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1. Objective

The objective of this document is to support the DMC initiative’s research on hardware and
software development. Our focus is on the power grid domain that has a rich diversity of numerical
and computationally challenging applications. Through this document, we highlight two core
building blocks, power flow and transient stability equations, for power grid applications.
Improving computational robustness and acceleration of these core blocks will tremendously
benefit all power grid applications. We also highlight the most computationally dominant
numerical kernels that are being used in power flow and transient stability. The objective of this
document is three-folds:
B Provide a description of the application workflows and associated hardware and software
needs.
B Identify the fundamental computing challenges that are a recurring theme in many of the
power grid applications.
B Provide a baseline compute performance on the CPUs to motivate the DMC research on
accelerator hardware and software technologies.

2. Power grid structure, analysis needs, and current state-of-art in computing

2.1 Structure

Before we delve on the power grid structure, a few notes, to compare and contextualize the current
scientific computing applications, are necessary. Most of the problems studied in large-scale
scientific computing stem from applications that use partial differential equations (for e.g. heat
equation or advection-diffusion). These partial differential equations (PDEs) are discretized over
grids that have regular structure/topology (equal distance grid points) and are typically have 1, 2,
or 3 dimensions. Such problems also have homogeneity in the equations (i.e., the same equation
(or set of equations) and same type of variable set for each grid point). This greatly eases the data
access and computational patterns since identical equations need to be evaluated. A second class
of problems in scientific computing are the unstructured grid problems that are again described by
partial differential equations. The computations are done on “cells” (a collection of grid points that
have irregular patterns, such as a hexagon, triangle, or other patterns) instead of the grid points.
Such problems also do (mostly) have homogeneity in the problem equations and variables.

Power grids fall in the category of “network” problems. Such networks (topological collection of
nodes that have irregular connectivity) are typically associated with infrastructure networks (power
grid, communication, water networks, gas networks, and others), social networks, biological
networks etc. In scientific computing parlance, problems emanating from such network are loosely
termed as discrete network problems. Unlike structured or unstructured grid problems, where the
topology is decided to suit the problem needs, network problem use the irregular topology of the
network that is a physical layout of the network itself. Moreover, power grids have an irregular
topology that follow a power law distribution [Atkins2009]. Each node can have one or more



incident edges. The power grid equations are typically described by purely algebraic equations or
differential algebraic equations. The equipment/devices at the nodes and edges dictate the type and
the number of equations at each power grid node. For instance, a node with wind generators will
have different type and number of equations than a node that has industrial motors.

g
Fig. 1: Topology of the synthetic Texas 2000-bus network from TAMU Electrical Grid Test Repository. Dense connectivity at urban centers
(Houston, Dallas, Austin, San Antonio) can be seen, while there is sparse connectivity in urban areas.

For analysis of these grids, the most important element is the graph Laplacian of the network. The
Laplacian of the above networks, shown in Fig. 3 and Fig. 4, exhibits this interweaving between
sparsity and denseness in the matrix blocks, following the topology of the grid that has densely
connected urban areas and sparsely connected rural regions.

Fig. 2: Topology of the synthetic Western Interconnect from TAMU Electrical Grid Test Repository shows a different connectivity pattern with
urban centers and the suburbs having a denser connection.

As described above, power grids fall in the category of networks with unstructured topology. This
is a typical feature for most infrastructure networks such as transportation, gas networks, water
networks, communications, and infrastructure. Such networks are described by ‘nodes’ and
‘edges’ with the topology of the network dictating the connectivity and thereby the network
strength. Figure 1 and 2 show the topology of power grids for the Texas and Western Interconnect
bulk power system (above 115KV). The Texas network has 2000 nodes, called “buses” in power



grid parlance, and 3206 lines, while the Western Interconnect has 12706 lines. These power grids
are synthetic networks created for the ARPA-E GridData competition by the Texas A&M

university [Birchfield2017].

el

Fig. 3: Laplacian of the Texas 2000-bus synthetic system. It can be seen that the Laplacian reflects the physical topology through clustered blocks

at the diagonal (representing the urban centers) and sparse connectivity between them.

