
Choose an item.

PNNL-29105

Dynamic Contingency
Analysis Tool 2.0 User
Manual with Test System
Examples

September 2019

B Vyakaranam
N Samaan
X Li
R Huang
Y Chen
M Vallem
T Nguyen
A Tbaileh
M Elizondo
X Fan
S Davis

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Choose an item.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)
email: orders@ntis.gov <https://www.ntis.gov/about>

Online ordering: http://www.ntis.gov

mailto:reports@adonis.osti.gov
mailto:reports@adonis.osti.gov
https://www.ntis.gov/about
https://www.ntis.gov/about
http://www.ntis.gov/
http://www.ntis.gov/

PNNL-29105

Dynamic Contingency Analysis Tool 2.0 User
Manual with Test System Examples
37T37T

September 2019

B Vyakaranam
N Samaan
X Li
R Huang
Y Chen
M Vallem
T Nguyen
A Tbaileh
M Elizondo
X Fan
S Davis

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

PNNL-29105

Summary iii

Summary
This document introduces Version 2 of the Dynamic Contingency Analysis Tool (DCAT) software
package developed by Pacific Northwest National Laboratory and serves as a guide for using this package
to conduct cascading failure simulations for the electric power system.

The DCAT is an open-platform and publicly available software; it is intended to help develop
applications that aim to improve the capabilities of power system planning engineers to assess the impact
and likelihood of extreme contingencies and potential cascading events across their systems and
interconnections. Outputs from the DCAT will support finding mitigating actions to reduce the risk of
cascading outages in technically sound and effective ways.

This manual provides detailed instructions on how to use this tool on multicore Windows workstations or
servers. In the public version of DCAT, several improvements have been made over the previous
version:1 (1) it was modularized; (2) a graphical user interface (GUI) was developed; (3) a new version of
the MPjobs parallel processing module was incorporated; and (4) a batch-processing function was added.
The features of the DCAT GUI are described, including some examples of how to use the GUI to perform
simulations. A full explanation of the DCAT methodology is available in the Phase 1 report .1

1 Samaan NA, JE Dagle, YV Makarov, R Diao, MR Vallem, TB Nguyen, LE Miller, BG Vyakaranam, S Wang,
FK Tuffner, and MA Pai. 2015. “Dynamic Contingency Analysis Tool – Phase 1.” PNNL-24843, Pacific Northwest
National Laboratory, Richland, Washington. Available at
http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-4843.pdf.

http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-24843.pdf
http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-24843.pdf

PNNL-29105

Acronyms and Abbreviations iv

Acronyms and Abbreviations
1D one-dimensional
AC alternating current
ACCC AC contingency calculation
CPU central processing unit
DCAT Dynamic Contingency Analysis Tool
GUI graphical user interface
IDE integrated development environment
MPjobs Python module for running PSS@E in parallel
OPF Optimal Power Flow
PNNL Pacific Northwest National Laboratory
PSS/E Siemens PTI PSS/E power flow software
RAS remedial action scheme
SPS special protection system

PNNL-29105

Contents v

Contents
Summary .. iii
Acronyms and Abbreviations .. iv
Contents .. v
1.0 Introduction .. 1

1.1 General .. 1
1.2 Outline .. 2

2.0 System Requirements... 4
3.0 Introduction to the DCAT Package .. 7

3.1 Model Preparation ... 9
3.1.1 Convert and Modify the Base Case .. 9
3.1.2 Generate the “.snp” File.. 10

4.0 How to Run DCAT Examples ... 11
5.0 DCAT Case Studies ... 18

5.1 Test System 1: PSS/E Test System ... 18
5.1.1 Example 1 in “savnw” System: Not a Close-In Fault in Pilot Scheme

Line – Using Fictitious Node.. 19
5.1.2 Example 2 in “savnw” System: Not a Close-In Fault in Step Distance

Line – Using Fictitious Node.. 21
5.1.3 Example 3 in “savnw” System: Bus Fault .. 22
5.1.4 Example 4 in “savnw” System: Bus Fault Leads to Blackout 24
5.1.5 Example 5 in “savnw” System: Activation of an SPS/RAS 28

5.2 Test System 2: Polish System ... 29
5.2.1 Example 1: Bus Fault in Polish System .. 30
5.2.2 Example 2: Line Fault in Polish System... 32
5.2.3 Example 3: Line Fault with Zone 1 Maloperation in Polish System 34
5.2.4 Example 4: Generation Fault – Polish System ... 41

6.0 Introduction to Details of Python Modules in the DCAT Package .. 42
6.1 “Configuration.py” in Package “DataReader” .. 42
6.2 “ReadLogFile.py” in Package “PostProcessing” .. 42
6.3 Module Package “Utils” ... 43

6.3.1 “Supportingtools” ... 43
6.3.2 “Logging” ... 43
6.3.3 “BatchProcessing” .. 43

6.4 “MPjobs.py” (Parallel Processing) ... 45
6.5 “MainDCAT.py” (Main DCAT Process Given a Certain Contingency) 47
6.6 Main Flow of “MainDCAT.py” .. 47
6.7 Functions and Modules Imported into “MainDCAT.py” ... 48

PNNL-29105

Contents vi

6.7.1 “RunDynamicSimulation” in “DynamicSimulation.py” 48
6.7.2 “FindZones” in “DCAT_Functions.py” ... 49
6.7.3 “Test_SPS” in “TestSPS.py” .. 49
6.7.4 “SPS_WriteIDVfile” in “DCAT_Functions.py” .. 50
6.7.5 “Test_CorrectiveAction” in “TestCorrectiveAction.py” 51
6.7.6 “Checkoverflow” in “DCAT_Functions.py” .. 52
6.7.7 “RemoveOverflowLine” in “DCAT_Functions.py” .. 53
6.7.8 “AfterDCAT” in “AfterDCAT.py” .. 53
6.7.9 “IsDisconnected” in “DCAT_Functions.py” .. 55
6.7.10 “FindVirLine” in “TestCorrectiveAction.py” .. 55
6.7.11 “ModifyConFile” in “TestCorrectiveAction.py” .. 56

6.8 “GUI.py” (DCAT GUI) .. 56
7.0 Data Preparation, Configuration Settings, and Scripting ... 57

7.1 Preparation of Power System Data ... 57
7.1.1 Modeling of SPS/RAS .. 57
7.1.2 Channels ... 57

7.2 Details on Configuration Settings ... 57
7.3 Alternative Method for Testing DCAT Simulation without GUI 64
7.4 Quick-Start Instructions for using DCAT on Another Base Case 65
7.5 Scripting .. 66

8.0 References .. 68
Appendix A – System Requirement Details ... A.1

Figures

Figure 1.1. Main steps of DCAT simulation .. 2
Figure 2.1. Installing the latest version of Python .. 4
Figure 2.2. Running Python with a Windows command prompt ... 5
Figure 3.1. DCAT (2019 version) after modularization ... 7
Figure 4.1. DCAT folder structure ... 11
Figure 4.2. Running GUI.py using Python IDE ... 12
Figure 4.3. PSS/E settings .. 12
Figure 4.4. Importing configuration settings .. 13
Figure 4.5. Input and output parameters for a single DCAT simulation .. 14
Figure 4.6. Input and output parameters for running MPjobs .. 15
Figure 4.7. Display while DCAT is running (top) and when DCAT simulation is finished (bottom) 16
Figure 4.8. Output files ... 17
Figure 5.1. One-line diagram of the “savnw” test system .. 19
Figure 5.2. A fictitious bus between Buses 151 and 152 .. 20

PNNL-29105

Contents vii

Figure 5.3. Voltage plots of the terminal buses of the faulted line for Test 1 .. 21
Figure 5.4. Channel plot for Test 2 ... 22
Figure 5.5. Channel plot for voltages at Buses 201 and 202 .. 23
Figure 5.6. Channel plot for voltage at Bus 211 ... 24
Figure 5.7. One-line diagram of test system to show tripping sequence .. 25
Figure 5.8. Channel plots for voltages at Buses 101 and 102 ... 27
Figure 5.9. Channel plots for speeds of Machines 3018, 206, 3011, and 211 .. 27
Figure 5.10. Example 5 for savnw system: branch flows ... 28
Figure 5.11. Sequence of events performed by DCAT for Example 5 in “savnw” system 28
Figure 5.12. Partial one-line diagram of Bus 133 of the Polish system.. 30
Figure 5.13. Partial one-line diagram of Bus 133 of the Polish system immediately following

a fault ... 31
Figure 5.14. Terminal voltage of the tripped generator units in Example 1 in Polish System 31
Figure 5.15. One-line diagram of Bus 133 (a) before and (b) after the fault .. 33
Figure 5.16. Terminal voltage of the tripped generator units for Example 3 in Polish system 36
Figure 5.17. 1D list file ... 41
Figure 5.18. 2D list file ... 41
Figure 6.1. How to disable extracting some information ... 42
Figure 6.2. Example arrangement for a batch-processing folder in Situation A .. 44
Figure 6.3. Example arrangement for a batch-processing folder in Situation A .. 44
Figure 6.4. An example of the arrangement for a batch-processing folder in Situation B 45
Figure 6.5. Contingency .idv file list .. 46
Figure 6.6. Filename list for .sav and .snp files .. 46
Figure 6.7. Flowchart of DCAT (2019 version) represented by modules .. 48
Figure 6.8. Flowchart of “RunDynamicSimulation” .. 49
Figure 6.9. Illustration of main flow of “Test_SPS” .. 50
Figure 6.10. Illustration of main flow of “Test_CorrectiveAction.” .. 52
Figure 6.11. Illustration of main flow of “AfterDCAT”... 55
Figure 7.1. New configuration file (.ini file) of DCAT (2019 version) .. 61

Tables

Table 3.1. Organized DCAT modules and related folders for inputs and outputs .. 8
Table 3.2. Options for Make_DYR_withPNNLrelays _xx.py ... 10
Table 5.1. Comparison between simulation examples ... 18
Table 5.2. Relay trips summary for Test 3 ... 22
Table 5.3. Tripping action details for Test 3 .. 23
Table 5.4. Relay trips summary for Test 4 ... 24
Table 5.5. Tripping action details for Test 4 .. 26

PNNL-29105

Contents viii

Table 5.6. Generation and load loss summary for Example 5 in “savnw” system 29
Table 5.7. Comparison of Polish simulation examples .. 29
Table 5.8. Tripping summary during dynamic simulation for Example 1 in Polish System 32
Table 5.9. Tripping sequence for Example 2 in Polish System .. 34
Table 5.10. Tripping summary during dynamic simulation for Example 2 in Polish System 34
Table 5.11. Relay trips summary of Test 8 ... 34
Table 5.12. Results of AC corrective actions for Dynamic Simulation 1 .. 36
Table 5.13. Results of AC corrective actions for Dynamic Simulation 2 .. 38
Table 5.14. Tripping summary during dynamic simulation for Example 3.. 41
Table 6.1. Differences between single run, batch run, and MPjobs run ... 47
Table 7.1. Setting parameters defined in configuration file ... 62

PNNL-29105

Introduction 1

1.0 Introduction
1.1 General

The bulk electric power grid is subject to vulnerabilities from component outages, which in certain
combinations (extreme events) might lead to cascading outages. Cascading is a sequential disconnection
of power system elements such as generators, transmission lines, and loads, potentially leading to a partial
or complete blackout that leaves thousands of electricity consumers without electric power. These large
blackouts have extensive effects on citizens, businesses, the economy, and the government. While such
blackouts are rare, they pose a substantial risk to the security and economic health of the country. Much is
known about avoiding the first few failures near the beginning of a cascade, but there is a lack of
established methods for directly analyzing the risks and consequences of the longer chains of component
outages. Analyzing the risks of cascading failures and devising ways to prevent them is an evolving field
of study.

Pacific Northwest National Laboratory (PNNL) has developed the Dynamic Contingency Analysis Tool
(DCAT) (Samaan et al. 2015) as an open-platform and publicly available methodology to improve the
capabilities of power planning engineers to assess the magnitude and likelihood of extreme contingencies
and potential cascading events across their systems and interconnections. DCAT is an industry-grade tool
(i.e., tested and benchmarked on real-world systems) used for studying the process of cascading outages.
It combines steady-state and transient simulations, manual operator actions, and the effects of the
protection system, starting from an initiating event (Samaan et al. 2015). Overall, the ultimate goal of the
DCAT is to bridge multiple gaps in cascading-outage analysis in a single, unique, prototype tool that can
automatically simulate and analyze cascading sequences in real systems using multiprocessor computers.

The main framework of the DCAT procedure was built in Python; Figure 1.1 shows the main steps of the
DCAT simulation, which will be discussed in detail in Section 6. The main procedure includes the
following steps:

(1) Model preparation, which includes integrating the power flow, dynamic, and protection system
models;

(2) The initial system-aggravation and event-screening module selects initiating events that trigger
cascading failures;

(3) A list of contingencies is prepared;

(4) An adaptive simulation time module is implemented to run the dynamic simulation long enough to
capture the response of the system. DCAT processes simulation results and logs the sequence of
cascading events.

(5) Post-dynamic analysis is performed with automatic and manual corrective actions, with special
protection systems (SPSs)/remedial action schemes (RASs). DCAT implements automatic control actions
that eliminate voltage and flow violations using the corrective actions function of Siemens PTI PSS®E
power flow software (PSS/E). Optimal power flow (OPF) and corrective actions are applied to the solved
post-dynamic-simulation power flow case to mitigate the voltage and line overload violations.

(6) Overloaded lines are checked and ranked after the OPF and corrective actions. If there are no
overloaded lines, the DCAT procedure will stop; otherwise, the DCAT procedure will start a new
dynamic simulation by tripping the overloaded line of highest rank, and the procedure will go back to

PNNL-29105

Introduction 2

Step (4). The developed methodology is tested using the SAVNW and Polish system power flow cases
provided with PSS/E.

Figure 1.1. Main steps of DCAT simulation

This manual provides detailed instructions on how to use DCAT to perform dynamic contingency
analysis on multicore Windows workstations or servers. This version of DCAT incorporates several
improvements over the previous version of DCAT (Samaan et al. 2015): (1) it has been modularized; (2) a
GUI has been developed; (3) a new version of MPjobs is used; and (4) a batch-processing function has
been added. The features of the DCAT GUI are described, including some examples of how to use the
GUI to perform simulations. A full explanation of the DCAT methodology is available in the Phase 1
report (Samaan et al. 2015).

1.2 Outline

This manual is organized as follows:

Section 2 contains system requirements for running the DCAT package.

Section 3 provides an introduction to the DCAT package. It then describes various source code files and
folders in the DCAT package.

