

Proudly Operated by Battelle Since 1965

Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount

February 2018

V Gervasio JD Vienna DS Kim AA Kruger

Prepared for the U.S. Department of Energy under Contract **DE-AC05-76RL01830**

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062 <u>www.osti.gov</u> ph: (865) 576-8401 fox: (865) 576-5728 email: reports@osti.gov

Available to the public from the National Technical Information Service 5301 Shawnee Rd., Alexandria, VA 22312 ph: (800) 553-NTIS (6847) or (703) 605-6000 email: info@ntis.gov Online ordering: http://www.ntis.gov

PNNL-26996 EWG-RPT-015, Rev 0.0

Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount

V Gervasio DS Kim JD Vienna AA Kruger

February 2018

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory Richland, Washington 99352

Abstract

Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable waste oxide loading (WOL) was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of immobilized high-level waste (IHLW) glass when no uncertainties were taken into account. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimated glass mass of 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The immobilized low-activity waste (ILAW) mass was predicted to be 282,350 MT without uncertainty and with waste loading "line" rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MT. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.

Quality Assurance

This task was performed under the U.S. Department of Energy (DOE) Office of River Protection (ORP) Inter-Entity Work Order # M0ORV00020 and under Pacific Northwest National Laboratory's (PNNL's) Nuclear Quality Assurance Program (NQAP). The NQAP uses ASME NQA-1-2012, Quality Assurance Requirements for Nuclear Facility Applications as its consensus standard and NQA-1-2012 Subpart 4.2.1 as the basis for its graded approach to quality. The information in this report was produced under a grading of Basic Research.

Acknowledgments

The authors gratefully acknowledge the financial support provided by the U.S. Department of Energy Waste Treatment and Immobilization Plant Project.

The authors also thank the following people for their technical review and consultations on the work leading to this report:

- Michael Schweiger (PNNL) for peer review of the document
- Jeremy Belsher (WRPS) for supplying the waste feed vectors used in the calculation

These calculations were based on the *Preliminary ILAW Formulation Algorithm* and the *Preliminary IHLW Formulation Algorithm* developed by the Bechtel National, Inc (BNI) as part of the WTP project. We are thankful to BNI for use of these algorithms.

The authors thank Hans Brandal for quality assurance support and Veronica Perez for records management.

Acronyms and Abbreviations

BNI	Bechtel National, Inc.
CI	confidence interval
C_{Sp}	equilibrium concentration of spinel in the melt
CRV	concentrate receipt vessel
DOE	U.S. Department of Energy
DWPF	defense waste processing facility
DWPF-EA	defense waste processing facility environmental assessment
EMF	effluent management facility
ETF	effluent treatment facility
GFC	glass forming chemical
HBV	HLW blend vessel
HLW	high-level waste
IHLW	immobilized high-level waste
ILAW	immobilized low-activity waste
LAW	low-activity waste
LAWPS	low-activity waste pretreatment system
MFPV	melter feed preparation vessel
MFV	melter feed vessel
MT	metric ton
NP	nepheline
ORP	Office of River Protection
PCT	Product Consistency Test
РТ	pretreatment facility
RMSE	root mean squared error
RPD	relative percentage difference
SCI	simultaneous confidence interval
<i>T</i> _{2%}	temperature at two volume percent crystals in equilibrium with the melt
T_L	liquidus temperature
TOE	total online efficiency
VHT	Vapor Hydration Test
WOL	waste oxide loading
WRPS	Washington River Protection Solutions
WTP	Hanford Tank Waste Treatment and Immobilization Plant
η_{1150}	melt viscosity at the processing temperature

Contents

Abst	tract.		iii
Qua	lity A	ssurance	iv
Ack	nowle	edgments	v
Acro	onym	s and Abbreviations	vi
1.0	Bac	kground	1
2.0	Was	te Treatment Process Summary	2
3.0	Glas	ss Constraints and Property Models	4
	3.1	HLW Constraints and Property Models	4
	3.2	LAW Constraints and Property Models	7
4.0	Unc	ertainty Estimates	9
	4.1	Model Prediction Uncertainties	10
	4.2	Process/Composition Uncertainties	11
		4.2.1 HLW Process/Composition Uncertainties	12
		4.2.2 LAW Process/Composition Uncertainties	14
	4.3	Estimation of Individual Uncertainty Impacts on Glass	16
5.0	Was	te Feeds	17
6.0	HLV	W Calculation Results and Discussion	29
	6.1	No Uncertainties	29
	6.2	Prediction Uncertainties Only	31
	6.3	Evaluation of Individual Property Prediction Uncertainties	32
	6.4	Prediction and Composition/Process Uncertainties	33
	6.5	Evaluation of Individual Sources of Composition/Process Uncertainty	35
7.0	LAV	W Calculation Results and Discussion	37
	7.1	LAW Glass Mass with Waste Loading ('Line') Rules	37
	7.2	LAW Glass Mass without Waste Loading ('Line') Rules	39
		7.2.1 No Uncertainties	40
		7.2.2 Prediction Uncertainties Only	42
		7.2.3 Evaluation of Individual Property Prediction Uncertainties	44
		7.2.4 Prediction and Composition/Process Uncertainties	45
		7.2.5 Evaluation of Individual Sources of Composition/Process Uncertainty	46
		7.2.6 Without VHT Constraint	48
		7.2.7 Evaluation of Glass Mass for Initial Phase of LAW Processing	49
8.0	Sum	mary and Conclusions	50
	8.1	High-Level Waste	50
	8.2	Low-Activity Waste	51
9.0	Refe	erences	53

Appendix A	A.1
Appendix B	B.1
Appendix C Minimum, maximum, and most likely concentration of components in each GFC (based on values reported in Table A-4 of Vienna and Kim 2014)	C.1
Appendix D Minimum, maximum, and most likely PERT distribution in $\ln\left[\frac{1}{1-v_i}\right]$ with	
minimum, based on the values reported by Nelson (2013).	D.1

Figures

Figure 1. Schematic of the LAW and HLW vitrification process	2
Figure 2. Schematic Representation of the Hanford HLW Glass Processing Envelope, from Vienna (2014).	9
Figure 3. Example Histogram of Predicted T _{2%} Values from a 10,000 Run Monte Carlo Calculation.	14
Figure 4. Plot of Major HLW Component Concentrations vs Batch Number (~4000 batches)	17
Figure 5. Plot of Major LAW Component Concentrations vs Batch Number (~28,500)	18
Figure 6. Average Distance versus Number of HLW Clusters from Hierarchical Cluster Analysis	19
Figure 7. Parallel Plots of 30 HLW Composition Clusters	23
Figure 8. Average Distance versus Number of LAW Clusters from Hierarchical Cluster Analysis	24
Figure 9. Parallel Coordinate Plots for 36 LAW Clusters.	28
Figure 10. Waste Loading Limiting Factors (Glass Mass Basis) for HLW Glasses	30
Figure 11. Comparison of the WTP Baseline and Proposed New Waste Loading Line Rules for Normalized Alkali and Sulfur Content. (Vienna et al. (2016))	37
Figure 12. Distribution of LAW Glass Mass Limited by Various Line Rules	39
Figure 13. Waste Loading Limiting Factors for LAW Glasses without Line Rules	42
Figure 14. Waste Loading Limiting Factors (Glass Mass Basis) for HLW Glasses	50

Tables

Table 1. Summary of HLW Melt and Glass Constraints	4
Table 2. HLW Glass Component Concentration Constraints, in Mass Fractions	6
Table 3. Summary of LAW Melt and Glass Constraints	7
Table 4. LAW Glass Component Concentration Constraints, in Mass Fractions	8
Table 5. Summary of Predicted Properties and Associated Uncertainty Expressions	11
Table 6. Waste Mass, Maximum WOL, Glass Mass, and Limiting Factors for each of 30 HLW Clusters with No Uncertainties	29
Table 7. Waste Mass, Maximum WOL, Glass Mass, and Limiting Factors for 30 HLW Clusters with Prediction Uncertainties	31
Table 8. HLW Glass Masses Generated by Individually Excluding Prediction Uncertainties for Various Properties	32
Table 9. Glass Mass and Limiting Factors for 30 HLW Clusters with Prediction and Composition/Process Uncertainties	34
Table 10. HLW Glass Masses Generated by Individually Excluding Prediction Uncertainties for Various Properties, kg	35
Table 11. Waste Mass, Maximum WOL, Glass Mass, and Limiting Factors for each of 36 LAW Clusters with Line Rules	38
Table 12. Waste Mass, Maximum WOL, Glass Mass, and Limiting Factors for each of 36 LAW Clusters with No Uncertainties and No Line Rules	40
Table 13. Waste Mass, Maximum WOL, Glass Mass, and Limiting Factors for 36 LAW Clusters with Prediction Uncertainties without Line Rules	43
Table 14. LAW Glass Mass (MT) for Various Different Property Prediction Uncertainty Cases	44
Table 15. Waste Mass, Maximum WOL, Glass Mass, and Limiting Factors for 36 LAW Clusters with Prediction and Composition/Process Uncertainties without Line Rules	45
Table 16. LAW Glass Mass (MT) for Full Prediction and Composition Uncertainty Compared to Cases with Analytical and Mixing and Sampling Uncertainties Removed	47
Table 17. Glass Mass (MT) Projected for the Full Mission for Each of the 12 Evaluated Cases	48
Table 18. Glass Mass (MT) Projected for the Initial Phase of Processing and Full Mission for Each of the 12 Evaluated Cases	49
Table 19. LAW Glass Mass Estimates for Cases Including Various Uncertainty Terms	51
Table 20. Summary of Impacts of Line Rules and Uncertainties on LAW Glass Mass and Containers (a)	52

1.0 Background

The U.S. Department of Energy (DOE) Office of River Protection (ORP) is responsible for the safe retrieval, treatment, and disposal of this waste. For this scope ORP is contracting Bechtel National, Inc. (BNI) to design, construct, and commission the world's largest radioactive waste treatment plant: the Hanford Tank Waste Treatment and Immobilization Plant (WTP) - (DOE 2000). The plant will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions through filtration, cesium ion exchange, and precipitation. Each fraction will be vitrified in separate facilities into borosilicate waste glass.

Waste glass data and property-composition models were developed for the commissioning of the WTP (Piepel et al. 2007; Piepel et al. 2008). These models with uncertainty descriptions and plant operating strategies and current estimated process data were used to develop glass formulation algorithms to be used in plant operation (Kim and Vienna 2012; Vienna and Kim 2014). The current WTP glass property models, constraints, and algorithms were intended to be used in plant commissioning and represent modest waste loading and relatively conservative constraints. Application of prediction and process uncertainties was found to have a negligible impact on the amount of glass to be produced at Hanford while using the conservative models (Nelson 2010; Nelson et al. 2007).

Since their development significant advancements in glass formulation and property modeling has been made (Muller et al. 2012; Vienna et al. 2013; Russell et al. 2017; Kim et al. 2008; Muller et al. 2010; Matlack et al. 2005a; Matlack et al. 2005b; Matlack et al. 2006a, b; Matlack et al. 2007; Matlack et al. 2009; Matlack et al. 2010c; Matlack et al. 2010a; Matlack et al. 2010b). These data were compiled and incorporated into sets of constraints and glass property models which are aimed at estimating the amount of glass that would be produced at Hanford upon successfully completion of the on-going studies (Vienna et al. 2016). As this latter set of models and constraints are intended to maximize waste loading in glass they are necessarily far less conservative than those intended for plant commissioning. It stands to reason that application of prediction and process/composition uncertainties would have a larger impact on the projected amount of glass produced during the Hanford mission than for the commissioning models and constraints.

The objective of this study is to quantify the expected changes in glass amount for the entire Hanford mission by applying these new models and constraints along with the anticipated prediction and process/composition uncertainties. The process is described that determined how the glass masses were obtained and the results from each type of calculation is summarized.

2.0 Waste Treatment Process Summary

A detailed description of the assumed waste treatment process is given elsewhere (Deng et al. 2016). This section summarizes the key aspects of that process that impacts the formulation of glass with its associated uncertainties. A schematic of the LAW and HLW vitrification process is shown in Figure 1. A feed preparation or pretreatment process will deliver waste to the vitrification plants. In the case used in this report, LAW feed is prepared for the first ten years of operation in a LAW Pretreatment System (LAWPS) with recycle streams from an Effluent Treatment Facility (ETF), not shown in Figure 1, and blended in the LAW Concentrate Receipt Vessel (CRV). After 10 years of operation the LAW feed is blended with recycle streams in the Pretreatment Facility (PT). The HLW feed including pretreated sludge and Cs ion exchange eluate are delivered to the HLW Melter Feed Preparation Vessel (MFPV) from the PT HLW Blend Vessel (HBV). The final glass formulations and ultimate WOL are determined for each batch of waste from samples taken from the HLW MFPV and the LAW CRV and analyzed.

Figure 1. Schematic of the LAW and HLW vitrification process.

In the baseline flowsheet, the HLW vitrification plant will receive pretreated HLW from PT in the MFPV. The vessel content level will be measured before (heel level) and after (waste+heel level) waste addition to calculate the volume of waste and melter feed heel in each batch. The contents of the vessel will then be mixed, sampled, and analyzed for chemical and radiochemical concentrations. The current baseline is to analyze four samples of waste+heel for each MFPV batch. Based on the analyzed composition of waste+heel, glasses will be formulated to ensure the batch will meet all processing and product quality constraints with sufficient confidence. The associated mix of glass forming chemicals (GFC's) will be weighed, blended, and transferred into the MFPV. The level of slurry in the MFPV will be measured to determine melter feed volume and samples (nominally up to eight samples) will be taken and analyzed for chemical composition. The composition and associated predicted properties from this latter set of analyses will be used to qualify the glass to be produced and generate data for glass production records.¹ The melter feed will then be transferred as a batch to the melter feed vessel (MFV) where it will be continuously fed into the melter. The volumes of melter feed in both the MFPV and MFV will be measured before and after waste transfer to determine volume of melter feed in that batch.

The LAW vitrification plant will receive pretreated LAW from either LAWPS + effluent management facility (EMF) or PT in the CRV. The vessel content level will be measured after waste addition to estimate the volume of waste in each CRV batch. The contents of the vessel will then be mixed, sampled, and analyzed for chemical and radiochemical concentrations. The current baseline is to analyze three samples of waste for each CRV batch. Based on the analyzed composition, glasses will be formulated to ensure the melter feed batch will meet all processing and product quality constraints with sufficient confidence. The calculated volume of LAW for each MFPV batch from the CRV will be transferred into the MFPV. The mass of each glass forming chemicals (GFC's) to achieve the target glass composition will be weighed, blended, and transferred into the MFPV. The level of slurry in the MFPV will be measured to determine melter feed volume and a sample will be taken and analyzed for chemical composition as a process control measure to confirm the appropriate melter feed was prepared. The composition and associated predicted properties from analyses of waste in the CRV, the measured mass of each GFC, and the volume of waste transferred from the CRV to the MFPV will be used to produce and generate data for glass production records.

¹ Reporting of radionuclide concentrations will be based on measurement of radionuclide concentrations in the waste+heel samples.

3.0 Glass Constraints and Property Models

Estimates of maximum WOL were determined in this study by numerically optimizing glass compositions for each waste composition while simultaneously satisfying a number of property and composition constraints, the process/composition constraints described in Section 3.1 for HLW and Section 3.2 for LAW. The melter feed should be both processable and yield an adequate product, i.e., the resultant glass should have properties within acceptable ranges. Properties of the target glass are predicted using glass-composition property models; which are valid over fixed composition ranges defined by model validity constraints. The models and constraint sets used in this study are those described by Vienna (2016) and are briefly described in the following subsections.

3.1 HLW Constraints and Property Models

Table 1 summarizes the HLW glass property/composition constraints used in glass optimization with bulleted descriptions and explanations for each constraint below the table. Also reported are glass component concentration limits (Table 2) for model validity, chromium tolerance, and phosphate tolerance.

Table 1. Summary of HLW Melt and Glass Constraints			
Property/Composition Constraint	Limit		
PCT Responses	$ln[PCT-B, Na, Li, g/m^2] \le 1.386^{(a)}$		
Nepheline	$p \le 0.3$ (probability)		
Spinel	$T_{2\%} \leq 950^{\circ}\mathrm{C}$		
	T_L -Zr $\leq 1050^{\circ}$ C		
Zirconium-containing phases	if $g_{ZrO_2} > 0.04$ (mass fraction)		
Viscosity at 1150°C	$0.693 \le \ln(\eta_{1150}, Pa \cdot s) \le 2.079^{(b)}$		
P ₂ O ₅ and CaO concentrations	$W_{P_2O_5} \times W_{CaO} \le 6.5 \; (\text{wt\%})^2$		
Salt, SO ₃ concentration	$w_{SO_3} \leq w_{SO_3}^{Limit}$ (wt%)		
Eskolaite formation	$g_{Cr_2O_3} \leq 0.03$ (mass fraction)		
B_2O_3 and SiO_2 concentrations	$g_{SiO_2} + g_{B_2O_3} \ge 0.32$ (mass fraction)		
(a) This corresponds to PCT-B, -Na, $-Li \le 4$ g/m ² .			
(b) This corresponds to $2 \le \eta_{1150} \le 8$ Pa·s.			

1. The normalized PCT responses of boron, sodium, and lithium of HLW glasses must be below those of the Defense Waste Processing Facility Environmental Assessment (DWPF-EA) glass (Jantzen et al. 1993) with sufficient confidence (DOE 1996). The WTP Wasteform Qualification Report uses a 95% confidence level (Nelson 2010). A conservative value of 4 g/m² was used in this study. Although this value is conservative (48% to 60% of the limit) it has previously been shown to not be impactful on WOL.

- 2. The formation of nepheline on slow-cooled glass has been previously shown to strongly impact the chemical durability of glass and the ability to predict PCT responses (Kim et al. 1995). A predicted probability of 30% nepheline precipitation by the current submixture model (Vienna et al. 2017) was found to represent roughly 95% confidence that nepheline would not form in waste glasses as described in detail in (Vienna et al. 2016).
- 3. The accumulation of spinel in the melter may disrupt processing and/or reduce melter life (Matyas et al. 2012). Vienna et al. (2016) used an ad-hoc yet conservative limit of 2 vol% spinel at equilibrium with the melt at 950°C.
- 4. Some waste types, rich in ZrO_2 (> 4 wt%), are prone to precipitation of zirconia containing phases which may disrupt processing and/or reduce melter life (Crum et al. 1997). A T_L limit of 1050°C is used in this study. The model reported in (Vienna et al. 2016) for T_L-Zr was modified slightly to avoid a jump in predicted response at $g_{ZrO_2} = 0.04$ as described at the end of this subsection.
- 5. The viscosity of glass melts must be maintained near 5 Pa·s for smooth processing. The $2 < \eta_{1150} < 8$ limit was used for this study.
- 6. Glasses high in phosphate may form non-durable secondary phases, increase corrosivity of metal melter components, and form difficult to melt phases in the melter cold-cap. An ad-hoc constraint of calcium oxide times phosphorous oxide < 6.5 wt%² was developed to avoid the many deleterious effects of high phosphate glasses (Vienna 2008).
- 7. Sulfate salt accumulation in the melter may increase melter materials corrosion and increase volatility (Vienna et al. 2014). A sulfate solubility model was used to avoid compositions prone to salt accumulation in HLW melter feeds.
- 8. Some waste types, rich in Cr_2O_3 (> 3 wt%) are prone to eskolaite precipitation and/or molten chromate salt accumulation. An ad-hoc 3 wt% constraint was used to avoid those compositions.
- Glasses low in the two primary solvents or glass formers SiO₂ and B₂O₃ may not make a processable glass. An ad-hoc limit of 32 wt% of combined formers was used, based on preliminary test data.

The models used to predict these properties are generally of the form:

$$t(P) = \sum_{i=1}^{q} a_i g_i + \text{Selected}\left\{\sum_{i=1}^{q} a_{ii} g_i^2 + \sum_{i=1}^{q-1} \sum_{j=i+1}^{q} a_{ij} g_i g_j\right\}$$
(1)

where, t(P) is the transformed property, a_i are the ith component coefficient, a_{ii} are the ith cross ith and ith cross jth component interaction coefficients, and g_i and g_j are the mass fractions of component i and j. Exceptions to this model form are: 1) PCT models which also contain $g_{Al_2O_3}^3$, and $g_{Al_2O_3}^4$ terms and 2)

nepheline formation probability which is a polynomial of normalized component concentrations. Model details and coefficients are given by Vienna et al. (2016). In addition to the property constraints, the model validity constraints for glass component concentrations, shown in Table 2 are used.