..

Fig. 4: Laplacian of the Western Interconnect synthetic system that has a similar structure as the It can be seen that the Laplacian reflects the
physical topology through clustered blocks at the diagonal (representing the urban centers) and sparse connectivity between them. The size of the
Western Interconnect (10000 nodes) is bigger than the Texas Interconnection (2000 nodes) and as such the sparsity pattern of the Laplacian is

different.

2.2 Power grid applications

Power grid analysis needs span a multitude of timescales, as shown in Fig. 5, ranging from
microseconds timescales for studying the effects of lightning propagation on transmission lines to
years or decades for assessing the long-term planning needs such as building new transmission
lines or generation facilities. This rich diversity in time-scales have led to a multitude of
applications that have been developed by the power industry. These applications have modeling



assumptions that help segregate the analysis based on different time-scales. Roughly, the
applications can be divided into three types:

B Electromagnetic transients: These applications range from the microsecond (or
lower) to millisecond timeframe. They have detailed modeling of the network which is
akin to circuit simulation. They have detailed modeling of the network with power
electronics switches. The numerical methods used for such studies are typically
piecewise nonlinear differential equations with switching (hybrid nature of the
problem). Due to the detailed modeling involved and the time-scales, such applications
are restricted to small networks only (in the order of tens of nodes).

B Electromechanical transients: Applications to study electromechanical transients
range in the time-frame of milliseconds to minutes. With certain modeling assumptions,
they greatly reduce the size and the complexity of the equations to be solved. The
numerical methods used for solving such problems are discrete-nonlinear-differential
algebraic (hybrid). Such applications are used to assess the impact of disturbances on
the grid to the stability of the system. With the modeling assumptions, analysis of large
networks (in the order of thousands of nodes) is possible, but it is time-consuming as
the system size increases.

B Steady-state: Steady-state studies are used for finding optimal operating point for the
grid or within context of quasi-steady-state transient simulations that span the time-
frame of minutes to years. They make further modeling assumptions to reduce the
system to algebraic equations that model the power flow in the network. There are
various applications that span the steady-state regime with their own numerical solution
needs. The most common examples are (a) power flow — nonlinear algebraic problem,
(b) optimal power flow or economic dispatch — nonlinear or linear constrained
optimization problem, (¢) unit commitment — linear mixed integer programming.
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Figure 5: Power grid operations and planning time-scales. Source: California Energy Commission
2.3 Computing in Power Grid

Most of power grid applications run on Windows platforms with customized solvers and modeling.
Many of these applications were developed before the computing revolution in the early 2000s
and as such are legacy-based. A drawback of the legacy code is that it was developed for single-
core or single-threaded applications. With the advent of multi-core machines, there have been
efforts to make use of the shared-memory parallelism, but this has been more of an “inserted”



effort rather than starting from ground-up. There are vendors like Opal-RT [Opal-RT], RTDS
[RTDS], and Typhoon HIL [TyphoonHIL] that use a Linux platform, but their tools are restricted
to specialized applications such as those for studying electromagnetic transients.

2.3.1 Parallel Computations

Research on parallel computation in the power grid has been done since the early 80s.
[Alvardo1979] proposed the first parallel algorithm for transient stability analysis. They used a
parallel-in-time approach for partitioning the problem into separate time chunks. Subsequent
efforts in this area were pursued by Ilic and Crow who prototyped methods for parallel transient
simulations, sensitivity analysis, and computational load balancing [Ilic1987]. Unfortunately, this
work coincided with dramatic increase in CPU clock speed and the need for parallel computing in
power systems diminished.

Today, the power industry does use parallel computation for embarrassingly parallel applications
such as contingency analysis. Many of the utilities and ISOs have smallish clusters to run several
power flow calculations simultaneously.

