

Preliminary Enhanced LAW Glass Formulation Algorithm

February 2022

NA Lumetta DS Kim JD Vienna

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.**

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: <u>reports@adonis.osti.gov</u>

Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) email: orders@ntis.gov <<u>https://www.ntis.gov/about</u>> Online ordering: <u>http://www.ntis.gov</u>

Preliminary Enhanced LAW Glass Formulation Algorithm

February 2022

NA Lumetta DS Kim JD Vienna

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99354

Summary

This report summarizes the Preliminary Enhanced Low-Activity Waste Glass Formulation Algorithm (GFA), its background information, and the calculations it performs.

The Preliminary Enhanced Low-Activity Waste GFA is a tool that has been developed in MATLAB to formulate glass for a given waste composition while attempting to maximize waste loading. It is intended for use at the Hanford Tank Waste Treatment and Immobilization Plant, where nuclear waste will be vitrified into glass. The formulated glass is required to satisfy several processing and product quality constraints. In addition, calculations must account for associated uncertainties in constraint prediction and measurement. The GFA adheres to Pacific Northwest National Laboratory nuclear quality assurance procedures and has been validated and verified.

This revision represents a significant change from the original report, keeping the same outline and overarching ideas. The technical content has been heavily modified and amended predicated upon the addition of the EWG 2020 Glass models.

There will be a minor revision following additions to the algorithm this year, which will likely not touch the current content, but rather add a couple of new sections to the report.

Acknowledgments

The authors gratefully acknowledge the financial support provided by the Department of Energy Office of River Protection's Waste Treatment and Immobilization Plant Project, managed by Tom Fletcher, with technical oversight by Albert Kruger.

The authors thank Xiaonan Lu (PNNL) for her technical review, Maura Zimmerschied (PNNL) and Susan Tackett (PNNL) for their editorial review, Renee Russell (PNNL) and Will Eaton (PNNL) for their leadership and guidance, and David MacPherson (PNNL), Russell Swannack (PNNL), and Chrissy Charron (PNNL) for programmatic support during the conduct of this work.

Acronyms and Abbreviations

CRV	concentrate receipt vessel
DFLAW	direct-feed, low-activity waste
DOE	United States Department of Energy
DST	double-shell tank
EMF	Effluent Management Facility
GFA	glass formulation algorithm
GFC	glass-forming chemical
HLW	high-level waste
ID	identification
IDF	Integrated Disposal Facility
ILAW	immobilized low-activity waste
K-3	Monofrax [®] K-3 TM spinel refractory material
LAW	low-activity waste
MFPV	melter feed preparation vessel
MFV	melter feed vessel
NQAP	Nuclear Quality Assurance Program
PCT	product consistency test
PERT	Program Evaluation and Review Technique
RSD	relative standard deviation
TOC	total organic carbon
TSCR	Tank-Side Cesium Removal Facility
VHT	vapor hydration test
WTP	Hanford Tank Waste Treatment and Immobilization Plant

Contents

Summa	ry			ii
Acknow	vledgme	nts		iii
Acrony	ms and A	Abbrevia	tions	iv
Content	s			v
1.0	Backgr	ound		1.1
	1.1.	Quality .	Assurance	
2.0	Process	Descript	ion	2.1
3.0	Calcula	tions		3.1
	3.1	LAW G	ass Formulation Constraints and Property Models	3.1
		3.1.1	Property and Composition Constraints	3.1
		3.1.2	Property Model Prediction Uncertainties	
	3.2	Glass Fo	rmulation Optimality Criteria	
4.0	Technic	cal Layou	t of the MATLAB Script	4.1
	4.1	Start-Up	and Program Inputs	4.1
5.0	NQAP	Validatio	n and Verification	5.3
6.0	Results Summary and Future Work			
7.0	Referen	nces		7.1
Append	lix A – C Standar	Componer d Deviati	nt Retention Factors, Minimum Reportable Quantities, and Relative ons	A.1
Append	lix B – V	Waste Con	npositions Used for Testing	B.1
Append	lix C – N	Aodel Ter	ms	C.1
Append	lix D – C	Glass Var	iance-Covariance Matrices	D.1
Append	lix E – T	erms Use	ed for Composition Uncertainty Calculations	E.1

Figures

2.1	Visual Depiction of Glass Formulation Method used by the Preliminary
	Enhanced LAW Glass Formulation Algorithm Associated with Plant Operations 2.1

Tables

3.1	LAW Glass Property Constraints	3.1
3.2	Minimum and Maximum Limits on Specific Glass Components	3.2
4.1	Algorithm Folder Structure and File Description	4.1
5.1	Results from Software Control Package Testing Comparison	5.3
A.1	Retention Factors Used to Calculate Remaining Ratios of Components after Removal of Evaporate Bottoms	A.1
A.2	Minimum Reportable Quantities and Relative Standard Deviations for Composition Uncertainties	A.2
B.1	Waste Compositions by Element in mg/L, with Radionuclides in mCi/L, Analyzed by the Preliminary Enhanced LAW Glass Formulation Algorithm	B.1
C.1	Product Consistency Test (PCT)-B Model Terms and Statistics	C.1
C.2	PCT-Na Model Terms and Statistics	C.2
C.3	Vapor Hydration Test Model Terms and Statistics	C.3
C.4	K-3 Corrosion Model Terms and Statistics	C.4
C.5	Sulfur Model Terms and Statistics	C.4
C.6	Viscosity Model Terms and Statistics	C.5
C.7	Electrical Conductivity Model Terms and Statistics	C.6
D.1	Variance/Covariance Matrix for Product Consistency Test-B Model	D.1
D.2	Variance/Covariance Matrix for Product Consistency Test-Na Model	D.2
D.3	Variance/Covariance Matrix for Vapor Hydration Test Model	D.3
D.4	Variance/Covariance Matrix for K-3 Neck Corrosion Model	D.4
D.5	Variance/Covariance Matrix for Sulfur Model	D.5
D.6	Variance/Covariance Matrix for Viscosity Model	D.6
E.1	Minimum, Maximum, Most Likely, and Nominal Values for the Glass-Forming Chemical Compositions	E.1
E.2	Minimum, Maximum, and Most Likely Values for the Natural Logarithm of the Melter Decontamination Factor	E.12
E.3	Oxide Conversion Factors for Chemical Elements and Radionuclides and Specific Activities for Radionuclides	E.13

1.0 Background

The United States Department of Energy (DOE) is responsible for managing the legacy tank waste stored at the Hanford Site. To facilitate treatment, the low-activity waste (LAW) fraction will be separated from the waste managed as high-level waste (HLW), each of which has specific constraints surrounding its processing. To initiate treatment in a timely manner, the LAW fraction will be treated in advance of completion of the entire plant through the Direct-Feed, Low-Activity Waste (DFLAW) process that will use the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW Facility, the Effluent Management Facility (EMF), the WTP Analytical Laboratory and supporting facilities. The current DFLAW flowsheet is graphically summarized in Figure 1.1. Double-shell tank (DST) waste will be filtered, and Cs will be removed by ion-exchange in the Tank-Side Cesium Removal Facility (TSCR) and returned to the interim LAW storage tank (ILST, nominally 241-AP-106). Decontaminated waste will be blended with melter off-gas condensate concentrate in the concentrate receipt vessel (CRV). The CRV will be sampled, and the LAW samples analyzed for chemical and radiochemical composition at the WTP Analytical Laboratory. Based on the analysis results, a compliant and processable glass will be formulated using the Glass Formulation Algorithm (GFA). The formulation prescribed amount of LAW and glass forming chemicals (GFC's) will be transferred to the melter feed preparation vessel (MFPV). The melter feed batch will be mixed, sampled, and then transferred to the melter feed vessel (MFV) where it will be continuously fed to the melter. Melter feed will be converted to a molten glass and offgas in the melter. Off-gases will be treated with a fraction of the off-gas content being collected for recycle the remainder being captured on filters or discharged. Off-gas condensate will be transferred to EMF and evaporated with the concentrate stream being recycled to the CRV and the dilute stream being further treated and discharged. The glass melt will be poured into containers and cooled into a solid glass waste form called immobilized LAW (ILAW). ILAW will be disposed on-site in the Integrated Disposal Facility (IDF). This flowsheet model can be seen in Figure 1.1.

Figure 1.1. Simplified DFLAW flowsheet.

The ability to increase the ratio of waste to GFCs in glass, also referred to as waste loading, is favorable. It decreases the required number of containers which need to be handled and may increase the rate which LAW is processed.

The purpose of the Preliminary Enhanced LAW GFA is to computationally formulate LAW glass compositions given a waste composition and specific constraints, while applying all property and measurement uncertainties. It does this by determining the addition of GFCs and their relative ratio to the waste.

All the calculations performed in the algorithm are based on those found in the Preliminary ILAW Formulation Algorithm Description (Kim and Vienna 2012). However, differing from the previous GFA, this document uses the processing and product quality models described in Vienna et al. (2021).

1.1. Quality Assurance

This work was performed in accordance with the Pacific Northwest National Laboratory Nuclear Quality Assurance Program (NQAP). The NQAP complies with U.S. Department of Energy Order 414.1D, Quality Assurance, and 10 CFR 830, Subpart A, *Quality Assurance Requirements*. The NQAP uses American Society of Mechanical Engineers Standard NQA-1-2012, *Quality Assurance Requirements for Nuclear Facility Application*, as its consensus standard, and NQA-1-2012, Subpart 4.2.1, as the basis for its graded approach to quality.

The NQAP works in conjunction with Pacific Northwest National Laboratory's laboratory-level Quality Management Program, which is based upon the requirements as defined in U.S. Department of Energy Order 414.1D, *Quality Assurance*, and 10 CFR 830, *Nuclear Safety Management*, Subpart A, *Quality Assurance Requirements*.

The work of this report was performed with a technology readiness level of 8 due to the high-assurance classification of the software under PNNL's NQAP.

2.0 Process Description

The Preliminary Enhanced LAW GFA follows all the assumptions used in Kim and Vienna (2012) regarding the LAW Facility process and the WTP Analytical Laboratory's analytical methods and uncertainties. Waste compositions are assumed to be analyzed for all components in the CRV, using three samples. This means that only two composition inputs are used for glass formulation: CRV waste composition and GFC compositions. The GFC compositions and composition uncertainties are specified by the vendor. GFC additions are the same as those specified in Kim and Vienna (2012), with the addition of chromium, vanadium, and tin oxides and the removal of sodium carbonate, borax, and hematite. The GFC additions to the waste are used to obtain the necessary composition of the final glass waste form to satisfy the associated regulatory and property constraints. This process flow can be seen in Figure 2.1. Per the process described by Kim and Vienna (2012), analytes are converted into their corresponding oxides, and radionuclide masses are added element by element to determine concentration.

Figure 2.1. Visual Depiction of Glass Formulation Method used by the Preliminary Enhanced LAW Glass Formulation Algorithm Associated with Plant Operations

The off-gas system captures varying amounts of specific melter feed components which partition to offgas during melter operations, as indicated by the retention factors (v_i) in 7.0Appendix A. During plant operations, the EMF concentrates are recycled to the CRV (Figure 1.1). The EMF is not specifically accounted for in the GFA as analyses of CRV content are used in glass formulation. The specific retention factors used in the algorithm are assumptions and may change in the future.

3.0 Calculations

This section summarizes the calculations used in the Preliminary Enhanced LAW Glass Formulation Algorithm. For a detailed description of all the equations used to model optimization and uncertainty, see Kim and Vienna (2012). The calculation validation methodology is described in Section 5.0.

3.1 LAW Glass Formulation Constraints and Property Models

3.1.1 Property and Composition Constraints

Glass formulation is subject to property and composition constraints to meet criteria for processing and storage. Overall waste loading is limited by alkali and sulfur content, and other property constraints use a mix of linear and quadratic terms to limit specific components. A summary of these constraints, taken from Vienna et al. (2021), can be found in Table 3.1. Also, the model coefficients used to predict each of these properties can be found in Appendix C.

Waste Loading Rule	Limit
Slow-Cooled Glass Crystallization Constraint	$w_{Al_2O_3} + 0.28 \times (w_{Na_2O} + 0.66w_{K_2O}) \le 15.800 \text{ wt\%}$
Slow-Cooled Glass Crystallization Constraint	$w_{Ca0} + 0.528 \times (w_{Na_20} + 0.66w_{K_20}) < 20.840 \text{ wt\%}$
Melter Crystallization Constraint	$w_{ZrO_2} - 0.33 w_{Na_2O} < 3.700 \text{ wt\%}$
Melter Crystallization Constraint	$w_{SnO_2} < 4.500 \text{ wt}\%$
Pairwise Correlations Constraint	$13.500 \text{ wt\%} < w_{Na_20} + 0.66 w_{K_20} + 2.07 w_{Li_20} < 27.018 \text{ wt\%}$
Pairwise Correlations Constraint	$w_{SiO_2} + 1.697 w_{Al_2O_3} < 61.600 \text{ wt\%}$
Property	Limit
Melter SO ₃ Tolerance	$w_{SO_3}(wt\%, before retention) < w_{SO_3}^{MT}(wt\%)$
Product Consistency Test (PCT)-Na Response	$\widehat{PCT_{Na}^{NL}}(g/m^2) < 2$
PCT-B Response	$\widehat{PCT}_B^{NL}(g/m^2) < 2$
Vapor Hydration Test (VHT) Pass/Fail Probability Score	P(g) < 0.190
Viscosity at 1150 °C	$20 < \eta_{1150}(P) < 80$
Electrical Conductivity at 1150 °C	$0.12 < EC_{1150}$ (S/cm) < 0.59
K-3 ^(a) Neck Corrosion at 1208 °C	$k_{1208}(\text{inch}) \le 0.04$

Table 3.1. LAW Glass Property Constraints, detailed in Vienna et al. (2021)

a. K-3 is Monofrax K-3 spinel refractory material.

In addition, specific components are subject to minimum and maximum concentrations within the glass. These can be seen in Table 3.2, which is taken from Lu et al. (2021).

Component	Range	
Al ₂ O ₃	0.035	$\leq g_{Al_2O_3} \leq 0.1475$
B ₂ O ₃	0.06	$\leq g_{B_2O_3} \leq 0.1383$
CaO	g _{Ca0}	≤ 0.1278
Cl	g cı	≤ 0.0117
Cr ₂ O ₃	$g_{Cr_2O_3}$	≤ 0.0063
F	g_F	≤ 0.013
Fe ₂ O ₃	$g_{Fe_2O_3}$	≤ 0.1198
K ₂ O	g_{K_2O}	≤ 0.059
Li ₂ O	g_{Li_20}	≤ 0.043
MgO	g_{MgO}	≤ 0.0502
Na ₂ O	0.0247	$\leq g_{Na_2O} \leq 0.2657$
SO ₃	g _{so3}	≤ 0.0163
P ₂ O ₅	$g_{P_2O_5}$	≤ 0.0403
SiO ₂	0.3352	$\leq g_{SiO_2} \leq 0.5226$
TiO ₂	g _{TiO₂}	≤ 0.0501
V ₂ O ₅	$g_{V_2 O_5}$	≤ 0.0409
ZnO	g _{Zn0}	\leq 0.0582
ZrO ₂	0.02	$\leq g_{ZrO_2} \leq 0.0675$

Table 3.2. Minimum and Maximum Limits on Specific Glass Components (mass fraction, g)

3.1.2 Property Model Prediction Uncertainties

A set of uncertainties in property measurement and prediction, must be accounted for while determining glass compositions that will satisfy property constraints with a specified confidence. Different confidence intervals are used for the constrained properties, each are applied at a 90% confidence level (CL%). The various confidence intervals and their explanations, taken from Vienna and Kim (2014), can be found in Table 3.3.

