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Abstract 

This report summarizes a study of pooling balancing area control metrics to reduce the impact of solar 
output variability. Sample data comes from the California Independent System Operator and the western 
Energy Interchange Market. Based on promising results obtained, the methodology was incorporated into 
an operational software tool, and a cost/benefit analysis of adopting the tool was used. The report also 
contains example analysis of five potential solar impact scenarios, including rates, system inertia, 
forecasting, market operations and community solar adoption.  
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Executive Summary 

The Soft Cost (SC) program within the DOE EERE Solar Energy Technologies Office (SETO) supports 
efforts to make solar deployment faster, cheaper and easier. Soft costs include financing, customer 
acquisition, permitting, installation, labor, inspection, and other non-hardware costs. Taken together, soft 
costs and barriers to solar deployment now make up over half the total cost of solar generation. This 
project supported key SC activities aiming to harness big data, connect technical solutions to 
stakeholders, and support finance and business solutions that accelerate market growth and expansion. 

The project was funded by the SC program through the SunShot National Laboratory Multi-year 
Partnership (SuNLaMP) program. It was undertaken to address perceived barriers to solar power 
integration, primarily resulting from its variability. The main hypothesis was that pooling variability in 
area control error (ACE) across multiple balancing areas (BA) would improve system control 
performance metrics. This hypothesis was tested by simulation on a year’s worth of system data for the 
western Energy Interchange Market (EIM), which has some evolving aspects of a market-of-markets. The 
results of BA pooling were that ACE uncertainty reduced by 22% to 48%, depending on the hour of day 
and day of year. A software tool based on the methodology was implemented, and a cost/benefit analysis 
showed that its development cost would be recovered in less than a month. This conclusion is based on 
the California Independent System Operator’s (CAISO) estimate of $2.1M savings per month, in reduced 
regulation reserve (RR) requirements.  

Furthermore, based on the study period’s data it was noted that wind ramps were more significant than 
solar ramps in determining RR. Load ramps and conventional generation uncertainty also contribute 
significantly to RR. The concept of a solar-centered grid means that all sources of variability are treated 
on a comparable basis, i.e., they are all part of normal grid conditions. This report includes five sample 
use case analyses of perceived integration barriers, namely rates, system inertia, forecasting, market 
operations and community solar. Those five use cases illustrate how perceived barriers can be managed in 
the solar-centered grid. 

The report includes five main sections and two appendices: 

• Section 1 summarizes new control metrics and operational challenges 

• Section 2 presents the analysis of perceived barriers, i.e., five use cases 

• Section 3 summarizes the main results in ACE variability reduction by pooling across BAs. It also 
presents a secondary observation, that wind ramps were more significant than solar ramps in 
determining higher RR requirements. 

• Section 4 discusses cost/benefit analysis of operational methodologies, with some lessons learned 
about the importance of interdisciplinary teams (i.e., engineering and economics) and data sources. 

• Section 5 summarizes the conclusions and recommendations 

• Appendix A graphs a full yearly set of data to support Section 3. 

• Appendix B contains a draft technical paper on data-handling methods, which may be extended and 
submitted to a future conference.  

In addition, this work has produced two peer-reviewed conference papers (Etingov et. al. 2018, Weimar 
et. al. August 2018) and one published webinar (Weimar et. al. March 2018). 
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Recommendations for future work include tuning parameters of the existing methodology for operational 
deployment, and also exploring new machine learning approaches to improve the methodology.
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1.0 Introduction 

The North American power grid is an example of single-machine physics operating on a continental scale. 
For most of its history, adequate system modeling, computational power, and measurement technology to 
operate the grid with an accurate understanding of its state and available margins did not exist. This is 
largely no longer true, but existing operational practices, regulation, and market rules were designed to 
keep the grid online with a great deal of information about its state and capacity unknown.  

Because of these historical reasons and conventional practices, a key barrier to penetration of solar energy 
into the grid at high levels is lack of confidence on the part of system operators, planners, market 
designers, and regulators that the right information can be made available to maximize the potential of 
solar energy. This project attacks that barrier by showing how placing solar energy at the heart of how the 
grid is understood and operated makes it possible to make the right information available at the right time.  

In existing operational practice, power grids are controlled by BAs. Each BA controls a certain part of the 
grid and is responsible for balancing its generation against its loads. BAs are also responsible for 
maintaining their energy interchange with neighboring BAs based on predetermined schedules and 
obeying power transfer limits on the connecting transmission lines as shown in Figure 1.1. Conventional 
power grid operational and control practices use the approximation that the various types of sources of 
energy in the system and the various types of energy sinks or loads are fundamentally deterministic and 
continuous in their behavior. This approximation underlies the basic models of how sources and loads 
behave. The models are then patched to account for ways in which various types of sources and loads do 
not quite fit the basic model, such as variability and uncertainty associated with solar generation.  

The reality is that there is no type of load 
or source in the bulk power system that 
behaves in such a simplistic fashion. All 
types of resources contain some 
uncertainties, some non-deterministic 
behavior. For example, conventional 
forms of generation have an associated 
probabilistic failure-to-start, uninstructed 
deviations, and other complexities, which 
need to be accounted for. The properties 
of solar energy, including uncertainty and 
variability, represent the true base model 
for power systems operation.  

Conventional power grid operating 
practice in the United States attempts to 
hold power interchanges constant across 
control area boundaries. Mutual 
agreements between control areas are 
made in advance as to what the interchange levels should be, and the areas are operated to hold those 
values as constant as possible. The values chosen are set well within the physical limitations of the 
transmission paths involved for reliability purposes.  

The concept of a Solar Centered Grid incorporates solar power into the definition of what is “normal”, 
i.e., it’s treated on the same basis as uncertainties in all forms of generation.  

Figure 1-1: Conventional operating practices. Solar power is 
usually confined to local markets within the same BA. The 
balancing process is internal to each individual BA. 
Interchange flows between BAs are held to predetermined 
schedules. 
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Limiting the balancing and interchange 
processes and regulatory scores to 
individual control areas may form an 
unnecessary barrier to increased solar 
penetration. Taking advantage of the 
amalgamating and smoothing effect of 
the total output of variable generation 
over wider geographic areas is a major 
advantage of consolidating areas of 
control. Performing balancing control 
over a wider area alleviates some of the 
effects of any form of uncertainty in the 
system, from any type of load or source. 
It is not necessary to restrict the borders 
of a control area to the borders that limit 
the area over which balancing control is 
performed. It has been shown in practice 
that pooling balancing-control 
information from several control areas 
and distributing the total balancing job 
among those multiple areas reduces the 
total amount of balancing resources 
needed, and as a result allows for more 
solar generation in the system. Methods 
for assessing the unused capacity of 
those transmission paths in real time 
would allow that capacity to be put to use, if there were additional tools to allow that now-identified 
capacity to be traded on the markets. 

Our hypothesis is that balancing control can be performed across control area boundaries, as shown in 
Figure 1.2, by the use of dynamic “virtual” interchange methods, tools, and market rules. The testbed for 
this hypothesis was CAISO and the Energy Interchange Market, and we used probabilistic methods and 
metrics as summarized in (Makarov et. al. 2013).  

1.1 Selection of Focus Area 

The area of focus for testing this project is the Energy Imbalance Market (EIM), also known as the 
Western EIM, run by the California Independent System Operator (CAISO). The EIM involves a 
rudimentary market-of-markets structure across which solar variability (and eventual flexibility) could 
potentially be traded. The Energy Imbalance Market is expanding, as seen in Figure 1-3. Rather than 
create a separate energy imbalance market in the Pacific Northwest, entities in that area may converge on 
joining the EIM instead. 

 

 

 

Figure 1-2: The solar-centered grid. Solar power and 
associated variability are pooled and sold where it is needed, 
within or across BA borders. Balancing control crosses BA 
boundaries. Interchange flows between BAs are dynamically 
managed to maximize use of capacity. This pool of energy 
resources and variability that can be traded can include all 
energy resources in the system, including wind, energy 
storage and demand response. 
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Figure 1-3: Growth of the EIM service territory from 2016 (left) to 2018 (right). 

1.2 Evolving Challenges 

As seen in Figure 1-4, solar and wind generation continue to grow rapidly in CAISO. Beginning in 
January 2016, extreme solar output swings caused CAISO to entirely run out of regulating capacity for 
25-35 minutes at a time, which is very unusual. These events have continued. One conclusion is that 
CAISO should purchase more regulation as an ancillary service, but they didn’t know at the time how 
much was reasonable to purchase. The markets are becoming faster, as CAISO changes from a 10-minute 
to a 5-minute real-time market interval in 2018. In 2020, CAISO plans to change the day-ahead market 
interval from 60 minutes to 15 minutes. 

In addition, regulatory standards began to change as the NERC Balancing Authority ACE Limit (BAAL-
003) standard became active on April 1, 2016. This rollout caused electricity industry entities to 
encounter unforeseen implicit barriers to high levels of solar penetration. 

