored data from the previous

SSH session can be used to bypass authentication

mechanisms during a new session creation.

Test 9: Web

Authentication

Username Enumeration

Authentication Determine whether authentication error messages

disclose authorized usernames, thereby facilitating

brute force attacks with known

usernames. Additional detail is provided in the

OWASP Testing Guide9.

Test 10: Use of Zigbee

Default Trust Center

Link Key

Authentication Determine whether the publicly known Zigbee

default trust center link key is used to obtain keys.

Test 11: JSON Web

Token (JWT) 'none'

Algorithm Validation

Authentication Determine whether a JSON Web Token (JWT) may

be used to bypass validation by utilizing 'none' for

the 'alg' field.

Test 12: Weak JSON

Web Token (JWT)

HMAC SHA256 Secret

Authentication Determine whether the JSON Web Token (JWT)

HMAC SHA256 secret can be obtained through a

brute force attack.

Test 13: Missing JSON

Web Token (JWT) 'jti',

'exp', and 'iat' Claims

Authentication Determine whether JSON Web Token (JWT) replay

protections have been implemented.

Test 14: Insecure Web-

Based Credential Set

Password Change

Authentication Determine whether a current password is required

during a password change procedure.

Test 15: Assuming User

Identity Through SAML

Login

Authentication Determines whether an attacker can log in as a

different user during SAML authentication using an

XML library vulnerability.

Test 16: MQTT

Authentication

Credentials

Authentication Determine whether the CONNECT packet sent from

a MQTT client to a MQTT broker discloses

authentication information.

PNNL-29518

Authentication Tests Defined 11

Test Type Description

Test 17: Bluetooth

Replay and On-The-Fly

Data Modification

Authentication Determine whether Bluetooth communication over a

web interface can be exploited by a replay or

modification of GATT operations, once the

BLE_component is connected to the designated

device.

Test 18: Identifying

Bluetooth Class of

Device/Service

Authentication Determine whether Bluetooth devices broadcast

Class of Device or Class of Service as part of their

discovery beacons.

Figure 4. Authentication Tests Defined

PNNL-29518

Authorization Tests Defined 12

6.0 Authorization Tests Defined

 An additional set of 4 authorization tests and one authentication test were developed based
off the OWASP testing guide as a test development and documentation guide to explore known
authorization vulnerabilities.

Test Type Description

TEST 1: Directory
Traversal

Authorization Determine whether access control can be
circumvented through manual manipulation or
software analysis of hidden directories and determine
if files and directories can be read and accessed
without proper authorization.

TEST 2: Bypass
Authentication
Schema

Authorization Determine whether the implementation of the
authorization schema for all roles restricts access to
resources when not authenticated.

TEST 3: Privilege
Escalation

Authorization Determine whether a user can elevate their privileges
to gain access to resources above their assigned role
or function.

TEST 4: Insecure
Direct Object
Reference

Authorization Determine whether authorization protocols and
access control lists allow for direct supplied user input
that allow or deny the retrieval of an object or file.

Figure 5. Authorization test Defined

Test 19: Bypass

Authentication with SQL

Injection

Authentication Determine if a prepared SQL statement can

bypass Authentication to gain login access

Figure 6. Additional Authentication Test Defined

PNNL-29518

Authentication testing guide 13

7.0 Authentication testing guide

A. Web Authentication Credentials Transported over an
Unencrypted Channel

Educational Description

Determine if your username and password are hidden from other people on the network. By

tracking the login process, you can check for credentials in the data that external parties would

be able to see.

Technical Description

This test uses a web proxy to log the authentication process and can determine if the transport

mechanism that is used to exchange web authentication credential sets between clients and

servers is protected using encrypted communication.

Required Tools

• Test system (e.g. general computing laptop, workstation, etc.)

• Network infrastructure (e.g. switch, hub, etc.)

• Web browser (e.g. Chrome, Firefox, Safari, IE, Edge)

• Web proxy (e.g. Burp, ZAP, etc.)

Steps

1. Establish a local private network using the network infrastructure

2. Connect DUT to the network

3. Connect test system to the network

4. Launch and configure the web proxy on the test system to proxy HTTP/HTTPS request traffic

5. Launch and configure the web browser to use the web proxy

6. Validate that web traffic is being proxied in the web proxy

Testing

1. Navigate to the DUT Login Page and supply authentication credentials

2. Examine the authentication request to the DUT Login Page in the web proxy and note the request

URI protocol used

Evaluation

This test is failed if the credentials are discovered in the web proxy.

B. Use of Default Web Credentials

Educational Description

Determine whether system has default accounts (e.g. admin) that, following installation,

authenticate with a default account username/password.

PNNL-29518

Authentication testing guide 14

Technical Description

This test determines if default web authentication credentials exist.

Required Tools

• Test system (e.g. general computing laptop, workstation, etc.)

• Network infrastructure (e.g. switch, hub, etc.) Web browser (e.g. Chrome, Firefox, Safari,
IE, Edge)

• Web proxy (e.g. Burp, ZAP, etc.)

• THC-Hydra (installed on test system)

Steps

1. Install THC-Hydra on the test system (if applicable)

2. Establish a local private network using the network infrastructure

3. Connect DUT to the network

4. Connect test system to the network

5. Launch and configure the web proxy on the test system to proxy HTTP/HTTPS request traffic

6. Launch and configure the web browser to use the web proxy

7. Validate that web traffic is being proxied in the web proxy

Testing

1. Navigate to the DUT Login Page and supply authentication credentials

2. Examine the authentication request to the DUT Login Page in the web proxy and note the request

method, request URI, and the parameters and arguments used

3. Configure and invoke THC-Hydra in the following manner:

hydra -L usernames -P passwords [DUT Web IP Address] http-post-form "[DUT HTTP POST

Form URI]:User=^USER^&Password=^PASS^:Login failed" -V -f

Evaluation

This test is failed by identifying default web credentials.