Another parallelization strategy that is gaining traction in power systems community as of recently
1s co-simulations (also known as operator splitting) [HELICS, PCKrause2009]. Parts of the system
are co-simulated independently and data between them is exchanged at each solver iteration. Since
this approach considers co-simulated parts as black-box simulations, power systems practitioners
find it very effective given diversity and lack of standardization among grid simulation tools. The
downside of this approach is lack of ability to control (or even estimate) numerical error, as well
as lack of ability to balance computational load. Therefore, this approach does not scale accuracy-
or performance-wise.

Several efforts for using distributed memory computations have also been carried out, but these
have been mainly limited to the research community. There have been promising results presented
that sped up power grid applications. Electronic circuit simulator Xyce [XyceManual], developed
at Sandia National Laboratory, has power systems component model library, which enables users
to compose Netlists for power system models. Xyce supports distributed and shared memory
parallelism and has been used in circuit simulations with ~107 unknowns. However, for large scale
simulations that require distributed memory parallelism, convergence is not guaranteed for general
problems because of ill-conditioned nature of grid models. GridPACK [GridPACK2013] is a
software development kit for high-performance computing applications targeting transmission
systems. GridPACK also supports shared and distributed memory parallelism. RTDS is using
causalization approach to partition grid models and deploy computations on distributed memory
architecture. This approach assumes power flow from bulk power systems to distribution grids (no
backflow) and uses time delays to break coupling between different parts of grid. Such approach
is less and less viable with higher penetration of renewables and distributed energy resources.
DMNetwork [DMNetwork] is a framework developed in the PETSc library for supporting rapid
development of unstructured problems typically found in “network™ applications, such as power
grids, gas pipelines, communications, water networks, and others. DMNetwork provides toplology
management and data migration capabilities on distributed memory architectures. At this time,
none of these tools support computations on accelerator devices.



3. Power grid applications performance testing

In this section, we take a deeper dive on two power grid applications with specific details on
application work flows, numerical details, and baseline performance metrics. These two power
grid applications are the fundamental building blocks of many of the power grid applications. As
such, any performance improvement for them would greatly improve the performance of a large
variety of power grid applications.

3.1 Hardware, software, and test networks

The performance of these applications was done on a 2.2 GHz Intel icore7 Mac OSX with 16 GB
DDR4 RAM. This machine has one node with 6 physical cores and 12 logical cores
(hyperthreading on). Each physical core has a 256 KB L2 cache and all cores share 9216 KB L3
cache.

The application code is written in C and uses the numerical library PETSc [Balay2016]. It is
compiled with Clang compiler with optimization. (-03). PETSc is an open-source numerical library
that provides serial and parallel linear, nonlinear, and time-stepping solvers. The tests were run on
the synthetic Texas and the Western Interconnect (WI) networks available via the TAMU electrical
grid repository. The details of these networks are given below in Table 1.

3.2. AC Power Flow

Power flow is one of the most fundamental application in power grid. The equations used in power
flow are used in a variety of applications. A subset of these applications is shown in Fig. 6
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Fig. 6: Power flow equations form the basis of a large variety of power grid problems. These equations, based on steady-state AC Kirchoff’s current
and voltage laws, represent the power flow balance at the network nodes, i.e., the summation of power flowing in and out at each node is zero.

3.2.1 Equations



For a n-bus power system, the AC power flow equations are described by the real and reactive
power balance equations at each bus i . Following Kirchoft’s current law (KCL) and Kirchoff’s
voltage laws (KVL), the power balance equations state that for each bus i, the summation of the

power injected in the network Piinj and the power flowing in the network (over k lines) should be
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3.2.2 Application Workflow

AC power flow problem solves balanced system of nonlinear algebraic equations. These problems
are typically solved using a variant of a Newton method, which obtains solution for the nonlinear
problem through a sequence of linear problem solutions as shown in Figure 7.
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Figure 7: AC power flow computation workflow. Block arrows represent data movement and line arrows represent control signals.
Nonlinear solver requests residual evaluation, Jacobian evaluation, or both from the model.