Dynamic Simulation
(Saves initiating_event.log;

initiating_event.log;
initiating_event_promptoutput.log;

After_dynamic_raw_file.raw

Post-dynamic corrective actions
(Saves AfterDynamicSim_sps.sav;

AfterDynamicSim_corr.raw;
AfterDynamicSim_corr.sav

Additional dynamic simulations if corrective
actions are not enough

(updates initiating_event.log and saves tripping
sequence in initiating_event_relay.csv and DCAT

summary in initiating_event_relaytrips.csv

)

)

)

PNNL-29105

Introduction 3

Section 4 presents the various steps for running the DCAT package using the GUI.

Section 5 presents DCAT results from several examples using the PSS/E SAVNW case or the Polish
system. The purpose of these examples is to show the importance of performing hybrid dynamic and
steady-state simulations with protection modeling to accurately mimic the cascading-outage process. The
examples also show how planning engineers can use DCAT for cascading-outage analysis and how the
results are reported.

Section 6 introduces details of various Python modules in the DCAT package. It then describes how
DCAT users can use the modules independently.

Section 7 provides generic information on data preparation, configuration settings, and scripting for
various DCAT runs.

PNNL-29105

System Requirements 4

2.0 System Requirements
The system requirements for running the DCAT package are as follows:

A. Windows 7 or later (64 bit)

B. Python 2.7 (32 bit)

a. How is Python 2.7 set up?

When PSS/E is installed, it will install Python on the local computer. However, this
automatically installed Python version might be older than 2.7.9. It is suggested that the user
installs a Python version 2.7.9 (or higher) with the “pip” package.

Download the latest version for Windows of Python 2.7.XX from
https://www.python.org/downloads/. Python will be installed by default to the path
“C:\Python27”.

Append the installation path (e.g., “;C:\Python27;C:\Python27\Scripts” —semicolons are
used to separate different entries) to the “PATH” variable in System variables (In Windows 7,
open Computer > Properties >Advanced System Settings > Environment Variables), as
shown in Figure 2.1.

Figure 2.1. Installing the latest version of Python

PNNL-29105

System Requirements 5

For more details, please follow the online tutorial, “Using Python on Windows”
(https://docs.python.org/2.7/using/windows.html).

Now the user is able to run the “*.py” file directly by double-clicking it or from Windows
Command Prompt, “cmd,” as shown in Figure 2.2.

Figure 2.2. Running Python with a Windows command prompt

To execute a Python script, type the following command in “cmd:”

python pathname\filename.py

b. How are required packages installed?

“NumPy” is a fundamental package for scientific computing with Python. It is required to
execute DCAT. To install a package/lib to the local system, the recommended method is to
use the Python installation tool, “pip,” which is already installed with Python 2.7 (version ≥
2.7.9). To install the latest version of NumPy, type the follow command in cmd:

pip install numpy

For more details, please follow the online tutorial, “Installing Packages”:
(https://packaging.python.org/tutorials/installing-packages/).

“DYNTOOLS” (optional) is used to export output channels from a PSS/E OUT file.
DYNTOOLS is an internal module for PSS/E that can be loaded without prior installation,
similar to PSSPY.

“MATPLOTLIB” (optional) is a Python plotting library that produces publication-quality
figures in a variety of formats and interactive environments across platforms. To install the
latest version of MATPLOTLIB, type the following command in cmd:

pip install matplotlib

More details can be found in Appendix A.

C. Siemens PSS/E 33.7/33.12/34.5

An important feature is that DCAT Version 2.0 works with both PSS/E versions 33 and 34. The
examples described in Section 5.0 were verified with PSS/E versions 33.7, 33.12, and 34.5.
DCAT will switch between PSS/E 33 and 34 according to the user’s choice.

After PSS/E 33 is installed in the default path (e.g., “C:\Program Files
(x86)\PTI\PSSE33\PSSBIN”), in a Python script, the psspy module is imported as follows:
PSSE_PATH = 'C:\\Program Files (x86)\\PTI\\PSSE33\\PSSBIN'
sys.path.append(PSSE_PATH)

https://docs.python.org/2.7/using/windows.html
https://packaging.python.org/tutorials/installing-packages/

PNNL-29105

System Requirements 6

os.environ['PATH'] += ';' + PSSE_PATH
import psspy

After PSS/E 34 is installed in the default path (e.g., “C:\Program Files
(x86)\PTI\PSSE34\PSSBIN”), in a Python script, the psspy module is imported as follows:
import psse34
import psspy

D. Eclipse (optional)

Eclipse or another integrated development environment (IDE) is highly recommended. The
recommended Eclipse packages are

• Eclipse IDE for Eclipse Committers

• Eclipse IDE for Java EE Developers.

Follow the download instructions on this version web page:
https://www.eclipse.org/downloads/packages/

Link Eclipse with the PyDev plug-in to run Python script as a PyDev project. PyDev requires
Java 7 in order to run. More details can be found in Appendix A.

E. PyCharm IDE (optional): The community and educational versions of PyCharm are open-source
and they are free. Here is the link to install PyCharm: https://www.jetbrains.com/pycharm/

https://en.wikipedia.org/wiki/Integrated_development_environment
https://www.eclipse.org/downloads/packages/
https://www.jetbrains.com/pycharm/

PNNL-29105

Introduction to the DCAT Package 7

3.0 Introduction to the DCAT Package
This section introduces the DCAT package. The full DCAT package, developed by PNNL, consists of
source code files (four module packages [DataReader, PostProcessing, RunDCAT, Utils], the Main
module, the MPjobs module, and the graphical user interface [GUI] module), an input folder, and a folder
for example cases. Figure 3.1 shows the DCAT folder structure and source code files along with the
individual modules. These modules can be used independently by the user. Table 3.1 summarizes DCAT
modules and related folders for inputs and outputs. Every module package contains several module files
and each module file (*.py) contains several functions. A function declares a computational step in a
DCAT simulation, which provides modularity for DCAT applications. Details on the package breakdown
are provided in the next portion of the document.

Figure 3.1. DCAT (2019 version) after modularization

PNNL-29105

Introduction to the DCAT Package 8

Table 3.1. Organized DCAT modules and related folders for inputs and outputs

DCAT Architecture

Category Layer I Layer II

Source Code

DataReader Configuration.py

RunDCAT

DCAT_Functions.py

DynamicSimulation.py

TestSPS.py

TestCorrectiveAction.py

AfterDCAT.py

PostProcessing
ReadLogFile33.py

ReadLogFile34.py

Utils

BatchProcessing.py

Logging.py

Supportingtools.py

GUI.py

MPjobs.py

MainDCAT.py

Inputs and
Examples

Input Test

Examples Test

 PolishSystem

 PolishSystem_MPjobs

 Module Package

 Module

 Folder of Common Input Files

The source code files were categorized into several module packages, besides the main function and the
GUI module:

1. “DataReader”: stores the modules related to the input/output (I/O) interface, such as constructing the
class of configuration settings as the input parameters of “MainDCAT.”

2. “RunDCAT”: stores the core computational modules of DCAT.

3. “PostProcessing”: stores the modules related to post-processing after the major results files are output
by PSS/E, such as extracting useful information (relay tripping) from the log files generated and
generating plots for channels of interest.

4. “Utils”: stores the supporting tools (useful functions) and utility modules, such as batch processing.

5. “MPjobs.py”: the MPjobs (parallel processing) module.

6. “GUI.py”: the GUI module.

PNNL-29105

Introduction to the DCAT Package 9

7. “MainDCAT.py”: also known as “MainDCAT”, the main module of the DCAT tool.

8. “Input”: The input files needed for the example cases are stored in the folder “Input”. Five types of
files are required as the common (static) inputs for example cases: “inl” file (inertial power flow),
“sub” file and “mon” file (these two will be adopted to conduct AC contingency calculation
[ACCC]), and the “sav” file and “snp” file (the network files and dynamic files to be used in the
DCAT process, respectively). The paths and names of these files should be included in the
configuration file.

9. The “Example” folder is divided into three subfolders:

a. “Test”: Five examples for the SAVNW system, as described in Section 5.0.

b. “PolishSystem”: Four examples for the Polish system, as described in Section 5.0.

c. “PolishSystem_MPjobs”: An example of one-dimensional (1D) MPjobs (Section 6.4) with
six cases of the Polish system. In this folder, configuration files for PSS/E 33 and PSS/E 34
are included separately. The only difference between these two .ini files is that the parameter
“PSSEPath” is different (see Section 7.2).

3.1 Model Preparation

The model preparation is a very important element of the DCAT methodology. The user can provide
multiple base planning cases corresponding, for example, to different seasons, different levels of wind
and solar penetration, different load levels, variants of possible system reinforcements, etc., reflecting a
variety of possible initial system conditions. The base planning cases include both power flow and
dynamic system models. Protection system models are added to the base cases. This section describes
how to prepare base cases and dynamic snapshot data files with protection models integrated.

3.1.1 Convert and Modify the Base Case

The Python module “Make_DYR_withPNNLrelays_xx.py” (for test system “SAVNW”) should be called
to convert the power flow model and to modify any topology or network parameters. All the
preprocessing scripts along with all the supporting files are saved in the “Preprocessing” folder. Please
note the following:

1. The text parameter “logfile” in the file “config.ini” sets the name of the “.log” file to be generated,
and it can be modified according to users’ needs.

2. When loading the PSS/E case, make sure that the name of the “.sav” file is correct.

3. After calculating the power flow, the program then modifies the base case. Any modification to the
base case should be made in the module “Make_DYR_withPNNLrelays_xx.py”. PNNL revised the
base case, including modifying the tap ratio, the rating of some transformers, and the Rate C of the
branches. Users can disable those changes by simply “commenting” them out.

4. Finally, the converted case will be saved.

The preprocessing folder has three modules: “Make_DYR_withPNNLrelays_01.py,”
“Make_DYR_withPNNLrelays_02.py,” and “Make_DYR_withPNNLrelays_35.py.” The user has to
choose and run the correct “Make_DYR_withPNNLrelays _xx.py” script as shown in Table 3.2.

PNNL-29105

Introduction to the DCAT Package 10

Table 3.2. Options for Make_DYR_withPNNLrelays _xx.py

File Name Examples
Make_DYR_withPNNLrelays _01.py 1
Make_DYR_withPNNLrelays _02.py 2
Make_DYR_withPNNLrelays _35.py 3 through 5

3.1.2 Generate the “.snp” File

The Python module “Make_DYR_withPNNLrelays _xx.py” should be called to generate the “.snp” file.
Note the following:

1. The text parameter “logfile” in the file “config.ini” sets the name of the “.log” file to be generated,
and it can be modified by users.

2. Make sure that the previously converted and saved “.sav” file is loaded here.

3. New “.dyr” files, if any, can be added in this Python module. If the new file is appended before
“psspy.dyre_new”, a new compilation will be needed after this module is executed. Otherwise, there
is no need to compile the file. It should be noted that psspy.dyre_new is one of the application
program interfaces to clear dynamics working memory, read a Dynamics Data File, and place the
model references specified on its data records into dynamics working memory (activity DYRE).

4. After adding the “.dyr” files, some modifications will be conducted. Any new modifications related to
the dynamic data can be put here.

5. Finally, the “.snp” file will be saved, and users can modify the name of the file.

PNNL-29105

How to Run DCAT Examples 11

4.0 How to Run DCAT Examples
This section presents the various steps for running the DCAT package on the examples provided. After all
required packages are installed, there are seven main steps to run this DCAT package:

Step 1: Verify files

This step is to make sure that all the necessary files are ready and located in the correct folders. Refer to
Section 3.0 for the specific folder structure and required files. For the Test system, the detailed folder
structure of the DCAT package is shown in Figure 4.1. The “Examples” folder has five examples on the
SAVNW system (“Test”) and four examples on the Polish system (“PolishSystem”). Each example folder
includes files needed for running the DCAT process. It has “snp,” “.sav,” “.py,” “.ini,” and “.idv” files.

Figure 4.1. DCAT folder structure

Step 2: Open and run GUI.py

Users can run the DCAT script “GUI.py” either by double-clicking this file in the main folder, or by
running the script using any Python IDE. In this document, PyDev for Eclipse was used to run “GUI.py”
and is shown in Figure 4.2.

PNNL-29105

How to Run DCAT Examples 12

Figure 4.2. Running GUI.py using Python IDE

Step 3: Set up PSS/E

When the GUI.py is run, a PSS/E set-up window will pop up, as shown in Figure 4.3. The user should
confirm the PSS/E Path and Initial Size.

Figure 4.3. PSS/E settings

Step 4: Import configuration settings

The user can open an existing configuration file (*.ini) using the command (“File” “Open”), as shown
in Figure 4.4.

PNNL-29105

How to Run DCAT Examples 13

Figure 4.4. Importing configuration settings

PNNL-29105

How to Run DCAT Examples 14

Step 5: Modify the configuration parameters (optional)

The control interface between the user and the DCAT package is a configuration file. Each simulation
requires a unique configuration file defined by the user. Once the user selects the configuration file, a
DCAT window will pop up, as shown in Figure 4.5. The user can modify the inputs of configuration or
clear all the inputs using the button “Clear All.” The inputs shown in the GUI window can be saved into a
new “ini” file or replace an existing “ini” file using the command “File>Save” from the menu. “save file”
and “snap file” are the two required input files for DCAT. For MPjobs mode, an additional window will
pop up as shown in Figure 4.5. The user is able to modify the related parameters controlling MPjobs
mode, such as how many cores are to be used.

Figure 4.5. Input and output parameters for a single DCAT simulation

Step 6: “Run DCAT” or “Run MPjobs”

To initiate a single DCAT simulation, user should select “Run DCAT” option as shown in Figure 4.5. To
initiate DCAT simulations using MPjobs, user should select “Run MPjobs” option as shown in
Figure 4.6. When DCAT is running, a progress bar is displayed next to “Run DCAT” (Figure 4.7, Top),
and when DCAT finished, a dialogue window will pop up (Figure 4.7, Bottom).

PNNL-29105

How to Run DCAT Examples 15

Figure 4.6. Input and output parameters for running MPjobs

PNNL-29105

How to Run DCAT Examples 16

Figure 4.7. Display while DCAT is running (top) and when DCAT simulation is finished (bottom)

Step 7: Collecting Output Files

The detailed folder structure of the DCAT package including output files is shown in Figure 4.8. A new
folder is created under each example folder and DCAT simulation results are saved under the new folder.

PNNL-29105

How to Run DCAT Examples 17

Power flow cases at each stage of the dynamic contingency process will be saved under the “Case”
subfolder.