Property	Interval ^(a)	Equation ^(b)
РСТ	SUCI	See section 3.1.2.1
VHT	UCI	$Z_{\alpha/2}\sqrt{\mathbf{g}^{\mathrm{T}}(\mathbf{G}^{\mathrm{T}}\mathbf{V}\mathbf{G})^{-1}\mathbf{g}}$
Viscosity	TSCI	$t_{1-\frac{\alpha}{2},n-p}\sqrt{M\mathbf{g}^{\mathrm{T}}(\mathbf{G}^{\mathrm{T}}\mathbf{G})^{-1}\mathbf{g}}$
Electrical Conductivity	TSCI	$t_{1-\frac{\alpha}{2},n-p}\sqrt{M\mathbf{g}^{\mathrm{T}}(\mathbf{G}^{\mathrm{T}}\mathbf{G})^{-1}\mathbf{g}}$
Melter SO ₃ Tolerance	UCI	$t_{1-\alpha,n-p}\sqrt{M\mathbf{d}^{\mathrm{T}}(\mathbf{D}^{\mathrm{T}}\mathbf{D})^{-1}\mathbf{d}}$
K-3 Neck Corrosion	UCI	$t_{1-\alpha,n-p}\sqrt{M\mathbf{g}^{\mathrm{T}}(\mathbf{G}^{\mathrm{T}}\mathbf{G})^{-1}\mathbf{g}}$

Table 3.3. Prediction Uncertainty Interval Types and Equation Forms

(a) SUCI = simultaneous upper confidence interval; UCI = upper confidence interval; TSCI = twosided confidence interval

(b) $z_{\alpha/2}$ = standard normal distribution with upper $\alpha/2$ confidence interval; $t_{1-\alpha}$ and $t_{1-\alpha/2}$ represent the one-sided and two-sided 100(1- α) percentile of the Student's t-distribution with n-p degrees of freedom; g is the glass composition with the superscript 'T' representing a matrix transpose; (G^TVG)⁻¹, (G^TG)⁻¹, and (D^TD)⁻¹ all represent variance-covariance matrices of their respective models

3.1.2.1 Product Consistency Test Uncertainty

The SUCI for $ln(PCT_j^{NL})$ is a special case. The model recommended by Vienna et al. (2021) is a biascorrected partial quadratic mixture model (bcPQM) given by:

$$\ln(PCT_j^{NL}) = \begin{cases} \mathbf{g}^{\mathrm{T}}\mathbf{b} & \text{if} & \mathbf{g}^{\mathrm{T}}\mathbf{b} \leq C \\ \mathbf{g}^{\mathrm{T}}\mathbf{b} + (\mathbf{g}^{\mathrm{T}}\mathbf{b} - C)(S_0 + \Delta S) & \text{if} & \mathbf{g}^{\mathrm{T}}\mathbf{b} > C \end{cases}$$
(3.1)

where:

 \mathbf{g} = Composition of the example glass formatted to match the terms in the model

- T = Indicates vector transpose
- **b** = Vector of coefficients for the model
- C = Bias correction cutoff
- S_0 = Initial bias correction slope
- $\Delta S =$ Change in slope

Since **b**, *C*, S_0 , and ΔS are all uncertain values, the errors are propagated. Eq. (3.1) is expanded to:

$$\ln(PCT_j^{NL}) = \mathbf{g}^{\mathrm{T}}\mathbf{b} + \mathbf{g}^{\mathrm{T}}\mathbf{b} \cdot S_0 + \mathbf{g}^{\mathrm{T}}\mathbf{b} \cdot \Delta S - C \cdot S_0 - C \cdot \Delta S$$
(3.2)

Propagating the variances $(V_T = SD_T^2)$ yields:

$$\widehat{V}_{\ln\left(\widehat{PCT_{j}^{NL}}\right)} = \widehat{SD}\left(\widehat{PCT_{j}^{NL}}\right)^{2} = v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} + (\mathbf{g}^{\mathsf{T}}\mathbf{b})^{2}v_{S_{0}} + s_{0}^{2}v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} - v_{S_{0}}v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} + (\mathbf{g}^{\mathsf{T}}\mathbf{b})^{2}v_{\Delta s} + \Delta s^{2}v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} - v_{\Delta s}v_{\mathbf{g}^{\mathsf{T}}\mathbf{b}} + c^{2}v_{S_{0}} + S_{0}^{2}v_{c} - v_{c}v_{S_{0}} + \Delta s^{2}v_{c} + c^{2}v_{\Delta s} - v_{c}v_{\Delta s}$$
(3.3)

where:

 $\boldsymbol{v}_{\mathbf{g}^{\mathrm{T}}\mathbf{b}}$ = Variance of $\mathbf{g}^{\mathrm{T}}\mathbf{b}$

 v_c = Square of the standard error of C

 v_{S_0} = Square of the standard error of S_0

 $v_{\Delta S}$ = Square of the standard error of ΔS

Although the form of the bias correction yields a continuous prediction across the cutoff (*C*) with no step function change, the variance does demonstrate a step function change. The variance is therefore smoothed using a sigmoid function at the cutoff value $PCT_i^{NL} = C$:

$$V_{sig} = \frac{\hat{V}_{\ln\left(P\widehat{CT_{j}^{NL}}\right)}}{1 + \exp\left(-k(\mathbf{g}^{\mathrm{T}}\mathbf{b} - C)\right)}$$
(3.4)

where: $\hat{V}_{\ln(PCT_J^{NL})} =$ Defined in Eq. (3.3) k = Smoothing factor for sigmoid function

Finally, the SUCI for PCT is given by:

$$SUCI_{\ln\left(PCT_{j}^{NL}\right)} = \ln\left(PCT_{j}^{NL}\right) + \sqrt{qF_{1-\alpha}(q, n-q)} \cdot \widehat{SD}\left(PCT_{j}^{NL}\right)^{2}$$
(3.5)

3.1.2.2 Process and Composition Uncertainties

An additional set of uncertainties arises from sampling and process-volume transfers. The GFA considers six sources of uncertainties: CRV mixing and sampling, component concentration analyses, MFPV level measurement, GFC component concentration, GFC mass, and retention factor. Eq. 3.6 (taken from Kim and Vienna et al. [2012]) gives the MFPV batch glass composition mass balance for concentration of each component *i* (g_i).

$$g_{i} = \frac{\left[c_{i}^{LAW}V^{LAW}f_{i} + \sum_{k=1}^{n_{GFCs}} g_{ik}^{oxide} M_{k}^{GFCin}\right]v_{i}}{\sum_{i=1}^{noxides} \left[c_{i}^{LAW}V^{LAW}f_{i} + \sum_{k=1}^{n_{GFCs}} g_{ik}^{oxide} M_{k}^{GFCin}\right]v_{i}}$$
(3.6)

where:	g_i	=	mass fraction of i^{th} oxide in glass (g/g)
	c_i^{LAW}	=	concentration of the i^{th} component measured in samples from the CRV before transfer to the MEPV (mg/L)
	V^{LAW}	=	volume of LAW transferred in a batch to the MFPV (L)
	f_i	=	a conversion factor from element mg to oxide kg (kg/mg) (Appendix E, Table E.3)
	oxide g_{ik}^{inGFC}	=	mass fraction of the i^{th} oxide in the k^{th} GFC (g/g)
	M_k^{GFCin}	=	mass of the k^{th} GFC in the MFPV batch (kg)
	n ^{GFCs}	=	number of GFCs added to the MFPV batch
	v_i	=	fraction of i^{th} oxide retained in the glass (g/g), i.e., the retention factor

The values for c_i^{LAW} are calculated as a normally distributed Monte Carlo simulation with a minimum of 10,000 instances, with the mean taken to be the measured values for composition in the CRV, and the standard deviation of $c_i^{LAW}(s_i^{cLAW})$ is described by Eq. (3.7).

$$s_{i}^{cLAW} = \frac{\sqrt{\left(c_{i}^{LAW}RSD_{i}^{Analysis}\right)^{2} + \left(c_{i}^{LAW}RSD_{i}^{\frac{mix}{samp}}\right)^{2}}}{\sqrt{n^{samps}}}$$
(3.7)

The values for $RSD_i^{Analysis}$ are listed in Appendix A, Table A.2, while the values for $RSD_i^{mix/samp}$ are all 1.47% (Kim and Vienna 2012). The number of samples, n^{samps} , is assumed to be three.

 V^{LAW} , or volume of LAW transferred from the CRV to the MFPV, is calculated as a normally distributed Monte Carlo simulation with a minimum of 10,000 instances. The mean is the measured transfer volume, while the standard deviation, with calculations described in Appendix D of Kim and Vienna (2012), is 447.2 L.

The GFC oxide compositions represented by g_{ik}^{oxide} are calculated as program evaluation and review beta-(PERT) distributed Monte Carlo simulations with a minimum of 10,000 instances. The minimum, maximum, and most-likely values for calculating the distribution are listed in Appendix E, Table E.1. GFCinThe GFC mass transfers M_k^{MFPV} for each GFC are calculated as normally distributed Monte Carlo simulations with a minimum of 10,000 instances. The mean is taken to be the nominally measured value, while the standard deviation is calculated to be 0.1039 kg for mass transfers greater than 41.6 kg, and 0.0520 kg for mass transfers less than 41.6 kg.

The natural logarithm of the melter decontamination (or retention) factor, $\ln\left[\frac{1}{1-\nu_i}\right]$, is calculated as a

beta-PERT distributed Monte Carlo simulation with a minimum of 10,000 instances. The minimum, maximum, and most likely values for this can be found in Appendix E, Table E.2. Note that the numbers reported in this table are expressed as percentages and need to be converted to fractions by dividing them

by 100 for use in calculations. The natural log equation needs to be solved for v_i before it can be substituted into the equation for g_i .

3.2 Glass Formulation Optimality Criteria

The Preliminary Enhanced LAW Glass Formulation Algorithm uses waste loading as the optimality criteria for the optimization scheme. As MATLAB's "fmincon" function is a minimization scheme, the code attempts to minimize the negative of waste loading, which maximizes the absolute value.

As optimization occurs, glass property values and prediction uncertainties are calculated based on the composition of the glass, formed by the combination of waste and GFCs in their respective percentages of the total glass. The property values and prediction uncertainties in combination with the composition uncertainties are compared to each property limit as the function attempts to find the highest waste loading value without exceeding the limits. Due to software constraints, the Monte-Carlo simulations used to determine composition uncertainties cannot calculate simultaneously with the optimization scheme.

Therefore, an iterative approach is taken to calculating the composition uncertainties. Following each optimization run, the glass composition is used to calculate the composition uncertainty to be used for the next run. This process continues until the difference in all composition uncertainties between the previous and current runs is less than 3%.

4.0 Technical Layout of the MATLAB Script

This section can be used as a reference when editing or examining the MATLAB script. Detailed line-byline comments can be found within the script itself.

4.1 Start-Up and Program Inputs

The beginning of the algorithm contains start-up commands, various user-defined inputs, constants, and technical information. All technical and scientific information used in the script is read-in through .csv files organized by folder. Table 4.1 lists these file names and their associated contents.

File/Folder Name		older Name	Description
	EWG69801_SCP006_Algorithm_Rev1		
	.m		Main MATLAB script file
	Config.csv		Configuration file for user-defined inputs
	WasteComp	0.CSV	Waste compositions
		BulkDensity.csv	Individual GFC bulk density values
		GFC_Compositions.csv	Individual GFC composition values
		HopperID.csv	Hopper ID for each GFC
	Folder: GFC	HopperParameters.csv	Hopper parameters associated with each ID (weight capacity, volume)
		MinMaxMLgGFC.csv	Minimum, maximum, and most likely values for each GFC, for PERT calculation
		ParticleDensity.csv	Particle density for each GFC
		Constants.csv	File containing constants used by the script, such as Imperial-to-metric conversion factors
Main	Folder: Misc.	conversion_nonrad.csv	Conversion factor from mL(component)/L(waste) to g(oxide)/100g(waste) for non-radioactive components
Folder		conversion rad.csv	Conversion factor from mL(component)/L(waste) to g(oxide)/100g(waste) for radioactive components
		MinMaxComponents.csv	The minimum and maximum values for each oxide component, in g(oxide)/100g(waste)
		MinMaxMLvi.csv	Minimum, maximum, and most likely values for each waste component, for PERT calculation
		MRQ.csv	The minimum reportable quantities for each waste component
		Retention.csv	Retention factors for each glass component
		RSD analytical.csv	Analytical relative standard deviation for each waste component
		RSD_mixsamp.csv	Mixing/sampling relative standard deviation for each waste component
		MultiComp.csv	Multicomponent constraints
	Folder:	Prop_EC_High.csv	Electrical conductivity model and its upper limit
	Models	Prop_EC_Low.csv	Electrical conductivity model and its lower limit
		Prop_K3.csv	K-3 corrosion model and its constraint

Table 4.1. Algorithm Folder Structure and File Description

File/Folder Name		older Name	Description
		Prop_PCT_B.csv	PCT-B (Boron) model and its constraint
		Prop_PCT_Na.csv	PCT-Na (Sodium) model
		Prop_Sulfur.csv	Sulfur tolerance model
		Prop_VHT.csv	VHT model
		Prop_Visc_High.csv	Viscosity model and its upper limit
		Prop_Visc_Low.csv	Viscosity model and its lower limit
		VarCovar_EC_High.csv	Electrical conductivity variance/covariance matrix
	Folder: VarCovar	VarCovar_EC_Low.csv	Electrical conductivity variance/covariance matrix
		VarCovar_K3.csv	K-3 corrosion variance/covariance matrix
		VarCovar_PCT_B.csv	PCT-B variance/covariance matrix
		VarCovar_PCT_Na.csv	PCT-Na variance/covariance matrix
		VarCovar_Sulfur.csv	Sulfur tolerance variance/covariance matrix
		VarCovar_VHT.csv	VHT variance/covariance matrix
		VarCovar_Visc_High.csv	Viscosity variance/covariance matrix
		VarCovar_Visc_Low.csv	Viscosity variance/covariance matrix

Two files, "Config.csv" and "WasteComp.csv," are particularly important to the user. The "Config.csv" file allows the user to change any of the adjustable parameters that affect optimization, including turning on and off prediction and composition uncertainties and selecting the GFCs used in formulation, among others. The "WasteComp.csv" file contains the waste compositions, read in mg/L, by element for non-radionuclides, while radionuclides are in mCi/L.

When the script reads the "WasteComp.csv" file, it uses that data and the "conversion_nonrad.csv" and "conversion_rad.csv" files to convert element concentration into oxide concentration for each analyte. The selected waste cluster is converted from milligrams of waste component per liter of waste (mg/L) to grams of oxide per 100 grams of waste (g/100g), or oxide weight percentage in waste using the f_i values found in Appendix E, Table E.3.

Next, retention factors, property models, and limits are read into the script and assigned individual variables.

The GFC bulk density constants, hopper numbers and volumes, and weight capacities are defined next. This information is used later to compute uncertainties related to the GFC transfer weights and volumes used to calculate composition uncertainty.

All the values related to GFC compositions, weights, volumes, and other relevant information related to composition uncertainty calculation are read from files contained in the "GFC" folder.

This section sets up information used in the Monte Carlo calculations during the optimization routine and computes Monte Carlo values for parameters not affected by waste loading or glass composition. These include component concentration in waste, component concentration in GFC, and melter decontamination (retention) factor. Regardless of the final glass composition, the uncertainties surrounding the compositions of the GFCs and the waste remain the same.

5.0 NQAP Validation and Verification

The Preliminary Enhanced LAW GFA was developed in accordance with PNNL's Nuclear Quality Assurance Program (NQAP) procedures and has undergone validation and verification processes. A software control package was completed to document the review process for the validation and verification.

A qualified independent technical reviewer completed a full review of the code to establish its accuracy. Also, a calculation check was performed that compared the results from the GFA to the results from another independently developed code that performs the same set of calculations. For this task, we used a script developed in Python by the independent reviewer that performs the exact same set of calculations as the MATLAB script.

Ten waste compositions were chosen that represent the range of waste compositions present on the Hanford Site (e.g., extremes in Na:K, Na:Cl, Na:S, Na:P, etc.). These compositions can be found in Appendix B, Table B.1. In addition, Appendix A, Table A.2, summarizes the analytical and mixing/sampling uncertainties in relative standard deviation used in this study, which were adopted from Kim and Vienna (2012).