The Newton solver itself performs only BLAS Level-1 operations and schedules runs of the linear
solver. The Newton solver computes error norms to check if the convergence criterion is met. If
not, the solver requests updated values for the system residual vector and Jacobian matrix from the
grid model, passes those to the linear solver and calls linear solver run for the problem
Jdx = —f.

Here J is the Jacobian matrix, f'is the residual vector for the AC optimal power flow problem, and
dx 1is the solution of the linear system. The Newton solver then updates the nonlinear solution x «
x + dx and passes it to the power system model. More advanced Newton solvers perform several



streaming BLAS Level-1 operations to improve the solution update based on solver iteration
history and/or error norm values. This sequence is repeated until convergence criteria are met or
maximum number of allowed iterations is exceeded. In this workflow, most of the operations are
done during the linear solve, and therefore most of the computational cost comes from there.
Jacobian matrix evaluation is typically the second most expensive part of the workflow.

Power grid problems typically lead to ill-conditioned linear problems, so direct linear solvers are
tool of choice in this area. Effective preconditioners for iterative linear solvers in this area are still
mainly in the research domain. However, sparse direct linear solvers cannot be fully parallelized,
so due to Amdahl’s law, the linear solver becomes the computational bottleneck in a parallel
computation environment.

3.2.3 Numerical Details
Direct sparse linear solve is the most expensive operation within AC power flow computation.
State-of-the-art solvers execute these four sequential steps:

1. Ordering

2. Symbolic factorization

3. Numeric factorization

4. Triangular solve

The time complexity of the numeric factorization dominates the linear solve and hence this step
carries most of the computational cost for all nontrivial AC power flow problems. The complexity
slightly varies from implementation to implementation. Current state of the art is ~O(NNZ X
log N), where N is the size of the problem and NNZ is the number of non-zeros in the sparse matrix
[Gilbert2004].

Since the termination criterion for nonlinear solver is expressed in terms of a residual norm, the
accuracy of the iterative solution depends only on model residual and not on model Jacobian.
Inaccuracies in Jacobian may affect the convergence rate of the Newton method, but not the
solution accuracy (to within prescribed tolerance). Because of that, it is often advantageous to use
inexact Newton method where Jacobian matrix and its factorization are reused over several solver
iterations. In that case, triangular solve (step 4) is applied on a stale Jacobian factorization. This
approach may take more nonlinear solver iterations to get to the solution, but the overall
computational cost is lower as there are fewer Jacobian matrix evaluations and matrix
factorizations. State-of-the-art nonlinear solvers employ sophisticated control algorithms to reduce
the overall computational cost by judiciously deciding when to recompute and factorize Jacobian
[Chail991].

3.2.4 Performance Evaluation
The performance of the power flow program was evaluated on the Texas and Western Interconnect
power grid networks. The size of the network is given in Table I.

Network Buses (nodes) Lines (edges) # of variables
Texas 2000 3206 4000
WI 10000 12706 20000

Table I: Test power grid networks used for performance evaluation of applications. The topology of these networks are shown in Figs. 1 and 2,

respectively




We evaluated the performance of four main application kernels: (a) function (residual) evaluation,
(b) Jacobian evaluation, (¢) time-spent only in the nonlinear solver operations, and (d) time-spent
in the linear solver operations. The performance of these application kernels for the two test
networks is shown in Figs 8 and 10, respectively. Table III gives information on the total time
spent in the application and the number of calls for each of the kernels. As seen, the linear solver
kernel took the largest time, so we also evaluated the performance of the different linear solver
kernels, as shown in Figs. 9 and 11, respectively. From the linear solver performance evaluation,
it is seen that the numerical factorization routine is the most dominant linear solver kernel.

