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Executive Summary 
Disaster response preparedness, risk mitigation, and effective post-event response are critical for national 
security, public health, and economic integrity. For areas impacted by extreme events, timely and accurate 
impact assessments of lifeline infrastructures are critical. Traditional disaster management and situational 
awareness platforms are currently not able to address the massive influx of available information from 
numerous sources that have the capability to enhance situational awareness. Next-generation analytic 
assessment approaches are researched here, where the use of dynamically sourced, heterogeneous data 
with near real-time availability are integrated into a continually-updated analytics framework. 

The goal of this research is to develop a foundational multi-formalism modeling platform that can 
integrate heterogeneous data sources for use in improving situational awareness after a disaster event. The 
specific objectives to achieve this goal are to 1) develop an architecture to enable structured and 
unstructured multi-sensor data fusion using machine/deep-learning techniques; 2) clean, classify, 
geolocate, and temporally separate novel data sources for use in spatially-enabled data fusion; and 3) 
derive confidence-based observation data with machine-learning based prediction to provide a 
spatiotemporally consistent assessment of event-driven damage. 

The research presented here outlines and implements an analytic workflow to bring well-known data 
together to develop enhanced situational awareness. These data include optical and radar satellite 
imaging, oblique-perspective disaster reconnaissance images, high-frequency in situ measurements, and 
numerous social media images/data sources. A use case for methods development is based on the flooding 
events of Hurricane Florence, largely impacting North Carolina and South Carolina in September 2018. 
Data fusion between authoritative geographic data (e.g., satellite imaging) and non-authoritative 
crowdsourced data (e.g., social media) is an underlying theme throughout this research and methods are 
tested bring these data to a common geographic form through data cleaning, relevancy classification, 
geolocation, feature extraction, feature matching, and data transformations.  

To enable the efficient use and testing of various models and methodologies, this project developed a 
dynamic and adaptable cloud-based pipeline architecture for ingesting, storing, and analyzing incoming 
data, executing a range of machine/deep-learning models, and visualizing the information. The pipeline 
development was informed by previous PNNL investments (StreamKit from the Analysis in Motion 
Initiative) and built upon leading-edge technologies.  

Machine-/deep-learning models were selected and tested to clean and classify social media images for 
relevancy and presence of flood waters. Numerous relevancy models were trained and tested and 
benchmark measures on a validation dataset reveal good performance, primarily with convolutional 
neural network (CNN) models. To validate/improve the geographic location of both social media and 
oblique aerial images, we tested a multi-step workflow built on a deep-learning models, Xception and 
Faiss, to identify similar features from source and reference scenes. Matching reference scenes to a set of 
test scenes with the closest similarity index had limited success in improving the precision of test scene 
location and additional methods have been identified for testing. 

The automated extraction of supporting information for disaster response from oblique aerial images or 
ground-level social media images is accomplished through semantic image segmentation and 
transformation.  The non-authoritative data are used to validate the authoritative data collections and 
processing and optionally, nowcast flood models. In addition, common form geographic data are 
combined with other static landscape features to develop spatially-explicit training vectors used in deep-
generative statistical inference models. Complex, non-linear relationships in static and dynamic data are 
developed and ultimately derive a spatially continuous and probabilistic assessment of flood damage with 
the event domain. Preliminary results of this model are provided. 
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1.0 Introduction 
Natural disasters are categorized into four general groupings that include geophysical, meteorological, 

hydrological, and climatological (Below, Wirtz and Guha-Sapir 2009, Bouyerbou, Bechkoum and Lepage 

2019). Further, the distinction of natural “disaster” only applies if minimum economic/insured loss, 

fatalities, injuries, or damages are realized, thus an intersection of natural catastrophe with human 

establishment (Benfield 2018).  There are increasing trends of natural disasters and associated economic 

loss, social burden, and vulnerability. Globally in 2017, economic loss is reported as 93% higher than the 

2000-2016 average, and a 35-year (1980-2014) trend analysis of loss shows hydrological, 

meteorological/climatological, and geophysical events an increase of 300%, 200%, 50% respectively 

(Benfield 2018, Hoeppe 2016). The amplification of flood frequencies is also noted for coastal areas due 

to sea-level rise independent of changing climatological factors (Buchanan, Oppenheimer and Kopp 

2017). 

Effective natural disaster resilience (i.e., preparedness, risk mitigation, damage reduction, adaptation),  

response and recovery are critical for national security, public health, environmental health, and economic 

integrity (Hoque et al. 2017, Albright and Crow 2015, USACE 2015, Haworth 2017). The evidenced 

increase in the frequency and magnitude of storm and flood events is causing more severe and sustained 

impacts across various critical infrastructure that serve as lifeline functions (Murray and Ebi 2012). 

Damage to critical infrastructure caused directly by wind and floodwater, and/or indirectly by wind-blown 

debris, downed vegetation, flood debris, and physical access barriers, can impact power generation, 

transmission and distribution lines, substations, refineries, oil and gas pipelines, pump stations, 

wastewater treatment, dikes, bridges, and transportation networks. These intense events are changing how 

disaster risk and resilience are perceived and how response and hazard mitigation are defined and 

implemented (Albright and Crow 2015). Frequent damage assessments, both pre-, peri- and post-event, 

for a disaster impact area are vital for effective resource planning, risk evaluation, resource planning, and 

recovery and restoration efforts. The disaster and infrastructure response communities have been 

criticized for not producing timely and accurate disaster impact assessments, which is most effective and 

often mandated within 24-48 hours after event initiation, daily/sub-daily throughout the event duration, 

and at regular but less-frequent intervals in the restoration phase (Hodgson et al. 2014).  For areas 

impacted by natural disaster, timely, accurate and comprehensive impact assessments are critical and can 

impact the cadence and reliability of situational awareness and subsequently, effective response action. 
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1.1 Data Availability 
Historically, the availability of data necessary for damage assessment and speed of analysis were 

relatively constrained, yet these data have been dominantly produced by trusted and authoritative sources. 

Increasingly, the world is being observed through complex distributed networks of formal (e.g., 

spaceborne and airborne imagers, stream gages) and informal sensors (e.g., personal cell phones, 

geotagged social media). These sensors relay a variety of data in structured and unstructured forms at 

unprecedented volumes, velocity, variety, and veracity (Figure 1; 

https://www.ibmbigdatahub.com/infographic/four-vs-big-data).  In general, these data can be categorized 

as authoritative or non-authoritative where authoritative data are well-known, well-structured, 

documented and typically collected under a formalized sampling plan from a well-known source (e.g. 

satellite-based remotely-sensed imagery, elevation models, census data, soils, in situ sensors, etc.). 

Increasingly, the data from these various types of sensors are either purposely or inherently geospatial and 

can be linked to various geographies (Miller and Goodchild 2015, Chen et al. 2016, Goodchild 2016a, 

Goodchild 2016b, Li 2016, Liu et al. 2016, Shu 2016, Lewis and Park 2017). There is a growing 

realization about the immense amount of heterogeneous data that can potentially provide rich 

observations of the impacts from natural disasters, but cannot be readily used or easily integrated into 

automated analytical frameworks (Lee and Kang 2015).  

In general, these data can be categorized as “authoritative” or “non-authoritative” where authoritative data 

are planned, well-known, well-structured, documented and typically collected under a formalized 

sampling plan from a well-known source (e.g. satellite-based remotely-sensed imagery, elevation models, 

census data, soils, in situ sensors, etc.).  Non-authoritative data (e.g., text and image-based social media, 

news feeds, traffic cams, earth cams, aircraft-based oblique photos, smartphone sensing) are typically 

unstructured, irregular in space and time, crowdsourced or volunteered, and consequently are not 

commonly used in geospatial applications because these data aren’t readily usable (Schnebele et al. 2014, 

Cervone et al. 2016). It is estimated, however, that 80% of newly collected data fall into the realm of non-

authoritative (Andriole 2015).  

Presently, U.S. federal agencies spend as much as 70% of their budget on data preparation, including 

geospatial, suggesting the need for automated data processing pipelines to reduce the time from collection 

to decision making. As a major component of authoritative data, the increasing availability, frequency, 

and quality of remotely-sensed imagery from earth-observing sensor platforms (e.g., satellite, airborne, 

Unmanned Aerial Systems or UAS) continues to progress towards high spatiotemporal damage detection 

(e.g., physical change in ground, structure, and vegetation; flood detection; debris detection) across large 

geographic domains. Despite these advances, there are still inherent limitations with timing and 

https://www.ibmbigdatahub.com/infographic/four-vs-big-data
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frequency, surface or atmospheric obstructions, and accuracy of algorithms that can rapidly translate 

spectral or radar signals to an actionable result.  

 

Figure 1. Conceptual illustration of historic and current data challenges with Earth Observation data collection and 
availability. 

 
A growing body of research is evolving with new approaches for how to use the deluge of heterogenous 

data to help drive a more informed disaster management strategy. Three high-level phases of a disaster 

event need to be considered in this endeavor: 1) predictive risk assessments, hazard mitigation, and 

preparedness actions are established prior to a disaster event; 2) regularly updated information are 

produced for situational awareness to provide effective emergency response and resource allocation; and 

3) post-event damage assessments are completed in a timely and accurate manner to inform response and 

recovery planning and operations (Comfort, Ko and Zagorecki 2005, Smit and Wandel 2006). Real-time 

analytics using heterogeneous data feeds are applicable in all three phases and will drive future initiatives 

in data fusion and automated analytics (Chen et al. 2016).  

The human decision space can be aided by providing a continuum of automated predictive analytics and 

decision points resulting from a stream of temporal information. This decision space can utilize different 

time-steps depending on the data availability and the application requirement. However, traditional 

disaster management approaches are not capable of handling the massive speed and variety of available 

information. Next-generation analytic assessment approaches that focus on use of dynamically sourced, 
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multimodal data with near real-time availability, can be binned into three categories: 1) observation-

based, which use various sensor data to capture damage states in pre-, peri- and post-event states; 2) 

inference-based, where numerical models can predict what cannot be observed; and 3) fusion-based, 

where both observation and inference modeling are implemented to provide system state updates. The 

accuracy and quantification of uncertainty in these analytical approaches are critical to effective response 

actions.   

