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Executive Summary 

This technical report is a summary of work performed under the DOE GMLC program under the project 

titled “Discovery through Situational Awareness”.  The focus of this work was to apply big data, 

statistical techniques to PMU data to do the following:  1) baseline PMU data and find anomalies with a 

focus on phase angle pairs, 2) identify the frequencies of dominant modal oscillations between different 

parts of a power system, and 3) identify and classify frequency events in PMU data.   

 

This work was performed on PMU data from the Western Interconnect.  Many of these algorithms will be 

applied to wide area phase angle pair data on the Eastern Interconnect in a tool called ESAMS (Eastern 

Interconnect Situational Awareness Monitoring System).  ESAMS was built by EPG (Electric Power 

Group) and PNNL and is currently being installed on the Eastern Interconnect. 

 

The results discussed in this report were made from 14 PMUs from data ranging from Oct 2016 to May 

2018.  The PMU data were measured 60 times each second.  Fourteen phase angle pairs were included, 

with reactive and active power being calculated at 14 sites.  All results have been de-identified for this 

report. 

The anomaly-detection methodologies applied in the ESAMS tool are described in Section 2.  A baseline 

of PMU data is created using the last 120 days of data.  This baseline describes typical behavior as 

understood from the data.  The baseline is then applied to the next day’s data and anomalies from that 

baseline are identified.  Plots are created to help describe what is anomalous during that specific moment 

in time.  These algorithms are currently being installed on the Eastern Interconnect.  FY19 work will 

include discussing the results and findings from the ESAMS tool. 

A new method of identifying the frequencies of dominant modal oscillations between different parts of a 

power system is described in Section 3. The method is based on a novel spectral estimator that is robust to 

the effects of forced and ringdown oscillations. As a result, the ambient-only spectral estimate that it 

produces provides insight into baseline system behavior in terms of inter-area oscillations. This 

information can be used to prepare for the deployment of a mode meter or to better understand how 

system changes impact inter-area modes of oscillation. The method also identifies when large system 

events occur, so it can serve as a useful complement to methods specifically designed for that purpose. 

The methods described in Section 3 were also integrated into the ESAMS tool. 

A list of 199 frequency events provided by Bonneville Power Administration were used to create 

algorithms to detect frequency events and to create classification rules that can be used to identify future 

frequency events.  Section 4 discusses the performance of 7 different event detection methods.  Accuracy 

percentages ranged from 93.59% to 99.16%, with most methods being very fast (see Table 4-1).  GBM 

(Gradient Boosting Machine) performed well and quickly.   These 7 different methods were also tested to 

determine how well each built classification rules on training data and then applied those rules to identify 

future frequency events.  Accuracy percentages ranged from 89.09% to 99.9%, with all methods 

performing quickly (see Table 4-2).  GLM (General Linear Model) was viewed as the top performer when 



 

iv 

considering accuracy and processing time.  Because the list of events consisted of 80% of them as active 

power events and only 20% as faults, all methods struggled to identify events as faults.  Small faults were 

especially difficult to identify.  A separate algorithm was created to help with this.  Additional work will 

be done in FY19 on event detection using more data and more events and refinements to the methods. 
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1.1 

1.0 Introduction 

This technical report summarizes work that was done in FY18 under the DOE GMLC program under the 

task titled “Discovery Through Situational Awareness” (GMLC0070).  Mathematical and statistical 

algorithms were used to do the following:  1) Find anomalies in PMU data, with a focus on phase angle 

pairs, 2) identify the frequencies of dominant modal oscillations between different parts of a power 

system, and 3) identify and classify frequency events in PMU data. 

PMU data from 14 sites on the western interconnect were used for these investigations.  About 20 months 

of data were available for analyses (Oct 2016 to May 2018).  All site locations have been de-identified for 

this report. 

 

This paper is organized as follows –    

 Section 2 discusses the anomaly detection methodology that is being implemented in the ESAMS 

(Eastern Interconnect Situational Awareness Monitoring System) software.   

 Section 3 describes a new methodology that can be used to identify the frequencies of dominant 

modal oscillations between different parts of a power system.  This work was recently presented 

at the PMAPS 2018 conference. 

 Section 4 investigates using PMU data to identify frequency events and then using those data 

characteristics to classify and identify future frequency events. 

 

 

 

 





 

2.1 

2.0 Anomaly Detection Methodology Used for ESAMS 

The ESAMS (Eastern Interconnect Situational Awareness Monitoring System) anomaly detection 

calculation is a multi-step process.  It is a data-driven approach that uses past data to create a baseline of 

behavior and then compares new data to that baseline, to determine if anomalous behavior has occurred.  

This section goes step by step through the process and explains the methodology used.  A flowchart is 

given to further show the order and flow of the process. 

2.1 Reading the Data 
 

Currently the functions read csv formatted PMU data.  There is also the capability to read PDAT format 

(PDAT is a proprietary binary format used at BPA).  The data must have a date / time stamp in the first 

row, and the variable names in the first column.  These names need to be such that the type of variable 

(i.e. frequency, voltage) can be deciphered.  Each data file should contain 1 minute of data and the data 

should be at either a 30 Hz or 60 Hz rate.  Missing values are acceptable and should be entered as NA or 

NaN. Currently the function only keeps the phase angle pair differences and discards the other variables.  

Future analyses could be expanded to include some or all of these other variables or data from other 

sources. 

2.2 Calculating Features from the Data 
 

Once a one minute PMU data file is read in, features are extracted for each variable of interest (for now 

phase angle pair differences).  The features capture characteristics about the data stream, including value, 

variability of the value, rate of change, and variability in the rate of change.  These features are calculated 

by fitting a quadratic regression equation for every second of data, where time is the independent variable 

(x) and the value for the variable of interest is the dependent variable (y).  The intercept (representing a 

smoothed calculation of the value), slope (representing the rate of change), quadratic term (representing 

the rate of the rate of change), and noise (representing how well the data fits a quadratic regression 

equation) are calculated for each second.  This results in 60 measures of each of these four regression 

coefficients for a complete minute.  These measures are then summarized by calculating the mean and 

standard deviation of each.  At this time the rate of rate of change (quadratic term) and the noise 

coefficients are not included in any analyses, so the resulting features for each variable for each minute of 

data are: 1) the mean value; 2) the standard deviation of the values; 3) the mean rate of change; and 4) the 

standard deviation of the rates of change.  These features are saved each day into what is called a 

signature matrix and stored in the features database.  This matrix includes all 1440 minutes of the day on 

the rows and the four features for each variable of interest (phase angle pair differences) on the columns.  

These signature matrices are used in all future analyses discussed in the forthcoming steps. 
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2.3 Creating a Baseline from Past Data 
 

Each evening, after the processing for a day is done (typically at midnight), the “baseline” is calculated.  

The baseline relies on multivariate statistical techniques to capture how the data are typically behaving.  

The baseline captures all the necessary elements to calculate the anomaly score for new data.  The 

baseline is calculated using the last 120 days of signature matrices.  If there are less than 120 days of data 

available then it uses what is available.  No baseline is created until at least one day of data is available.  