C. Weak Web Lockout Mechanism

Educational Description

This test determines if an account lockout mechanism is used and if a sufficient time delay has

been implemented.

Technical Description

Determine whether a user account is locked within 10 minutes after the initiation of a brute-force
attack, or following 6 or more consecutive authentication failures.

Required Tools

• Test system (e.g. general computing laptop, workstation, etc.)

PNNL-29518

Authentication testing guide 15

• Network infrastructure (e.g. switch, hub, etc.)

• Web browser (e.g. Chrome, Firefox, Safari, IE, Edge)

• Timer

Steps

1. Establish a local private network using the network infrastructure

2. Connect DUT to the network

3. Connect test system to the network

4. Launch the web browser

Testing

1. Navigate to the DUT Login Page and supply known bad or complex random authentication

credentials (perform 6 times or until an account lockout notification is presented)

2. Navigate to the DUT Login Page and supply known good authentication credentials (perform once

every 5 minutes until successfully authenticated or 15 minutes has elapsed)

Evaluation

This test is failed by identifying a weak or absent web account lockout mechanism.

D. Authentication Schema Bypass

Educational Description

Determine whether authentication credentials that are included in the request header after a

successful login are removed from the header after an authorized user logs out.

Technical Description

This test determines if an authentication schema bypass exists by directly accessing pages

requiring prior authentication.

Required Tools

• Test system (e.g. general computing Linux laptop, workstation, etc.)

• Network infrastructure (e.g. switch, hub, etc.)

• Web browser (e.g. Chrome, Firefox, Safari, IE, Edge)

• Web proxy (e.g. Burp, ZAP, etc.)

Steps

1. Establish a local private network using the network infrastructure

2. Connect DUT to the network

3. Connect test system to the network

4. Launch and configure the web proxy on the test system to proxy HTTP/HTTPS request traffic

5. Launch and configure the web browser to use the web proxy

6. Validate that web traffic is being proxied in the web proxy

PNNL-29518

Authentication testing guide 16

Testing

1. Identify the authentication URI and parameters

2. Identify authentication (e.g. "token" if not present in the URI)

3. Re-using authentication parameter/token/value after user logged out, execute the following bash

script:

for URL in `cat ${filename_output_spider}`; do echo $URL curl -v -m 5 -s -I $1 "$URL" 2>&1 |

grep HTTP/${http_version} | grep ${authenticated_message} done

4. Verify URIs associated with an authenticated portion of the web site returned an Authentication

header with the following terminal command

cat ${filename_output_spider} | stdbuf -oL grep -rl '${authenticated_message}' * | head -n1

Evaluation

This test is failed by verifying that some of the URLS belonging to authenticated area returned

an Authentication header.

E. Insecure Authentication Credential Retention

Educational Description

Determine whether session cookies store insecure (e.g., clear-text, unencrypted) authentication

credentials.

Technical Description

This test determines if the 'remember me' feature involved with web authentication is

implemented insecurely.

Required Tools

• Test system (e.g. general computing Linux laptop, workstation, etc.)

• Network infrastructure (e.g. switch, hub, etc.)

• Web browser (e.g. Chrome, Firefox, Safari, IE, Edge)

• Web proxy (e.g. Burp, ZAP, etc.)

 Steps

1. Establish a local private network using the network infrastructure

2. Connect DUT to the network

3. Connect test system to the network

4. Launch and configure the web proxy on the test system to proxy HTTP/HTTPS request and response

traffic

5. Launch and configure the web browser to use the web proxy

6. Delete all previous web browsing history, data, cookies, saved passwords, forms, etc.

7. Validate that web traffic is being proxied in the web proxy

Testing

PNNL-29518

Authentication testing guide 17

1. Navigate to the DUT Login Page, supply authentication credentials, and ensure the 'remember me'

feature is enabled

2. Examine the response in the web proxy and note the cookie value

3. Logout and terminate the web browser

4. Launch the web browser and navigate to the DUT Login Page

5. Examine the request in the web proxy and note the cookie value

Evaluation

This test is failed by discovering the password in the cookie.

F. Session Timeout

Educational Description

Determine whether a user is automatically logged out from an active session following a period

of inactivity of more than 15 minutes.

Technical Description

This test determines if an inactivity timeout implemented in the authenticated area of the web

application exists and is implemented securely.

Required Tools

• Test system (e.g. general computing Linux laptop, workstation, etc.)

• Network infrastructure (e.g. switch, hub, etc.)

• Web browser (e.g. Chrome, Firefox, Safari, Internet Explorer)

• Burp Suite

• Burp Suite extension: Session Timeout (TestBApp Store > Extension name: Session
Timeout Test)

Steps

1. Establish a local private network using the network infrastructure

2. Connect DUT to the network infrastructure

3. Connect testing system to the network infrastructure

4. Launch and configure Burp Suite on the test system to proxy HTTP/HTTPS request and response

traffic

5. Launch and configure the network adapter settings of the DUT to route traffic to use the web proxy

6. Log into the web interface of the DUT and navigate to site pages

7. Verify that the web traffic is being proxied in Burp Suite

8. Within Burp Suite, select Burp Extender

9. Within Burp Suite and with the Extender tab selected, select BApp Store

10. Search and install "Session Timeout Test" extension

Testing

1. Navigate to the DUT Login Page and login with valid authentication credentials

PNNL-29518

Authentication testing guide 18

2. Examine the response returned by the DUT for the request involving the DUT Login Page in the Site

Map or HTTP History of Burp Suite

3. Record a string (e.g. specific markup text) from the response that uniquely identifies the response as

the DUT Login Page (e.g.)

4. Right-click on the request in the Site Map or HTTP History of Burp Suite and select "Test for Session

Timeout"

5. Enter the string that will indicate the DUT response requires authentication, set the minimum and the

maximum session duration, and the testing interval

6. The extension issues requests to the DUT based on the durations and interval configured until a

response containing the string is detected

Evaluation

This test is failed if no session timeout occurs and the DUT has not implemented session

timeouts.