The differing approaches to optimization methods among different software in addition to the reliance of Monte Carlo schemes on random number generation prevent obtaining exact results when comparing two different algorithms. We determined that waste loading results from the two algorithms must match within one relative percent difference. The comparisons were made using (a) prediction uncertainties only, (b) both prediction and composition uncertainties, and (c) both uncertainties while constricting the limits of all constraints and properties by 1%. The results are summarized in Table 5.1.

Test Batch Number	MATLAB WL%	Python WL%	RPD WL%	Result			
Results for Prediction Uncertainties Only							
1	0.310532876	0.310532926	0.000%	Pass			
2	0.312763761	0.312763778	0.000%	Pass			
3	0.311655347	0.311655364	0.000%	Pass			
4	0.298281311	0.298281349	0.000%	Pass			
5	0.304262638	0.304262655	0.000%	Pass			
6	0.305851916	0.305851932	0.000%	Pass			
7	0.296990720	0.296990742	0.000%	Pass			
8	0.229520152	0.229520183	0.000%	Pass			
9	0.183770685	0.183770698	0.000%	Pass			
10	0.256535792	0.256535821	0.000%	Pass			
]	Results for Prediction a	and Composition Unc	ertainties				
1	0.289037280	0.289467105	0.149%	Pass			

Table 5.1. Results from Software Control Package Testing Comparison. WL is waste loading.

Test Batch Number	MATLAB WL%	Python WL%	RPD WL%	Result
2	0.290231565	0.290185906	-0.016%	Pass
3	0.289246077	0.289195514	-0.017%	Pass
4	0.283675013	0.283998706	0.114%	Pass
5	0.282059680	0.282001415	-0.021%	Pass
6	0.284165740	0.283841148	-0.114%	Pass
7	0.277631285	0.277653556	0.008%	Pass
8	0.220778186	0.220929114	0.068%	Pass
9	0.175402493	0.174546660	-0.489%	Pass
10	0.244925061	0.244918146	-0.003%	Pass
Results for Pre	diction and Compositio	on Uncertainties with	a 1% Limit Ao	djustment
1	0.288780000	0.288274794	-0.175%	Pass
2	0.288840000	0.289057181	0.075%	Pass
3	0.288860000	0.288286458	-0.199%	Pass
4	0.281680000	0.281824142	0.051%	Pass
5	0.281250000	0.281537002	0.102%	Pass
6	0.282960000	0.283144902	0.065%	Pass
7	0.276630000	0.276196422	-0.157%	Pass
8	0.217830000	0.217661375	-0.077%	Pass
9	0.173710000	0.173260918	-0.259%	Pass
10	0.242660000	0.242758012	0.040%	Pass

6.0 Results Summary and Future Work

The Preliminary Enhanced LAW GFA functions as intended, allowing the user to maximize waste loading in the final waste glass while ensuring the processing constraints are maintained. A set of 10 different waste compositions were used to test the algorithm, where it developed a glass composition for each, and the waste loading was maximized while satisfying all optimization criteria and constraints. The results matched testing from an independently developed Python script.

Figure 6.1 provides a visual representation of how the optimization scheme can use the maximum amount of leeway to adjust the glass such that the limiting property models are right at their limits, while accounting for prediction and composition uncertainties. This supports maximum waste loading. Figure 6.1 includes error bars that represent the prediction and composition uncertainties surrounding each property. The property values are represented by the data points, the prediction uncertainties by the narrower error regions, and the composition uncertainties by the outer error regions.

Planned updates to the algorithm coding include adding radionuclide constraints, improving the code efficiency, and developing a graphical user interface. A second optimization run will be added as a correction sequence to reflect predicted versus measured values of compositions and volumes during actual plant operations. Additionally, an updated set of line rules like those found in Rev. 0 of the software are to be reintegrated and verified in the next update.

Figure 6.1. Property Constraints and Uncertainties for the 10 Tested Batches. Inner error bars represent prediction uncertainties, while outer error bars represent composition uncertainties.

7.0 References

Gervasio V, JD Vienna, DS Kim, and AA Kruger. 2017. *Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount*. PNNL-26996, Pacific Northwest National Laboratory, Richland, WA. Accessed November 12, 2021 at https://www.pnnl.gov/main/publications/external/technical reports/PNNL-26996.pdf.

Kim DS and JD Vienna. 2012. *Preliminary ILAW Formulation Algorithm Description, 24590-LAW-RPT-RT-04-0003, Rev. 1.* ORP-56321, River Protection Project, Hanford Waste Treatment and Immobilization Plant, Richland, WA. Accessed November 12, 2021, at https://www.osti.gov/servlets/purl/1110191.

Lu X, DS Kim, and JD Vienna. 2021. "Impacts of Constraints and Uncertainties on Projected Amount of Hanford Low-Activity Waste Glasses". *Journal of Nuclear Engineering and Design, Volume 385.* (December 2021). https://www.sciencedirect.com/science/article/pii/S0029549321004957

Vienna JD and DS Kim. 2014. *Preliminary IHLW Formulation Algorithm Description*. 24590-HLW-RPT-RT-05-001, Rev. 1, River Protection Project, Hanford Waste Treatment and Immobilization Plant, Richland, WA. Accessed November 12, 2021, at https://www.osti.gov/servlets/purl/1110191.

Vienna JD, A Heredia-Langner, SK Cooley, AE Holmes, DS Kim, and NA Lumetta. 2021. Glass Property-Composition Models for Support of Hanford WTP LAW Facility Operation. PNNL 30932, Rev. 1, Pacific Northwest National Laboratory, Richland, WA.

Appendix A – Component Retention Factors, Minimum Reportable Quantities, and Relative Standard Deviations

This appendix contains tables of the retention factors, minimum reportable quantities, and relative standard deviations (RSDs) for each of the glass oxide components (see Kim and Vienna [2012])¹.

Glass Oxide	Retention Factor	Glass Oxide	Retention Factor	Glass Oxide	Retention Factor
Ac ₂ O ₃	99.721%	HgO	0.000%	RuO ₂	97.803%
Ag ₂ O	97.803%	Ι	50.961%	SO ₃	84.032%
Al ₂ O ₃	99.888%	K ₂ O	96.423%	Sb ₂ O ₃	77.121%
Am ₂ O ₃	97.803%	La ₂ O ₃	99.721%	SeO ₂	77.121%
As ₂ O ₅	77.121%	Li ₂ O	99.601%	SiO ₂	99.926%
B ₂ O ₃	98.968%	MgO	99.984%	Sm ₂ O ₃	99.721%
BaO	99.721%	MnO	99.721%	SnO ₂	99.721%
BeO	99.721%	MoO ₃	97.803%	SrO	99.721%
Bi ₂ O ₃	97.803%	Na ₂ O	99.136%	Ta ₂ O ₅	99.721%
CaO	99.892%	Nb ₂ O ₅	99.721%	Tc_2O_7	43.049%
CdO	99.721%	Nd ₂ O ₃	99.721%	TeO ₂	77.121%
Ce ₂ O ₃	99.721%	NiO	99.187%	ThO ₂	99.721%
Cl	54.407%	NpO ₂	99.721%	TiO ₂	99.752%
Cm ₂ O ₃	99.721%	P ₂ O ₅	99.169%	Tl ₂ O	77.121%
CoO	99.721%	Pa ₂ O ₅	99.721%	UO ₃	99.721%
Cr ₂ O ₃	95.261%	РЬО	98.796%	V ₂ O ₅	97.803%
Cs ₂ O	87.902%	PdO	99.721%	WO ₃	99.721%
CuO	99.721%	Pr ₂ O ₃	99.721%	Y ₂ O ₃	99.721%
Eu ₂ O ₃	99.721%	PuO ₂	99.721%	ZnO	99.773%
F	72.984%	RaO	77.121%	ZrO ₂	99.982%
Fe ₂ O ₃	99.848%	Rb ₂ O	97.803%		
Gd ₂ O ₃	99.721%	Rh ₂ O ₃	99.721%		

 Table A.1. Retention Factors Used to Calculate Ratios of Components Remaining after Removal of Evaporate Bottoms

¹ Kim DS and JD Vienna. 2012. *Preliminary ILAW Formulation Algorithm Description*, 24590-LAW-RPT-RT-04-0003, Rev. 1. ORP-56321, River Protection Project, Hanford Waste Treatment and Immobilization Plant, Richland, WA. Accessed November 12, 2021, at https://www.osti.gov/servlets/purl/1110191.

Element/	Minimum Reportable	High %RSD	Low %RSD	Mixing/Sampling
Isotope	Quantity mg/L	(Analytical)	(Analytical)	RSD
Ac				
Ag	0.2	20%	5%	1.47%
Al	18	5%	5%	1.47%
Am		_	_	_
As	2.8	25%	10%	1.47%
В	0.4	25%	10%	1.47%
Ba	0.4	15%	5%	1.47%
Be	0.03	25%	5%	1.47%
Bi	0.9	15%	10%	1.47%
Ca	2	15%	5%	1.47%
Cd	0.06	10%	5%	1.47%
Ce	2	25%	10%	1.17%
	19	10%	10%	1.47%
Cm	17	1070	1070	1.7770
Co	0.1	<u></u> う50/ ₂	10%	1 // 70/2
Cr	0.1	2.370 50/	1070 50/	1.470/
	0.1	370 150/	J70 100/	1.4/70
Cs	0.1	15%	10%	1.4/%
Cu	2	25%	10V	1.4/%
Eu		1.00/	100/	1 470/
F	19	10%	10%	1.4/%
Fe	2	5%	5%	1.47%
Gd	l	15%	5%	1.47%
Hg	0.001	10%	5%	1.47%
1				—
K	10	5%	5%	1.47%
La	0.6	10%	5%	1.47%
Li	0.3	15%	5%	1.47%
Mg	9	25%	10%	1.47%
Mn	2	15%	5%	1.47%
Mo	3	10%	5%	1.47%
Na	200	10%	10%	1.47%
Nb		—		—
Nd	1	15%	5%	1.47%
Ni	7	10%	5%	1.47%
Np				—
Р	12	15%	10%	1.47%
Ра				—
Pb	0.9	15%	15%	1.47%
Pd	1	15%	15%	1.47%
Pr	1	15%	10%	1.47%
Pu				
Ra				_
Rb	10	25%	15%	1.47%
Rh	0.004	20%	5%	1.47%
Ru	0.02	25%	5%	1.47%
S	10	10%	5%	1.47%
Sb	0.3	25%	10%	1.47%
Se	4	25%	10%	1.47%
Si	4	15%	5%	1.47%
~ 1	· ·	10/0	570	1.1//0

Table A.2.	Minimum Reportable Quantities and Relative Standard Deviations (RSDs) for Composition
	Uncertainties

Element/	Minimum Reportable	High %RSD	Low %RSD	Mixing/Sampling
Isotope	Quantity mg/L	(Analytical)	(Analytical)	RSD
Sm		_		
Sn				_
Sr	0.01	5%	5%	1.47%
Та	0.2	15%	5%	1.47%
Tc				_
Те	1	25%	10%	1.47%
Th	2	25%	10%	1.47%
Ti	0.07	25%	5%	1.47%
Tl	0.02	25%	10%	1.47%
U	1	15%	5%	1.47%
V	0.07	15%	5%	1.47%
W	0.2	15%	5%	1.47%
Y	0.6	25%	5%	1.47%
Zn	4	25%	5%	1.47%
Zr	2	15%	5%	1.47%
NO ₂		_	_	
NO ₃				
TOC			_	
⁵⁹ Ni	7.98×10^{-7}	10%	10%	1.47%
⁶⁰ Co	1.13×10^{-5}	5%	5%	1.47%
⁶³ Ni	5.74×10^{-2}	10%	10%	1.47%
⁷⁹ Se	6.97×10^{-5}	15%	10%	1.47%
⁹⁰ Sr	1.39×10^{-6}	5%	5%	1.47%
⁹⁰ Y		0%	0%	1.47%
^{93m} Nb	2.39×10^{-4}	15%	10%	1.47%
⁹³ Zr	2.52×10^{-6}	10%	10%	1.47%
⁹⁹ Tc	1.71×10^{-6}	10%	10%	1.47%
¹⁰⁶ Ru	2.01×10^{-3}	15%	10%	1.47%
^{113m} Cd	4.62×10^{-5}	25%	10%	1.47%
¹²⁵ Sb	3.11×10^{-4}	25%	5%	1.47%
¹²⁶ Sn	5.68×10^{-6}	20%	15%	1.47%
¹²⁹ I	1.77×10^{-4}	15%	10%	1.47%
¹³⁴ Cs	4.53×10^{-6}	25%	10%	1.47%
^{137m} Ba		0%	0%	1.47%
¹³⁷ Cs	1.73×10^{-6}	15%	5%	1.47%
¹⁵¹ Sm	5.26×10^{-1}	20%	10%	1.47%
¹⁵² Eu	1.74×10^{-6}	5%	5%	1.47%
¹⁵⁴ Eu	$2.70 imes 10^{-6}$	5%	5%	1.47%
¹⁵⁵ Eu	4.76×10^{-5}	5%	5%	1.47%
²²⁶ Ra	9.89×10^{-7}	25%	10%	1.47%
²²⁷ Ac	7.23×10^{-7}	50%	10%	1.47%
²²⁸ Ra	2.73×10^{-3}	50%	25%	1.47%
²²⁹ Th	6.38×10^{-4}	50%	50%	1.47%
²³¹ Pa	1.42×10^{-4}	50%	50%	1.47%
²³² Th	3.29×10^{-10}	25%	10%	1.47%
²³² U	$6.62 imes 10^{-8}$	25%	5%	1.47%
²³³ U	9.63×10^{-7}	10%	5%	1.47%
²³⁴ U	6.22×10^{-6}	5%	5%	1.47%
²³⁵ U	$2.16 imes 10^{-07}$	10%	5%	1.47%
²³⁶ U	6.47×10^{-08}	10%	5%	1.47%
²³⁷ Np	7.05×10^{-07}	10%	5%	1.47%

Element/	Minimum Reportable	High %RSD	Low %RSD	Mixing/Sampling
Isotope	Quantity mg/L	(Analytical)	(Analytical)	RSD
²³⁸ Pu	$1.71 imes 10^{-07}$	5%	5%	1.47%
²³⁸ U	6.72×10^{-9}	10%	10%	1.47%
²³⁹ Pu	6.20×10^{-8}	5%	5%	1.47%
²⁴⁰ Pu	2.27×10^{-9}	10%	10%	1.47%
²⁴¹ Am	3.43×10^{-6}	10%	10%	1.47%
²⁴¹ Pu	1.03×10^{-7}	15%	15%	1.47%
²⁴² Cm	3.31×10^{-6}	10%	10%	1.47%
²⁴² Pu	$3.95 imes 10^{-11}$	10%	10%	1.47%
²⁴³ Am	3.99×10^{-8}	15%	15%	1.47%
²⁴³ Cm	9.81×10^{-7}	15%	15%	1.47%
²⁴⁴ Cm	2.43×10^{-6}	15%	15%	1.47%

