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1.0 Specific Aims 
This 6-month $75k project focused on delivering the Foundational Aim and initiating work for Aim 
1, detailed below. The Foundational Aim lays the groundwork to complete Aims 1-3, which are 
anticipated to be funded fully under a future project (either externally or internally).  
 
Foundational Aim. Support tools and data required for automated structure elucidation 
The deep learning methods detailed below, which are at the core of delivering all Aims of this 
future project, require capabilities to 1) pre-process data (2D NMR spectra) so it is amenable to 
deep learning input and training, 2) appropriately structure a machine learning network to convert 
2D NMR spectra into chemical structures, and 3) validate the chemical soundness of the 
molecular structure output from the network. For this aim to succeed, we need to demonstrate 
successful data consumption (input), conversion to structures (network architecture), and 
sensible predicted chemicals (output). This foundational aim will deliver the tools and data 
required to ramp up for a full project (pending funding) that will deliver all Aims. 
 
Quick 6-month project deliverables: 
Deliverable 1. Input Training Data Format: automated conversion of ISiCLE density functional 

theory data into associated 2D NMR spectra (e.g. COSY, NOESY, HMBC) using spin 
dynamics simulation (spinach). Input structures will initially come from the Universal Natural 
Product Database, focusing on simple flavonoids. 
*Success is defined as demonstrating a new automated software tool that converts raw 
ISiCLE output into human- and machine- readable 2D NMR spectra. 

Deliverable 2. Operational Deep Learning Network Architecture: initial deep learning network 
(Keras-based) that consumes multiple 2D NMR spectrum and predicts molecular structure 
(SMILES). 

 *Success is defined as demonstrating a deep learning network that can create chemically-
sound SMILES output from an input of 2D NMR spectra. Note that there is no expectation at 
this point that the predicted molecular structure will be experimentally validated, because the 
network will not have been fully trained on the thousands of real datasets required to achieve 
accurate predictions, which is a full Aim 1 outcome. This Foundational Aim is only laying the 
groundwork for subsequent transfer-learning-based training on thousands of datasets. 

Deliverable 3. Output Molecular Structural Soundness: development of a deep learning 
discriminator, validated against a gold-standard SMILES structure validators (ChemAxon, 
rdkit), to ensure predicted molecules have realistic structures (i.e., not breaking known 
chemical bonding rules). 
*Success is defined as demonstrating a discriminator trained on over 1 million SMILES and 
can operate under 1 second per molecule (single node run). 
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The Foundational Aim lays the foundation for success in these Aims under a longer project: 
Aim 1. Build and validate deep learning tool for automated NMR structure elucidation 

Deep learning methods require abundant, diverse training data in order to realize a robust, 
generalized model and to avoid overfitting to an underrepresented subset of chemical space. To 
create sufficient 2D training spectra (COSY, NOESY, HMBC, HSQC, and TOCSY), known 
molecular structures from the Universal Natural Product Database and MetaCyc will be 
processed by our recently developed quantum chemistry-based property prediction pipeline – 
ISiCLE, the in silico chemical library engine – to calculate 13C and 1H chemical shifts with high 
fidelity, followed by processing with spinach, an open-source spin dynamics simulation library. 
We pioneered ISiCLE to identify known compounds and calculate chemical properties, which 
led to a large, now-funded NIH grant, and recently demonstrated sub-0.1 and sub-1.0 ppm error 
for 13C and 1H chemical shifts, respectively. This is sufficiently accurate for deep learning 
applications, with direct relevance to actual experimental data. Additionally, after initial training, 
transfer learning with experimental data (BMRB and in-house) will be employed to further refine 
the model. All tools in this project will be developed in Python, leveraging appropriate packages, 
for use across desktop, HPC (Constance/Cascade), and cloud compute resources (Azure, AWS, 
and as a stretch goal, Google Compute Engine). Our team, which includes computer science 
masters, has experience with modern software development practices (version control, 
continuous integration, testing), with exception of cloud computing, for which we have begun 
collaboration with M. Macduff and T. Martin (PNNL Cloud Resource team). 
 Details for the Deep Learning Neural Net: The deep learning core of this software will be built 
using Keras (a high-level neural network Python package), leveraging the expertise gained from 
the recent and continued success of DarkChem, a product of the DeepScience agile investment. 
This will include a (suite of) semi-supervised variational autoencoder(s), powered by 2D 
convolutional layers coupled to a dense prediction layer, capable of encoding the targeted 2D 
NMR spectra for each experiment (COSY, NOESY, HMBC, HSQC, and TOCSY) into a 
continuous numerical — or latent — representation of structure and property information. 
Furthermore, the neural net will include a valid structure discriminator to ensure points in latent 
space map to syntactically correct and chemically feasible structures. The beauty of our 
approach is that our custom training methods will result in a latent representation of chemical 
space, shaped according to chemical shifts, and subsequently used to generate structures from 
raw experimental data. The neural net will be designed to remove spurious noise, initially added 
synthetically, and then added from actual experimental samples, prior to decoding the correlated 
peaks directly into a molecular structure. 
As the software progresses, we will begin increasingly stringent assessments, in which a series 
of blinded controlled tests will be conducted to validate our approach. EMSL NMR facilities will 
be used to collect the COSY, NOESY, HMBC, HSQC, and TOCSY spectra (additional 
experimental details below, Aim 2). An associate will create of a set of test samples, without 
revealing the comprised molecule to either the computational or experimental teams. Initially, 
validation samples will consist of a single analyte out of a pre-determined set of 10 molecules 
purposefully removed from the training sets and associated libraries. As success is demonstrated 
with these out-of-sample, but known, compounds, the out-of-sample set size will be increased 
to 100. To add complexity and simulate real samples, after success with the pure blinded 
samples, the approach will be evaluated on a complex, but muted, background (e.g., diluted 
MPLEx extract of soil) in addition to the blinded analyte. This will directly test the denoising 
capability of the software. 
 