G. Session Cookie Destruction

Educational Description

Determine whether session cookies are properly destroyed upon deauthentication or session

termination due to inactivity.

Technical Description

This test examines if session cookies are properly destroyed upon deauthentication or session

termination.

Required Tools

• Test system (e.g. general computing Linux laptop, workstation, etc.)

• Network infrastructure (e.g. switch, hub, etc.)

• Web browser (e.g. Chrome, Firefox, Safari, IE, Edge)

• Burp Suite

Steps

1. Establish a local private network using the network infrastructure

2. Connect DUT to the network infrastructure

3. Connect test system to the network infrastructure

4. Launch and configure the web proxy on the test system to proxy HTTP/HTTPS request and response

traffic

5. Launch and configure the network adapter settings of the DUT to use the web proxy

6. Log into the interface of the DUT and navigate to pages within its web portal

7. Verify that web traffic is being proxied in the web proxy

Testing

PNNL-29518

Authentication testing guide 19

1. With Burp Suite proxy intercept turned off, navigate to the login page of the DUT's application

2. Log into the DUT's application using known good authentication credentials

3. Turn the intercept option 'on' in Burp Suite and refresh the authentication page to ensure only

current session data is available

4. Right-click on the request and select "Send to Repeater"

5. Within Burp Suite select the Repeater tab and record the cookie value from the 'params' tab of the

response

6. Disable Burp Suite's intercept and invoke the logout function of the DUT's application

7. Use the web browser's back button to attempt to return to a previously authenticated page

8. Repeat steps 1-5 and record the cookie value for comparison

9. Restore the old cookie value by replacing the current cookie and attempt to navigate to an

authenticated page

Evaluation

1. This test is failed if after using the web browser's back button, the user is still able to view or interact

with the DUT.

2. This test is failed if after invoking the DUT's logout function, the cookie value doesn't change.

H. Renewed Authentication for Lost or Terminated SSH Sessions over
a Remote Interface

Educational Description

Determine whether stored data from the previous SSH session can be used to bypass

authentication mechanisms during a new session creation.

Technical Description

This test checks if stored data from the previous SSH session is used to bypass

authentication/authorization mechanisms during a new session creation.

Required Tools

• Test system (e.g. general computing Linux laptop)

• Network infrastructure (e.g. switch, hub, etc.)

• Terminal (Linux), putty.exe (Windows), Arping/Netdiscover

Steps

1. Establish a local private network using the network infrastructure

2. Connect DUT to the network infrastructure

3. Connect test system to the network infrastructure

Testing

PNNL-29518

Authentication testing guide 20

1. Using a terminal, establish an SSH connection using the command, and supply the password for the

username when prompted:

ssh $(login_usr)@$(dut_ipaddr)

2. Unplug the network cable from the DUT

3. Wait one minute and reconnect the network cable to the DUT

4. Observe the state of the established SSH session in the terminal

Evaluation

This test is failed by the DUT not requiring renewed authentication after the network cable has

been disconnected from the DUT.

I. Web Authentication Username Enumeration

Educational Description

Determine whether authentication error messages disclose authorized usernames, thereby

facilitating brute force attacks with known usernames.

Technical Description

This test determines if authentication error messages disclose the existence of usernames which

may allow for username enumeration or account harvesting.

Required Tools

• Test system (e.g. general computing device, workstation, etc.)

• Network infrastructure (e.g. switch, hub, etc.)

• Web browser (e.g. Chrome, Firefox, Safari, IE, Edge)

Steps

1. Establish a local private network using the network infrastructure

2. Connect DUT to the network infrastructure

3. Connect test system to the network infrastructure

4. Launch the web browser on the test system

5. Clear the web browser's previous web browsing history, data, cookies, saved passwords, forms, etc.

6. Using the web browser, navigate to the DUT's authentication page

Testing

Provide authentication credentials using a known valid user name and an invalid password
If a known valid username is unavailable, attempt to provide common usernames with random
passwords (e.g. admin, administrator, root, support, operator, technician, developer, etc.)

Evaluation

This test is failed if returned error messages disclose authentication information such as "Incorrect

password".

PNNL-29518

Authentication testing guide 21

J. Use of Zigbee Default Trust Center Link Key

Educational Description

Determine whether the publicly known Zigbee default trust center link key is used to obtain

keys.

Technical Description

This test determines if the publicly known Zigbee default trust center link key is used.

Required Tools

• Test system (general purpose Linux computing system)

• Zigbee enabled device

• Atmel RZRAVEN flashed with Killerbee (Killerbee dongle)

• Wireshark

Steps

1. Insert the Killerbee dongle into the general-purpose Linux computing test system

2. Power on the DUT and an appropriate Zigbee enabled device

3. Launch a terminal on the test system and execute the command "zbstumbler -v" to determine the

Zigbee channel used by the DUT

4. Record the Zigbee channel used by the DUT

5. Launch a terminal on the test system and execute the command "zbwireshark -c ${Zigbee channel}

6. Configure Wireshark Zigbee ("ZigBee") protocol preferences for the "AES-128, 32-bit MIC" Security

Level to use key value "5A:69:67:42:65:65:41:6C:6C:69:61:6E:63:65:30:39" (Normal byte order)

7. Initiate a Zigbee pairing between the DUT and the Zigbee enabled device

Testing

Determine from the captured Zigbee traffic if a Transport Key frame (0x05) is observable. This

Transport Key frame will contain a network key (e.g.

"08:93:10:26:20:4c:22:98:2d:20:33:50:04:a0:61:50")

Evaluation

This test is failed by observing Transport Key frames in the captured Zigbee traffic.

K. JSON Web Token (JWT) 'none' Algorithm Validation

Educational Description

Determine whether a JSON Web Token (JWT) may be used to bypass validation by utilizing

'none' for the 'alg' field.