The practice of data fusion is well-known within the remote-sensing/image analytics domain, but it is 

relatively limited within the broader geospatial domain. Data fusion should not be confused with “data 

mashups”, where multiple sources of data are brought together in a dashboard application primarily for 

visualization purposes. Research on geospatial data fusion, where multimodal data  such as remotely 

observed imagery, social media and news feeds, in-situ measurements, traffic cameras, human mobility 

data, topographic data, land cover, are modeled to bring an analytic outcome greater than an individual 

dataset, is a current research challenge (Goodchild 2016b). The recent and successive advancements in 

neural learning and computer vision methods, including deep convolutional neural networks, deep belief 

networks, deep Boltzmann Machine, deep residual learning, and back propagation neural networks, have 

been proven effective in many multi-sensor data fusion applications (Ngiam et al. 2011, Deng and Yu 

2014, NITRD 2016). The development and application of these methods in the geospatial sciences 

represents a new and active research field known as “Geospatial Artificial Intelligence” (GeoAI), from 

which disaster management can directly benefit (Mao et al. 2018). The notion of multi-formalism 

modelling plays a key role here, where different modelling methods (e.g., machine learning, computer 

vision, image processing, geospatial analysis, numerical modeling) are brought together under a common 

generalized framework (Gribaudo and Iacono 2014) to assess current damage conditions as a function of 

the data modality. 

Current methods of practice for situational awareness within disaster management are rapidly becoming 

obsolete for dealing with the ever-increasing volume, velocity, variety, and veracity geospatial and 

pseudo-geospatial data. This is a vulnerability that compromises and even paralyzes our ability to 

improve the speed at which we can assess highly dynamic disaster events and make decisions considering 

the use of available information. 

1.2 A New Generation of Disaster Management 
The new paradigm of dynamically sourced, heterogenous geospatial “big” data is spawning a new 

generation of application areas, including in disaster management.  The notion of volunteered geographic 

information (VGI) or “citizen sensors” (non-authoritative data) is an established part of geospatial big 
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data and has been used during natural disasters (Goodchild and Glennon 2010, Yin et al. 2012, Crawford 

and Finn 2015, Schnebele et al. 2015, Cervone et al. 2016, Kryvasheyeu et al. 2016, Haworth 2017). 

There are other invaluable data sources that come from authoritative sources, but the data are not readily 

usable in a geospatial context. Examples imagery from the Civil Air Patrol (CAP) and Customs and 

Border Protection (CBP) in the United States who consistently provide thousands of oblique- and nadir-

perspective images quickly following disaster events (Sava, Clemente-Harding and Cervone 2017). Non-

authoritative sources, including videos posted online taken from UAS, quickly provide unique 

perspectives in a disaster event though can often be unusable due to copyright issues (Lewis and Park 

2017).  

There is potential for spatial and temporal gaps to be filled by the use of non-authoritative data.  The use 

of social media feeds in disaster management has been a large area of research with specific challenges 

defined around quality, biasing, security, and ethics, and how these can be used effectively within existing 

governance structures of top-down disaster management controls (Crawford and Finn 2015, Haworth 

2017, Schnebele et al. 2015). Haworth (2017) further notes the potential use of VGI not only for disaster 

response, but also hazard mitigation and resilience.  Three key findings about the use of VGI include: 1) 

scale determines the volumes and types of data contributed and the experience of the contributors; 2) 

uncertainty, trust, and unintended consequences in the contributed data are key concerns; and 3) the 

digital divide inherently selects a dominant demographic that is able/willing to participate in VGI and 

thus has the potential to bias data (Haworth 2017).  Thus, there is a key need to enhance research ethics 

and good practice with respect to appropriate data use, rights of individuals, privacy concerns, and rights 

of the public (Liu et al. 2016).  

Innovative approaches are being used with data not traditionally used in geospatial analysis. For example, 

Sava et al. (2017) developed a semi-automated supervised classification approach to determine flood/non-

flood areas of images taken by handheld cameras from aircraft (e.g. Civil Air Patrol). This kind of 

analysis can be used alongside authoritative data sources and traditional methods to provide a source of 

validation and uncertainty quantification. Conversely, non-authoritative data sources can be used to 

inform authoritative data collections. Cervone et al. (2016) used disaster-focused Twitter feeds to help 

define where high-resolution commercial remote-sensing should be tasked and collected.  Schnebele et al. 

(2015) explored including real-time mobility data to execute dynamic evacuation plans preceding an 

event, and using oblique aerial imagery, social media, ground observations, and numerical inundation 

models to aid in post-event transportation infrastructure damage assessments.  

An innovative example of a geospatial big data disaster management system is described by Huang, 

Cervone and Zhang (2017). A generalized cloud-based automated disaster analysis system was built to 
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source multiple streams of social media and detect developments of a disaster event in real-time, map 

these events, and fuse these data with remotely-sensed data.  This development begins to address several 

geospatial big data challenges with respect to using a rapidly scalable cloud computing platforms such as 

Hadoop, MapReduce, Apache Mahout, and Apache Lucene. The system consists of multiple integrated 

components including automated crawlers that gather a variety of data, storage systems that index 

retrieved data, data integration and interoperability systems, machine learning to support data mining and 

big data analytics, and web-based user interfaces to support data searches, analysis, and visualization 

(Huang et al. 2017).  Initial construction of an event database is required to define and train the system for 

the types of events that are of interest. In addition, there are required configurations for data retrievals, the 

detection of relevant social media hashtags, and real-time event tracking (Huang et al. 2017). Historical 

event reconstruction is also possible and the authors emphasize the utility of fusing social media and 

remotely-sensed data in this context. This effort provides a significant step forward in the next-generation 

of disaster management. 

1.3 Research Objectives 
The work presented here documents efforts under an FY19 Pacific Northwest National Laboratory 

(PNNL) Lab Directed Research and Development (LDRD) project.  The objectives of this research are to 

develop and demonstrate a foundational multi-formalism modeling platform that will:  

1. Classify, geolocate, and temporally bin novel data sources for use in remotely-sensed overhead 

imagery validations of flood events and for spatially-enabled machine-learning based data fusion;  

2. Implement a pipeline architecture that enables testing of multiple machine-learning data fusion 

and feature learning methodologies with various multi-sensor (authoritative and non-

authoritative) datasets;  

3. Derive confidence-based observation data with machine-learning based spatiotemporal prediction 

to fill spatial and temporal gaps; and  

4. Provide observational system states to a physics-based numerical flood forecast model (PNNL’s 

RIFT model) to enable high-value risk forecasting, reduced-time to restoration, and improved 

resilient capacity.  

While damage from disasters exists in many forms, the focus of this initial work is on flooding that 

occurred primarily in North Carolina and South Carolina during Hurricane Florence in September 2018. 

This set of objectives knowingly provided an aggressive research agenda for a limited time and budget 
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allocation but provides an early exploration and tool development in this research space and establishes a 

roadmap for future efforts.  

1.4 Research Plan 
The research plan follows the objectives and is defined as follows: 

1. Novel (non-authoritative) source data will be triaged, structured, inventoried, labeled (for machine 

learning training), temporally binned, and when necessary, geolocated using geolocation estimation 

method (Johns, Rounds and Henry 2017a).  The classification of these data entails the use of 

convolutional neural network image training and classification that is domain specific to disaster 

environments. The work described here would constitute the initial assembly of a machine learning 

training library for natural disasters/damage assessments which to the knowledge of the team, does 

not exist. This library will eventually be made publicly available to further root the work effort. 

2. Implement and test the statistical design for validation between remotely-sensed data and novel 

observation data for one event case.  

3. Implementation and evaluation of the machine-learning based data fusion methods using a matrix of 

machine and deep learning models that are pre-trained, parameter tuned, or trained from scratch. The 

input training and validation data sources include varying remotely-sensed imagery, traditional 

geospatial data such as digital elevation models and derivatives such as landform, land use/land 

cover, and hydrography, and the novel sources of data to inform largely on ground-based observation 

conditions and will generate confidence-based flood observation data.  

4. Implementation of a cloud-based data streaming architecture with prototype methodologies (i.e., 

novel data image classification; data fusion) implemented for testing. 

5. A “gray box” model implementation using best performing data fusion results as observational flood 

states/boundary conditions for the PNNL RIFT flood forecast model.  The hypothesis is the combined 

machine-learning and physics-based modeling will significantly improve flood forecasting results. 

Performance metrics will be reported with combinations of parameters used and will be fully tested 

over an event time-series. 

6. If the “gray box” modeling proves to be of value, this will be integrated into the cloud-based 

streaming architecture and thus frames a prototype multi-formalism model for improvement of 

situational awareness and disaster management. 
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A high-level overview of the multi-formalism modeling (MFM) methodology and outputs is presented in 

Figure 2 and is described in greater detail in the following sections.  The general notion is to source and 

retrieve authoritative for a disaster event and process each data source by its own specific workflow to 

determine the presence or absence of flooding. These damage determinations either exist in common 

geographic form (i.e., authoritative data; latitude, longitude, attribution) or must proceed with data-

dependent transformations to achieve common geographic form (i.e., non-authoritative data).  The non-

authoritative data in common geographic form are used to validate the source authoritative data 

processing (remotely-sensed flood detection). Optionally, a feedback mechanism can be triggered by a 

minimum accuracy score to exercise a range of parameters within the remotely-sensed flood detections to 

test improvement in classification accuracy. On a different pathway, a majority subset of the non-

authoritative data in common geographic form are combined with other relevant information (e.g., 

remotely-sensed flood detections, elevation, slope, land use/land cover, horizontal and vertical distance to 

existing waterbodies) into training datasets for a machine learning process to determine a spatially 

continuous and probabilistic assessment of flood damage. A portion of the non-authoritative data is set 

aside to perform an accuracy assessment on the damage prediction. 