Figure 4.8. Output files

Channel output files are produced by PSS/E dynamic simulation activities. The user specifies the type of
data to be placed in output channels, and the element to be monitored. To view dynamic results, a Plot
Book has to be created. After a Plot Book is created, a channel output file has to be opened. Any channel
output quantity can be viewed by dragging and dropping into the Plot Page. The example figures showed
in Plot Page using PSS/E can be found in Chapter 5.0.

PNNL-29105

DCAT Case Studies 18

5.0 DCAT Case Studies
This section presents simulation results for DCAT with several examples using a test system (savnw.sav)
that is provided with the PSS/E software package and using the Polish system. The purpose of these
examples is to show the importance of performing hybrid dynamic and steady-state simulations with
protection modeling to accurately mimic the cascading-outage process. They also show how planning
engineers can use DCAT for cascading-outage analysis and how the results are reported.

5.1 Test System 1: PSS/E Test System

Simulation tests are performed with the DCAT by considering the PSS/E test system (savnw.sav). This
test system has 23 buses and six power plants. Figure 5.1 shows a one-line diagram of the test system.
Five different simulation tests are performed here using the test system, and outcomes of each test are
presented in the following subsections. Table 5.1 compares different examples.

Table 5.1. Comparison between simulation examples

Example
Section

No.
System
Type

Initiating
Event

First Dynamic
Simulation

Reaches a Stable
Point

SPS/RAS
Activated

Corrective
Action
Needed

Second Dynamic
Simulation

Reaches a Stable
Point

Generator and
Load Outage

5.1.1

PSS/E test
system

“savnw”
3 phase

line fault

Yes
(30 s)

2 relay actions NA No NA None

5.1.2

PSS/E test
system

“savnw”

3 phase
line fault

with
distance

relay failed
to send
transfer

trip signal

Yes
(30 s)

2 relay actions NA No NA None

5.1.3

PSS/E test
system

“savnw”

3 phase
bus fault

for
10 cycles

Yes
(75 s)

2 relay actions NA No NA

Gen loss
= 600 MW
Load loss
= 0 MW

5.1.4

PSS/E test
system

“savnw”

3 phase
bus fault

for 12
cycles

No
(Blackout) NA NA NA

Gen loss
= 3,259 MW

(before system
collapses)

5.15

PSS/E test
system

“savnw”

3 phase bus
fault for
6 cycles

Yes
(25 s)

5 relay actions Yes No

Yes
(25 s)

No relay actions None

PNNL-29105

DCAT Case Studies 19

Figure 5.1. One-line diagram of the “savnw” test system

5.1.1 Example 1 in “savnw” System: Not a Close-In Fault in Pilot Scheme Line
– Using Fictitious Node

A line fault is applied on one of the lines connected to Bus 152 at a distance of 90% from it. Distance
relays are modeled on both ends of the line with the ability to send a transfer trip to the other end upon
sensing a Zone 1 fault. Though the other end of Line 152 sees a Zone 2 fault, this pilot scheme trips the
breaker as soon as the other relay on Bus 152 times out on the Zone 1 fault. Upon successful operation of
both breakers, the fault is isolated, and there are no other tripping actions.

To model a fault in PSS/E at any location in a transmission line other than the two line ends, a fictitious
node needs to be added. In this test, to model a fault in the line connecting Buses 151 and 152 that is
located at a distance of 0.1 pu of total line length from Bus 151, a new fictitious node (151152) is added
between Buses 151 and 152. Figure 5.2 shows the location of the fictitious bus. Distance relays then need

PNNL-29105

DCAT Case Studies 20

to be associated with the two branches newly created by the fictitious bus addition. That is, one branch
extends from the near end to the fictitious bus, and the other extends from the remote end to the fictitious
bus.

Figure 5.2. A fictitious bus between Buses 151 and 152

The bus fault is introduced at the fictitious bus (151152) at t = 5 s and the simulation runs until dynamic
simulation reaches a steady state. In this test, dynamic simulation reaches a steady state at t = 16 s.
The following is the sequence of relay tripping events:

1. The distance relay (DISTR1) at Circuit 1 from Bus 151 to Bus 151152 is activated as Zone 1 and its
timer starts at t = 5 s.

2. The distance relay (DISTR1) at Circuit 1 from Bus 152 to Bus 151152 is activated as Zone 2 and its
timer starts at t = 5 s.

3. The Zone 1 timer times out at t = 5.017 s; at the same time, the self-trip breaker timer and the transfer
trip and breaker trip timers start.

4. Circuit 1 from Bus 151 to Bus 151152 trips at t = 5.05 s and the transfer trip timer times out at the
same time. In this case, the Zone 1 relay accelerates the other relay, and as a result, the other end
(Circuit 1 from Bus 152 to 151152) trips at the same time (t = 5.05 s), and soon thereafter the two
voltages start to recover.

The channel plot in Figure 5.3 shows that the voltage at Bus 151 collapses farther than the Bus 152 voltage.
This indicates that the fault is closer to Bus 151.

 BUS # 151152
 NUCMID 500.00

 TYPE 1
 AREA 1 FLAPCO

 ZONE 1 FIRST
 VOLTAGE 1.01041PU
 505.206KV

 ANGLE 9.69Deg
 MISMATCH 0.00

 178.66

151
NUCPANT

1.012
505.9

* 465.9
-6.7

-465.4
-19.3

152
MID500

1.017
508.5

-460.4
-76.5

* 465.4
-159.4

PNNL-29105

DCAT Case Studies 21

Figure 5.3. Voltage plots of the terminal buses of the faulted line for Test 1

5.1.2 Example 2 in “savnw” System: Not a Close-In Fault in Step Distance Line
– Using Fictitious Node

This simulation uses the same procedure and files that were used in Test 1 except that the transfer trip
capability of DISTR1 is assumed to have failed. As a result of that, the end of the line nearer to the fault
at Bus 151 trips on the Zone 1 setting (four cycles) and the other end of the line at Bus 152 trips at the
Zone 2 setting (22 cycles).

Each end will trip according to the Zone 1 or Zone 2 delays where appropriate. The bus fault is introduced
at the fictitious bus (151152) at t = 5 s and simulation runs until dynamic simulation reaches a steady
state. In this test, dynamic simulation reaches a steady state at t = 16 s. The following is the sequence of
relay tripping events:

1. The distance relay (DISTR1) at Circuit 1 from Bus 151 to Bus 151152 is activated as Zone 1 and its
timer starts at t = 5 s.

2. The distance relay (DISTR1) at Circuit 1 from Bus 152 to Bus 151152 is activated as Zone 2 and its
timer starts at t = 5 s.

3. The Zone 1 timer times out at t = 5.017 s; at the same time, the self-trip breaker timer and breaker
timer start.

4. Circuit 1 from Bus 151 to Bus 151152 trips at t = 5.05 s.

5. Circuit 1 from Bus 152 to Bus 151152 trips as Zone 2 fault at t = 5.333 s and the channel plot
(Figure 5.4) shows the two voltages start to recover after tripping both ends of the branch.

PNNL-29105

DCAT Case Studies 22

Figure 5.4. Channel plot for Test 2

5.1.3 Example 3 in “savnw” System: Bus Fault

In Test 3, a fault is applied at Bus 201 at t = 5 s and the fault is cleared after 10 cycles. The simulation
runs until dynamic simulation reaches a steady state. In this test, dynamic simulation reaches a steady
state at t = 75 s. Table 5.2 shows a summary of this activity. No corrective action was required for this
contingency with these protection settings. The details of each tripping action in Test 3 are presented in
Table 5.3. Simulation result plots are shown in Figure 5.5 and Figure 5.6.

Table 5.2. Relay trips summary for Test 3

Relay Type

DISTR1 TimeOut Busfrom Busto ckt

DISTR1 5.1 201 202 1

VTGTPA TimeOut Bus BusName BuskV
Pgen

(MW)
Qgen

(Mvar)
GenB

us
Gen
ID GenName GenkV

VTGTPA 5.233 211 HYDRO_G 20 600 17.75 211 1 HYDRO_G 20
ckt = circuit
Pgen = generator real power
Qgen = generator reactive power

PNNL-29105

DCAT Case Studies 23

Table 5.3. Tripping action details for Test 3

Relay Type

DISTR1 TimeOut Busfrom Busto ckt Details

DISTR1 5.1 201 202 1

• Distance relay (DISTR1) at Circuit 1 from Bus 201 to Bus 202
is activated as Zone 1 and its timer starts at t = 5 s.

• Zone 1 timer times out at t = 5.067 s; self-trip breaker timer
starts at the same time.

• Circuit 1 from Bus 201 to Bus 202 is tripped at t = 5.1 s.
• Channel plots for Bus 201 and 202 are shown in Figure 5.5.

VTGTPA TimeOut Bus BusName BuskV Details

VTGTPA 5.233 211 MINE_G 20

VTGTPA at Bus 211:
• Pickup timer starts at t = 5.00 s.
• Breaker timer starts at t = 5.15 s.
• Breaker timer times out at time t = 5.233 s.
• Channel plot for Bus 211 is shown in Figure 5.6
• Voltage at Bus 211 starts to recover after tripping and

reaches a steady state around 60 s.

Figure 5.5. Channel plot for voltages at Buses 201 and 202

PNNL-29105

DCAT Case Studies 24

Figure 5.6. Channel plot for voltage at Bus 211

5.1.4 Example 4 in “savnw” System: Bus Fault Leads to Blackout

In this dynamic simulation, a fault is applied at Bus 151 at t = 5 s; the fault is applied for 12 cycles and
then cleared. A significant number of undervoltage and underfrequency generator relays were tripped due
to this fault, which leads to system blackout. The network did not converge after t = 6.3708 s. A total of
seven relays are activated during this dynamic simulation; Table 5.4 shows a summary.

Table 5.4. Relay trips summary for Test 4

Relay Type

DISTR1
Time
Out

Bus
from Busto ckt

DISTR1 5.1 151 152 1

DISTR1 5.1 151 152 2

VTGTPA
Time
Out Bus BusName BuskV

Pgen
(MW)

Qgen
(MVAr) GenBus GenID GenName GenkV

VTGTPA 5.2333 101 NUC-A 21.6 750 81.19 101 1 NUC-A 21.6

VTGTPA 5.2333 102 NUC-B 21.6 750 81.19 102 1 NUC-B 21.6

FRQTPA
Time
Out Bus BusName BuskV Pgen Qgen GenBus GenID GenName GenkV

FRQTPA 6.3583 3018 CATDOG_G 13.8 100 80 3018 1
CATDOG_

G 13.8

FRQTPA 6.3666 206 URBGEN 18 800 600 206 1 URBGEN 18

FRQTPA 6.3666 3011 MINE_G 13.8 258.66 104.04 3011 1 MINE_G 13.8

FRQTPA 6.3791 211 HYDRO_G 20 600 17.75 211 1 HYDRO_G 20

The sequence of tripping is shown in Figure 5.7. Tripping 1 is due to a distance relay, Tripping 2 is due to
undervoltage at Generators 101 and 102, and the remaining tripping actions from 3 to 5 are due to

PNNL-29105

DCAT Case Studies 25

underfrequency at Generators 3018, 206, 3011, and 211. The details of each tripping action in Test 4 are
presented in Table 5.5. Simulation result plots are shown in Figure 5.8 and Figure 5.9.

Figure 5.7. One-line diagram of test system to show tripping sequence

101
NUC-A

1
102

NUC-B

0.898
19.4
84.9

1

81
.2

R

68
5.

6

-2
6.

7

-6
69

.2

49
.5

201
HYDRO

0.910
455.1
69.0

1

65
5.

5
-6

55
.5

0.868
434.2
55.2

3004
WEST

154
DOWNTN

1

52
7.

8

34
8.

3

2

27
0.

9
18

1.
2

49
.5

-1
78

.7

15
1.

0

38
.8

-1
49

.0

80
.6

1

26
1.

1

11
3.

6

12
1.

1

20
.2

205
SUB230

1

47
1.

5

1

59
.5

-1
20

.1

-3
7.

9

10
3.

3

77
0.

8
99

.0
-7

55
.6

-6
8.

0
53

0.
4

-0
.4

-7
2.

9

-1
.8

73
.3

-7
2.

9

-1
.8

0.931
16.8
52.7

1

3001
MINE

3002
E. MINE

3003
S. MINE

-1
0.

8

21
1.

0

10
.8

-2
07

.2

93
.0

3005
WEST

0.891
205.0
45.9

1

89
.6

40
.1

10
3.

6

6.
2 -1
04

.3

-5
.4

10
3.

6

6.
2 -1
04

.3

-1
48

.6

81
.2

R

-5
36

.3
68

7.
9

60
0.

0H

-6
8.

3

-2
09

.5

0.859
197.6
50.9

-5
28

.8

0.904
451.9
48.0

74
.9

-5
.4

14
9.

9

18
7.

8

23
8.

4

-2
35

.8

24
.0

152
MID500

18
7.

8

3008
CATDOG

0.952
218.9
45.3

-5
2.

5
53

.3

1

60
0.

0

3011
MINE_G

1
25

8.
7

10
4.

0R

1

10
0.

0

80
.0

H

17
.7

R

211
HYDRO_G

0.983
19.7
78.4

-2
33

.0
36

9.
9

63
.3

-3
05

.8

-6
3.

1

31
6.

2

-5
2.

5
94

.9
52

.5
-9

3.
0

69
.5

-1
82

.2

-6
2.

0

-9
2.

0
92

.1

93
.7

54
.2

69
.0

-5
8.

2

-1
49

.9

-1
95

.3

0.874
436.9
77.6

203
EAST230

0.826
190.0
44.5

-7
12

.5

17
8.

2

21
6.

1

80
0.

0

0.869
199.8
49.5

-7
6.

9

0.969
222.9
45.2

0.854
196.4
43.6

86
.5

38
.4

35
1.

9

0.841
193.5
48.5

-9
3.

5

18
2.

4

151
NUCPANT

75
0.

0

10
57

.6

0.935
12.9
49.2

3018
CATDOG_G

3006
UPTOWN -8

0.
6

0.955
477.4
45.8

17
3.

1

150.3

-3
1.

4

0.898
19.4
84.9

-9
0.

9

-7
32

.0

0.874
436.9
53.4

-9
0.

9

-8
5.

0
11

4.
6

-4
70

.2

206
URBGEN

54
3.

7

22
5.

3

69
6.

8

0.836
192.4
45.8

-0
.4

73
.3

-9
7.

6
16

4.
0

-1
20

.2

-1
8.

6

-3
4.

9
73

4.
2

-2
49

.6

-9
6.

1

71
5.