The full 120 day matrix will have 172,800 rows (assuming that every minute during that timeframe had 

data available). The baseline consists of 5 steps, which are detailed below. 

 

The first step is to update the performance envelope gray background for each variable with the data from 

the last 120 days.  The gray background represents the values for each variable that have been observed 

during each minute of the day.  Darker the gray indicates that more days had that value during that minute 

of the day.  These matrices with counts in them are stored and then used when plots are needed.  

Performance envelopes are further discussed in a section below. 

  

The second step is to perform principal component analysis (PCA) on the data (the 120 days of signature 

matrices).  First the original, signature data are centered by subtracting the mean and scaled by dividing 

by the standard deviation within each column, with the mean and standard deviation of each column 

stored because they will be needed when applying the baseline to future data.  PCA uses an orthogonal 

transformation on this centered and scaled data to convert it into linearly uncorrelated variables called 

principal components.  These principal components represent linear combinations of the actual data that 

create or explain the most variance.  Each principal component looks at a completely different way to 

make a linear combination with maximum variance when compared to the previous principal components.  

The principal components that account for at least 90% of the total variation in the original data are kept 

for analyses in the next steps.  The rest of the principal components are considered to be noise and are 

removed from analyses.  This step removes the collinearity that exists from the many variables that are 

highly correlated.  This means that variables that are highly correlated will all make up the same principal 

component so that effect will only be represented once. 

 

The third step performs multivariate statistical clustering (often called unsupervised learning) on the 

principal components.  This takes each minute of data (each row) and groups it with similar minutes that 

have similar principal component values.  These groupings make up the clusters.  These clusters remain 

static for the next day of processing, but then can change when the baseline is updated.  The number of 

clusters is an arbitrary decision, so it was decided that the number of clusters should equal the third root 

of the number of minutes in the dataset, rounded up (with a full dataset of 120 days in the baseline, this 

amounts to 56 clusters).  Those minutes that are in sparsely populated clusters or even in a cluster by 

themselves (a singleton) are considered to be more atypical.  K-means is used as the clustering algorithm; 

however, a different algorithm could be plugged in if desired. The proportion of minutes that fall into 

each cluster are calculated and these proportions are part of the anomaly score calculation. 
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The fourth step creates a classification algorithm (often called supervised learning) using the principal 

components and the cluster assignments.  This algorithm creates classifier rules which represent static 

definitions for each cluster.  The rules are applied to a new data point (a minute) to determine which 

cluster that minute of data best belongs to.  Cluster analyses are used to create the groups (clusters), while 

classification is used to define each group and then classify each new minute into a cluster.  Linear 

discriminant analysis (LDA) is used as the classification algorithm; however, a different algorithm could 

be plugged in if desired. 

 

The last step is to create the last pieces necessary to calculate the anomaly score.  The Mahalanobis 

distance for each minute is calculated from the principal components.  Mahalanobis distance measures 

how far a multivariate data point is from the center (mean).  A Gamma distribution is fit to the 

Mahalanobis distances because it is a good fit for the right-skewed nature of the distances. The 

parameters for the Gamma are stored, as they are needed for the anomaly score calculations.   

Outputs from these five steps make up the baseline and are used so that anomaly scores can be calculated 

for each new minute of data. 

2.4 Applying the Baseline to New Data 
 

As soon as a new minute of data becomes available, an anomaly score is calculated for that minute.  This 

is done by first calculating the features for the new minute, using the methodology discussed above.  

Then, the features are converted into the principal components, using the principal component linear 

combinations that were updated in the baseline from the past 120 days.  The classifier from the baseline is 

then used to classify the new minute into which cluster (group) the new minute of data is most like.  The 

Mahalanobis distance is now calculated for the new minute with respect to the means and standard 

deviations calculated from the data used in the baseline.  This distance value is then translated into a 

probability using a Gamma distribution and the Gamma parameters provided by the baseline.  If this new 

minute is more anomalous, then it results in a value that is quite far from the typical values, receiving a 

probability value near 0.  This probability is the first input into the anomaly score equation. 

 

The second input comes from the clustering (grouping) results.  The proportion of minutes that shared the 

same cluster as the new minute is calculated.  For example, if there are 172,800 minutes used to get the 

baseline (1440 minutes x 120 days), and 17,000 of those minutes are in the cluster in which the new 

minute best classified into, then the cluster proportion for the new minute would be 0.0984 

(17,000/172,800).   

 

The anomaly score is calculated using the following equation:  𝑆𝑐𝑜𝑟𝑒 =  −𝑙𝑜𝑔𝑒(𝑝) − 𝑙𝑜𝑔𝑒(𝑐), 

where p is the Gamma probability and c is the cluster proportion.  Anomaly scores are always positive, 

with larger scores indicating that the minute is more unusual or anomalous.  Scores generally range from 

a little bigger than 0 to values in the 20s.  At this point, the cutoff for indicating a minute is anomalous is 

a score of 17 or more.  
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It is important to note that the new data, at this time, is not used to update the calculations for the baseline 

(principal components and clustering).  The current baseline is not changed until the end of the day, in 

which the new data will be included in the updating of the baseline (principal components and clustering). 

2.5 Performance Envelope Plots to Show Anomalous Moments 
 

After an anomalous moment has passed, a performance envelope plot is created for those phase angle 

pairs that contribute most to the anomalous moment.  An anomalous moment could be just 1 minute long, 

or many minutes long.  The example plot below is an anomalous moment of duration 2 minutes.  The 

algorithm combines all anomalous moments that are within 10 minutes of each other into one anomalous 

moment and then 5 minutes after that, the plot is produced.  The plot contains the five minutes before the 

anomaly, the time during the anomaly, and then 5 minutes after the anomaly.  The orange line shows the 

actual data for that time period.  The time period between the two vertical, dotted, red lines represents 

when the anomalous moment occurred.  The gray, background pixels represents the values that the 

specific phase angle pair had during the time that is represented on the x axis for the past 120 days.  The 

darker the gray pixel, the more times that value was seen during that time period.   

 

The example performance envelope below shows an anomalous moment that is 2 minutes long.  In the 

first minute (23:51), there is a sharp drop in phase angle pair difference and then, in the second minute 

(23:52), it happens again.  This plot is for a de-identified phase angle pair; however, in the ESAMS tool, 

it will be identified. 
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3.0 Oscillations 

Reliable operation of a large power system requires that the system’s electromechanical modes are 

sufficiently understood and monitored. The need for effective monitoring was clearly demonstrated in the 

August 10, 1996 breakup of the Western Electricity Coordinating Council (WECC) system. At that time, 

the existing models did not reflect the actual system dynamics (Kosterev, Taylor and Mittelstadt). Had 

effective monitoring been in place, system operators could have been warned that the system’s damping 

was declining to dangerous levels. 