The remaining sections of this report detail specific research developments conducted under this LDRD 

project. Section 2.0 describes the use of satellite and airborne remote-sensing for rapid disaster response 

and the role that non-authoritative data plays in doing validations, particularly with regards to flooding. 

This section also documents the sources of data used in this exploratory research. Section 3.0 is focused 

on the numerous machine learning and deep learning models implemented to 1) determine the relevancy 

of non-authoritative data; 2) determine or validate the geographic location of non-authoritative social 

media images and oblique aerial imagery; 3) perform feature matching between non-authoritative data 

and reference data to enable data transforms into geographic space; and 4) run pixel-level semantic image 

segmentation to convert a non-authoritative image into a few relevant groupings. Section 4.0 discusses the 

early development of the statistical inference model, taking the native and transformed geographic data 

and using this information for training/testing/validation patterns to generate a probabilistic surface of 

flooding. Finally, Section 5.0 describes the cloud-based streaming data pipeline, architecture, API, and 

user-interface developed to use and process the large amount of data in for numerous models.  
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Figure 2. A conceptual workflow for multimodal data fusion to use authoritative and non-authoritative data for 
validation and probabilistic prediction of flood damage (ML=machine learning). 

2.0 Remote-Sensing Only Rapid Response Workflow 

A functional and event-exercised system developed for rapid response damage assessments should span 

event monitoring and action, image acquisition and retrieval, image pre-processing, algorithm deployment, 

geoanalytics, and analytics delivery (Coleman et al. 2017).  The workflow of this system, termed “Rapid 

Analytics for Disaster Response” (RADR), is graphically presented in Figure 3. The motivation behind 

RADR is to provide actionable analytics to utilities, emergency operations centers (EOCs), emergency 

response organizations (EROs), and others who benefit from damage assessments throughout a disaster 

event. RADR is built using Python scripting and automation and focuses on the use of various remotely-

sensed imagery assets from multiple sensor sources. A key goal is to best utilize available high to medium 

(<15m) spatial resolution sensors that collect data within an event domain, such that daily or sub-daily 

assessments can be achieved.   

Once an event notification is received, a set of activation actions are performed to prepare for the event. 

The first is to define an area of interest (AOI) that is used to establish satellite imaging search domains for 

pre-event imagery within the past 1-2 months, and to reduce data volumes and processing time. Multiple 

web resources and situational awareness reports are used to understand event progression, reported damage 
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areas and critical areas of concern, and help develop a common operating picture. Once new imagery is 

retrieved, the data is unpacked and processed using algorithms specific to the sensor and the disaster event 

type. The system is currently designed to perform flood detection, rubble/debris detection, vegetation 

change detection, and pre-and-post event change detection. An overview of these damage detection 

algorithms is presented in Table 1 and examples of flood detection are presented in Figure 4 and Figure 5. 

Additional geoanalytics can be performed with assessed pixel-level damage/no-damage to identify potential 

impacts to specific features such as transportation networks, energy infrastructure, shipping ports and 

terminals, water and waste water management facilities, property, businesses, and homes. The resulting 

image analytics and geoanalytics are packaged and disseminated through a variety of formats and channels. 

RADR provides the base component for satellite image damage assessments that is supplemented with 

novel, non-authoritative data. For the multi-formalism modeling (MFM) effort discussed here, the flood 

flood detections from RADR are used. In the future, additional damage types can be integrated. 

 
Figure 3. The “Rapid Analytics for Disaster Response” (RADR) workflow for disaster event monitoring, activation, 
satellite remote-sensing monitoring and data retrieval, image analytics, geoanalytics, and data dissemination 
(Coleman et al. 2017).  
 

Table 1. Overview of RADR damage detection algorithms. 
Algorithm Description Event Type Image Type 

Flood 
Detection 
(optical) 

Detect flooding in single image 
using a modified Normalized 
Difference Water Index (NDWI) 
and fuzzy logic classifier 

Inundation occurring 
with heavy or 
prolonged rains, 
hurricane 

Multispectral imagery 
with a NIR band 
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Flood 
Detection 
(SAR) 

Detect flooding from either single 
or pre-post event pair Synthetic 
Aperture Radar SAR (SAR) 
scene(s) using an auto-
thresholding approach for single 
scene or change detection for pre-
post pair.  

Inundation occurring 
with heavy or 
prolonged rains, 
hurricane 

SAR; C-band 
commonly used. 

Rubble 
Detection 

Detect rubble in a single image and 
use the density of detections to 
derive a proxy classification of the 
level of damage.  

Structure damage due 
to high winds from 
hurricanes, tornadoes, 
or severe storms 

High-resolution 
natural color or 
multispectral 

Vector Change 
Analysis 

Calculate magnitude and direction 
of change between “before” and 
“after” images, then apply rules to 
distinguish change caused by event 
from other types of change not 
associated with damage. 

Destruction/loss of 
vegetation, and 
exterior damage to 
structures that 
changes 
shape/appearance 

Mid- to high-
resolution 
multispectral + land 
cover data 

Vegetation 
Change 
Detection 

Positive or negative change in 
Normalized Difference Vegetation 
Index (NDVI) in “before” and 
“after” images. 

High wind events 
affecting vegetation 

Low- to mid-
resolution 
multispectral  

 
 

 

Figure 4. Example flood detection (blue) from multispectral satellite image over Fayetteville, North Carolina during 
Hurricane Florence, (September 17, 2018).  
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Figure 5. SAR flood detection using pre- and post-event imagery near New Bern, NC, September 15, 2018 at the 
onset of Hurricane Florence.  The colorized SAR polarities (left) and the resulting classified flood detects are shown 
in red (right). 

2.1 Multimodal Data Sources 

2.1.1 Remote Sensing Data 
Two primary types of remotely sensed imagery are used in hurricane-based flood assessments: synthetic 

aperture radar (SAR) (e.g., Sentinel-1, RADARSAT-2, COSMO-SkyMed, PALSAR-2, TerraSAR-X, 

UAVSAR) and multispectral optical (e.g., WorldView 1-4; SPOT 5-6, PlanetScope, RapidEye, Pléiades). 

SAR is a side-looking radar technology that uses the sensor motion and different wavelength and signal 

polarities to capture high-resolution image of surface physical characteristics (1-30 m ground sample 

distance [GSD]). A key advantage of SAR is that because it is an active sensor it can collect data day or 

night and effectively view through cloud cover or other obscuring atmospheric conditions. Certain SAR 

sensors such as UAVSAR utilize longer radar wavelengths (1-2 GHz, L-band) that provide more signal 

penetration through vegetation cover to detect ground-level flooding.   

Multispectral sensors are multichannel detectors that measure reflectance across several wavelength ranges 

in the electromagnetic spectrum, including visible (e.g., blue, green, yellow, red) and non-visible 

wavelengths (e.g., NIR, shortwave infrared). Multispectral data provide for analytical versatility and is one 

of the most widely used imagery types; however, images captured during cloud-free daylight conditions 

are required for assessing damage.  
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Because each sensor follows a different orbit cycle, data availability for a given location varies daily and 

may not coincide with optimal times to detect damage. Additionally, each sensor and sensor pass will collect 

a different geographic extent, creating a patchwork of imagery over the disaster domain. Thus, it is critically 

important to use multiple sensors and types of sensors to improve situational awareness.  

Algorithms for detecting water vary by sensor and organization, some of which are proprietary or not 

published. A basic description of the algorithms deployed in RADR are reported here, but further 

descriptions are found in Coleman et al. (2017).  

2.1.1.1 SAR Flood Detection 
Each SAR sensor is unique with regards to acquisition model, polarity, radar frequency, and resolution, 

making it challenging to design generalizable damage detection algorithms for SAR data. While sensor-

specific algorithms are often required, all attempt to utilize the difference in the dielectric signal response 

of water versus other area land surfaces, and locations of existing waterbodies, to identify flooding.  

There are many analytical approaches to estimate a signal amplitude threshold that best separates water 

and non-water features. Much attention has been given to methods that automate selection of a threshold, 

and some provide an option for a human in the loop to override or fine-tune the auto-selected threshold. 

In the context of damage assessment, both these capabilities are considered important and have been 

integrated into SAR flood detection algorithms in RADR. A challenge with auto-thresholding approaches 

is the ability to accurately respond to different compositions of water/non-water in a given scene and 

maintain acceptable levels of commission or omission error. Current SAR flood detection methods in 

RADR have been designed with this consideration in mind because they need to be robust given the 

unpredictable nature of when and where flooding may occur. 

Additional challenges with SAR flood detection that continue to be investigated include reducing false-

positive detections from water-like features, improving flood detection in radar-obscured areas, and 

refining pre-processing steps to improve signal characteristics. 

2.1.1.2 Multispectral Flood Detection 

The Normalized Difference Water Index (NDWI) is a common method used to spectrally detect water. 

Deriving a classification of water using NDWI requires a secondary step of automatically or manually 

determining a threshold for index values that represent open water. This is a challenging process as 

flooding, even in the same region, can vary spectrally depending on factors affecting the color or texture 

of water. Other objects such as shadows, built-up surfaces, rooftop shingles, asphalt, and bright surfaces 

can also cause misclassifications with this method. Multispectral flood detection in RADR is performed 
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using a modified NDWI algorithm that makes use of a priori information about existing waterbodies, 

elevation, and slope and fuzzy logic techniques to identify water and non-water features. The algorithm is 

generally robust and capable of being used with a wide variety of sensors and scene conditions. As 

previously noted, visual obstructions to the ground are an inherent limitation with optical imagery and 

may affect the efficacy of multispectral flood detection. 

2.1.2 Crowdsourced Data 
Several sources of non-authoritative ground observation data are used for the purpose of validating 

remotely-sensed flood observations and/or multimodal data fusion to predict flood occurrence. Key 

sources of these data include (1) images and video from social media (e.g., Twitter, Instagram, Facebook, 

Flickr), news sources, traffic cams, etc.; (2) WAZE user-generated road closure data; (3) state-level 

department of transportation road closure notices; 4) search and rescue data; 5) Civil Air Patrol (CAP) 

oblique- and nadir-perspective aerial imagery; and 6) USGS high water mark surveys.  