Aim 2. Apply approach to find novel molecules and pathways in SPRUCE soil samples  

The boreal peatland soil samples are in-hand, and will be provided by Kirsten Hofmockel. All 
samples will be extracted with the soil MPLEx extraction method developed in EMSL, followed by 
vacuum liquid chromatography using increasing increments (25%) of CH2Cl2 in hexane followed 
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by MeOH in CH2Cl2. Fractions will be monitored and further purified using TLC, focusing on high 
intensity peak regions determined from the in-hand LC-MS data. Samples will be analyzed using 
a Varian 600 to generate COSY, NOESY, HMBC, HSQC, and TOCSY spectra.  The Varian 600 
(EMSL) is equipped with a HCN z-gradient cold probe, including a cold 13C preamp. The sample 
will be dissolved in 260 μL CDCl3 and transferred to a susceptibility-matched Shigemi tube. 
Experiments will be collected using standard parameters. Finally, the raw data will be fed into our 
software for novel structure determination. When possible, new identified molecules will be placed 
within the context of (new) microbial metabolic pathways (via Pathway Tools, using the already 
obtained metagenomics data). 

 
Aim 3. Refine approach to find the minimum set and minimum quality of NMR experiments 
required 
Following initial tests, validation, and application through Aims 1 and 2, the neural network will be 
improved to decrease the number of experiments required to consistently generate correct 
structures. There is the potential that, e.g., only COSY/TOCSY, HSQC, and HMBC data will be 
required, meaning that less data would need to be captured in the lab. Using a Monte Carlo 
approach, individual data sets will be removed until we determine the minimum set of data 
required. Furthermore, noise will be added at increasingly high levels to understand the tradeoff 
between noise level and required number of experiments, as will tradeoffs between peak picking 
methods and peak picking delinquencies. 
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2.0 Objective 
The exact structures of most molecules in the environment are unknown and have never been 

identified or synthesized. Unambiguous molecular structure determination is currently restricted 
by the time and effort necessary to isolate compounds and perform de novo structure elucidation, 
either using NMR or x-ray crystallography. For example, (i) approaches for data analysis remain 
predominantly manual and (ii) elucidation success is sensitive to data quality and data processing. 
Both issues impede throughput and increase the likelihood of errors, especially for extracts of 
complex samples, which can have rich background signals. Deep learning has been 
demonstrated to excel in these cases by intelligently handling noise and enabling automation of 
previously intractable manual tasks. 

As the agents of the underlying chemical processes, small molecules mediate complex 
systems such as ecosystems, human physiology, and Earth’s atmospheric- and geo-chemical 
cycles. The full project that is primed by the foundation aim, will primarily couple molecular models 
and deep artificial neural networks to elucidate the novel structures comprising these complex 
systems. Furthermore, for our future specific application in boreal peatland soil microbiomes, the 
new molecules will be assigned to their associated metabolic pathway and in context of their 
ability to govern mesoscale nutrient-cycling rates in a relevant terrestrial-aquatic interface system. 
 