Component	Min	Max
Al ₂ O ₃	0.0190	0.3000
B_2O_3	0.0400	0.2200
Bi ₂ O ₃	0	0.0700
CaO	0	0.1000
CdO	0	0.0150
Cr_2O_3	0	0.0300
F	0	0.0250
Fe_2O_3	0	0.2000
K ₂ O	0	0.0600
Li ₂ O	0	0.0600
MgO	0	0.0600
MnO	0	0.0800
Na ₂ O	0.0410	0.2400
NiO	0	0.0300
P_2O_5	0	0.0450
SiO ₂	0.2200	0.5300
SrO	0	0.1010
ThO ₂	0	0.0600
TiO ₂	0	0.0500
UO ₃	0	0.0630
ZnO	0	0.0400
ZrO_2	0	0.1350

Table 2. HLW Glass Component Concentration Constraints, in Mass Fractions

Application of the constraints and models from Vienna et al. 2016 resulted in significant challenges to converge on optimal solutions using standard optimization routines (e.g., Microsoft ExcelTM solver, Frontline Analytical Solver, the solver built-in to Gensym G2). Two changes were implemented in calculations described in this report to improve stability and enable optimal solutions using standard optimization routines.

1. The model reported in (Vienna et al. 2016) for T_L-Zr was modified slightly to avoid a jump in predicted response at $g_{ZrO_2} = 0.04$. A sigmoidal function that approaches 0 at $g_{ZrO_2} < 0.04$ and

approaches predicted T_L-Zr at $g_{ZrO_2} > 0.04$ was added: $T_L - Zr = \frac{\sum T_i g_i}{1 + e^{-1000(g_{ZrO_2} - 0.039)}}$. This

addition has no practical implications to meeting the constraint while allowing for successful numerical optimization of glass compositions near $g_{ZrO_2} = 0.04$.

 Additives used were limited to silica, borax, sodium carbonate, lithium carbonate, zincite, wollastonite, V₂O₅, kyanite, and hematite. Compared to the recommended additives of: Al₂O₃, B₂O₃, CaO, Li₂O, MgO, Na₂O, SiO₂, V₂O₅, ZnO, and ZrO₂. Effectively, MgO and ZrO₂ were excluded.

3.2 LAW Constraints and Property Models

Table 3 summarizes the LAW glass property/composition constraints used in glass optimization. A set of waste loading rules were used during some of the calculations as an ad-hoc method of limiting loading of waste in glass (Muller et al. 2010). Whether the loading rules where applied or not, each waste glass met a set of property constraints: sulfate solubility; baddeleyite (ZrO₂) and cassiterite (SnO₂) precipitation; durability including alkali to $ZrO_2^+CaO+SnO_2$ ratio, PCT response, and vapor hydration test (VHT) response; η_{1150} ; and refractory corrosion. A description and explanation of each of the property constraints are itemized below Table 3. In Table 4 glass component concentration constraints are identified.

Waste Loading Rules	Limit
Alkali content	$w_{Na_2O} + 0.66 w_{K_2O} \le 24 \text{ wt\%}$
Alkali and sulfur content	$w_{Na_{2}O} + 0.66 w_{K_{2}O} \le 33.94 - 11.69 w_{SO_3}$, wt%
Sulfur content	$w_{SO_3} \leq 1.5 \text{ wt\%}$
Halide content	$g_{SO_3} \le 0.01825 - 0.4936 \times \left(1.761g_{Cl} + 2.971g_{Cr_2O_3} - 0.1608g_{P_2O_5}\right)$
Property	Limit
Salt, SO ₃ concentration	$W_{SO_3} \le W_{SO_3}^{Limit}$
Combined zirconia, tin, and alumina constraint	$g_{ZrO_2} + g_{SnO_2} + g_{Al_2O_3} \le 0.17$
Alkali minus sum of zirconia, tin, and lime constraint	$g_{Na_{2}O} + 0.66g_{K_{2}O} + 2.07g_{Li_{2}O} - g_{ZrO_{2}} - g_{SnO_{2}} - g_{CaO} \le 0.15$
PCT response	$\ln[PCT NL, g/L] \le 1.386$
VHT response	$\ln[VHT D, \mu m] \le 6.116$
Viscosity at 1150°C	$0.693 \le \ln[\eta_{1150}, Pa \cdot s] \le 2.079$
K-3 neck corrosion at 1208°C	$\ln[k_{1208}, in] \le -3.2189$

Table 3. Summary of LAW Melt and Glass Constraints

- 1. Sulfate salt accumulation in the melter may increase melter materials corrosion and increase volatility (Vienna et al. 2014). A sulfate solubility model was used to avoid compositions prone to salt accumulation in LAW melter feeds.
- 2. Some glass formulations, rich in combined ZrO₂, SnO₂, and Al₂O₃ are prone to precipitation of baddeleyite (ZrO₂) or cassiterite (SnO₂) which may disrupt processing and/or reduce melter life. An ad-hoc empirical rule constraining the combine concentrations of those oxides reduces the likelihood of their precipitation.
- 3. LAW glasses are particularly prone to relatively poor chemical durability due to high alkali content. Above some threshold in alkali content the durability test responses of glasses become very high and change in a non-linear fashion. ZrO₂, SnO₂, and CaO generally increase the alkali concentration where the durability becomes highly non-linear. An empirical, ad-hoc, concentration constraint is used to 1) help reduce the likelihood of non-durable glasses and 2) improve the ability of PCT and VHT models to better predict responses.
- 4. The normalized PCT responses of boron, sodium, and silicon of LAW glasses must be below 4 g/L (DOE 2000).
- 5. The VHT response of LAW glasses must be below 50 $g/m^2/d$ (DOE 2000).
- 6. The viscosity of glass melts must be maintained near 5 Pa·s for smooth processing. The $2 < \eta_{1150} < 8$ limit was used for this study.

7. Glasses rich in alkali are prone to excessive refractory corrosion. K-3 corrosion > 0.04 inches per year at the melt line was suggested as an appropriate limit to avoid excessive corrosion (Muller et al. 2015).

The models used to predict these properties are generally of the form shown in Eqn 1. Model details and coefficients are given by Vienna et al. (2016). In addition to the property constraints, the model validity constraints for glass components are used (Table 4).

Component	Min	Max
Al_2O_3	0.0553	0.1370
B_2O_3	0.0600	0.1370
CaO	0	0.1060
Cl	0	0.0117
Cr_2O_3	0	0.0100
Fe_2O_3	0	0.0997
K ₂ O	0	0.0589
Li ₂ O	0	0.0503
MgO	0	0.0350
Na ₂ O	0.0248	0.2600
P_2O_5	0	0.0340
SiO ₂	0.2983	0.5020
SnO_2	0	0.0501
TiO ₂	0	0.0341
V_2O_5	0	0.0401
ZnO	0	0.0540
ZrO_2	0	0.0675

Table 4. LAW Glass Component Concentration Constraints, in Mass Fractions

4.0 Uncertainty Estimates

As stated earlier, glass compositions are optimized for each waste to maximize WOL while simultaneously satisfying a number of property and composition constraints. Both glass composition and glass property predictions are uncertain and in practical applications variation in estimated glass composition, along with uncertainties in glass property predictions, are combined to ensure that the final glass will meet constraints with sufficient confidence. Figure 2 shows a schematic diagram of the glass formulation method applied to Hanford HLW. The ternary diagram on the left is meant to represent the multidimensional composition region made up by a particular waste batch at the top of the diagram; the concentrations of each of the ten potential glass forming additives are expressed across the bottom. The property constraints (calculated using glass property models) limit the portion of composition region within which glass can be formulated as shown by the solid black lines for different properties. Model prediction uncertainties further narrow the composition space within which glass can be formulated as shown by the dotted black lines. A glass can be formulated anywhere within the region defined by the property limits with associated uncertainties. The composition of the glass isn't precisely known. So, various sources of composition uncertainties must be accounted for as shown by the tan circle. The final glass formulation region is the region surrounded by the dotted lines (representing property limits with prediction uncertainty) that an uncertain composition (represented by the tan circle and defined in schematic on right side of Figure 2) can fit.

Figure 2. Schematic Representation of the Hanford HLW Glass Processing Envelope, from Vienna (2014).

The constraints used thus expressed as lower- and upper- combined confidence intervals:

$$L^{L}_{\alpha} \leq t(P_{\alpha}) - U^{pred}_{\alpha} - U^{comp}_{\alpha} \text{ and } L^{U}_{\alpha} \geq t(P_{\alpha}) + U^{pred}_{\alpha} + U^{comp}_{\alpha}$$
(2)

where L_{α}^{L} and L_{α}^{U} are the lower and upper limits on transformed property $\alpha [t(P_{\alpha})]$, U_{α}^{Pred} is the uncertainty in prediction of $t(P_{\alpha})$, and U_{α}^{Comp} is the expression of composition uncertainty expressed in units of $t(P_{\alpha})$. The values of uncertainty scale with the level of confidence obtained. The following subsection describes the calculation of these uncertainty values.

4.1 Model Prediction Uncertainties

Most of the property models used in this study are of the form of partial quadratic models of a transformed property (Eqn 1). Prediction uncertainty can be expressed as a confidence interval (CI) as in Eqn 3 or a simultaneous confidence interval (SCI), Eqn 4:

$$U_{CI}^{pred} = t_{1-\alpha(n-p)} \sqrt{s^2 \mathbf{x}^T \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{x}}$$
(3)

$$U_{SCI}^{pred} = \sqrt{ps^2 F_{1-\alpha(p, n-p)} \mathbf{x}^T \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{x}}$$
(4)

where: n = number of data in the model

- s = root mean squared error (RMSE) of model
- $F = 1-\alpha$ quantile of an F-distribution
- $t = 1 \alpha$ quantile of a t-distribution
- α = the confidence level
- p = number of model parameters (terms)
- \mathbf{x} = glass composition vector represented in model terms
- \mathbf{X} = matrix of glass compositions used in fitting the model

Generally SCI's are used when you need a given confidence that all batches will meet the limit while CI's are used when you need confidence that the single batch will meet the limit. The variance covariance matrix (Ω), tables listed in Table 5 and 0, combines the terms of these equations into a single matrix:

$$\mathbf{\Omega} = s^2 \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \tag{5}$$

Table 5 lists the property models used in formulation optimization and the uncertainty expressions assumed along with the Appendix A table for each associated variance covariance matrix.

Property, units	t(P)	Confidence	Ω
HLW PCT normalized boron release, g/m ²	ln(r _B)	95% SCI	Table A.1
HLW PCT normalized sodium release, g/m ²	ln(r _{Na})	95% SCI	Table A.2
HLW PCT normalized lithium release, g/m ²	ln(r _{Li})	95% SCI	Table A.3
HLW T _L of Zr containing phases, °C	TL	90% CI	Table A.4
HLW T _{2%} of spinel, °C	T _{2%}	90% CI	Table A.5
HLW nepheline probability, distance above	Norm	95% boot-	boot-strap
the cutoff in SiO ₂ +xB ₂ O ₃ direction	mass fract	strap	trials in A.6
HLW viscosity at 1150°C, Pa·s	$\ln(\eta_{1150})$	90% CI	Table A.7
HLW sulfate solubility, wt%	WSO3	90% CI	Table A.8
LAW PCT normalized concentration, g/L	ln(NC)	90% SCI	Table A.9
LAW VHT alteration depth, µm	ln(d)	90% SCI	Table A.10
LAW K-3 neck corrosion, in	ln(k)	90% CI	Table A.11
LAW sulfate solubility, wt%	WSO3	90% CI	Table A.12
LAW viscosity at 1150°C, Pa·s	$\ln(\eta_{1150})$	90% CI	Table A.13

Table 5. Summary of Predicted Properties and Associated Uncertainty Expressions

One key exception to the typical uncertainty quantification method is the nepheline probability model. The mathematical form of this model is different than Eqn (1):

$$P = -\frac{bC + 2bB - \sqrt{3}C}{2(A + B + C)} - \frac{c(2B + C)^2}{4(A + B + C)^2} - a$$
(6)

where A, B, C are normalized weighted combinations of component concentrations in the glass (Vienna et al. 2017). A boot strapping method was used to estimate the uncertainty in this models prediction. This boot strapping method, described in detail in (Vienna et al. 2016), was aimed at obtaining a 95% confidence in model predictions.

4.2 Process/Composition Uncertainties

The glass composition is estimated using a mass balance for each MFPV batch (see MFPV in Figure 1) and will be defined in Subsections 4.2.1 and 4.2.2. As shown in the right half of Figure 2 there are several uncertainty parameters which impact this mass balance. Due to the non-linear nature of the mass balance equation, there is not an analytical solution to the uncertainty value. Therefore, a Monte-Carlo approach was taken to estimate compositions uncertainties (Kim and Vienna 2012; Vienna and Kim 2014). Monte Carlo simulations are a class of computational methods that rely on repeated random sampling to model the probability of different outcomes in processes that cannot easily be predicted due to the presence of uncertain variables. Monte Carlo methods use probability distribution for modelling random variables. Different types of probability distributions are used to describe the uncertain variable, such as normal, triangular, and PERT. Then many iterations, or simulations, are run using numerical computations that will generate different outcomes (compositions and predicted properties in this case) and their probability of occurrence. In other words, the Monte Carlo method provides a probabilistic estimate of the uncertainty in glass composition and associated predicted properties. Although a very similar approach is taken to define the composition uncertainties in LAW and HLW glasses, the details of the mass balance equation require slightly different treatment.

4.2.1 HLW Process/Composition Uncertainties

The HLW mass balance is given by:

$$g_{i} = \frac{\left[c_{i}^{HLW}V^{HLW}f_{i} + \sum_{k=1}^{n^{GFCs}}g_{ik}^{oxide}M_{k}^{GFCin}\right]v_{i}}{\sum_{i=1}^{noxides}\left[c_{i}^{HLW}V^{HLW}f_{i} + \sum_{k=1}^{n^{GFCs}}g_{ik}^{oxide}M_{k}^{GFCin}\right]v_{i}}$$
(7)

where:

 $\begin{array}{lll} g_{i} &=& \max s \mbox{ fraction of } i^{th} \mbox{ oxide in glass } (g/g) \\ c_{i}^{HLW} &=& Concentration \mbox{ of the } i^{th} \mbox{ component measured in samples from the MFPV prior to} \\ addition \mbox{ of GFCs } (g/mL) \\ V^{HLW} &=& Volume \mbox{ of waste in the HLW MFPV batch } (L) \\ f_{i} &=& A \mbox{ conversion factor from element mg to oxide kg (kg/mg)} \\ g_{ik}^{oxide} &=& Mass \mbox{ fraction of the } i^{th} \mbox{ oxide in the k}^{th} \mbox{ GFC } (g/g) \\ M_{k}^{GFCin} &=& Mass \mbox{ of the } k^{th} \mbox{ GFC in the MFPV batch } (kg) \\ n^{GFCs} &=& Number \mbox{ of GFC's added to the MFPV batch } \\ v_{i} &=& Fraction \mbox{ of } i^{th} \mbox{ oxide retained in the glass } (g/g) \end{array}$

The values: c_i^{HLW} , V^{HLW} , g_{ik}^{oxide} , M_k^{GFCin} , and v_i are each uncertain and each is given a probability distribution. The uncertainty on waste component concentration is estimated as a normal distribution centered on the average measured values (in this study the nominal value for the waste composition) and a standard deviation (s_i^{cHLW}) is given by:

$$s_{i}^{cHLW} = \frac{\sqrt{\left(c_{i}^{HLW}RSD_{i}^{Analysis}\right)^{2} + \left(c_{i}^{HLW}RSD_{i}^{mix/samp}\right)^{2}}}{\sqrt{n^{samps}}}$$
(8)

where $RSD_i^{Analysis}$ and $RSD_i^{mix/samp}$ are the relative standard deviations for analysis of analyte i and mixing and sampling, and n^{samps} is the number of MFPV samples analyzed for analyte i. The analytical RSD's were derived from Dodd and Kaiser (2006) and are listed in Appendix B. The mixing and sampling RSD is 3.58% based on (Piepel et al. 2013).

Specific components and their levels of uncertainty are described below which are necessary for the computation of Eqn 7:

The MFPV volume will be obtained from the radar level measurement before and after waste addition. The standard deviation (s^V) for waste volume is calculated from error propagation of two volume measurements as described in Appendix J of Vienna and Kim (2014). A normal probability distribution is assumed centered on the nominal volume with an s^V of 125 L.

The composition of GFC's are uncertain with near normal distributions of major components and skewed distributions of impurity concentrations (centered near zero with long positive tails). A PERT (or Beta) distribution was used to estimate the probability distribution of all GFC compositions (see Appendix L of Vienna and Kim 2014). Appendix C lists the minimum, maximum, and most likely concentration of components in each GFC (based on values reported in Table A-4 of Vienna and Kim 2014).

The mass of each GFC is determined by measurements of multiple (3) load cells on each weigh hopper in the Glass Former Storage Facility. A normal probability distribution centered on the nominal weight with a standard deviation (s^{GFCM}) of 0.260 kg was used based on the results reported in Appendix K of Vienna and Kim 2014.

The natural log of melter decontamination factor $-\ln\left[\frac{1}{1-\nu_i}\right]$ was found to be near normal in

distribution (Nelson 2013). However to avoid the non-physical option of greater $v_i > 1$, a PERT distribution in $\ln \left| \frac{1}{1-\nu} \right|$ with minimum, maximum, and most likely values are reported in Appendix D,

based on the values reported by Nelson (2013).

The mass balance equation with parameter probability distributions was used in a Monte Carlo routine to generate 10,000 realizations of the target glass composition. The Microsoft ExcelTM add-in RiskAmpTM, version 4.90, was used to perform the calculations. For each glass composition realization, each of the properties and composition constraints listed in Section 3.1 were calculated. The half-width of each property distribution for the associated confidence level listed in Table 5 (95% confidence for PCT and nepheline formation, 90% confidence for all other properties) was as U_{α}^{Comp} .

$$U_{comp}^{prop} = Q_{CL\%}^{prop} - Q_{50\%}^{prop} \text{ or } Q_{50\%}^{prop} - Q_{100-CL\%}^{prop}$$
(9)

where $U_{comp}^{prop} = \frac{\text{composition uncertainty for "prop"}, \text{ i.e., uncertainty in predicted "prop" due to glass composition uncertainty (in property model units)}$

 $Q_{CL\%}^{prop} = CL\%$ [=100(1- α)] percentile of the distribution of 10,000 property values

 $Q_{50\%}^{prop}$ = median predicted property value or CL% = 50% percentile of the distribution of 10,000 property values

Figure 3 shows an example of the probability distribution calculated by this method.

Figure 3. Example Histogram of Predicted T_{2%} Values from a 10,000 Run Monte Carlo Calculation.

This process mimic's nearly exactly the Step 2 calculation used in Vienna and Kim 2014. The primary difference being the inclusion of MFPV heel (melter feed) was included in their calculation, but, not included in this study. This had the effect of slightly decreasing the calculated uncertainty in c_i^{HLW} in this study compared to that shown previously. To adjust for the decrease, the assumed number of MFPV samples was decreased. The initial calculations where performed with four MFPV samples (the nominal for plant operation). Calculations were then repeated assuming a single MFPV sample. The real impact of uncertainty is expected to lie between these two estimates. The values for both are reported in Section 6.4. Comparisons are drawn based on the average of the results from 1 and 4 samples.