2.1.2.1 Social Media  
An effort by the GISCorps (https://www.giscorps.org/) and National Alliance for Public Safety GIS 

Foundation (NAPSG) Foundation (https://www.napsgfoundation.org/) have begun to provide geotagged 

crowdsourced social media images and videos and corresponding image captions during major disaster 

events. See for example, the “2018 Hurricanes Crowdsourced Photos” application 

(https://arcg.is/1jLm4y) (Figure 6). These data provide a variety of information from wind damaged 

homes, fallen vegetation, downed powerlines, flooding, etc. The images and captions are used as training 

data for computer vision and semantic analyses designed to classify certain types of damage.  

 

https://www.giscorps.org/
https://www.napsgfoundation.org/
https://arcg.is/1jLm4y
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Figure 6. Example view of “2018 Hurricanes Crowdsourced Photos” application which contains geolocated time-
stamped images and videos available from various social media platforms and news outlets. 
 
 

2.1.2.2 WAZE, State Department of Transportation Traffic, and Real-Time Traffic Data 
WAZE is a social traffic and navigation application that allows users to post traffic alert information. The 

WAZE Crisis Team and ESRI Disaster Response program have partnered to make these data publicly 

available during certain natural disasters. As an additional information resource, official state-level 

department of transportation road closures are often available too. For example, during Hurricane 

Florence (September 2018) the states of South Carolina, North Carolina, and Virginia published near real-

time GIS data with road closures as both point barriers and line vectors of roads with time stamped 

closures. As with other non-authoritative datasets used in this research, the data are segmented by day and 

constrained to the remotely-sensed image analysis extents for each day. Keyword filters are also be 

applied to discern road closure data related to construction or other non-flood related events. In cases 

where a road closure can’t be positively tied to flooding, the record is ignored for purposes of ground-

truthing flood presence. Similarly, where roads are open, it is assumed flooding isn’t a problem.  In the 

future, tapping into a real-time traffic web service such as Google Traffic, Microsoft Bing Traffic, HERE 

Traffic, WAZE Data Feeds, and others, can provide up-to-date road closure information. However, 

programmatic access to these services require license fees.  
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2.1.2.3 Search and Rescue Data 

A new mobile application developed by the International Association of Fire Chiefs (IAFC) and NAPSG 

was used by first responders and search and rescue teams to collect on-the-ground information during 

Hurricane Florence. The application uses the mobile device GPS to geolocate and timestamp the 

observation and optionally include an image with the device camera, though the data used in this research 

was strictly text-based. The data collection consists of several natural language entry fields, many of 

which were similar enough to one another that relevant information had to be gleaned from multiple 

fields.  As with other crowdsourced data, this information is used for validation of remotely-sensed 

images over a common time-period and as observation data for the multimodal data fusion and flood 

prediction.  

2.1.2.4 Civil Air Patrol 

The Civil Air Patrol is typically deployed as soon as possible after a disaster event to get rapid aerial 

reconnaissance for areas of key concern. The flight passenger is equipped with a GPS-enabled handheld 

camera and after the flight mission, all imagery is uploaded to an Amazon S3 storage container and made 

available through a map-based web browser application 

(https://communities.geoplatform.gov/disasters/civil-air-patrol-cap-browser/). These data are extremely 

valuable for their context and wide view extents (as opposed to a ground-based social media post). The 

volume of imagery collected by the CAP program is also extensive. For example, ~11,000 CAP images 

were collected for Hurricane Florence. Significant challenges exist, however, to using CAP imagery in an 

analytical construct as described here. The current process requires a time-consuming (15-20 minutes per 

image) manual process to work through each image to identify the ground location and extent because the 

geographic location provided with the image at the camera body, not what is captured in the image. This 

is often time-consuming because the metadata often does not include sufficient information about the 

picture geometry including the azimuth, look angle, or use of telephoto lens.  An example result of this 

process is shown in Figure 7. Photogrammetric solutions are tested to automate or partially automate with 

human-in-the-loop and are further discussed in Section 3.3. 

 

https://communities.geoplatform.gov/disasters/civil-air-patrol-cap-browser/
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Figure 7. SPOT-6 multispectral flood detection (red polygons) related to an example oblique perspective Civil Air 
Patrol (CAP) photo. 
 

2.2 Validation of Remotely-Sensed Flood Detections using Non-
Authoritative Sources 

A preliminary statistical approach is implemented for the use of non-authoritative observation data to 

validate remotely-sensed flood detections. Because remotely-sensed imagery do not have an integrated 

validation process, the use of independent ground observations from non-traditional and largely citizen 

sensor collections are proposed to serve as ground-truth for this purpose. A workflow of this process is 

presented in Figure 8.  

Authoritative data (remotely sensed imagery) is processed to detect flooding and non-traditional ground-

truth data (see Section 2.1.2) are used to validate the result. Flood detections and ground-truth data for a 

6-day period spanning 2018-09-14 to 2018-09-19 are used for this assessment. A total of five sources of 

flood detection results are evaluated, including a NASA SAR-based process from the Advanced Rapid 

Imaging and Analysis (ARIA) Project for Natural Hazard (https://aria.jpl.nasa.gov/),  the European 

Union’s Copernicus Emergency Mapping Services Sentinel-1 SAR-based analysis 

(https://emergency.copernicus.eu/mapping),  MDA Corporation’s flood mapping from its RADARSAT-2 

sensor and provided to the USGS Hazard Data Dissemination System (HDDS; 

https://hddsexplorer.usgs.gov), and PNNL’s RADR system SAR (Sentinel-1) and multispectral flood 

detection algorithms using the SPOT-5 sensor. The data collected or generated and considered in this 

assessment is presented in Table 2.  

https://aria.jpl.nasa.gov/
https://emergency.copernicus.eu/mapping
https://hddsexplorer.usgs.gov/
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Flood detection polygons and image extent boundaries were grouped by day and source/sensor type to 

best match ground-observations from the same day. For example, if a remotely-sensed image was 

collected in the morning and a non-traditional ground-truth data point was collected in the evening, they 

were coupled for validation.  No sub-daily assessments are made, although doing so in the future may be 

valuable because flooding can be dynamic due to rapidly fluctuating flows. 

 
 

 
Figure 8. Workflow for validation of remotely-sensed flood detections using non-authoritative sources. 
 

 
Table 2. Remotely-sensed flood assessments by source (NASA, CEMS, MDA, RADR), general sensor type (SAR, 
MS) and date. 

Flood 
Assessment 
Source 

2018-09-14 2018-09-15 2018-09-16 2018-09-17 2018-09-18 2018-09-19 

NASA-SAR X X     

CEMS-SAR  X    X 

MDA-SAR X X X X  X 

RADR-SAR  X X   X 

RADR-MS     X  

 

Daily grouped ground-truth data and remotely-sensed flood detections were used to create a bivariate 

classification of flooding.  To help account for positional uncertainty of flooding in ground-truth 

observations (i.e., images, videos, road closure points, etc. are  likely  not  taken  from  within  the  flood  

water,  but  from  a perspective adjacent to the flood water) (see Figure 9), a point-to-grid method was 

used ( where the ‘point’ is the ground-based observation and the ‘grid’ is the remotely-sensed flood 

detect) to assess presence of water. Because the orientation of the crowdsourced data is not known, a 360-

degree 100-m radius flood search area is used. Two iterations of point-to-grid analyses were performed. 

In the first iteration, ground-truth points were validated to remotely-sensed flood areas as the data were 
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released (i.e., all water detections; only flood detections). In the second iteration, point-to-grid analysis 

incorporated remotely-sensed flood detections, and existing waterbodies and wetlands instead of flood-

only detections This process is repeated for each source of remotely-sensed flood observation data for 

each day the data exists and are formatted into contingency tables and basic descriptive findings are 

reported on these results. Additionally, a simple analysis was performed to assess the ‘TRUE/FALSE’ 

rate of the ground-truth data and flood detection source/algorithm. 

 
The outcome of the validation can be implemented as a feedback mechanism to the processing of 

remotely-sensed flood detection to potentially adjust process input parameters and test for validation 

results as shown in Figure 3. This capability has not been implemented in the RADR system. 

Additionally, a statistical causation of covariates from the crowdsourced results could provide some 

explanation of errors in remotely-sensed flood detection (i.e., ground observation indicated flooding but 

no flood detections were present in the remotely-sensed data). Example covariates could include 

horizontal and vertical distance to existing waterbody, slope, land use/land cover, and canopy cover.  

 

  
Figure 9. An example relationship of a crowdsourced video of flooding (left) and the recorded position (right; red 
triangle) and the SAR-based flood detection (right; blue polygon) on September 19, 2018. The distance from the 
video recording position to the edge of the flood polygon is 23m. 

2.3 Preliminary Validation of Remotely-Sensed Flood Detections 
using Non-Authoritative Sources 

The extents of non-traditional ground-truth data and remotely-sensed imagery for Hurricane Florence are 

presented in Figure 10. Approximately 8,000 ground truth samples intersected the Florence AOI, but 

these were reduced to 360 after removing samples unrelated to the event ( Figure 11).  
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Figure 10. Map of the U.S. eastern seaboard from Savannah, GA to Atlantic City, NJ. Non-traditional ground-truth 
data collections assembled from September 14-19, 2018 are represented where the red outlines represent various 
remote-sensing image extents, grey circles are ground observations, and blue circles are filtered ground observations 
that indicate flooding. 
 