5

31
.2

-2
24

.7

AREA 1 (FLAPCO) AREA 2 (LIGHTCO)AREA 5 (WORLD)

77
8.

5

-36.6 MW
-446.5 Mvar

358.7 MW
184.0 Mvar

879.7 MW
619.1 Mvar

Area 1 to 2 Interchange

Area 5 Generation

Bus 154 Load

PSS(R)E PROGRAM APPLICATION GUIDE EXAMPLE
BASE CASE INCLUDING SEQUENCE DATA
MON, FEB 02 2015 18:40
SAVNW

153
MID230

75
0.

0

-7
32

.0

73
4.

2

28
1.

3

-7
70

.0

202
EAST500

-78.2

1.001
13.8
44.8

1

0.
0

45
8.

2

1

0.
0

-2
48

.5

-6
92

.3
1

0.
0

-3
5.

4

1

0.
0

-2
09

.9

69
1.

5

10
1.

2

-6
70

.7

-1
0.

1

15
9.

9

89
.7

20
.1

-2
7.

8

1

0.
0

-2
04

.7

90.0%RATEA1.050OV 0.950UV

kV: <=13.800 <=18.000<=20.000 <=21.600 <=230.000 <=500.000 >500.000

Bus - VOLTAGE (kV/PU)/ANGLE
Branch - MW/Mvar
Equipment - MW/Mvar

1

2 2

3 4

4

5

PNNL-29105

DCAT Case Studies 26

Table 5.5. Tripping action details for Test 4

Relay Type

DISTR1 TimeOut Busfrom Busto ckt Details

DISTR1 5.1 151 152 1

• Distance relay (DISTR1) at Circuit 1 from Bus 151
to Bus 152 and relay at Circuit 2 from Bus 151 to
Bus 152 are activated as Zone 1 and their timers
start at t = 5 s.

• Zone 1 timer times out at t = 5.067 s; self-trip
breaker timer starts at the same time.

• Circuit 1 from Bus 151 to Bus 152 and Circuit 2
from Bus 151 to Bus 152 are tripped at t = 5.1 s.

DISTR1 5.1 151 152 2

VTGTPA TimeOut Bus BusName BuskV Details

VTGTPA 5.2333 101 NUC-A 21.6
VTGTPA at Buses 101 and 102
• Pickup timer starts at t = 5.000 s.
• Breaker timer starts at t = 5.150 s.
• Breaker timer times out at time t = 5.2333 s.
• Channel plots for Buses 101 and 102 are shown in

Figure 5.8.
VTGTPA 5.2333 102 NUC-B 21.6

FRQTPA TimeOut Bus BusName BuskV Details

FRQTPA 6.3583 3018 CATDOG_G 13.8

FRQTPA at Bus 3018
• Pickup timer starts at t = 6.271 s.
• Breaker timer starts at t = 6.275 s.
• Breaker timer times out at time t = 6.358 s.

FRQTPA 6.3666 206 URBGEN 18
FRQTPA at Buses 206 and 3011
• Pickup timer starts at t = 6.279 s.
• Breaker timer starts at t = 6.283 s.
• Breaker timer times out at time t = 6.3666 s. FRQTPA 6.3666 3011 MINE_G 13.8

FRQTPA 6.3791 211 HYDRO_G 20

FRQTPA at Bus 3011
• Pickup timer starts at t = 6.292 s.
• Breaker timer starts at t = 6.296 s.
• Breaker timer times out at time t = 6.379 s.
• Channel plots for speeds of Machines 3018, 206,

3011, and 211 are shown in Figure 5.9.

PNNL-29105

DCAT Case Studies 27

Figure 5.8. Channel plots for voltages at Buses 101 and 102

Figure 5.9. Channel plots for speeds of Machines 3018, 206, 3011, and 211

PNNL-29105

DCAT Case Studies 28

5.1.5 Example 5 in “savnw” System: Activation of an SPS/RAS

In this example, a bus fault that lasts for six cycles is introduced at Bus 203, which is then tripped to
isolate the fault. This is an extreme event that has the potential to trigger an SPS/RAS. The fault was
introduced at t = 5 seconds and the bus was isolated after six cycles, along with a line trip during the
dynamic simulation. No relay tripping is observed during the dynamic simulation. A graph of the
simulation result is shown in Figure 5.11.

Figure 5.10. Example 5 for savnw system: branch flows

After the dynamic simulation, one control condition that could trigger an SPS/RAS was observed in the
post-dynamic steady-state case. A second dynamic simulation is performed to trigger this cascading
event.

No other trippings are observed during the dynamic simulation where an SPS/RAS event is triggered. The
line overloads observed on the system are below 130% of Rate A and no voltage violations below 0.9 pu
are observed. No corrective action is required for this contingency with these protection settings. The
sequence of DCAT actions that are performed for this contingency is shown in Figure 5.11. This
contingency results in no tripping actions, generation loss, or load loss, as given in Table 5.6.

Figure 5.11. Sequence of events performed by DCAT for Example 5 in “savnw” system

PNNL-29105

DCAT Case Studies 29

Table 5.6. Generation and load loss summary for Example 5 in “savnw” system

Load loss (MW) 0

No. of total tripping actions 0

No. of SPSs/RASs triggered 1

No. of overloaded lines 0

Corrective actions None

5.2 Test System 2: Polish System

The Polish system has 3120 buses and 505 generators. The dynamics database includes generator,
governor, stabilizer, and exciter models for generators, load dynamic models for loads, etc. Generator
protection relays (FRATPAT, VTGTPAT), transmission protection relays (DISTR1), and load shedding
relays (UVUFBLU) are added to the existing relay protection models in the Polish case. Dynamic
simulation is performed to accurately simulate the effect of major contingencies and capture the cascading
tripping actions due to tripping of multiple protection relays that are not captured in traditional dynamic
and steady-state simulation.

Four different examples are provided for this system. Table 5.7 shows a summary of the four examples
for the Polish system.

Table 5.7. Comparison of Polish simulation examples

 Example 1 Example 2 Example 3 Example 4

 Bus Fault Line Fault

Line Fault with
Zone 1

maloperation Generation fault
Number of
dynamic
simulations 1 1 2

Multi-processing
modules were
used to initiate

several instances
of PSS/E

TOTAL
NUMBER OF
TRIPS 3 2 21

Number of
generators tripped 3 0 20
Total lines tripped
by relay 0 1 1
Total generation
lost 430 MW 0 MW 1657 MW
Total load lost 0 MW 0 MW 212 MW

Violations No Violations No violation No Violations

Corrective actions NA NA NA
RAS/SPS No No No

PNNL-29105

DCAT Case Studies 30

5.2.1 Example 1: Bus Fault in Polish System

Contingency: In this example, a three-phase fault is applied at Bus 133 in the Polish system. Figure 5.13
is a partial one-line diagram of the Polish system. The fault is applied at t = 5 s and it is cleared after
five cycles in the dynamic simulation. Dynamic simulation is performed to accurately simulate the effect
of major contingencies and capture the cascading tripping actions due to trippings of multiple protection
relays that are not captured in traditional dynamic and steady-state simulation. The fault is cleared by
tripping all the substation transformers and both high-voltage and low-voltage buses of substations that
are connected with Bus 133. The sequence of events after the fault is listed in Table 5.8.

Figure 5.12. Partial one-line diagram of Bus 133 of the Polish system

Key findings: Figure 5.14 shows the one-line diagram of Bus 133 after the fault. The dotted lines indicate
tripped lines. During the dynamic simulation, low- or high-voltage ride-through “VTGTPAT” relay trips
three generators. The generator units at Buses 1588 and Bus 1589 are tripped due to overvoltage
(dv = 0.10), while the generator unit at Bus 3118 is tripped due to overvoltage (dv = 0.2). The total
generation lost is 430 MW. Figure 5.15 shows a plot of the terminal voltage of these generator units.

133
133

1.1
236.5

92
92

1.1
237.0

123
123

1.1
235.9

125
125

1.0
226.1

132
132

1.1
236.5

104
104

1.1
236.2

129
129

1.1
233.2

135
135

1.0
229.2

87
87

1.1
234.6

124
124

1.1
235.9

105
105

1.1
237.5

140
140

1.0
224.3

93
93

1.1
237.3

116
116

1.1
235.3

104.1
2.6

-103.9
-4.0

-83.7
4.4

84.0
-8.3

-137.7
-98.3

139.3
101.2

13.4
29.8

-13.4
-29.8

1
9.0

20.0

1
115.0
79.0H

2.4
9.2

-2.4
-14.7

45.3
56.6

-45.1
-60.5

113.3
66.1

-112.1
-66.5

-136.5
-60.5

136.9
60.6

1
28.0
70.0

1
220.0
134.0R

2
210.0
131.0H 41.9

-16.3
-41.8
16.3

6.0
23.7

-6.0
-28.7

47.6
54.2

-47.5
-55.8

85.4
18.5

-85.3
-20.3

-40.2
-7.4

40.5
-9.8

1
0.0
1.8

1

1
59.4
11.6

1
28.0
68.0

1

2
225.0
131.0R3

205.0
131.0H

1695
1695

1.1
118.6

1703
1703

1.1
118.5

1984
1984

1.1
119.0

47.8
40.6

1 1.
03

03

-47.8
-38.3

90.1
44.2

1 1.
07

76

-90.0
-37.9

31.4
-1.51

1.
00

56

-31.4
2.1

1
8.6
3.6

1
20.2
22.11

100.0
26.5R

PNNL-29105

DCAT Case Studies 31

Figure 5.13. Partial one-line diagram of Bus 133 of the Polish system immediately following a fault

Figure 5.14. Terminal voltage of the tripped generator units in Example 1 in Polish System

133
133

0.0
0.0

92
92

1.1
235.4

123
123

1.1
235.7

125
125

1.0
217.2

132
132

1.1
236.7

104
104

1.1
235.8

129
129

1.1
231.6

135
135

1.0
226.2

87
87

1.1
232.3

124
124

1.1
235.8

105
105

1.1
237.6

140
140

1.0
217.9

93
93

1.1
236.8

116
116

1.1
235.1

1

1

-6.5
-9.5

6.5
3.9

65.0
53.7

-64.7
-57.1

137.5
77.7

-135.7
-75.0

-212.6
-70.0

213.5
73.7

1
27.7
69.3

1
223.7
134.0H

2
213.6
131.0H 36.7

-15.7
-36.7
15.7

70.2
19.8

-70.0
-23.6

-52.7
-14.7

52.8
12.9

61.2
-7.2

-61.1
5.0

-28.7
-11.3

28.8
-6.7

1
0.0
1.8

1

1
59.3
11.6

1
27.9
67.8

1

2
228.7
131.0H3

208.5
131.0H

1695
1695

1.1
118.6

1703
1703

1.1
115.9

1984
1984

1.1
119.0

33.4
39.3

1 1.
03

03

-33.3
-37.8

52.7
14.7

1 1.
07

76

-52.7
-12.7

32.3
-0.11

1.
00

56
-32.3
0.7

1
8.4
3.5

1
20.2
22.11

101.9
38.9R

PNNL-29105

DCAT Case Studies 32

The line overloads observed on the system are below 130% of Rate A and no voltage violations below
0.9 pu are observed; therefore, no corrective action is needed. A summary of the sequence of relay
trippings that are observed during the dynamic simulation is shown in Table 5.8.

Table 5.8. Tripping summary during dynamic simulation for Example 1 in Polish System

No. of generators disconnected 3
Generator outage (MW) 430
Load shedding (MW) 0

5.2.2 Example 2: Line Fault in Polish System

A line fault is applied to the branch from Bus 125 to Bus 133 at a distance of 10% from Bus 125 at time
t = 5 seconds, as shown in Figure 5.15a. The fault is set to remain for 10 cycles. Generator protection
relays, load shedding relays, and transmission protection relays (Zone 1 and Zone 2 protection) are added
to the existing protection models in the Polish system case. Zone 1 settings initiate circuit breaker tripping
after six cycles of the fault, and the Zone 2 fault setting trips the line after 20 cycles.

A line fault is applied on one of the lines connected to Bus 133 at a distance of 90% from it. Distance
relays are modeled on both ends of the line with an ability to send a transfer trip to the other end upon
sensing a Zone 1 fault. To model a fault in PSS/E at any location in a transmission line other than the two
line ends, a fictitious node needs to be added. In this test, to model a fault in the line connecting Buses
125 and 133 that is located at a distance of 0.1 pu of total line length from Bus 125, a new fictitious node
(125133) is added between Buses 125 and 133. Figure 5.15a shows the location of the fictitious bus.
Distance relays then need to be associated with the two branches newly created by the fictitious bus
addition. That is, one branch is from the near end to the fictitious bus, and the other is from the remote
end to the fictitious bus. The dotted lines in Figure 5.15b represent tripped lines.

The bus fault is introduced at the fictitious bus (125133) at t = 5 s, and the simulation runs until dynamic
simulation reaches a steady state. In this test, dynamic simulation reaches a steady state at t = 16 s.
The following is the sequence of relay tripping events:

1. The distance relay (DISTR1) at Circuit 1 from Bus 125 to Bus 125133 is activated as Zone 1 and its
timer starts at t = 5 s.

2. The distance relay (DISTR1) at Circuit 1 from Bus 133 to Bus 125133 is activated as Zone 2 and its
timer starts at t = 5 s.

3. The Zone 1 timer times out at t = 5.017 s; the self-trip breaker timer and the transfer trip and breaker
trip timers start at the same time.

4. Circuit 1 from Bus 125 to Bus 125133 trips at t = 5.05 s and the transfer trip timer times out at the
same time. In this case, the Zone 1 relay accelerates the other relay, and as a result, the other end
(Circuit 1 from Bus 133 to Bus 125133) trips at the same time (t = 5.05 s), and soon thereafter the two
voltages start to recover.