4.2.2 LAW Process/Composition Uncertainties

The process for estimating U_{α}^{Comp} for LAW glass compositions follows very nearly the same as that for HLW (described in Section 4.2.1) with a few differences. The mass balance for each batch depends on volume and composition of waste in the CRV which is transferred to the MFPV instead of analysis of waste in the MFPV (see Figure 1). The LAW mass balance is given by:

$$g_{i} = \frac{\left[c_{i}^{LAW}V^{LAW}f_{i} + \sum_{k=1}^{n^{GFCs}}g_{ik}^{oxide}M_{k}^{GFCin}\right]v_{i}}{\sum_{i=1}^{noxides}\left[c_{i}^{LAW}V^{LAW}f_{i} + \sum_{k=1}^{n^{GFCs}}g_{ik}^{oxide}M_{k}^{GFCin}\right]v_{i}}$$
(10)

where: $g_i = \max s$ fraction of ith oxide in glass (g/g) $c_i^{LAW} = Concentration of the ith component measured in samples from the CRV prior to$ transfer to the MFPV (g/mL) $<math>V^{LAW} = Volume of LAW$ transferred in a batch to the MFPV (L) $f_{i} = A \text{ conversion factor from element mg to oxide kg (kg/mg)}$ $g_{ik}^{oxide} = Mass \text{ fraction of the i}^{\text{th}} \text{ oxide in the k}^{\text{th}} \text{ GFC } (g/g)$ $M_{k}^{GFCin} = Mass \text{ of the k}^{\text{th}} \text{ GFC in the MFPV batch } (kg)$ $n^{GFCs} = \text{ Number of GFC's added to the MFPV batch}$ $v_{i} = \text{ Fraction of i}^{\text{th}} \text{ oxide retained in the glass } (g/g)$

The values: c_i^{LAW} , V^{LAW} , g_{ik}^{oxide} , $M_k^{GFC in}$, and v_i are each uncertain and each is given a probability distribution. The uncertainty on waste component concentration is estimated as a normal distribution centered on the average measured values (in this study the nominal value for the waste composition) and a standard deviation (s_i^{cLAW}) is given by:

$$s_{i}^{cLAW} = \frac{\sqrt{\left(c_{i}^{LAW}RSD_{i}^{Analysis}\right)^{2} + \left(c_{i}^{LAW}RSD_{i}^{mix/samp}\right)^{2}}}{\sqrt{n^{samps}}}$$
(11)

where $RSD_i^{Analysis}$ and $RSD_i^{mix/samp}$ are the relative standard deviations for analysis of analyte i and mixing and sampling, and n^{samps} is the number of CRV samples analyzed for analyte i. The analytical RSD's were derived from Dodd and Kaiser (2005) and are listed in Appendix B. The mixing and sampling RSD is 1.47% based on Petkus (2012). The n^{samps} for LAW is 3 per the sampling and analysis plan (Arakali and Johnson 2013).

Specific components and their levels of uncertainty are described below which are necessary for the computation of Eqn 10:

The LAW volume transferred from the CRV to the MFPV will be obtained from the radar level measurement before and after waste transfer from each vessel. The standard deviation (s^V) for waste volume is calculated from error propagation of four volume measurements as described in Appendix D of Kim and Vienna (2012). A normal probability distribution is assumed centered on the nominal volume with an s^V of 447.2 L.

The composition of GFC's are uncertain with near normal distributions of major components and skewed distributions of impurity concentrations (centered near zero with long positive tails). A PERT (or Beta) distribution was used to estimate the probability distribution of all GFC compositions. Appendix C lists the minimum, maximum, and most likely concentration of components in each GFC (based on values reported in Table A-4 of Kim and Vienna 2012).

The mass of each GFC is determined by measurements of multiple (3) load cells on each weigh hopper in the Glass Former Storage Facility. A normal probability distribution centered on the nominal weight with a standard deviation (s^{GFCM}) of 0.1039 kg for major components (>41.6 kg per batch) and 0.0520 kg for minor components (<41.6 kg per batch) was used based on the results reported in Appendix E of Kim and Vienna 2012.

The natural log of melter decontamination factor $-\ln\left[\frac{1}{1-\nu_i}\right]$ was found to be near normal in

distribution (Petkus and Vienna 2012). However to avoid the non-physical option of greater $v_i > 1$, a PERT distribution in $\ln\left[\frac{1}{1-v_i}\right]$ with minimum, maximum, and most likely values reported in Appendix

D, based on the values reported by Petkus and Vienna (2012).

The mass balance equation with parameter probability distributions was used in a Monte Carlo routine to generate 10,000 realizations of the target glass composition. The Microsoft ExcelTM add-in RiskAmpTM, version 4.90, was used to perform the calculations. For each glass composition realization, each of the properties and composition limits listed in Section 3.2 were calculated. The half-width of each property distribution for the associated confidence level (shown in Table 5) was as U_{α}^{Comp} . This process is exactly the Step 1 calculation used in Kim and Vienna 2012.

4.3 Estimation of Individual Uncertainty Impacts on Glass

The impact of individual sources of uncertainty were estimated by systematically removing individual and combined sources of uncertainty and repeating the glass optimization to determine the resulting WOL and associated glass mass. The first three cases to be evaluated were:

- 1) no uncertainties
- 2) prediction uncertainties only (no composition/process uncertainties)
- 3) prediction plus composition/process uncertainties.

Then the prediction uncertainties for individual properties were removed one-at-a-time (e.g., $U_{T_{2\%}}^{Pred} = 0$,

 $U_{VHT}^{Pred} = 0, U_{nepheline}^{Pred} = 0, ...$) until most of the glass mass increase caused by application of prediction uncertainties only was accounted for.

5.0 Waste Feeds

The waste feed estimate used for this study is from the *River Protection Project System Plan* revision 8 (SP8) (DOE 2017) which is required to estimate the impacts of the glass property models and constraints and associated uncertainties on glass to be produced at Hanford¹. The base line case (Case #1) waste feed batches were used in this study. According to this case, 4008 batches of HLW are to be delivered from PT to HLW while 28,458 batches of LAW are planned to be delivered to supplemental LAW vitrification facilities, initially from a combined input of LAWPS (roughly 10 years) then from PT. Internal recycles of off gas scrub solution from ETF (first 10 years roughly) and LAWPS are included in the LAW feed estimates. The major component concentrations in waste are shown vs batch number in Figure 4 and Figure 5 for HLW and LAW, respectively.

Figure 4. Plot of Major HLW Component Concentrations vs Batch Number (~4000 batches)

¹ The SP8 case 1 represents one of the current River Protection Project baseline flowsheets. The previous baseline flowsheet was documented in revision 6 of that report (SP6) case 1.

Figure 5. Plot of Major LAW Component Concentrations vs Batch Number (~28,500)

As the number of batches for both HLW and LAW exceed the amount that could be practically used in the calculations performed in this study, cluster analysis was used to group wastes of like composition into clusters. The mass weighted average composition of each cluster was then used to estimate the WOL (and associated glass mass) represented by each cluster. Hierarchical clustering was performed using JMP® statistical software (version 13.2.1, SAS Institute, Inc., Cary, NC).

For HLW waste batches clustering was performed on the mass fractions of the following 12 waste components: Al₂O₃, Bi₂O₃, Cr₂O₃, Fe₂O₃, MnO, Na₂O, NiO, P₂O₅, SO₃, ThO₂, UO₃, and ZrO₂. The number of clusters was varied from 15 to 50 and the resulting mean composition distance² was calculated (shown in Figure 6). Several plateaus around clusters 15, 18, 24, 30 and 34 are apparent in this analysis. Analyses of parallel plots of clusters at each of the plateaus suggested that 30 clusters would represent a good balance between few enough clusters for practical calculation and sufficient number of clusters to well represent the waste. The parallel plots for the 30 HLW cluster case is shown in Figure 7.

² Mean distance between each glass composition and the cluster center point.

Figure 6. Average Distance versus Number of HLW Clusters from Hierarchical Cluster Analysis.

Figure 7. Parallel Plots of 30 HLW Composition Clusters

For LAW waste batches clustering was performed on the mass fractions of the following 8 waste components: Al_2O_3 , Cl^- , Cr_2O_3 , F^- , K_2O , Na_2O , P_2O_5 , and SO_3 . The number of clusters was varied from 15 to 50 and the resulting mean composition distance¹ was calculated (shown in Figure 8). Several plateaus around clusters 25, 36, 42 and 47 are apparent in this analysis. Analyses of parallel plots of clusters at each of the plateaus suggested that 36 clusters would represent a good balance between few enough clusters for practical calculation and sufficient number of clusters to well represent the waste. The parallel plots for the 36 LAW cluster case is shown in Figure 9.

Figure 8. Average Distance versus Number of LAW Clusters from Hierarchical Cluster Analysis.

Attachment 1 lists the batch compositions and cluster number assignment for each batch of HLW and LAW feed. Also listed are the masses (of calcined oxide) and average composition of each cluster.

¹ Mean distance between each glass composition in the cluster to the cluster center point.

Figure 9. Parallel Coordinate Plots for 36 LAW Clusters.

6.0 HLW Calculation Results and Discussion

A series of calculations were performed to maximize the WOL for each HLW composition while simultaneously satisfying all of the HLW constraints listed in Section 3.1. If one of the property/composition constraints (Table 1) limits the WOL, the additive composition is adjusted to increase the loading until one or more additional constraints are met. Therefore, the WOL is limited by more than one constraint, unless a single component concentration constraint, typically, a model validity constraint (Table 2) for waste components (e.g., Fe₂O₃, MnO, or Al₂O₃) is encountered. Some glasses with WOL limited by property/composition constraints may also be limited by a model validity constraint (Table 2) for additive components (e.g., B₂O₃, Na₂O, or Li₂O).

Calculations were performed without any uncertainties for the 30 HLW feed composition clusters and described in Section 6.1. The impact of prediction uncertainties are discussed in Sections 6.2 and 6.3. Finally, the impacts of various composition/process uncertainties are discussed in Sections 6.4 and 6.5.

6.1 No Uncertainties

The maximum WOL for each of the 30 waste clusters was determined and reported in Table 6. Using the constraints and models reported by Vienna et al. (2016), 23,360 MT of HLW glass would be produced (7735 canisters, assuming 3.02 MT of glass per canister). The glass is most limited by viscosity, $T_{2\%}$, and nepheline with a lower fraction limited by single component (Al, Fe and Mn) constraints (12 wt%) (Figure 10). For comparison, 100% of the *River Protection Project System Plan* revision 6 wastes were limited by single component constraints using the WTP baseline models and constraints (Certa et al. 2011).

Cluster	Waste	WOL,	Glass,	Limits (a)
	oxides, kg	wt%	MТ	
1	102,015	37.4	272.5	Max Fe
2	93,314	45.1	206.8	Max Fe
3	304,764	49.6	614.5	T2,Vis,NP
4	340,138	45.0	756.1	T2,Vis,NP
5	118,988	52.1	228.2	T2,Vis,B
6	130,884	49.6	263.7	T2,Vis,NP
7	129,640	44.7	290.1	T2,Vis,Na
8	135,350	49.1	275.6	T2,Vis,NP
9	40,217	42.8	94.0	TZr,Vis,NP
10	137,773	54.1	254.7	T2,Vis,NP
11	229,181	49.3	464.7	T2,Vis,NP
12	96,641	52.0	185.7	T2,Vis,NP
13	414,412	42.4	977.3	T2,Vis,B
14	226,581	48.3	469.5	T2,Vis

Table 6.	Waste Mass, Maximum WOL, Glass Mass, and Limiting Factors for each of 30 HLW Clusters
	with No Uncertainties

Cluster	Waste	WOL,	Glass,	Limits(a)			
	oxides, kg	wt%	MT				
15	102,370	39.0	262.4	Max Mn			
16	89,071	43.9	203.1	T2,Visc,B			
17	334,869	50.8	659.1	T2,Vis			
18	376,435	50.5	746.1	T2,Vis			
19	178,911	40.1	446.5	TZr,Vis,NP,B			
20	228,853	48.8	469.3	T2,Vis			
21	710,511	47.7	1,489.9	T2,Vis,B			
22	546,626	47.6	1,148.9	T2,Vis,NP			
23	709,324	42.3	1,677.2	TZr,Vis,NP			
24	196,576	42.0	467.9	T2,Vis,NP			
25	979,245	43.5	2,251.2	T2,NP,B			
26	276,233	41.8	660.3	T2,Vis			
27	784,370	43.7	1,793.9	T2,Vis,B			
28	220,037	44.2	497.3	T2,Vis,B			
29	1,388,456	46.0	3,020.4	T2,Vis			
30	841,474	38.0	2,213.7	Max Al			
Sum(b)	10,463,259	44.8	23,360				
(a) limiting factors include: Max Fe (g _{Fe2O3} = 20wt%), T2 (T _{2%} =950°C), Vis							
$(\eta_{1150} = 2 \text{ or } 8 \text{ Pa} \cdot \text{s})$, NP (nepheline probability = 30%), TZr (T _L -Zr =							
1050°C), Max Mn ($g_{MnO} = 8$ wt%), Max Al ($g_{Al2O3} = 30$ wt%). B (model							
validity, g _{B2O3} =	4 - 22 wt%), Na	(model validi	$ty, g_{Na2O} = 4.$	1 - 24 wt%).			
(b) sum for wast	e oxide mass and	l glass mass, v	weighted aver	age for WOL.			

Figure 10. Waste Loading Limiting Factors (Glass Mass Basis) for HLW Glasses.

6.2 **Prediction Uncertainties Only**

The waste estimates were performed using the prediction uncertainties (as described in Section 4.1). The results are summarized in Table 7. The total glass mass produced is 23,963 MT, 2.58 relative percent higher than the case without any uncertainties. Generally, the waste loading limiting factors were the same as in the no uncertainty case. Exceptions include:

- Clusters 9 was limited by TZr, viscosity and nepheline with no uncertainty, with prediction uncertainties there are limitations by TZr, viscosity, nepheline and boron;
- Clusters 14, 18, 20 and 29 were limited by T2 and viscosity without uncertainty, with prediction uncertainties there are limitations by T2, viscosity and boron;
- Clusters 13 and 27 were limited by T2, boron and viscosity with no uncertainty, with prediction uncertainties there are limitations by T2 and viscosity only;
- Cluster 17 was limited by T2 and viscosity without uncertainty, is limited by T2, viscosity and nepheline with prediction uncertainties;
- Cluster 26 was limited by T2 and viscosity with no uncertainty, is limited by T2, viscosity and nepheline with prediction uncertainties.

Table 7. Waste Mass, Maximum WOL, Glass Mass, and Limiting Factors for 30 HLW Clusters with Prediction Uncertainties

Cluster	Waste oxides, kg	WOL, wt%	Glass, MT	Limits(a)
1	102,015	37.4	272.5	Max Fe
2	93,314	45.1	206.8	Max Fe
3	304,764	48.6	626.9	T2,Vis,NP
4	340,138	44.1	770.7	T2,Vis,NP
5	118,988	51.0	233.2	T2,Vis,B
6	130,884	48.4	270.3	T2,Vis,NP
7	129,640	43.7	296.8	T2,Vis,Na
8	135,350	48.2	280.5	T2,Vis,NP
9	40,217	40.7	98.9	TZr,Vis,NP,B
10	137,773	52.9	260.6	T2,Vis,NP
11	229,181	48.2	475.7	T2,Vis,NP
12	96,641	51.0	189.5	T2,Vis,NP
13	414,412	41.3	1,003.8	T2,Vis
14	226,581	46.9	483.2	T2,Vis,B
15	102,370	39.0	262.4	Max Mn
16	89,071	42.7	208.6	T2,Visc,B
17	334,869	49.8	672.8	T2,Vis,NP
18	376,435	49.3	763.8	T2,Vis,B
19	178,911	37.6	475.3	TZr,Vis,NP,B
20	228,853	47.7	480.0	T2,Vis,B
21	710,511	46.6	1,525.9	T2,Vis,B
22	546,626	46.4	1,177.7	T2,Vis,NP
23	709,324	39.8	1,783.8	TZr,Vis,NP

Cluster	Waste	WOL,	Glass,	Limits(a)			
	oxides, kg	wt%	MT				
24	196,576	40.2	489.4	T2,Vis,NP			
25	979,245	42.3	2,314.5	T2,NP,B			
26	276,233	40.7	679.2	T2,Vis,NP			
27	784,370	42.7	1,838.5	T2,Vis			
28	220,037	43.0	511.5	T2,Vis,B			
29	1,388,456	44.8	3,096.6	T2,Vis,B			
30	841,474	38.0	2,213.8	Max Al			
Sum(b)	10,463,259	43.7	23,963.2				
(a) limiting factors include: Max Fe (g _{Fe2O3} = 20wt%), T2 (T _{2%} =950°C), Vis							
$(\eta_{1150} = 2 \text{ or } 8 \text{ Pa} \cdot \text{s})$, NP (nepheline probability = 30%), TZr (T _L -Zr = 1050°C),							
Max Mn ($g_{MnO} = 8 \text{ wt\%}$), Max Al ($g_{Al2O3} = 30 \text{ wt\%}$). B (model validity, g_{B2O3}							
=4 - 22 wt%), N	la (model validity	$y, g_{Na2O} = 4.1$	- 24 wt%).				
(b) sum for wast	e oxide mass and	l glass mass, y	weighted aver	age for WOL.			

6.3 Evaluation of Individual Property Prediction Uncertainties

With a roughly 2.58 relative percent increase in predicted HLW glass mass due to the application of prediction uncertainties, a study was performed to determine which prediction uncertainties had the most significant impact on glass mass. Table 8 shows the glass masses resulting from excluding individual prediction uncertainties one-at-a-time while all other prediction uncertainties were applied. Excluding the $T_{2\%}$ prediction uncertainties had the strongest effect with RPD of -1.67% followed by -0.36% for T_L -Zr, -0.30% for nepheline, and -0.13% for viscosity.

Cluster		Prediction	Prediction	Prediction	Prediction	Prediction
	No Uncertainties	Uncertainties all properties	Uncertainties No n	Uncertainties No T2%	Uncertainties No NP	Uncertainties No TL-Zr
1	272.5	272.5	272.5	272.5	272.5	272.5
2	206.8	206.8	206.8	206.8	206.8	206.8
3	614.5	626.9	625.9	617.1	625.2	626.9
4	756.1	770.7	769.5	759.4	768.7	770.7
5	228.2	233.2	232.4	229.1	233.2	233.2
6	263.7	270.3	269.8	265.1	269.2	270.3
7	290.1	296.8	296.2	290.7	296.8	296.8
8	275.6	280.5	280.0	277.2	279.4	280.5
9	94.0	98.9	98.8	98.9	97.2	96.0
10	254.7	260.6	260.0	256.3	259.4	260.6
11	464.7	475.7	474.7	466.0	474.6	475.7
12	185.7	189.5	189.1	186.3	189.0	189.5
13	977.3	1,003.8	1,002.4	978.8	1,003.8	1,003.8
14	469.5	483.2	482.4	470.1	483.2	483.2

Table 8. HLW Glass Masses Generated by Individually Excluding Prediction Uncertainties for Various Properties

Cluster	No Uncertainties	Prediction Uncertainties all properties	Prediction Uncertainties Νο η	Prediction Uncertainties No T2%	Prediction Uncertainties No NP	Prediction Uncertainties No T _L -Zr
15	262.4	262.4	262.4	262.4	262.4	262.4
16	203.1	208.6	208.3	203.4	208.6	208.6
17	659.1	672.8	672.0	659.7	672.7	672.7
18	746.1	763.8	762.8	746.9	763.8	763.8
19	446.5	475.3	474.5	475.3	463.5	458.1
20	469.3	480.0	479.1	469.9	480.0	480.0
21	1,489.9	1,525.9	1,523.7	1,492.2	1,525.9	1,525.9
22	1,148.9	1,177.7	1,175.8	1,150.3	1,177.1	1,177.7
23	1,677.2	1,783.8	1,777.4	1,783.8	1,746.0	1,716.8
24	467.9	489.4	488.6	484.1	488.0	489.4
25	2,251.2	2,314.5	2,314.5	2,264.0	2,303.8	2,314.5
26	660.3	679.2	678.8	663.2	679.1	679.2
27	1,793.9	1,838.5	1,836.0	1,796.7	1,838.5	1,838.5
28	497.3	511.5	510.9	498.1	511.5	511.5
29	3,020.4	3,096.6	3,092.3	3,025.1	3,096.6	3,096.6
30	2,213.7	2,213.8	2,213.8	2,213.7	2,213.8	2,213.8
Sum	23,360	23,963	23,931	23,563	23,890	23,876

6.4 Prediction and Composition/Process Uncertainties

The HLW waste estimates were performed using both prediction uncertainties (as described in Section 4.1) and composition/process uncertainties (as described in Section 4.2.1). The results are summarized in Table 9. The total glass masses produced are 24,703 MT and 24,359 MT for combined uncertainties if one or four MFPV samples are analyzed, respectively. The average glass mass (used for comparisons later in the report) is 24,531 MT. The average is 5.01 relative percent higher than the no uncertainty case and therefore composition uncertainties account for 2.43 relative percent increase in glass mass (the remaining 2.58% from prediction uncertainties). Generally, the waste loading limiting factors were the same as in the no uncertainty case. Exceptions include:

- Cluster 9 limited by TZr, viscosity and nepheline with no uncertainty and limited by TZr, viscosity, nepheline and boron with prediction and composition uncertainties;
- Cluster 13 limited by T2, boron and viscosity with no uncertainty and limited only by T2 and viscosity with prediction and composition/process uncertainties;
- Cluster 17 limited by T2 and viscosity with no uncertainty and limited by T2, viscosity and nepheline with prediction and composition/process uncertainties;
- Cluster 18 limited by T2 and viscosity with no uncertainty and limited by T2, viscosity and boron with prediction and composition/process uncertainties;
- Cluster 25 limited by T2, boron and nepheline with no uncertainty and limited by the same properties with 4 MFPV samplings with prediction and composition/process uncertainties and by T2, viscosity and nepheline with one sampling with prediction and composition/process uncertainties.