 

 
Figure 11. Crowdsourced ground observation data collected in and around the geographic domain of the Hurricane 
Florence storm domain. NCDOT=North Carolina Department of Transportation, S&R=Search and Rescue, 
SCDOT= South Carolina Department of Transportation, SM=various social media and news, VADOT=Virginia 
Department of Transportation, and WAZE=WAZE mobile traffic application. Total starting sample population, 
n=8,042 and final filtered population n=360. 
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The contingency table for the first iteration point-to-grid analysis is presented in Table 3. The best 

accuracy was observed with RADR-SAR (54.0%), followed by NASA-SAR (48.2%) and RADR-MS 

(45.8%) (Table 3). Conversely, the CEMS-SAR and MDA-SAR flood classifications exhibited poor 

agreement with ground-truth observations. While the overall accuracy of these flood detections appears to 

be moderate to poor, it is important to note that the more severely flooded portions of the scene are more 

accurately depicted than areas of less severe flooding. Additional investigation is needed to understand 

this issue more clearly and determine factors affecting error. 

The results of the second iteration point-to-grid analysis in which remotely-sensed flood detection, the 

normal-condition water mask, and wetlands are considered, is presented in Table 4.  Agreement between 

ground-truth and remotely-sensed flood detections improved in every category except MDA-SAR. The 

best agreement was observed with NASA-SAR (69.3%), followed by RADR-MS (66.7%) and RADR-

SAR (58.9%). The CEMS-SAR agreement improved significantly compared to the first iteration results 

but is still low (27.3%).  

 
Table 3. Contingency tables for point-to-grid validation results of crowdsource to remotely-sensed flood 
observation, analyzed daily and summed for the event period (September 14-19, 2018). The results presented 
here are the first-level point-to-grid analysis where remotely-sensed flood observation data is used as generated 
and released.  

 NASA-SAR CEMS-SAR MDA-SAR RADR-SAR RADR-MS TOTAL 

TRUE 66 3 9 67  11 156 

FALSE 71 30 33 57  13 204 

TOTAL 137 33 42 124  24 360 
         

 

% TRUE 48.2% 9.1% 21.4% 54.0% 45.8%   
 

 
Table 4. Contingency tables for second-level point-to-grid validation results of crowdsource to remotely-sensed 
flood observation, normal-condition water mask, and wetlands are analyzed daily and summed for the event period 
(September 14-19, 2018).    

 NASA-SAR CEMS-SAR MDA-SAR RADR-SAR RADR-MS TOTAL 

TRUE 95 9 9 73  16 156 

FALSE 42 24 33 51  8 204 

TOTAL 137 33 42 124  24 360 
         

 

% TRUE 69.3% 27.3% 21.4% 58.9% 66.7%   
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2.3.1 Ground-Truth Data Performance by Source 
Ground-truth data were investigated more closely to assess whether agreement rates with remotely-sensed 

flood detections varied among different sources. Figure 12 illustrates these rates by ground-truth data 

source.  The best agreement is observed for search-and-rescue data (69.2%), followed by social media 

(49.1%), and WAZE (41.7%). One possible explanation for the lower agreement rate with WAZE data is 

that the location of observation may be greater than 100 m from actual flooding, our criteria for point-to-

grid correspondence, because road closure barriers are often placed away from the actual hazard to divert 

traffic. Thus, a greater radius of association may be necessary to effectively utilize WAZE data in MFM 

modeling framework. It is believed that Search & Rescue data had the highest agreement because 

personnel are intently operating in flood zones when they collect observations.  

 

 
Figure 12. The agreement (TRUE) or disagreement (FALSE) of specific crowdsourced data in relation to validation 
of remotely-sensed flood observed data is presented. S&R = Search and Rescue, SM=various social media and 
news, WZ=WAZE mobile traffic data and state-level department of transportation closure data.  

As part of an image similarity and geospatial validation process in this study (Section 3.2), it was 

determined that a large number of the social media images did not have accurate geographic information 

(often one to several blocks away from the actual location recorded in the image). Some of these data 

were thought to have been verified by a volunteer social media team (GISCorps/NAPSG), but it is unclear 

to what extent and rigor. The locations that are embedded in an image are based on location data collected 

by the user’s device, which is subject to low-accuracy GPS signal, signal bounce in urban areas, or 

location triangulation from surrounding cell towers. This discovery impacts the current validation results 

for the social media data and the overall results presented in the contingency tables, thus this analysis will 



 

3.32 

need to be re-run with correct image locations. Importantly, the step of performing location validation is 

crucial to perform prior to running validations on non-authoritative data. These considerations highlight 

some of the challenges of using non-authoritative data for damage assessments, particularly how 

uncertainties about the spatial accuracy of observations can affect subsequent analysis. Developing 

methods to better validate or derive the geographic position of non-authoritative data sources represents a 

critical area for future research. 

 
3.0 Deep Learning for Multimodal Data Fusion  

Non-authoritative image/video data is a vibrant data resource, but in its native form is difficult to use in 

traditional geospatial analytics without supplemental data from GPS and inertial measurement units 

(IMU).  In comparison to the “Validation of Remotely-Sensed Flood Detections using Non-Authoritative 

Sources” (Section 2.2) where a single point observation is used to validate the presence of flooding, this 

work aims to derive a rich sampling of point observations from multi-perspective images to detect 

flooding and transform these observations into a common geographic form. An overview of the workflow 

for this objective is presented in Figure 10 and is described in further detail below.  

Because the non-authoritative source images aren’t in a geospatial format, information must be extracted 

from the images in a manner that they can be tied to other georeferenced data. A sequenced deep learning 

process using image relevancy, image similarity, feature detection and matching, and semantic image 

segmentation, derives required information and returns it in geographic space. The non-authoritative data 

sources here rely on ground-level social media images and oblique aerial images primarily from the Civil 

Air Patrol (CAP), but Customs and Border Protection (CBP) handheld images and UAS (drone) still 

images or videos posted online without GPS/IMU data are also viable data resources.  

3.1 Image Enrichments, Object Labels, and Relevancy 
There is a necessary step to filter large volumes of non-authoritative data that doesn’t contribute to the 

objective. For example, many of the social media images collected in the Hurricane Florence use case 

were not useful for assessing flood or other damage detection (e.g., selfies, birthday parties, food, etc.). 

Therefore, classes of images determined to be non-informative to situational awareness can be binned and 

removed from further use in the workflow (see Figure 13, “Bin Non-Contributing Images”). Deep neural 

networks can sift through the thousands of images streaming in from various sources and derive 

probabilistic image labels that determine the objects and features within the image (e.g., house, water, 

lake, flood, reflection, family, building) (see for example, Figure 14). A potential issue however, is that 
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training datasets and subsequent trained models may not be focused toward detection of natural disaster 

situations. To support this application, a disaster-based ontology, Geo-MD (Figure 12), was considered as 

a schema for social media image labeling and classification (Bouyerbou et al. 2019).  The implementation 

of this ontology was kept in reserve pending baseline tests with pre-trained machine-learning models. 

 

 
Figure 13. Process overview for ‘Deep Learning Approaches for Multimodal Data Fusion in Disaster Events’. 
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Figure 14. Geo-MD, a disaster-based ontology, was considered for use in manual image labeling to enable sorting 
and classification of disaster-relevant images (Bouyerbou et al. 2019).  
 

3.1.1 Identifying duplicates 
It is common for social media users to share content that they did not collect, both on the original social 

media platform and across social medial platforms, resulting in numerous duplicate images that need to be 

remove unnecessary. Rule-based screening for image size, time stamp, and reported location was 

evaluated but is ineffective because of cropping, platform-specific time stamping, and deletion of EXIF 

tags that contain information on camera type, location, etc. Successful screening of images for common 

features has been implemented using the perceptual hashing (pHash) method. The pHash method is often 
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used for digital forensics and can be applied to a wide variety of visual media. The technique creates a 

fingerprint based on high-dimensional image features such that the pHash similarity distance between 

identical photos will be zero. Cropped photos with text overlaid would have pHash values very close to 

the original image and the distance between altered photos and original would be very small. This 

approach is enabled via open-source libraries (https://www.phash.org/; 

https://pypi.org/project/ImageHash/) and the results are programmatically assessed to build a table of hash 

values that are used to reduce the input image set to a set of unique images. 

3.1.2 Object Prediction in Images 
One step toward understanding the content in social media images is using object prediction to generate a 

list of probabilistic labels that relate to objects in the image. The manual sifting of images is not feasible 

so an automated approach was enabled to provide image labels that could be used to remove non-relevant 

images. Thus, several pre-trained commercial models including Google VisionAI, Amazon Rekognition, 

and Clarifai were evaluated for the possibility of repurposing them for labeling information relevant to 

natural disaster situations. Based on a qualitative assessment of the pre-trained models we opted to use 

Amazon’s Rekognition to rapidly label objects for all of our social media images. Rekognition is based on 

highly scalable, deep learning technology and can be easily implemented on any set of images stored in 

an Amazon S3 cloud storage container. Rekognition returns a series of probabilistic labels for each image 

which we used for determining the relevance of an image to our objective (see for example Figure 15). 

 
Figure 15. Example of deep-learning based probabilistic image labeling. 
 

https://www.phash.org/
https://pypi.org/project/ImageHash/
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3.1.3 Relevance Voting for Model Development   
Our social media images came from two sources; NAPSG and Flikr and were quite different in terms of 

image content. The NAPSG dataset was curated by volunteers to contain only images related to disasters 

and as such, we expected that most of the images therein were relevant. The Flickr dataset came from a 

massive download of all images posted in the region during the timeframe of the disaster event, many of 

which we suspected were not relevant. Within the UI we created the ability to vote on whether an image 

was relevant for assessing flood extent; either flooding visible or not visible (figure 16). Our rubric for 

determining relevancy was based on the clarity and content of images; an image was voted relevant if it 

showed visible ground (or flooded area) with enough scene context such that a human could likely 

identify location. Nighttime images, blurry images, and indoor scenes were voted non-relevant. A total of 

3,656 images out of ~11,000 were reviewed and voted on. Table 5 summarizes the proportion of relevant 

and non-relevant images in our data sets. 

 

Figure 16. Example view of the custom web-based interface used to provide qualitative feedback on the relevancy 
of images and their Rekognition labels.  The “Green Thumbs Up” icon indicates the image is relevant to the 
objective and the “Red Thumbs Down” indicates the image is not relevant. 
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Table 5. Relevancy metrics for the Flickr-collected data and the NAPSG-collected data based on manual 
quantitative feedback. 