The standards and metrics currently applicable to CAISO include: 



 

1.4 

• Control Performance Standard (CPS1) - measures how well a BA’s ACE performs in 
conjunction with the frequency error of the Interconnection, must be ≥ 100% 

• Balancing Authority Ace Limit (BAAL) - is a real-time measure of area control error and 
system frequency, which cannot exceed predefined limits for more than 30-minutes 

• Disturbance Control Standard (DCS) - is the responsibility of a BA to recover its ACE to zero 
if its ACE just prior to the disturbance was greater than zero or to its pre-disturbance level if ACE 
was less than zero within 15 minutes, must be equal to 100%  

• Frequency Response - All BAs must support the interconnection frequency within 52 seconds 
following a disturbance greater than 500 MW anywhere within the interconnection 

 
Figure 1-4: CAISO existing renewables through 2030 for 2008, and 2018, and expected renewables 
buildout by 2030. Modified from information provided by CAISO. 

1.3 Balancing Authority ACE Limit 

The Balancing Authority ACE Limit (BAAL) Standard has replaced the Control Performance Standard 2 
(CPS2) since 2016 in North America. It establishes frequency-dependent ACE limits.  

“The standard has been designed so that the BA ACE limits become frequency sensitive and can be used 
by the system operators as performance indicators in real time. The balancing authority can monitor its 
own performance against its BAAL target and take corrective actions before one of its BAAL limits is 
exceeded.”1 

The following important potential impacts of the BAAL standard on system operations can be foreseen: 
                                                      
1 WECC White Paper on the Proposed NERC Balance Resources and Demand Standards, 2006. 
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• A control that opposes frequency deviation always improves area performance against the BAAL. 
This means that the new standard will not have potential problems with compliance if control of 
the regulating resources is based on the local frequency signals rather than AGC signals. 

• Unlike the CPS2 standard formulated for 10-minute averages of ACE, the BAAL standard is 
formulated for instantaneous values of the area control error.  

• The BAAL standard is expected to relax the area regulation needs and reduce the regulation 
burden on resources providing regulation service.  

• BAAL limits depend on the current frequency, f, and can be calculated using (1). 

 

2( 60)( ) 10
( 60)
lowfBAAL f B
f
−

= −
−  (1) 

where B is a BA frequency bias (MW/0.1 Hz) and flow is a low frequency trigger limit (Hz). For example, 
the CAISO’s frequency bias is −485 MW/0.1 Hz. For the Western Interconnect, flow = 59.932 Hz. 

Figure 1.5 illustrates CAISO BAALs calculated using (1). L10 limits are also shown. The L10 limits are 
temporarily used to restrict BA interchange variations; this measure is a precaution taken until sufficient 
experience is gained with BAAL, or until a justified additional limit is applied to the BA’s ACE.  
 

 
Figure 1-5: BAAL limits, L10, and FTLlow and FTLhigh plotted against frequency deviation as a function of 
ACE. 
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2.0 Barriers to Solar Penetration 

PV penetration can impact stakeholders (customers, utilities, system operator, etc.) differently. Some 
stakeholders may be positively impacted, while others are negatively impacted, contemporaneously. 
Hence, to gain insights into the barriers to additional PV it is imperative to analyze the net results of 
impacts from all stakeholders’ perspectives. This section presents five examples of possible barriers or 
other impacts from high PV penetration. Some of the interactions between impacts to different 
stakeholders will be identified, and the net result will be analyzed to assess whether it presents a barrier to 
additional PV. Figure 2-1 shows the overall framework of these interactions, which we analyze from 
several different viewpoints: 

• Stakeholder – customer, utility, regulator, system operator, third-party 

• Perspective – stakeholder view of specific set impacts 

• Cost – stakeholder specific and overall costs (i.e., $, $/kW, $/kWh)   

• Benefit – stakeholder specific and overall benefits (i.e., $, $/kW, $/kWh) 

• Impact – stakeholder specific and overall power (kW), energy (kWh), etc.  
 

 
Figure 2-1: Example stakeholder impact and value interactions for increased PV penetration 

2.1 Case 1: Rates 

The adoption of rooftop PV was analyzed in (Cohen 2016), considering the customer, utility and regulator 
stakeholders. The effects of stakeholder impact interactions on the rates may be summarized as follows: 

1. Customers reduce energy consumption and energy bill 

2. Utility faces a reduction in retail energy sales and revenue. In turn, this reduces the rate base used to 
recover cost through the regulated returns on investments. Exacerbating this effect, costs may 
increase due to distribution system upgrades and shorter equipment lifetimes. On the other hand, the 
utility may reduce in wholesale energy procurement, which potentially reduces the need for operating 
reserves and other ancillary services, all of which would reduce cost. 
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3. Regulators probably have to conduct new rate case hearings to help utilities recover lost revenues. 
They may also consider net-metering vs. value-of-solar in these rate cases. 

4. Customers may then see increased retail rates to help utilities recover lost revenues. This would 
impact ROI calculations, which may be seen as a potential barrier to PV adoption. 

2.2 Case 2: System Inertia   

A barrier to larger PV penetration is lack of system inertia provided by PV energy production. Under 
NERC regulation the System Operator must maintain power system balance and frequency. Lack of 
system inertia arises as PV penetration increases. At low levels of PV penetration, conventional 
generators can compensate for the lack of inertia through frequency controllers and then through governor 
action. But as PV penetration increases, the ability of conventional generators to compensate becomes 
more difficult. The system operator has at least five choices to solve the stability issue: 1) curtail PV 
production, 2) demand side management, 3) use energy storage if available, 4) call on flexible resources 
to provide regulation services, and 5) provide virtual or artificial inertia. All options have cost 
consequences. See Figure 2-2 for a graphical depiction of this use case analysis framework. 

System Operator 

For the System Operator as net load imbalance occurs the synchronous machines adjust to maintain 
balance. As PV penetration increases, the ability of synchronous machines to compensate decreases. The 
system operator keeps the system in balance by dispatching in real time flexible capacity to bring the 
system back in balance. In rare events when reserve capacity isn’t available, an inability to meet 
frequency can lead to load shedding and customers experience outages. Under- and over-frequency can 
also damage customer’s equipment (Rahmann and Castillo 2014).  

Most PV with no inertia injects power only, which affects the electromechanical modes of other 
synchronous machines. Generators near PV injections can be adversely affected if their synchronizing 
capability is reduced (Vital 2011). Most legacy inverters currently deployed can’t provide inertia but new 
smart inverters overcome this issue. Even with new smart inverters, they may not be used if there is no 
market for service or regulations don’t require them. A market for artificial inertia and replacement of old 
inverters will reduce the problem. A positive benefit of PV penetration is displacement of fossil fuel 
generation, which decreases carbon emissions, NOx, and SOx emissions.  

Market Operator 

The Market Operator sees two upsides and a downside to increased PV electricity production. The first 
upside includes lower production costs because as PV enters, unit commitment models at a near zero 
marginal cost replaces more expensive marginal cost assets such as coal and natural gas gen-sets. The 
second upside is increased DG PV penetration displaces the most expensive generators in a net demand 
model decreasing the amount of conventional generation, thus reducing the overall price for electricity in 
both the day ahead and real time markets. The overall impact lowers energy prices. The downside is that 
out of market settlements occur and they are not transparent because they aren’t seen in market 
transactions. The non-transparent costs include uplift costs and make-whole payments, which results in a 
more complex and less transparent market to ensure that the total costs of production are met. These 
payments are not made through a market, so they are not seen by all market participants. Over time the 
uplift payments need to make a gen-set owner whole, or the entity will go out of business. 

Utility 
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The Utility faces added costs for providing advanced controllers to provide synthetic inertia. The costs of 
the controllers are increased costs for maintaining distribution system frequency and voltage. 

 
 

Figure 2-2: The economics behind the loss of inertia associated with increasing PV penetration 

Independent Power Producers 

The Independent Power Producer with conventional power sees a downside to the additional PV 
penetration. The conventional producer may find that as wholesale prices decline his unit may not be least 
cost-enough to enter the energy market or ancillary service market to earn sufficient returns on the asset. 
They are faced with more variable revenue because they don’t know how much revenue they will be 
receiving due to increasing solar penetration and the variability of solar output. In unit commitment 
models dispatch is based on the least cost units being used first and the market clearing price declines 
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based on lower net demand. They also potentially see idle/stranded (equipment that isn’t receiving 
compensation) assets, which can significantly reduce expected returns. 

Customers 

The Customer can experience power quality issues or outages with increased PV penetration. Higher 
penetration of PV provides technical concerns to customers because of the potential for outages in the 
most severe cases and grid stability, voltage regulation, and power quality defined as over/under voltage, 
flicker and frequency fluctuations in less severe cases. The latter power quality problems can result in 
damage to consumer’s equipment, as well as to the transmission and distribution equipment (Bank et al 
2013). Customers will see lower prices over time as regulators update their tariff schedules, but they may 
face increased costs due to utility controller and transformer upgrades. 

2.3 Case 3: Forecasts   
 
System Operator 

The System Operator’s grid stability requirements become more difficult to maintain as PV increase. 
Solar output forecasting is more difficult at the wholesale level and is exacerbated at the net demand level 
by increasing penetration of roof-top solar, which reduces net demand and makes forecasting capacity 
requirements more difficult at wholesale. The inability to forecast accurately the amount of solar output 
requires the system operator to purchase more ancillary services than may otherwise be purchased to 
ensure that the grid stays within system constraints (Ela et al 2013). That in turn increases operating costs 
because system operators must prepare for the worst outcome rather than for forecasted supply and 
demand. Figure 2-3 depicts the stakeholders and impacts of the increased penetration of PV, while Figure 
2-4 graphically depicts the analysis framework. 