Texas:

m Nonlinear m Ordering

M Linear Solve m Sym. Fact

m Function = Num. fact
Jacobian

Triangular solve

Fig. 8: Execution time distribution of application kernels for the
Teas network. Linear solver is the most dominant kernel taking
49% of total execution time.

Western Interconnect:

Fig. 9: Execution time distribution of linear solver kernels for
the Teas network. Numerical factorization is the most dominant
kernel taking 67% of total linear solver execution time.

m Nonlinear
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Fig. 10: Execution time distribution of application kernels for the
WI network. Linear solver is the most dominant kernel taking

41% of total execution time.

Fig. 11: Execution time distribution of linear solver kernels for
the WI network. Numerical factorization is the most dominant
kernel taking 63% of total linear solver execution time

Table III: Total solution time and number of calls for application kernels

Network Total Solution Function Jacobian Nonlinear Linear
time (sec) evaluation # | evaluation | Solver % time | Solver # of
of calls # of calls # of calls calls
Texas 0.022 5 4 1 4




Wl | 0.0855 | 6 | 5 | 1 | 5 |

The linear solver used above is a direct solver based on LU factorization with an approximate
minimum degree ordering scheme from SuiteSparse [SuiteSparse2015] package’s AMD library.
From our experiments with different linear solver packages and ordering schemes, this
combination of the linear solver package and ordering was found to be the best. Table IV and V
show a comparison of linear solver performances using different linear solver packages and
ordering schemes for the Texas and WI networks, respectively. All these linear solver packages
and ordering schemes are available through the PETSc library (PETSc has interfaces with external
linear solver and ordering packages such as SuiteSparse, MUMPS [MUMPS2001], etc.)

Linear Ordering | Linear | Ordering | Symbolic Numerical | Triangular
Solver solver time (%) | factorization | factorization | solve (%)
time time (%) (%)
(sec)
PETSc AMD 0.0083 14 14 65 7
PETSc QMD 0.0175 53 13 27 7
PETSc ND 0.043 4 9 85 2
KLU AMD 0.0176 13 12 69 6
UMFPACK AMD 0.035 4 15 77 4
MUMPS METIS 0.102 5 16 61 19

Table IV: Performance of Linear solver with different ordering techniques and linear solvers for the Texas network. UMFPACK, KLU, and
AMD packages are available via the SuiteSparse package. MUMPS is a linear solver package that uses multi-frontal method for solving linear
system. QMD (Quotient minimum degree) and ND (nested dissection) orderings are available through the PETSc library

Linear Ordering | Linear | Ordering | Symbolic Numerical | Triangular
Solver solver time (%) | factorization | factorization | solve (%)
time time (%) (%)
(sec)
PETSc AMD 0.034 10 20 60 10
PETSc QMD 0.15 82 4 13 1
PETSc ND 0.91 1 3 95 1
KLU AMD 0.064 13 12 69 6
UMFPACK AMD 0.18 3 5 87 5
MUMPS METIS 0.49 2 16 64 18

Table V: Performance of Linear solver with different ordering techniques and linear solvers for the WI network. UMFPACK, KLU, and AMD
packages are available via the SuiteSparse package. MUMPS is a linear solver package that uses multi-frontal method for solving linear system.
QMD (Quotient minimum degree) and ND (nested dissection) orderings are available through the PETSc library

3.2. Transient Stability

Power systems undergo disturbances of various types such as balanced and unbalanced short
circuits, equipment outage of generators, transmission lines and other equipment, breaker tripping,
and others [Sauer1998]. Maintaining stability of the power system on incidence of such
disturbances is of prime importance to system planning engineers for ensuring a secure and
uninterrupted supply to the consumers. Power system stability is the ability of an electric power
system, for a given initial operating condition, to regain a state of operating equilibrium after being
subjected to a physical disturbance, with most system variables bounded so that practically the



entire system remains intact [Kundur2004]. Transient stability analysis studies the ability of the
power system to keep its rotating machines in synchronism, when subjected to a disturbance
(perturbation), during and after the perturbation. A common disturbance simulation involves
applying a fault at a given bus at some pre-specified time and removing the fault by opening a
circuit element at another pre-specified time. This type of disturbance scenario can help determine
the critical clearing time of the circuit breakers and thereby protect the electrical machines from
going out of synchronism.