Cluster	Waste	One MFP	V Sample	Four MFI	PV Samples	Limits(a)
	oxides, kg	WOL, wt%	Glass, MT	WOL, wt%	Glass, MT	
1	102,015	37.4	272.6	37.4	272.5	Max Fe
2	93,314	45.1	206.9	45.1	206.9	Max Fe
3	304,764	47.1	647.0	47.8	637.9	T2,Vis,NP
4	340,138	42.8	795.3	43.4	783.8	T2,Vis,NP
5	118,988	49.1	242.2	50.0	237.9	T2,Vis,B
6	130,884	47.1	278.0	47.7	274.4	T2,Vis,NP
7	129,640	41.9	309.3	42.7	303.3	T2,Vis,Na
8	135,350	46.7	289.6	47.4	285.4	T2,Vis,NP
9	40,217	39.2	102.5	39.8	101.1	TZr,Vis,NP,B
10	137,773	51.4	268.0	52.1	264.5	T2,Vis,NP
11	229,181	46.8	489.5	47.4	483.1	T2,Vis,NP
12	96,641	49.6	194.7	50.2	192.3	T2,Vis,NP
13	414,412	39.8	1,040.6	40.5	1,023.7	T2,Vis
14	226,581	45.4	499.6	46.1	492.0	T2,Vis,B
15	102,370	39.0	262.6	39.0	262.5	Max Mn
16	89,071	41.3	215.6	41.9	212.4	T2,Visc,B
17	334,869	48.3	693.5	49.0	683.8	T2,Vis,NP
18	376,435	47.8	788.3	48.4	777.0	T2,Vis,B
19	178,911	36.2	493.8	36.8	485.8	TZr,Vis,NP,B
20	228,853	46.1	496.3	46.8	488.7	T2,Vis
21	710,511	45.0	1,578.6	45.7	1,554.2	T2,Vis,B
22	546,626	45.0	1,215.6	45.6	1,198.4	T2,Vis,NP
23	709,324	38.2	1,857.3	38.9	1,823.4	TZr,Vis,NP
24	196,576	38.9	505.7	39.5	498.0	T2,Vis,NP
25	979,245	40.9	2,393.3	41.6	2,355.6	T2,Vis,NP (1 sample) T2 NP B (4 samples)
26	276,233	39.2	704.9	39.9	692.9	T2,Vis
27	784,370	41.2	1,905.7	41.8	1,875.3	T2,Vis,B
28	220,037	41.5	530.0	42.2	521.6	T2,Vis,B
29	1,388,456	43.2	3,211.8	44.0	3,156.3	T2,Vis,B
30	841,474	38.0	2,214.0	38.0	2,213.9	Max Al
Sum	10,463,259	42.4	24,702.8	43.0	24,358.6	
(a) limitin (nepheline wt%). B (1	g factors inclu probability = model validity	Ide: Max Fe ($g_{\rm F}$ = 30%), TZr (T ₁ y, $g_{\rm B2O3} = 4 - 22$	$r_{e203} = 20 \text{wt\%}$), T -Zr = 1050°C), wt%), Na (mod	Γ2 (T _{2%} =950°C Max Mn (g _{Mn} lel validity, g _N	C), Vis $(\eta_{1150} = 0)$ 0 = 8 wt%, Ma $\eta_{1220} = 4.1 - 24 \text{ ws}$	2 or 8 Pa·s), NP ax Al ($g_{A12O3} = 30$ /t%).

Table 9. Glass Mass and Limiting Factors for 30 HLW Clusters with Prediction and Composition/Process Uncertainties

6.5 Evaluation of Individual Sources of Composition/Process Uncertainty

With a roughly 2.43 relative percent increase in predicted HLW glass mass due to the application of composition/process uncertainties, a study was performed to determine which components of composition uncertainties had the most significant impact on glass mass. Table 10 shows the glass masses resulting from excluding individual composition uncertainties, one-at-a-time, while all other composition uncertainty components were applied. Excluding the analytical uncertainties had the strongest effect by decreasing the total glass mass by 1.31% followed by 0.1% for mixing and sampling uncertainty. The individual effects of remaining four composition uncertainty components were not calculated for all clusters because their effects calculated for selected clusters were negligible, all less than 0.1%.

Cluster	No uncertainties	Prediction uncertainties for all properties	Full Prediction & Composition Uncertainties(a)	Prediction & Composition Uncertainties without Analytical Uncertainty(a)	Prediction & Composition Uncertainties without Mixing and Sampling Uncertainty(a)
1	272.5	272.5	272.6	272.6	272.6
2	206.8	206.8	206.9	206.9	206.9
3	614.5	626.9	642.4	634.4	641.6
4	756.1	770.7	789.5	779.6	788.1
5	228.2	233.2	240.1	236.3	239.7
6	263.7	270.3	276.2	273.5	275.7
7	290.1	296.8	306.3	300.5	306.0
8	275.6	280.5	287.5	283.8	286.9
9	94.0	98.9	101.8	100.7	101.5
10	254.7	260.6	266.3	263.8	265.6
11	464.7	475.7	486.3	481.1	485.6
12	185.7	189.5	193.5	191.8	193.2
13	977.3	1,003.8	1,032.1	1,015.3	1,031.6
14	469.5	483.2	495.8	489.1	495.1
15	262.4	262.4	262.5	262.6	262.6
16	203.1	208.6	214.0	211.1	213.7
17	659.1	672.8	688.6	680.3	687.8
18	746.1	763.8	782.6	772.1	782.0
19	446.5	475.3	489.8	481.8	489.2
20	469.3	480.0	492.5	485.3	492.2
21	1,489.9	1,525.9	1,566.4	1,542.5	1,565.1
22	1,148.9	1,177.7	1,207.0	1,190.8	1,205.9
23	1,677.2	1,783.8	1,840.3	1,809.9	1,838.9

Table 10. HLW Glass Masses Generated by Individually Excluding Prediction Uncertainties for Various Properties kg

Cluster	No uncertainties	Prediction uncertainties for all properties	Full Prediction & Composition Uncertainties(a)	Prediction & Composition Uncertainties without Analytical Uncertainty(a)	Prediction & Composition Uncertainties without Mixing and Sampling Uncertainty(a)
24	467.9	489.4	501.9	494.5	501.3
25	2,251.2	2,314.5	2,374.4	2,338.5	2,371.7
26	660.3	679.2	698.9	687.0	698.3
27	1,793.9	1,838.5	1,890.5	1,859.5	1,888.5
28	497.3	511.5	525.8	517.3	525.2
29	3,020.4	3,096.6	3,184.1	3,132.6	3,180.2
30	2,213.7	2,213.8	2,214.0	2,214.0	2,214.0
Sum	23,360	23,963	24,531	24,209	24,507
(a) Glas	s Mass reported	are the average of	the masses produced	with one and four M	FPV samples.

7.0 LAW Calculation Results and Discussion

Calculations were performed using the 36 LAW feed composition clusters. Initially, calculations were performed using the waste loading line rules with and without uncertainties (Section 7.1). Then the calculations were performed without the waste loading line rules (Section 7.2). The impact of various prediction uncertainties are discussed in Section 7.2.3. Finally, the impacts of various composition/process uncertainties are discussed in Section 7.2.5.

7.1 LAW Glass Mass with Waste Loading ('Line') Rules

A series of waste loading line rules were developed in Vienna et al. (2016) to simply estimate the likely WOL of LAW glass during production without recourse to a detailed set of constraints, property models, and uncertainty descriptions. These rules are primarily used to constrain total alkali and SO_3 in glass as shown in Figure 11. In addition to the three blue lines in this figure (new proposed waste loading rules), there is also a combined chlorine, chromium, and phosphorous rule with equations listed in Table 3. The initial question to answer is if the loadings estimated by the line rules can be obtained by glasses for estimated Hanford wastes while still meeting all the property constraints with sufficient confidence. This subsection aims to answer that question.

Figure 11. Comparison of the WTP Baseline and Proposed New Waste Loading Line Rules for Normalized Alkali and Sulfur Content. (Vienna et al. (2016)).

The maximum WOL for each of the 36 waste clusters was determined and reported in Table 11. Using the constraints and models reported by Vienna et al. (2016), 282,350 MT of LAW glass would be produced (51,243 containers, assuming 5.51 MT of glass per container). The glass is more limited by the alkali constraint (68%) than by the alkali plus sulfur constraint (32%), sometimes including halide constraints (28%) – see Figure 12.

Cluster	Waste	No Unc	certainty	Pred + Com	p Uncertainty	Limits(a)
	oxides, MT	WOL, wt%	Glass, MT	WOL, wt%	Glass, MT	
1	2,295	26.2	8,749	26.2	8,751	NaK
2	2,334	26.5	8,806	26.5	8,813	NaK
3	1,244	26.9	4,632	26.5	4,690	NaK+H
4	2,257	26.9	8,399	26.8	8,408	NaK+H
5	484	23.4	2,067	23.4	2,067	NaKS+H
6	2,021	26.9	7,525	26.8	7,531	NaK
7	492	27.4	1,798	27.4	1,800	NaK
8	3,669	26.1	14,083	26.0	14,093	NaK
9	1,920	26.5	7,258	26.4	7,282	NaK+H
10	5,375	28.4	18,924	28.4	18,930	NaK
11	5,812	28.2	20,636	28.1	20,650	NaK
12	4,898	28.3	17,286	28.3	17,295	NaK
13	2,345	28.6	8,205	28.6	8,214	NaK
14	1,025	28.9	3,548	28.9	3,551	NaK
15	4,719	28.7	16,417	28.7	16,420	NaKS
16	2,450	28.6	8,552	28.6	8,558	NaK
17	3,775	29.0	13,033	28.9	13,043	NaK
18	1,085	29.1	3,723	29.1	3,725	NaK
19	2,643	29.1	9,080	29.1	9,082	NaK
20	2,253	29.8	7,566	29.8	7,572	NaK
21	558	29.0	1,927	28.9	1,927	NaK
22	2,398	29.0	8,275	29.0	8,276	NaKS
23	2,584	27.6	9,376	27.6	9,376	NaKS+H
24	4,992	29.6	16,893	29.5	16,908	NaK
25	4,622	27.1	17,051	27.1	17,052	NaKS+H
26	1,547	27.3	5,661	27.3	5,661	NaKS+H
27	1,481	26.2	5,649	26.2	5,649	NaKS+H
28	681	28.5	2,392	28.5	2,392	NaKS
29	1,536	26.5	5,796	26.5	5,797	NaKS+H
30	2,214	26.4	8,390	26.4	8,391	NaKS+H
31	463	30.9	1,497	30.9	1,498	NaK
32	404	32.0	1,261	31.8	1,271	NaK
33	358	26.6	1,346	26.6	1,346	NaKS+H
34	500	23.9	2,091	23.9	2,091	NaKS+H
35	919	24.0	3,836	24.0	3,836	NaKS
36	112	18.1	619	18.1	619	SO ₃
Sum(b)	78,465	27.8	282,350	27.8	282,562	

 Table 11. Waste Mass, Maximum WOL, Glass Mass, and Limiting Factors for each of 36 LAW Clusters with Line Rules

Cluster	Waste	No Uncertainty		Pred + Comp Uncertainty L		Limits(a)
	oxides, MT	WOL, wt%	Glass, MT	WOL, wt%	Glass, MT	
(a) NaK :	= Na ₂ O+K ₂ O Lin	e Rule, NaKS =	Na ₂ O+K ₂ O+	SO ₃ Line Rule, S	$O_3 = SO_3$ Line	Rule, +H
includes	also Halide Line	Rule. The limits	reported in th	nis table are appli	cable to both u	ncertainty
cases: No	OUncertainty and	Prediction plus	Composition	Uncertainties.		
(b) Sum t	for waste oxide a	nd glass masses,	weighted ave	erage for WOL		

Figure 12. Distribution of LAW Glass Mass Limited by Various Line Rules.

The total glass mass increases only slightly when prediction and composition/process uncertainties are applied – no more than 1.25 relative percent increase for any individual cluster with an average of 0.08% relative difference as a weighted average across all clusters. Therefore, the application of waste loading line rules do serve the initial purpose.

7.2 LAW Glass Mass without Waste Loading ('Line') Rules

The waste loading line rules were found in Section 7.1 to be sufficiently conservative to account for various uncertainties in LAW WOL. The next related question to answer is "how conservative are the line rules?" The following sub-sections seeks to answer that question. A series of calculations were performed to maximize the WOL for each LAW composition while simultaneously satisfying all of the LAW constraints listed in Section 3.2. If one of the property/composition constraints (Table 3) limits the WOL, the additive composition is adjusted to increase the loading until one or more additional constraints are met. Therefore, the WOL is limited by more than one constraint. Unlike HLW glasses there are no LAW glasses limited by single component concentration constraints but all LAW glasses were also limited by one or more model validity constraints (Table 4).

7.2.1 No Uncertainties

Reported in Table 12 are the maximum WOL for each of the 36 waste clusters which was determined with the line rules suppressed. These calculations resulted in an estimate of 252,490 MT of LAW glass to be produced (45,824 containers, assuming 5.51 MT of glass per container). This is 10.58 relative percent lower than the estimates made when line rules are applied. The glass is most limited by K-3 corrosion, viscosity and Alkali + Zr + Sn + Ca (58%) (Figure 13).

Table 12.	Waste Mass, Maximum WOL, Glass Mass, and Limiting Factors for each of 36 LAW Clu	usters
	with No Uncertainties and No Line Rules	

Cluster	Waste oxides, MT	WOL, wt%	Glass, MT	Limits(a)
1	2,295	28.9	7,946	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
2	2,334	29.3	7,973	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
3	1,244	29.4	4,238	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca),wSO3
4	2,257	29.7	7,597	Al,B,Na,Zr,K3,Visc,(Zr+Sn+Al),(Alk+Zr+Sn+Ca),wSO3
5	484	27.9	1,734	V,VHT,K3,Visc,wSO3,(Zr+Sn+Al)
6	2,021	29.6	6,838	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
7	492	29.9	1,649	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
8	3,669	28.5	12,893	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
9	1,920	28.8	6,656	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca),wSO3
10	5,375	31.0	17,362	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
11	5,812	30.6	18,972	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
12	4,898	30.8	15,906	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
13	2,345	31.1	7,553	Al,B,Na,Ti,Zr,K3,Visc,(Alk+Zr+Sn+Ca),wSO3
14	1,025	31.3	3,270	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
15	4,719	31.6	14,919	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca),wSO3
16	2,450	31.5	7,782	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
17	3,775	31.5	11,989	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
18	1,085	31.5	3,439	B,Cr,Zr,K3,Visc,(Zr+Sn+Al),(Alk+Zr+Sn+Ca)
19	2,643	31.7	8,324	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
20	2,253	32.3	6,972	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
21	558	32.5	1,715	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
22	2,398	32.2	7,452	Al,B,Na,Zr,K3,wSO3,(Alk+Zr+Sn+Ca)
23	2,584	32.4	7,988	Al,B,Na,Zr,K3,wSO3,(Alk+Zr+Sn+Ca)
24	4,992	32.1	15,567	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)
25	4,622	32.2	14,353	Al,B,Na,Zr,K3,wSO3,(Alk+Zr+Sn+Ca)
26	1,547	32.5	4,763	Al,B,Na,Zr,K3,wSO3,(Alk+Zr+Sn+Ca)
27	1,481	33.2	4,461	B,Na,V,Zr,VHT,K3,wSO3
28	681	33.0	2,062	Al,B,Na,Zr,K3,wSO3,(Alk+Zr+Sn+Ca)
29	1,536	32.9	4,676	Cr,V,Zr,VHT,K3,wSO3,(Zr+Sn+Al)
30	2,214	32.7	6,774	Cr,V,Zr,VHT,K3,wSO3,(Zr+Sn+Al)

Cluster	Waste	WOL,	Glass,	Limits(a)			
	oxides, MT	wt%	MT				
31	463	33.5	1,381	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)			
32	404	34.8	1,162	Al,B,Na,Zr,K3,Visc,(Alk+Zr+Sn+Ca)			
33	358	33.8	1,058	Si,V,VHT,K3,Visc,wSO3,(Zr+Sn+Al)			
34	500	30.5	1,640	Al,B,V,Zr,PCT,VHT,K3,Visc,wSO3			
35	919	30.9	2,977	Al,Ca,V,VHT,K3,Visc,wSO3			
36	112	25.0	449	Al,B,P,PCT,Visc,wSO3,(Alk-Zr-Sn-Ca)			
Sum(b)	78,465	31.1	252,490				
(a) Limit	ing factors inclu	de: Al, B, C	Ca, Cr, Na,	P, Si, Ti, V, and Zr represent model validity constraints for			
correspon	nd oxide compo	nents given	in Table 4.	(Alk-Zr-Sn-Ca) =			
$g_{Na_2O} + 0$	$g_{Na,O} + 0.66g_{K,O} + 2.07g_{Li,O} - g_{ZrO_2} - g_{SnO_2} - g_{CaO} \le 0.15$, K3 = K-3 neck corrosion at 1208°C ln[k_{1208} , in] ≤ -100						
3.2189, PCT = ln[PCT <i>NL</i> , g/L] \leq 1.386, VHT = ln[VHT <i>D</i> , µm] \leq 6.116, Visc = 0.693 \leq ln [η_{1150} , Pa•s] \leq 2.079,							
wSO3 = SO ₃ salt concentration $w_{SO_3} \le w_{SO_3}^{Limit}$, (Zr+Sn+Al) = $g_{ZrO_2} + g_{SnO_2} + g_{Al_2O_3} \le 0.17$.							
(b) Sum f	for waste oxide a	and glass m	asses, weig	hted average for WOL			

Figure 13. Waste Loading Limiting Factors for LAW Glasses without Line Rules.

7.2.2 Prediction Uncertainties Only

The waste estimates were performed using the prediction uncertainties (as described in Section 4.1) and without the waste loading line rules. The results are summarized in Table 13. The total glass mass produced is 255,833 MT, 1.32 relative percent higher than the case without any uncertainties. The waste loading limiting factors are reported in Table 13.