PNNL-29518

Authentication testing guide 22

Technical Description

This test determines if a JSON Web Token (JWT) may bypass validation by utilizing 'none' for the

'alg' field.

Required Tools

• Test system (general purpose Linux computing system)

• curl

• Wireshark

• Web browser (e.g. Chrome, Firefox, Safari, etc.)

• JWT Debugger (https://www.jwt.io)

Steps

1. Establish a local private network using the network infrastructure

2. Connect DUT (API endpoint) to the network infrastructure

3. Connect test system to the network infrastructure

4. Launch Wireshark and begin capturing network traffic

5. Launch a terminal to be used with curl

6. Launch a web browser and navigate to the Debugger available at https://www.jwt.io

Testing

1. Generate a successful authentication to the DUT or determine the fields used by the JWT from API

documentation

2. Record the returned JWT or manually generate a JWT that adheres to the format expected by the

DUT

3. If a JWT was captured, decode it using the web browser and https://jwt.io

4. Manipulate the JWT header to use 'none' as the value for the 'alg' field

5. Manipulate the JWT payload to include appropriate fields and values (e.g. "loggedInAs":"admin")

6. Encode the modified JWT ensuring the signature portion is removed and ends with a . (dot)

7. Transmit the modified JWT to the DUT to interact with a resource using curl

e.g. curl -X POST -d "user=admin&action=delete" http://${api-endpoint} -H "Authorization:

JWT ${jwt}"

Evaluation

This test is failed if the DUT takes an action on a resource with a modified JWT containing a

header with the 'alg' field set to 'none'. This indicates validation is not performed correctly.

L. Weak JSON Web Token (JWT) HMAC SHA256 Secret

Educational Description

Determine whether the JSON Web Token (JWT) HMAC SHA256 secret can be obtained through

a brute force attack.

Technical Description

https://www.jwt.io/

PNNL-29518

Authentication testing guide 23

This test attempts to brute force the JSON Web Token (JWT) HMAC SHA256 secret.

Required Tools

• Test system (general purpose Linux computing system)

• curl

• Wireshark

• Web browser (e.g. Chrome, Firefox, Safari, etc.)

• https://jwt.io Debugger

Steps

1. Establish a local private network using the network infrastructure

2. Connect DUT (API endpoint) to the network infrastructure

3. Connect test system to the network infrastructure

4. Launch Wireshark and begin capturing network traffic

5. Launch a terminal to be used with curl

6. Launch a web browser and navigate to the Debugger available at https://jwt.io

Testing

1. Generate a successful authentication to the DUT or determine the fields used by the JWT from API

documentation

2. Record the returned JWT or manually generate a JWT that adheres to the format expected by the

DUT

3. If a JWT was captured, decode it using the web browser and https://jwt.io

4. Generate a valid JWT (header and payload) using the data obtained during the decoding step

5. Manipulate the JWT signature secret value

6. Encode the modified JWT

7. Transmit the modified JWT to the DUT to interact with a resource using curl

e.g. curl -X POST -d "user=admin&action=delete" http://${api-endpoint} -H "Authorization:

JWT ${jwt}"

Evaluation

1. Repeat the process of manipulating the JWT signature secret value until secret values have been

exhausted (e.g. from a dictionary) or the requested action on the resource completes successfully

2. This test is failed if the DUT takes an action on a resource for all supplied JWT signature secret

values. This indicates a weak HMAC SHA256 secret was used.

M. Missing JSON Web Token (JWT) 'jti', 'exp', and 'iat' Claims

Educational Description

Determine whether JSON Web Token (JWT) replay protections have been implemented.

Technical Description

https://jwt.io/

PNNL-29518

Authentication testing guide 24

This test determines if JSON Web Token (JWT) replay protections have been implemented.

Required Tools

• Test system (general purpose Linux computing system)

• Wireshark

• Web browser (e.g. Chrome, Firefox, Safari, etc.)

• https://jwt.io Debugger

Steps

1. Establish a local private network using the network infrastructure

2. Connect DUT (API endpoint) to the network infrastructure

3. Connect test system to the network infrastructure

4. Launch Wireshark and begin capturing network traffic

5. Launch a web browser and navigate to the Debugger available at https://jwt.io

Testing

1. Generate a successful authentication to the DUT

2. Record the returned JWT 3. Decode the recorded JWT using the web browser and https://jwt.io

Evaluation

This test is failed if 'iat' (issued at), 'exp' (expiration timestamp), and 'jti' (nonce) claims do not

exist in the JWT payload. If these claims are absent, JWT replay attacks may be possible.

N. Insecure Web-Based Credential Set Password Change

Educational Description

Determine whether a current password is required during a password change procedure.

Technical Description

This test determines if a current password is required during a password change procedure.

Required Tools

• Test system (general purpose Linux computing system)

• Web browser (e.g. Chrome, Firefox, Safari, etc.)

Steps

1. Establish a local private network using the network infrastructure

2. Connect the test system to the network infrastructure

3. Launch the web browser on the test system

4. Clear the web browser's previous web browsing history, data, cookies, saved passwords, forms, etc.

5. Using the web browser, navigate to the DUT's authentication page

https://jwt.io/

PNNL-29518

Authentication testing guide 25

6. Provide authentication credentials using a known valid user name and an invalid password

Testing

Navigate to DUT's password change page

Evaluation

This test is failed if the current password is not required to change the password.

O. Assuming User Identity Through SAML Login

Educational Description

Determines whether an attacker can log in as a different user during SAML authentication using

an XML library vulnerability.

Technical Description

This test determines if an attacker can log in as a different user during SAML authentication

using a vulnerability in XML libraries.

Required Tools

• Test system (general purpose Linux computing system)

• Web browser (e.g. Chrome, Firefox, Safari, etc.)