Appendix B – Waste Compositions Used for Testing

Batch ID	1	2	3	4	5	6	7	8	9	10
Ac	0.00E+00									
Ag	5.70E-01	2.29E+00	2.07E-01	9.75E-02	7.19E-02	1.16E-01	1.06E-01	9.66E-02	5.77E-02	4.56E-02
Al	1.36E+04	2.02E+04	1.53E+04	1.03E+04	1.15E+04	1.37E+04	8.75E+03	7.56E+03	7.66E+03	7.66E+03
Am	0.00E+00									
As	1.33E+00	6.86E+00	6.17E-01	3.75E-01	3.13E-01	5.66E-01	4.44E-01	3.74E-01	2.05E-01	1.60E-01
В	2.67E+01	1.78E+02	2.39E+02	2.90E+02	3.30E+02	4.15E+02	2.24E+02	1.77E+02	2.31E+02	2.34E+02
Ba	2.93E-01	7.95E-01	3.37E-01	2.09E-01	9.01E-02	1.10E-01	1.85E-01	1.77E-01	1.00E-01	7.78E-02
Be	1.14E+00	3.50E-01	4.59E-02	2.45E-02	1.05E-02	1.49E-02	1.90E-02	1.78E-02	1.00E-02	8.08E-03
Bi	2.16E+00	6.50E+00	4.59E+00	3.98E+01	4.10E+00	5.48E+00	3.35E+00	3.69E+00	4.53E+00	2.93E+00
Ca	7.69E+00	4.15E+01	6.86E+01	1.77E+02	6.93E+01	6.84E+01	6.18E+01	6.16E+01	5.35E+01	5.13E+01
Cd	1.77E+00	1.38E+00	3.95E+00	1.35E+00	2.75E-01	4.41E-01	4.18E-01	3.72E-01	2.02E-01	2.74E-01
Ce	6.86E-02	1.02E+01	2.53E+00	1.64E+00	2.03E+00	3.55E+00	9.91E-01	6.02E-01	3.79E+00	1.28E+01
Cl	2.01E+03	5.06E+03	3.36E+03	2.40E+03	3.56E+03	4.34E+03	3.00E+03	2.27E+03	1.88E+03	1.95E+03
Cm	0.00E+00									
Co	5.80E-01	1.17E+00	2.16E-01	3.61E-01	2.12E-01	2.79E-01	2.23E-01	2.43E-01	2.52E-01	1.15E-01
Cr	1.57E+02	8.75E+02	1.18E+03	7.14E+02	3.01E+03	3.77E+03	1.54E+03	5.72E+02	2.93E+02	5.13E+02
Cs	1.43E-03	1.83E-03	5.64E-04	3.49E-04	4.80E-04	5.29E-04	4.29E-04	7.89E-04	1.21E-03	5.77E-04
Cu	1.42E+00	1.24E+00	3.42E-01	1.10E-01	7.20E-02	1.23E-01	1.15E-01	1.00E-01	5.06E-02	6.56E-02
Eu	0.00E+00									
F	1.66E+03	3.02E+03	2.95E+03	4.83E+03	1.67E+03	1.51E+03	2.06E+03	1.29E+04	2.56E+04	9.34E+03
Fe	6.58E+00	4.45E+01	1.12E+02	1.32E+02	9.33E+01	1.07E+02	8.99E+01	7.41E+01	5.13E+01	8.23E+01
Gd	0.00E+00									
Hg	7.12E-02	1.91E+00	2.30E+00	3.91E+00	8.10E-01	1.72E+00	9.26E-01	4.45E-01	2.57E-01	8.19E-01
Ι	0.00E+00									

Table B.1.	Waste Compositions by I	Element in mg/L, w	with Radionuclides	in mCi/L, Analyzed	by the Preliminary	Enhanced LAW	Glass
	Formulation Algorithm						

Batch ID	1	2	3	4	5	6	7	8	9	10
K	2.88E+04	5.32E+03	8.62E+02	6.52E+02	6.09E+02	5.50E+02	6.87E+02	2.53E+03	4.56E+03	1.69E+03
La	1.83E-01	4.95E-01	6.05E-02	4.04E-02	3.44E-02	8.55E-02	1.26E-02	3.19E-03	2.41E-03	8.77E-03
Li	2.96E-01	5.41E+00	3.82E+01	8.16E+01	8.64E+01	7.52E+01	3.84E+01	6.46E+01	7.03E+01	6.03E+01
Mg	2.42E+00	8.79E+00	6.35E-01	3.71E-01	3.32E-01	5.81E-01	4.18E-01	3.65E-01	2.11E-01	1.73E-01
Mn	1.16E+00	1.47E+01	2.24E+01	6.11E+00	6.68E+00	9.39E+00	6.19E+00	4.51E+00	2.46E+00	5.63E+00
Мо	1.29E+01	2.16E+01	1.52E+00	5.48E-01	5.23E-01	9.11E-01	6.70E-01	5.92E-01	3.65E-01	3.08E-01
Na	1.50E+05	1.78E+05	1.68E+05	1.56E+05	1.65E+05	1.73E+05	1.55E+05	1.63E+05	1.74E+05	1.53E+05
Nb	0.00E+00									
Nd	2.25E+00	8.13E+00	5.85E-01	3.55E-01	2.37E-01	3.65E-01	3.85E-01	3.52E-01	1.99E-01	1.62E-01
Ni	1.33E+01	1.36E+01	1.12E+01	2.41E+01	1.04E+01	1.20E+01	9.08E+00	6.01E+00	3.30E+00	5.63E+00
Np	0.00E+00									
Р	9.90E+02	1.29E+03	3.20E+03	8.80E+03	2.39E+03	2.00E+03	3.48E+03	3.15E+03	2.96E+03	4.54E+03
Pa	0.00E+00									
Pb	1.90E+01	2.44E+01	7.68E+00	1.16E+01	1.29E+01	1.62E+01	9.59E+00	5.95E+00	3.82E+00	3.30E+00
Pd	1.63E+01	3.40E-01	4.42E-01	4.02E-02	2.57E-01	6.55E-01	7.64E-02	1.05E-03	1.81E-04	5.77E-02
Pr	1.87E-02	1.03E-01	2.46E-03	2.14E-04	1.07E-01	2.73E-01	3.13E-02	1.84E-05	1.40E-06	1.72E-04
Pu	0.00E+00									
Ra	0.00E+00									
Rb	3.40E+00	1.17E-01	3.28E-03	3.18E-04	5.91E-03	1.51E-02	1.77E-03	9.67E-06	1.53E-06	3.88E-04
Rh	6.67E+00	3.21E-01	1.20E-01	1.10E-02	3.05E-02	7.77E-02	9.24E-03	2.76E-04	4.85E-05	1.53E-02
Ru	2.66E+01	7.82E-01	2.13E-02	1.63E-02	2.45E-01	6.24E-01	7.19E-02	5.06E-04	4.99E-04	2.42E-03
S	1.20E+03	1.04E+03	2.65E+03	5.17E+03	3.17E+03	2.24E+03	4.01E+03	8.28E+03	1.25E+04	6.63E+03
Sb	6.80E-02	7.56E+00	1.54E+00	5.30E-01	2.44E+00	3.36E+00	1.61E+00	7.53E-01	4.33E-01	3.08E-01
Se	2.38E+00	1.58E+01	1.26E+01	6.96E+00	1.07E+01	1.31E+01	1.09E+01	8.08E+00	4.88E+00	3.37E+00
Si	1.60E+02	4.08E+02	1.05E+03	1.71E+03	5.39E+02	6.90E+02	3.62E+02	3.93E+02	4.94E+02	3.49E+02
Sm	0.00E+00									
Sn	0.00E+00									
Sr	6.41E-02	2.33E+00	1.37E+01	1.93E+01	4.70E+00	3.86E+00	4.31E+00	3.61E+00	3.07E+00	4.01E+00
Та	8.39E-02	1.72E-01	1.08E-01	9.76E-03	1.19E-01	3.04E-01	3.52E-02	2.60E-04	4.39E-05	1.39E-02

Batch ID	1	2	3	4	5	6	7	8	9	10
Tc	0.00E+00									
Te	2.08E-01	4.18E-01	9.53E-03	7.54E-04	2.30E-01	6.21E-01	9.93E-02	6.07E-04	1.55E-05	2.86E-04
Th	2.91E-01	6.78E+00	1.08E+00	2.46E+00	3.24E-01	6.77E-01	1.66E-01	1.24E-01	1.39E-01	1.08E-01
Ti	1.75E+00	1.10E+01	1.02E+01	1.11E+01	1.49E+01	1.93E+01	1.08E+01	9.57E+00	8.80E+00	7.01E+00
T1	3.60E-02	6.27E+00	5.93E-01	1.92E-01	2.49E-01	6.55E-01	1.20E-01	1.40E-02	4.64E-03	2.02E-02
U	1.81E+02	5.68E+01	6.13E+01	9.65E+01	2.70E+01	2.82E+01	2.32E+01	3.49E+01	4.84E+01	2.48E+01
V	7.01E-01	4.00E+00	6.22E-01	5.04E-01	5.10E-01	6.95E-01	4.80E-01	4.30E-01	3.30E-01	2.63E-01
W	0.00E+00	2.87E+00	7.60E-02	7.11E-03	3.51E-01	8.97E-01	1.03E-01	2.25E-04	3.32E-05	7.85E-03
Y	1.36E+00	7.21E-01	6.12E-02	5.64E-03	3.95E-02	1.00E-01	1.22E-02	7.08E-04	3.39E-04	7.85E-03
Zn	8.76E+00	3.49E+01	3.37E+01	3.57E+01	4.79E+01	6.26E+01	3.47E+01	3.06E+01	2.80E+01	2.23E+01
Zr	6.06E+00	6.10E+01	5.10E+00	4.51E+00	5.14E+00	5.23E+00	4.52E+00	8.30E+00	1.27E+01	5.99E+00
NO ₂	3.82E+04	2.25E+04	9.66E+03	2.70E+04	3.81E+04	3.35E+04	3.76E+04	3.59E+04	3.29E+04	3.15E+04
NO ₃	1.02E+05	1.01E+05	1.52E+05	1.64E+05	1.42E+05	1.17E+05	1.78E+05	1.57E+05	1.14E+05	1.83E+05
TOC	1.61E+03	1.43E+03	5.87E+02	6.79E+02	6.53E+02	6.12E+02	9.32E+02	1.19E+03	1.30E+03	8.99E+02
⁵⁹ Ni	2.61E-04	2.82E-04	4.70E-04	5.12E-04	5.47E-04	4.00E-04	6.96E-04	5.81E-04	3.64E-04	7.68E-04
⁶⁰ Co	3.93E-04	1.10E-04	3.48E-05	1.76E-05	7.56E-06	6.94E-06	9.27E-06	7.35E-06	3.60E-06	7.84E-06
⁶³ Ni	2.20E-02	2.16E-02	3.50E-02	3.89E-02	3.99E-02	2.89E-02	5.10E-02	4.25E-02	2.64E-02	5.57E-02
⁷⁹ Se	4.19E-04	1.96E-03	1.23E-03	8.62E-04	8.74E-04	7.61E-04	1.10E-03	1.42E-03	1.62E-03	1.24E-03
⁹⁰ Sr	7.85E-01	8.21E-01	9.69E-01	1.02E+00	9.05E-01	9.12E-01	8.19E-01	9.08E-01	1.11E+00	8.62E-01
⁹⁰ Y	7.81E-01	6.70E-01	6.74E-01	7.98E-01	7.40E-01	7.43E-01	6.92E-01	8.37E-01	1.05E+00	8.21E-01
^{93m} Nb	1.36E-02	6.31E-03	1.69E-03	1.26E-03	9.48E-04	1.04E-03	1.13E-03	1.34E-03	1.44E-03	1.13E-03
⁹³ Zr	1.48E-02	6.49E-03	1.77E-03	1.42E-03	1.09E-03	1.09E-03	1.32E-03	1.49E-03	1.54E-03	1.36E-03
⁹⁹ Tc	4.87E-02	1.00E-01	5.09E-02	4.08E-02	6.38E-02	7.27E-02	5.72E-02	6.38E-02	8.12E-02	5.06E-02
¹⁰⁶ Ru	0.00E+00									
^{113m} Cd	6.84E-03	3.10E-03	5.02E-04	4.64E-04	4.54E-04	3.89E-04	5.35E-04	4.92E-04	3.77E-04	5.09E-04
¹²⁵ Sb	6.31E-05	2.29E-05	5.91E-07	1.09E-07	4.82E-08	1.09E-07	2.85E-08	3.21E-08	4.20E-08	1.80E-08
¹²⁶ Sn	2.11E-03	3.45E-03	4.82E-04	3.71E-04	2.78E-04	3.15E-04	2.99E-04	2.44E-04	1.64E-04	2.01E-04
¹²⁹ I	1.22E-04	1.20E-04	5.15E-05	3.69E-05	4.79E-05	4.95E-05	4.87E-05	5.46E-05	6.27E-05	4.82E-05
¹³⁴ Cs	2.48E-08	4.30E-10	0.00E+00							

Batch ID	1	2	3	4	5	6	7	8	9	10
^{137m} Ba	1.95E-02	2.18E-02	6.17E-03	3.41E-03	4.17E-03	4.64E-03	3.79E-03	6.84E-03	1.04E-02	4.91E-03
¹³⁷ Cs	2.06E-02	2.31E-02	6.48E-03	3.65E-03	4.52E-03	5.07E-03	4.05E-03	7.26E-03	1.09E-02	5.21E-03
¹⁵¹ Sm	2.10E+00	1.36E+00	7.77E-02	7.51E-02	7.18E-02	1.11E-01	6.38E-02	4.50E-02	2.51E-02	3.96E-02
¹⁵² Eu	1.64E-04	1.01E-04	3.48E-06	2.32E-06	2.96E-06	6.25E-06	1.67E-06	8.78E-07	5.20E-07	6.97E-07
¹⁵⁴ Eu	1.80E-03	2.78E-03	1.29E-04	1.00E-04	3.67E-05	6.07E-05	3.25E-05	2.36E-05	1.30E-05	1.77E-05
¹⁵⁵ Eu	9.19E-04	2.21E-04	9.47E-06	5.56E-06	1.99E-06	4.01E-06	1.29E-06	7.59E-07	3.81E-07	5.50E-07
²²⁶ Ra	2.50E-08	2.19E-08	3.18E-09	4.51E-09	5.09E-09	4.77E-09	5.81E-09	5.52E-09	4.62E-09	5.63E-09
²²⁷ Ac	1.16E-05	4.70E-06	1.67E-06	1.45E-06	5.18E-07	6.90E-07	3.85E-07	8.50E-07	1.48E-06	5.97E-07
²²⁸ Ra	1.37E-09	7.49E-07	1.98E-07	7.80E-07	4.62E-08	9.65E-08	5.73E-08	5.46E-08	4.12E-08	2.79E-08
²²⁹ Th	1.04E-08	4.84E-07	2.53E-08	5.78E-08	4.91E-09	1.16E-08	2.33E-09	2.16E-09	3.08E-09	1.82E-09
²³¹ Pa	2.75E-05	8.94E-06	3.44E-06	2.61E-06	9.98E-07	1.17E-06	9.01E-07	1.57E-06	2.38E-06	1.15E-06
²³² Th	3.11E-08	7.36E-07	1.12E-07	2.63E-07	2.61E-08	6.19E-08	1.14E-08	7.56E-09	9.69E-09	7.43E-09
²³² U	4.45E-07	8.63E-07	3.69E-07	4.20E-07	1.56E-07	1.49E-07	1.28E-07	2.12E-07	3.03E-07	1.73E-07
²³³ U	4.04E-05	5.21E-05	3.00E-05	3.55E-05	1.54E-05	1.55E-05	1.19E-05	1.86E-05	2.63E-05	1.53E-05
²³⁴ U	7.23E-05	2.11E-05	1.99E-05	3.28E-05	9.59E-06	9.76E-06	8.32E-06	1.37E-05	1.97E-05	9.35E-06
²³⁵ U	2.90E-06	8.44E-07	8.50E-07	1.42E-06	4.03E-07	4.13E-07	3.49E-07	5.56E-07	7.91E-07	3.85E-07
²³⁶ U	3.37E-06	9.28E-07	3.79E-07	5.37E-07	2.39E-07	2.07E-07	2.26E-07	6.57E-07	1.13E-06	3.81E-07
²³⁷ Np	8.75E-05	5.61E-05	4.07E-05	3.52E-05	2.24E-05	2.14E-05	2.61E-05	2.54E-05	2.21E-05	2.90E-05
²³⁸ Pu	3.78E-05	6.54E-05	2.67E-05	1.23E-04	7.59E-05	7.88E-05	6.37E-05	5.14E-05	4.55E-05	4.56E-05
²³⁸ U	6.04E-05	1.89E-05	2.05E-05	3.22E-05	9.01E-06	9.43E-06	7.74E-06	1.17E-05	1.61E-05	8.26E-06
²³⁹ Pu	2.03E-04	1.39E-03	7.92E-04	5.34E-03	1.50E-03	1.26E-03	2.07E-03	1.91E-03	1.36E-03	1.70E-03
²⁴⁰ Pu	1.53E-04	3.29E-04	1.56E-04	9.72E-04	3.15E-04	2.64E-04	4.24E-04	3.99E-04	3.01E-04	3.51E-04
²⁴¹ Am	1.89E-04	9.38E-03	1.76E-03	6.11E-03	6.21E-03	1.03E-02	3.24E-03	1.48E-03	1.17E-03	1.27E-03
²⁴¹ Pu	7.29E-04	1.42E-03	2.51E-04	1.42E-03	3.86E-04	3.16E-04	4.74E-04	5.34E-04	5.24E-04	4.32E-04
²⁴² Cm	3.24E-07	1.58E-05	1.51E-05	5.25E-05	3.75E-05	4.13E-05	3.43E-05	2.32E-05	1.25E-05	1.58E-05
²⁴² Pu	1.25E-08	2.87E-08	7.81E-09	5.96E-08	2.05E-08	1.71E-08	2.60E-08	2.64E-08	2.35E-08	2.33E-08
²⁴³ Am	1.09E-07	3.96E-06	1.07E-06	2.56E-06	4.38E-06	8.36E-06	2.06E-06	8.47E-07	7.02E-07	7.23E-07
²⁴³ Cm	1.38E-08	9.75E-07	6.26E-07	1.74E-06	6.58E-07	7.64E-07	5.85E-07	3.95E-07	2.18E-07	2.95E-07
²⁴⁴ Cm	2.65E-07	1.66E-05	1.02E-05	2.67E-05	9.26E-06	1.08E-05	8.22E-06	5.55E-06	3.02E-06	4.07E-06

Appendix C – Model Terms

This appendix provides the model terms and statistics used to calculate glass properties needed for formulation (see Vienna et al. [2021])¹.