Cluster	Waste	WOL,	Glass,	Limits(a)
1	oxides, kg	wt%	MT	
1	2,295	28.8	7,959	AI,B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+AI)
2	2,334	29.0	8,050	Al,B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
3	1,244	28.9	4,304	B,Cr,Zr,VHT,K3,Visc,wSO3,(Zr+Sn+Al)
4	2,257	29.2	7,741	B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
5	484	26.5	1,825	V,VHT,K3,wSO3
6	2,021	29.5	6,862	Al,B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
7	492	29.9	1,649	Al,B,Cr,Na,Zr,VHT,K3,Visc,(Zr+Sn+Al)
8	3,669	28.4	12,896	Al,B,Na,Zr,VHT,K3,Visc,(Zr+Sn+Al)
9	1,920	28.7	6,695	B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
10	5,375	31.0	17,365	Al,B,Na,Zr,VHT,K3,Visc,(Zr+Sn+Al)
11	5,812	30.6	18,974	Al,B,Na,Zr,VHT,K3,Visc,(Zr+Sn+Al)
12	4,898	30.8	15,907	Al,B,Na,Zr,VHT,K3,Visc,(Zr+Sn+Al)
13	2,345	31.0	7,567	B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
14	1,025	31.3	3,271	Al,B,Cr,Na,Zr,VHT,K3,Visc,(Zr+Sn+Al)
15	4,719	31.3	15,068	B,Cr,Zr,VHT,K3,Visc,wSO3,(Zr+Sn+Al)
16	2,450	31.5	7,787	Al,B,Cr,Zr,VHT, K3,Visc,(Zr+Sn+Al)
17	3,775	31.5	11,992	Al,B,Na,Zr,VHT,K3,Visc,(Zr+Sn+Al)
18	1,085	31.5	3,444	B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
19	2,643	31.7	8,326	Al,B,Na,Zr,VHT,K3,Visc,(Zr+Sn+Al)
20	2,253	32.3	6,974	Al,B,Na,Zr,VHT,K3,Visc,(Zr+Sn+Al)
21	558	31.8	1,756	Al,B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
22	2,398	31.8	7,547	B,Cr,Zr,VHT,K3,wSO3,(Zr+Sn+Al)
23	2,584	31.5	8,213	B,Cr,V,Zr,VHT,K3,wSO3,(Zr+Sn+Al)
24	4,992	32.1	15,573	Al,B,Cr,Na,Zr,VHT,K3,Visc,(Zr+Sn+Al)
25	4,622	31.2	14,819	B,V,Zr,VHT,K3,wSO3
26	1,547	31.5	4,909	B,V,Zr,VHT,K3,wSO3
27	1,481	30.9	4,793	V,VHT,K3,wSO3
28	681	32.4	2,103	B,Cr,V,Zr,VHT,K3,wSO3,(Zr+Sn+Al)
29	1,536	30.7	5,010	Al,V,VHT,K3,wSO3
30	2,214	30.7	7,215	V,VHT,K3,wSO3
31	463	33.5	1,382	Al,B,Na,Zr,VHT,K3,Visc,(Zr+Sn+Al)
32	404	34.7	1,165	Al,B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
33	358	31.4	1,141	V,VHT,K3,wSO3
34	500	28.3	1,767	V,VHT,K3,wSO3
35	919	28.4	3,237	V,VHT,K3,wSO3
36	112	20.5	547	Al,B,Ca,V,VHT,Visc, wSO3
Sum(b)	78,465	30.7	255,833	

 Table 13. Waste Mass, Maximum WOL, Glass Mass, and Limiting Factors for 36 LAW Clusters with

 Prediction Uncertainties without Line Rules

Cluster	Waste	WOL,	Glass,	Limits(a)
	oxides, kg	wt%	MT	
(a) Limiting	factors includ	e: Al, B, C	ca, Cr, Na,	P, Si, V, and Zr represent model validity constraints
for correspon	nd oxide comp	onents give	en in Table	e 4. (Alk-Zr-Sn-Ca) =
$g_{Na_2O} + 0.66g$	$g_{K_2O} + 2.07 g_{Li_2O}$	$g - g_{ZrO_2} - g_{ZrO_2}$	$g_{SnO_2} - g_{CaO}$	≤ 0.15 , K3 = K-3 neck corrosion at 1208°C ln[k_{1208} ,
in] ≤ -3.218	9, PCT = $\ln[PC]$	CT NL, g/L	L] ≤ 1.386,	VHT = $\ln[VHT D, \mu m] \le 6.116$, Visc = $0.693 \le \ln$
$[\eta_{1150}, Pa \cdot s]$	≤ 2.079, wSO3	= SO ₃ sal	t concentra	tion $w_{SO_3} \le w_{SO_3}^{Limit}$, (Zr+Sn+Al) =
$g_{ZrO_2} + g_{SnO_2}$	$_{2} + g_{Al_{2}O_{3}} \le 0.1$	17.		
(b) Sum for	waste oxide an	d glass ma	sses, weigl	nted average for WOL

7.2.3 Evaluation of Individual Property Prediction Uncertainties

An analysis was performed to determine the role of prediction uncertainties for individual properties on the amount of glass produced. Table 14 summarizes the glass masses resulting from systematic elimination of prediction uncertainties for different properties. The most influential property was VHT with -0.81% (RPD after removing prediction uncertainty for VHT) followed by K3 -0.61%, w_{SO3} -0.28%, and least influential was viscosity with -0.03%. Analysis was not performed for PCT because PCT was not a limiting property for any cluster when prediction uncertainties were applied as shown in Table 13.

Cluster	No uncertainties	Prediction uncertainties for all properties	Prediction uncertainties for all but VHT	Prediction uncertainties for all but K3	Prediction uncertainties for all but WSO3	Prediction uncertainties for all but Viscosity
1	7,946	7,959	7,946	7,947	7,959	7,955
2	7,973	8,050	7,974	7,999	8,050	8,045
3	4,238	4,304	4,240	4,257	4,297	4,304
4	7,597	7,741	7,599	7,680	7,741	7,734
5	1,734	1,825	1,803	1,783	1,805	1,825
6	6,838	6,862	6,838	6,839	6,862	6,858
7	1,649	1,649	1,649	1,649	1,649	1,649
8	12,893	12,896	12,894	12,894	12,896	12,896
9	6,656	6,695	6,658	6,658	6,695	6,688
10	17,362	17,365	17,362	17,362	17,365	17,365
11	18,972	18,974	18,972	18,972	18,974	18,974
12	15,906	15,907	15,906	15,906	15,907	15,906
13	7,553	7,567	7,555	7,555	7,567	7,560
14	3,270	3,271	3,270	3,270	3,271	3,271
15	14,919	15,068	14,925	14,925	15,044	15,068
16	7,782	7,787	7,783	7,783	7,787	7,785
17	11,989	11,992	11,990	11,990	11,992	11,991
18	3,439	3,444	3,439	3,441	3,444	3,442
19	8,324	8,326	8,325	8,325	8,326	8,325

Table 14. LAW Glass Mass (MT) for Various Different Property Prediction Uncertainty Cases

20	(072	6.074	6.072	(072	6.074	6.074
20	6,972	6,974	6,973	6,973	6,974	6,974
21	1,715	1,756	1,716	1,747	1,756	1,755
22	7,452	7,547	7,456	7,465	7,533	7,547
23	7,988	8,213	8,015	8,089	8,167	8,213
24	15,567	15,573	15,570	15,569	15,573	15,572
25	14,353	14,819	14,433	14,582	14,709	14,819
26	4,763	4,909	4,771	4,833	4,877	4,909
27	4,461	4,793	4,684	4,690	4,708	4,793
28	2,062	2,103	2,063	2,074	2,097	2,103
29	4,676	5,010	4,891	4,876	4,911	4,978
30	6,774	7,215	7,086	7,070	7,118	7,215
31	1,381	1,382	1,382	1,381	1,382	1,382
32	1,162	1,165	1,162	1,162	1,165	1,164
33	1,058	1,141	1,117	1,113	1,120	1,141
34	1,640	1,767	1,719	1,721	1,730	1,767
35	2,977	3,237	3,130	3,143	3,150	3,237
36	449	547	462	547	512	547
Sum	252,490	255,833	253,760	254,268	255,112	255,757

7.2.4 Prediction and Composition/Process Uncertainties

The waste estimates were performed using both prediction uncertainties (as described in Section 4.1) and composition/process uncertainties (as described in Section 4.2). The results are summarized in Table 15. The total glass masses produced is 275,359 MT for combined uncertainties, 9.06 relative percent higher than the no uncertainty case and therefore composition uncertainties account for 7.73 relative percent additional increase in glass mass (the remaining 1.32% from prediction uncertainties). The glass mass is 2.48 relative percent below that estimated with the line rules. The waste loading limiting factors are reported in Table 15.

Cluster	Waste oxides,	WOL,	Glass,	Limits
	MT	wt%	MT	
1	2,295	26.4	8,683	Al,B,Cr, Zr,VHT, K3,Visc,(Zr+Sn+Al)
2	2,334	26.9	8,688	Al,B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
3	1,244	26.6	4,668	B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
4	2,257	27.0	8,372	Al,B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
5	484	24.9	1,944	V,VHT,K3,wSO3
6	2,021	27.3	7,411	Al,B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
7	492	27.6	1,781	Al,B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
8	3,669	26.5	13,859	Al,B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
9	1,920	26.5	7,257	B,CrV,Zr,VHT,K3,Visc,(Zr+Sn+Al)

Table 15. Waste Mass, Maximum WOL, Glass Mass, and Limiting Factors for 36 LAW Clusters with Prediction and Composition/Process Uncertainties without Line Rules

Cluster	Waste oxides, MT	WOL, wt%	Glass, MT	Limits
10	5,375	28.8	18,660	Al,B,CrV,Zr,VHT,K3,Visc,(Zr+Sn+Al)
11	5,812	28.6	20,356	Al,B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
12	4,898	28.8	16,981	Al,B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
13	2,345	28.5	8,225	Al,B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
14	1,025	29.0	3,536	Al,B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
15	4,719	28.9	16,326	B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
16	2,450	28.8	8,513	Al,B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
17	3,775	29.2	12,919	Al,B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
18	1,085	29.4	3,689	Al,B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
19	2,643	29.7	8,907	Al,B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
20	2,253	30.1	7,491	Al,B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
21	558	29.2	1,911	Al,B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
22	2,398	29.4	8,165	B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
23	2,584	29.3	8,821	Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al),wSO3
24	4,992	29.7	16,833	Al,B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al)
25	4,622	29.1	15,865	Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al),wSO3
26	1,547	29.4	5,259	B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al),wSO3
27	1,481	28.9	5,115	V,VHT,K3,wSO3
28	681	30.1	2,257	B,Cr,V,Zr,VHT,K3,Visc,(Zr+Sn+Al),wSO3
29	1,536	28.7	5,355	Al,V,VHT,K3,Visc,wSO3
30	2,214	28.7	7,711	V,VHT,K3,wSO3
31	463	31.5	1,466	Al,B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
32	404	32.2	1,254	Al,B,Cr,Zr,VHT,K3,Visc,(Zr+Sn+Al)
33	358	29.5	1,216	V,VHT,K3,wSO3
34	500	26.6	1,875	V,VHT,K3,wSO3
35	919	26.8	3,426	V,VHT,K3,wSO3
36	112	20.0	561	Al,B,Ca,V,VHT,Visc,wSO3
Sum(b)	78,465	28.5	275,359	

(a) Limiting factors include: Al, B, Ca, Cr, Na, P, Si, V, and Zr represent model validity constraints for correspond oxide components given in Table 4. (Alk-Zr-Sn-Ca) = $g_{Na_2O} + 0.66g_{K_2O} + 2.07g_{Li_2O} - g_{ZrO_2} - g_{SnO_2} - g_{CaO} \le 0.15$, K3 = K-3 neck corrosion at 1208°C ln[k_{1208} , in] \le -3.2189, PCT = ln[PCT *NL*, g/L] \le 1.386, VHT = ln[VHT *D*, µm] \le 6.116, Visc = 0.693 \le ln [η_{1150} , Pa•s] \le 2.079, wSO3 = SO₃ salt concentration $w_{SO_3} \le w_{SO_3}^{Limit}$, (Zr+Sn+Al) = $g_{ZrO_2} + g_{SnO_2} + g_{Al_2O_3} \le 0.17$. (b) Sum for waste oxide and glass masses, weighted average for WOL

7.2.5 Evaluation of Individual Sources of Composition/Process Uncertainty

An analysis was performed to determine the role of individual sources of composition uncertainties on the amount of glass produced. Table 16 summarizes the glass masses resulting from systematic elimination of sources of composition uncertainties. Excluding the analytical uncertainties had the strongest effect by

decreasing the total glass mass by 3.19% followed by 1.62% for volume transfer uncertainty. The individual effects of remaining four composition uncertainty components were not calculated for all clusters because their effects calculated for selected clusters were negligible.

Cluster	No uncertainties	Prediction uncertainties for all properties	Full Prediction & Composition Uncertainties	Prediction & Composition Uncertainties without Analytical Uncertainty	Prediction & Composition Uncertainties without Volume Transfer Uncertainty
1	7,946	7,959	8,683	8.312	8.540
2	7,973	8,050	8,688	8,423	8,554
3	4,238	4,304	4,668	4,503	4,576
4	7,597	7,741	8,372	8,104	8,229
5	1,734	1,825	1,944	1,892	1,922
6	6,838	6,862	7,411	7,174	7,289
7	1,649	1,649	1,781	1,725	1,750
8	12,893	12,896	13,859	13,422	13,643
9	6,656	6,695	7,257	7,023	7,128
10	17,362	17,365	18,660	18,086	18,344
11	18,972	18,974	20,356	19,715	20,035
12	15,906	15,907	16,981	16,432	16,685
13	7,553	7,567	8,225	7,947	8,056
14	3,270	3,271	3,536	3,423	3,472
15	14,919	15,068	16,326	15,775	16,021
16	7,782	7,787	8,513	8,209	8,355
17	11,989	11,992	12,919	12,474	12,681
18	3,439	3,444	3,689	3,575	3,636
19	8,324	8,326	8,907	8,628	8,751
20	6,972	6,974	7,491	7,256	7,381
21	1,715	1,756	1,911	1,835	1,878
22	7,452	7,547	8,165	7,890	8,023
23	7,988	8,213	8,821	8,546	8,684
24	15,567	15,573	16,833	16,275	16,568
25	14,353	14,819	15,865	15,415	15,660
26	4,763	4,909	5,259	5,102	5,180
27	4,461	4,793	5,115	4,967	5,058
28	2,062	2,103	2,257	2,187	2,220
29	4,676	5,010	5,355	5,200	5,287
30	6,774	7,215	7,711	7,491	7,613
31	1,381	1,382	1,466	1,424	1,448

Table 16. LAW Glass Mass (MT) for Full Prediction and Composition Uncertainty Compared to Case	S
with Analytical and Mixing and Sampling Uncertainties Removed	

Cluster	No uncertainties	Prediction uncertainties for all properties	Full Prediction & Composition Uncertainties	Prediction & Composition Uncertainties without Analytical Uncertainty	Prediction & Composition Uncertainties without Volume Transfer Uncertainty
32	1,162	1,165	1,254	1,215	1,234
33	1,058	1,141	1,216	1,182	1,202
34	1,640	1,767	1,875	1,832	1,855
35	2,977	3,237	3,426	3,350	3,388
36	449	547	561	557	558
Sum	252,490	255,833	275,359	266,566	270,903

7.2.6 Without VHT Constraint

As most of the glasses were limited by the VHT constraint a calculation was performed to evaluate the impacts of the VHT constraint on glass mass. For full prediction and composition/process uncertainties, 275,359 MT of LAW glass is estimated. Table 17 summarizes the calculations made on LAW glasses. Removing only the VHT constraint (while keeping all other constraints with both prediction and composition uncertainties) results is an estimated 260,281 MT of LAW glass– a 5.48 relative percent reduction in glass mass. This reduction in mass translates to roughly 3 years of operation assuming 30 MT/d at 70% total online efficiency (TOE). As the correlation between VHT response and glass source-term in IDF is tenuous at best, there appears to be a significant schedule and cost driver to reevaluate this contract constraint.

Case	Line Rules	Prediction	Composition	Full Mission, MT				
		Uncertainties	Uncertainties					
1	Y	None	None	282,350				
2	Y	All	All	282,562				
3	N	None	None	252,490				
4	N	All	None	255,833				
5	N	All but VHT	None	253,760				
6	N	All but K3	None	254,268				
7	N	All but w _{SO3}	None	255,112				
8	N	All but ŋ	None	255,757				
9	N	All	All	275,359				
10	N	All	All but analytical	266,566				
11	N	All	All but volume transfer	270,903				
12(a)	N	All but VHT	All but VHT	260,281				
(a) Case 12 excludes VHT as a constraint								

Table 17. Glass Mass (MT) Projected for the Full Mission for Each of the 12 Evaluated Cases

7.2.7 Evaluation of Glass Mass for Initial Phase of LAW Processing

In the first roughly 10 years of processing, the LAW vitrification facility will be fed by the LAWPS with recycles coming from the EMF. This waste is distinct in composition as seen in Figure 5 with the very high sodium content compared to all other wastes. Estimates of the uncertainty impacts for these specific clusters are useful to evaluating processing during the initial stages of plant operation. They also give an indication of the impacts of the PT process on LAW performance by difference. Evaluation of the waste feeds identified eight clusters (1-6, 8, and 9) to make up this initial time period. Table 18 summarizes the results of the 12 cases evaluated and described in Sections 7.1 and 7.2 for the full mission and also for the eight clusters of waste to be processed in the initial phase of deployment (roughly 10 years of processing). Results from the initial phase shows the same general trend as the full mission. That is the relative differences in glass masses between cases are generally the same for the initial phase and for the full mission.

Case	Line Rules	Prediction	Composition	Initial Phase,	Full Mission,					
		Uncertainties	Uncertainties	MT	MT					
1	Y	None	None	61,520	282,350					
2	Y	All	All	61,633	282,562					
3	N	None	None	55,875	252,490					
4	N	All	None	56,332	255,833					
5	N	All but VHT	None	55,953	253,760					
6	N	All but K3	None	56,057	254,268					
7	N	All but w _{SO3}	None	56,306	255,112					
8	N	All but η	None	56,304	255,757					
9	N	All	All	60,882	275,359					
10	N	All	All but analytical	58,854	266,566					
11	N	All	All but volume transfer	59,880	270,903					
12(a)	N	All but VHT	All but VHT	58,014	260,281					
(a) Case	(a) Case 12 excludes VHT as a constraint									

Table 18. Glass Mass (MT) Projected for the Initial Phase of Processing and Full Mission for Each of the 12 Evaluated Cases

8.0 Summary and Conclusions

Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. Waste feed vectors supporting the SP8 (DOE 2017) were used as a basis for Hanford LAW and HLW compositions to be vitrified. The large number of waste batches (4008 for HLW and 28,458 for LAW) would not allow detailed calculations for each individual batch. Cluster analysis was performed to group the 4008 HLW batches into 30 clusters and the 28,458 LAW batches into 36 clusters, each of like composition. The maximum allowable WOL was estimated for each cluster while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically excluded in the calculations to evaluate their impacts on glass mass. The results of these calculations are described in the subsections below for HLW and LAW.

8.1 High-Level Waste

Applying the advanced glass models and constraints to the SP8 estimate of Hanford HLW generated 23,360 MT of HLW glass (7,735 canisters, assuming 3.02 MT of glass per canister) without use of uncertainty estimates. The WOL of glass is most limited by viscosity, $T_{2\%}$, and nepheline with a small fraction limited by single component (Al, Fe and Mn) constraints (12 wt%) as shown in Figure 14. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimated glass mass: 24,531 MT (8,123 canisters). Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The prediction uncertainties with the largest impact are: $T_{2\%} > T_L$ -Zr>nepheline> viscosity. The composition/process uncertainties with the largest impact are: analytical>mixing and sampling>all others.

Figure 14. Waste Loading Limiting Factors (Glass Mass Basis) for HLW Glasses.

8.2 Low-Activity Waste

Applying the advanced glass models and constraints reported by Vienna et al. (2016) to the SP8 estimate of Hanford LAW generated 282,350 MT of LAW glass (51,243 containers, assuming 5.51 MT of glass container) without use of uncertainty estimates. The WOL of glass for all wastes were determined by the waste loading line rules (Figure 11). The glass is more limited by the alkali constraint (68%) than by the alkali plus sulfur constraint (32%), sometimes including halide constraints (28%). Accounting for prediction and composition/process uncertainties resulted in 0.08 relative percent increase in estimated glass mass: 282,562 MT (51,282 containers). The line rules were developed to simply estimate the likely WOL of LAW glass during production without recourse to a detailed set of constraints, property models, and uncertainty descriptions. The result that glass mass did not increase after application of all applicable uncertainties shows that the line rules successfully limited the loading as intended. However, they may be too conservative and unnecessarily limit WOL. Calculations were therefore performed without the line rules to determine the maximum WOL both with and without applicable uncertainties.