Market Operator 

Currently some wholesale markets are not capable of using batteries for ancillary services. FERC is in the 
process of rulemaking to amend its regulations under the Federal Power Act to remove barriers to the 
participation of electric storage resources and distributed energy aggregations in capacity, energy and 
ancillary service markets (FERC 2016). The market operator needs to establish participation models for 
electric storage and distributed generation resources. Market rules need to be developed. 
 
Third Party Service Providers 

Third-party service providers will find new opportunities to provide new data analytic tools, advanced 
control systems and battery plus PV packages. Data analytics services in the form of better forecasting of 
output and net load tools can improve solar forecasting and reduce the issues. In addition, data analytics 
tools that understand grid’s state to understand system imbalances and correction need to be developed 
(Fusco et al 2016). 

Advanced control solutions are required if voltage or frequency move outside set of bounds. The bounds 
for frequency and voltage are set by IEEE Standard 1547-2018. Outside these bounds, the PV system 
must disconnect (Yang et al 2014). There are some issues with controllers not correctly calculating 
frequency and causing faults, which provides opportunities for further for investment. 
Battery plus PV package solutions are needed to allow the solar producer to provide more flexible solar 
output that can store output for arbitration and ancillary services. Advancements are still needed to lower 
the cost of storage solutions. Advancements require new chemistries to maintain power and depth of 
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discharge while lowering costs. Lower cost technologies have performance issues. Lithium ion has 
battery safety issues, e.g., fire. Also, lithium ion life has time limits (Whitacre 2016). Energy arbitrage 
prices in CAISO’s day ahead and real time markets aren’t feasible for PG&E batteries. Frequency 
regulation provided the best return in the CAISO markets, better than energy prices in the day ahead or 
real time markets. (Penna 2016).  

 

 
  

Figure 2-3: Poor PV forecasting increases the cost of electricity delivery 
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Figure 2-4: The economics of poor PV forecasting 

 

2.4 Case 4: Market Operation  

The wholesale market operator provides economic dispatch using unit commitment models, which 
dispatch lowest marginal cost energy first, following up the marginal cost curve to meet real time 
demand. Figure 2-5 shows the stakeholders and impacts, while Figure 2-6 depicts the analysis framework 
for this use case. 

Market Operator 

The market operator’s current pricing mechanisms in wholesale markets are not conducive for solar 
penetration. Marginal cost pricing in economic dispatch models do not provide for full cost recovery of 
solar resources for zero to low marginal cost solar. For conventional generators, the marginal cost plus 
periods of significant demand imbalances allows most conventional units to breakeven in the long run. 
For solar, the marginal costs are below their long-run total costs. They are faced with negative prices 
during high production periods with lower than peak demand and during peak demand periods, their 
production is ebbing toward zero. Thus, they have little opportunity to reach their long-run total costs 
over time. This is called the revenue sufficiency or missing money problem (Newberry, 2015).  
 

 
 

Figure 2-5: Conventional economic dispatch structures slow PV penetration 
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The IPP PV energy producer sells energy into wholesale market if it doesn’t have power purchase 
agreements. They receive wholesale prices that reflect the marginal cost of the most expensive 
conventional producers, negative prices during periods of oversupply and high prices during undersupply 
of energy if they have production. However, solar production is fixed to a window each day, making the 
likelihood that they can produce during periods where prices are high enough to offset negative prices and 
the lower than full costs of production associated with other periods. With increasing penetration, 
wholesale prices are lowest during PV’s highest production period during the mid-day, which exacerbates 
the revenue sufficiency issue (except when wind production outpaced demand). Thus, price structures 
need to be revisited by Market Operators to develop price structures more conducive to solar. 
 

 
 

Figure 2-6: Assessment of new economic dispatch structures for solar 

2.5 Case 5: Community Solar 

Acceptance of Community Solar and lowering the barriers could allow for significant expansion of solar 
due to lower installed costs of capital and the larger market for community solar as compared with roof-
top solar. When roof-top expansion of PV can’t be accommodated, Community Solar offers the 
opportunity for customers to acquire solar energy. When solar customers can’t afford the investment in 
solar or their rooftops can’t accommodate solar, Community Solar provides an alternative that is lower 
cost per kWh than rooftop PV because it is installed at a larger scale. In addition, Community Solar can 
be placed such that it lowers congestion costs while reducing customers’ bills.  

The primary barriers to expanded Community Solar are legislative, regulatory, and business structures 
that can’t absorb incentives as efficiently as other methods of solar production. Without legislation, 
community solar can’t exist without utility approval either through virtual interconnection or utility-
owned solar. Once legislation is in place regulations need to be developed to allow community solar. 
Once legal and regulatory hurdles are overcome, tax incentives may not have been structured to allow 
access by community solar. So even though the construction and operation of Community Solar should be 
less costly than roof-top solar, the net cost after incentives may not be lower. 
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There are three approaches to developing community Solar:  utility, 3rd party and started by third party but 
dependent on legislation or utilities. Progressive utilities can build Community Solar without legislation 
as long as the tariff supporting the Community Solar is approved by the regulator. 3rd Party led solar 
already has legislative approval or will require legislation (Augustine 2015). Currently 16 states have 
legislation providing for Community Solar: California, Colorado, Minnesota, Wisconsin, New York, 
Connecticut, Rhode Island, Maryland, Maine, Vermont, New Hampshire, Massachusetts and 
Pennsylvania (Farrell 2015). Oregon has implemented legislation and Hawaii is debating Community 
Solar (K&L Gates 2016; Trabish 2016). Figure 2-7 and Figure 2-8 provide high-level summaries of 
requirements and impacts of Community Solar. 
 

 
 

Figure 2-7: Community Solar expansion impacts 
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Community Solar can be developed and sold to competitive retail suppliers and then marketing the 
product as a credit on the customer’s bill (GTM 2017). 
 

 
 

Figure 2-8: Analysis framework for Community Solar 
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or substation reinforcement may not need to occur as quickly. However, the cost of artificial inertia will 
still be required in either case.  

The main barrier to the utility in the case of accommodating 3rd party solar is the ever-increasing rate that 
utilities must face as more net metered solar is installed. The tariff rates increase as utilities must recoup 
lost revenues from net metered solar. For utility-driven community solar, customers pay more for the 
solar energy than they would in 3rd Party developed solar assuming they wouldn’t invest in Community 
Solar unless the cost/kWh was less than the retail rate. An advantage is that Community Solar O&M is 
lower than traditional forms of generation, so the average cost of O&M to the utility will be lower. 

Currently another barrier to utility installed Community Solar is that the utility must take care in 
structuring the project to keep the RECs and the benefits to themselves. Otherwise, the project could 
become subject to the securities rules. In addition, investment tax credits can’t flow down to customers. In 
addition, municipal and cooperative utilities can’t take advantage of the tax credits (Coughlin 2010). 

Third Party Developer 

The 3rd Party Developer of Community Solar faces many barriers in reaching a project deal. The primary 
barrier for developers is that not many MWs of capacity have been completed even though community 
solar has been around since before 2010. GTM (2017) indicated that total installed community solar was 
only around 343 MW in 2016 and that developing a project today was as complicated as it was three 
years ago indicating that barriers to project development haven’t decreased. Project development, 
determining how to get credited for solar; and interconnecting to the grid are difficult aspects of 
Community Solar and each issue differs state by state where legislation allows. 

Developing the project is more complex than utility scale IPP projects because more individuals need to 
be coordinated and brought under contract than under the IPP project. Usually, Community Solar looks 
for one large anchor customer and fills in the remaining customers from the commercial and residential 
sector. Another difficulty is that contracted customers usually need a credit score of 680 or better or the 
project can’t get financed. Because the term of financing is usually 20-25 years and the asset itself is 
fungible, the developer needs backup customers if someone moves and opts out of the contract. It would 
seem that because of the high credit scores, financing would be simple, but it is not. Because so few deals 
have been done, the institutional investors and commercial banks don’t have data to determine default 
rates, thus making them slow to finance. 

Tax structures and incentives were developed for commercial and residential customers, thus structuring 
projects so that customers and the third-party developer can take advantage of them is difficult. For 
example, if the customer is a passive investor, (meaning that they have nothing to do with management or 
operations of the PV system) they can only offset tax credits against their passive income, which often is 
not enough to take advantage of the credits (Farrell, 2013; Coughlin 2010). 

Customer 

The primary barrier to customers in community solar is added costs associated with utilities providing 
artificial inertia to keep the distribution grid stable. Another barrier that can occur is that Community 
Solar can receive a substantially lower payment in comparison with rooftop solar, which is not offset by 
the lower cost of solar PV production. Thus, Community Solar can be less cost effective than rooftop 
solar. For example, Washington DC provides a net price of 8¢/kWh for Community Solar versus 
13¢/kWh for rooftop (Delman 2015.) 
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There are a number of advantages compared with rooftop PV. The upfront costs can be lower because of 
the economies of scale associated with utility or commercial scale PV installation costs. In addition, the 
asset is fungible. If the Community Solar owner wished to sell their portion, the asset is fungible. Lastly, 
because of the virtual net metering nature, Community Solar reduces the total cost of electricity on a 
monthly basis. 
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3.0 Pooling Solar Variability across Boundaries 

In existing operational practice, BAs are responsible for maintaining their energy interchange with 
neighboring BAs based on predetermined schedules, frequency support and obeying power transfer limits 
on the connecting transmission lines. Addressing solar variability is intended to be the separate 
responsibility of each BA as shown in Figure 1-1.  