PNNL-29105

DCAT Case Studies 33

(a)

(b)

Figure 5.15. One-line diagram of Bus 133 (a) before and (b) after the fault

133
133

92
92

123
123

125
125

1.0
226.1

132
132

1.1
236.5

104
104

1.1
236.2

129
129

1.1
233.2

135
135

124
124

105
105

1.1
237.5

140
140

1.0
224.3

93
93

1.1
237.3

116
116

1.1
235.3

104.1

2.6

-103.9

-4.0

-83.7

4.5

84.0

-8.3

13.4

29.8

-13.4

-29.8

1
9.0

20.0

1
115.0

79.0R

2.4

9.1

-2.4

-14.7

45.3

56.6

-45.1

-60.5

1
28.0

70.0

1
220.0

134.0R

2
210.0

41.8 -41.8

6.0

23.7

-6.0

-28.7

47.6

54.2

-47.5

-55.8

85.4

18.5

-85.3

-20.3

-40.2

-7.4

40.5

-9.8

1
0.0

1.8

1

1
28.0

68.0
1

2
225.0

131.0R3
205.0

131.0R
-137.7

-98.4

137.9

98.7

139.3

101.2

-137.9

-98.7

1703
1703

1.1
118.5

1984
1984

1.1
119.0

90.1

44.2

1 1.
07

76

-90.0

-37.9

31.4

-1.51

1.
00

56

-31.4

2.1

1
8.6

3.6

1
20.2

22.11
100.0

26.5R

125133
NUCMID

1.0
516.2

133
133

92
92

123
123

125
125

1.0
217.6

132
132

1.1
236.7

104
104

1.1
236.2

129
129

1.1
232.9

135
135

124
124

105
105

1.1
237.6

140
140

1.0
218.3

93
93

1.1
237.1

116
116

1.1
235.1

54.4

-9.2

-54.4

6.9

-101.4

6.0

101.9

-8.9

-58.3

18.0

58.3

-18.0

1
9.0

20.0

1
114.8

0.0L

8.4

4.1

-8.4

-9.7

50.5

55.2

-50.3

-59.0

1
27.9

69.9

1
219.9

134.0H

2
209.9

46.0 -46.0

-4.0

25.6

4.0

-30.6

-54.6

-15.0

54.6

13.3

41.0

7.8

-41.0

-10.2

-50.8

-7.0

51.2

-9.2

1
0.0

1.8

1

1
28.0

67.9
1

2
224.9

131.0H3
204.9

131.0H

1703
1703

1.1
116.1

1984
1984

1.1
119.0

54.6

15.0

1 1.
07

76
-54.5

-12.9

48.1

-0.51

1.
00

56

-48.1

1.8

1
8.4

3.5

1
20.2

22.11
100.0

34.4R

125133
NUCMID

0.0
0.0

PNNL-29105

DCAT Case Studies 34

A summary of the sequence of relay trippings that are observed during the dynamic simulation is shown
in Table 5.9.

Table 5.9. Tripping sequence for Example 2 in Polish System

Relay Type
DISTR1 TimeOut Busfrom Busto ckt

DISTR1 5.1 125 125133 1

DISTR1 5.1 133 125133 1

A summary of the sequence of relay trippings that are observed during the dynamic simulation is shown
in Table 5.10.

Table 5.10. Tripping summary during dynamic simulation for Example 2 in Polish System

No. of generators disconnected 0
Generator outage (MW) 0
Load shedding (MW) 0
No. of branches disconnected by relay 1

5.2.3 Example 3: Line Fault with Zone 1 Maloperation in Polish System

This example is similar to Example 2, but here it is assumed that Zone 1 protection has failed to trip the
line from Bus 125 to Bus 133. To mimic this maloperation, the Zone 1 pickup time on this line is delayed.
It is set to 0.83333 seconds (50 cycles). Zone 2 is set to operate after 20 cycles. With these settings, the
relay on that line sees the fault as a Zone 2 fault. The sequence of events after the fault is listed in
Table 5.11.

Table 5.11. Relay trips summary of Test 8

Relay Type

DISTR1 TimeOut Busfrom Busto ckt

DISTR1 5.333 125 125133 1

VTGTPA TimeOut Bus BusName BuskV
Pgen

(MW)
Qgen

(Mvar)
GenB

us GenID GenName GenkV

VTGTPAT 5.3833 1447 1447 110 17 0 1447 1 1447 110

VTGTPAT 5.3833 1448 1448 110 17 0 1448 1 1448 110

VTGTPAT 5.3833 1449 1449 110 17 0 1449 1 1449 110

VTGTPAT 6.45 1588 1588 110 215 55.84 1588 1 1588 110

VTGTPAT 6.4541 1589 1589 110 215 75.75 1589 1 1589 110

VTGTPAT 6.4541 1668 1668 110 125 50.17 1668 1 1668 110

VTGTPAT 6.4541 1668 1668 110 125 50.17 1668 2 1668 110

VTGTPAT 6.475 1982 1982 110 123 0 1982 1 1982 110

PNNL-29105

DCAT Case Studies 35

VTGTPAT 6.475 1982 1982 110 123 0 1982 2 1982 110

VTGTPAT 6.4875 93 93 220 225 131 93 2 93 220

VTGTPAT 6.4875 93 93 220 225 131 93 3 93 220

VTGTPAT 6.4875 133 133 220 115 79 133 1 133 220

VTGTPAT 6.4875 1302 1302 110 15 0 1302 2 1302 110

VTGTPAT 6.4875 1984 1984 110 100 26.51 1984 1 1984 110

VTGTPAT 6.4916 92 92 220 220 134 92 1 92 220

VTGTPAT 6.4916 92 92 220 220 134 92 2 92 220

VTGTPAT 6.5041 1983 1983 110 100 38.98 1983 1 1983 110

VTGTPAT 6.5208 1769 1769 110 43 30.3 1769 1 1769 110

VTGTPAT 6.5291 1993 1993 110 110 5.19 1993 2 1993 110

VTGTPAT 26.0019 3118 3118 400 0 −114.08 3118 1 3118 400

AC corrective actions are applied

Dynamic Simulation 2

 1.000082
Trip highest overloaded line; OVERLOADING: FROM 143 TO 126 BRANCH ID 1 WITH
OVERFLOW 100.039550781% IS GOING TO BE REMOVED

 30 Check for steady state: Reached

AC corrective actions are applied; no overloaded lines

End of DCAT simulation
ckt = circuit
Pgen = generator real power
Qgen = generator reactive power

Since the Zone 1 protection on the faulted line fails, the fault is not cleared immediately. It is cleared after
20 cycles when the Zone 2 distance protection relay detects the fault. This maloperation causes a
cascaded tripping of several units. The contingency described in this scenario causes a total of 20
generators and one line to trip. This is an unusual contingency scenario, but DCAT can accurately model
it, unlike other existing tools. The total generation lost is 1657 MW. Figure 5.18 shows terminal voltages
of three generators that are tripped during the course of generator trippings. During the dynamic
simulation, the under/overvoltage generator-trip relay timers (at Generators 1447, 1588, and 93) of these
generators start and trip after the fault is introduced. Units 1448, 1588, and 93 are tripped due to voltage
violations.

PNNL-29105

DCAT Case Studies 36

Figure 5.16. Terminal voltage of the tripped generator units for Example 3 in Polish system

5.2.3.1 Dynamic Simulation 1
• The system reaches steady state after 30 seconds. AC corrective actions are applied to the solved post-

dynamic power flow case; the AC corrective action results are shown in Table 5.12.

Table 5.12. Results of AC corrective actions for Dynamic Simulation 1

BUS GEN-INI GEN-NEW GEN-ADJ

56 56 220.00 219.5 225 5.5

57 57 220.00 436.7 500 63.3

68 68 220.00 223.4 225 1.6

69 69 220.00 446.8 500 53.2

121 121 220.00 123.7 70 −53.7

122 122 220.00 122.9 70 −52.9

143 143 220.00 447.8 490 42.2

240 240 220.00 238.4 250 11.6

876 876 110.00 121.8 179 57.2

922 922 110.00 218.2 225 6.8

985 985 110.00 17.6 30 12.4

990 990 110.00 0.9 2 1.1

1011 1011 110.00 202.1 225 22.9

1057 1057 110.00 9.7 12 2.3

PNNL-29105

DCAT Case Studies 37

BUS GEN-INI GEN-NEW GEN-ADJ

1086 1086 110.00 117 125 8

1087 1087 110.00 117.8 125 7.2

1132 1132 110.00 64.7 25.5 −39.1

1164 1164 110.00 58.6 11 −47.6

1188 1188 110.00 59.7 42 −17.7

1189 1189 110.00 59.7 42 −17.7

1263 1263 110.00 117.9 71.8 −46.1

1268 1268 110.00 11.1 17 5.9

1429 1429 110.00 56.7 20 −36.7

1476 1476 110.00 94.5 37.2 −57.3

1546 1546 110.00 11.5 4.6 −6.9

1547 1547 110.00 11.8 13.5 1.7

1656 1656 110.00 172.7 90 −82.7

1658 1658 110.00 127.7 79 −48.7

1681 1681 110.00 108.2 119 10.8

1742 1742 110.00 16.4 62 45.6

1954 1954 110.00 67.9 50.5 −17.3

2144 2144 110.00 219.2 225 5.8

2146 2146 110.00 218.7 225 6.3

3103 3103 110.00 137.3 150 12.7

3119 3119 32.000 63.5 112 48.5

BUS LOAD-INI LOAD-NEW LOAD-ADJ

38 38 400.00 56.6 56.2 0.4

1200 1200 110.00 9.1 0 9.1

1201 1201 110.00 14.8 7.1 7.8

1203 1203 110.00 14.9 0 14.9

1236 1236 110.00 4.5 0 4.5

1237 1237 110.00 3.5 0 3.5

1412 1412 110.00 18.2 0 18.2

1489 1489 110.00 1.9 0 1.9

1555 1555 110.00 2.8 0 2.8

1556 1556 110.00 0.8 0 0.8

1585 1585 110.00 1.9 0 1.9

1642 1642 110.00 6.6 0 6.6

1643 1643 110.00 4.6 0 4.6

PNNL-29105

DCAT Case Studies 38

BUS GEN-INI GEN-NEW GEN-ADJ

1696 1696 110.00 7.1 0 7.1

1697 1697 110.00 1.8 0 1.8

1794 1794 110.00 2.8 0 2.8

1795 1795 110.00 2.1 0 2.1

1812 1812 110.00 1.1 0 1.1

1813 1813 110.00 5.6 0 5.6

1969 1969 110.00 3.7 0 3.7

1970 1970 110.00 10.2 0 10.2

1974 1974 110.00 3.5 0 3.5

1975 1975 110.00 3 0 3

1983 1983 110.00 13.3 0 13.3

2102 2102 110.00 0.6 0 0.6

2163 2163 110.00 1.9 0 1.9

2170 2170 110.00 6.4 0 6.4

2171 2171 110.00 5.5 0 5.5

• Overloaded lines are checked after the OPF and corrective actions are applied; two lines are found to
have flow violations:

*OVERLOADING: FROM 143 TO 126 BRANCH ID 1 OVERLOAD 100.039550781%

*OVERLOADING: FROM 143 TO 126 BRANCH ID 1 WITH OVERFLOW 100.039550781% IS
GOING TO BE REMOVED.

5.2.3.2 Dynamic Simulation 2
• A second dynamic simulation is run with the highest overloaded line tripped.

• After the second dynamic simulation reaches steady state, AC corrective actions are applied on the
solved post-dynamic power flow case; the AC corrective action results are shown in Table 5.13.

Table 5.13. Results of AC corrective actions for Dynamic Simulation 2

BUS GEN-INI GEN-NEW GEN-ADJ

56 56 220.00 224.8 225 0.2

57 57 220.00 499.3 500 0.7

58 58 400.00 316.1 491.1 175

59 59 400.00 315.4 490.4 175

68 68 220.00 224.8 225 0.2

69 69 220.00 494.3 500 5.7

PNNL-29105

DCAT Case Studies 39

BUS GEN-INI GEN-NEW GEN-ADJ
71 71 400.00 467.7 503.5 35.8

96 96 400.00 781.5 706.5 −75

142 142 220.00 218.3 166.2 −52

143 143 220.00 489.7 364.7 −125

240 240 220.00 249.8 250 0.2

251 251 110.00 22.1 23 0.9

268 268 110.00 2.3 0 −2.3

301 301 110.00 13.7 65 51.3

302 302 110.00 4.3 5 0.7

517 517 110.00 191.8 211.1 19.3

740 740 110.00 135 207 72

741 741 110.00 118.3 205 86.7

764 764 110.00 1.5 51 49.5

772 772 110.00 27.4 70 42.6

773 773 110.00 86.5 97 10.5

876 876 110.00 147.8 179.2 31.4

922 922 110.00 224.8 225 0.2

1011 1011 110.00 224.9 225 0.1

1067 1067 110.00 7.5 8 0.5

1086 1086 110.00 124.9 125 0.1

1087 1087 110.00 124.9 125 0.1

1164 1164 110.00 11.5 62.4 51

1188 1188 110.00 42.3 42 −0.3

1189 1189 110.00 42.3 42 −0.3

1263 1263 110.00 71.7 32 −39.7

1289 1289 110.00 391.5 216.5 −175

1290 1290 110.00 391.5 216.5 −175

1476 1476 110.00 37.6 21 −16.6

1546 1546 110.00 4.7 3 −1.7

1648 1648 110.00 59.6 0 −59.6

1681 1681 110.00 118.9 119 0.1

1742 1742 110.00 21.4 62 40.6

1954 1954 110.00 50.9 45.8 −5.1

2144 2144 110.00 224.8 135 −89.8

2146 2146 110.00 224.8 225 0.2

PNNL-29105

DCAT Case Studies 40

BUS GEN-INI GEN-NEW GEN-ADJ
2256 2256 110.00 3 −48.2 −51.2

2267 2267 110.00 3 0 −3

2271 2271 110.00 1.8 0 −1.8

2357 2357 110.00 2.7 0 −2.7

2370 2370 110.00 2.4 1 −1.4

2383 2383 110.00 0.6 0 −0.6

2495 2495 110.00 2.2 1.1 −1.1

2522 2522 110.00 0.4 0 −0.4

2591 2591 110.00 0.5 0 −0.5

2621 2621 110.00 3.2 −48 −51.2

2644 2644 110.00 5.6 2 −3.6

2684 2684 110.00 8 0 −8

2685 2685 110.00 7.4 2 −5.4

3103 3103 110.00 149.9 150 0.1

3119 3119 32.000 111.8 112 0.2

BUS LOAD-INI LOAD-NEW LOAD-ADJ

92 92 220.00 25.1 13.4 11.7

1201 1201 110.00 7.1 2.5 4.6

1297 1297 110.00 8.6 0 8.6

1298 1298 110.00 6.6 0 6.6

1770 1770 110.00 2.3 0 2.3

1772 1772 110.00 6.3 0 6.3

1773 1773 110.00 7.8 0 7.8

2070 2070 110.00 2.6 0 2.6

2071 2071 110.00 2.4 0 2.4

2151 2151 110.00 9.7 0 9.7

2152 2152 110.00 4.9 0 4.9

Overloaded lines are checked again after the corrective actions are applied; this time NO line is found
with a flow violation.