Table 19 summarizes the LAW glass mass estimates for a series of cases with different sources of uncertainty accounted for (see Section 7.0 for detailed explanation of each case). Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties. These comparisons are shown in Table 20.

Case	Line Rules	Prediction Uncertainties	Composition Uncertainties	Glass Mass, MT	Containers					
1	Y	None	None	282,350	51,243					
2	Y	All	All	282,562	51,282					
3	N	None	None	252,490	45,824					
4	N	All	None	255,833	46,431					
5	N	All but VHT	None	253,760	40,054					
6	N	All but K3	None	254,268	46,147					
7	N	All but w _{SO3}	None	255,112	46,300					
8	N	All but η	None	255,757	46,417					
9	N	All	All	275,359	49,974					
10	N	All	All but analytical	266,566	48,379					
11	N	All	All but volume transfer	270,903	49,166					
12(a)	N	All but VHT	All but VHT	260,281	47,238					
(a)	(a) Case 12 excludes VHT as a constraint.									

 Table 19. LAW Glass Mass Estimates for Cases Including Various Uncertainty Terms

Table 20. Summary of Impacts of Line Rules and Uncertainties on LAW Glass Mass and Containers (a)										
	No Uncertainty	Property Prediction Uncertainties Only	Property Prediction + Composition Uncertainties							
With Line Rules ON										
Mass (MTG)	282,350	282,358	282,562							
Containers	51,243	51,245	51,282							
RPD		(0%)	(+0.1%)							
With Line Rules OFF										
Mass (MTG)	252,490	255,833	275,359							
Containers	45,824	46,431	49,974							
RPD	[-11%]	(+1%)[-9%]	(+9%)[-3%]							
(a) change in parentheses is relative to no uncertainty cases (e.g., left), change in square brackets is										
relative to the line rules cases (e.g., up)										

9.0 References

- Arakali A, and J Johnson. 2013. *Integrated Sampling and Analysis Plan (ISAP)*. 24590-LAB-PL-OP-12-0001, Rev. 0, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, WA.
- Certa, P. J., R. D. Adams, G. K. Allen, J. D. Belsher, P. A. Empey, J. H. Foster, T. M. Hohl, R. T. Jasper, R. A. Kirkbride, R. L. Lytle, F. L. Meinert, J. S. Ritari, R. M. Russell, K. R. Seniow, E. B. West, M. N. Wells, and L. M. Bergmann, 2011. *River Protection Project System Plan*. ORP-11242, Rev. 6, U.S. Department of Energy, Office of River Protection, Richland, WA.
- Crum JV, MJ Schweiger, P Hrma, and JD Vienna. 1997. Liquidus Temperature Model for Hanford High-Level Waste Glasses with High Concentrations of Zirconia. Presented at *Scientific Basis for Nuclear Waste Management XX*, 79-85 pp. Materials Research Society, Pittsburgh, PA.
- Deng Y, RC Chen, R Gimpel, B Slettene, MR Gross, K Jun, and R Fundak. 2016. *Flowsheets Bases, Assumptions, and Requirements (BARD)*. 24590-WTP-RPT-PT-02-005, Rev. 8, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, WA.
- Dodd D, and B Kaiser. 2005. Memorandum, "Estimated Analytical Measurement Uncertainties of Selected Analytes." Richland, WA.
- Dodd D, and B Kaiser. 2006. Memorandum, "Estimated Analytical Measurement Uncertainties of Selected HLW Analytes." Richland, WA.
- DOE. 1996. Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS). DOE/EM-0093 DOE/EM-0093, U.S. Department of Energy, Office of Environmental Management, Washington, D.C.
- DOE. 2000. Design, Construction, and Commissioning of the Hanford Tank Waste Treatment and Immobilization Plant. Contract DE-AC27-01RV14136, as amended, U.S. Department of Energy, Office of River Protection, Richland, WA.
- DOE. 2017. *River Protection Project System Plan*. ORP-11242, Rev. 8, U.S. Department of Energy, Office of River Protection, Richland, WA.
- Jantzen CM, NE Bibler, DC Beam, CL Crawford, and MA Pickett. 1993. *Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) Glass Standard Reference Material (U).* WSRC-TR-92-346, Rev. 1, Westinghouse Savannah River Company, Aiken, SC.
- Kim D, JD Vienna, DK Peeler, KM Fox, A Aloy, AV Trofimenko, and KD Gerdes. 2008. Improved Alumina Loading in High Level Waste Glasses. Presented at *Waste Management 2008*, Phoenix, AZ. Paper no. 10382 pp. Phoenix, AZ.
- Kim DS, DK Peeler, and P Hrma. 1995. Effect of Crystallization on the Chemical Durability of Simulated Nuclear Waste Glasses. Presented at *Ceramic Transactions*, 177-85 pp. American Ceramic Society, Westerville, OH.

- Kim DS, and JD Vienna. 2012. *Preliminary Ilaw Formulation Algorithm Description: 24590-LAW-RPT-RT-04-0003, Rev. 1.* ORP-56321, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, WA.
- Matlack KS, M Chaudhuri, H Gan, IS Muller, WK Kot, W Gong, and IL Pegg. 2005a. *Glass Formulation Testing to Increase Sulfate Incorporation: VSL-04R4960-1*. ORP-51808, Vitreous State Laboratory, the Catholic University of America, Washington, D.C.
- Matlack KS, W Gong, and IL Pegg. 2005b. *Glass Formulation Testing to Increase Sulfate Volatilization from Melter*. VSL-04R4970-1, Vitreous State Laboratory, the Catholic University of America, Washington, D.C.
- Matlack KS, W Gong, IS Muller, I Joseph, and IL Pegg. 2006a. *LAW Envelope C Glass Formulation Testing to Increase Waste Loading: VSL-05R5900-1*. ORP-56323, Vitreous State Laboratory, the Catholic University of America, Washington, D.C.
- Matlack KS, W Gong, IS Muller, I Joseph, and IL Pegg. 2006b. *LAW Envelope a and B Glass Formulations Testing to Increase Waste Loading: VSL-06R6900-1*. ORP-56322, Vitreous State Laboratory, the Catholic University of America, Washington, D.C.
- Matlack KS, H Gan, W Gong, IL Pegg, CC Chapman, and I Joseph. 2007. *High Level Waste Vitrification System Improvements: VSL-07R1010-1*. ORP-56297, Vitreous State Laboratory, the Catholic University of America, Washington, D.C.
- Matlack KS, WK Kot, W Gong, W Lutze, IL Pegg, and I Joseph. 2009. *Effects of High Spinel and Chromium Oxide Crystal Contents on Simulated HLW Vitrification in DM100 Melter Tests: VSL-09R1520-1.* ORP-56327, Vitreous State Laboratory, the Catholic University of America, Washington, D.C.
- Matlack KS, H Gan, M Chaudhuri, WK Kot, W Gong, T Bardakci, IL Pegg, and I Joseph. 2010a. *Dm100* and Dm1200 Melter Testing with High Waste Loading Glass Formulations for Hanford High-Aluminum HLW Streams: VSL-10R1690-1. ORP-44198, Vitreous State Laboratory, the Catholic University of America, Washington, D.C.
- Matlack KS, H Gan, WK Kot, M Chaudhuri, RK Mohr, DA McKeown, T Bardakci, W Gong, AC Buechele, IL Pegg, and I Joseph. 2010b. *Tests with High-Bismuth HLW Glasses*. VSL-10R1780-1 VSL-10R1780-1, Vitreous State Laboratory, the Catholic University of America, Washington, D.C.
- Matlack KS, WK Kot, H Gan, and IL Pegg. 2010c. *Glass Formulation Development and Testing for Dwpf High-Al*₂*o*₃ *HLW Sludges: VSL-10R1670-1*. ORP-56290, Vitreous State Laboratory, the Catholic University of America, Washington, D.C.
- Matyas J, AR Huckleberry, CP Rodriguez, JD Vienna, and AA Kruger. 2012. Empirical Model for Formulation of Crystal-Tolerant HLW Glasses. Presented at *Ceramic Transactions*, 121-26 pp. American Ceramic Society, Westerville, OH.
- Muller IS, KS Matlack, H Gan, I Joseph, and IL Pegg. 2010. *Waste Loading Enhancements for Hanford LAW Glasses: VSL-10R1790-1*. ORP-48578, Vitreous State Laboratory, the Catholic University of America, Washington, D.C.

- Muller IS, WK Kot, HK Pasieka, K Gilbo, FC Perez-Cardenas, I Joseph, and IL Pegg. 2012. *Compilation and Management of ORP Glass Formulation Database: VSL-12R2470-1*. ORP-53934, Vitreous State Laboratory, the Catholic University of America, Washington, D.C.
- Muller IS, H Gan, K Gilbo, IL Pegg, and I Joseph. 2015. *LAW Glass Property-Composition Models for K-3 Refractory Corrosion and Sulfate Solubility*. VSL-15R3270-1, Vitreous State Laboratory, the Catholic University of America, Washington, D.C.
- Nelson JL, JD Vienna, KH Abel, and DS Kim. 2007. *Ilaw Product Qualification Report for the Hanford Tank Waste Treatment and Immobilization Plant*. 24590-LAW-RPT-RT-05-001, Rev. 0, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, WA.
- Nelson JL. 2010. *IHLW Waste Form Qualification Report for the Hanford Tank Waste Treatment and Immobilization Plant*. 24590-HLW-RPT-RT-08-001, Rev. 0, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, WA.
- Nelson JL. 2013. Component Partitioning between Glass and Offgas Streams for Use in the IHLW Glass Formulation Algorithm. 24590-HLW-RPT-RT-13-001, Rev. 0, River Protection Project, Waste Treatment Plant, Richland, WA.
- Petkus LL. 2012. *Evaluation of Mixing, Sampling, and Level Uncertianties for Ilaw Glass Qualification*. 24590-LAW-RPT-RT-11-001, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, WA.
- Petkus LL, and JD Vienna. 2012. Component Partitioning between Glass and Offgas Streams in the Low-Activity Waste Melters. 24590-LAW-RPT-RT-10-001, Rev. 0, River Protection Project, Waste Treatment Plant, Richland, WA.
- Piepel GF, SK Cooley, IS Muller, H Gan, I Joseph, and IL Pegg. 2007. *Ilaw Pct, Vht, Viscosity, and Electrical Conductivity Model Development: VSL-07R1230-1.* ORP-56502, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.
- Piepel GF, SK Cooley, A Heredia-Langner, SM Landmesser, WK Kot, H Gan, and IL Pegg. 2008. *IHLW PCT, Spinel T*_{1%}, *Electrical Conductivity, and Viscosity Model Development: VSL-07R1240-4.* ORP-56320, Vitreous State Laboratory, The Catholic University of America, Washington, D.C.
- Piepel GF, SK Cooley, PG Heasler, JD Vienna, and LL Petkus. 2013. Evaluation of Mixing, Sampling, and Level Uncertainties for Immobilized High-Level Waste Glass Qualification. 24590-HLW-RPT-RT-13-002, Rev. 0, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, WA.
- Russell RL, T Jin, BP McCarthy, LP Darnell, DE Rinehart, CC Bonham, V Gervasio, JL Mayer, CL Arendt, JB Lang, MJ Schweiger, and JD Vienna. 2017. *Enhanced Hanford Low-Activity Waste Glass Property Data Development: Phase I.* PNNL-26630, Pacific Northwest National Laboratory, Richland, WA.
- Vienna JD. 2008. "Phosphorous Limit in High-Level Waste Glass -- Supersedes CCN: 177731." Richland, WA.
- Vienna JD, DS Kim, DC Skorski, and J Matyas. 2013. Glass Property Models and Constraints for Estimating the Glass to Be Produced at Hanford by Implementing Current Advanced Glass

Formulation Efforts. PNNL-22631, Rev. 1, ORP-58289, Pacific Northwest National Laboratory, Richland, WA.

- Vienna JD. 2014. "Compositional Models of Glass/Melt Properties and Their Use for Glass Formulation." *Procedia Materials Science* 7(0):148-55. doi:10.1016/j.mspro.2014.10.020.
- Vienna JD, and DS Kim. 2014. *Preliminary Ihlw Formulation Algorithm Description*. 24590-HLW-RPT-RT-05-001, Rev. 1, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, WA.
- Vienna JD, DS Kim, IS Muller, GF Piepel, and AA Kruger. 2014. "Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility." *Journal of the American Ceramic Society* 97(10):3135–42. DOI: 10.1111/jace.13125.
- Vienna JD, GF Piepel, DS Kim, JV Crum, CE Lonergan, BA Stanfill, BJ Riley, SK Cooley, and T Jin. 2016. 2016 Update of Hanford Glass Property Models and Constraints for Use in Estimating the Glass Mass to Be Produced at Hanford by Implementing Current Enhanced Glass Formulation Efforts. PNNL-25835, Pacific Northwest National Laboratory, Richland, WA.
- Vienna JD, JO Kroll, P Hrma, JB Lang, and JV Crum. 2017. "Submixture Model to Predict Nepheline Precipitation in Waste Glasses." *International Journal of Applied Glass Science* 8(2):143-57. DOI: 10.1111/jag.12207.

Appendix A

Table A.1. Variance covariance matrix for HLW PCT-B

Term	Al_2O_3	B_2O_3	Fe ₂ O ₃	Li ₂ O	MgO	Na ₂ O	SiO ₂	TiO ₂	ZnO	ZrO_2	CaO	P_2O_5	SO_3	UO ₃	Others	(Al ₂ O ₃)^2	(Al ₂ O ₃)^3	(Al ₂ O ₃)^4
Al_2O_3	9.203	-0.113	-0.284	-0.111	-0.095	-0.270	-0.245	-0.174	-1.459	0.364	-0.009	-0.497	-0.834	-0.409	-0.258	-109.681	460.920	-632.078
B_2O_3	-0.113	0.132	0.005	0.016	-0.049	0.008	-0.019	0.015	-0.033	-0.055	-0.006	-0.108	0.197	0.091	-0.012	1.371	-8.118	13.665
Fe_2O_3	-0.284	0.005	0.119	-0.027	-0.042	-0.015	-0.001	-0.090	-0.040	0.042	-0.004	-0.023	0.212	-0.037	-0.027	3.232	-12.304	15.482
Li ₂ O	-0.111	0.016	-0.027	0.795	-0.024	0.080	-0.077	0.010	0.156	-0.045	0.106	0.126	-0.404	-0.163	0.017	1.058	-6.552	10.638
MgO	-0.095	-0.049	-0.042	-0.024	2.374	-0.022	-0.026	0.417	0.809	0.110	-0.101	-0.458	0.708	0.155	-0.075	1.953	-6.123	4.062
Na ₂ O	-0.270	0.008	-0.015	0.080	-0.022	0.124	-0.022	0.007	0.033	-0.036	0.000	0.040	-0.027	-0.018	0.035	2.539	-10.287	14.174
SiO ₂	-0.245	-0.019	-0.001	-0.077	-0.026	-0.022	0.030	-0.016	0.041	-0.012	-0.018	0.053	0.049	-0.004	-0.006	2.853	-11.185	14.607
TiO ₂	-0.174	0.015	-0.090	0.010	0.417	0.007	-0.016	1.949	0.632	0.072	0.035	0.014	-0.618	0.353	-0.106	3.160	-14.728	20.597
ZnO	-1.459	-0.033	-0.040	0.156	0.809	0.033	0.041	0.632	6.980	-0.617	0.180	0.366	1.840	0.270	-0.316	15.841	-60.122	75.188
ZrO_2	0.364	-0.055	0.042	-0.045	0.110	-0.036	-0.012	0.072	-0.617	0.610	-0.048	-0.200	-0.229	0.059	-0.085	-3.575	15.532	-22.673
CaO	-0.009	-0.006	-0.004	0.106	-0.101	0.000	-0.018	0.035	0.180	-0.048	0.537	-0.110	-0.210	0.051	0.021	-0.461	3.032	-5.895
P_2O_5	-0.497	-0.108	-0.023	0.126	-0.458	0.040	0.053	0.014	0.366	-0.200	-0.110	5.066	0.574	-0.010	-0.296	5.550	-30.000	50.390
SO_3	-0.834	0.197	0.212	-0.404	0.708	-0.027	0.049	-0.618	1.840	-0.229	-0.210	0.574	44.957	-0.577	-0.762	-13.251	111.718	-205.065
UO_3	-0.409	0.091	-0.037	-0.163	0.155	-0.018	-0.004	0.353	0.270	0.059	0.051	-0.010	-0.577	0.959	-0.012	5.056	-20.777	27.378
Others	-0.258	-0.012	-0.027	0.017	-0.075	0.035	-0.006	-0.106	-0.316	-0.085	0.021	-0.296	-0.762	-0.012	0.274	3.041	-12.885	17.967
$(Al_2O_3)^2$	-109.681	1.371	3.232	1.058	1.953	2.539	2.853	3.160	15.841	-3.575	-0.461	5.550	-13.251	5.056	3.041	1379.785	-6022.753	8487.915
(Al ₂ O ₃)^3	460.920	-8.118	-12.304	-6.552	-6.123	-10.287	-11.185	-14.728	-60.122	15.532	3.032	-30.000	111.718	-20.777	-12.885	-6022.753	27206.367	-39386.450
$(Al_2O_3)^{4}$	-632.078	13.665	15.482	10.638	4.062	14.174	14.607	20.597	75.188	-22.673	-5.895	50.390	-205.065	27.378	17.967	8487.915	-39386.450	58302.720

Table A.2. Variance covariance matrix for HLW PCT-Na

Others (Al₂O₃)² (Al₂O₃)³ (Al₂O₃)⁴ Term Al₂O₃ B₂O₃ Fe₂O₃ Li₂O MgO Na₂O SiO₂ TiO₂ ZnO ZrO₂ CaO P₂O₅ SO₃ UO_3 Al₂O₃ 7.049 -0.088 -0.219 -0.093 -0.081 -0.213 -0.184 -0.136 -1.134 0.291 -0.009 -0.380 -0.667 -0.315 -0.203 -83.939 352.587 -483.369 B_2O_3 -0.088 0.100 0.004 0.013 -0.037 0.006 -0.015 0.011 -0.024 -0.043 -0.004 -0.082 0.151 0.070 -0.009 1.061 -6.249 10.492 Fe₂O₃ -0.219 0.004 0.091 -0.020 -0.032 -0.011 -0.001 -0.068 -0.029 0.031 -0.003 -0.017 0.164 -0.028 -0.020 2.489 -9.473 11.921 Li₂O -0.093 0.013 -0.020 0.608 -0.016 0.063 -0.059 0.008 0.124 -0.038 0.082 0.096 -0.301 -0.123 0.014 0.894 -5.324 8.525 MgO -0.081 -0.037 -0.032 -0.016 1.811 -0.015 -0.020 0.319 0.622 0.081 -0.076 -0.3480.546 0.119 -0.055 1.569 -4.971 3.482 Na₂O -0.213 0.006 -0.011 0.063 -0.015 0.095 -0.017 0.006 0.029 -0.030 0.001 0.031 -0.015 -0.013 0.028 2.001 -8.088 11.117 SiO₂ -0.184 -0.015 -0.001 -0.059 -0.020 -0.017 0.023 -0.013 0.030 -0.009 -0.014 0.040 0.036 -0.003 -0.005 2.152 -8.44011.027 TiO₂ -0.136 0.011 -0.068 0.008 0.319 0.006 -0.013 1.485 0.484 0.054 0.027 0.011 -0.468 0.269 -0.0802.440 -11.343 15.846 ZnO -1.134 - 0.024 - 0.029 0.124 0.622 0.029 0.0300.484 5.332 -0.479 0.139 0.280 1.421 0.207 -0.237 12.293 -46.653 58.353 ZrO_2 0.291 -0.043 0.031 -0.038 0.081 -0.030 -0.009 0.054 -0.479 0.470 -0.037 -0.153 -0.186 0.044 -0.067 -2.862 12.358 -17.937 CaO -0.009 -0.004 -0.003 0.082 -0.076 0.001 -0.014 0.027 0.139 -0.037 0.410 -0.084 0.039 0.017 -0.331 2.236 -4.400 -0.158 -0.380 -0.082 -0.017 0.096 -0.348 0.031 0.040 P_2O_5 0.011 0.280 -0.153 -0.084 3.860 0.439 -0.007 -0.225 4.244 -22.91638.467 $-0.667 \quad 0.151 \quad 0.164 \ -0.301 \quad 0.546 \ -0.015 \quad 0.036$ SO₃ -0.4681.421 -0.186 -0.158 0.439 34.282 -0.437 -0.575 -9.785 83.944 -154.758 UO_3 -0.315 0.070 -0.028 -0.123 0.119 -0.013 -0.003 0.269 0.207 0.044 0.039 -0.007 -0.437 0.731 -0.009 3.885 -15.956 21.019 -0.067 0.017 -0.225 0.210 2.382 Others -0.203 -0.009 -0.020 0.014 -0.055 0.028 -0.005 -0.080 -0.237 -0.575 -0.009 -10.062 13.999 (Al₂O₃)² -83.939 1.061 2.489 0.894 1.569 2.001 2.152 2.440 12.293 -2.862 -0.331 4.244 -9.785 3.885 2.382 1054.954 -4602.750 6484.726 $(Al_2O_3)^{A_3} \ \ 352.587 \ \ -6.249 \ \ -9.473 \ \ -5.324 \ \ -4.971 \ \ -8.088 \ \ -8.440 \ \ -11.343 \ \ -46.653 \ \ 12.358 \ \ 2.236 \ \ -22.916 \ \ -22.9$ 83.944 -15.956 -10.062 -4602.750 20781.754 -30076.171 (Al₂O₃)⁴ -483.369 10.492 11.921 8.525 3.482 11.117 11.027 15.846 58.353 -17.937 -4.400 38.467 -154.758 21.019 13.999 6484.726 -30076.171 44506.919