Largely in response to the 1996 outage, the oscillatory modes of the WECC system are now monitored 

(Kosterev, Burns and Leitschuh). In systems where dynamics are less constraining than voltage stability 

or thermal limits, modes tend to be less understood. This is particularly true in large systems operated by 

several different entities. The large size makes model-based approaches difficult to implement, and the 

benefit of measurement-based methods is limited if synchrophasor data cannot be shared among different 

entities to achieve a wide-area view. Though this has been a severe limitation in the past, data sharing 

efforts such as those led by the Eastern Interconnection Data Sharing Network (Eastern Interconnection 

Data Sharing Network, Inc.) and Peak Reliability (Peak Reliability) are leading to an ever-wider view of 

power systems. Even in systems that are not currently dynamically constrained, changes in system 

configuration, generation mix, and typical line flows may lead to problems with modal oscillations over 

time. The data shared between entities can be leveraged to understand a system’s modes to provide early 

identification of changes and potential problems. 

In this section, a new method of identifying the frequencies of dominant modal oscillations between 

different parts of a power system is described. The method relies on an extension to the Modified Daniell-

Welch (MDW) nonparametric spectral estimator proposed in (Follum and Tuffner, A multi-channel 

method for detecting periodic forced oscillations in power systems) and updated in (Follum, Tuffner and 

Agrawal, Applications of a New Nonparametric Estimator of Ambient Power System Spectra for 

Measurements Containing Forced Oscillations). While maintaining the original algorithm’s ability to 

reject spectral content due to forced oscillations (FOs), the new algorithm also rejects wide-band spectral 

content due to ringdown oscillations that occur after large system events. The purely ambient spectral 

estimates that result can be used to identify dominant electromechanical modes at peaks in the spectra. 

Over time, these results can be used to detect changes in the modes. The method can be applied to many 

signals with relative ease because, as a nonparametric estimator, it does not require careful tuning. 

Following the naming convention of (Follum, Tuffner and Agrawal, Applications of a New 

Nonparametric Estimator of Ambient Power System Spectra for Measurements Containing Forced 

Oscillations), the spectral estimator is termed the Robust Modified Daniell-Welch (RMDW) estimator 

because it reliably estimates ambient spectra, even when other oscillations are present in the data. 

Nonparametric spectral estimation has previously been used to gain insight into the electromechanical 

modes of power systems. However, continued installation of phasor measurement units (PMUs), 

improved data availability and quality, and increased data sharing is leading to longer and broader 

datasets that will benefit from more advanced analysis approaches. Thus, this report also discusses the use 

of the k-means clustering algorithm (MacQueen) to make analysis of large datasets practical. The 
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clustering method is used for two distinct purposes: 1) to distinguish between dominant electromechanical 

mode frequencies and 2) to identify system events. Though the main motivation for detecting system 

events is to mitigate their impact on spectral estimates, the detection results could also be useful to system 

engineers. The method can also be used to validate the results of applications designed specifically to 

detect system events. 

The rest of this section is organized as follows. Background on spectral estimation and clustering 

techniques leveraged in the proposed method is provided in Section 3.1. The RMDW spectral estimator is 

then described in Section 3.2, followed by a description of the mode identification procedure in Section 

3.3. Section 3.4 contains results from experiments conducted on simulated and measured data.  

3.1 Background 

The ambient spectral estimator proposed in this report is an extension of the novel spectral estimator 

proposed in (Follum, Tuffner and Agrawal, Applications of a New Nonparametric Estimator of Ambient 

Power System Spectra for Measurements Containing Forced Oscillations).  A description of the base 

algorithm is provided in Section 3.1.1, before the new RMDW estimator is described in Section 3.2. 

Background on the k-means clustering algorithm, which is also used in the RMDW estimator, and an 

associated metric is provided in Section 3.1.2. 

3.1.1 The Modified Daniell-Welch Spectral Estimator 

The objective of spectral estimation is to capture the power of a signal as a function of frequency. The 

MDW estimator proposed in (Follum, Tuffner and Agrawal, Applications of a New Nonparametric 

Estimator of Ambient Power System Spectra for Measurements Containing Forced Oscillations) 

combines and alters elements from the Welch and Daniell spectral estimators to retain spectral content 

from ambient and ringdown oscillations while rejecting spectral content from FOs. For the applications 

discussed in (Follum, Tuffner and Agrawal, Applications of a New Nonparametric Estimator of Ambient 

Power System Spectra for Measurements Containing Forced Oscillations), these characteristics were 

ideal. 

The MDW estimator, like many nonparametric spectral estimators, is based on the simple periodogram 

given by  

𝜙̂𝑠(𝜔𝑟) =
1

𝑀
|∑ 𝑦𝑠(𝑚)𝑒

−𝑗𝜔𝑟𝑚

𝑀−1

𝑚=0

|

2

, (3.1) 

where 𝑦𝑠(𝑚) denotes a length 𝑀 segment of data. The term inside the absolute value is the Discrete 

Fourier Transform (DFT) and 

𝜔𝑟 =
2𝜋𝑟

𝑀
 , 0 ≤ 𝑟 ≤

𝑀

2
 (3.2) 
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is the sampled angular frequency with range 𝜔𝑟 ∈ [0, 𝜋]. Consider the set of 𝑁𝑚 frequencies 

Ω𝜌 = {𝜔𝜌|𝑟 −
𝑁𝑚 − 1

2
≤ 𝜌 ≤ 𝑟 +

𝑁𝑚 − 1

2
} (3.3) 

and denote the median operator as 𝑚𝑒𝑑{⋅}. Then the median-filtered simple periodogram, indicated with a 

′, is given by 

𝜙̂𝑠
′(𝜔𝑟) = 𝑚𝑒𝑑{𝜙̂𝑠(Ω𝜌)} (3.4) 

The median filter is applied in the frequency domain to suppress sharp peaks due to FOs. The MDW 

estimator is obtained by averaging the median-filtered simple periodograms from overlapping segments 

of data to reduce variance: 

𝜙̂𝑀𝐷𝑊(𝜔𝑟) =
1

𝑄 × 𝑆
∑𝜙̂𝑠

′(𝜔𝑟)

𝑆

𝑠=1

 (3.5) 

where 𝑆 is the number of segments and 

𝑄 = ∑ (𝑁𝑚 − 𝑗 + 1)
−1

1
2
(𝑁𝑀+1)

𝑗=1

 (3.6) 

is a scaling term. See (Follum, Tuffner and Agrawal, Applications of a New Nonparametric Estimator of 

Ambient Power System Spectra for Measurements Containing Forced Oscillations) for further details. 

3.1.2 Clustering 

Clustering is the process of partitioning 𝑁 points (vectors) into 𝑘 sets. An early approach to selecting 

these clusters based on the distance of each point from the center (centroid) of each set is k-means 

clustering (MacQueen). In this work, the specific implementation known as Lloyd’s algorithm was 

utilized (Lloyd). An outline of the algorithm’s steps, which follows the description in (MathWorks), is as 

follows: 

1. Initialize the centroids as a random set of 𝑘 points 

2. For each point: 

 Compute the distance to each centroid 

 Assign the point to the cluster with nearest centroid  

3. Recalculate each centroid as the mean of the cluster’s points 

4. Repeat steps 2-3 until cluster assignments remain unchanged 

Typically, step 2 is implemented based on Euclidean distance. However, a different distance measure is 

used in the RMDW algorithm, as described in Section 3.2. 
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Note that the final partitions are sensitive to the set of points selected in step 1. Further, the number of 

clusters 𝑘 must be specified at the outset, but is unknown for some applications. Thus, it is common to 

rerun the algorithm several times to select 𝑘 and ensure that a set of “poor” initial centroids do not result 

in poor performance. To choose the final partition across these trials, the silhouette metric is utilized. 