 Relevant Not Relevant 

Flickr 27% 73% 

NAPSG 90% 10% 

 

3.1.4 Relevancy Classification Models 
We trained and tested several machine learning models to automatically predict if an image is relevant or 

not, including Random Forest Classifier and three CNN models (AlexNet, ResNet18, and VGG11). Using 

the Rekognition labels and relevancy class from the labeled imagery, we split the data 80/20% for 

training/testing datasets. The trained models were run on two validation datasets: GISCorps/NAPSG data 

collected from a separate flooding event (Hurricane Harvey, Houston, Texas region, August 2017) and a 

set of random Flickr images. The Hurricane Harvey data contained 523 images and the random Flickr 

dataset contained 998 images. Example image results from the CNN models are shown in Figure 18 - 

Figure 20 and output metrics are provided in Table 6.  

In a stream of social media images being posted during a disaster event, there likely will be many more 

irrelevant images than relevant even if the posts are limited to the geographic region of impact. For the 

application envisioned here, there is an obvious need to screen incoming images as quickly and accurately 

as possible to determine which should be retained for assessing potential damage; therefore, we measured 

processing time and accuracy of each model (Table 6). All three CNN models exhibited faster processing 

times (>1 image/second) and moderately better overall validation accuracy with Flick images (>0.78) 

than Random Forest (0.56 images/second and 0.65 overall accuracy), although Random Forest 

demonstrated better overall validation accuracy with NAPSG data (0.904) than all three CNN models 

(AlexNet=0.78, ResNet18=0.868, VGG11=0.860)(Figure 17).  

Recall was considered more closely than other accuracy metrics because it best describes the ability of a 

model to find all relevant cases within a dataset, which is especially important in our use case because 

datasets may contain proportionally few images of interest. AlexNet demonstrated the best recall (0.736) 

of all four models with Flickr data, whereas Random Forest exhibited the best recall (0.930) of all models 

with NAPSG data. These results suggest there may be dataset-specific tradeoffs among models in terms 

of both speed and accuracy. For example, Random Forest may be a better model for determining 

relevancy of NAPSG images, but it requires more processing time. This could potentially be improved, 

however, with fine tuning of the model and more compute power. Conversely, AlexNet was the better 

model in terms of both speed and accuracy for determining relevancy of Flickr images. 
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An additional classification step was performed to further classify the relevant images into the 

presence/absence of flooding.  Using all the relevant Flickr and NAPSG images (~1,796) we manually 

determined which images had visible flooding (961) and no flooding (835). Using these data, we trained 

multiple CNNs to exploit image features to classify flood presence/absence. The training accuracy was 

encouraging ranging from 83% to 87%. It is expected that similar training can be performed for other 

damage types in the future.  

 

Table 6. Output metrics from relevancy model tests against two independent validation datasets: NAPSG 
images from Hurricane Harvey (n=523) and a random image set from Flickr (n=998). 

Model Dataset Testing – 
Accuracy 

Validation 
– Accuracy 

Validation - 
Precision 

Validation - 
Recall 

Performance 

Random 
Forest 

Flikr 0.903 0.646 0.433 0.675 ~0.56 
images/sec NAPSG 0.903 0.904 0.969 0.930 

AlexNet Flikr 0.904 0.780 0.590 0.736 ~6.15 
images/sec NAPSG 0.868 0.982 0.879 

ResNet18 Flikr 0.885 0.790 0.664 0.593 ~2.95 
images/sec NAPSG 0.868 0.978 0.881 

VGG11 Flikr 0.912 0.810 0.741 0.586 ~1 
images/sec NAPSG 0.860 0.978 0.879 

 

 
Figure 17. Confusion matrix showing the results of the Flickr and NAPSG image relevancy classifier using a 
Random Forest binary classification model. 
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Figure 18. Classified images from the AlexNet model indicating “relevant” or “not_relevant” as defined on the x-
axis. 
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Figure 19. Classified images from the ResNet18 model indicating “relevant” or “not_relevant” as defined on the x-
axis. 
 



 

3.41 

 
Figure 20.  Classified images from the VGG11 model indicating “relevant” or “not_relevant” as defined on the x-
axis.  
 

3.2 Geographic Location and Validation of Non-Authoritative 
Ground-Level Images 

The method of geographic validation and refinement of images relies upon the use of the best known 

geographic coordinates of an image (source image), a reference image dataset, and a deep-learning based 

image similarity process to find the closest image match between the source and the reference. 

Many of the non-authoritative images contain an embedded set of geographic coordinates in the image 

metadata (i.e., EXIF geotag) that indicate with varying levels of accuracy where the image was taken. In 

cases where this information is not available, image geolocation estimation methods (Johns, Rounds and 
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Henry 2017b, Suresh, Chodosh and Abello 2018, Vo, Jacobs and Hays 2017) may be used to provide an 

approximate location. Flickr data obtained in this study used the methods of Johns, Rounds and Henry 

(2017a) to collect and geographically store the images. The NAPSG collected data had a geographic 

coordinate stored with the image data. We implemented a refined approach to use the best-known location 

for ground-level, social media images and refine the geographic coordinates. The approach is based on an 

image similarity metric between the social media image and a set of reference images with known 

location. This process is important for three primary reasons. First as noted in Section 2.3.1, correct image 

locations impact validation of remotely-sensed flood observations and validation of flood modeling. 

Second, location accuracy affects the ability to convert potentially valuable information in the image to 

geographic space for data fusion and modeling. Third, by using a set of spatially accurate source images 

with various look angles and perspectives, additional metadata is retrieved from the reference imagery 

such as the heading and field-of-view, so it understood where the user was pointing the camera; these 

additional metadata are important for developing the transformation process between arbitrary pixel 

space, 3D depth data, and geographic space through feature matching. 

There are numerous image similarity techniques available. Here, we test the Xception deep-learning, 

depth-wise, separable convolutions model to extract image features, and the Faiss model to perform 

similarity searches that compares disaster event images to a corpus of reference image sources (Chollet 

2017; Johnson, Douze and Jégou 2019).  The methods are illustrated in the workflow in Figure 13.  

Reference images with known locations were obtained by harvesting Google StreetView images. The 

harvesting process entails following streets in the proximity of the comparison image, and at each 

StreetView path increment, capturing all StreetView images in increments to capture a 360° view at two 

different field-of-view settings (i.e., zoom levels) (Figure 21). The objective is to provide a range of 

images and perspectives that are used to match what an individual captured on a smart-device camera. 

The entire set of Flickr and NAPSG source images, and StreetView reference images are brought into the 

Amazon AWS data pipeline where the image similarity analysis is performed.  

Initial results of this process helped to reveal geographic location errors prevalent in the social media 

images.  Some examples of these errors are presented in Figure 22 and Figure 23. In one case, a location 

in Bolivia, NC is presented as an example in Figure 24, where a seemingly uninhabited house in 2013 and 

2015 had been transformed into a business making the source and reference images significantly 

different. Situations like this would dictate a second-tier comparison using other available street-level 

imagery (e.g., Microsoft StreetSide, OpenStreetCam) to help achieve a match. Though as shown in this 

example, even the latest imagery may be erroneous and could only be resolved by a human-in-the-loop 

process. There are cases too where social media images are captured far enough away from a street that 
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there is no street-level imagery available (e.g., images taken within a park or stadium behind a school) 

which would also necessitate a human-in-the-loop process. 

 

 

Figure 21. Source image (top-center) and a series of 8 Google StreetView images that capture a 360° perspective of 
the area at a given coordinate. This process is repeated for each coordinate at two field-of-view (zoom-level) 
measures, where the current field-of-view captures more area in each image. 
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Figure 22. Example of low-accuracy location coordinates for a social media image which turned out to be 

positioned a block to the north. 
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Figure 23. In the social media image example, the location was nearly correct at the hotel parking lot, but the 
perspective of the building was taken at the front of the building.   
 

 
Figure 24. Even with a proper coordinate, there are cases where the feature of interest has undergone significant 
changes since the reference imagery was collected. In these cases, additional reference imagery such as Bing 
StreetSide or OpenStreetCam imagery can be used with the hope of a more recent image capture. Otherwise the 
image must be binned for human-in-the-loop review. 
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3.3 Geographic Location and Validation of Aerial Oblique Images 

After a disaster event, the Civil Air Patrol and Customs and Border Protection (CBP) in the United States 

are commonly tasked with flight missions to capture images of damage areas or general areas of concern 

(see for example, the flight segment on Figure 25). The flights are generally carried out by a pilot and a 

photographer in a small fixed-wing aircraft. The photographer uses a high-quality camera with an 

integrated GPS. For each oblique photograph captured (Figure 26) a series of metadata are collected and 

stored with the imagery, including the date and time, focal length, GPS coordinate of the camera body, 

and in rare cases, the heading. While these data provide a valuable information resource with the many 

thousands of images collected after an event, they are not readily usable for automated image analysis. 

For example, the location of the plane when the photograph was taken is known, the location and extent 

of the photograph are unknown and may be many kilometers from the aircraft location. The goal of this 

part of the research is to improve the geolocation of individual oblique aerial images.  

We have observed that due to the oblique nature of their acquisition, the geolocation of CAP images is 

often many kilometers from the ground target. Review of ancillary data about altitude, heading, angle of 

incidence, focal length, etc., has revealed that these data are often missing or inaccurate; thus, methods to 

improve photo geolocation based solely on geometry of the acquisition are not feasible. Furthermore, 

without reliable ancillary information it cannot be determined which side of the aircraft the photo was 

taken, approximately how far from the aircraft location the ground target may be, or how large the ground 

extent of the CAP photo may be. These challenges require new methods to identify ground target 

locations that do not require a priori information about the photo geometry.  