The DCAT simulation is terminated, because there were no violations at the end of dynamic simulation.
Most of the tripping actions happen immediately following an extreme event, which is captured in the
dynamic simulation. A summary of the sequence of relay trippings that are observed during the dynamic
simulation is shown in Table 5.14. This contingency resulted in a total of 21 tripping actions. All the
generating units are tripped due to voltage violations.

PNNL-29105

DCAT Case Studies 41

Table 5.14. Tripping summary during dynamic simulation for Example 3

No. of generators disconnected 21

Generator outage (MW) 1657

Load shedding/curtailment (MW)
212

(load curtailed during corrective actions)

No. of branches disconnected by relay 1

5.2.4 Example 4: Generation Fault – Polish System

In Example 4, MPjobs used multiple processing modules to initiate several instances of PSS/E, to run the
same PSS/E script on different data sets. In short, MPjobs conducted dynamic simulation in multiple
single-generator and line-contingency scenarios in parallel by using multiple processors to reduce
simulation time significantly. MPjobs is modularized into the DCAT GUI that will control multiple runs
in parallel, calling the function of MainDCAT. In order to initiate several contingency simulations using
MPjobs, all the .idv file names (termed “Xfile” in configuration) should be listed and saved in the same
folder as the 1D list file, as shown in Figure 5.17. A list of save/snp files showing different base-case
names (termed “Yfile” in configuration), should be listed and saved in the same folder as the 2D list file,
as shown in Figure 5.18. MPjobs will conduct the DCAT runs for cases using each of the .idv files. The
results for each case will be saved in a separate folder named after the .idv file name.

Figure 5.17. 1D list file

Figure 5.18. 2D list file

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 42

6.0 Introduction to Details of Python Modules in the DCAT
Package

This section introduces details of various Python modules in the DCAT package. As described in
Section 3.0, modules are categorized in four packages. DCAT is highly modularized and most of the
modules can be used independently. The independence of the modules supports future development and
the feasibility of user contribution. Modification of a certain step could be restricted to the corresponding
module. Extension of a model is achievable by adding a new module to an existing module package or a
new package. Documentation is organized through extensive comments inside the code and the example
configuration files.

6.1 “Configuration.py” in Package “DataReader”

The configuration module controls the input/output interface of DCAT by defining a configuration class
that stores all the related configuration information. The user communicates with DCAT through the user-
defined configuration file by using this module. The major functions are

1. “ReadINI”: reads the .ini file and stores the variables into the configuration class.

2. “ExamineInputFiles”: examines the existence of the input files; if the required input files do not exist,
error messages will be displayed and DCAT will exit.

3. “WriteINI”: writes the stored configuration information in an .ini file, along with the descriptions for
all the settings variables listed in the .ini file.

The defined configuration class is the only input item for the main function in “MainDCAT.” An example
script of how to initialize a configuration class, load data from an .ini file, and assign this configuration
class to the main function is shown in Section 7.0.

6.2 “ReadLogFile.py” in Package “PostProcessing”

This Python module defines useful subroutines associated with reading the “.log” file generated by PSS/E
and extracting useful information such as the relay tripping, ACCC action, SPS, etc. This module also
serves as a supporting file and is used by other Python modules. Users do not need to modify this file
during regular use of this DCAT package. Please refer to Figure 6.1 if ACCC information, SPS
information, or overloading information is not needed.

Figure 6.1. How to disable extracting some information

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 43

Below is an example, in a script:

from PostProcessing import ReadLogFile33 as ReadLogFile
ReadLogFile.main1(logfile)

This will selectively extract data from log files created by PSS/E dynamic runs and output them into a
corresponding “*_relay.csv” file. In the current version, two module files are included for PSS/E Version
33 (“ReadLogFile33”) and Version 34 (“ReadLogFile34”). Different versions of PSS/E will generate
different formats in log files. Hence, DCAT will automatically use the correct “ReadLogFile” to extract
information.

6.3 Module Package “Utils”

6.3.1 “Supportingtools”

This Python module defines many useful subroutines associated with file processing. This module serves
as a supporting file and is used by other Python modules. Users do not need to modify this file during the
regular use of this DCAT package. The functions in this module can be imported using the following:

from Utils.Supportingtools import *

6.3.2 “Logging”

During the execution of DCAT, the code and PSS/E will have many screen outputs. This module defines
a logger class that can be used to redirect screen outputs into a log file. It will help the user check screen
outputs after completion of the DCAT simulation. For example,

from Utils.Logging import Logger # import the Logging module
sys.stdout = Logger() # Initialize the logger
sys.stdout.log = open("*.log", "w") # A log file to save screen outputs
sys.stdout.log.close() # Terminate the logger
sys.stdout = sys.__stdout__ # Return to default logging style

6.3.3 “BatchProcessing”

When a series of DCAT simulations are to be executed, this module is newly added as an optional utility
function. In batch mode, users can process a series of cases without manual intervention. By calling this
module, DCAT will be directed into a folder and determine how many cases need to be simulated
sequentially. An example script of how to call this module is shown in Section 6.4. An .ini file and an .idv
file are the essentials for each case. The user is required to define the .ini files and .idv files and arrange
them in a common folder. Three different arrangements of multiple cases are considered:

A. A shared configuration file is saved in the common folder; each case has a separate subfolder in
this common folder and the .idv file is saved in the case folder. The outputs will be saved in a
subfolder in each case folder, as shown in Figure 6.2.

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 44

Figure 6.2. Example arrangement for a batch-processing folder in Situation A

B. A shared configuration file is saved in the common folder; each case has its own .idv file saved
directly in the common folder. There are no subfolders to divide the .idv files. DCAT will create
an output folder for each case to store results that will be named after the .idv file, as shown in
Figure 6.3.

Figure 6.3. Example arrangement for a batch-processing folder in Situation A

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 45

C. For each case, a separate subfolder is prepared. In a case folder, a case-specified configuration file
and the .idv file are stored, as shown in Figure 6.4.

Figure 6.4. An example of the arrangement for a batch-processing folder in Situation B

The user can arrange the case files and folders following one of the above formats. DCAT will
automatically evaluate and process the batch processing according to the detected cases.

6.4 “MPjobs.py” (Parallel Processing)

Using a multi-processing module available in Python 2.7 (installed with PSS/E v.33) (Conto 2015),
MPjobs activates several instances of PSS/E to run the same PSS/E script on different data sets. In short,
MPjobs conducts dynamic simulation in multiple different contingency scenarios (i.e., different .idv files)
in parallel by using multiple processors (central processing units [CPUs]) to save significant simulation
time. For example, one contingency case costs about 100 seconds, so when only one processor is used to
run eight scenarios, the whole process will cost 100 × 8 seconds. Using MPjobs with an 8-CPU computer,
the eight cases will run on the eight cores separately, and the total time will be about 100 seconds.

MPjobs is modularized into the DCAT GUI so that it will control multiple runs in parallel, calling the
function of MainDCAT. To perform an MPjobs run, in the [Folders] section of the DCAT configuration
file, set “PerformMPjobs” = 1.

MPjobs is configured to run DCAT cases with two scenarios, 1D and 2D:

• 1D (idv loop)

A list of .idv files showing different contingency names (termed “Xfile” in configuration), e.g.,
\Examples\PolishSystem_MPjobs\idv\1D.lst, as shown in Figure 6.5.

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 46

Figure 6.5. Contingency .idv file list

The .idv file names (no extension) listed in this file should be saved in the same folder as the 1D list file.
MPjobs will conduct the DCAT runs for cases using each of the .idv files. The results for each case will
be saved in a separate folder named after the .idv file name. For the 1D case, the user does not need to
define “Yfile.”

• 2D (sav/snp loop)

A list of .idv files showing different contingency names (termed “Xfile”) and a list of .sav and .snp files
showing different base-case names (termed “Yfile”), e.g.,\Examples\ PolishSystem_MPjobs\2D.lst

Figure 6.6. Filename list for .sav and .snp files

A pair of .sav and .snp files for the same base-case should share the same filename but different
extensions. The .sav/.snp file names (no extension) listed in Yfile should be saved in the same folder as
the “2D list” file. Note that the exact file names of .sav and .snp files may not be the same, but both of
them must contain the listed string in their file names. MPjobs will recognize the pair of files as a listed
case. MPjobs will conduct the DCAT runs by looping over the 2D list first, then looping over the 1D list.
The results for each case will be saved in a separate folder named after the combination of .idv file name
and sav/snp file name (e.g., initiating_event_PS_1_ Polish_case3120_con). For a 2D case, the user needs
to define “Xfile” and “Yfile.”

In our example, there is only one base-case name listed in “2D.lst,” and six contingency names listed in
“1D.lst.” MPjobs will perform multicore runs for 1 × 6 = 6 separate cases. Table 6.1 summarizes the
differences among a single DCAT run, batch mode, and MPjobs.

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 47

Table 6.1. Differences between single run, batch run, and MPjobs run

 Single Run Batch Run MPjobs Run

No. CPUs 1 1 Multiple, defined by user

No. Cases 1 Multiple Multiple, determined by 1D/2D list

No. .idv files 1 One for each case One for each case

No. INI files A single file
A common file for all cases OR a
specified file for each case

A common file for all cases with an
additional [MPjobs] section

No. Output
folders 1 One for each case One for each case

6.5 “MainDCAT.py” (Main DCAT Process Given a Certain
Contingency)

“MainDCAT.py” is the main Python module in the DCAT package, and it controls the computational
flow of DCAT. It can simulate the potential cascading events of a given contingency. Its core modules are
in the module package “RunDCAT” that includes

1. Dynamic Simulation related functions in the “DynamicSimulation” module

2. Special Protection System (SPS) related functions in the “TestSPS” module

3. AC Contingency Analysis related functions in the “TestCorrectiveAction” module

4. After-DCAT related functions in the “AfterDCAT” module

5. DCAT simulation-related functions in the “DCAT_Functions” module.

“MainDCAT” also includes a post-processing module, “ReadLogFile.”

6.6 Main Flow of “MainDCAT.py”

The main flow of the Python module “MainDCAT” is illustrated inside the yellow square in Figure 6.7. A
filled yellow ellipse represents a module, while filled yellow rectangles represent the functions in the
“DCAT_Functions” module.

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 48

Figure 6.7. Flowchart of DCAT (2019 version) represented by modules

6.7 Functions and Modules Imported into “MainDCAT.py”

6.7.1 “RunDynamicSimulation” in “DynamicSimulation.py”

The “RunDynamicSimulation” function runs a dynamic simulation and returns the number of iterations
needed for the dynamic simulation to reach a new quasi-steady state.

Input(s)

• The names of the log file and prompt log file to be produced

• The “.sav” and “.snp” file of the case

• The “.idv” file defining a contingency

• The name of the “.out” file to be generated

• The name of the “.raw” file returned after the dynamic simulation

• The control parameters of dynamic simulation

• The channel file defined in configuration file contains settings for channels.

Output(s)

• The number of iterations needed for the dynamic simulation to reach a new quasi-steady state

• The end time (unit: seconds) of the dynamic simulation.

This function can judge whether the dynamic simulation has reached a steady state or not, and if not, another
five seconds of dynamic simulation will be performed until the dynamic simulation reaches a new steady

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 49

state or the number of iterations, “MaxNumIter,” is reached. The main flow of this subroutine is shown in
Figure 6.8 (“MaxNumIter” is the “nMax” in Figure 6.8).

Figure 6.8. Flowchart of “RunDynamicSimulation”

6.7.2 “FindZones” in “DCAT_Functions.py”

Th “FindZones” function reads the “.sub” file and returns a list of zone numbers listed in the “.sub” file. If
the “.sub” file cannot be found, the function will return a default list of zone numbers that are specified in
the input configuration file.

Input(s)

• The name of the “.sub” file.

Output(s)

• A list of the zone numbers defined in the “.sub” file, or a default list of numbers if a “.sub” file cannot
be found

6.7.3 “Test_SPS” in “TestSPS.py”

The “Test_SPS” function is called to check the SPS after the dynamic simulation.

Input(s)

• Logfile: the name of the log file generated when checking the SPS

• Rawfile: the name of the “.raw” file in which the SPS needs to be checked

• Inlfile: the “.inl” needed for inertial power flow

• Returnfile: the name of the “.sav” file to be saved after finishing the SPS checking

• Spsfile: the “.idv” file that will be generated when SPS action is detected

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 50

• Logfile_total: the log file that includes all the information during the full run of DCAT

• SetSPSFile: the file defined in the configuration file contains parameters for SPS.

Note that an “.idv” file will only be generated in the situation when any SPS action is detected. Besides,
the content within the “logfile” needs to be written into the “logfile_total,” since the “logfile” is just a
temporary file and will be deleted eventually. The main flow of the “Test_SPS” subroutine is illustrated
in Figure 6.9.

Output(s)

• An “.idv” file if any SPS action is detected.

Figure 6.9. Illustration of main flow of “Test_SPS”

6.7.4 “SPS_WriteIDVfile” in “DCAT_Functions.py”

The “SPS_WriteIDVfile” function is called when any SPS action is detected. It reads the “.idv” file
generated when checking SPS and produces a new “.idv” file to be used in the new dynamic simulation.

Input(s)

• The name of the “.idv” file generated during the SPS checking process

• The name of the new “.idv” file to be generated for the following dynamic simulation.

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 51

Output(s):

• A new “.idv” file to conduct SPS action for the following dynamic simulation.

6.7.5 “Test_CorrectiveAction” in “TestCorrectiveAction.py”

The “Test_CorrectiveAction” function runs the AC contingency analysis after the dynamic simulation.

Input(s)

• The “.sav” file of the network to be analyzed

• The name of the log file

• The name of the “.con” file to be generated and adopted

• The name of the “.dfx” file to be generated and adopted

• The name of the “.sav” file to be saved after the ACCC

• The name of the “.raw” file to be saved after the ACCC

• The name of the “.sub” file

• The name of the “.mon” file.

Output(s):

• A label indicating whether ACCC succeeds or not.

The main flow of this sub-function is presented in Figure 6.10.

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 52

Figure 6.10. Illustration of main flow of “Test_CorrectiveAction.” DFAX stands for distribution factor

data file.

6.7.6 “Checkoverflow” in “DCAT_Functions.py”

The “Checkoverflow” subroutine checks the overloading on the branches within the subsystem that are
generated according to a list of zone numbers.

Input(s)

• A list of zone numbers generated by the function “FindZones”

• PER: the threshold to judge overloading, e.g., if PER = 100, the threshold will be 100% of the line
rating

• RATE_overloading: which rating of the line will be adopted to judge the overloading: Rate A, Rate B,
or Rate C.

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 53

Output(s):

• A label indicating (1) no overloading; (2) maximum overloading exists in a non-transformer branch or
a two-winding transformer branch; (3) maximum overloading exists in a three-winding transformer
branch

• The information of the branch with the maximum overloading, such as bus numbers, branch id and
overloading percentage.