The silhouette was proposed as a graphical aid for interpreting and validating the partitioning of data into 

clusters (Rousseeuw). It applies equally well for the wide array of clustering algorithms. The graphical 

component is not considered in this paper to allow the algorithms to be automated, but the metric’s 

numerical value remains useful.  

To express the metric, begin by denoting points in cluster 𝐶𝑗 as 𝑥𝑗(𝑛) for 𝑗 = 1,2,… , 𝑘 and 𝑛 =

1,2,… ,𝑁𝑗. Thus, there are 𝑘 clusters and cluster 𝐶𝑗 has 𝑁𝑗 points. For point 𝑥𝑗(𝑛), the term 

𝑎[𝑥𝑗(𝑛)] =
1

𝑁𝑗 − 1
∑𝐷[𝑥𝑗(𝑛) , 𝑥𝑗(𝑙)]

𝑁𝑗

𝑙=1
𝑙≠𝑛

 (3.7) 

where 𝐷[𝑥𝑗(𝑛) , 𝑥𝑗(𝑙)] is the distance between points 𝑥𝑗(𝑛) and  𝑥𝑗(𝑙), captures the average dissimilarity 

between the point and all other points in the same cluster. A small value indicates the point is a good fit 

for the cluster. The term 

𝑏[𝑥𝑗(𝑛)] = min
𝑖=1,2,…,𝑘
𝑖≠𝑗 {

 

 1

𝑁𝑖 − 1
∑𝐷[𝑥𝑗(𝑛) , 𝑥𝑖(𝑙)]

𝑁𝑖

𝑙=1
𝑙≠𝑛 }
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is the minimum average dissimilarity between the point and all points in other clusters. A large value 

indicates that the point would not fit well into another cluster. The silhouette for point 𝑥𝑗(𝑛) is given by 

𝑠[𝑥𝑗(𝑛)] =
𝑏[𝑥𝑗(𝑛)] − 𝑎[𝑥𝑗(𝑛)]

max{𝑎[𝑥𝑗(𝑛)] , 𝑏[𝑥𝑗(𝑛)]}
 (3.9) 

and has the range −1 ≤ 𝑠[𝑥𝑗(𝑛)] ≤ 1. The average of 𝑠[𝑥𝑗(𝑛)] across all points, denoted as  𝑠̂, provides 

an indication of how well the data was clustered, with values near one indicating good clustering 

(Rousseeuw). Thus, the partition resulting in the largest  𝑠̂ across all values of 𝑘 and all trials is selected 

as the clustering result. Note that (3.9) can only be computed for 𝑘 ≥ 2. If 𝑠̂ < 𝛾 for some user-selected 

constant 𝛾, then all the data is assumed to belong to a single cluster.  

In the following two sections, k-means clustering and the silhouette metric are leveraged to estimate 

ambient spectra and identify dominant electromechanical modes from the estimates. The proposed 

methods could be implemented with other clustering methods. Initial results do not indicate that more 

advanced methods are needed, but advantages of other methods could be a topic for future work. 
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3.2 The Robust Modified Daniell-Welch Spectral Estimator 

Recall that the median-filtered simple periodograms  𝜙̂𝑠
′(𝜔𝑟) given by (3.4) are calculated from 

overlapping segments of data. Thus, they will take on similar values under ambient and FO conditions 

(recall that spectral content from FOs is suppressed by the median filter). However, if a ringdown is 

present in the data, the periodograms from segments containing the ringdown will have significantly 

larger values over a relatively wide frequency range. The RMDW estimator operates by examining the 

𝜙̂𝑠
′(𝜔𝑟) terms in (3.5) and removing those with abnormally large values to mitigate the effects of 

ringdowns. 

To enable this ability, the algorithm attempts to partition the 𝜙̂𝑠
′(𝜔𝑟) into two clusters. The clustering 

involves 𝑆 points, each corresponding to one of the median-filtered simple periodograms. Let 𝑅 denote 

the number of frequency bins 𝜔𝑟 under consideration. Then each point is in R-dimensional space.  

Within the RMDW algorithm, a non-Euclidean distance is utilized. To motivate its use, consider the toy 

example presented in Figure 3-1 and Table 3-1. The figure contains three median-filtered simple 

periodograms and the table contains distances between them (recall that each periodogram is viewed as a 

point). Though 𝜙̂3
′ (𝜔𝑟) tends to be higher, perhaps indicating the presence of a ringdown, the Euclidean 

distances are all similar. As an alternative, consider the “directional” distance defined for vectors 𝑣̅ and 𝑞̅ 

as 

𝐷 = |∑ 𝑣̅(𝑟) − 𝑞̅(𝑟)

𝑅−1

𝑟=0

| (3.10) 

The term directional is used to indicate that in a plot such as Figure 3-1, the measure accentuates 

consistently positive or negative differences across dimensions, i.e., frequency bins. Indeed, the 

directional distances in Table 3-1 reveal that 𝜙̂3
′ (𝜔𝑟) tends to be larger than the other periodograms. 

Referring to (3.10) as a distance is a misnomer, but it points to the value’s use in place of the more typical 

Euclidean distance. 
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Figure 3-1. Examples of median-filtered simple periodograms with distances listed in Table 3-1. 

 

Table 3-1. Distances between the example median-filtered simple periodograms in Figure 3-1. 

Pair Euclidean Directional 

𝜙̂1
′ (𝜔𝑟) ⇔ 𝜙̂2

′ (𝜔𝑟) 12.6 2.4 

𝜙̂1
′ (𝜔𝑟) ⇔ 𝜙̂3

′ (𝜔𝑟) 14.4 58.5 

𝜙̂2
′ (𝜔𝑟) ⇔ 𝜙̂3

′ (𝜔𝑟) 13.3 56.2 

Using the directional distance, the 𝜙̂𝑠
′(𝜔𝑟) are partitioned into two clusters. Let Φ𝐶 denote the length SC 

set of common 𝜙̂𝑠
′(𝜔𝑟) generated from ambient and FO data, and let Φ𝑅 denote the length SR set of 

𝜙̂𝑠
′(𝜔𝑟) with large values indicating the presence of a ringdown. The associated spectral estimates that 

follow from (3.5) are then 

𝜙̂𝐶(𝜔𝑟) =
1

𝑄 × 𝑆𝐶
∑ 𝜙(𝜔𝑟)

𝜙∈Φ𝐶

 (3.11) 

𝜙̂𝑅(𝜔𝑟) =
1

𝑄 × 𝑆𝑅
∑ 𝜙(𝜔𝑟)

𝜙∈Φ𝑅

. (3.12) 

After clustering, a set of requirements is evaluated to ensure that the clustering reflects the presence of a 

ringdown. The heuristic set of requirements used to produce the results in this paper follow: 

1. 𝑠̂ > 0.8 

2. 𝑆𝑅 <
𝑆𝐶

3
 

3. 𝜙̂𝑅(𝜔𝑟) > 𝜙̂𝑀𝐷𝑊(𝜔𝑟) at more than 
𝑅

2
 frequency bins 

4. 𝜙̂𝐶(𝜔𝑟) > 𝜙̂𝑀𝐷𝑊(𝜔𝑟) at more than 
𝑅

2
 frequency bins 
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Requirement 1 helps ensure that two distinct clusters are present: one for ambient/FO conditions and one 

for ringdown conditions. The second requirement reflects that ringdowns are relatively short compared to 

data lengths appropriate for the algorithm, so Φ𝑅 should be a significantly smaller set than Φ𝐶. 