Component	ln(PCT-B), g/m ²
Al ₂ O ₃	-29.5323
B_2O_3	5.9849
CaO	8.3534
Fe ₂ O ₃	0.9519
K ₂ O	6.7807
Li ₂ O	24.2726
MgO	13.8911
Na ₂ O	8.674
SiO ₂	-4.4655
SnO ₂	-7.6174
TiO ₂	-8.6853
V_2O_5	9.6149
ZnO	-2.0873
ZrO ₂	0.4532
Others	0.0176
$Al_2O_3 \times Al_2O_3$	121.296
$Al_2O_3 \times Li_2O$	-156.1213
$CaO \times CaO$	-96.9262
$CaO \times V_2O_5$	-147.9209
n	690
р	19
q	22
α	0.9
С	-0.7193
S ₀ (Initial Bias)	1.6836
ΔS (Change in Slope)	0.5869
V _c (Variance from c)	0.0527
V _{S0} (Variance from S ₀)	0.1893
$V_{\Delta S}$ (Variance from ΔS)	0.1585

Table C.1. Product Consistency Test (PCT)-B Model Terms and Statistics

¹ Vienna JD, A Heredia-Langner, SK Cooley, AE Holmes, DS Kim, and NA Lumetta. 2021. *Glass Property-Composition Models for Support of Hanford WTP LAW Facility Operation*. PNNL-30932, Rev. 1, Pacific Northwest National Laboratory, Richland, WA.

PCT-Na Model	Ferms and Statistics
Component	ln(PCT-Na, g/m ²)
Al ₂ O ₃	-31.814
B_2O_3	3.2631
CaO	5.5241
Fe ₂ O ₃	-0.0973
K ₂ O	7.6834
Li ₂ O	13.4028
MgO	8.8211
Na ₂ O	6.1643
SiO ₂	-3.159
SnO ₂	-5.3964
TiO ₂	-3.5008
V_2O_5	8.6155
ZnO	-1.1891
ZrO ₂	-0.4027
Others	0.7336
$\mathrm{Al_2O_3}\times\mathrm{Al_2O_3}$	85.1327
$CaO \times CaO$	-41.0621
$\mathrm{CaO} \times \mathrm{V_2O_5}$	-106.4057
$Al_2O_3 \times Na_2O$	44.4157
n	690
p	19
q	22
α	0.9
С	-0.5891
sO	1.9108
Ds	0.9457
Vc	0.0421
VsO	0.2086
VDs	0.2373

Table C.2. PCT-Na Model Terms and Statistics

VHT Model T	erms and Statistics
Component	VHT Pass/Fail Term
Al ₂ O ₃	-33.2908
B_2O_3	-10.2672
CaO	-57.3456
F	47.6668
K ₂ O	97.7116
Li ₂ O	435.0046
MgO	30.6084
Na ₂ O	108.6944
P_2O_5	-42.4271
SiO ₂	-34.1488
SnO_2	-59.3127
TiO ₂	-72.6017
V_2O_5	20.7981
ZnO	-48.7954
ZrO ₂	-102.701
Others	-20.9574
$Li_2O \times Na_2O$	-983.3257
$TiO_2 \times ZrO_2$	-1488.983
$Li_2O \times Li_2O$	-2124.0889
n	686
p	19
α	0.9

Table C.3. Vapor Hydration Test (VHT) Model Terms and Statistics

K-3 Corrosion	Model Terms and
Sta	tistics
Term	<i>k</i> ₁₂₀₈ (ln[inch])
Al_2O_3	-33.3105
B_2O_3	-12.0828
CaO	-0.6772
Cr ₂ O ₃	-101.3429
K ₂ O	4.8322
Li ₂ O	64.3499
Na ₂ O	54.7839
SiO ₂	-4.2539
V_2O_5	-27.1194
ZrO ₂	-20.5035
Others	-11.0123
$Li_2O \times Li_2O$	-438.1673
$Na_2O \times SiO_2$	-84.6857
n	333
p	13
α	0.9

 Table C.4.
 K-3 Corrosion Model Terms and Statistics

Table C.5. Sulfur Model Terms and Statistics

Sulfur Sol	ubility Model Terms										
and Statistics Melter SO3											
	Melter SO ₃										
Term	Tolerance, wt%										
Al ₂ O ₃	-2.5573										
B_2O_3	3.0315										
CaO	4.8032										
Cl	-17.7273										
Li ₂ O	19.3989										
Na ₂ O	3.0912										
P_2O_5	2.1968										
SiO ₂	0.2258										
V_2O_5	6.2143										
Others	-1.2757										
LiNa	-77.5811										
n	576										
p	11										
α	0.9										

Viscosity	Model Terms and Statistics
Term	$\ln(\eta_{1150})^{(a)}, (P)$
Al ₂ O ₃	10.4974
B_2O_3	-5.4755
CaO	-4.671
Cr ₂ O ₃	-6.4633
F	-13.1106
Fe ₂ O ₃	2.2898
K ₂ O	-2.0094
Li ₂ O	-53.786
MgO	-0.5599
Na ₂ O	-10.3153
P_2O_5	11.2378
SiO ₂	12.1422
SnO ₂	7.6387
TiO ₂	-0.3143
V_2O_5	-1.1041
ZnO	-0.96
ZrO ₂	9.7255
Others	10.8166
AlNa	28.5242
LiLi	265.7235
LiNa	80.3767
n	534
р	21
α	0.9

Table C.6. Viscosity Model Terms and Statistics

 $^{\rm a} {\rm Viscosity}$ at 1150 ${}^{\circ} {\rm C}$

Electrica	l Conductivity Model									
$\frac{1}{1} \text{ (FC)} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^{(a)} + \frac{1}{2} \left(\frac{1}{2} \right)^{(a)} \right)^{(a)} + \frac{1}{2} \left(\frac{1}{2} \right)^{(a$										
Term	$\ln(EC_{1150})^{(a)}, (S/cm)$									
Al_2O_3	-4.4821									
B_2O_3	-3.7135									
CaO	-4.279									
K ₂ O	-1.4916									
Li ₂ O	34.1609									
MgO	-4.5173									
Na ₂ O	14.4633									
SiO ₂	-3.9157									
SnO ₂	-5.3792									
V_2O_5	-2.8106									
Others	-2.4484									
LiNa	-136.2023									
NaNa	-19.7143									
n	526									
р	13									
α	0.9									

Table C.7. Electrical Conductivity Model Terms and Statistics

^a Electrical Conductivity at 1150 °C

Appendix D – Glass Variance-Covariance Matrices

Source for Glass Variance-Covariance Matrices: see Vienna et al. [2021]¹.

_																			
Component	Al ₂ O ₃	B ₂ O ₃	CaO	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	SiO ₂	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others	Al ₂ O ₃ ×Al ₂ O ₃	Al ₂ O ₃ ×Li ₂ O	CaO×CaO	CaO×V ₂ O ₅
Al ₂ O ₃	25.471817	-1.20772	-4.344667	-0.076427	-0.427823	2.856344	0.130499	-0.958991	-1.111311	0.20737	-1.170801	0.7375	-0.826343	-2.140986	-0.331007	-149.682999	-48.978214	32.22759	-20.884699
B ₂ O ₃	-1.20772	0.697856	0.005962	0.011418	0.003054	-0.512135	-0.081662	-0.017313	-0.032632	0.126531	0.202408	-0.398197	-0.047286	0.092205	-0.02822	6.487049	5.142475	-0.407089	6.920648
CaO	-4.344667	0.005962	4.964385	-0.088406	0.221486	-1.2736	0.12636	0.148251	0.01722	0.469206	1.437434	0.448745	-0.234892	0.459892	-0.100705	24.607478	18.441405	-38.86732	-3.638362
Fe ₂ O ₃	-0.076427	0.011418	-0.088406	0.646984	-0.050309	0.08973	-0.071668	0.029905	-0.073566	0.135234	-0.608554	0.104262	0.116763	0.164718	0.12885	0.923354	-1.312134	0.986919	0.930814
K ₂ O	-0.427823	0.003054	0.221486	-0.050309	0.984784	0.528137	-0.035621	0.096838	-0.029786	-0.443486	-0.192072	0.352062	-0.058413	-0.182075	0.041243	2.71041	-1.564051	-1.020915	-6.658844
Li ₂ O	2.856344	-0.512135	-1.2736	0.08973	0.528137	10.885676	-0.335643	0.558165	-0.384757	-0.217229	-0.551289	-0.770961	0.122506	-1.155193	-0.233332	-9.458567	-106.902332	6.883273	6.439389
MgO	0.130499	-0.081662	0.12636	-0.071668	-0.035621	-0.335643	2.978226	0.134684	-0.094235	-0.256211	-0.811255	0.222723	-0.20585	-0.039685	-0.248036	-1.829832	1.744186	0.091046	-5.477255
Na ₂ O	-0.958991	-0.017313	0.148251	0.029905	0.096838	0.558165	0.134684	0.314099	-0.050958	-0.192114	-0.051501	-0.023112	0.082996	-0.109206	-0.14142	4.615579	3.082478	-0.699715	-2.826332
SiO ₂	-1.111311	-0.032632	0.01722	-0.073566	-0.029786	-0.384757	-0.094235	-0.050958	0.154299	0.00164	-0.078868	-0.052427	-0.164134	0.055001	-0.024807	6.822777	1.957565	-0.320979	1.872214
SnO ₂	0.20737	0.126531	0.469206	0.135234	-0.443486	-0.217229	-0.256211	-0.192114	0.00164	2.035562	0.510089	-0.663133	0.106165	-0.168246	-0.24741	-0.437623	-5.696826	-4.077822	9.774779
TiO ₂	-1.170801	0.202408	1.437434	-0.608554	-0.192072	-0.551289	-0.811255	-0.051501	-0.078868	0.510089	5.182647	0.328957	-0.203718	0.508594	0.28237	6.90359	7.14573	-10.259386	2.247095
V ₂ O ₅	0.7375	-0.398197	0.448745	0.104262	0.352062	-0.770961	0.222723	-0.023112	-0.052427	-0.663133	0.328957	6.834246	-0.071665	0.248785	-0.262637	-7.268965	3.548646	4.083478	-86.880557
ZnO	-0.826343	-0.047286	-0.234892	0.116763	-0.058413	0.122506	-0.20585	0.082996	-0.164134	0.106165	-0.203718	-0.071665	3.211062	-0.059927	-0.048268	5.010206	-2.099436	1.319312	5.352353
ZrO ₂	-2.140986	0.092205	0.459892	0.164718	-0.182075	-1.155193	-0.039685	-0.109206	0.055001	-0.168246	0.508594	0.248785	-0.059927	1.640204	0.21525	11.451765	12.054899	-2.770333	-0.272737
Others	-0.331007	-0.02822	-0.100705	0.12885	0.041243	-0.233332	-0.248036	-0.14142	-0.024807	-0.24741	0.28237	-0.262637	-0.048268	0.21525	3.353813	2.067308	0.719613	0.175947	-0.13776
Al ₂ O ₃ ×Al ₂ O ₃	-149.682999	6.487049	24.607478	0.923354	2.71041	-9.458567	-1.829832	4.615579	6.822777	-0.437623	6.90359	-7.268965	5.010206	11.451765	2.067308	912.792737	160.712087	-188.874767	176.148561
Al ₂ O ₃ ×Li ₂ O	-48.978214	5.142475	18.441405	-1.312134	-1.564051	-106.902332	1.744186	3.082478	1.957565	-5.696826	7.14573	3.548646	-2.099436	12.054899	0.719613	160.712087	1502.468116	-121.775691	-101.283024
CaO×CaO	32.22759	-0.407089	-38.86732	0.986919	-1.020915	6.883273	0.091046	-0.699715	-0.320979	-4.077822	-10.259386	4.083478	1.319312	-2.770333	0.175947	-188.874767	-121.775691	343.956007	-140.035979
CaO×V ₂ O ₅	-20.884699	6.920648	-3.638362	0.930814	-6.658844	6.439389	-5.477255	-2.826332	1.872214	9.774779	2.247095	-86.880557	5.352353	-0.272737	-0.13776	176.148561	-101.283024	-140.035979	1684.304327

Table D.1. Variance/Covariance Matrix for Product Consistency Test-B	Model
--	-------

¹ Vienna JD, A Heredia-Langner, SK Cooley, AE Holmes, DS Kim, and NA Lumetta. 2021. *Glass Property-Composition Models for Support of Hanford WTP LAW Facility Operation*. PNNL-30932, Rev. 1, Pacific Northwest National Laboratory, Richland, WA.