6.7.7 “RemoveOverflowLine” in “DCAT_Functions.py”

The “RemoveOverflowLine” function is called when the function “Checkoverflow” finds and returns the
information on the branch with maximum overloading. It produces an “.idv” file to trip the corresponding
overloaded branch for the later dynamic simulation.

Input(s)

• A label indicating: (1) no overloading; (2) maximum overloading exists in a non-transformer branch or
a two-winding transformer branch; (3) maximum overloading exists in a three-winding transformer
branch

• The information of the branch with maximum overloading, such as bus numbers, branch id and
overloading percentage

• The name of the “.idv” file to be generated.

Output(s)

• An “.idv” file to trip the corresponding overloading branch for the later dynamic simulation.

6.7.8 “AfterDCAT” in “AfterDCAT.py”

The “AfterDCAT” function basically does the following:

1. Runs dynamic simulation to switch off the overloading branch

2. Keeps checking SPS and running dynamic simulation if any SPS action is detected

3. Runs ACCC simulation

4. Checks overloading.

The process will stop if any of the following scenarios occurs: (1) the dynamic simulation does not reach
a new quasi-steady state; (2) all buses are disconnected; or (3) the dynamic simulation cannot initialize
properly. The “AfterDCAT” function is called after the first iteration of DCAT with the initiating
contingency.

Input(s)

• The name of the log file to be generated

• The name of the prompt log file

• The “.sav” file to be used in the dynamic simulation

• The “.snp” file to be used in the dynamic simulation

• The “.idv” file specifying the contingency condition for the dynamic simulation

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 54

• The name of the “.out” file to be generated during the dynamic simulation

• The name of the “.sav” file to be saved after the dynamic simulation

• The maximum number of iterations in the dynamic simulation

• The name of the log file temporarily generated when checking the SPS

• The .inl file needed for the inertial power flow

• The name of the “.sav” file after the SPS is checked

• The name of the “.idv” file to be generated if any SPS action is detected

• The name of the “idv” file generated that corresponds to the SPS action detected for the later dynamic
simulation

• The name of the log file for during the ACCC

• The name of the “.sav” file after the overloaded branch is removed and island checking is complete;
(this file is the input for ACCC)

• The name of the “.con” file to be generated for ACCC

• The name of the “.dfx” file to be generated for ACCC

• The name of the “.sav” file to be saved after ACCC

• The name of the “.raw” file to be saved after ACCC

• The label indicating whether the maximum loading is within a non-transformer branch, a two-winding
transformer branch, or a three-winding transformer branch

• The branch information(bus numbers, branch id, etc.).

Output(s)

• A label describing whether the dynamic simulation has reached a steady state

• A label describing whether all the buses are disconnected

• A label describing whether the ACCC has succeeded or not.

The main flow of this function is shown in Figure 6.11.

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 55

Figure 6.11. Illustration of main flow of “AfterDCAT”

6.7.9 “IsDisconnected” in “DCAT_Functions.py”

The “IsDisconnected” function detects whether all the buses have been disconnected from the system.
Disconnection may happen during some extreme conditions.

Input(s)

• The name of the “.raw” file to be checked.

Output(s)

• A Boolean value to indicate whether all buses are disconnected or not.

6.7.10 “FindVirLine” in “TestCorrectiveAction.py”

The “FindVirLine” function is used to find a virtual branch in the open case in order to run the AC
contingency analysis. This function basically searches for an existing non-transformer branch and then
returns the information of a new branch in parallel with that branch.

PNNL-29105

Introduction to Details of Python Modules in the DCAT Package 56

Input(s)

• The “FindVirLine” function is called after a particular PSS/E case is opened; no other inputs are
needed.

Output(s)

• “From” bus of the virtual branch

• “To” bus of the virtual branch

• Branch ID of the virtual branch.

6.7.11 “ModifyConFile” in “TestCorrectiveAction.py”

The “ModifyConFile” function is called to generate a “.con” file, which is to be adopted in the ACCC
simulation, according to the information of the branch that is going to be switched off during the AC
contingency analysis.

Input(s)

• The name of the “.con” file to be generated

• “From” bus of the branch that is going to be switched off

• “To” bus of the branch that is going to be switched off

• Branch ID of the branch that is going to be switched off.

Output(s):

• The “.con” file generated to switch off a designated branch during the ACCC simulation.

6.8 “GUI.py” (DCAT GUI)

“GUI.py” is the GUI module for the DCAT 2019 version; the user must choose “GUI.py” in the main
folder and run the script. A detailed introduction to this module is provided in Section 4.0.

PNNL-29105

Data Preparation, Configuration Settings, and Scripting 57

7.0 Data Preparation, Configuration Settings, and Scripting
This section provides generic information on how to prepare data, configuration settings, and scripting for
various DCAT runs.

7.1 Preparation of Power System Data

To run the test examples with this DCAT package, the user does not need do any case preparation. If a
user wants to use the DCAT 2.0 package to run simulations using other than the test system, the user must
do some preprocessing. See Section 7.4 for quick-start instructions on how to set up a DCAT simulation
for a different base case. For more advanced users, this section provides generic information on how to
convert and modify a base case for a given system using the Python modules provided in the DCAT
package.

7.1.1 Modeling of SPS/RAS

One way to model SPS in DCAT is to check system conditions after a system reaches the steady state. If
conditions of SPS are met, SPS might implement further system tripping, which will take place as the
beginning of the next cascading stage.

The definitions of this type of SPS should be specified by a Python class “SPS.py” for psspy.

7.1.2 Channels

For each system, the channels need to be set up for dynamic simulation. The definitions of this type of
information should be specified by a Python class “Channels.py” for the psspy module.

7.2 Details on Configuration Settings

The control interface between the user and DCAT is a configuration file. An example look of the
configuration file is shown in Figure 7.1. Each simulation requires a unique configuration file defined by
the user. The new configuration file is the .ini file, which is also organized into six separate sections, each
of which contains a few setting parameters. The six sections are [Folders], [SystemRelated],
[ControlFiles], [StaticInputs], [Parameters], and [MPjobs]:

1. [Folders]: Define the path and the maximum bus size of PSS/E for initialization; define the path of the
input folder for the .idv file, the path of the output folder for the .out file and logs, and a subfolder,
“Cases,” which will store temporary files. The following are optional settings:

– “PSSEPath” – PSS/E Path on local computer for PSS/E executables. This parameter controls
which version of PSS/E DCAT will use. For example, by setting
“PSSEPath = C:/Program Files (x86)/PTI/PSSE34/PSSBIN,” DCAT will execute with the locally
installed 34 version.
“PSSEPath = C:/Program Files (x86)/PTI/PSSE33/PSSBIN” will let DCAT run with the locally
installed 33 version.

– “PSSESize” – The maximum number of buses PSS/E allows

– “InputFolder” – Input folder for the “.idv” file

– “OutputFolder” – Output folder for the “.out” file and logs; a subfolder, “Cases,” will store
temporarily files.

PNNL-29105

Data Preparation, Configuration Settings, and Scripting 58

– “System” – For certain systems, additional settings might be required for dynamic simulation.
This setting is optional when system-specific codes are added; the default is none.

– “LIBpath” – Path to the library files (*.dll) needed for specified cases; the default is none, i.e.,
that no library files are needed.

– “PerformMPjobs” – If this is set to 1, DCAT performs MPjobs (parallel processing mode).
Additional configuration settings are required in the section [MPjobs]; the default is 0.

2. [SystemRelated]: Defines the system-related settings required by PSS/E.

– “Zone_list” – the default list of the zone number if no information included in “.sub” file

The following 11 parameters are settings for the third release of corrective action function (psspy.accor_3
described in the PSS/E 34 API information1) in “RunDCAT\Test_CorrectiveAction.py”:

• “RatingSet” OPTIONS(6) for psspy.accor_3

• “MWmis” VALUES(1) for psspy.accor_3

• “Volt_tol” VALUES(3) for psspy.accor_3

• “Branch_tol” VALUES(4) for psspy.accor_3

• “Gen_ctrlfact” VALUES(5) for psspy.accor_3

• “Load_ctrlfact” VALUES(6) for psspy.accor_3

• “PhaseShifter_wt” VALUES(7) for psspy.accor_3

• “GenOffline_wt” VALUES(8) for psspy.accor_3

• “TapSetting_wt” VALUES(9) for psspy.accor_3

• “SwitchedShunt_wt” VALUES(10) for psspy.accor_3

• “SubsystemLabels” LABELS(1-6) for psspy.accor_3

The following four parameters are settings for psspy.conl described in the PSS/E API:1

• “PconsCurPer” percentage of active power load to be converted to the constant current characteristic

• “PconsImpPer” percentage of active power load to be converted to the constant admittance
characteristic

• “QconsCurPer” the percentage of reactive power load to be converted to the constant current
characteristic

• “QconsImpPer” percentage of reactive power load to be converted to the constant admittance
characteristic

The following two files are additional inputs for certain systems where a user wants to run simulations
with SPS and specific channel information:

• “ChannelFile” – Python class: Set Up Channels for Dynamic Simulation

• “SetSPSFile” – Python class: Set Up SPS-related parameters

1 …..\Program Files (x86)\PTI\PSSE33\DOCS\API.pdf

PNNL-29105

Data Preparation, Configuration Settings, and Scripting 59

3. [ControlFiles]: Define the names for the .idv file (input, specify the contingency) and .out file (output,
the major output file, which includes channel returned values).

The initial contingency file

• “idvfile” – This specifies the .idv file that describes the initial contingency (initiating event) in the
first iteration of dynamic simulation.

The name of the “.out” file to be generated

• “outfile” – This specifies the name of the .out file.

4. [StaticInputs]: Define the names for .sub, .mon, .inl, .sav, and .snp files that store in [Folder].

The PSS/E base-case files

• “savefile” – This is the .sav case file for the simulation, and it should be the file generated in
Section 7.1.1. Note that the path, as well as the file name, should be provided, if the file is not
located in the same folder as “MainDCAT.py.”

• “snapfile” – This is the .snp file for the simulation, and it should be the file generated in
Section 7.1.2. Note that the path, as well as the file name, should be provided, if the file is not
located in the same folder as “MainDCAT.py.”

Files needed for running the inertial power flow

• “inlfile”: This specifies the .inl file that is needed for running the PSS/E inertial power flow (INLF).
Make sure that the correct .inl file exists in the same folder as “MainDCAT.py” does.

• “sub_file”: This specifies the name of the “.sub” file that is to be adopted for the ACCC process.
This file will also be used to generate a subsystem, where the overloading check is conducted.
Make sure that the correct “.sub” file exists in the same folder as “MainDCAT.py”.

• “mon_file”: This specifies the name of the “.mon” (monitoring) file that is going to be adopted for
ACCC process.

5. [Parameters]: Define the parameters for dynamic simulation, such as time, time step, tolerance,
maximum iteration, etc. This defines the parameters to judge overloading.

Parameters related to dynamic simulation

• “Time_parameter”: This determines the time duration of the dynamic simulation.

• “MaxNumIter”: This is the maximum number of iterations of dynamic simulation that will be
conducted.

• “timestep1”: This is the simulation time step.

• “filter1”: This is the filter time constant used in calculating bus frequency deviations.

Parameters related to judging the steady state

• “TOL”: This determines the tolerance for judging whether the dynamic simulation has reached the
steady state.

• “ck_settle_time”: time interval for comparing with “TOL.” For example, if ck_settle_time = 2, then
beyond 10 seconds (Time_parameter) of the dynamic run, the simulation results of the previous two

PNNL-29105

Data Preparation, Configuration Settings, and Scripting 60

seconds will be scanned, and the largest differences will be compared with “TOL” to judge whether
or not the steady state has been reached.

Parameters related to judging the overloading

• “PER”: the threshold percentage to judge overloading; e.g., if PER = 100, the threshold will be
100% of the line rating.

• “RATE_overloading”: defines which line rating will be adopted to determine overloading:
PCTMVARATEA (percent MVA Rate A) stands for Rate A, PCTMVARATEB stands for Rate B,
and PCTMVARATEC stands for Rate C. Refer to Samaan et al. (2015) for other options. (Note:
Rate C is adopted here. During the case preparation step, the Python module “MakeSAVE.py”
modifies the Rate C of the branches to be the lower of 130% of Rate A and 115% of Rate B, based
on general practice for longer time allowed overloading).

6. [MPjobs]: This section is only available when “PerformMPjobs” = 1 in [Folders].

• “CPU”: an integer; the number of processors to be used (a setting of 0 indicates using all the
available processors).

• “Scenario”: “1D” or “2D”; the type of loops

• “Outspath”: path name of a folder saving all the results folders from MPjobs run

• “Xfile”: a file that lists all the *.idv files for 1D and 2D scenarios

• “Yfile”: a file that lists all the *.sav/snp files for 2D scenarios.

Note that the following parameters in the same .ini file are useless for MPjobs and thus will be ignored:

• [Folders]: InputFolder, OutputFolder

• [ControlFiles]: .idvfile

• [StaticInputs]: savefile, snapfile (for 2D scenario)

For an .ini file performing MPjobs, the values for the above parameters can be left blank. All the other
configuration settings defined in the .ini file will be the same for each of the cases in a MPjobs run.

Table 7.1 summarized the formats and example values for configuration parameters, corresponding to the
definitions in previous paragraphs. Besides the files defined in this configuration file, other files may be
generated for different DCAT simulations. The user does not need to define the names, because they will
be automatically saved in the output folder. For example, all the log files will be generated automatically
according to the name of the .out file and saved in the output folder. The corresponding description for
each setting is automatically included when a configuration file is saved through the DCAT GUI.