• Burp Suite

• SAML Raider - Burp Suite extension

Steps

1. Open Burp Suite and click Extender tab and then BApp Store

2. In the Burp extensions list find SAML Raider, click on it, then click Install button

3. Launch and configure the web proxy on the test system to proxy HTTP/HTTPS request and response

traffic

4. Establish a local private network using the network infrastructure

5. Connect the test system to the network infrastructure

6. Launch the web browser on the test system

7. Clear the web browser's previous web browsing history, data, cookies, saved passwords, forms, etc.

8. Using the web browser, navigate to the DUT's authentication page

9. Create a new account with an email similar to existing user email, e.g. if user's email is

admin@mywebsite.com, a testing email will be admin@mywebsite.com.fakeweb.com

10. Logout DUT's user

Testing

1. Using the web browser, navigate to the DUT's authentication page

2. Launch Burp Suite, click on Proxy tab and press Intercept button

3. In the browser provide authentication credentials using a newly created user

PNNL-29518

Authentication testing guide 26

4. After successful sign-on modify Idp response in Saml Raider tab

5. Find NameId attribute and insert comment before fakeweb.com e.g.

admin@mywebsite.com.fakeweb.com admin@mywebsite.com.fakeweb.com

6. Click Forward button

Evaluation

This test is failed if you can login as admin@mywebsite.com. If yes, it means that your Service

Provider is not setup correctly, or use outdated XML packages

P. MQTT Authentication Credentials

Educational Description

Determine whether the CONNECT packet sent from a MQTT client to a MQTT broker discloses

authentication information.

Technical Description

This test checks if the CONNECT packet from a MQTT Client to a MQTT broker discloses

authentication information.

Required Tools

• Test System (General computing Windows laptop)

• Network infrastructure (e.g. switch, hub, etc.)

• Wireshark

Steps

1. Establish a local private network using the network infrastructure i.e. switch

2. Connect DUT (MQTT Client) to the network

3. Configure and connect DUT (MQTT Broker) on the Testing System to the network

4. Configure Wireshark to capture traffic on the local interface on the Testing System

Testing

1. Register the DUT (MQTT Client) device to the DUT (MQTT broker) using the web interface of the DUT

(MQTT Client)

2. Wireshark now captures this CONNECT packet from the DUT (MQTT Client) which is the packet of

Interest for the test

3. A Wireshark packet filter "tcp.port == 8883 AND ip.addr "DUT (MQTT Client)" is used to inspect the

connect message

4. View the protocol section on Wireshark of the captured packet, identify the username and password

fields

Evaluation

PNNL-29518

Authentication testing guide 27

This test is failed if in the event, the DUT (MQTT Client) credentials are in clear text; this gives

the attacker an opportunity to implement a MITM attack

Q. Bluetooth Replay and On-The-Fly Data Modification

Educational Description

Determine whether Bluetooth communication over a web interface can be exploited by a replay

or modification of GATT operations, once the BLE_component is connected to the designated

device.

Technical Description

This test exploits Bluetooth communication over the web interface once the BLE_component is

connected to the designated device.

Required Tools

• Two Testing Systems (General computing Kali Linux laptop)

• Network infrastructure (e.g. switch, hub, etc.)

• BTLEjuice Bluetooth Adapter (Generic/In-Built that support v4 Bluetooth)

• Two Bluetooth DUTs (Master and Slave)

Steps

1. Establish a local private network using the network infrastructure i.e. switch

2. Connect the Bluetooth Adapter to the testing systems and make sure the adapter is available from

the system

3. Connect Testing System 1 with "btlejuice framework" installed to the switch and launch the btlejuice-

proxy using the command "sudo btlejuice-proxy"

4. Connect Testing System 2 to the switch and run the following command "sudo btlejuice -u

'proxy(Testing System 1) IP Address' -w"

5. The web interface is now available at "http:/localhost:8080" on the Testing System 2

Testing

1. Using the web Interface on the Testing Laptop 2, a target DUT(Master) is selected from the list of all

available Bluetooth Low Energy (BLE) devices detected by the intercepting core

2. Once the interface is ready, Testing Laptop 2 typically clones/duplicates the DUT, thus forming a

dummy device that pretends to be the DUT(Master), use the associated BLE DUT(Slave) to connect to

the dummy device

3. All the intercepted GATT operations are then displayed with the corresponding services and

characteristics UUID, and the data associated with them

4. Replay GATT operations: A GATT operation can be replayed by right-clicking it and then selecting

write (or Read) button to replay the corresponding GATT operation.

5. On-the fly data modification: A service/characteristic can be hooked and modified to change the BLE

device operation

PNNL-29518

Authentication testing guide 28

Evaluation

This test is failed if the DUT (slave) responds to the replay/modification of GATT operations. This

indicates that the communication is not encrypted and/or a mechanism to sign the data with a

CSRK is not implemented

R. Identifying Bluetooth Class of Device/Service

Educational Description

Discover if the device is sending identifying information in signals that are constantly being sent

to all nearby Bluetooth devices.

Technical Description

Determine whether Bluetooth devices broadcast either Class of Device or Class of Service as part

of their discovery beacons.

Required Tools

• Testing System (General computing Kali Linux laptop)

• hcitool

• Bluetooth Adapter (Generic/In-Built)

Steps

1. Connect the Bluetooth Adapter to the Testing Laptop

2. The following commands use hciconfig to enable your Bluetooth Adapter. Run the following

commands:

a. hciconfig

b. hciconfig hci0 up

Testing

1. Scan for Bluetooth devices with hcitool on kali.

Note: Ensure the DUT is sending out discovery beacons (i.e. turn on discovery mode). Run the

following commands:

a. hcitool scan

b. hcitool inq

2. Note that the "hcitool scan" gives out the MAC address of the DUT, and the "hcitool inq" command

displays the clock offset and the class of device (CoD)