Component	Al ₂ O ₃	B ₂ O ₃	CaO	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	SiO ₂	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others	Al ₂ O ₃ ×Al ₂ O ₃	CaO×CaO	CaO×V ₂ O ₅	Al ₂ O3×Na ₂ O
Al ₂ O ₃	19.670735	-0.87813	-2.702538	-0.256798	-0.60167	-0.591151	-0.02761	-0.043264	-0.936112	-0.217357	-0.803216	0.421815	-0.786417	-1.323664	-0.409484	-109.232903	19.35096	-19.536014	-9.868312
B ₂ O ₃	-0.87813	0.548792	-0.076026	0.025471	0.026011	-0.104573	-0.056078	-0.07386	-0.0237	0.137293	0.139341	-0.323719	-0.027149	0.033242	-0.007352	4.238075	0.332357	5.832578	0.805614
CaO	-2 702538	-0.076026	3 896607	-0 117397	0 104581	-0.024157	0.02072	0 327242	-0.043919	0 349539	1 071276	0 267969	-0 187489	0 271802	-0 165936	20.032505	-31 079851	-1 930647	-3 73575
	2.702000	01070020	51050007			0.021107	0102072	01027212	0.013313	0.0.0000	110/12/0	0.207703		01271002		2010322003			
Fe ₂ O ₃	-0.256798	0.025471	-0.117397	0.549966	0.007417	0.020785	-0.017928	-0.114327	-0.034115	0.149468	-0.466985	0.144107	0.106099	0.127637	0.142299	-0.32864	1.368604	0.671311	2.171553
K ₂ O	-0.60167	0.026011	0.104581	0.007417	0.851005	0.367415	0.024952	-0.113206	0.00933	-0.293792	-0.133721	0.353019	-0.028948	-0.15271	0.089567	0.659912	0.046705	-5.373786	2.991749
Li ₂ O	-0.591151	-0.104573	-0.024157	0.020785	0.367415	2.633428	-0.143	0.524006	-0.181426	-0.45722	-0.0373	-0.403854	-0.012197	-0.250449	-0.114551	0.662194	-0.83137	-0.531194	1.484695
MgO	-0.02761	-0.056078	0.02072	-0.017928	0.024952	-0.143	2.411566	-0.045657	-0.051923	-0.151167	-0.638324	0.239032	-0.146655	-0.054843	-0.156232	-2.84443	0.887187	-4.282112	2.324207
Na2O	-0.043264	-0.07386	0.327242	-0.114327	-0.113206	0.524006	-0.045657	0.800773	-0.135249	-0.325132	-0.101428	-0.250625	0.012403	-0.058826	-0.27021	8.074418	-3.02143	-2.091657	-8.603005
SiO ₂	-0.936112	-0.0237	-0.043919	-0.034115	0.00933	-0.181426	-0.051923	-0.135249	0.135838	0.038021	-0.061292	-0.005944	-0.118652	0.02301	0.00395	4.482021	0.303902	1.607184	1.412275
SnOr	-0 217357	0 137293	0 349539	0 149468	-0 293792	-0.45722	-0 151167	-0 325132	0.038021	1 656836	0.441273	-0.449356	0.094169	-0 109826	-0 137684	-1 252711	-2 74768	7 413039	2 828242
	0.00221/557	0.1202.41	1.071076	0.145400	0.122721	0.0072	0.(20224	0.101420	0.050021	0.441070	4.101145	0.115550	0.14(201	0.109020	0.137004	1.202711	2.74700	2.14(020	0.720120
1102	-0.803216	0.139341	1.0/12/6	-0.466985	-0.133/21	-0.03/3	-0.638324	-0.101428	-0.061292	0.4412/3	4.121145	0.306567	-0.146301	0.3582	0.226455	4.493527	-7.623558	2.146839	0.729139
V ₂ O ₅	0.421815	-0.323719	0.267969	0.144107	0.353019	-0.403854	0.239032	-0.250625	-0.005944	-0.449356	0.306567	5.62614	-0.021968	0.162855	-0.171296	-7.979264	4.204437	-69.083049	3.440518
ZnO	-0.786417	-0.027149	-0.187489	0.106099	-0.028948	-0.012197	-0.146655	0.012403	-0.118652	0.094169	-0.146301	-0.021968	2.561625	-0.037479	-0.022086	3.733824	1.15259	4.123675	0.884438
ZrO ₂	-1.323664	0.033242	0.271802	0.127637	-0.15271	-0.250449	-0.054843	-0.058826	0.02301	-0.109826	0.3582	0.162855	-0.037479	1.232209	0.149132	8.427631	-1.672206	0.464629	-0.75434
Others	-0.409484	-0.007352	-0.165936	0.142299	0.089567	-0.114551	-0.156232	-0.27021	0.00395	-0.137684	0.226455	-0.171296	-0.022086	0.149132	2.718699	0.183102	1.04329	-0.005333	2.427738
Al ₂ O ₃ ×Al ₂ O ₃	- 109.232903	4.238075	20.032505	-0.32864	0.659912	0.662194	-2.84443	8.074418	4.482021	-1.252711	4.493527	-7.979264	3.733824	8.427631	0.183102	750.132224	- 162.068997	150.269482	-72.455364
CaO×CaO	19.35096	0.332357	-31.079851	1.368604	0.046705	-0.83137	0.887187	-3.02143	0.303902	-2.74768	-7.623558	4.204437	1.15259	-1.672206	1.04329	-162.068997	280.225444	- 118.071928	41.532013
CaO×V ₂ O ₅	-19.536014	5.832578	-1.930647	0.671311	-5.373786	-0.531194	-4.282112	-2.091657	1.607184	7.413039	2.146839	-69.083049	4.123675	0.464629	-0.005333	150.269482	- 118.071928	1335.67195	0.287181
Al ₂ O ₃ ×Na ₂ O	-9.868312	0.805614	-3.73575	2.171553	2.991749	1.484695	2.324207	-8.603005	1.412275	2.828242	0.729139	3.440518	0.884438	-0.75434	2.427738	-72.455364	41.532013	0.287181	133.226339

Table D.2. Variance/Covariance Matrix for Product Consistency Test-Na Model

Component	Al ₂ O ₃	B_2O_3	CaO	F	K ₂ O	Li ₂ O	MgO	Na ₂ O	P_2O_5	SiO ₂	SnO_2	TiO ₂	V_2O_5	ZnO	ZrO_2	Others	Li ₂ O × Na ₂ O	$TiO_2 \times ZrO_2$	Li ₂ O × Li ₂ O
Al ₂ O ₃	61.853735	-7.995062	11.994068	-26.224535	-18.268189	-402.10722 8	-3.913059	-50.704214	49.006524	12.518598	17.591088	108.221307	-3.542689	-3.818794	27.436951	9.241988	1316.07039 9	-1350.9432 15	3168.0186 11
B ₂ O ₃	-7.995062	46.318296	3.117576	27.882688	-6.693278	-93.341664	-2.220724	-10.803966	-4.436338	-3.571706	8.661558	38.812779	-11.524668	-24.696057	17.637137	4.130961	290.74816	- 956.595328	647.42493 4
CaO	11.994068	3.117576	66.078419	-12.679472	-56.193683	- 455.858446	10.59062	-67.368698	17.160778	19.213611	40.306765	74.584688	-23.210599	20.541658	72.398328	10.658384	1187.76135 5	721.774789	3329.9260 8
F	-26.224535	27.882688	-12.679472	8919.67039 4	44.645687	1237.6379	66.077648	109.538919	-2803.3546 14	-41.288235	-50.774622	-313.77745 4	-234.02488 6	-110.68935	-121.13805 4	-104.03017 6	-3872.8606 93	6463.05467	-12695.902 14
K ₂ O	-18.268189	-6.693278	-56.193683	44.645687	131.808032	554.660152	-10.653396	102.720522	-65.103318	-33.576814	-71.404937	-77.742128	31.680709	-53.702022	-102.82924 3	-27.739303	-1166.5216 91	-802.11121 1	-4305.3285 16
Li ₂ O	-402.107228	-93.341664	-455.85844 6	1237.6379	554.660152	17886.0564 2	-485.02018 9	977.665269	9.022222	-363.63487 2	-410.46055	-1785.6366 55	-73.947152	419.183968	-594.31406 8	-52.086287	-53811.961 48	21130.3637 7	-199028.46 2
MgO	-3.913059	-2.220724	10.59062	66.077648	-10.653396	-485.02018 9	352.839596	-10.130859	35.983715	2.184334	-0.664785	-240.10030 2	-27.189419	-38.948076	-12.777566	9.854105	1367.67072 4	2903.07210 1	4643.3488 67
Na ₂ O	-50.704214	-10.803966	-67.368698	109.538919	102.720522	977.665269	-10.130859	145.694467	-73.802189	-44.976646	-70.80866	-119.58346 5	3.066306	-40.531242	-126.28087 3	-35.248093	-2625.8794 28	527.549794	-7578.5479 71
P ₂ O ₅	49.006524	-4.436338	17.160778	-2803.3546 14	-65.103318	9.022222	35.983715	-73.802189	2420.17947 4	10.977073	4.786175	137.321538	-57.577241	-26.724807	125.267503	68.198556	289.865719	-1297.7109 41	-5386.8514 69
SiO ₂	12.518598	-3.571706	19.213611	-41.288235	-33.576814	-363.63487 2	2.184334	-44.976646	10.977073	21.405482	16.303868	5.235819	-2.356876	-6.292719	19.803919	-1.797571	874.765044	690.450911	3553.4041 58
SnO ₂	17.591088	8.661558	40.306765	-50.774622	-71.404937	-410.46055	-0.664785	-70.80866	4.786175	16.303868	171.471306	27.988348	13.714619	47.384932	44.005541	50.036521	883.360276	1450.64448 4	2403.9154 85
TiO ₂	108.221307	38.812779	74.584688	-313.77745 4	-77.742128	-1785.6366 55	-240.10030 2	-119.58346 5	137.321538	5.235819	27.988348	2547.50670 4	-15.872043	-73.590286	347.777258	-153.84853 2	8197.67225 5	-42761.873	10840.093 57
V ₂ O ₅	-3.542689	-11.524668	-23.210599	-234.02488 6	31.680709	-73.947152	-27.189419	3.066306	-57.577241	-2.356876	13.714619	-15.872043	230.266027	16.884889	-10.329896	18.207349	-29.773818	1169.12821 5	882.70356 6
ZnO	-3.818794	-24.696057	20.541658	-110.68935	-53.702022	419.183968	-38.948076	-40.531242	-26.724807	-6.292719	47.384932	-73.590286	16.884889	393.341135	53.822375	25.544746	-1974.0235 96	682.042188	-5287.5899 19
ZrO_2	27.436951	17.637137	72.398328	-121.13805 4	-102.82924 3	-594.31406 8	-12.777566	-126.28087 3	125.267503	19.803919	44.005541	347.777258	-10.329896	53.822375	256.135473	61.77767	2178.86719 3	-5973.9862 92	1641.3273 86
Others	9.241988	4.130961	10.658384	-104.03017 6	-27.739303	-52.086287	9.854105	-35.248093	68.198556	-1.797571	50.036521	-153.84853 2	18.207349	25.544746	61.77767	130.179622	375.195976	-55.05741	-1587.0161 41
$\mathrm{Li}_2\mathrm{O} imes \mathrm{Na}_2\mathrm{O}$	1316.070399	290.74816	1187.76135 5	-3872.8606 93	-1166.5216 91	-53811.961 48	1367.67072 4	-2625.8794 28	289.865719	874.765044	883.360276	8197.67225 5	-29.773818	1974.02359 6	2178.86719 3	375.195976	204039.285 9	-136648.82 06	489992.99 71
$TiO_2 \times ZrO_2$	-1350.94321 5	-956.59532 8	721.774789	6463.05467	-802.11121 1	21130.3637 7	2903.07210 1	527.549794	-1297.7109 41	690.450911	1450.64448 4	-42761.873	1169.12821 5	682.042188	-5973.9862 92	-55.05741	-136648.82 06	1194858.92 7	-97934.146 14
$Li_2O\times Li_2O$	3168.018611	647.424934	3329.92608	-12695.902 14	-4305.3285 16	-199028.46 2	4643.34886 7	-7578.5479 71	-5386.8514 69	3553.40415 8	2403.91548 5	10840.0935 7	882.703566	-5287.5899 19	1641.32738 6	-1587.0161 41	489992.997 1	-97934.146 14	2794365.3 42

Table D.3. Variance/Covariance Matrix for Vapor Hydration Test Model

Comp	Al ₂ O ₃	B_2O_3	CaO	Cr ₂ O ₃	K ₂ O	Li ₂ O	Na ₂ O	SiO ₂	V_2O_5	ZrO ₂	Others	Li ₂ O×Li ₂ O	Na ₂ O×SiO ₂
Al ₂ O ₃	3.573147	1.51997	1.516088	3.246322	0.772305	-2.515171	-7.987438	-1.889312	0.253034	2.145784	1.712778	60.388215	19.666766
B ₂ O ₃	1.51997	2.357941	0.938047	3.479048	0.388767	-0.899775	-5.44148	-1.681855	0.137742	1.649922	1.354328	45.375048	14.402735
CaO	1.516088	0.938047	2.094815	0.769452	0.667521	-2.870531	-5.483996	-1.532965	0.03803	2.117489	1.468916	71.699047	14.594724
Cr ₂ O ₃	3.246322	3.479048	0.769452	106.220365	-3.511597	-2.447411	-10.651697	-2.258378	-0.169643	-1.185556	4.200548	-45.335949	24.097781
K ₂ O	0.772305	0.388767	0.667521	-3.511597	1.791339	-0.193112	-2.032416	-0.605337	-0.178361	0.752612	0.147252	29.579515	5.617009
Li ₂ O	-2.515171	-0.899775	-2.870531	-2.447411	-0.193112	24.233045	8.299026	0.902785	-3.315438	-3.316944	-1.72865	-379.754076	-16.764174
Na ₂ O	-7.987438	-5.44148	-5.483996	-10.651697	-2.032416	8.299026	24.832372	6.235704	-1.65107	-8.167206	-5.775041	-220.734103	-63.532158
SiO ₂	-1.889312	-1.681855	-1.532965	-2.258378	-0.605337	0.902785	6.235704	1.946707	-0.134198	-2.05128	-1.702693	-62.902963	-17.144585
V ₂ O ₅	0.253034	0.137742	0.03803	-0.169643	-0.178361	-3.315438	-1.65107	-0.134198	5.617225	1.572596	0.909986	13.760979	2.242051
ZrO ₂	2.145784	1.649922	2.117489	-1.185556	0.752612	-3.316944	-8.167206	-2.05128	1.572596	5.729554	2.202219	52.41448	19.58427
Others	1.712778	1.354328	1.468916	4.200548	0.147252	-1.72865	-5.775041	-1.702693	0.909986	2.202219	2.00943	46.172721	15.050488
Li ₂ O×Li ₂ O	60.388215	45.375048	71.699047	-45.335949	29.579515	-379.754076	-220.734103	-62.902963	13.760979	52.41448	46.172721	10449.37597	624.494574
Na ₂ O×SiO ₂	19.666766	14.402735	14.594724	24.097781	5.617009	-16.764174	-63.532158	-17.144585	2.242051	19.58427	15.050488	624.494574	168.489058

Table D.4. Variance/Covariance Matrix for K-3 Neck Corrosion Model

Comp	Al ₂ O ₃	B_2O_3	CaO	Cl	Li ₂ O	Na ₂ O	P_2O_5	SiO ₂	V_2O_5	Others	$Li_2O \times Na_2O$
Al ₂ O ₃	0.106166	-0.023641	-0.006321	-0.042622	-0.116415	-0.03756	0.003878	0.005365	-0.019318	-0.001282	0.3993
B_2O_3	-0.023641	0.098671	-0.008139	-0.137443	0.00774	0.000059	0.056206	-0.019151	-0.002605	0.007102	-0.151396
CaO	-0.006321	-0.008139	0.053655	-0.045479	-0.024439	0.005047	0.03128	-0.008033	-0.002969	0.009788	0.060851
Cl	-0.042622	-0.137443	-0.045479	7.365518	-0.082514	-0.14965	-1.533789	0.077818	0.222002	-0.061961	1.280449
Li ₂ O	-0.116415	0.00774	-0.024439	-0.082514	1.628478	0.191322	0.116498	-0.067394	0.009706	-0.026574	-9.128442
Na ₂ O	-0.03756	0.000059	0.005047	-0.14965	0.191322	0.048268	0.046391	-0.015836	-0.01683	0.000936	-0.703963
P ₂ O ₅	0.003878	0.056206	0.03128	-1.533789	0.116498	0.046391	3.884548	-0.030861	-0.109986	-0.012867	-1.458618
SiO ₂	0.005365	-0.019151	-0.008033	0.077818	-0.067394	-0.015836	-0.030861	0.017306	-0.000056	-0.010683	0.242571
V ₂ O ₅	-0.019318	-0.002605	-0.002969	0.222002	0.009706	-0.01683	-0.109986	-0.000056	0.394144	0.010043	-0.664261
Others	-0.001282	0.007102	0.009788	-0.061961	-0.026574	0.000936	-0.012867	-0.010683	0.010043	0.030772	0.169424
$Li_2O \times Na_2O$	0.3993	-0.151396	0.060851	1.280449	-9.128442	-0.703963	-1.458618	0.242571	-0.664261	0.169424	71.38192