Requirements 3 and 4 reflect that ringdowns typically increase signal power over a wide frequency range 

and reinforce that the clusters should be clearly separated from each other when viewed as spectra. If all 

requirements hold, then the RMDW estimate is given by 

𝜙̂𝑅𝑀𝐷𝑊(𝜔𝑟) = 𝜙̂𝐶(𝜔𝑟). 

The time-domain data segments associated with Φ𝑅 can be reviewed for the presence of a system event, 

which serves as a useful biproduct of the RMDW algorithm. If any of the requirements fail, then  

𝜙̂𝑅𝑀𝐷𝑊(𝜔𝑟) = 𝜙̂𝑀𝐷𝑊(𝜔𝑟) 

In each case an estimate of the ambient spectra is produced, regardless of the presence of FOs or a 

ringdown in the data. This characteristic makes the RMDW algorithm useful for identifying dominant 

electromechanical modes, as described in the next section. 

3.3 Dominant Mode Identification 

Dominant electromechanical modes are apparent in ambient spectra as broad peaks. The peaks in the true 

spectra are centered at the frequencies of the modes. For example, the model used to generate simulation 

data, which will be described more fully in Section 3.4.1, has modes with frequencies listed in Table 3-2. 

Note that these modal frequencies correspond to peaks in the true signal spectrum depicted in Figure 3-2. 

For a given signal, the largest peak corresponds to the most observable mode in the signal. Modes that are 

highly observable at many points in the system tend to be some of the most important for consideration. 

In the approach proposed in this section, these dominant system modes are identified based on spectral 

estimates from the RMDW algorithm. 

 

Table 3-2. Electromechanical modes of the miniWECC model used to generate simulation data. 

Mode Frequency (Hz) Damping (%) 

1 0.22 5.0 

2 0.37 6.0 

3 0.51 8.7 

4 0.69 5.8 
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Figure 3-2. Spectrum of the signal used for simulation studies under ambient conditions. Note that peaks 

correspond to the modes in Table 3-2. 

Spectral estimates from the RMDW algorithm are based on a relatively long window of data, say 30 

minutes, and updated on some regular interval, say every minute. For each spectral estimate, the 

frequency and signal power corresponding to the highest point in the spectrum is recorded. At the end of a 

day, 1440 such records will have been collected. Due to system configuration and operation changes, 

more than one mode may be captured. Using the simulation model as an example, records could be split 

between estimates near 0.22 Hz and 0.37 Hz. To identify multiple dominant modes observable in a signal, 

the k-means method is again employed. 

At the end of each day, the recorded frequency estimates are clustered, with each cluster corresponding to 

a dominant mode. In this application, the typical Euclidean distance is used. Without prior knowledge of 

the number of dominant modes observable in a signal, it is necessary to perform the clustering for several 

values of 𝑘. Multiple trials are also considered for each 𝑘, as described in Section 3.1.2. For the results 

presented in Section 3.4, five trials were conducted for 𝑘 = 2,3,4. If the average silhouette 𝑠̂ < 0.9, a 

single dominant mode was assumed. To account for the random nature of the frequency estimates, the 

clustering is performed a second time, after removing outliers from each initial cluster. 

At the end of the clustering procedure, the dominance of mode 𝑗 is given by 

𝐷𝑜𝑚𝑗 =
𝑁𝑗

∑ 𝑁𝑖
𝑘
𝑖=1

. (3.13) 

The range of frequency estimates in the cluster reflects the variation in the mode throughout the day. 

Estimate error contributes to the range as well. The range of signal power values associated with the 

frequencies also indicates the relative dominance of different modes that are observable in the signal. 

The results from the dominant mode identification algorithm could be used to gain initial high-level 

information about a system’s modes, to prepare for the deployment of a mode meter, or to relate changes 

in a system’s dynamics to parameters such as season, weather, line flow, and system configuration. In the 
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following section, experimental results are presented to demonstrate the viability of the proposed 

methods.  

3.4 Experimental Results 

To evaluate the performance of the methods proposed in Sections 3.2 and 3.3, experiments were 

conducted with simulated and measured power system data. In each test, data was available at 60 samples 

per second. Spectral estimates were generated based on 30 minutes of data broken up into 200 second 

windows with 100 seconds of overlap. The median filter had an order of 7, approximately 3 times the 

main lobe width of the rectangular window (see (Follum and Tuffner, A multi-channel method for 

detecting periodic forced oscillations in power systems) for discussion). Frequencies between 0.1 Hz and 

1 Hz were considered to cover the typical range of electromechanical modes.  

The signals selected for analysis were differences between voltage angles in different parts of the systems. 

Subtracting one voltage angle from another tends to suppress common signal components and accentuate 

oscillatory interactions between the areas. A first-order difference filter was applied to convert the angle 

signals to measures of frequency deviation about nominal with units of Hz.  

3.4.1 Simulation Results 

Simulation data were generated using the miniWECC, a simplified dynamic model of the WECC system 

(Trudnowski, Kosterev and Undrill). It contains 34 generators, 19 load buses, 115 AC lines, 2 DC lines, 

and a 1400 MW dynamic brake representative of the installation at Bonneville Power Administration’s 

Chief Joseph substation. For data generation, the model was linearized about an operating point. Random 

modulation was applied at each load bus to excite the system’s dynamics and produce ambient noise. A 

FO was induced by injecting a square wave with a 0.6 Hz fundamental frequency at a generator bus to 

model a stable limit cycle. The FO was present throughout the 30-minute simulation and was too small to 

be apparent in time-domain data. A ringdown was initiated at the simulation’s 15th minute by inserting 

the dynamic brake for 0.5 seconds. The resulting ringdown is depicted in Figure 3-3. 

 
Figure 3-3 . Example simulation data including a ringdown. 
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Results from the classic Welch, previously developed MDW, and new RMDW spectral estimators are 

presented in Figure 3-4. Because a model was used, the true power spectral density (PSD) of the system’s 

ambient noise is available for comparison. The classic Welch periodogram does not account for the 

presence of the ringdown or the FO. The ringdown adds significant energy to the signal, causing the 

Welch estimate to be much higher than the PSD at all frequencies. Because the brake insertion primarily 

excited the 0.37 Hz mode, its peak exceeds that of the 0.22 Hz mode. If the Welch estimate was used to 

identify dominant modes as in Section 3.3, the 0.22 Hz mode would not be listed as dominant for the 30 

minutes that the ringdown remained in the analysis window. Further, the Welch periodogram contains a 

large peak due to the FO at 0.6 Hz, which could distort the dominant mode identification results for an 

even longer period. 