The reality is that a BA with a sufficiently high penetration of solar energy may find itself “leaning on the 
ties” during certain times of day, placing a burden to manage against its deviations and over-generation 
on its neighbors. How this impacts the BAs in question is complex since the applicable regulatory 
requirements are written to assume that this would not be normal practice.  

The study reported in this section used data from three BAs of disparate size and generating portfolios to 
experiment with schemes for sharing responsibility for the total ACE diversity they experience between 
them, by postulating a hypothetical combined BA and seeking a sharing scheme for redistributing the 
burden of managing ACE variability among the participants in a way that would be of benefit to all 
participants. 

Taking advantage of the amalgamating and smoothing effect of the total output of variable generation 
over wider geographic areas, along with different profiles of generating fleet flexibility, is a major 
advantage of consolidating areas of control. Performing balancing control over a wider area alleviates 
some of the effects of any form of uncertainty in the system, from any type of load or source. It has been 
shown in practice that pooling balancing-control information from several control areas and distributing 
the total balancing job among those multiple areas reduces the total amount of balancing resources 
needed, and as a result allows for more solar generation in the system.  

The amalgamating of solar resources alone cannot reduce the solar ramping requirements during sunrise 
and sunset hours in BAs. Nevertheless, they can be partially addressed by using collective load profiles, 
correction to generation dispatches and using demand response and energy storage in the pool. As the last 
resort, solar ramp reductions of curtailments can be minimized in the pool in a coordinated fashion. 
Figure 1.2 implies also that the tie line schedules within a pool can be relaxed to extract more flexibility 
from the system. 

3.1 ACE Diversity Sharing 

ACE is an important system performance parameter used in CPS1 and BAAL reliability standards. ACE 
can be minimized by pooling diversity between BAs. Figure 3-1 through Figure 3-4 shows that pooling 
can reduce the uncertainty by 22% to 48%, depending on the hour of the day and the day of the year. No 
case was found in which pooling increased ACE. See Appendix A for more examples. 
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Figure 3-1: Reduction in share of ACE variability (95th percentile) responsibility for the combined BAs, 
for weekdays in December 2015-February 2016. 

 
Figure 3-2: Reduction in share of ACE variability (95th percentile) responsibility for the combined BAs, 
for weekends in December 2015-February 2016. 
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Figure 3-3: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for weekdays 
in December 2015 - February 2016. 

 
Figure 3-4: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for weekends 
in December 2015 - February 2016. 
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3.2 Uncertainty Reduction for Operational Control of Solar Swings 

Starting in January 2016, days in which wide and fast-moving solar swings for the total CAISO service 
territory began to cause control performance issues for CAISO operations. The swings in question moved 
fast enough so as to be effectively invisible to the market runs and unit commitment and economic 
dispatch. Days in which this happened have continued since that time, increasing in both frequency and 
severity in the resulting control performance impacts.  

Preliminary studies using time-series based uncertainty reduction methods to determine whether enough 
predictability of system frequency could be gained in that timeframe to be useful as the basis for some 
kind of additional operational control methodology.  

The study initially looked at uncertainty reduction for frequency deviations only, which by itself is a 
fairly complex problem, because system frequency is comprised of many signals that operate at very 
different time scales. Initial runs tried to look ahead twenty minutes to one hour or more, to get an initial 
sense of what the method could do with frequency deviation input data. Then, since the CAISO market 
runs with the unit commitment and economic dispatch were running every ten minutes, runs focused on 
look-ahead windows in the 5-minute to 10-minute timeframes. It was uncertain whether enough 
dominance of the right components could be isolated to reduce uncertainty to any significant amount in a 
timeframe of less than ten minutes.  

Initial results are summarized in Table 3.1. The study was then expanded to include more data and to 
refine the approach, and the results are discussed in the paper submitted to the IEEE Power and Energy 
Society General Meeting (see Appendix B).  

 
Table 3.1: Reduction of uncertainty for system frequency deviations from 60 Hz.  

date of 
data 

Data 
Resolution 

Training 
period Percentage Uncertainty Reduction by 

Lookahead Window 
5-min 7-min 8-min 9-min 10-min 

26-Jan-16 1 minute 5 hours 52.21 36.28 31.02 24.79 17.83 

31-Jan-16 1 minute 5 hours 47.76 32.73 24.35 14.29 4.69 

26-Jan-16 4 seconds 1 hour 30.43 15.11 10.88 0.89 -- 

31-Jan-16 4 seconds 1 hour 42.25 19.46 8.95 -- -- 

These initial results were encouraging enough that the study was expanded to include ACE, and results 
for ACE and frequency deviations are included in Table 3.2, Table 3.3, Table 3.4, and Table 3.5. Some 
key points to note from this study: 

• We are using time-series methods, which means the methods look a certain number of data points 
into the future. As a result, the results are often better for the 1-minute resolution data than for the 
4-second resolution data, though it may seem counterintuitive that lower resolution would be 
better. The method used starts to taper off in reduction of uncertainty for larger numbers of data 
points in the look-ahead window. As a result, time-clustering of the data is a key parameter to 
tune in order to get the most out of the method. We used the original 4-second SCADA data and 
one-minute clusters averaged from the original 4-second SCADA data, but additional time 
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clustering parameters should be explored. Time-clustering as a strong advantage was an 
unexpected result from this study.  

• The impact of the training period is strong enough to warrant some effort into tuning this 
parameter as well. Not shown are earlier results that seemed discouraging that used a much longer 
training period than the results shown. A longer training period gives too much predominance to 
system states from a different part of the daily operating regime and gives weight to system 
topologies that are things of the past for the look-ahead windows of interest. Our initial 
experiments showed a fairly sharp drop-off in results for anything over 5 hours. The results 
presented are for 1-hour, 3-hour and 5-hour training periods.  

• New algorithms came available in the course of performing this study, and we upgraded our 
methodology to include them. This area of mathematics produces improved algorithms at least 
yearly, so revisiting the underlying mathematics on a regular basis would ideally be part of the 
maintenance of any tool based on this type of methodology.  

• How much predictability is enough varies according to the intended application of the results and 
the comfort level of those who will use them. CAISO was looking for at least 60% uncertainty 
reduction looking ahead 7 minutes, or at least 80% uncertainty reduction looking ahead 3 
minutes. New tools based on this kind of approach could assist them in dealing with large and fast 
system swings.  

 
Table 3.2: Frequency deviations uncertainty reduction summary, 1-minute data resolution 

date of 
data 

Training 
period 

Percentage Uncertainty Reduction by Look-ahead Window 

1-min 2-min 3-min 4-min 5-min 7-min 8-min 9-min 10-min 
5-Mar-17 1 hour 89.24 81.56 72.78 60.79 48.14 18.17 0.59 -- -- 

5-Mar-17 3 hours 88.57 77.45 72.73 64.67 54.91 41.51 33.68 25.65 8.77 

5-Mar-17 5 hours 89.11 82.06 74.17 64.71 55.40 40.68 31.92 23.61 15.82 

6-Mar-17 1 hour 70.92 53.15 37.67 21.55 8.58 -- -- -- -- 

6-Mar-17 3 hours 72.15 53.77 37.02 20.42 5.73 -- -- -- -- 

6-Mar-17 5 hours 72.88 55.85 40.69 26.43 13.56 -- -- -- -- 

26-Jan-16 1 hour 85.90 77.63 69.41 57.16 46.64 18.69 9.12 -- -- 

26-Jan-16 3 hours 85.74 77.53 69.81 60.22 52.56 35.89 29.85 22.60 16.53 

26-Jan-16 5 hours 85.58 77.37 69.74 60.31 52.21 36.28 31.02 24.79 17.83 

31-Jan-16 1 hour 91.23 84.15 74.13 60.96 45.47 4.12 -- -- -- 

31-Jan-16 3 hours 90.20 81.84 75.63 66.80 56.77 34.00 20.91 6.10 -- 

31-Jan-16 5 hours 86.65 72.77 62.69 54.67 47.76 32.73 24.35 14.29 -- 
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Table 3.3: ACE uncertainty reduction summary, 1-minute data resolution 

date of 
data 

Training 
period 

Percentage Uncertainty Reduction by Look-ahead Window 

1-min 2-min 3-min 4-min 5-min 7-min 8-min 9-min 10-min 
5-Mar-17 1 hour 85.33 74.51 61.00 41.80 20.01 -- -- -- -- 