PNNL-29105

Data Preparation, Configuration Settings, and Scripting 61

Figure 7.1. New configuration file (.ini file) of DCAT (2019 version)

PNNL-29105

Data Preparation, Configuration Settings, and Scripting 62

Table 7.1. Setting parameters defined in configuration file

Section Parameter Name Format Default/Example Included in
Folder

Folder PSSEPath String (Path Name) C:/Program Files
(x86)/PTI/PSSE33/PSSBIN

PSSESize Integer 1000000

InputFolder String (Path Name) ./Examples/Example1*

OutputFolder String (Path Name) ./Examples/Example*/Results

LIBpath (Optional) String (Path Name,
default is None)

./Input/LIBs

System (Optional) String SAVNW

PerformMPjobs
(Optional)

0 (default) or 1 0

SystemRelated
(Parameters for
psspy functions)

Zone_list Integer List
(separated by
comma)

1, 2, 5, 77

RatingSet Decimal 3

Mwmis Decimal 1.5

Volt_tol Decimal 0.1

Branch_tol Decimal 0.1

Gen_ctrlfact Decimal 1

Load_ctrlfact Decimal 1

PhaseShifter_wt Decimal 1

GenOffline_wt Decimal 1

TapSetting_wt Decimal 1

SwitchedShunt_wt Decimal 1

PconsCurPer Decimal,
percentage

50

PconsImpPer Decimal,
percentage

50

QconsCurPer Decimal,
percentage

50

QconsImpPer Decimal,
percentage

50

ChannelFile File name (*.py) ./Examples/Example1/
Channels.py

SetSPSFile File name (*.py) ./Examples/Example1/
SPS.py

ControlFiles idvfile *.idv initiating_event_XX.idv InputFolder

outfile *.out initiating_event.out OutputFolder

PNNL-29105

Data Preparation, Configuration Settings, and Scripting 63

Section Parameter Name Format Default/Example Included in
Folder

StaticInputs folder String (Path Name) ./Input

sub_file *.sub Allsub Folder

mon_file *.mon All.mon Folder

inlfile *.inl savnw_Plim-corrected.inl Folder

savefile *.sav savnw_con.sav Folder

snapfile *.snp savnw_con.snp Folder

Parameters time_parameter Integer,
unit: second

30

tol Decimal, unit: pu 0.01

ck_settle_time Integer, unit:
second

2

maxnumiter Integer 20

per Integer, unit:
percentage (%)

100

rate_overloading String PCTMVARATEC

timestep1 Decimal, unit:
second

0.0041667

filter1 Decimal, unit:
second

0.0166668

MPjobs (only
included when
PerformMPjobs
= 1)

CPU Integer 8

Scenario String, “1D” or
“2D”

2D

Outspath String (Path Name) ./Examples/Example1

Xfile File Name for 1D
and 2D

./Examples/ Example1/1D.lst

Yfile File Name for 2D ./Examples/ Example1/2D.lst

(Not included in
Configuration
File; Files are
created using
default names)

spsfile *.idv SPS_action1.idv <outputfolder>/
Cases

spsfile_after *.idv SPS_action1_aftercontingency
.idv

<outputfolder>/
Cases

idvfile_react_sps *.idv idvfile_react_SPS.idv <outputfolder>/
Cases

idvfile_react_sps_af
ter

*.idv idvfile_react_SPS_aftercontin
gency.idv

<outputfolder>/
Cases

confile *.con temp.con <outputfolder>/
Cases

dfxfile *.dfx test_corrective_actions.dfx <outputfolder>/
Cases

dfxfile_after *.dfx test_corrective_actions.dfx <outputfolder>/
Cases

PNNL-29105

Data Preparation, Configuration Settings, and Scripting 64

Section Parameter Name Format Default/Example Included in
Folder

idvfile_reoverflow *.idv idvfile_reoverflow.idv <outputfolder>/
Cases

returnfile_sps *.sav AfterDynamicSim_sps.sav <outputfolder>/
Cases

returnfile_sps_after *.sav AfterDynamicSim_sps_afterc
ontingency.sav

<outputfolder>/
Cases

returnfile *.raw After_dynamic_raw_file.raw <outputfolder>/
Cases

returnfile_sav *.sav AfterDynamicSim_corr.sav <outputfolder>/
Cases

returnfile_raw *.raw AfterDynamicSim_corr.raw <outputfolder>/
Cases

savefile_after *.sav AfterDynamicSim_corr_conv
ert.sav

<outputfolder>/
Cases

returnfile_after *.raw After_dynamic_raw_file_after
contingency.raw

<outputfolder>/
Cases

casefile_after *.sav AfterDynamicSim_sps_afterc
ontingency_convert.sav

<outputfolder>/
Cases

returnfile_sav_after *.sav AfterDynamicSim_corr_afterc
ontingency.sav

<outputfolder>/
Cases

returnfile_raw_after *.raw AfterDynamicSim_corr_afterc
ontingency.raw

<outputfolder>/
Cases

logfile *.log <outfile>.log outputfolder

logfile2 *.log <outfile>_promptoutput.log outputfolder

logfile_corr *.log <outfile>.log outputfolder

logfile_after *.log <outfile>.log outputfolder

logfile2_after *.log <outfile>_promptoutput.log outputfolder

logfile_corr_after *.log <outfile>.log outputfolder

SPS_logfile *.log test_SPS.log outputfolder

SPS_logfile_after *.log test_SPS.log outputfolder

7.3 Alternative Method for Testing DCAT Simulation without GUI

The easy way to execute DCAT is to use the GUI (Section 4); the other method is to call the main
function in “MainDCAT.py” after the configuration file is loaded. An example script (“Test.py”) is
included in the DCAT package.

The corresponding program settings are located in the “Config.ini” file, in the example subfolders,
e.g., “Examples\PolishSystem_MPjobs”. After modifying the configuration parameters (Section 7) in
“Config.ini”, if necessary, the Python module “MainDCAT.py” can be called to conduct a full run of the

PNNL-29105

Data Preparation, Configuration Settings, and Scripting 65

DCAT procedure, which conducts not only the dynamic simulations, but also potential cascading failure
analysis for extreme contingencies. Section 6 describes some further modifications that users might need
for real cases.

7.4 Quick-Start Instructions for using DCAT on Another Base Case

This section provides instructions on how a user can quickly set up a DCAT simulation on another
prepared PSS/E base case, without altering the Python modules provided in the DCAT package. The user
will need to have the DCAT package from Section 4.0 installed.

Quick DCAT Set-Up Instructions

A. For MPjobs mode

1. Create a new folder.

2. Ensure the power flow solves in PSS/E for the base cases you wish to use.

3. Prepare the .sav and .snp files for the solved power flow base cases in Step 2.

4. Prepare the .idv files with the desired contingency definitions.

5. Prepare the “1D.lst” file with the names of the .idv files created in Step 4.

6. Prepare the “2D.lst” file with the file names of the .sav/.snp files created in Step 3.

7. Collect a copy of the “Channels.py” from Examples. You do not need to change this file.

8. Collect a copy of the “SPS.py” file from Examples. You only need to change this file if you want to
define SPS.

9. Put all the files prepared in Steps 3–8 in the new folder created in Step 1.

10. Prepare the “Configuration Settings” file.

– Collect a copy of the “Configuration Settings” file from “PolishSystem_MPjobs” Examples.

– Set the parameters ChannelFile, SetSPSFile, Outspath, Xfile, and Yfile to point to the name of the
new folder you created in Step 1.

11. Put the modified “Configuration Settings” file in the new folder created in Step 1.

12. Run the GUI.py script and choose File Open, and select the “Configuration Settings” file you
created in Step 10.

13. Click “Run MPjobs” and wait for the DCAT simulations to complete.

14. Find the results of your simulation in the new folder you created in Step 1.

B. For a single run

1. Create a new folder.

2. Ensure the power flow solves in PSS/E for the base case you wish to use.

3. Prepare the .sav and .snp files for the solved power flow base case in Step 2.

4. Prepare the .idv file with the desired contingency definition.

5. Collect a copy of the “Channels.py” from Examples. You do not need to change this file.

PNNL-29105

Data Preparation, Configuration Settings, and Scripting 66

6. Collect a copy of the “SPS.py” file from Examples. You only need to change this file if you want to
define SPS.

7. Put all the files prepared in Steps 3–8 in the new folder created in Step 1.

8. Prepare the “Configuration Settings” file:

– Collect a copy of the “Configuration Settings” file from “PolishSystem” or “Test” Examples.

– Set the parameters ChannelFile, SetSPSFile, InputFolder, OutputFolder, .idvfile, savefile, and
snapfile to point to the name of the new folder you created in Step 1.

9. Put the modified “Configuration Settings” file in the new folder created in Step 1.

10. Run the GUI.py script and choose File Open and select the “Configuration Settings” file you
created in Step 8.

11. Click “Run DCAT” and wait for the DCAT simulations to complete.

12. Find the results of your simulation in the new folder you created in Step 1.

7.5 Scripting

The following scripts are examples to show DCAT users how to use the modules in a script for different
simulation goals.

A. Run a single DCAT simulation by importing the configuration file using the “Configuration”
module:

Import the required DCAT modules: Configuration and MainDCAT
from DataReader.Configuration import ConfigSettings
from MainDCAT import Main

Initialize the class of ConfigSettings
config = ConfigSettings()
Read in the configuration file
config.GetFromINI("./Examples/Test/Example1/Config.ini")
Examine the existence of the input files
config.ExamineInputFiles()
Call Main DCAT to perform the simulation
Main(config)

B. Run batch processing by importing the “BatchProcessing” module:
Import BatchProcessing Module
from Utils.BatchProcessing import BatchProcessing
Perform Batch Mode
BatchProcessing("./Examples/Test")

C. Run parallel processing by importing the “MPjobs” module:
from DataReader.Configuration import ConfigSettings
from MPjobs import MPjobs_Main

if __name__ == '__main__':
 # Initialize the class of ConfigSettings
 config = ConfigSettings()
 # Read in the configuration file

PNNL-29105

Data Preparation, Configuration Settings, and Scripting 67

 config.GetFromINI("./Examples/PolishSystem_MPjobs/Config_33.ini")
 # Perform MPjobs
 MPjobs_Main(config)

PNNL-29105

References 68

8.0 References
Samaan NA, JE Dagle, YV Makarov, R Diao, MR Vallem, TB Nguyen, LE Miller, BG Vyakaranam,
S Wang, FK Tuffner, and MA Pai. 2015. “Dynamic Contingency Analysis Tool – Phase 1.”
PNNL-24843, Pacific Northwest National Laboratory, Richland, Washington. Available at
http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-4843.pdf.

Conto J. 2015. “Contingency Analysis with MPjobs.” Power System topics. Accessed July 30, 2019,
at http://joseconto.blogspot.com/2015/06/.

http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-24843.pdf
http://joseconto.blogspot.com/2015/06/

PNNL-29105

Appendix A A.1

Appendix A – System Requirement Details
This appendix provides more details on system requirements for performing DCAT studies.

A.1 Steps to Install PyDev
• From the menu of Eclipse, select “Help/Check for Updates” and install updates if necessary.

• Select “Help/Install New Software.”

• Enter http://pydev.sf.net/updates/ in the “Work with” box and click “Add…”

• Select “PyDev” and click “Next.”

• Follow directions and click “Finish.”

• Select “Window/Preferences.” In this window, select “PyDev/Interpreters” and choose “Python
Interpreter.”

• At the top of the Preferences pane, click “New...” and locate your installation of Python (python.exe).

• Click “Apply” and then “OK.”

A.2 Steps to Create a Python Project
• Click “File/New/PyDev project.”

• Enter the project name and click “Finish.”

A.3 Steps to Run Python within Eclipse
• Copy all Python and related files into the Python project folder.

• Right click on the Python file (.py file) you want to run.

• Choose “Run As/Python Run”. After you have run the code once, you can press the green “Run” arrow
at the top of the Eclipse window to run it again.

PNNL-29105

Pacific Northwest
National Laboratory
902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354
1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

	Summary
	Summary
	Acronyms and Abbreviations
	Acronyms and Abbreviations
	Contents
	Contents
	Figures
	Figures
	Tables
	Tables
	1.0 Introduction
	1.1 General
	1.2 Outline

	2.0 System Requirements
	3.0 Introduction to the DCAT Package
	3.1 Model Preparation
	3.1.1 Convert and Modify the Base Case
	3.1.2 Generate the “.snp” File

	4.0 How to Run DCAT Examples
	5.0 DCAT Case Studies
	5.1 Test System 1: PSS/E Test System
	5.1.1 Example 1 in “savnw” System: Not a Close-In Fault in Pilot Scheme Line – Using Fictitious Node
	5.1.2 Example 2 in “savnw” System: Not a Close-In Fault in Step Distance Line – Using Fictitious Node
	5.1.3 Example 3 in “savnw” System: Bus Fault
	5.1.4 Example 4 in “savnw” System: Bus Fault Leads to Blackout
	5.1.5 Example 5 in “savnw” System: Activation of an SPS/RAS

	5.2 Test System 2: Polish System
	5.2.1 Example 1: Bus Fault in Polish System
	5.2.2 Example 2: Line Fault in Polish System
	5.2.3 Example 3: Line Fault with Zone 1 Maloperation in Polish System
	5.2.3.1 Dynamic Simulation 1
	5.2.3.2 Dynamic Simulation 2

	5.2.4 Example 4: Generation Fault – Polish System

	6.0 Introduction to Details of Python Modules in the DCAT Package
	6.1 “Configuration.py” in Package “DataReader”
	6.2 “ReadLogFile.py” in Package “PostProcessing”
	6.3 Module Package “Utils”
	6.3.1 “Supportingtools”
	6.3.2 “Logging”
	6.3.3 “BatchProcessing”

	6.4 “MPjobs.py” (Parallel Processing)
	6.5 “MainDCAT.py” (Main DCAT Process Given a Certain Contingency)
	6.6 Main Flow of “MainDCAT.py”
	6.7 Functions and Modules Imported into “MainDCAT.py”
	6.7.1 “RunDynamicSimulation” in “DynamicSimulation.py”
	6.7.2 “FindZones” in “DCAT_Functions.py”
	6.7.3 “Test_SPS” in “TestSPS.py”
	6.7.4 “SPS_WriteIDVfile” in “DCAT_Functions.py”
	6.7.5 “Test_CorrectiveAction” in “TestCorrectiveAction.py”
	6.7.6 “Checkoverflow” in “DCAT_Functions.py”
	6.7.7 “RemoveOverflowLine” in “DCAT_Functions.py”
	6.7.8 “AfterDCAT” in “AfterDCAT.py”
	6.7.9 “IsDisconnected” in “DCAT_Functions.py”
	6.7.10 “FindVirLine” in “TestCorrectiveAction.py”
	6.7.11 “ModifyConFile” in “TestCorrectiveAction.py”

	6.8 “GUI.py” (DCAT GUI)

	7.0 Data Preparation, Configuration Settings, and Scripting
	7.1 Preparation of Power System Data
	7.1.1 Modeling of SPS/RAS
	7.1.2 Channels

	7.2 Details on Configuration Settings
	7.3 Alternative Method for Testing DCAT Simulation without GUI
	7.4 Quick-Start Instructions for using DCAT on Another Base Case
	7.5 Scripting

	8.0 References
	Appendix A – System Requirement Details
	A.1 Steps to Install PyDev
	A.2 Steps to Create a Python Project
	A.3 Steps to Run Python within Eclipse