 
Figure 3-4 . Spectral estimates from simulated data. Note that the RMDW estimate most closely matches 

the true ambient spectrum. 

Next, consider the MDW estimate. The MDW estimator was designed to suppress spectral content due to 

FOs while retaining the effects of ringdowns. The ringdown causes the MDW estimate to be higher than 

the PSD across the frequency range of interest, just like the Welch periodogram. However, the MDW 

estimator removes the FO peak at 0.6 Hz, as expected.  

Finally, consider the RMDW estimate. By automatically removing data segments containing the 

ringdown and suppressing the FO’s spectral content, the RMDW estimate closely matches the true PSD. 

Results from the dominant mode identification process described in Section 3.3 implemented with the 

RMDW estimator would reveal that under ambient conditions the 0.22 Hz mode is dominant in the 

selected signal. This information could be useful for implementing a mode meter or noticing changes in 

the system’s dynamics. 

3.4.2 Measurement Results 

To verify performance under real-world conditions, the proposed methods were applied to synchrophasor 

measurements from the WECC system. The results reported here were generated from six days’ worth of 
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data collected over seven calendar days in October 2017. From the synchrophasor measurements, 14 

voltage angle pairs were constructed to examine interactions between different areas of the system. 

The RMDW estimator was used to implement the dominant mode identification algorithm described in 

Section 3.3. Results for the seven calendar days are presented in Table 3-3. Note that for the first four 

days, the dominant mode for most angle pairs was near 0.33 Hz. The dominance metric in (3.13) was near 

unity for most of the channels. For the latter three days, the dominant mode transitioned to near 0.25 Hz, 

again with dominance metrics near unity. Both of these frequencies are well known to correspond to 

modes in the WECC system. Further investigation by the Bonneville Power Administration revealed that 

the change in mode observability coincided with a major transmission line being taken out of service.  

 

Table 3-3. Estimates of dominant mode frequencies across seven days. Note the distinction between days 

1-4 and days 5-7. 

 

Recall that the RMDW provides accurate ambient spectral estimates by detecting and removing event 

data from consideration. During the analysis, events with widespread impact (detected in at least 10 of the 

14 signals) were recorded for further review. Six such events were detected, five of which were clearly 

visible as ringdowns in time-domain data. An example of one of the events is presented in Figure 3-5. For 

the signal highlighted in red, spectral estimates from 30 minutes surrounding and including the event are 

presented in Figure 3-6. Highest peaks are indicated with dots. Due to the ringdown and a FO, the highest 

peaks in the Welch and MDW estimates are near 0.75 Hz. By removing the ringdown and suppressing the 

FO, the RMDW identifies the mode near 0.25 Hz as the most dominant under ambient conditions.  
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Figure 3-5. Ringdown event detected by the RMDW estimator. Spectral estimates for the signal 

highlighted in red are presented in Figure 3-6. 

 
Figure 3-6. Spectral estimates for the signal in Figure 3-5 highlighted in red. Highest peaks in each 

estimate are indicated with dots. 

The results presented in this section demonstrate that the proposed methods can be practically applied 

with power system measurements. The RMDW estimator provides accurate estimates of ambient spectra 

that can be used to identify the most observable system modes in signals. Transitions in modal 

observability and significant system events can be identified with the method, making it a useful 

companion to more traditional event detection algorithms. 

Estimates of ambient spectra based on synchrophasor measurements provide a wealth of information 

about the system’s electromechanical modes. Dominant modes can be identified and changes in their 

characteristics can be monitored. Along with ambient noise, measurements contain forced and ringdown 

oscillations that perturb conventional spectral estimators, making it difficult to consistently track the 

ambient spectrum. The RMDW spectral estimator proposed in this paper solves the problem by 

automatically distinguishing between ambient and transient conditions and suppressing spectral content 

from FOs. The new method can be used to identify dominant system modes and to detect system events. 
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4.0 Classification 

4.1 Frequency Events 

A list of 199 frequency events from October 2016 to May 2017 was obtained from Bonneville Power 

Administration (BPA). These events were detected by BPA using existing tools. There are two main types 

of frequency events consisting of active power events and faults. The frequency event list includes the 

number of sites that were affected by the event as well as the largest magnitude drop detected, which 

indicates the severity of the event. Most of the listed events can be observed visually in the time domain. 

Figures 4-1 to 4-3 show examples of a normal minute, a minute with an active power event, and a minute 

with a fault, respectively. 

 
 

Fig. 4-1.  Frequency over a minute for an example under normal conditions. 

 
 

Fig. 4-2.  Frequency over a minute for an example with an active power event. 
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Exploratory data analysis shows that all of the frequency signals are highly correlated in our dataset. 

The correlation and cross-correlation are usually above 99.99%. Therefore, choosing one of them as the 

primary signal is adequate for the main task in this study. The data for several of the 199 events are 

completely missing. Therefore, such events were not included in the study. Also, several events are not 

visible for the recorded time. This might be due to human mistakes during the time recording process. 

There are some small events that only affect 3 or 4 sites as opposed to most events that affect more than 

40 sites. Such events are usually small faults. They are not included in the training data, because the main 

task of the trained algorithm is to detect large events. However, this study also includes a complementary 

algorithm that detects small faults and tests whether the final model can capture such small events. This 

idea is discussed in Section 4.2. 

Other main data wrangling tasks include signal selection, missing data imputation, and window size 

selection. One frequency signal is chosen as the primary signal for the study. An important question is 

whether incorporating more signals other than the frequency signal can improve the performance in the 

machine learning algorithms. The computation time will definitely increase, but adding other types of 

signals could also boost accuracy. There are five major categories other than frequency, namely, the 

current magnitude, voltage magnitude, paired phase angle difference, active power, and reactive power. 

Figure 4-4 is an example minute of data showing an active power event in six different categories of 

signals. The first signal from each category is chosen and added to the training dataset to see if the 

performance of the machine learning algorithms based on six signals will be better than the one based 

solely on one frequency signal. There are missing data within some minutes. For the events with little 

missing data within the minute, the previous value is imputed to the missing spot. 

 
 

Fig. 4-3.  Frequency over a minute for an example with a fault. 
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Since all the recorded frequency events have duration of less than one minute, a one-minute window 

size is chosen for the training data. All the training data are formed according to the following rule. If the 

event happens after 30 seconds within a minute, move the window 30 seconds forward. In this way, all 

the events are completely present in the training data. This is especially meaningful for the events that 

occurred after 50 seconds within one minute. At the testing stage, when screening the model through the 

unseen days, the events can happen anywhere within the one-minute window. It is interesting to see if the 

model can flag events that happen very late within the one-minute window. This issue is discussed in 

Section 4.3. There are 164 events with good quality data. A total of 336 normal minutes with good data 

are randomly selected throughout the dataset. These 500 minutes of data form the dataset for selecting the 

best machine learning algorithm. 

 
 

Fig. 4-4.  Example of an active power event in six categories of signals. 
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Fig. 4-5. Flowchart of classifying an incoming minute. 