 



PNNL-29478 

Background and Significance 5 
 

3.0 Background and Significance 
Inadequate understanding of small molecules’ role in soil microbial functions limits accurate 

prediction of carbon (C) and nutrient cycling in terrestrial-aquatic ecosystems. Natural products 
(secondary or specialized metabolites), lignin and humic fragments, and degradation products 
are organic small molecules produced by plants and microbes, some of which are not directly 
involved in growth and reproduction, but are produced as a consequence of interactions with other 
organisms and/or the environment. These molecules enter the soil via leaf litter leachate, root 
exudate, and aboveground volatile emissions, or may be created directly in soil through microbes 
and biogeochemical reactions. Experimental evidence has shown that small molecules can 
drastically influence C and nutrient cycling in soils, for example, by reducing rates of litter 
decomposition or by directly suppressing bacterial and fungal growth (e.g., as with phenolics and 
terpenoids). Small molecules can affect C turnover rates to such an extent that their use has been 
proposed as a potential means for reinforcing C sequestration techniques. 

We currently do not know how the molecules interact or which compounds significantly impact 
biological activity in these systems. Our insufficient knowledge of small molecule composition 
and associated impact on microbial activity hinders accurate C cycling models. Our limited 
understanding is primarily due to the inability to identify the vast majority of molecules, track 
their fate, and assess their impact on metabolism through soil microbial communities. For this 
proposed work, target soils will come from the Spruce and Peatland Responses Under 
Changing Environments (SPRUCE) site. This boreal peatland climate change experiment 
represents an important terrestrial-aquatic interface, with minimal nutrient inputs, making 
decomposition and microbial metabolism the primary source of nutrients for plant growth. These 
ecosystems store 1/3 of the global soil C pool and are particularly vulnerable to C release with 
increasing temperatures. Characterizing the small molecules and associated microbial 
metabolic networks in this system will enable us to generate hypotheses about how peatlands 
will retain or release C and cycle nutrients in future climates. 
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4.0 Technical Milestones for the 6-month LDRD project 
• Deliverable 1. Input Training Data Format 

Success is defined as demonstrating a new automated software tool that converts raw 
ISiCLE output into human and machine readable 2D NMR spectra. 

• Deliverable 2. Operational Deep Learning Network Architecture 
Success is defined as demonstrating a deep learning network that can create 
chemically-sound SMILES output from an input of 2D NMR spectra.  

• Deliverable 3. Output Molecular Structural Soundness 
Success is defined as demonstrating a discriminator trained on over 1 million SMILES 
and can operate under 1 second per molecule (single node run) 
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5.0 Mission Relevance 
A large portion of DOE research programs seeks to understand the biological, 

biogeochemical, and physical processes at the molecular scale, requiring knowledge of the 
molecules present in complex samples. Specifically, DOE is interested in metabolic pathways, 
biological systems, active phenotypes/functions, industrial reactions, and these topics as they 
relate to biofuels, bioproducts, earth systems, and climate. This project wholly aligns with the 
specific goal of BER BSSD: gain a predictive understanding of complex biological systems. 
Furthermore, this project will demonstrate characterization of small molecules that may mediate 
pathogenesis in microbial pathogens (NSD), control molecular communication in microbiomes 
(for both NIH and DOE), and facilitate synthetic biology efforts across EBSD and NSD and biofuels 
work in EED. Initial proposals for follow-on funding after completion of all Aims will target the DOE 
(Early Career Research Program), NIH, and DHS. Within PNNL, this project clearly addresses 
key elements of the Decoding the Molecular Universe and Harnessing the Microbiome directorate 
objectives, and our initial application with soil from the SPRUCE aligns with terrestrial-aquatic 
interface goals. 

This proposed project pushes our team in a very different direction than any currently funded 
and anticipated projects, and is out of scope of recent DeepScience agile investment. Whereas 
our growing standards-free approaches rely on predicting chemical properties from molecular 
structures of known chemicals, the proposed work will focus entirely on the true unknowns, that 
is, the molecules in samples whose structures have never been determined. There are no known 
existing groups pursuing the approach described here, and success in this project would 
represent a major leap forward for NMR-based de novo structure elucidation.  
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6.0 Results and Discussion form Project 
Neural networks are increasingly being used in computational chemistry for property 

prediction and new molecule generation. Previous work by this group has created a variational 
autoencoder called DarkChem that takes in SMILES strings, learns how to represent in a 
compressed vector form, and then decode that representation back to a SMILES string. However, 
new molecules generated by creating slight variations in the compressed vector tend to be invalid 
SMILES strings and thus invalid molecules. Through this project, our team has been working on 
an additional network to determine whether a SMILE string is syntactically valid to improve 
DarkChem’s output. 