The objectives in this task are 1) to test off-the-shelf algorithms for assessing the similarity of CAP image 

with orthorectified reference planar aerial imagery (e.g., National Agricultural Imagery Program [NAIP]); 

and 2) to determine if the true location of CAP image can be approximated and improved using spatial 

information of most similar planar images. As with the ground-level imagery, proper location 

identification leads to the next step in the process workflow, feature matching, which ultimately allows 

for a transformation of the oblique data into geographically referenced data that can fused with other 

sources. 
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Figure 25. Civil Air Patrol flight segment after Hurricane Florence. The black dots provide locations where a 
photograph was taken and through a recreation of the time-stamps, the general flight line (red) is reconstructed.  
 

 
Figure 26. Example oblique style aerial image captured by the Civil Air Patrol after Hurricane Florence. 
 
Two off-the-shelf algorithms were tested for the purpose of comparing CAP photos to high-resolution 

planar imagery (NAIP) to determine potential ground target locations based on image similarity. We 

applied a deep convolutional neural net, dubbed Xception (Chollet 2017), and an efficient similarity 

search algorithm developed by Facebook Research called Faiss (Johnson, Douze and Jégou 2019). 

Xception was employed to create high-dimensional feature representations of CAP and NAIP photos, 

which were subsequently indexed using Faiss to enable queries of the most similar NAIP images for a 
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given CAP photo. This process was implemented using the Amazon cloud resources implemented via the 

developed MFM Data Pipeline and Architecture. A visual workflow is presented in Figure 27. 

 
Figure 27. A visual workflow of the Civil Air Patrol image matching methodology relying on varying size image 
chips, the Xception and Faiss models. 
 

NAIP imagery was selected for initial testing because it is freely available, recent (updated every three 

years), and is of high enough resolution (typically ≤1 m horizontal resolution) that it should provide a 

reasonable assessment of the approach. Because the ground extent and location of the CAP photo is 

unknown, a large number of NAIP images of varying sizes and landscape positions relative to the aircraft 

location are required to encompass the full range of potential ground locations. A Python algorithm was 

written to perform this task and included the following steps: 1) download enough NAIP tiles from a 

NAIP Web Map Service (WMS) to create a mosaic image covering ~8-km radius around a given CAP 

photo location; 2) chip the NAIP mosaic into smaller, overlapping images using a moving window 

process; and 3) save the NAIP chips to an Amazon S3 storage container. This algorithm was run multiple 

times to generate NAIP chips of multiple sizes ranging from 300 x 300 to 1500 x 1500 pixels square. A 

default step size of half the chip size was used for all iterations. Results from testing different chip sizes 

against return number of similar images are presented in Figure 28. 
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Figure 28. Tests were run to understand the ideal image chip size against similarity measures. Smaller chip sizes 
were more effective in this regard. 
 

All CAP photos and NAIP chips were subsequently analyzed and indexed as described above so that 

similarity searches could be performed. All NAIP chips were considered in the indexing process due to 

limitations with the existing implementation of Faiss. This meant that any NAIP chip generated for the 

greater set of CAP test locations could be returned in a similarity search despite not being co-located 

within the 8-km radius of the target CAP photo. To limit the results of a similarity search within this area 

an algorithm implemented in Python was run to calculate the Euclidean distance of a NAIP chip from the 

target CAP photo which could be used to filter results based on maximum allowed distance. 

A simple Python algorithm was written to triangulate the centroid of NAIP chip locations returned by 

similarity searches. The centroid and associated NAIP chip locations were then visually compared to the 

CAP photo and true ground location to assess the efficacy of the overall approach. Some examples of the 

results are presented in Figure 29 to Figure 31.  The geographic location and validation of oblique aerial 

images is an area that will require additional approaches to be implemented and tested. One of the 

challenges in running image similarity is the CAP images showing flooding are significantly different 

than the reference imagery that doesn’t have flooding, thus the use of a mixed set algorithms, including 

geometric matching, will likely help to improve the matching. 
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Figure 29. Example CAP image similarity matching. Pink square = extent of NAIP image chipping; Green triangle 
point = CAP photo/aircraft location; Green polygon = approximate true ground extent; Orange points = "similar" 
NAIP chips; Yellow cross = triangulated centroid. 

 
 

  
Figure 30. Example CAP image similarity matching. Pink square = extent of NAIP image chipping; Green triangle 
point = CAP photo/aircraft location; Green polygon = approximate true ground extent; Orange points = "similar" 
NAIP chips; Yellow cross = triangulated centroid. 
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Figure 31. Example CAP image similarity matching. Pink square = extent of NAIP image chipping; Green triangle 
point = CAP photo/aircraft location; Green polygon = approximate true ground extent; Orange points = "similar" 
NAIP chips; Yellow cross = triangulated centroid. 
 
A manual assessment of the resulting NAIP image chips showed that the landcover patterns within them 

were often similar to those in the CAP image, but the specific locations were not associated.  In general, 

this technique lacked skill in identifying image chips that were coincident with the actual ground location 

covered by the oblique images, and the triangulated location of the images tested did not improve the 

understanding of the CAP image location. There are a few potential improvements that could be enabled 

in future efforts. One key concern is that the version of the Xception model that we employed was trained 

on the ImageNet dataset. ImageNet is dominated by images taken at ground-level; thus, the features 

therein may not be easily associated with those derived from aerial images. Other potential modifications 

to the approach might include: apply standard, random transformations to the NAIP imagery before 

feature extraction (rotation, flipping, etc.); employ more complex models to address train-test mismatch, 

including generative (VAE, GAN etc.) or techniques from few-shot learning; implement a geometric 

matching approach for detecting image similarity; use pre-trained baseline model from Functional Map of 

the World (FMoW); and test a weighted k-nearest neighbor approach for approximating center location 

based on the similarity of target images to reference image. 

3.4 Feature Matching 
A method of matching features in a non-authoritative disaster event image (both ground-level and aerial 

oblique) with corresponding features in a reference image was explored. The method applies an affine scale-

invariant feature transform (Affine-SIFT) and maximally stable extremal regions (MSER) approach to 

establish pixel-based georeferenced coordinates in the non-authoritative image (Geniviva, Faulring and 

Salvaggio 2014, Bansal et al. 2011). The basic notion with this method is similar to an image-to-map or 

image-to-image georectification process where recognizable features on a georeferenced image are located 
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on the same features in a non-georeferenced image, after which a polynomial transformation is applied to 

generate a final georeferenced image (Figure 32).  

In the case here, both ground-level and oblique image perspectives are used. Because of the large number 

of images to consider, the process of common feature detection and matching needs to be automated. 

Overlapping feature detects occur and classic photogrammetric stereoscopic principles are applied to 

generate a 3D model from 2D images because the reference set of images being used can provide many 

different look angles. For example, the Google StreetView positions the observer perspective +/- 20m from 

the reported position of the ground-level image, creating sufficient overlap. A small set of oblique and 

ground-level images were tested for automated feature matching. Results are considered marginal in that 

there are a high number of feature matches, but few are correct. Examples of both ground-view and oblique 

perspective feature matchings are provided in Figure 33 and Figure 34, respectively. This is an area that 

requires additional research where a geometric matching approach is expected to provide a more positive 

result (Rocco, Arandjelovic and Sivic 2017).  

 

 
Figure 32. The notion behind the feature matching between a source image and reference image is to enable a 
transformation between the image arbitrary pixel space to geographic space where each pixel is assigned a 
coordinate. 
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Figure 33. Ground-view perspective and image feature matching between the Google StreetView reference image 
(top) and the social media image (bottom) taken during Hurricane Florence. 
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Figure 34. Oblique perspective and image feature matching between the Google Earth reference image (top) and the 
Civil Air Patrol image (bottom) taken during Hurricane Florence. 
 

3.4.1 Distance Mapping 
As described in Section 3.2, Google StreetView data are used as a reference source for determining or 

validating proper location and heading for ground-level social media images. For the feature matching 

capability described above, determining common features between the social media image and the 

reference image provides key information for a transformation of the images from arbitrary pixel space to 

a geographically referenced pixel space. To further aid in this transformation we add an additional 

dimension in the z-space. An undocumented and hidden feature of the Google StreetView API is the 

ability to retrieve 3D distance information for a given coordinate and heading location. The presumption 

in using the distance mapping data is that the image similarity process has confirmed the source to 

reference image mapping and there is confidence in extracting additional data for transformation. The 

returned data is a low-density 3D point-cloud. As part of the Google StreetView metadata retrieval, the 
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location and heading are known, and the distance data is calculated as linear distance from the source 

location with explicit consideration of both the azimuth and elevation for each pixel in the 2D array. The 

native spherical coordinates are converted to a cartesian coordinate system and distance from the camera 

to a given pixel in the array is stored. The distance data are processed and stored as JSON files. An 

example of these data are presented in Figure 35. 

 

 

Figure 35. Google StreetView images including a panoramic view (top) and the associated distance map (bottom) 
that is retrieved and processed. 

3.5 Semantic Image Segmentation 
 
Semantic image segmentation is a deep-learning computer-vision method to regionalize and label pixels 

in an image to a set of defined classes that are often object descriptors (e.g., building, road, water, car). 

The purpose of segmentation is to reduce the complexity of the image to a set of delineated objects or 

features.  The segmentation output is stored to a 2D array of attributed coordinate pairs based on the 
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image transformation defined in the feature matching process. The resulting image segmentation work is 

the last step of the data fusion process of creating validation and/or training data for the statistical 

inference model to predict spatial extents of flooding. We implemented and tested several pre-trained 

deep learning models and applied these to both ground-level and oblique aerial images. A representation 

of the semantic segmentation process and feature transfer to geographic space is demonstrated in Figure 

36.   

DeepLabv3 is a new deep convolutional neural network semantic image segmentation model that utilizes 

dilated (atrous) convolutions. We tested this model using the PASCAL VOC 2012 as a training dataset 

and used a collection of ground-level and oblique aerial images for testing. Example results are presented 

in Figure 37 with semantic segmentation performed on oblique aerial images. Model performance was 

poor, likely because the training dataset does not include aerial images, thus the perspectives and content 

in an aerial image are largely unknown to the model. Additionally, the class labels within PASCAL VOC 

2012 were also limiting for use in our application. Using ground-level images, the model behaves quite 

well (Figure 38). The model is also trained against the fMoW dataset which has application to overhead 

remote-sensing classification and segmentation.  Initial training runs performed with this dataset yield 

more promising results, but additional work is still required to achieve acceptable levels of accuracy in 

the predictions. 