5-Mar-17 3 hours 88.06 76.62 64.74 52.14 39.47 13.84 3.00 -- -- 

5-Mar-17 5 hours 87.74 76.30 64.43 51.42 38.89 17.33 5.66 -- -- 

6-Mar-17 1 hour 81.41 65.93 47.27 26.82 5.22 -- -- -- -- 

6-Mar-17 3 hours 80.50 65.16 51.33 39.13 26.63 8.67 -- -- -- 

6-Mar-17 5 hours 80.82 66.92 53.76 41.13 29.31 9.41 -- -- -- 

26-Jan-16 1 hour 90.93 81.57 69.14 53.88 36.45 10.74 -- -- -- 

26-Jan-16 3 hours 90.58 81.72 71.56 59.53 47.05 21.87 10.50 0.24 -- 

26-Jan-16 5 hours 90.04 81.21 70.54 59.45 48.34 25.32 14.80 4.86 -- 

31-Jan-16 1 hour 93.02 86.09 75.89 63.22 46.62 5.88 -- -- -- 

31-Jan-16 3 hours 92.77 86.79 79.57 71.28 61.35 40.48 28.32 14.75 -- 

31-Jan-16 5 hours 89.85 75.88 69.56 62.86 53.95 32.27 22.03 10.99 1.96 
 

 
Table 3.4: Frequency deviations uncertainty reduction summary, 4-second data resolution 

date of 
data 

Training 
period 

Percentage Uncertainty Reduction by Look-ahead Window 

1-min 2-min 3-min 4-min 5-min 7-min 8-min 9-min 10-min 
5-Mar-17 1 hour 65.83 56.18 52.68 44.68 33.99 18.05 9.65 2.74 -- 

5-Mar-17 3 hours 65.22 55.45 52.07 44.15 33.46 17.10 8.98 2.11 -- 

5-Mar-17 5 hours 64.57 54.74 51.40 43.46 32.76 16.40 8.29 1.48 -- 

6-Mar-17 1 hour 37.49 16.40 5.95 -- -- -- -- -- -- 

6-Mar-17 3 hours 40.53 20.13 9.15 -- -- -- -- -- -- 

6-Mar-17 5 hours 40.13 19.24 8.23 -- -- -- -- -- -- 

26-Jan-16 1 hour 57.80 50.33 43.06 31.69 30.43 15.11 10.88 0.89 -- 

26-Jan-16 3 hours 56.76 49.02 41.72 30.76 29.29 14.05 9.81 -- -- 

26-Jan-16 5 hours 56.16 48.38 41.12 30.18 28.71 13.45 9.21 -- -- 

31-Jan-16 1 hour 78.24 70.85 62.63 53.21 42.25 19.46 8.95 -- -- 

31-Jan-16 3 hours 78.52 71.18 62.95 53.48 42.54 19.69 9.17 -- -- 

31-Jan-16 5 hours 78.34 70.99 62.78 53.31 42.37 19.52 9.01 -- -- 
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Table 3.5: ACE uncertainty reduction summary, 4-second data resolution 

date of 
data 

Training 
period 

Percentage Uncertainty Reduction by Look-ahead Window 

1-min 2-min 3-min 4-min 5-min 7-min 8-min 9-min 10-min 
5-Mar-17 1 hour 82.17 55.67 20.32 -- -- -- -- -- -- 

5-Mar-17 3 hours 85.95 73.18 63.35 50.11 35.81 10.62 -- -- -- 

5-Mar-17 5 hours 86.08 73.38 63.53 50.29 36.01 10.83 -- -- -- 

6-Mar-17 1 hour 63.10 47.22 33.57 20.12 6.56 -- -- -- -- 

6-Mar-17 3 hours 63.02 46.07 30.78 16.18 2.36 -- -- -- -- 

6-Mar-17 5 hours 62.15 46.70 32.44 19.64 6.15 -- -- -- -- 

26-Jan-16 1 hour 79.00 70.02 59.36 43.92 34.20 13.58 3.78 -- -- 

26-Jan-16 3 hours 78.68 70.10 60.19 46.27 37.78 13.36 3.50 -- -- 

26-Jan-16 5 hours 78.21 69.58 59.65 45.71 37.24 12.79 2.90 -- -- 

31-Jan-16 1 hour 85.27 52.35 -- -- -- -- -- -- -- 

31-Jan-16 3 hours 90.93 83.19 75.01 65.48 54.45 31.05 19.28 5.78 -- 

31-Jan-16 5 hours 91.09 83.42 75.21 65.66 54.63 31.23 19.42 5.91 -- 
 

3.3 Solar Energy’s Role in Regulation Requirements 

Regulation as an ancillary service is purchased in the day-ahead market based on day-ahead forecasting of 
total net load, including day-ahead forecasts of solar and wind generation. The amount of regulation then 
applied intra-day is based on intra-day forecasting. The magnitude of the difference between the day-
ahead forecasts and the applicable intra-day forecast then shows the potential for improving the 
recommendations for the amount of regulating service to purchase in the day-ahead market.  
For the period studied in the cost/benefit analysis, the differences in forecast errors between the day-ahead 
forecast and the real-time forecast for both solar and wind showed a diurnal pattern as shown in  

Figure 3.5.  

 
 

Figure 3-5: Difference in forecast errors between the day-ahead forecast and the real-time forecast for 
both solar and wind, with the difference in solar forecast errors shown in blue and the difference in wind 
forecast errors shown in orange.  
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Solar is often thought to be less predictable than wind, and the day-ahead (DA) forecasts for wind have 
usually been more accurate than for solar. Inadequate data handling practices for solar may contribute to 
these outcomes. In any case, large solar swings, on top of the morning and evening ramps, have 
contributed to poor regulatory scores. However, Figure 3-6 shows that based on regulation requirements 
during the study period, wind ramps were more significant than solar ramps. This could mean that a 
misperception of solar power’s relative variability, compared to wind, poses another barrier to integration. 

 

Figure 3-6: Causal factors for Regulation Requirements (RR) during the study period. 
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4.0 Cost/Benefit Analysis of Operational Tools 

PNNL performed a cost/benefit analysis of an operational tool called DARP (Etingov 2018) to implement 
the uncertainty reduction methods developed in this project (Weimar et. al. March 2018, August 2018). 
The development cost of the tool was about $200K, compared to overall savings of $2.1M, or 16% of RR 
costs. Therefore, on month’s savings more than paid for the model and tool. The savings came from 
Regulation Up reserves, not Regulation Down reserves. We also found that 10-minute net-load variability 
continues throughout the year, and impacts regulation needs significantly. CAISO expects these results to 
continue throughout the year. The rest of this section describes lessons learned from the cost/benefit 
analysis. 

A fully-accurate cost/benefit analysis of a power systems operational tool or practice would, in many 
cases, require exhaustive simulations. Historical data can be used to supply certain system conditions, but 
since the purpose of the new tool or practice would be to produce different operational results and system 
states than what happened historically, accurate simulations of a regime including that tool or practice 
require extensive simulation effort.  
 
As a result, sometimes cost/benefit analyses are not run, and decisions are made based on what is believed 
to be the likely outcome of implementing the new tool or practice. Tools based on new methods, such as 
probabilistic methods, may face delayed deployments because no one is sure how to estimate the benefits. 
The example of applying probabilistic methods and tools to power systems operations is particularly 
apposite – such tools can provide surprising levels of economic benefit in some situations, but the same 
tool that produced a large benefit in one location may not provide any when applied to a different 
location. Some type of cost/benefit estimation is needed to at least determine whether the tool would 
mean a net cost or a net benefit.  
 
Much of the time, whether for probabilistic tools or conventional tools, it is desirable to perform a more 
approximate cost/benefit analysis, if a methodology can be found that is modest enough in effort to be 
practical but still accurate enough to be useful. Arriving at such a methodology can be so tricky that it 
may seem impossible, and it can easily seem that the only way to be sure of the result is to go for the 
monumental simulations approach. This does not have to be the case, if a certain amount of examining 
and re-examining of assumptions is carried out by the right team. 
 
A webinar detailing the example approximate cost/benefit analysis in this report and an overview of the 
recommended best practices can be found at:  

4.1 Selecting the cost/benefit analysis project team 
 
The team needed to produce a useful result with limited budget and effort has two key elements: 

• Power systems operations engineers from the system and area of control in question and who 
understand the tool/methodology being analyzed 

• Economists with expertise in cost/benefit analyses 

Further, a separate review team should be determined, including someone who can review the analysis 
and report from the perspective of the viewpoint of any governing body or utilities commission that may 
need to verify the work or weigh in on the decision, as shown in Figure 4-1. While an extensive team may 
seem safer in order to make sure enough viewpoints are included, too large a team will make the 
cost/benefit effort more expensive. To achieve a useful result with a limited budget, it is recommended to 
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keep the team small and carefully-chosen. It is particularly important not to let the size of the analysis 
team grow large enough that the budget for review is impacted.  
 

 
 

Figure 4-1: The key minimum personnel in the project team; other personnel may be desired.  
 
The right team would include power systems operational engineers who have a deep understanding of the 
area of control to be impacted and at least some of whom have a clear idea of how the proposed new tool 
will provide benefit to the operation of the system. It can be helpful if the team includes power engineers 
who have doubts about how strongly the tool will benefit the operation of the system.  
 
The team needs at least two economist experts in cost/benefit analyses – one leading the economic 
analysis and one providing critical review. It is highly recommended to use economists or other personnel 
with a strong finance background for this work, and the economist leading the analysis should ideally be 
the head of the project. Engineers with experience in cost/benefit analysis can suffice, but the 
fundamental differences in perspective and the increased methodological expertise of a trained economist 
will, in most cases, yield better results more clearly applicable to the economic and other concerns of the 
business making the decision. Building some time into the project for the economist and the engineers to 
iterate to a strong understanding of what each brings to the project may be necessary, unless the task can 
be given to a team that already has a strong history of such pairing.  