4.2 Methodology 

Figure 4-5 shows the methodology in this study for detecting and classifying events in a new 

incoming minute. Signal selection, window selection, and data imputation are a part of data wrangling. 

After that, feature extraction is a vital component before feeding the extracted features to the machine 

learning algorithms. Whether to select and normalize the features are also important topics discussed in 

this section. If an event is detected, then event classification algorithm will be used to determine the type 

of event just occurred. If no event is detected by the main machine learning algorithm, the small fault 

detection algorithm will be used to see if there is a small fault within the minute. If not, this minute will 

be classified as normal. 

For time series data mining, an important issue is feature extraction. The feature extraction method 

should be simple enough to avoid massive computational time, but still capture adequate information to 

perform accurate prediction. Three methods of feature extraction are investigated in this study. The first 

method is a simple 5-statistics summary approach (mean, maximum, minimum, median, and variance). 
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The second method is the 16 signature elements discussed in Section 2.2 (Amidan and Ferryman). The 

main idea of this method is to fit a quadratic regression line to every second of the data of the form: 

𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑,                                                                  [4.1] 

where a, b, and c are the estimated coefficients of the regression fit and d is the Mean Square Error 

(MSE) of the fit. For the whole minute of data, there are 60 a’s, b’s, c’s, and d’s, for which the mean, 

maximum, minimum, and standard deviation are calculated. Therefore, there are 4 statistics for each 

coefficient and the MSE, thereby forming the 16 (4×4) signature elements. The third method is based on 

the same idea as the second one, but in addition to the mean, maximum, minimum, and standard 

deviation, the median, the skewness and kurtosis are also calculated, resulting in 28 (4×7) signature 

elements. 

Seven machine learning algorithms are used in this study, namely Decision Tree (DT), Random 

Forest (RF), Support Vector Machine (SVM), Artificial Neural Network (ANN), Adaptive Boosting 

(AdaBoost), Gradient Boosting Machine (GBM), and Generalized Linear Model (GLM) (Hastie, 

Tibshirani, and Friedman). Among these algorithms, DT, RF, AdaBoost, and GBM are decision tree-

based. During the model training period, 10-fold cross-validation repeated 5 times is used for parameter 

tuning and model evaluation.  

A practical question before training the algorithms is whether the extracted features should be 

normalized: 

𝑓∗ = 
𝑓−𝑚𝑒𝑎𝑛(𝑓)

𝑠𝑑(𝑓)
.                                                              [4.2] 

Normalization might affect the performance of some of the machine learning algorithms, but not all 

of them. Tree-based algorithms are usually not affected while ANN often needs the data to be normalized. 

 
 

Fig. 4-6.  Mean of correlations between paired frequencies for all the events. 
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Another question pertains to whether the extracted features are all useful or whether the number of 

predictors can be reduced using dimensionality reduction techniques like Principle Component Analysis 

(PCA) (Abdi and Williams) or Variable Importance provided by the machine learning algorithms. 

Variable importance is usually calculated by a permutation test based on the idea that if a feature is 

important, then rearranging the values of that feature randomly will decrease the performance of the 

algorithm (Strobl and Zeileis). The impact of variable screening is discussed in Section 4.3. 

When training the algorithm, it is important to pay attention to both sensitivity and specificity. 

Sensitivity refers to the probability of correctly identifying an event given there is actually an event. 

Specificity is the probability of recognizing there is no event given there is actually no event. The 

objective is to have high detection rate, or high sensitivity, and few false alarms, or high specificity. 

After detection of an event, an important aspect of situational awareness is to know the type of event 

that just happened. The second stage of the proposed approach is to classify events. Among the training 

data, around 20% of events are faults and the other 80% of events are active power events. Therefore, all 

the algorithms will likely lean towards classifying the events to be active power events based upon the 

original features. Exploratory data analysis shows that correlations between frequency signals are 

generally lower when there is a fault than when there is an active power event. This can be seen in Figure 

4-6. Therefore, the mean of all the correlations between paired frequencies is added as a new feature in 

the second stage. Sensitivity in the second stage refers to the probability of correctly identifying an active 

power event given the event is actually an active power event. Specificity here is the probability of 

identifying a fault given that the event is actually a fault. 

Although the resulting machine learning algorithm is very good at detecting and classifying most 

events (shown in Section 4.3), it is not good at detecting small faults. Figure 4-7 shows an example of a 

small fault event. As can be seen, most parts of the minute look like a normal minute. Therefore, a new 

 
 

Fig. 4-7.  Frequency over a minute for an example with a small fault. 
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algorithm is developed to be complementary to the main algorithm as it is specialized at detecting small 

faults. This algorithm has three steps: 

1. Calculate the first order differences of the data within the window; 

2. Conduct a k-means clustering on the first order differences with 𝑘 (the number of clusters) set to be 

2; 

3. Calculate the mean silhouette value (always between 0 and 1) of the resulting clustering. 

The silhouette value is calculated as (Rousseeuw): 

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max {𝑎(𝑖),   𝑏(𝑖)}
 ,                                                                   [4.3] 

where 𝑎(𝑖) stands for the mean distance of datum 𝑖 with all other data within the same cluster and 𝑏(𝑖)  is 

the lowest mean distance of 𝑖 to all points in any other cluster. A high value of the mean silhouette of all 

points, usually greater than 0.9, indicates the appearance of a small fault event. This approach helps to 

identify small faults, because faults usually cause the frequency to oscillate, which can be well captured 

by high values in the first order differences.  Such high values form an obvious outlier group that is 

different from the near-zero values of normal frequency first order differences. Therefore, if there is proof 

that there are two groups well separated within the first order differences, there is a high probability of the 

appearance of a fault. A mean silhouette value greater than 0.9 shows evidence that there are two different 

groups in the clustering result. 

4.3 Results 

In this section, the best feature extraction method is identified. The results from model training and 

testing are examined to select the best machine learning algorithm for each stage. Then, separate testing 

on a whole month of unseen data is evaluated. Lastly, further discussions regarding variable importance 

and event precursor are provided. 

For the three methods of feature extraction, the 16 signature elements approach turns out to be the 

best regarding detection and classification accuracy. The 5-statistics summary approach is simple and 

computationally fast, but it generally leads to around 5% lower correctness in sensitivity except for SVM 

and GLM. For GLM, the 5-statistics summary obtains a decent result of 97.55% sensitivity and 99.11% 

specificity. The SVM result is also quite good, having a 96.20% sensitivity and 99.05% specificity. 

However, these results are still not as good as the ones obtained based on the 16 signature elements. The 

28 signature elements approach turns out to be the worst regarding event detection, with generally a 10% 

decrease in sensitivity compared to the 16 signature elements. This is an interesting finding because the 

original 16 signature elements are still included in the 28 signature elements. This indicates that the 

additional three statistics are adding more noise rather than information regarding the state of the grid. 

This also implies that not every feature is helpful for our task, so dimensionality reduction is useful for 

both speeding up the algorithm and increasing accuracy. 
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Table 4-1. Event Detection Results and Computational Time (in Seconds). 