3. Convert the hex CoD to Binary and split it in the following fashion:

a. Bits 0-1: Format Type

b. Bits 2-7: Minor Device Class

c. Bits 8-12: Major Device Class

d. Bits 13-23: Major Service Class

4. These bits can be broken down to see what Bluetooth services DUT has configured

a. Bluetooth CoD: Format Type This is a 2-bit mask so there are 4 possible values 00,01,10,11

PNNL-29518

Authentication testing guide 29

b. Bits 2-7: Minor Device Class It should be noted that it’s possible to have more than one Minor Device

Class enabled but when this is the case the Major Device Class reported should be similar to the

primary Minor Device Class. Note: For each Major Device Class there are a possible 64 Minor Device

Class combinations as calculated by 6 possible bits.

c. 3. Bits 8-12: Major Device Class, the current Major Device Class Values are, Miscellaneous, Computer,

Phone, LAN/Network Access Point, Peripheral, Imaging, Wearable, Toy, Health, Uncategorized, and

Reserved.

d. 4. Bits 13-23: Major Service Class CoD Major Service Class

Bit 13: Limited Discoverable Mode CoD Major Service Class

Bit 14: (reserved) CoD Major Service Class

Bit 15: (reserved) CoD Major Service Class

Bit 16: Positioning (Location identification) CoD Major Service Class

Bit 17: Networking (LAN, Ad hoc, …) CoD Major Service Class

Bit 18: Rendering (Printing, Speaker, …) CoD Major Service Class

Bit 19: Capturing (Scanner, Microphone, …) CoD Major Service Class

Bit 20: Object Transfer (v-Inbox, v-Folder, …) CoD Major Service Class

Bit 21: Audio (Speaker, Microphone, Headset service, …) CoD Major Service Class

Bit 22: Telephony (Cordless telephony, Modem, Headset service, …) CoD Major Service Class

Bit 23: Information (WEB-server, WAP-server, …)

Evaluation

This test is failed if information collected in this phase is critical to covertly discovering and

collecting information about a target system.

S. Bypass Authentication with SQL Injection

Educational Description

Standard Query Language (SQL) Injection is a malicious attack where injected code interacts

with the back end of the database to display content that should not be viewable. By using

special characters that are used in the database configuration, errors may be produced which

indicate how to craft special statements that override authentication credentials. This test checks

whether these special characters are allowed.

Technical Description

 Perform SQL Injection on the DUT authentication page to test if the code is executed.

Required Tools

• Testing System (General computing Kali Linux laptop)

• Web browser (e.g. Chrome, Firefox, Safari, etc.)

• Web Proxy (OWASP ZAP, Burp Suite etc.)

Steps

1. Establish a local private network using the network infrastructure

PNNL-29518

Authentication testing guide 30

2. Connect the test system to the network infrastructure

3. Launch the web browser on the test system

4. Using the web browser, navigate to the DUT's authentication page

Testing

1. Enter a single ' in the user name login field and hit enter

2. Look to see if the query is displayed and how it is formatted

3. Craft a SQL statement that matches the formatting of the query and enter it into the username field.

(For example: ' or 1=1 –) Hit enter to see if you gain access

4. logout to the home screen

5. In the login field enter the name of a known user

6. In the password field enter a single ' and hit enter

7. Look at how the query is crafted, and reenter login credentials based off the set parameters. For

example: login: user1 Password: ' or 1=1 –

8. Craft another statement if the other attempts were not successful. For example; login: user1

Password: ' or 1=1 and password = 'user1' –

 login: user1 Password: 1=1' or pass123 You could also try Username: admin'-- Password: SELECT *

FROM members WHERE username = 'admin'--' AND password = 'password'

9. Other common injections into the login field to bypass authentication could be

• admin' --

• admin' #

• admin'/*

• ' or 1=1--

• ' or 1=1#

• ' or 1=1/*

• ') or '1'='1--

• ') or ('1'='1--

Evaluation:

This test is failed if a successful login happens bypassing Authentication and Authorization

protocols due to SQL injection or if a database can be dumped to reveal user names and

passwords or other sensitive and identifying information.

reference: https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/

https://www.netsparker.com/blog/web-security/sql-injection-cheat-sheet/

PNNL-29518

Authorization Testing Guide 31

8.0 Authorization Testing Guide

A. Directory Traversal

Educational Description

Web servers and applications manage files into physical directories on file systems as part of

their daily operation. When designed poorly, these systems and files can be accessed by an

aggressor using inputs that exploit these vulnerabilities to gain access to files and data that

should not otherwise be accessible.

Technical Description

Path Traversal tests are conducted through the use of input vectors enumeration and

methodical testing techniques. This test determines whether an attacker is able to circumvent

Access Control Lists (ACL) with the ability to read directories or files which they normally should

not be able to access i.e. "root directory or /etc/passwd"

Required Tools:

• Testing System (General computing Kali Linux laptop)

• Web browser (e.g. Chrome, Firefox, Safari, etc.)

• Web Proxy (OWASP ZAP, Burp Suite etc.)

• Encoding / Decoding tools

• Directory Traversal Fuzzer (e.g. DotDotPwn)

 (owasp.org 2016)

Steps

1. Establish a local private network using the network infrastructure

2. Connect the test system to the network infrastructure

3. Launch the web browser on the test system

4. Using the web browser, navigate to the DUT's authentication page

5. Log in and authenticate with user credentials.

Testing

1. Check for request parameters that could be used for file related operations

2. Check for unusual variable names or file extensions that can be manipulated

3. Open and run DotDotPwn Directory Traversal fuzzer for web applications in the testing system

laptop and document findings

 ./dotdotpwn.pl -m http -h 192.168.xxx.xx

4. Open OWASP ZAP and begin to proxy the web traffic through the appropriate browser. With

necessary permissions spider the web application and document findings.

http://dotdotpwn.pl/

PNNL-29518

Authorization Testing Guide 32

Evaluation

This test is failed if information collected in this phase is critical to covertly discovering and

collecting information about a target system, hidden directories, files, or objects that contain

sensitive information. Results from Dotdotpwn will show as "vulnerable" and OWASP ZAP will

give a risk rating of low, medium, or high priority depending on the vulnerabilities discovered in

this phase.