4.2 First steps 
 
The project’s beginning will involve a series of discussions in which the power engineers help the 
economists understand what they believe to be the benefits, costs, and other downsides to the proposed 
tool or methodology. This may sound easy, but often the approach to getting the engineer to provide this 
information is to get the engineer to discuss what the tool does, how it does what it does and why the tool 
is important.  In these discussions, the engineers will provide the information required to glean what is a 
benefit. This generally takes a few discussions for clarity and to bring out details.  
 
As the team carries on these discussions, the team can also review the literature to determine if any of the 
tool/methodology’s attributes have been previously valued, or if similar tools/methodologies have been 
reviewed. This will save time and effort in the long run and may identify other benefits and costs, which 
can then be discussed with the project team. 
 
At the same time or prior to this, a clear scope of effort needs to be determined, in terms of how much 
budget and effort is available for the cost/benefit analysis and what level of approximation is desired, 
bearing in mind that the lower the budget, the more approximate the result will be. For many probabilistic 
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tools and methodologies, determining whether the tool/methodology will be a net cost or net benefit and 
providing an order of magnitude of that net cost or net benefit is a desirable first outcome and sufficient to 
determine whether to pursue integration of the tool/methodology into operations. The scope should also 
include authorizing the team to clearly state factors left out of the analysis and why, which may be for 
reasons of scope, infeasibility due to the data available, or because certain factors are determined to have 
no bearing on the final business decision of whether the tool/methodology will be used by that 
organization or when it will be deployed. 
 
Example: A new probabilistic tool may be of primary interest because it will help the organization avoid 
regulatory penalties, but the decision on when to implement the tool or how to make a case to an advisory 
board or utilities commission may be based on whether it provides economic benefit aside from the 
impact on probability of regulatory penalties. To save time and budget, determining and carrying out a 
methodology to estimate savings in penalties might be left out, since it is not impacting the decision the 
organization currently needs to make.  
 
As a list of agreed-upon benefits and costs develops, for each identified possible cost and benefit, note 
possible methods by which each cost or benefit might be estimated and what data might be needed. At 
this stage, rule out estimation methods that are well beyond the scope and budget available, and 
brainstorm for approximations or proxy estimates for the desired information. Having a varied team 
including both power engineers and at least one expert economist helps a great deal in coming up with 
alternate methodologies, and literature searches may help with this as well.  

4.3 Data needs and availability  

Data availability often plays a larger role in determining methodology for this kind of study than 
engineers tend to expect; data may turn out to be unavailable or require more effort to obtain than the 
scope and budget of the cost/benefit analysis will allow. Key factors include who owns the data and how 
accessible it is (including what processing and cleanup it might need), weighed in light of who will later 
read the analysis and need to be able to review or replicate the process.  
 
A common mistake is to assume data is available that turns out to be unavailable or to assume data is 
much more easily acquired than it is when it comes time to gather it. As a result, it becomes important to 
get samples of key data as early on in the process as possible, because the effort required to acquire the 
data can’t be fully known until this is done.  
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5.0 Conclusions and Recommendations 

When there are wide intermittent swings in a system’s control performance due to intermittent resources 
in the system, time-series uncertainty reduction methods can be used to gain enough predictability to use 
in operational control strategies and tools. 

• Further research is needed on the methods tested in this project to determine the best parameters 
for the methods used – with further testing, even better results are likely than what was found.  

• It is recommended that other types of uncertainty reduction based on other machine learning and 
deep learning techniques be investigated for the same purposes. 

The type of variable generation resource that contributes most to a particular system phenomenon or 
problem should not be assumed but should be tested. Our investigation showed that wind variability in the 
CAISO system drove the need for regulation resources for the period studied more than solar variability, 
despite the higher penetration of solar. Similar analysis for other time periods is recommended.  
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Appendix A  ACE Plots 
This appendix contains additional data on ACE variability reduction, in support of Section 3.1. On each 
page of plots, weekdays appear at the top and weekends appear at the bottom. In all periods of the year 
and all hours of the day, pooling resulted in less ACE variability. 

• Balancing Area 1 

o January-February 2015, Figure A-1and Figure A-2 

o March-May 2015, Figure A-3 and Figure A-4 

o June-August 2015, Figure A-5 and Figure A-6 

o September-November 2015, Figure A-7 and Figure A-8 

o December 2015-February 2016, Figure A-9 and Figure A-10 

o March-May 2016, Figure A-11 and Figure A-12 

o June-August 2016, Figure A-13 and Figure A-14 

o September-November 2016, Figure A-15 and Figure A-16 

o December 2016, Figure A-17 and Figure A-18 

• Combined Balancing Areas 1-3 

o January-February 2015, Figure A-19 and Figure A-20 

o March-May 2015, Figure A-21 and Figure A-22 

o June-August 2015, Figure A-23 and Figure A-24 

o September-November 2015, Figure A-25 and Figure A-26 

o December 2015-February 2016, Figure A-27 and Figure A-28 

o March-May 2016, Figure A-29 and Figure A-30 

o June-August 2016, Figure A-31 and Figure A-32 

o September-November 2016, Figure A-33 and Figure A-34 

o December 2016, Figure A-35 and Figure A-36 
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Figure A-1: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for weekdays 

in January-February 2015 
 

 
Figure A-2: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for weekends 
in January-February 2015. 
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Figure A-3: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for weekdays 
in March-May 2015. 

 
Figure A-4: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for weekends 
in March-May 2015. 
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Figure A-5: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for weekdays 
in June-August 2015. 
 

 
Figure A-6: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for weekends 
in June-August 2015. 
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Figure A-7: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for weekdays 
in September-November 2015. 

 
Figure A-8: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for weekdays 
in September-November 2015. 
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Figure A-9: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for weekdays 
in December 2015 - February 2016. 

 
Figure A-10: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for 
weekends in December 2015 - February 2016. 
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Figure A-11: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for 
weekdays in March - May 2016. 
 

 
Figure A-12: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for 
weekends in March - May 2016. 



 

A.8 

 
Figure A-13: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for 
weekdays in June - August 2016. 

 
Figure A-14: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for 
weekends in June - August 2016. 
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Figure A-15: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for 
weekdays in September-November 2016. 
 

 
Figure A-16: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for 
weekends in September-November 2016. 
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Figure A-17: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for 
weekdays in December 2016 

 
Figure A-18: Reduction in share of ACE variability (95th percentile) responsibility for BA1, for 
weekends in December 2016. 
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Figure A-19: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekdays in January - February 2015. 
 

 
Figure A-20: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekends in January - February 2015. 
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Figure A-21: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekdays in March - May 2015. 
 

 
Figure A-22: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekends in March - May 2015. 
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Figure A-23: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekdays in June -August 2015. 

 
Figure A-24: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekends in June -August 2015. 
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Figure A-25: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekdays in September-November 2015. 

 
Figure A-26: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekends in September-November 2015. 
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Figure A-27: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekdays in December 2015-February 2016. 

 
Figure A-28: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekends in December 2015-February 2016. 
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Figure A-29: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekdays in March-May 2016. 

 
Figure A-30: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekends in March-May 2016. 
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Figure A-31: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekdays in June-August 2016. 

 
Figure A-32: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekends in June-August 2016. 
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Figure A-33: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekdays in September-November 2016. 

 
Figure A-34: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekends in September-November 2016. 
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Figure A-35: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekdays in December 2016. 

 
Figure A-36: Reduction in share of ACE variability (95th percentile) responsibility for the combined 
BAs, for weekdays in December 2016. 
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Appendix B  Analytical Methods 
The manuscript in this appendix may be updated for submission to a future technical conference. 
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Abstract— This paper presents a study applying decomposition-based automatic time series forecasting methods of 
uncertainty reduction to a frequency deviation time-series data for the WECC interconnect, using California Independent 
System Operator (CAISO) data to investigate the predictability of frequency deviations in look-ahead windows ranging 
from 5 to 10 minutes. Known days with high renewable generation variability and control performance challenge were 
analyzed alongside “stable” days for comparison. The impacts of the data resolution and the length of training periods were 
examined with predominantly 1-minute averaged data and with some comparison to original 4-second SCADA data. The 
training periods were one hour or 5 hours. Results showed that statistically significant reduction in uncertainty can be 
achieved up to 10-min ahead. The 5-min ahead predictions may yield an uncertainty reduction of about 50%. In some cases, 
1-minute data outperformed 4-second data.  

Index Terms—Interconnect frequency, Solar Generation, Wind Generation, Area Control Error, Balancing Authority. 

I. INTRODUCTION  
Prior to January 2016, a rule of thumb generally held true for the California Independent System Operator (CAISO) 

that if real-time market prices were stable over the course of a day, the North American Electric Reliability Council 
(NERC) control performance standard 1 (CPS1) would also be stable during that day, and vice versa. From January 
2016 onward, that rule of thumb has no longer held true. At that time, Pacific Northwest National Laboratory (PNNL) 
was undertaking an investigation into multifaceted barriers to increased solar penetration for the Soft Costs program of 
the Department of Energy’s SunShot Initiative [1]. Events experienced by the CAISO from January 2016 onward have 
shown that when the substantial amount of solar generation in the CAISO service area changed both unexpectedly and 
by a large-enough quantity in a short-enough time frame, in some cases those changes did not impact the real-time 
market energy prices even though they still impacted CPS1 1-minute scores, and that the swings in total generation can 
happen rapidly enough to be invisible to the unit commitment and security-constrained economic dispatch runs. For the 
first time, the rule of thumb (that stable prices meant stable CPS1 scores and vice versa) no longer held true. 