Table A.3. Variance covariance matrix for HLW PCT-Li

Term Al₂O₃ B₂O₃ Fe₂O₃ Li₂O MgO Na₂O SiO₂ TiO₂ ZnO ZrO₂ CaO P₂O₅ SO₃ UO₃ Others $(Al_2O_3)^2$ $(Al_2O_3)^3$ $(Al_2O_3)^4$ Al₂O₃ 7.098 -0.077 -0.232 -0.078 -0.072 -0.196 -0.191 -0.112 -0.986 0.262 0.057 -0.385 -0.453 -0.299 -0.200 358.041 -490.306-85.124 -0.077 0.111 0.008 0.030 -0.043 0.004 -0.019 0.011 -0.044 -0.041 -0.010 -0.104 B_2O_3 0.154 0.075 -0.008 0.941 -5.976 10.366 Fe₂O₃ -0.232 0.008 0.102 -0.001 -0.042 -0.017 -0.003 -0.075 -0.075 0.038 -0.018 -0.026 0.178 -0.029 -0.019 2.613 -9.830 12.218 -0.202 Li₂O -0.078 0.030 -0.001 0.874 -0.029 0.040 -0.083 0.032 0.096 -0.021 0.024 0.162 -0.124 0.017 0.413 -3.920 7.535 MgO -0.072 -0.043 -0.042 -0.029 2.023 -0.018 -0.022 0.390 0.961 0.092 -0.063 -0.261 0.980 0.149 -0.078 1.308 -2.761 -1.029 Na₂O $-0.196 \quad 0.004 \quad -0.017 \quad 0.040 \quad -0.018 \quad 0.102 \quad -0.016 \quad 0.003$ 0.021 -0.030 -0.001 0.021 -0.054 -0.014 0.030 1.853 -7.594 10.564 SiO₂ -0.191 -0.019 -0.003 -0.083 -0.022 -0.016 0.026 -0.015 0.034 -0.011 -0.009 0.042 0.014 -0.006 -0.006 2.283 -8.965 11.674 TiO₂ -0.112 0.011 -0.075 0.032 0.390 0.003 -0.015 1.476 0.646 0.055 0.037 0.035 -0.319 0.274 -0.090 2.084 -9.719 13.435 ZnO -0.986 -0.044 -0.075 0.096 0.961 0.021 0.034 0.6466.503 -0.490 0.231 0.352 2.519 0.222 -0.344 10.202 -36.838 43.623 ZrO_2 0.262 -0.041 0.038 -0.021 0.092 -0.030 -0.011 0.055 -0.490 0.463 -0.037 -0.156 -0.170 0.046 -0.060 -2.584 11.485 -17.096 CaO 0.057 -0.010 -0.018 0.024 -0.063 -0.001 -0.009 0.037 0.231 -0.037 0.497 -0.114 -0.135 0.043 0.008 -1.017 5.007 -8.235 -0.023 -0.248 P_2O_5 -0.385 -0.104 -0.026 0.162 -0.261 0.021 0.042 0.035 0.352 -0.156 -0.114 4.173 0.424 4.536 -25.465 43.392 SO₃ -0.453 0.154 0.178 -0.202 0.980 -0.054 0.014 -0.319 2.519 -0.170 -0.135 0.424 35.222 -0.409 -0.646 -13.188 101.530 -182.219 UO_3 -0.299 0.075 -0.029 -0.124 0.149 -0.014 -0.006 0.274 0.222 0.046 0.043 -0.023 -0.409 0.727 -0.006 3.705 -15.159 19.809 -0.200 -0.008 -0.019 0.017 -0.078 0.030 -0.006 -0.090 -0.344 -0.060 0.008 -0.248 -0.646 -0.006 0.220 2.347 Others -9.831 13.595 (Al₂O₃)² -85.124 0.941 2.613 0.413 1.308 1.853 2.283 2.084 10.202 -2.584 -1.017 4.536 -13.188 3.705 2.347 1077.438 -4706.340 6621.798 (Al₂O₃)^A3 358.041 -5.976 -9.830 -3.920 -2.761 -7.594 -8.965 -9.719 -36.838 11.485 5.007 -25.465 101.530 -15.159 -9.831 -4706.340 21282.228 -30765.789 (Al₂O₃)⁴ -490.306 10.366 12.218 7.535 -1.029 10.564 11.674 13.435 43.623 -17.096 -8.235 43.392 -182.219 19.809 13.595 6621.798 -30765.789 45480.242

Table A.4. Variance covariance matrix for HLW TL-ZR

Term	Al_2O_3	B_2O_3	Ln_2O_3	Li ₂ O	Na ₂ O	SrO	ZrO_2	Others
Al_2O_3	36866.261	-5799.889	44567.343	-26798.297	-13555.884	-36355.717	17890.969	-363.724
B_2O_3	-5799.889	9277.831	-19508.584	2450.367	7865.096	-23166.554	-6514.831	-1173.851
Ln_2O_3	44567.343	-19508.584	224350.880	-29383.636	-26904.436	60874.755	42864.823	-3878.191
Li ₂ O	-26798.297	2450.367	-29383.636	58010.595	16883.040	102908.803	-32737.169	-369.637
Na ₂ O	-13555.884	7865.096	-26904.436	16883.040	26584.493	6667.999	-16736.785	-2897.094
SrO	-36355.717	-23166.554	60874.755	102908.803	6667.999	2095713.065	-9353.337	-7281.736
ZrO_2	17890.969	-6514.831	42864.823	-32737.169	-16736.785	-9353.337	33140.190	-1150.326
Others	-363.724	-1173.851	-3878.191	-369.637	-2897.094	-7281.736	-1150.326	1042.873

Table A.5. Variance covariance matrix for HLW T_{2%}

Al₂O₃·Na₂O ZrO₂·ZrO₂ Term Al₂O₃ B_2O_3 Bi₂O₃ Cr_2O_3 Fe₂O₃ Li₂O MgO MnO Na₂O NiO RuO₂ TiO₂ ZnO ZrO₂ Others Al₂O₃ 60368.27 -20613.59 -471.59 -23232.87 -1230.25 -12900.76 -17615.06 -204.61 36511.73 -9544.46 -152196.86 -448.53 20084.23 -856.41 -4149.22 -483655.12 10144.14 -5673.46 -2503.15 6542.99 5935.64 4225.23 -4439.65 -12233.95 -1505.35 B_2O_3 -20613.59 17698.99 -7410.85 1129.30 1347.34 -7189.48 44.57 126396.11 -3891.75 Bi₂O₃ -471.59 -7410.85 137578.42 -100575. 6775.61 13326.02 20528.15 4547.47 -341.88 -121900.33 755885.62 -33339.67 -9171.17 43686.68 -1746.88 2400.97 -438059.42 45860.52 -10272.6 Cr_2O_3 -23232.87 -5673.46 -100575. 1110498. 23719.73 2226.62 61216.95 27819.63 -30185.42 113575.30 2145584.22 -19596.99 -7085.39 215702.76 -407432.93 -1230.25 -2503.15 6775.61 23719.73 15769.82 -67.11 2428.91 1385.40 -10125.87 8409.86 424971.63 17292.47 8193.02 -13350.45 -2301.69 50472.07 245738.97 Fe₂O₃ 90102.51 943.42 -28967.94 Li_2O -12900.76 1129.30 13326.02 2226.62 -67.11 1429.88 6553.71 668307.09 -14329.94 -17417.53 1761.70 -5875.61 48601.46 -293698.81 MgO -17615.06 6542.99 20528.15 61216.95 2428.91 943.42 709299.15 15238.16 -18771.81 30201.64 1037656.03 -51944.64 -32226.03 27544.73 -3902.98 144349.77 -268439.89 1385.40 -9937.39 MnO -204.61 1347.34 4547.47 27819.63 1429.88 15238.16 52050.05 -6824.52 34792.05 -58522.84 -19271.56 29839.57 -3535.55 41911.02 -350375.98 Na₂O 36511.73 -7189.48 -341.88 -30185.42 -10125.9 6553.71 -18771.81 -6824.52 47547.00 -59350.78 -219485.71 -12973.24 -816.62 -10690.73 -3839.11 -415621.73 -22616.55 NiO -9544.46 5935.64 -121900. 113575.30 8409.86 -28967.94 30201.64 34792.05 -59350.78 1014828. 570369.89 -105785.9 72690.31 -117909.88 -3607.64 251148.47 1298993.8 -152196.9 4225.23 755885.6 2145584. 424971.6 668307.09 1037656. -58522.84 -219485.7 570369.89 170952473. 97577.52 -2409503.8 -1442569. -206156.6 RuO₂ 2370858.3 15238190.5 97577.52 789035.44 TiO₂ -448.53 -4439.65 -33339.67 -19596.99 17292.47 -14329.94 -51944.64 -19271.56 -12973.24 -105785.88 -22957.88 -38504.21 901.17 49773.71 899957.55 20084.23 -12233.95 39765.05 ZnO -9171.17 -7085.39 8193.02 -17417.53 -32226.03 -9937.39 -816.62 72690.31 -2409503.78 -22957.88 239519.88 -5114.86 -39076.91 -409132.58 ZrO_2 -856.41 -1505.35 43686.68 45860.52 -13350.45 1761.70 27544.73 29839.57 -10690.73 -117909.88 -1442569.11 -38504.21 39765.05 408969.47 -4828.46 68236.47 -5266742.6 -5875.61 -3902.98 -5114.86 -4828.46 2700.45 Others -4149.2244.57 -1746.88 -10272.59 -2301.69 -3535.55 -3839.11 -3607.64 -206156.57 901.17 33479.29 59822.84 Al₂O₃·Na₂O -483655.12 126396.11 2400.97 215702.76 50472.1 48601.46 144349.77 41911.02 -415621.7 251148.47 2370858.38 49773.71 -39076.91 68236.47 33479.29 4784519.66 166795.91 $ZrO_2 \cdot ZrO_2$ 10144.14 -3891.75 -438059.42 -407432.93 245739 -293698.81 -268439.89 -350375.98 -22616.55 1298993.79 15238190.47 899957.55 -409132.6 -5266742.63 59822.84 166795.91 77191014.

Table A.6. Variance covariance matrix for HLW Nepheline

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3	
1.732	0.804	0.294	-64.085	498.338	-102.179	-522.382	
1.654	0.974	0.255	-69.306	523.697	-102.02	-554.696	
1.815	0.982	0.245	-69.82	504.258	-93.033	-530.758	
2.012	0.607	0.286	-77.127	560.992	-107.989	-575.491	
1.778	0.942	0.333	-71.162	556.967	-114.326	-586.02	
1.807	0.593	0.274	-80.132	582.966	-109.369	-607.526	
1.828	0.715	0.282	-66.338	496.473	-98.574	-514.944	
1.705	0.899	0.322	-71.346	544.912	-109.32	-572.611	
1.643	0.544	0.264	-34.3	395.61	-106.811	-425.436	
1.672	1.03	0.277	-65.45	553.441	-119.95	-594.517	
1.855	0.539	0.344	-93.729	631.804	-109.069	-649.925	
1.65	0.637	0.267	-83.695	628.311	-126.212	-651.855	
1.618	0.963	0.278	-50.874	408.029	-85.916	-431.775	
1.794	0.705	0.29	-87.186	580.708	-98.442	-599.056	
1.773	0.785	0.378	-73.586	556.052	-109.311	-584.665	
1.686	0.782	0.316	-49.509	432.382	-98.655	-457.659	
1.682	0.796	0.223	-52.026	496.116	-122.697	-522.931	
1.777	0.916	0.324	-58.455	473.791	-100.744	-499.552	
1.811	0.565	0.28	-62.782	478.354	-97.063	-493.649	
1.662	1.019	0.379	-71.464	518.407	-94.556	-552.83	
1.678	0.727	0.317	-65.711	497.053	-96.891	-523.932	
1.784	0.831	0.318	-54.455	424.272	-86.466	-446.519	
1.727	0.586	0.225	-80.038	590.794	-115.386	-610.845	
1.586	0.784	0.28	-46.716	432.276	-104.302	-457.404	
1.598	0.74	0.264	-57.88	499.073	-114.652	-524.028	
1.554	1.114	0.253	-67.02	503.589	-96.995	-537.395	
1.724	1.03	0.313	-75.168	554.308	-105.611	-586.15	
1.576	0.914	0.232	-72.091	542.545	-105.792	-574.014	
1.564	0.341	0.308	-85.379	629.37	-125.156	-646.389	
1.633	0.723	0.283	-55.518	459.021	-101.074	-481.858	
1.823	0.684	0.23	-111.343	684.572	-100.41	-703.098	
1.692	0.868	0.235	-38.334	369.373	-90.123	-393.991	
1.683	0.649	0.206	-63.333	504.042	-108.752	-519.71	
1.98	0.922	0.281	-80.279	610.007	-122.045	-634.75	
1.55	0.569	0.27	-44.1	439.951	-110.3/3	-468.211	
1.658	0.869	0.364	-53.355	445.142	-96.213	-4/4.346	
1.///	1.029	0.394	-82.927	595.326	-106./48	-632.852	
1.659	1.037	0.309	-74.691	555.91	-108.841	-585.366	
1.648	0.827	0.37	-65.326	509.463	-103.505	-539.408	
1./1/	0.941	0.343	-81.852	644.707	-131.08/	-084.990	
1./81	0.720	0.279	-43.045	405.697	-97.124	-427.978	
1.01	0.83	0.2/1	-42.94	205 752	-91.039	-410.281	
1.914	0.842	0.280	-49.111	575.155	-03.302	-413.137	
1.044	0.770	0.308	-03.099 52 72	130 202	-123.31/	-0/4.423	
1.//3	0.023	0.231	-33./3	430.293	-94.010	-437.739	
1.//2	0.707	0.218	-03.1/3	407 377	-100.140	-519.504	
1.029	0.743	0.341	-07.740	506 522	-74.081	-521.510	
1.057	0.799	0.308	-17,905	379.496	-128,116	-415.328	
$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
---------------------	--------------------------------	----------------------	----	---------	---------	----------	----------
1.796	0.811	0.301		-74.886	579.531	-118.729	-604.633
1.671	0.866	0.26		-58.668	481.495	-101.501	-512.106
1.736	0.976	0.332		-94.13	614.253	-99.672	-641.666
1.508	1.197	0.221		-78.467	583.29	-112.8	-619.686
1.746	5 1.151	0.323		-69.031	520.581	-101.346	-552.495
1.68	0.671	0.258		-55.552	433.197	-89.947	-451.495
1.574	0.683	0.346		-53.415	516.512	-125,909	-553.772
1.706	0.648	0.197		-58.025	468.677	-103.366	-483.504
1.763	0.767	0.225		-64.086	484.678	-97,498	-503.891
1.809	0.619	0.236		-65.693	513.159	-107.04	-530.324
1 887	0.757	0.308		-73 255	561 868	-113 53	-584 984
1.51	1.077	0.255		-77.196	608.643	-124 729	-649.542
1.66	0.875	0.199		-70.053	539 402	-109.061	-566 184
1 535	0.079	0.237		-54 018	434 202	-94 107	-457 697
1.555	0.745	0.237		-69 171	552 435	-118 968	-574 837
1.72)	0.745	0.23		-57 687	473 168	-101 861	-500 892
1.740	0.736	0.203		-61 98/	495.079	-105 753	-514 925
1.711	0.750	0.203		70 /11	601.83	118 726	636 607
1.015	0.978	0.278		63 405	479 704	-118.720	500.59
1.042	0.397	0.249		50 227	479.704	105 208	512 822
1.575	0.090	0.192		-39.337	400.43	-103.298	-312.822
1.001	0.803	0.221		22 256	400.165	-09.323	-424.074
1.//2	0.939	0.38		-35.230	408.443	-112.000	-440.004
1.04	0.015	0.224		-03.29	612,000	-110.250	-355.657
1.803	0.974	0.332		-80.414	012.099	-122.405	-041.005
1.814	0.721	0.293		-00.775	401.552	-93.25	-4/8./80
1.812	0.979	0.366		-01.145	480.306	-96.681	-510.683
1.795	0.658	0.29		-65.013	517.043	-110.437	-536.032
1./5/	1.019	0.328		-81.555	621.4	-123.422	-656.274
1.806	1.0/6	0.417		-72.92	574.923	-11/.5/4	-611.834
1.785	0.73	0.254		-67.465	538.582	-114.03	-562.416
1.932	0.791	0.252		-95.495	616.342	-99.732	-633.065
1.528	1.094	0.233		-61.142	541.303	-123.453	-583.155
1.696	0.813	0.311		-61.192	499.353	-107.116	-526.826
1.795	0.939	0.357		-60.73	457.462	-89.613	-482.421
1.698	0.768	0.323		-47.005	403.206	-87.956	-431.622
1.807	0.745	0.243		-69.383	544.932	-115./1/	-562.926
1.547	0.758	0.331		-66.127	497.1	-98.248	-523.547
1.748	0.963	0.232		-81.239	620.363	-125.731	-648.265
1.656	0.496	0.191		-70.123	543.481	-113.332	-560.143
1.85	0.614	0.318		-58.022	477.286	-104.352	-496.386
1.853	0.891	0.28		-75.279	569.419	-115.722	-590.443
1.708	0.662	0.368		-59.414	491.152	-105.468	-519.082
1.678	0.596	0.153		-39.379	373.084	-93.491	-387.228
1.696	0.751	0.29		-73.708	578.795	-120.691	-605.324
1.475	0.732	0.191		-54.132	404.681	-78.65	-426.761
1.673	0.675	0.251		-54.113	448.129	-98.311	-468.955
1.804	0.835	0.332		-80.99	577.556	-107.722	-600.856
1.768	0.618	0.233		-92.581	611.565	-103.542	-626.845
1.764	0.499	0.414		-57.429	473.656	-102.412	-496.134
1.867	0.92	0.329		-64.17	506.547	-104.075	-534.172
1.749	0.887	0.303		-66.519	496.663	-95.557	-524.241
1.63	0.953	0.197		-64.118	505.728	-106.338	-530.679
1.779	0.706	0.319		-65.395	524.824	-110.347	-550.809
1.664	0.877	0.368		-73.841	597.995	-125.401	-636.265