Table D.5. Variance/Covariance Matrix for Sulfur Model

Table D.6.	Variance/Covariance	Matrix for	Viscosity	Model
------------	---------------------	------------	-----------	-------

Comp	Al ₂ O ₃	B ₂ O ₃	CaO	Cr ₂ O ₃	F	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P ₂ O ₅	SiO ₂	SnO ₂	TiO ₂	V ₂ O ₅	ZnO	ZrO ₂	Others	$Al_2O_3 imes Na_2O$	Li ₂ O × Li ₂ O	Li ₂ O × Na ₂ O
Al ₂ O ₃	0.717602	-0.043274	-0.060347	-0.166514	-0.332527	-0.049073	-0.098431	0.063224	-0.070843	0.230974	-0.088181	-0.061862	-0.037026	-0.018061	-0.050998	-0.024184	-0.023604	0.143878	-3.946554	0.584707	-1.641575
B_2O_3	-0.043274	0.084652	0.001822	0.04815	0.077623	0.006009	0.005494	0.028415	-0.008866	-0.013741	-0.001308	-0.010703	0.012435	0.029772	0.003184	-0.017716	-0.007463	-0.070206	0.198512	-0.373448	-0.162145
CaO	-0.060347	0.001822	0.050912	-0.019399	-0.076547	0.007605	0.007499	-0.251668	0.019311	-0.034138	0.020154	0.006128	0.016658	0.037513	-0.007317	0.003673	0.01395	-0.077307	0.380492	2.480365	0.889889
Cr ₂ O ₃	-0.166514	0.04815	-0.019399	12.93498	-2.28797	0.178625	-0.19671	-0.872359	0.292973	-0.19935	-0.682494	0.021969	-0.394182	0.44093	0.185134	0.082567	-0.258016	0.177713	0.94251	1.562524	5.965481
F	-0.332527	0.077623	-0.076547	-2.28797	18.677641	0.061504	-0.102945	1.257702	-0.102957	-0.117396	-2.361222	0.019815	-0.180529	0.050297	-0.254142	-0.165541	0.136009	-0.702338	2.199756	-16.346837	-5.076567
Fe ₂ O ₃	-0.049073	0.006009	0.007605	0.178625	0.061504	0.100173	-0.00576	-0.126897	-0.014068	-0.036323	-0.011642	-0.002271	0.024106	-0.05481	0.037819	0.020076	0.031715	0.086261	0.376149	0.741448	0.57118
K ₂ O	-0.098431	0.005494	0.007499	-0.19671	-0.102945	-0.00576	0.158651	0.12707	0.011291	-0.019819	0.065013	0.000853	-0.038644	-0.042207	-0.005059	0.006557	-0.028659	0.051037	0.577486	-1.139271	-0.0691
Li ₂ O	0.063224	0.028415	-0.251668	-0.872359	1.257702	-0.126897	0.12707	10.629705	-0.254035	0.865027	0.007577	-0.279771	-0.102527	-0.093994	-0.14002	-0.209757	-0.41527	-0.281713	-2.331489	- 115.320597	-33.700401
MgO	-0.070843	-0.008866	0.019311	0.292973	-0.102957	-0.014068	0.011291	-0.254035	0.450713	-0.020535	-0.033087	-0.002544	-0.043622	-0.091031	-0.013462	0.009093	-0.005341	-0.043339	0.391123	1.884166	1.030654
Na ₂ O	0.230974	-0.013741	-0.034138	-0.19935	-0.117396	-0.036323	-0.019819	0.865027	-0.020535	0.203073	-0.043448	-0.055053	-0.050926	-0.029896	-0.061521	-0.028741	-0.059891	-0.038186	-1.712168	-6.776355	-3.204304
P ₂ O ₅	-0.088181	-0.001308	0.020154	-0.682494	-2.361222	-0.011642	0.065013	0.007577	-0.033087	-0.043448	1.465013	0.002318	0.021706	0.005911	-0.004509	0.015873	0.036868	0.084534	0.651165	0.2775	0.225991
SiO ₂	-0.061862	-0.010703	0.006128	0.021969	0.019815	-0.002271	0.000853	-0.279771	-0.002544	-0.055053	0.002318	0.0259	0.008531	-0.008314	0.012722	-0.024304	0.006307	-0.029918	0.438343	2.432383	0.979568
SnO ₂	-0.037026	0.012435	0.016658	-0.394182	-0.180529	0.024106	-0.038644	-0.102527	-0.043622	-0.050926	0.021706	0.008531	0.282608	0.042735	-0.013014	0.034438	0.007684	0.13306	0.299146	-0.308944	0.053712
TiO ₂	-0.018061	0.029772	0.037513	0.44093	0.050297	-0.05481	-0.042207	-0.093994	-0.091031	-0.029896	0.005911	-0.008314	0.042735	0.629105	0.080855	-0.006301	0.03039	-0.14743	0.196828	0.577983	0.459827
V ₂ O ₅	-0.050998	0.003184	-0.007317	0.185134	-0.254142	0.037819	-0.005059	-0.14002	-0.013462	-0.061521	-0.004509	0.012722	-0.013014	0.080855	0.347009	0.025636	0.032487	-0.110279	0.402344	0.848683	0.038429
ZnO	-0.024184	-0.017716	0.003673	0.082567	-0.165541	0.020076	0.006557	-0.209757	0.009093	-0.028741	0.015873	-0.024304	0.034438	-0.006301	0.025636	0.471413	0.002238	0.149906	0.173039	0.88528	0.928863
ZrO ₂	-0.023604	-0.007463	0.01395	-0.258016	0.136009	0.031715	-0.028659	-0.41527	-0.005341	-0.059891	0.036868	0.006307	0.007684	0.03039	0.032487	0.002238	0.216095	0.076864	0.136196	3.560076	1.455479
Others	0.143878	-0.070206	-0.077307	0.177713	-0.702338	0.086261	0.051037	-0.281713	-0.043339	-0.038186	0.084534	-0.029918	0.13306	-0.14743	-0.110279	0.149906	0.076864	3.302962	-1.099502	0.480692	0.158056
AlNa	-3.946554	0.198512	0.380492	0.94251	2.199756	0.376149	0.577486	-2.331489	0.391123	-1.712168	0.651165	0.438343	0.299146	0.196828	0.402344	0.173039	0.136196	-1.099502	24.643517	12.450573	15.813503
LiLi	0.584707	-0.373448	2.480365	1.562524	16.346837	0.741448	-1.139271	115.320597	1.884166	-6.776355	0.2775	2.432383	-0.308944	0.577983	0.848683	0.88528	3.560076	0.480692	12.450573	1460.94139	326.761218
LiNa	-1.641575	-0.162145	0.889889	5.965481	-5.076567	0.57118	-0.0691	-33.700401	1.030654	-3.204304	0.225991	0.979568	0.053712	0.459827	0.038429	0.928863	1.455479	0.158056	15.813503	326.761218	132.241786

Appendix E – Terms Used for Composition Uncertainty Calculations

Table E.1.	Minimum, Ma	ximum, l	Most Likely,	and Nominal	Values for the	Glass-Form	ing Chemical	Compositions.	Source:	Vienna & Kir	n
					(20	$(14)^1$	_	_			

Min	Kyanite	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr2O3	Silica	Rutile	Zincite	Zircon	V_2O_5	SnO_2
Ac ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Ag ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
Al ₂ O ₃	0.54	0	0.0013	0.0099	0	0.0003	0	0.0004	0	0	0.001	0	0
Am ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
As ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0
B ₂ O ₃	0	0.5625	0	0	0	0	0	0	0	0	0	0	0
BaO	0	0	0	0	0	0	0	0	0	0	0	0	0
BeO	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
CaO	0	0	0.4477	0	0	0	0	0	0	0	0	0	0
CdO	0	0	0	0	0	0	0	0	0	0	0	0	0
Ce ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Cl	0	0	0	0	0	0	0	0	0	0	0	0	0
Cm ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
CoO	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr ₂ O ₃	0	0	0	0	0	0	0.985	0	0	0	0	0	0
Cs ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
CuO	0	0	0	0	0	0	0	0	0	0	0	0	0

¹ Vienna JD and DS Kim. 2014. Preliminary IHLW Formulation Algorithm Description. 24590-HLW-RPT-RT-05-001, Rev. 1, River Protection Project, Hanford Waste Treatment and Immobilization Plant, Richland, WA. Accessed November 12, 2021, at https://www.osti.gov/servlets/purl/1110191.

Li Carbonate Wollastonite Boric Acid Hematite Kyanite Olivine Zincite Zircon Rutile Cr_2O_3 Silica V_2O_5 SnO_2 Minimum Eu₂O₃ F 0.0042 0.0029 0.9615 0.0006 0.0468 0.0001 Fe₂O₃ Gd₂O₃ HgO Ι K₂O La_2O_3 Li₂O 0.4 MgO 0.0001 0.4634 0.0009 MnO 0.0003 MoO₃ Na₂O Nb₂O₅ Nd₂O₃ NiO 0.0022 NpO₂ 0.0018 P_2O_5 Pa₂O₅ PbO PdO Pr₂O₃ PuO₂ RaO Rb₂O Rh₂O₃

Minimum	Kyanite	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr ₂ O ₃	Silica	Rutile	Zincite	Zircon	V_2O_5	SnO_2
RuO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
SO ₃	0	0	0	0.0006	0	0	0	0	0	0	0	0	0
Sb ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
SeO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
SiO ₂	0.39	0	0.48	0.0084	0	0.4085	0	0.992	0	0	0.32	0	0
Sm_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0
SnO_2	0	0	0	0	0	0	0	0	0	0	0	0	0.999
SrO	0	0	0	0	0	0	0	0	0	0	0	0	0
Ta ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0
Tc ₂ O ₇	0	0	0	0	0	0	0	0	0	0	0	0	0
TeO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
ThO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
TiO ₂	0.005	0	0.0001	0	0	0	0	0	0.928	0	0.0007	0	0
Tl ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
UO ₃	0	0	0	0	0	0	0	0	0	0	0.0003	0	0
V ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0.992	0
WO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Y_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0
ZnO	0	0	0	0	0	0	0	0	0	0.993	0	0	0
ZrO ₂	0	0	0	0	0	0	0	0	0	0	0.65	0	0

Maximum	Kyanite	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr2O3	Silica	Rutile	Zincite	Zircon	V_2O_5	SnO_2
Ac ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Ag ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
Al ₂ O ₃	0.6	0	0.0027	0.0201	0	0.0078	0	0.004	0.0075	0	0.004	0	0
Am ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
As ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0
B ₂ O ₃	0	0.568	0	0	0	0	0	0	0	0	0	0	0
BaO	0	0	0	0	0	0	0	0	0	0	0	0	0
BeO	0	0	0	0	0	0	0	0	0	0	0	0	0
													0.0001
Bi ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	7
CaO	0.0004	0	0.5023	0.0008	0.022	0.0003	0	0.0002	0	0	0	0	0
CdO	0	0	0	0	0	0	0	0	0	0.0002	0	0	0
Ce ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Cl	0	0	0	0	0.0001	0	0	0	0	0	0	0	0
Cm ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
CoO	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr ₂ O ₃	0	0	0	0	0.0002	0.0078	0.991	0	0.0075	0	0	0	0
Cs ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
CuO	0	0	0	0	0	0	0	0	0	0	0	0	0

Li Carbonate Wollastonite Boric Acid Hematite Kyanite Olivine Zincite Zircon Rutile Cr_2O_3 Silica SnO_2 V_2O_5 Maximum Eu₂O₃ F 0.00057 0.01 0.9785 0.0001 0.0003 Fe₂O₃ 0.0051 0.1068 0.0004 0.025 0.0001 0.0009 0.00021 Gd₂O₃ HgO Ι 0.00018 0.0007 0.0001 0.0002 K_2O La₂O₃ Li₂O 0.4044 0.001 0.0037 0.0002 0.4934 0.0001 MgO 0.0004 MnO 0.0011 0.0039 0.0001 MoO₃ 0.00033 Na₂O 0.0042 0.0011 0.0004 0.0002 Nb₂O₅ Nd₂O₃ NiO 0.0052 NpO₂ P_2O_5 0.0054 0.0007 Pa₂O₅ PbO 0.0001 0.00054 PdO Pr₂O₃ PuO₂ RaO Rb₂O Rh₂O₃

Li Carbonate Wollastonite Boric Acid Hematite Kyanite Olivine Zincite Zircon Rutile Cr_2O_3 Silica V_2O_5 SnO_2 Maximum RuO₂ 0.0003 0.0004 0.0007 SO₃ 0.0009 0.00018 Sb₂O₃ SeO₂ 0.00021 SiO₂ 0.42 0.53 0.0186 0.4385 0.999 0.025 0.325 Sm₂O₃ SnO₂ 0.9999 SrO Ta₂O₅ Tc₂O₇ TeO₂ ThO₂ 0.936 TiO₂ 0.016 0.0003 0.0005 0.0014 Tl₂O UO₃ 0.0008 V_2O_5 0.0075 0.996 WO₃ Y_2O_3 ZnO 0.9999 0.025 0.67 ZrO₂

Most Likely	Kyanite	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr2O3	Silica	Rutile	Zincite	Zircon	V_2O_5	SnO_2
Ac ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Ag ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
Al ₂ O ₃	0.5703	0	0.002	0.015	0	0.0019	0	0.0014	0.005	0	0.0025	0	0
Am ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
As ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0
B_2O_3	0	0.5652	0	0	0	0	0	0	0	0	0	0	0
BaO	0	0	0	0	0	0	0	0	0	0	0	0	0
BeO	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
CaO	0.0003	0	0.475	0.0004	0	0.0002	0	0.0001	0	0	0	0	0
CdO	0	0	0	0	0	0	0	0	0	0.0001	0	0	0
Ce ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Cl	0	0	0	0	0.0001	0	0	0	0	0	0	0	0
Cm ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
CoO	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr ₂ O ₃	0	0	0	0	0.0001	0.0013	0.991	0	0.0016	0	0	0	0
Cs ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
CuO	0	0	0	0	0	0	0	0	0	0	0	0	0

Most Likely	Kyanite	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr ₂ O ₃	Silica	Rutile	Zincite	Zircon	V_2O_5	SnO_2
Eu ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
F	0	0	0	0	0	0	0	0	0	0	0	0	0
Fe ₂ O ₃	0.0078	0	0.004	0.97	0	0.0768	0	0.0002	0.007	0	0.0008	0	0
Gd ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
HgO	0	0	0	0	0	0	0	0	0	0	0	0	0
Ι	0	0	0	0	0	0	0	0	0	0	0	0	0
K ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
La ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Li ₂ O	0	0	0	0	0.402	0	0	0	0	0	0	0	0
MgO	0.0001	0	0.001	0.001	0.0001	0.4801	0	0.0001	0	0	0	0	0
MnO	0	0	0.001	0.0012	0	0	0	0	0	0	0	0	0
MoO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Na ₂ O	0.0042	0	0	0	0.0008	0.0003	0	0.0002	0	0	0	0	0
Nb ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0
Nd ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
NiO	0	0	0	0	0	0.0037	0	0	0	0	0	0	0
NpO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
P ₂ O ₅	0	0	0	0.0027	0	0	0	0	0	0	0	0	0
Pa ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0
PbO	0	0	0	0	0	0	0	0	0	0	0	0	0
PdO	0	0	0	0	0	0	0	0	0	0	0	0	0
Pr ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
PuO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
RaO	0	0	0	0	0	0	0	0	0	0	0	0	0
Rb ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
Rh ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0