B. Bypass Authentication Schema

Educational Description

Users are assigned roles that are mapped to certain privileges and restrictions. A bypass flaw

allows aggressors to circumvent or go around security mechanisms without authenticating and

gain access to networks and resources.

Technical Description

This test checks the implementation of the authorization schema for all roles and whether

access to resources is allowed when not authenticated.

Required Tools:

• Testing System (General computing Kali Linux laptop)

• Web browser (e.g. Chrome, Firefox, Safari, etc.)

• Web proxy (OWASP ZAP, Burp Suite, etc.)

 (owasp.org 2014)

Steps

1. Establish a local private network using the network infrastructure

2. Connect the test system to the network infrastructure

3. Launch the web browser on the test system

4. Using the web browser, navigate to the DUT's authentication page

5. Log in and authenticate with Admin user credentials

Testing

1. Check for all privileged administrative functions such as "add new user" "delete user" etc. and see if

they are accessible through direct URL page request

2. Log in as unprivileged user 2 and check if you can access those same resources through direct URL

request as above (forced browsing)

3. Log out all users and see if those resources can be accessed without Authentication through URL

request or if it is denied

4. Launch OWASP ZAP and begin to proxy internet traffic

5. Check when logging into the DUT application if it verifies a successful log in on the basis of a fixed

value parameters

6. If fixed value parameters exist log out and attempt to manipulate through parameter modification

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

PNNL-29518

Authorization Testing Guide 33

7. Check for any shared drives or shared resources and whether assigned roles can access objects they

shouldn't have access to directly or indirectly

Evaluation

This test is failed if system manipulation results in collecting information or accessing resources

that should be prevented by the Access Control Model.

C. Privilege Escalation

Educational Description

When a user modifies their privileges or gains access to resources or functionality above, or

laterally outside their traditional role and it should have been prevented by a security

mechanism, they are said to have achieved privilege escalation.

Technical Description

This test determines whether vertical or horizontal privilege escalation is possible.

Vertical escalation: (access to privileged accounts)

Horizontal escalation (access to similarly configured accounts)

Required Tools:

• Testing System (General computing Kali Linux laptop)

• Web browser (e.g. Chrome, Firefox, Safari, etc.)

• Web proxy (OWASP ZAP, Burp Suite, etc.)

 (owasp.org 2017)

Steps

1. Establish a local private network using the network infrastructure

2. Connect the test system to the network infrastructure

3. Configure Browser to use OWASP ZAP as a proxy

4. Launch the web browser on the test system

5. Using the web browser, navigate to the DUT's authentication page

6. Log in and authenticate with user credentials

Testing

1. Explore the application manually looking for the ability to manipulate user groups

2. Explore the application manually looking for the ability to manipulate user profiles

3. Explore the application manually looking for the ability to manipulate condition values

4. Explore the application manually looking for the ability to manipulate IP values to get around IP

source identification methods

5. Look at issues the OWASP ZAP passive scanner has discovered

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

PNNL-29518

Authorization Testing Guide 34

6. Use the active OWASP ZAP active scanner with appropriate permissions to scan for vulnerabilities not

seen through manual inspection

Evaluation

This test is failed if privilege escalation is possible.

D. Insecure Direct Object References

Educational Description

Through the use of changing parameter values of user supplied input that point to direct

objects, aggressors can bypass authorization mechanisms and gain access to databases, file

systems and other useful information that should not be allowed.

Technical Description

This test takes user supplied input and checks to see if authorization protocols allow or deny the

retrieval of an object or file through direct user input.

Required Tools:

• Testing System (General computing Kali Linux laptop)

• Web browser (e.g. Chrome, Firefox, Safari, etc.)

• Web proxy (OWASP ZAP, Burp Suite, etc.)

• Two or more users (easier to assess and verify objects owned and referenced by
another user)

 (owasp.org 2014)

Steps

1. Map out all locations in the application where user input is used to reference objects directly

2. Establish a local private network using the network infrastructure

3. Connect the test system to the network infrastructure

4. Log into the web interface of the DUT and navigate to site pages and map out all locations in the

application where user input is used to reference objects directly

Testing

1. Attempt to modify the value of the parameters directly in the URL used to reference objects and

determine whether it is possible to retrieve objects belonging to other users bypassing authorization

2. Have two users signed in simultaneously for testing, one with administrative privileges and one

unprivileged user.

3. Have the administrative user create a new object, and see if the unprivileged user can manipulate

application functionality to gain access to that object through direct object reference

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

PNNL-29518

Authorization Testing Guide 35

4. Launch and configure the network adapter settings of the DUT to route traffic to use the web proxy

5. Log into the web interface of the DUT and navigate to site pages

6. Verify that the web traffic is being proxied

7. Inspect GET requests for previously mapped out locations and see if manipulation leads to an

insecure direct object reference.

Evaluation

This test is failed if the retrieval of an object or file through direct user input can be obtained.

PNNL-29518

Threat Profiles 36

9.0 Threat Profiles

 A threat profile is a type of modeling process that illustrates potential threats and attackers
that pose a risk to a company’s or business’s most critical assets. When creating threat profiles,
it is important to think like an attacker or someone wanting access to those assets. A systematic
evaluation of the available open source tools and resources readily at hand for the average user
should be considered, as well as points of entry from both physical and networked
locations. The threat intelligence information that is gathered is then used to form individual
threat profiles for each asset or threat actor. Threat profiles are important measures of the
threats that the organization is facing and are becoming standard practice as part of the
software development life cycle (SDLC). Threat profiles inform the cyber security personnel of
specific management requirements and help to list out the most pertinent associated risks. In
the case of CLSs not only do you have data flowing on the network, you have physical control of
the lighting systems themselves as well as the potential to access other connected networks,
systems and resources.