 
Figure 36. Representation of the semantic segmentation process and the feature transfer to geographic space. 
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Figure 37. Example semantic segmentation results from Civil Air Patrol images run through DeepLabv3 trained 
against the PASCAL VOC 2012 dataset. 
 



 

3.58 

 

Figure 38. Example semantic segmentation results from ground-level images run through DeepLabv3 trained 
against the PASCAL VOC 2012 dataset. 
 

In another test, we implemented semantic segmentation tools from the RasterVision deep-learning 

computer vision library, which has a more direct focus on satellite and aerial imagery. Example results 

from this approach for classifying building and road classes in nadir-perspective aerial images are 

presented in Figure 39. The model was also tested on oblique aerial images for building and road class 

types (Figure 40). 
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Figure 39. Example semantic segmentation results on nadir-oriented aerial imagery using the RasterVision deep-
learning library. 
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Figure 40. Example semantic segmentation results on oblique aerial imagery using the RasterVision deep-learning 
library. 
 
Based on testing performed with existing models and training datasets, it was apparent that a new labeled 

dataset was required for training. This labeling process was implemented using Intel’s open-source 

computer vision annotation tool (CVAT) using the following basic classes: Building, Water, Forest, Field, 

Road, and Other. CVAT provides a web-based interface (Figure 41 and Figure 42) for managing images 

in a queue and performing the delineations and associated labels. This process is time-consuming and by 

the project end we did not have enough images to perform a new model training. Future work in this 

space may be better implemented through Amazon’s Mechanical Turk. 
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Figure 41. The image queue in CVAT for annotating imagery. 
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Figure 42. The image delineation and annotation tools within CVAT. 
 
 
 

4.0 Statistical Inference Model 

The capstone objective of this work is to improve situational awareness during disaster events by using 

novel sources of data as a means of ground-truth to enable rapid validation of remotely-sensed damage 

assessments and provide training data for a statistical learning inference model to achieve probabilistic 

predictions of flooding. The basic notion of inference modeling is to provide the model what is known in 

regard to where flooding has (and has not) occurred and allow it to derive complex non-linear 

relationships amongst predictor data to predict flooding at a given location in the event domain. Figure 43 

illustrates the project workflow that moves from multiple disparate types of source data to transformation 

of that data into a common geographic basis, then to the concepts and workflow for the inference 

modeling. The work described herein describes progress and lessons learned along each of the various 

steps in this workflow. While the body of work represents significant progress toward the last step, 

implementation of a culminative statistical inference model could not be fully tested since the non-

authoritative source data processing requires further work. As a surrogate for the transformed non-

authoritative data, hindcast model results from PNNL’s RIFT model were run and flood presence/absence 

samples were randomly sampled over the training domain. 
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In addition to the authoritative and surrogate non-authoritative data source, an additional step is to couple 

these data with landscape descriptors that help define the physical processes that affect flood behavior 

(e.g., elevation, slope, topographically-driven drainage patterns, land cover, etc.) (Figure 44). The 

combination of these data is assembled into spatially-explicit training vectors for testing multiple deep 

generative models to determine a spatially continuous and probabilistic assessment of flooding. Inherent 

to this process is a pixel-level measure of uncertainty or confidence in the result.  

An additional objective is to be able to predict flooding in areas where information may be obscured or 

simply outside a data collection area. This is an important goal because it reflects the dynamic nature of 

data availability during an actual disaster event. For example, remotely-sensed flood detections from 

overhead imagery data can provide a significant amount of information about the extent of flooding, but 

such data may be incomplete due to cloud cover (optical-based imagery), noncoincident timing of 

acquisition, or partial coverage of an area of interest. The dynamic nature of flood events and relevant 

data collection requires inference modeling be trained on past events to better learn the complex 

associations among predictor data and flooding. During an actual event, the trained model should be run 

daily at a minimum. If successful, there may be impetus to move toward sub-daily model capability and 

near real-time data streaming into the system. An expectation that needs to be tested is that model training 

will need to be regionally specific as the non-linear processes may differ enough between different 

hydrometeorological regions. 
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Figure 43. Workflow from source data to statistical inference modeling to achieve the result of probabilistic 
occurrence of flooding. 
 

 
Figure 44. Development of spatially-explicit ‘static’ datasets to supplement non-authoritative datasets for training 
vectors in statistical learning. 
 

4.1 Inference Model Setup 
The geographic domain for training the inference model was established in the Pee Dee and Cape Fear 

river basins, which were impacted by Hurricane Florence. Additional impacted basins, Esisto-Santee and 
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Neuse Pamlico, are set aside for model validation (Figure 45). Some examples of the input data for these 

areas are presented in Figure 46 - Figure 50. 

 

 
Figure 45. The Pee Dee and Cape Fear River basins were used to assemble training data and the Esisto-Santee and 
Neuse Pamlico basins were reserved for validation. The circles indicate ground-level observations, where the gray 
circles indicate no-flooding and the blue circles indicate confirmed flooding. 
 

 
Figure 46. Digital Elevation Model (DEM) representing elevation at 10 meter spacing over the event 
domain. 
 



 

4.66 

 

 
Figure 47. Land use/land cover in the event domain derived from the 2016 National Land Cover Dataset.  
 
 

 
Figure 48. Impervious surfaces in the event domain derived from the 2016 National Land Cover Dataset.  
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Figure 49. USGS gages within the event area providing stage (water height) measurements over time. 
 

 
Figure 50. Quantitative Precipitation Estimates (QPE) provided by the National Weather Service provide 
estimated rainfall totals over time and over space for Hurricane Florence. 
 
The assembled training vectors took the form: 
 

UniqueID, Lat, Long, Elevation, Slope, LandCover (class#), TopoWetnessIndex, Horizontal Distance to 
Nrml Water, Vertical Distance to Nrml Water, Impervious_Surface (%), Precip_T-24, Precip_T-48, 
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Precip_T-72, Near Gage Height_T-1, Near Gage Height_T-2, Near Gage Height_T-3, Flood/No Flood 
(0/1) 

 
The initial model was built using the probabilistic programming language / toolkit, Pyro (Bingham et al. 

2019) and PyTorch. Toolkits such as this provide a range of options for developing complex probabilistic 

models and this particular toolkit is able to implement automatic enumerations over discrete latent 

variables. Using this toolkit, a variational autoencoder is setup based on a variational inference model 

(VIM). This VIM implementation was used due to its relatively straightforward setup and reliance on 

non-linear relationships. A complete validation result was not ready at the time of writing; however, a 

preview probabilistic result is presented in Figure 51 and demonstrates a functioning model framework. 

Further validation and testing of additional models will ensue under future research. 

 
Figure 51. A preliminary probabilistic output produced using a variational inference model. The cool colors indicate 
a higher probability of flooding and the warmer color indicate a lower probability of flooding. 
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5.0 Data Pipeline, Architecture, API and User-Interface 

Ingesting, analyzing, and displaying large amounts of geographical data related to flooding presents a 

unique challenge. Our project team developed an architecture for dealing with this challenge in a manner 

that could help a potential end-user find relevant data, provide feedback to the data ingest pipeline, 

determine emerging threats, and visualize the information geographically. We employed several mature 

technologies to facilitate efficient data management through the analysis lifecycle. The architecture 

consisted of 4 primary components: 1) a raw datastore of data sources of interest; 2) a data enrichment 

pipeline (orchestrated by Apache NiFi) with custom and third-party analytics; 3) enriched data storage 

(S3 and Elastic Search); and 4) a custom UI to display the enriched data (Figure 51). 

We transferred the corpus of Hurricane Florence related data acquired from the RADR project to an AWS 

Simple Storage System (S3) location. A data pipeline was created using Apache NiFi software to ingest 

and classify the S3 data holding (Figure 52).  As part of the ingestion process, images from Flickr, 

NAPSG, and Civil Air Patrol were labeled using AWS Rekognition. In addition to static data, the pipeline 

was engineered to handle real-time data ingestion. Additional third-party and in-house classification 

models, such as our relevancy models, are also integrated into the pipeline. Output from the pipeline was 

stored both in S3 and in Elasticsearch for easier searching from the UI (Figure 53).  

Several cloud technologies were leveraged to build a lightweight and quickly deployable application 

programming interface (API). The API allows the UI to access and query the ingested data. The API also 

can be used to store additional user provided data. We developed the UI using React, a popular JavaScript 

framework, to display data in a useful manner to a potential end-user.  
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Figure 52. The Multi-Formalism Modeling (MFM) Architecture is a cloud-based data pipeline, storage, multi model 
implementation, and web-based user-interface. 
 
 

 

Figure 53. The Apache NiFi ETL pipeline tool ingests data from the raw data store and performs custom analytics. 
 
The data ingestion pipeline, API, and UI assisted in the development of the relevancy model described in 

Section 3.1 and was a common architecture to deploy and test models after a proof-of-concept was 

completed. For example, the UI was used by team analysts to conduct and catalogue image relevancy, and 

the API was used to aggregate this data along with the image labels. In the future, it is envisioned that an 
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end-user could provide feedback within the UI for improving the relevancy model. The data pipeline is 

extensible, allowing the relevancy classifier and other potential models to be added to help sort and enrich 

the data. 

The UI demonstrates how the capabilities being developed under this work could be delivered to potential 

end-users such as first responders, utilities, transportation authorities, and other disaster mitigation 

entities, to monitor and manage response to floods. Using Leaflet, an open-source mapping tool, a user 

could quickly visualize emerging threats or on-going events. Map markers and aggregation layers using 

the location saved during data ingestion help the user to quickly pair data points to a location on the map. 

Finally, displaying a map overlay of a probabilistic flood model would help the end user to pair their 

knowledge of the flooding event with our system.  

 

 
Figure 54. Example of the user-interface developed to interact with the data in multiple ways. 
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