To create this network, data representing both ‘valid’ and ‘invalid’ SMILES is needed. Valid 
SMILES were collected from various chemical databases representing the chemical space of 
interest. Invalid SMILES are created by three methods: simple string perturbations, a Markov 
chain model, and DarkChem’s invalid output. The perturbing method attempts to make invalid 
SMILES as close to valid SMILES as possibly by making changes to valid SMILES strings: 
switching characters, deleting characters, and combinations thereof. The Markov chain model is 
trained on SMILES from the database and then constructs SMILES character-by-character based 
on the learned probability of the next character given the previous one. It creates mostly invalid 
SMILES. 

The neural network uses the encoder structure from the DarkChem network, then adds a 
dropout layer to prevent overfitting on the data and a fully connected dense layer. A sigmoid 
activation is used to make the final prediction probability of ‘valid’ or ‘not valid’. 

As numerous invalids may be generated based on the fixed set of valids, we tested different 
methods for training on imbalanced data, where one class (invalids) is overrepresented in training 
data compared to the other class. Repeating the valids to equal the number of invalids 
(upsampling) produces the fewest false positives, or invalid SMILES identified as valid. The lowest 
number of false predictions occurs when networks are combined in an ensemble, where 
predictions are averaged from five networks train on upsampled data and five train on 
downsampled data, where invalid SMILES are randomly selected to equal the number of valids. 

Initial results have been promising, with most training methods achieving above 98% accuracy 
on a balanced-class reserved set of data . Further investigation is needed to make sure the 
network is learning the difference between valid and invalid SMILES syntax rather than 
differences in the methods of construction of the dataset.  

 
Figure 1. The first column represents the amount of unique valid (red) and 
invalid (blue) SMILES available, followed by the number of samples seen 
by the network in the two best-performing individual networks.  
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Figure 2. Five different measures comparing the two most successful 
individual networks with their ensembled counterpart, evaluated on the 
same reserved set of 50,000 valids and 50,000 invalids.  F1-score is the 
harmonic mean of precision and recall, or the percent of SMILES predicted 
valid that are actually valid and the percent of actually valid SMILES 
predicted to be valid. In the negative case, this is the harmonic mean of 
the percent of SMILES predicted invalid that are actually invalid and the 
percent of actually-invalid data that is predicted invalid. The AUC-ROC is 
the area under the AUC-ROC curve, which shows the true positive and 
false positive rates at all possible classification thresholds. Accuracy is the 
number of correctly identified observations divided by the total number of 
observations. 

 
 

Another deliverable of this project was to develop a new automated software tool that converts 
raw ISiCLE output into human and machine readable 2D NMR spectra. The primarily focus was 
developing a software stack that converts quantum chemical (i.e., density functional theory) data 
into multiple types of two-dimensional spectra. Currently, this stack is based in MATLAB, but will 
soon be fully-integrated into python in the near future due to being more compatible and flexible 
with other tools our team has/are developed/developing. A major piece of this stack being 
spinach; a fast, polynomial-complexity scaling spin-dynamic simulation, to wit, we run NWChem 
output data through this stack—and thus spinach; a tool were calling N2S. The resulting spectra 
from this process will eventually be concatenated as an individual input (i.e., batch) to a multi-
channeled convolutional neural network in subsequent projects. Each channel will consist of a 
single two-dimensional spectra, followed by a series of convolution and pooling layers. It is 
important to note that this sequence of layers is architecturally-based on Google’s Inception (v2) 
framework, and not the conventional VGG16 (i.e., repeated convolution-pooling layers). This 
architecture was chosen due to objectively outperforming VGG16 models, but also other major 
contributors’ systems, such as Facebook’s DenseNet, in terms of accuracy and computational 



PNNL-29478 

Results and Discussion form Project 10 
 

efficiency. Currently unnamed, this neural network will allow us to represent chemical space from 
another perspective, and explore said space in ways that have not been performed before, thus 
potentially providing tremendous amounts of insight.  
 

 

Figure 3: Individual spectra, known as nuclear magnetic resonance 
spectra (NMR), of molecules provide insight to said molecule. Above, a 
NOESY spectra generated using our tool developed under this project 
(NWChem output to spinach software) of sucrose shows spin 
polarization from one nuclei to another through cross-relaxation, shining 
light on its resonance; something the convolutional neural network will be 
able to learn and understand in order to automatically determine the 
underlying molecular structure. 
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