 Hackers are one of the more commonly known and talked about threat actors, with the
general goal of extorting money, private information, or creating denial of service from their
targets for personal gain. Advanced persistent threats (APTs) are another group of expert
hackers who focus their attention on a specific target. APT groups are often nation state,
meaning that their government authorizes the group to launch the attack and may fund those
efforts as well. Other threat actors to be aware of are script kiddies, low level, often unskilled
hackers playing around or poking the system for fun or sport to see what they can do or
access. Hackers and script kiddies however are not the only feasible threats that exist.

 Internal threats are also to be considered, such as contractors, employees, engineers etc. A
proper evaluation of what the assets are and who might want access to them help to develop a
greater understanding and risk profile for the specific objective and resource. Rarely is an
attacker able to obtain direct access to the assets they want. It is usually through circumventing
or going around security mechanisms already established and in place that access to the
desired object or resource is accomplished.

 Ideally threat modeling should be used at the earliest stages of development to avoid
potential vulnerabilities or costly rebuilds. Once these systems are built, it is equally important to
incorporate the NIST cybersecurity frameworks five functions to keep systems resilient from
outside influence or tampering. (nist.gov 2018) As technology continues to advance and we see
the industry continues to charge ahead by creating cyber physical systems such as smart cities
and smart grids, threat models are more important than ever to help mitigate the serious
consequences that can come from having the system or network exploited. One of the more
well-known models was developed by Microsoft in 1999 and is called STRIDE. The STRIDE
model identifies entities, trust boundaries, and assets by creating a data flow diagram that maps
out network traffic. This model also helps identify the classes of threats as STRIDE is a
mnemonic for Spoofing, Tampering, Repudiation, Information, Denial of service, and Elevation
of privileges. (docs.microsoft.com 2017)

 Threat profiles are currently being developed for implementation into the overall testing
process for the CLSs to aid and facilitate in exploring and characterizing additional
vulnerabilities that should be tested.

PNNL-29518

Threat Profiles 37

Figure 7. Microsoft Stride Model

 The purpose of this model is to continuously define, diagram, Identify, Mitigate and Validate
the associated asset and threats against it. The STRIDE model provides a good base for
implementing such safeguards. While there are many methods and strategies to develop
accurate threat profiles, it is important to pick a method that works effectively for the process
and systems that need protection. This could be model specific or a combination of different
methodologies to cover a broader or possibly more defined scope of analysis.

PNNL-29518

CLS Use Case 38

10.0 CLS Use Case

 Use cases are developed as a visual aid to help analysts understand activities and functions
performed by users or devices and simplify in depth modeling processes. Creating a use case
is the first step in building a threat profile. For CLSs it was important to create a use case based
on a real-world scenario that would show the data flows of lighting systems to better understand
where additional vulnerabilities exist outside of authentication and authorization models to
incorporate into future tests.

 A use case depicting fault detection data accessible through a restful API utilizing third party
applications is shown below along with three different ways in which data is collected from
CLSs.

Figure 8. Fault Detection Use Case General Data Flows

PNNL-29518

CLS Use Case 39

Figure 9. Fault Detection Use Case / Regular Interval Driven by Clock

Figure 10. Fault Detection Use Case / Event Driven Alert

PNNL-29518

CLS Use Case 40

Figure 11. Fault Detection Use Case / User Initiated Request

PNNL-29518

Conclusion 41

11.0 Conclusion

 With the newly developed tests and redefined testing guide documentation, in addition to the
implementation of use cases to help drive the creation of threat profiles for CLSs, the
opportunities to find and document exploits and vulnerabilities that exist within CLSs will help
lighting industry stakeholders better understand the challenges they may face when deploying
this emerging platform across their networks.

PNNL-29518

References 42

12.0 References

2014. 08 08. Accessed 10 6, 2019.
https://www.OWASP.org/index.php/Testing_for_Insecure_Direct_Object_References_(O
TG-AUTHZ-004).

2019. CWE.mitre.org. 06 20. Accessed 11 26, 2019.
https://cwe.mitre.org/data/definitions/285.html.

2017. docs.microsoft.com. 08 16. Accessed 10 29, 2019. https://docs.microsoft.com/en-
us/azure/security/develop/threat-modeling-tool-threats.

n.d. energy.gov. Accessed 11 1, 2019. https://www.energy.gov/energysaver/save-electricity-
and-fuel/lighting-choices-save-you-money/led-lighting.

2019. lighting.philips.com. Accessed 10 28, 2019.
https://www.lighting.philips.com/main/inspiration/connected-lighting.

2018. nist.gov. 08 10. Accessed 11 12, 2019. https://www.nist.gov/cyberframework/online-
learning/five-functions.

2016. OWASP.org. 04 1. Accessed 10 1, 2019.
https://www.OWASP.org/index.php/Testing_Directory_traversal/file_include_(OTG-
AUTHZ-001).

2014. OWASP.org. 08 8. Accessed 10 4, 2019.
https://www.OWASP.org/index.php/Testing_for_Bypassing_Authorization_Schema_(OT
G-AUTHZ-002).

2017. OWASP.org. 2 7. Accessed 10 4, 2019.
https://www.OWASP.org/index.php/Testing_for_Privilege_escalation_(OTG-AUTHZ-
003).

2014. OWASP.org. 08 08. Accessed 10 6, 2019.
https://www.OWASP.org/index.php/Testing_for_Insecure_Direct_Object_References_(O
TG-AUTHZ-004).

Purcell, Aaron. 2018. ibm.com. 01 16. Accessed 11 9, 2019. https://www.ibm.com/blogs/cloud-
computing/2018/01/16/drive-compliance-cloud/.

2019. Theclimategroup.org. Accessed 11 26, 2019. https://www.theclimategroup.org/project/led-
scale.

PNNL-29518

Pacific Northwest
National Laboratory

902 Battelle Boulevard

P.O. Box 999

Richland, WA 99354

1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