Rather than being an interesting but rare occurrence, this new phenomenon is a continuing and increasing problem: 
In 2017, the CAISO energy system experiences significant 
challenges caused by the dramatic growth of renewable grid 
connected generation (in particular solar generation, e.g., the 
new peak of grid connected solar production was set at 9,914 
MW in June 2017). In addition, penetration of distributed 
energy resources has been steadily increasing and reached 
approximately 6,000 MW by the end of 2017. As a result of 
this unprecedented growth, the CAISO encounters multiple 
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Pacific Northwest National Laboratory is operated by 
Battelle for DOE under Contract DE-AC05-76RL01830 
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critical and interrelated issues that are not easily resolved. These issues include 1) some instances of negative energy 
prices in the day-ahead (DA) market and frequent negative prices in the real-time (RT) market (for instance, the DA 
prices were negative over 50 hours total and the RT prices were negative for more than 10% of the time during the first 
quarter in 2017), 2) lack of balancing capacity and spikes in regulation procurement prices, and 3) deteriorating control 
performance indexes (required by NERC Reliability standards) [2].   

As a preliminary exercise to check whether time-series forecasting tools could produce enough predictability of 
system variables to be used in real-time operational tools that would address these rapid solar swings in the <10 minute 
timeframe, PNNL applied time-series forecasting to frequency deviations from scheduled frequency for selected days 
in January 2016. This paper presents the methodology and initial results for the selected days in January 2016, and for 
two additional days in March 2017. The purpose of the study reported here was to serve as a preliminary test to see 
whether a family of approaches using decomposition-based automatic time series forecasting on signals in which 
frequency is a component could even be workable in the operational timeframe mentioned; as such it does not attempt 
to solve the complex interrelated problems described. The results are encouraging for this type of approach in this 
timeframe, which is why those results are reported here. 

II. DATA 
The Western Interconnect frequency data were supplied by the CAISO, which supplied time series for both 

interconnect scheduled frequency and interconnect actual frequency. The primary focus is on a time-resolution of one 
minute, for which the actual frequency values are 1-minute averages of 4-second Supervisory Control and Data 
Acquisition (SCADA) data. Some additional results are shown using the original 4-second SCADA data.  

Early tests on different time periods and different training periods showed that the training period needs to be kept 
to a few hours or less to provide usable results in the <10 minute time frame. This is a natural consequence of the 
method described below, which looks back and ahead in terms of numbers of timesteps. As a result, individual days 
were chosen for the analysis and results presented here. An initial day of interest was chosen in January 2016, since it 
was the day on which the phenomenon described in the introduction was first noted and was a windy/rainy day during 
which total solar generation for the CAISO was swinging significantly in <10 minute timeframe and CPS1 hourly 
scores dropped below 100%. A nearby “stable” day in January 2016 was chosen for comparison. For comparison, 
another pair of dates were chosen from March 2017; a windy day with patchy rain, producing highly variable wind 
and solar production, was chosen and a “stable” day was added for contrast.     

III. METHODOLOGY 
Uncertainty in the frequency deviations can be reduced using accurate short-term forecasting techniques such as the 

autoregressive integrated moving-average (ARIMA) model. It is  generally  referred  to  as  an  ARIMA(p,d,q)  model  
in  which p, d, and q are non-negative integers that refer to the order of the autoregressive, differencing, and moving 
average parts of the model, respectively. The ARIMA(p, d, q) model of time series {y1, y2, …, yn} is defined as 

 
Φ𝑝𝑝(B)Δ𝑑𝑑y𝑡𝑡 = Θ𝑞𝑞(B)ϵ𝑡𝑡  ,                                                                  (1) 

 
where B is the backward shift operator, ∆ is the backward difference, d is the order of differencing, yt are the 
observational time series (e.g., frequency deviations), and Φp and Θq are polynomials of orders p and q, respectively.  

However, the frequency of an interconnect is not a simple signal to analyze, since it is impacted by the behaviors of 
many types of load, many types of generation, switching events, and other disturbances. These different impacts can 
move at dramatically different time scales, such as a switching event occurring in milliseconds versus the ramping-up 
of a generator taking place over the course of hours. When the time series of interest is a mixture of signals with 
dramatically different variations at different temporal scales, ARIMA fitting can become difficult or meaningless [3-
4].  

Time series decomposition can help alleviate this issue. Decomposed components of a time series (e.g., deviations 
from scheduled frequency, referred to here as Δ-frequency) are expected to have stronger continuity and more 
consistent autoregressive patterns, which make ARIMA prediction more applicable. With the auto.arima function in 
the R package ‘forecast’, the parameters p, d, and q can be automatically trained for each component.  Generally, 
higher-frequency components need an ARIMA model with a larger autoregressive parameter p, while lower-frequency 
signals require a larger differencing parameter d and moving average parameter q [5-8]. 

The automated-ARIMA integrated with signal decomposition helps alleviate the non-normality and non-stationarity 
issues such that ARIMA is more applicable. The ARIMA model parameters are trained automatically using maximum 
likelihood estimation approach. The original time series are decomposed into three parts: trend, seasonal and random, 
each component has better autoregressive patterns than the original time series. The overall prediction is:  
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ŷ =  ŷ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑  + ŷ𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠  +  ŷ𝑡𝑡𝑠𝑠𝑡𝑡𝑑𝑑𝑠𝑠𝑟𝑟 ,                                                     (2) 

 
With the standard deviation of the prediction approximated as: 
 

ŝ =  √{ŝ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑2  + ŝ𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠2  +  ŝ𝑡𝑡𝑠𝑠𝑡𝑡𝑑𝑑𝑠𝑠𝑟𝑟2
,},                                                    (3) 

 
and the predictive bounds are approximated as [ŷ–1.96 ŝ, ŷ+1.96 ŝ]. 

There are different ways of defining uncertainty in the forecast errors, here we use 1-sum.square(residuals) / 
sum.square(original) to represent the amount of uncertainty reduced by the predictions.  

Systematic time series decomposition and ARIMA model training and forecasting are done for various combinations 
of system conditions, lengths of training periods, time resolutions, and for different look-ahead time windows, to fully 
evaluate the performance of the integrated approach and quantify the predictability of the frequency deviation data.  

IV. RESULTS 
Results for predictions of Δ-frequency using 1-minute and 4-second resolution frequency data (actual, scheduled, 

and differences) for the Western Interconnect in January 2016 and March 2017 are shown in Figures 1-4 and in Tables 
1-2. Besides the comparison of the impacts of data resolution on the predictability of Δ-frequency, we also look at the 
impact of the length of the training periods, and evaluate the predictability during bad days (e.g., with strong 
anomalies) and good days. Among the testing cases, the “stable” days are January 26, 2017 and March 5, 2017, and 
the bad days are January 31, 2016 and March 6, 2017.  

A. January 26 and January 31, 2016 
Figure 1 shows the decomposition-based ARIMA results with one-minute data and a 5-hour training period for 

January 26, 2016. The original Δ-frequency is the black line, while the prediction is shown by the red line. The blue 
and green lines show the upper and lower bounds, respectively. The same information is shown in Figure 2 for January 
31, 2016.  

Table I gives the amount of uncertainty reduction for different combinations of time resolution and training interval 
for January 26 and January 31, 2016. The first four lines of the table show the results for one-minute resolution of Δ-
frequency. For January 26 and for a one-minute resolution and a one-hour training period, the amount of uncertainty 
reduction was 46.64% for a 5-minute look-ahead window, 18.69% for a 7-minute look-ahead window, and 9.12% for 
an 8-minute look-ahead window. For look-ahead windows of 9 and 10 minutes, there was no uncertainty reduction. 
These results were improved by changing to a 5-hour training period, for which the amount of uncertainty reduction 
was 52.21% for a 5-minute look-ahead window, 36.28% for a 7-minute look-ahead window, 31.02% for an 8-minute 
look-ahead window, 24.79% for a 9-minute look-ahead window, and 17.83% for a 10-minute look-ahead window.  
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Figure 1. Decomposition-based ARIMA 5-min-ahead prediction of Δ-frequency on January 26, 2016, with 1-min data resolution and 5-hour 

training period. The black line is the actual Δ-frequency, the red line is the prediction, and the blue and green lines are the upper and lower bounds 
respectively. 

 

 

 
Figure 2. Decomposition-based ARIMA 5-min-ahead prediction of Δ-frequency on January 31, 2016, with 1-min data resolution and 5-hour 

training period. The black line is the actual Δ-frequency, the red line is the prediction, and the blue and green lines are the upper and lower bounds 
respectively. 