3.2.1 Equations
In transient stability analysis, the electrical power system is expressed as a set of discrete nonlinear
differential algebraic equations (DAEs) as given below.

dx/dt = f(x,y)
0=g(y)
p(x7) <pkx) <p(k")

Here, the differential equations model dynamics of the rotating machines (e.g., generators and
motors) and the algebraic equations represent the transmission system and quasi-static loads. The
inequalities in the last equation represent the discontinuities on the differential variables x, due to
the presence of nonlinearities such as saturation, over and under excitation limits, valve limiters,
and others. Thus, the transient stability problem can be classified as a discontinuous differential-
algebraic model (DDAE) or hybrid model.

The solution of the dynamic model given in (1) needs the following:
B A numerical integration scheme to convert the differential equations in algebraic form
B A nonlinear solution scheme to solve the resultant nonlinear algebraic equations
B A linear solver to solve the update step at each iteration of the nonlinear solution

3.2.2 Application workflow

There are two approaches to solve (1) - alternating explicit and simultaneous implicit [1]. In the
alternating approach, the differential variables are first updated, x"*1 « H(x™), where H is an
explicit integration scheme. Once the dynamic variables are updated, the algebraic variables y are
solved for the n + 1 time-instant by solving the algebraic equations g(y™*1) = 0. A typical choice
of the explicit integration scheme is a second-order Runge-Kutta method or Trapezoidal method.
The advantage of an alternating explicit approach is the ease of implementation due to separation
of the differential and algebraic parts. However, they may need to use shorter time-steps to ensure
stability of the numerical integration scheme. Commercial transient stability tools, for e.g., PSSE
[PSSE], PowerWorld [PowerWorld], use an alternating explicit approach for the simulation of
power system transient stability equations.

In the simultaneous implicit approach, the differential equations are first converted to algebraic
form using an implicit numerical integration formula and the two-sets of nonlinear equations
solved together using Newton’s method. A simultaneous implicit approach requires the solution
of a bigger nonlinear algebraic system given in (2), thus more time-consuming than the alternating
explicit approach. But it has better stability properties even for larger time-steps. EUROSTAG



[Sanchez] and Powertech’s TSAT[PowerTech] are commercial softwares that employ implicit
integration schemes. The figure below shows the application workflow for transient stability
analysis with an implicit integration scheme.
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Figure 12: Transient stability computation workflow. Block arrows represent data movement and line arrows represent control
signals.

3.2.3 Performance Evaluation

The evaluation of the transient stability computational performance was done on the Texas and
WI networks for a 10-second simulation with a time-step of 0.01 second. As seen from Figs. 13
and 15, half of the application time is for the function and Jacobian evaluation, while the other half
is on the linear solver. This is a similar computational pattern as found for the power flow
application. Moreover, the numerical factorization, similar to power flow application, is the most
dominant linear solver kernel as shown in Figs. 14 and 16.

Network Buses (nodes) Lines (edges) # of variables
Texas 2000 3206 7456
WI 10000 12706 35496

Table VI: Test power grid networks used for performance evaluation of applications. The topology of these networks are shown in Figs. 1 and 2,

Texas network

respectively




Network Solution time Time-steps Function Jacobian Nonlinear Linear
(sec) evaluation # | evaluation Solver # of Solver # of
of calls # of calls calls calls
Texas 13.24 1000 3998 1998 1003 2004
B Ordering
H Nonlinear
B Sym.