Most Likely	Kyanite	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr ₂ O ₃	Silica	Rutile	Zincite	Zircon	V_2O_5	SnO_2
RuO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
SO ₃	0	0	0	0.0007	0.0003	0	0	0	0	0	0	0	0
Sb ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
SeO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
SiO ₂	0.4067	0	0.51	0.0135	0	0.4252	0	0.997	0.022	0	0.3225	0	0
Sm ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
SnO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0.99945
SrO	0	0	0	0	0	0	0	0	0	0	0	0	0
Ta ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0
Tc ₂ O ₇	0	0	0	0	0	0	0	0	0	0	0	0	0
TeO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
ThO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
TiO ₂	0.0079	0	0.0002	0	0	0	0	0.0001	0.932	0	0.001	0	0
Tl ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
UO ₃	0	0	0	0	0	0	0	0	0	0	0.0004	0	0
V ₂ O ₅	0	0	0	0	0	0	0	0	0.0045	0	0	0.994	0
WO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Y ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
ZnO	0	0	0	0	0	0	0	0	0	0.999	0	0	0
ZrO ₂	0	0	0	0	0	0	0	0	0.019	0	0.66	0	0

Nominal	Kyanite	Boric Acid	Wollaston ite	Hematite	Li Carbonate	Olivine	Cr ₂ O ₃	Silica	Rutile	Zincite	Zircon	V_2O_5	SnO_2
Ac ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Ag ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
Al ₂ O ₃	0.570223	0	0.002003	0.015	0	0.00261	0	0.001657	0.004584	0	0.002502	0	0
Am ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
As ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0
B ₂ O ₃	0	0.565221	0	0	0	0	0	0	0	0	0	0	0
BaO	0	0	0	0	0	0	0	0	0	0	0	0	0
BeO	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	2.83E-05
CaO	0.000267	0	0.475099	0.000399	0.003657	0.000184	0	0.0001	0	0	0	0	0
CdO	0	0	0	0	0	0	0	0	0	0.0001	0	0	0
Ce ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Cl	0	0	0	0	8.32E-05	0	0	0	0	0	0	0	0
Cm ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
CoO	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr ₂ O ₃	0	0	0	0	0.0001	0.002172	0.990223	0	0.002309	0	0	0	0
Cs ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
CuO	0	0	0	0	0	0	0	0	0	0	0	0	0
Eu ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
F	0	0	0	0	0	0	0	0	0	0	0	0	0
Fe ₂ O ₃	0.007568	0	0.004003	0.970057	1.67E-05	0.076858	3.88E-05	0.000217	0.008835	1.66E-05	0.000783	0.000074	0.000035
Gd ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
HgO	0	0	0	0	0	0	0	0	0	0	0	0	0
Ι	0	0	0	0	0	0	0	0	0	0	0	0	0
K2O	0.000116	0	0	0	1.66E-05	0	0	3.35E-05	0	0	0	2.34E-05	0
La ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Li ₂ O	0	0	0	0	0.402062	0	0	0	0	0	0	0	0
MgO	0.000133	0	0.000835	0.001299	9.99E-05	0.47949	0	8.33E-05	0	0	0	0	0
MnO	0	0	0.001	0.001499	0	0	0	0	0	1.66E-05	0	0	0
MoO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Na ₂ O	0.003495	0	0	0	0.000716	0.000267	0	0.000167	0	0	0	4.36E-05	0
Nb ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0
Nd ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
NiO	0	0	0	0	0	0.003704	0	0	0	0	0	0	0
NpO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
P ₂ O ₅	0	0	0	0.002996	0	0	0	0	0.000117	0	0	0	0
Pa ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0
PbO	0	0	0	0	0	0	0	0	0	1.66E-05	0	0	0.00009

Nominal	Kyanite	Boric Acid	Wollastonit e	Hematite	Li Carbonate	Olivine	Cr2O3	Silica	Rutile	Zincite	Zircon	V_2O_5	SnO_2
PdO	0	0	0	0	0	0	0	0	0	0	0	0	0
Pr ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
PuO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
RaO	0	0	0	0	0	0	0	0	0	0	0	0	0
Rb ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
Rh ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
RuO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
SO ₃	0	4.98E-05	0	0.000717	0.000266	0	0	0	0.000117	0	0	0	0
Sb ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0.00003
SeO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
SiO ₂	0.406079	0	0.508207	0.013493	0	0.424659	0	0.996506	0.018817	0	0.322526	2.77E-05	0
Sm ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
SnO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0.99945
SrO	0	0	0	0	0	0	0	0	0	0	0	0	0
Ta ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0
Tc_2O_7	0	0	0	0	0	0	0	0	0	0	0	0	0
TeO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
ThO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0
TiO ₂	0.008769	0	0.0002	0	0	0	0	0.00015	0.932065	0	0.001017	0	0
Tl ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0
UO ₃	0	0	0	0	0	0	0	0	0	0	0.00045	0	0
V_2O_5	0	0	0	0	0	0	0	0	0.004252	0	0	0.994	0
WO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
Y ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0
ZnO	0	0	0	0	0	0	0	0	0	0.998145	0	0	0
ZrO ₂	0	0	0	0	0	0	0	0	0.016837	0	0.660036	0	0

Comp	ln(DF), Min	ln(DF), Most likely	ln(DF), Max	Comp	ln(DF), Min	ln(DF), Most likely	ln(DF), Max	Comp	ln(DF), Min	ln(DF), Most likely	ln(DF), Max
Ac ₂ O ₃	2.9601	6.8772	11.1239	MoO ₃	1.8563	4.194	6.4944	UO ₃	2.9601	6.8772	11.1239
Ag ₂ O	1.8563	4.194	6.4944	Na ₂ O	3.4874	4.8633	6.4944	V_2O_5	1.8563	4.194	6.4944
Al ₂ O ₃	5.0764	7.0814	8.8901	Nb ₂ O ₅	2.9601	6.8772	11.1239	WO ₃	2.9601	6.8772	11.1239
Am ₂ O ₃	1.8563	4.194	6.4944	Nd ₂ O ₃	2.9601	6.8772	11.1239	Y_2O_3	2.9601	6.8772	11.1239
As ₂ O ₅	0.0945	1.5296	4.237	NiO	3.9299	4.7875	6.3835	ZnO	4.7353	6.2383	7.8709
B_2O_3	3.708	4.5886	5.8519	NpO ₂	2.9601	6.8772	11.1239	ZrO ₂	7.2204	8.7143	11.1239
BaO	2.9601	6.8772	11.1239	P_2O_5	2.9601	5.1381	6.7822	_			_
BeO	2.9601	6.8772	11.1239	Pa ₂ O ₅	2.9601	6.8772	11.1239				_
Bi ₂ O ₃	1.8563	4.194	6.4944	PbO	3.2542	4.4716	6.2971	_	_	_	_
CaO	5.2311	7.0825	8.6034	PdO	2.9601	6.8772	11.1239		_	_	_
CdO	2.9601	6.8772	11.1239	Pr ₂ O ₃	2.9601	6.8772	11.1239	_	_	_	_
Ce ₂ O ₃	2.9601	6.8772	11.1239	PuO ₂	2.9601	6.8772	11.1239		_	_	_
Cl	0.0979	0.7583	1.9095	RaO	0.0945	1.5296	4.237	_	_	_	_
Cm ₂ O ₃	2.9601	6.8772	11.1239	Rb ₂ O	1.8563	4.194	6.4944	_	_	_	_
CoO	2.9601	6.8772	11.1239	Rh ₂ O ₃	2.9601	6.8772	11.1239		_	_	_
Cr ₂ O ₃	1.8563	3.0681	5.3033	RuO ₂	1.8563	4.194	6.4944			_	_
Cs ₂ O	0.47	2.3609	4.237	SO ₃	0.6308	1.9694	3.2089		_	_	_
CuO	2.9601	6.8772	11.1239	Sb_2O_3	0.0945	1.5296	4.237				
Eu_2O_3	2.9601	6.8772	11.1239	SeO ₂	0.0945	1.5296	4.237				_
F	0.1179	1.4682	2.4361	SiO ₂	5.3471	7.5372	9.7527		_		_
Fe ₂ O ₃	4.9381	6.6712	8.8984	Sm ₂ O ₃	2.9601	6.8772	11.1239				
Gd_2O_3	2.9601	6.8772	11.1239	SnO ₂	2.9601	6.8772	11.1239				_
HgO	0	0	0	SrO	2.9601	6.8772	11.1239				
Ι	0.0945	0.5807	2.266	Ta ₂ O ₅	2.9601	6.8772	11.1239				_
K ₂ O	2.0669	3.3844	5.5607	Tc ₂ O ₇	0.0953	0.47	1.6094				
La ₂ O ₃	2.9601	6.8772	11.1239	TeO ₂	0.0945	1.5296	4.237				_
Li ₂ O	3.4689	5.987	7.2894	ThO ₂	2.9601	6.8772	11.1239	_	_	_	_
MgO	7.2464	8.8618	11.0268	TiO ₂	4.6308	6.1247	8.074	_	—	—	—
MnO	2.9601	6.8772	11.1239	Tl ₂ O	0.0945	1.5296	4.237	_	_	_	_

Table E.2. Minimum, Maximum, and Most Likely Values for the Natural Logarithm of the Melter Decontamination Factor (DF)

Element	Glass oxide	f_i	Radionuclide	Glass oxide	f_i	A_i , Ci/g
Ac	Ac ₂ O ₃	NA ¹	⁵⁹ Ni	⁵⁹ NiO	1.2714800	7.982E-02
Ag	Ag ₂ O	1.0741618	⁶⁰ Co	⁶⁰ CoO	1.2669102	1.131E+03
Al	Al ₂ O ₃	1.8894637	⁶³ Ni	⁶³ NiO	1.2542412	5.738E+01
Am	Am ₂ O ₃	NA	⁷⁹ Se	⁷⁹ SeO ₂	1.4054638	6.969E-02
As	As ₂ O ₅	1.5338715	⁹⁰ Sr	⁹⁰ SrO	1.1779550	1.388E+02
В	B_2O_3	3.2198779	⁹⁰ Y	90Y2O3	1.2669393	5.437E+05
Ba	BaO	1.1165059	^{93m} Nb	$^{93m}Nb_2O_5$	1.4305248	2.386E+02
Be	BeO	2.7753081	⁹³ Zr	⁹³ ZrO ₂	1.3444224	2.515E-03
Bi	Bi ₂ O ₃	1.1148390	⁹⁹ Tc	⁹⁹ Tc ₂ O ₇	1.5661615	1.711E-02
Ca	CaO	1.3992065	¹⁰⁶ Ru	¹⁰⁶ RuO ₂	1.3018755	3.349E+03
Cd	CdO	1.1423295	^{113m} Cd	^{113m} CdO	1.1417075	2.311E+02
Ce	Ce_2O_3	1.1712814	¹²⁵ Sb	125 Sb ₂ O ₃	1.1919928	1.037E+03
Cl	Cl	1.0000000	¹²⁶ Sn	126 SnO ₂	1.2539587	2.839E-02
Cm	Cm ₂ O ₃	NA	¹²⁹ I	¹²⁹ I	1.0000000	1.768E-04
Co	CoO	1.2714836	¹³⁴ Cs	$^{134}Cs_2O$	1.0596993	1.293E+03
Cr	Cr ₂ O ₃	1.4615558	^{137m} Ba	^{137m} BaO	1.1167839	5.382E+08
Cs	Cs ₂ O	1.0601909	¹³⁷ Cs	$^{137}Cs_2O$	1.0583920	8.655E+01
Cu	CuO	1.2517767	¹⁵¹ Sm	$^{151}Sm_2O_3$	1.1589344	2.632E+01
Eu	Eu_2O_3	NA	¹⁵² Eu	¹⁵² Eu ₂ O ₃	1.1578888	1.740E+02
F	F	1.0000000	¹⁵⁴ Eu	¹⁵⁴ Eu ₂ O ₃	1.1558383	2.703E+02
Fe	Fe ₂ O ₃	1.4297294	¹⁵⁵ Eu	¹⁵⁵ Eu ₂ O ₃	1.1548329	4.762E+02
Gd	Gd ₂ O ₃	1.1526175	²²⁶ Ra	²²⁶ RaO	1.0707860	9.885E-01
Hg	HgO	1.0797617	²²⁷ Ac	²²⁷ Ac ₂ O ₃	1.1057099	7.232E+01
I	Ι	NA	²²⁸ Ra	²²⁸ RaO	1.0701728	2.727E+02
K	K ₂ O	1.2046048	²²⁹ Th	²²⁹ ThO ₂	1.1397132	2.127E-01
La	La ₂ O ₃	1.1727729	²³¹ Pa	²³¹ Pa ₂ O ₅	1.1731267	4.723E-02
Li	Li ₂ O	2.1525285	²³² Th	²³² ThO ₂	1.1379033	1.097E-07
Mg	MgO	1.6582761	²³² U	²³² UO ₃	1.2068558	2.207E+01
Mn	MnO	1.2912262	²³³ U	²³³ UO ₃	1.2059655	9.633E-03
Мо	MoO ₃	1.5002939	²³⁴ U	²³⁴ UO ₃	1.2050846	6.217E-03
Na	Na ₂ O	1.3479678	²³⁵ U	²³⁵ UO ₃	1.2042094	2.161E-06

Table E.3.	Oxide Conversion Factors (f_i) for Chemical Elements and Radionuclides and Specific Activities (A_i) for Radionuclides. Source
	Table A-1 in Kim and Vienna (2012)

¹ Not applicable

Element	Glass oxide	fi	Radionuclide	Glass oxide	fi	Ai, Ci/g
Nb	Nb ₂ O ₅	NA	²³⁶ U	236UO ₃	1.2033426	6.468E-05
Nd	Nd_2O_3	1.1663831	²³⁷ Np	237NpO ₂	1.1349887	7.047E-04
Ni	NiO	1.2725928	²³⁸ Pu	²³⁸ PuO ₂	1.1344205	1.712E+01
Np	NpO ₂	NA	²³⁸ U	²³⁸ UO ₃	1.2016299	3.361E-07
Р	P_2O_5	2.2913672	²³⁹ Pu	²³⁹ PuO ₂	1.1338571	6.202E-02
Pa	Pa ₂ O ₅	NA	²⁴⁰ Pu	²⁴⁰ PuO ₂	1.1332983	2.269E-01
Pb	PbO	1.0772172	²⁴¹ Am	²⁴¹ Am ₂ O	1.0995578	3.427E+00
Pd	PdO	1.1503420	²⁴¹ Pu	241 PuO ₂	1.1327437	1.030E+02
Pr	Pr ₂ O ₃	1.1703179	²⁴² Cm	²⁴² Cm ₂ O	1.0991457	3.311E+03
Pu	PuO ₂	NA	²⁴² Pu	$^{242}PuO_2$	1.1321942	3.954E-03
Ra	RaO	NA	²⁴³ Am	²⁴³ Am ₂ O	1.0987369	1.997E-01
Rb	Rb ₂ O	1.0935990	²⁴³ Cm	²⁴³ Cm ₂ O	1.0987369	4.903E+01
Rh	Rh ₂ O ₃	1.2332149	²⁴⁴ Cm	²⁴⁴ Cm ₂ O	1.0983316	8.093E+01
Ru	RuO ₂	1.3166004		•		
S	SO ₃	2.4968565				
Sb	Sb_2O_3	1.1971065				
Se	SeO ₂	1.4052533				
Si	SiO ₂	2.1393352				
Sm	Sm_2O_3	NA				
Sn	SnO_2	NA				
Sr	SrO	1.1825999				
Та	Ta ₂ O ₅	1.2210498				
Tc	Tc_2O_7	NA				
Te	TeO ₂	1.2507743				
Th	ThO ₂	1.1379032				
Ti	TiO ₂	1.6683124				
Tl	Tl ₂ O	1.0391407				
U	UO ₃	1.2016486				
V	V_2O_5	1.7851850				
W	WO ₃	1.2610726				
Y	Y_2O_3	1.2699384				
Zn	ZnO	1.2446766				
Zr	ZrO ₂	1.3507717				

Pacific Northwest National Laboratory

902 Battelle Boulevard P.O. Box 999 Richland, WA 99354 1-888-375-PNNL (7665)

www.pnnl.gov