 

TABLE I.  PERCENTAGE UNCERTAINTY REDUCTION,  JANUARY 26 VS. JANUARY 31, 2016 

data and training 
interval 

5-
min 

7-
min 

8-
min 

9-
min 

10-
min 

1-Min, Jan 26 2016, 
1-hr training 

46.64 18.69 9.12 -- -- 

1-Min, Jan 26 2016, 
5-hr training 

52.21 36.28 31.02 24.79 17.83 
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1-Min, Jan 31 2016, 
1-hr training 

45.47 4.12 -- -- -- 

1-Min, Jan 31 2016, 
5-hr training 

47.76 32.73 24.35 14.29 4.69 

4-Sec, Jan 26 2016, 
1-hr training 

30.43 15.11 10.88 0.89 -- 

4-Sec, Jan 31 2016, 
1-hr training 

42.25 19.46 8.95 -- -- 

4-Sec, Jan 26 2016, 
5-hr training 

28.71 13.45 9.21 -- -- 

4-Sec, Jan 31 2016, 
5-hr training 

42.37 19.52 9.01 -- -- 

 

 

The corresponding values for reduction in uncertainty were lower for January 31, 2016. For a one-minute 
resolution and a one-hour training period, the amount of uncertainty reduction was 45.47% for a 5-minute look-ahead 
window and 4.12% for a 7-minute look-ahead window. For look-ahead windows of 8, 9 and 10 minutes, there was no 
uncertainty reduction. This is substantially lower than the corresponding values for January 26. These results were 
improved by changing to a 5-hour training period, for which the amount of uncertainty reduction was 47.76% for a 5-
minute look-ahead window, 32.73% for a 7-minute look-ahead window, 24.35% for an 8-minute look-ahead window, 
14.29% for a 9-minute look-ahead window, and 4.69% for a 10-minute look-ahead window. Again, these values are 
substantially lower than the corresponding values for January 26, though the longer training interval for January 31 
makes the results for that day slightly better than the results of January 26 with the shorter training interval. This would 
indicated that further investigation of the optimal training window is warranted. 

Interestingly, the results for January 31 were better than the results for January 26 for shorter look-ahead windows 
when the time resolution of Δ-frequency was changed to 4 seconds instead of 1-minute averages of 4-second data. For 
a four-second resolution, a one-hour training period, and a 5-minute look-ahead window, the amount of uncertainty 
reduction was 30.43% for January 26 and 42.25% for January 31; for a 7-minute look-ahead window, the amount of 
uncertainty reduction was 15.11% for January 26 and 19.46 for January 31; however for an 8-minute look-ahead 
window the amount of uncertainty reduction was 10.88% for January 26 and 8.95 % for January 31. Similarly, for a 
four-second resolution, a one-hour training period, and a 5-minute look-ahead window, the amount of uncertainty 
reduction was 28.71% for January 26 and 43.37% for January 31; for a 7-minute look-ahead window, the amount of 
uncertainty reduction was 13.45% for January 26 and 19.52 for January 31; however for an 8-minute look-ahead 
window the amount of uncertainty reduction was 9.21% for January 26 and 9.01 % for January 31. So with 4-second 
data, January 31 performed better than January 26 for shorter look-ahead windows for both 1-hour and 5-hour training 
periods. 

Note that 4-second data did not necessarily give an advantage over 1-minute averaged data for look-ahead 
windows of the lengths chosen, and often produced lower results. The time-series methods used function best for 
smaller number of timesteps in the look-ahead windows. At these time scales the advantage of having a smaller number 
of timesteps by using averaged data has the advantage over finer resolution data with more timesteps per minute.   

B. March 5 and March 6, 2017 
Only 1-minute time-resolution data was looked at for March 5 and March 6, 2017.  Figure 3 shows the 

decomposition-based ARIMA results with one-minute data and a 5-hour training period for March 5, 2017. The 
original Δ-frequency is the black line, while the prediction is shown in the red line. The blue and green lines show the 
upper and lower bounds, respectively. The same information is shown in Figure 4 for March 6, 2017. 
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Figure 3. Decomposition-based ARIMA 5-min-ahead prediction of Δ-frequency on March 5, 2017, with 1-min data resolution and 5-hour training 

period. The black line is the actual Δ-frequency, the red line is the prediction, and the blue and green lines are the upper and lower bounds 
respectively. 

 

Table II gives the amount of uncertainty reduction for different combinations of time resolution and training interval 
for March 5 and March 6, 2017. For March 5 and for a one-minute resolution and a one-hour training period, the 
amount of uncertainty reduction was 48.14% for a 5-minute look-ahead window, 18.17% for a 7-minute look-ahead 
window, and 0.59% for an 8-minute look-ahead window. For look-ahead windows of 9 and 10 minutes, there was no 
uncertainty reduction. These results were improved by changing to a 5-hour training period, for which the amount of 
uncertainty reduction was 55.40% for a 5-minute look-ahead window, 40.68% for a 7-minute look-ahead window, 
31.92% for an 8-minute look-ahead window, 23.61% for a 9-minute look-ahead window, and 15.82% for a 10-minute 
look-ahead window. 

 

 
Figure 4. Decomposition-based ARIMA 5-min-ahead prediction of Δ-frequency on March 6, 2017, with 1-min data resolution and 5-hour training 

period. The black line is the actual Δ-frequency, the red line is the prediction, and the blue and green lines are the upper and lower bounds 
respectively. 
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TABLE II.  PERCENTAGE  OF UNCERTAINTY REDUCTION, MARCH 5 VS. MARCH 6, 2017 

data and training 
interval 

5-
min 

7-
min 

8-
min 

9-
min 

10-
min 

1-Min, Mar 5 2017, 
1-hr training 

48.14 18.17 0.59 -- -- 

1-Min, Mar 5 2017, 
5-hr training 

55.40 40.68 31.92 23.61 15.82 

1-Min, Mar 6 2017, 
1-hr training 

8.58 -- -- -- -- 

1-Min, Mar 6 2017, 
5-hr training 

13.56 -- -- -- -- 

 
The corresponding values for reduction in uncertainty were much lower or nonexistent for March 6, 2017. For a 

one-minute resolution and a one-hour training period, the amount of uncertainty reduction was 8.58% for a 5-minute 
look-ahead window, with no measurable uncertainty reduction for the larger look-ahead windows. These results were 
somewhat improved by changing to a 5-hour training period, for which the amount of uncertainty reduction was 
13.56% for a 5-minute look-ahead window, with no measurable uncertainty reduction for the larger look-ahead 
windows. Of the days considered, March 6, 2017 is the most difficult to predict due to its fast and continuously 
changing variance and periodicity). 

Overall, March 5, 2017 and January 26, 2016 are the two days with relatively consistent autoregressive patterns, 
although the latter has strong anomalies between 16:00-17:00.  

V. CONCLUSIONS 
An automated decomposition-based time series forecasting approach was developed and successively tested on 

Western interconnect frequency data from the CAISO. The approach was used to systematically explore the 
predictability of frequency deviations in the system under various system conditions (e.g., corresponding to different 
problematic renewable generation performance and control performance). Such predictability, in terms of the amount 
of reduced uncertainty, were summarized with respect to the data resolution and the length of training periods, with 
considered look-ahead windows ranging from 5 to 10 minutes. In general, statistically significant reduction in 
uncertainty can be achieved up to 10-min ahead, using 5-hour training period, which outperforms the 1-hour training 
period with a prediction range of 8-min ahead. Short-term predictions (e.g., 5-min ahead) may result in up to 50% 
uncertainty reduction, and 1-minute data seems to be adequate for the case studies as it often outperformed 4-second 
data.  

The approach performed well for the two time periods of study which were chosen as “stable” days when the 
weather and other major impacts on the system were fairly quiet, as well as for the unstable time period which was 
the day that originally prompted this study. For a time period featuring wind and patchy rain, however, white noise 
dominated the signal at the time resolution and look-ahead windows considered; therefore, while some uncertainty 
reduction was achieved, it did not compare to the other time periods. The approach performing well on the “stable” 
days and the day dominated by wide solar swings were enough to investigate this type of approach further for solutions 
that could help with the problems described in the introduction for the CAISO. 

The substantial changes in the amount of uncertainty reduction when changing between 1-hour and 5-hour training 
periods indicates that further fine-tuning of the training period is warranted. Too long a training period would involve 
the system state and the weather being able to change too much over the training period interval, and too short a 
training period would not train the method sufficiently.  

Prediction using data of 4-second time resolution performed equally or even worse than corresponding results for 
1-minute data. For the look-ahead windows considered, the increased number of timesteps in going to 4-second 
resolution made the total number of timesteps too large to produce much uncertainty reduction using these methods, 
with the result that 1-minute data had a distinct advantage given its computational efficiency.  

Future work will include fine-tuning the model parameters with longer records of data (e.g., along the course of a 
year), as well as comparison with other advanced time series forecasting techniques that are recently developed (e.g., 
auto-encoder or the short and long term memory (LSTM) deep learning approach). 

Additional future work will involve re-examining the results of tests of the sort that are detailed here every few 
years for each/any major interconnect. The overall load profile, including the predominance of electronic load, has 
undergone dramatic change and will continue to change, while new types of renewable and distributed resources and 
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new types of controllers come available. The change in balance of these factors over time or between interconnects 
warrants re-examining how well certain approaches to analyzing interconnect frequency work under existing 
conditions.  

The two broadest conclusions are: 1) This type of approach over the operational timeframe given and in 2016-2017 
conditions for the Western Interconnect worked well for frequency deviations and therefore might work well for other 
operational signals of which frequency is a component; and 2) preliminary tests of such methods under different 
conditions can be performed as detailed here. The results are strong enough to warrant further consideration of such 
methods for the phenomena plaguing the CAISO described in the introduction.  
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