 Incorporating five different signals other than frequency does not help the machine learning 

algorithms perform better. In fact, all the machine learning algorithms perform worse than when just 

using one frequency signal. On average, there is an over 2% decrease in sensitivity in the first stage. 

Again, this shows that adding more features does not necessarily correspond to an increase in accuracy. 

The need to normalize the features is also investigated. Most algorithms are not affected by 

normalization, except for ANN. ANN results have been greatly improved after normalization, even 

appearing to be the best algorithm, achieving 99.25% sensitivity and 99.07% accuracy. Further testing on 

unseen days reveals that this final model is over-trained, which is a common problem with ANN. 

The optimal values of the hyper-parameters were determined by a grid search. Event detection results 

are shown in Table 4-1. Computational time is obtained using a single desktop. It is worth mentioning 

that the training time is not very important since it is performed off-line on the historical data. Testing 

time is very important if this approach is to be used in a real-time on-line setting. The priority is 

sensitivity since the main objective is to identify system events. AdaBoost achieved the best sensitivity, 

but it takes a long time to train. GBM is the second best regarding sensitivity, and it only takes 9 seconds 

to train. On the other hand, specificity is also important because too many false alarms are also not ideal. 

Even a 1% decrease in specificity matters because that corresponds to about 1440×0.01=14.4 more false 

alarms on average per day. Therefore, over 99% specificity is desirable. The best specificity is 99.53% 

obtained by GBM, which corresponds to 6.8 false alarms per day. Regarding computational time, 

AdaBoost takes much longer than the other algorithms to train. The testing time includes feature 

extraction time, so theoretically it is the time needed to detect events from real-time PMU data. The 

testing of one incoming minute can be done within 0.2 seconds for most algorithms, which is good 

compared to the present technique using Supervisory Control and Data Acquisition (SCADA). SCADA 

measurements come in every 4 seconds and it takes minutes (sometimes more than 10 minutes) for the 

state estimation algorithm to run and to inform the system operator that an event might have happened. If 

such time can be reduced to seconds by machine learning applications on PMU data, situational 

awareness will be improved for operators and a near real-time wide area view of the power grid can be 

achieved. 

 

Algorithm Sens Spec Accu Training Testing 

AdaB 98.67 99.40 99.16 473.0s 0.50s 

ANN 81.66 99.41 93.59 13.3s 0.14s 

DT 94.90 97.92 96.93 3.3s 0.18s 

GBM 98.18 99.53 99.08 9.0s 0.14s 

GLM 97.91 99.35 98.88 12.6s 0.14s 

RF 96.96 99.05 98.37 21.3s 0.12s 

SVM 97.29 98.51 98.11 9.2s 0.14s 
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Table 4-2. Event Classification Results and Computational Time (in Seconds). 

Event classification results are shown in Table 4-2 for the second stage of model training. Since there 

are more active power events in the training data, it is easier for the algorithms to identify them. Some of 

the algorithms achieve 100% at classifying active power events into the correct type. The harder part is 

specificity, which represents the probability of correctly classifying a fault. GLM achieved the best 

specificity, which is 99.50%. It also has the best overall accuracy. Regarding computational time, it is 

interesting to note that by adding the “mean correlation” feature, AdaBoost returns to normal 

computational time. The testing time includes the time to calculate the mean correlation for twelve 

frequency signals. Most training can be done within a few seconds, and most testing of one event can be 

done within 0.3 seconds. Considering sensitivity, specificity, and computational time, GBM is chosen for 

the first stage and GLM is chosen for the second stage. 

Separate testing is done on the May 2017 data. GBM and GLM models are trained for event detection 

and classification without any of the May 2017 data. Such models are used to detect and classify events 

for all the minutes of May 2017. There are 41 recorded events in May 2017, and GBM flags 37 of them. 

The 4 missed events are all small faults that affect only 3 or 4 sites rather than the over 40 sites for most 

events. The small fault event detection algorithm is used to screen the whole month of data and it detects 

all the 4 missed events and some other small potential faults that are not listed. Among the 37 flagged 

events, 36 of them are classified as the right type. There is one fault misclassified as an active power 

event. To conclude, the algorithm flags all the recorded events in May and classifies all of them, but one, 

into the correct types. For each event, the time needed to detect and classify it is less than one second. The 

same testing using other algorithms is also investigated. AdaBoost and GLM are chosen to conduct event 

detection for May 2017, because they are the best two algorithms, besides GBM, regarding performance 

in the training period. AdaBoost misses one listed event, and GLM misses four listed events, both with 

the help of the small event detection algorithm in the first stage. For event classification, RF and GBM are 

chosen to test the May 2017 data. They both correctly classify 34 out of 37 events, which is worse than 

GLM. 

 

Algorithm Sens Spec Accu Training Testing 

AdaB 99.22 97.17 98.79 6.3s 0.24s 

ANN 100.0 48.00 89.09 9.3s 0.26s 

DT 99.22 97.17 98.79 2.5s 0.31s 

GBM 100.0 97.17 99.41 7.0s 0.29s 

GLM 100.0 99.50 99.90 5.9s 0.26s 

RF 99.85 98.00 99.46 6.9s 0.25s 

SVM 97.33 98.50 97.58 5.4s 0.25s 
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There are on average 10 false alarm minutes every day for this testing. One concern about this 

approach is whether it can flag events that happened after 50 second within the one minute window. 

There are 6 such events in May 2017. The algorithm flags all 6 of them. For 4 of these 6 events, the 

algorithm also flags the next minutes since the major parts of the events are in the next minutes. 

Regarding dimensionality reduction, PCA does not do well at reducing the number of predictors. Even 

after accounting for 97% of the variation, the principle components can only produce around 90% 

accuracy in the first stage. On the other side, variable importance is a good option for dimensionality 

reduction. When removing all variables other than the 4 most important variables, most algorithms 

produce very similar results compared to using all 16 features. 

Most algorithms agree on which variables are most important for event detection. Variables 4 

(standard deviation of a), 5 (minimum of b), 8 (standard deviation of b), 9 (minimum of c) appear in 5 

algorithms to be the top 4 variables. For event classification, most algorithms agree that “Mean 

Correlation” is the most important variable regarding algorithm performance. SVM turns out to be the 

best in overall accuracy for event detection after variable selection, even better than GBM with 16 

variables. However, SVM is worse than GBM regarding specificity. According to the results, SVM (with 

the 4 most important variables) is chosen to test the May 2017 data. It detected 39 out of 41 events, 

including 2 small faults. But it has on average 23 false alarms per day, which is twice the number of false 

alarms of GBM with 16 variables. For the classification, three algorithms are tried with the top 4 

variables. None of them perform as well as GLM with 16 variables. Training time is generally shorter 

when using 4 variables while testing time is not affected much. 

Testing on a whole month of data with the small event detection algorithm also reveals possible event 

precursors. It could be important to be able to detect small events that precede big events. These small 

 
 

Fig. 4-8.  An example of several small faults before a large fault. 
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events might be good indicators of larger events and detecting them might help in avoiding big events. 

Figure 4-8 is a good example of small faults happening before a big fault. All the small faults are missed 

by the given list. The last big fault is recorded by the list. Our algorithm detected all of the faults shown in 

this figure. 
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