M Linear Solve
M Function

Jacobian

Factorization

® Num.

factorization

Triangular Solve

Fig. 13: Execution time distribution of application kernels for the
Texas network. Linear solver is the most dominant kernel taking
45% of total execution time.

Fig. 14: Execution time distribution of linear solver kernels for
the Texas network. Numerical factorization is the most dominant
kernel taking 75% of total linear solver execution time

Western Interconnect

Network Solution time Time-steps Function Jacobian Nonlinear Linear
(sec) evaluation # | evaluation Solver # of Solver # of
of calls # of calls calls calls
WI 56.13 1000 4073 2073 1003 2080
m Nonlinear m Ordering
m Linear Solve m Sym. Fact
m Function m Num. fact
Jacobian Triangular solve

Fig. 15: Execution time distribution of application kernels for the
WI network. Linear solver is the most dominant kernel taking
41% of total execution time.

Fig. 16: Execution time distribution of linear solver kernels for
the WI network. Numerical factorization is the most dominant
kernel taking 78% of total linear solver execution time

4. Summary and Recommendations



In this document, an in-depth evaluation of two of the most common power grid applications —
power flow and transient stability, has been presented. The computational runs were conducted on
large synthetic networks that have the modeling complexity typical of large utility and interconnect
networks. The most dominant application and computational kernels were identified. Based on the
profiling of different simulations, the following recommendations/observations for DMC initiative
researchers are recommended. We note that while the performance evaluation was done only for
power grid network problems, the recommendations, in general, are applicable to a broad class of
application domains.

Recommendation 1: Accelerate function/Jacobian evaluation on accelerators

Two of the most dominant power grid application kernels identified by this work were (a)
function/residual evaluation and (b) Jacobian evaluation. These two application kernels
contributed more than 50% of the total application time combined. For accelerating the application,
these two application kernels are the prime candidates. However, power grid problems are
unstructured (irregular topology) and heterogenous (different number of variables per node)
leading to different computational patterns and data access. As such, careful consideration and
thought must be given to port these two kernels on accelerators that have SIMD architecture.

Recommendation 2: Accelerate linear system solution on accelerators

The biggest gain for power grid applications would be acceleration of linear solver kernel. In our
simulations, linear solver kernel took almost half of the total application solution time. The linear
solver kernel consists of four operations that have irregular and sequential computational pattern.
These are: (a) matrix reordering — to reduce the fill-ins in the factored matrix, (b) symbolic
factorization — get locations and allocate memory for the L (lower triangular) and U (upper
triangular) factored matrices, (c) numerical factorization — compute the values in L and U matrices,
and (d) triangular solve — compute the solution via forward and backward solves with the L and U
matrices. In our simulations, the numerical factorization contributed to almost 70% of the total
linear solver kernel time.

Recommendation 3: Develop efficient computational patterns and data structures for
irregular/heterogenous network for SIMD architectures

One of the differentiating factors for power grid networks is their unstructured topology and
heterogeneity which lead to logic branching, jumping, and irregular data access. For example, a
certain node (bus) may be connected, via a branch, to only one node, while another one may be
connected to ten other nodes. In addition, a node may or may not have a generator or a load or
have multiple of them with status ON or OFF. These are some of the irregular and logic-based
computational patterns that may not be amenable to SIMD architectures for accelerators.

Recommendation 4: Need software stack/methods for fast access and computations of sparse
matrix data structures

Power grid applications are extremely sparse (typically < 1% sparsity) and as such matrices are
typically stored in sparse compressed data structures, such as sparse compressed row. Software
stacks on accelerators need to support such data structures or provide alternate data structures that
are efficient on accelerators.




Recommendation 5: Developing profiling tools for evaluation and benchmarking
All the profiling done in this work was possible because of the excellent profiling tools available

via the PETSc library. The development of profiling tools/codes is central to performance
evaluation and benchmarking. As such, profiling tools on accelerators for different application and
numerical kernels are important for development and benchmarking.
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