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.54	0.659	0.208	-28.071	375.405	-109.848	-404.739
1.681	1.313	0.299	-105.006	719.667	-122.765	-764.89
1.78	0.739	0.317	-77.36	554.817	-102.486	-578.999
1.886	0.793	0.33	-81.45	554.373	-96.476	-574.174
1.437	1.139	0.274	-81.141	602.272	-112.379	-649
2.008	0.674	0.252	-79.259	547.907	-99.329	-559.744
1.711	0.723	0.398	-74.453	564.885	-110.727	-595.514
1.778	0.931	0.291	-65 447	521,998	-110.856	-546.636
1.627	1.001	0.325	-63.676	498.372	-100.173	-531.715
1.736	0.944	0.362	-80.694	582.035	-106.9	-614 684
1 728	0.67	0.182	-57 508	448 954	-95 813	-461 706
1.92	0.793	0.102	-70 939	531 751	-103 876	-554 952
1 624	0.882	0.273	-66 598	515 916	-105 591	-543 118
1 922	0.802	0.205	-63 837	532 372	-117 394	-555 903
1.722	0.608	0.320	-66 54	518 555	-109 402	-533 445
1.758	0.616	0.213	-63 3/18	474.016	-95 105	-/189 598
1 801	0.040	0.277	-61.002	486 152	-101 381	-510.646
1.001	0.714	0.332	-01.002	480.152	-101.381	599 441
1.912	0.364	0.227	-03.07	581 563	-100.104	-300.441
1.039	0.743	0.3	-09.130	557 477	-97.041	-394.430
1.923	0.001	0.282	-/0.394	551 72	-105.080	-3/0.4/9
1./12	0.037	0.342	-73.131	462 072	-105.475	-373.713
1.73	0.089	0.207	-36.937	405.075	-90.297	-465.//5
1.734	0.898	0.517	-78.091	307.98	-107.528	-394.33
1./33	0.074	0.275	-03./85	499.75	-102.95	-522.582
1.747	0.92	0.257	-81.4/1	355.874	-95.291	-581.555
1./61	0.792	0.317	-58.626	480.875	-103.805	-506.122
1.762	0.865	0.226	-69.927	526.122	-101.99	-554.407
1./41	0.712	0.247	-/3.316	554.38	-112.141	-5/4.384
1.812	0.791	0.293	-76.893	561.171	-107.452	-584.34
1.852	0.827	0.367	-47.787	418.646	-96.303	-441.796
1.729	0.649	0.177	-63.633	469.665	-92.177	-486.248
1.648	0.788	0.363	-69.957	534.682	-107.619	-562.239
1.731	0.671	0.249	-65.744	487.587	-95.784	-506.117
1.637	1.009	0.282	-46.497	412.023	-94.498	-440.417
1.698	0.653	0.278	-81.623	617.066	-124.411	-641.779
1.63	1.081	0.204	-105.875	698.113	-114.613	-731.753
1.888	1.03	0.479	-130.558	787.698	-107.32	-825.078
1.788	0.991	0.319	-59.042	484.777	-104.699	-511.921
1.629	0.745	0.245	-67.485	530.403	-111.503	-552.985
1.848	0.867	0.354	-55.493	453.401	-96.324	-478.658
1.714	0.756	0.272	-75.508	536.986	-97.744	-561.781
1.933	0.811	0.364	-75.974	557.205	-106.902	-579.818
1.805	1.011	0.326	-84.97	609.537	-112.564	-640.513
1.81	0.711	0.302	-62.116	498.829	-105.068	-522.325
1.606	0.698	0.235	-64.237	510	-109.74	-530.368
1.682	0.696	0.249	-65.672	508.714	-103.126	-533.323
1.587	0.888	0.268	-64.301	527.276	-114.508	-557.713
1.696	0.873	0.362	-43.647	424.347	-102.893	-457.667
1.785	0.589	0.186	-61.326	477.683	-98.965	-494.265
1.806	0.98	0.379	-82.145	632.689	-128.184	-664.268
1.758	0.904	0.346	-60.843	481.992	-100.827	-506.472
1.622	0.786	0.305	-76.583	597.806	-124.626	-625.849
1.607	0.862	0.233	-71.369	537.596	-106.293	-564.76
1.761	0.909	0.226	-80.239	596.473	-119.822	-616.945

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.615	0.661	0.187	-51.542	421.997	-90.498	-443.962
1.568	0.776	0.274	-60.361	490.547	-105.899	-516.283
1.577	0.861	0.298	-56.992	487.714	-110.108	-516.238
1.838	0.709	0.278	-69.332	516.48	-100.919	-537.274
1.86	0.656	0.309	-71.026	495.611	-89.676	-512.437
1.755	0.537	0.323	-103.895	641.663	-97.544	-655.118
1.718	0.985	0.403	-79.741	594.522	-113.984	-630.591
1.92	0.837	0.341	-66.983	524.129	-107.488	-549,109
1.559	0.479	0.286	-57.114	470.676	-102.369	-494.182
1.755	0.88	0.308	-78.639	576.96	-111.222	-602.148
1.521	0.966	0.181	-65.069	520.346	-109.275	-552.774
1.629	1.001	0.293	-73.846	558.725	-111.257	-589.672
1.741	0.85	0.3	-61.661	500.34	-107.884	-523.777
1 641	1 079	0 311	-84 487	607 231	-110 924	-644 217
1.608	0.714	0.204	-68 376	518 288	-104 672	-539 979
1.000	0.583	0.201	-71.812	520.2	-98 369	-538 31
1.779	0.994	0.273	-71 565	570 244	-119 37	-605 356
1 885	0.954	0.272	-59.814	444 201	-86 861	-462 479
1.805	0.919	0.298	-92 764	659 397	-122 838	-684 407
1.071	0.520	0.201	57 185	458 355	-122.030	478 202
1.750	0.599	0.204	-57.185	506 783	107.016	616.087
1.675	0.075	0.302	60 731	478 013	-107.910	508.000
1.037	0.691	0.200	-00.731	5/8 605	-97.034	-508.009
1.737	0.050	0.310	-70.554	500.078	-113.095	612 222
1.623	0.852	0.273	-80.730	512 081	-115.51	-012.233
1.708	0.767	0.39	-04.009	512.981	-105.575	-344.099
1.0/2	1.109	0.243	-90.443	657.199	-121.2	-098.820
1./3/	0.92	0.308	-77.012	521 (2)	-122.013	-032.364
1.51	0.865	0.226	-/1.028	531.030	-104.28	-558.785
1./3/	0.78	0.320	-04.997	518.750	-108.000	-547.014
1.592	0.763	0.243	-50.1	4/1.201	-106.449	-495.088
1./51	0.785	0.237	-49.339	424.915	-96.086	-446.937
1.641	0.72	0.395	-50.532	451.817	-102.637	-483.896
1.555	0.75	0.305	-65.418	508.281	-104.139	-535.244
1.585	0.518	0.248	-65.376	490.388	-97.32	-510.14
1.701	0.967	0.334	-49.77	446.073	-102.218	-4/8.80/
1.///	0.739	0.289	-53.413	482.439	-114.58	-506.073
1.5/	0.824	0.315	-56.579	479.589	-10/.818	-505.916
1.644	1.058	0.365	-89.868	684.573	-136.662	-724.284
1./34	0./13	0.288	-67.918	532.562	-111.9/1	-553.561
1.959	0.788	0.419	-104.635	648.296	-95.33	-6/0.653
1.563	0.548	0.18	-72.705	549.914	-113.261	-566.424
1.576	0.797	0.278	-80.082	605.017	-119.361	-637.621
1.6	0.878	0.294	-51.674	457.674	-103.351	-492.202
1.905	0.562	0.241	-/1./41	541.322	-109.739	-554.702
1.686	0.687	0.262	-71.595	540.872	-108.791	-562.321
1.691	1.005	0.266	-66.992	561.859	-125.613	-591.127
1.678	0.783	0.263	-57.331	484.157	-108.016	-508.864
1.77	0.923	0.318	-81.913	641.91	-132.463	-674.973
1.652	0.942	0.276	-68.53	537.478	-110.156	-568.453
1.689	0.858	0.236	-61.028	489.127	-103.033	-516.279
1.827	0.813	0.288	-74.32	588.045	-122.174	-616.056
1.775	0.838	0.275	-60.565	487.202	-103.39	-510.689
1.546	1.125	0.308	-75.823	606.304	-123.699	-653.715
1.601	1.29	0.31	-73.521	542.43	-99.475	-587.439

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.652	0.878	0.246	·	-60.717	469.319	-96.015	-492.053
1.753	0.911	0.348		-62.865	480.48	-95.752	-506.643
1.736	0.976	0.363		-78.08	598.829	-119.356	-633.626
1.783	0.789	0.318		-62.691	500.769	-105.419	-525.805
1.874	0.77	0.331		-95.292	653.491	-116.707	-673.78
1.743	0.949	0.359		-74.833	582.909	-119.016	-615.645
1.742	0.697	0.299		-50.237	412.898	-89.934	-432,167
1.813	0.874	0.316		-66.269	498.455	-99.6	-518.967
1.64	0.789	0.274		-59.213	516.604	-116.217	-551.728
1.665	0.745	0.303		-65.656	523.554	-112.162	-547.404
1.769	0.836	0.372		-75.146	562.53	-107.808	-594.752
1.821	0.663	0.45		-69 491	518.096	-98,799	-545.086
1.571	0.838	0.282		-57.822	480.873	-104.091	-511.774
1.595	0.050	0.202		-55 306	498 151	-116.013	-530 216
1.822	0.750	0.377		-55 288	448 514	-95 137	-475 215
1.854	0.799	0.284		-70 502	552 694	-114 39	-576 391
1.894	1 107	0.413		-79	602 374	-116 947	-642 209
1.024	0.813	0.415		-62 067	/92 108	-103 379	-513 374
1.502	1 1 2 1	0.274		-71 095	544 347	-107.679	-580 704
1.570	0.881	0.274		71.075	551 404	100.2	584 211
1.570		0.241		78 708	581.001	-109.2	-504.211
1.050	0.909	0.241		70.911	527.016	-111.45	-012.380
1./91	0.822	0.314		-/0.011	510 162	-107.140	-303.338
1.090	0.755	0.348		47.052	202 152	-107.787	415 422
1.700	0.800	0.347		-47.035	400 815	-80.072	-413.433
1.700	0.802	0.214		-01.03	499.813	-107.407	-525.025
1./14	0.745	0.257		-81.237	300.893	-103.339	-380.899
1.040	0.799	0.239		-01.001	4/5.5/6	-98.023	-494.392
1.725	0.514	0.315		-/0.903	540.284	-110.381	-558.452
1.807	0.751	0.344		-/8.934	354.249	-100.916	-5/5.8/1
1.908	0.705	0.318		-64.969	495.337	-99.097	-514.451
1.916	0.942	0.347		-/4.295	560.363	-111.297	-585./32
1.668	0.804	0.341		-/9.221	561.089	-101.408	-589.167
1.551	1.26/	0.375		-/3./59	541.299	-100.721	-581.463
1.816	0.784	0.305		-57.98	443.18	-89.486	-462.108
1.831	1.195	0.285		-/1.269	523.264	-99.253	-552.101
1.837	0.738	0.255		-/1.44	538.995	-108.607	-558.056
1.774	0.782	0.398		-73.381	570	-116.62	-598.616
1.677	0.928	0.35		-67.344	531.918	-110.748	-561.591
1.771	0.911	0.4		-64.902	507.291	-102.746	-537.041
1.886	0.76	0.326		-50.543	428.889	-95.983	-448.942
1.905	0.892	0.309		-82.437	579.914	-106.333	-600.585
1.702	0.661	0.311		-64.758	516.166	-110.031	-537.585
1.708	0.66	0.263		-45.298	478.62	-126.182	-505.87
1.666	0.787	0.355		-70.449	501.876	-91.891	-527.052
1.646	0.543	0.278		-38.688	361.926	-87.264	-381.852
1.565	1.114	0.287		-62.56	484.419	-97.234	-516.037
1.683	0.823	0.277		-67.446	490.33	-92.508	-513.206
1.807	0.948	0.306		-67.455	534.214	-112.069	-560.266
1.926	0.829	0.289		-67.985	535.077	-110.609	-559.287
1.711	0.775	0.317		-60.592	481.112	-101.222	-503.472
1.536	0.629	0.29		-44.357	412.816	-98.335	-440.015
1.559	0.97	0.214		-80.347	603.875	-118.492	-637.307
1.807	0.712	0.323		-75.053	583.369	-119.399	-609.034
1.706	0.88	0.325		-60.516	483.651	-99.681	-513.68

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3	
1.624	0.826	0.27	·	-62.412	477.909	-96.721		-500.913
1.78	0.881	0.249		-60.791	495.797	-106.774		-520.719
1.608	0.753	0.283		-90.02	684.118	-137.716		-716.351
1.654	0.508	0.26		-63.533	505.724	-109.928		-521.698
1.853	1.036	0.462		-83.351	557.823	-93.378		-585.112
1.785	0.824	0.259		-65.228	531.854	-115.273		-556.584
1.648	0.54	0.245		-79.444	574.812	-110.708		-593.264
1.389	1.219	0.322		-67.799	549.64	-110.325		-604.459
1.727	0.949	0.346		-56.458	448.553	-93.51		-473.944
1.546	0.703	0.201		-62.98	492.314	-100.533		-519.122
1.831	0.763	0.301		-74.851	534,195	-98.721		-555.697
1.683	0.763	0.244		-55.898	457.981	-99.403		-479.963
1.82	0.822	0.217		-53.68	438.47	-94.636		-459.013
1 638	0.758	0.321		-38 987	370 285	-90 213		-393 161
1.535	0.781	0.256		-48 118	422 937	-96 877		-449 827
1.535	1 177	0.287		-79 313	611 401	-120.022		-658.062
1.515	1 1 1 7	0.207		-65 485	494 793	-95 091		-532 458
1.470	0.881	0.192		-69 115	574 672	-103 191		-552.450
1.007	0.808	0.172		-82 914	623 659	-103.171		-650 221
1.001	0.800	0.21		80.052	542 021	06 868		557.042
1.771	1.017	0.238		-59 666	170.6	-90.808		-337.042
1.077	0.407	0.251		48 111	428 161	00 770		451 226
1.579	0.497	0.201		72 153	532 78	103 384		554 722
1.701	0.780	0.313		77 249	559 093	-103.384		595 196
1.074	0.939	0.239		-77.040	626 262	-104.050		-565.460
1.700	0.011	0.303		-97.919	615 60	-102.037		-003.023
1.003	0.974	0.299		-90.515	405 671	-105.705		-047.809
1.727	0.851	0.539		-01.03	493.071	-100.082		-320.934
1.024	0.608	0.52		-/1.949	590.591	-129.302		-021.031
1.035	0.042	0.255		-00.488	505.085	-112.240		-521.115
1.090	0.814	0.202		-00.501	407.34	-97.396		-460.792
1.949	0.788	0.324		-08.402	510.147	-102.511		-530.827
1.058	0.840	0.299		-08.522	507.745	-111.22		-300.091
1.70	0.803	0.391		-0/.028	507.745	-98.515		-555.422
1.762	0.721	0.255		-04.051	462.143	-88.333		-4//.801
1.591	0.099	0.317		-38.390	4/5.28	-100.208		-505.922
1.74	0.956	0.228		-57.078	449.23	-93.195		-4/1.539
1.69/	0.94	0.369		-/4.20/	600.467	-127.529		-636.898
1.763	0.62	0.299		-58.247	457.569	-95.299		-4/0.51/
1.848	0.675	0.325		-/4.545	538.018	-99.619		-561.801
1./56	0.996	0.359		-12.922	530.223	-101.004		-555.562
1.686	0.795	0.306		-/5.621	572.522	-115.135		-597.584
1.762	0.776	0.197		- /9.405	588.025	-114.855		-610.63
1./5/	0.765	0.28		-56.495	4/8.082	-107.506		-500.873
1.443	0.625	0.23		-34.438	3/3.923	-100.377		-398.262
1.854	0.668	0.318	-	108.606	679.496	-104.837		-696.743
1.897	0.912	0.354		-92.581	601.054	-96.977		-624.164
1.821	0.905	0.258		-96.189	649.948	-110.285		-677.327
1.831	0.84	0.343		-75.435	572.512	-113.469		-601.416
1.85	0.553	0.222		-87.509	612.63	-112.48		-628.829
1.715	0.848	0.326		-62.118	483.011	-100.168		-505.875
1.624	0.723	0.31		-76.859	571.504	-111.416		-598.966
1.78	0.789	0.267		-56.816	449.406	-94.26		-469.463
1.81	0.609	0.226		-64.422	526.606	-115.076		-545.544
1.525	1.055	0.301		-76.342	563.24	-106.099		-600.498

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.719	1.02	0.375		-65.957	516.992	-103.888	-553.789
1.76	0.604	0.342		-64.182	529.047	-114.851	-554.118
1.754	1.011	0.188		-88.366	628.009	-114.221	-660.484
1.733	0.883	0.258		-64.964	611.597	-148.107	-649.798
1.615	0.787	0.252		-66.174	528,733	-112.523	-555.093
1.658	0.959	0.378		-74.346	573.799	-115.686	-607.467
1.77	0.943	0.306		-41.55	340.628	-70.919	-363.919
1.831	0.752	0.262		-73.246	551.863	-112.493	-568.558
1.798	0.855	0.336		-69.867	537.823	-108.976	-563.932
1.653	0.488	0.318		-67.524	525.318	-108.687	-546.558
1.674	0.658	0.28		-70.63	543,783	-110.648	-567.735
1.878	0.696	0.319		106.174	634.958	-91.574	-645.461
1.822	0.924	0.304		-69.008	546.605	-115.008	-572.009
1.969	0.464	0.206		-51 479	423 463	-93.025	-435 275
1.695	0.65	0.265		-75.906	557.884	-107.147	-580.848
1.622	0.835	0.28		-62.129	518 413	-113.808	-547.821
1.868	0.851	0.187		-68 856	538.026	-113.774	-554.656
1 976	0 549	0.321		-62 287	524.05	-115 627	-545 99
1.576	0.905	0.194		-49 526	417 429	-94 659	-434 837
1 748	0.789	0.286		-71 711	537 331	-106 311	-560 184
1.740	0.767	0.200		-85 671	563 643	-94 51	-579 57
1 735	0.767	0.34		-55.96	429 263	-84 911	-453 689
1.735	0.004	0.34		-67 949	507 308	-04.911	-534 447
1.044	0.750	0.274		-70 294	533 213	-105 179	-558 857
1.770	0.751	0.205		-73 324	576.912	-120 351	-603 474
1.70	0.042	0.31		76 350	566 818	108 537	503 520
1.605	0.738	0.354		-70.339	510 071	-102.537	-538.938
1.554	0.683	0.141		88 / 37	618 713	112 445	643 530
1.554	0.085	0.25		49 212	450 724	-112.445	-045.559
1.000	0.759	0.200		-40.515 83 177	562 263	-107.41	588 233
1.7	0.907	0.255		72 121	550.269	100 812	-588.255
1.01	0.590	0.293		-73.121	502 331	-109.813	-372.724
1.039	0.000	0.299		60.864	452 817	-99.170	-524.749
1.655	0.818	0.39		-00.804	432.017 533 506	-03.774	-478.004
1.055	0.333	0.288		56 009	478.060	-111.92	501.204
1./14	0.735	0.233		-30.908	500 305	-107.108	-501.504
1.049	0.800	0.377		-80.200	527 540	-103.373	-013.408
1.735	0.372	0.248		-/0.99	JZ1.309	-103.080	-345.278
1.549	0.437	0.278		69 254	504 626	-102.304	510.042
1.737	0.344	0.237		-06.234	420 226	-99.013	-519.042
1.037	0.703	0.232		71 020	430.220	-100.413	-431.033
1.700	0.012	0.237		122 012	752.066	-09.304	-303.434
1.017	0.820	0.303	-	°122.013	592.200	-114.992	-771.024
2.020	0.782	0.323		-01.995	202.209	-100.499	-003.23
1.033	1.075	0.332	-	00 521	509.773	-107.400	-725.592
1.589	0.925	0.231		-80.551	598.45	-115.950	-030.279
1.72	0.955	0.33		-09.293	556.018	-108.920	-309.180
1./40	0.999	0.30/		-/3.18/	330.240	-109.4/0	-26/.828
1.55/	0.749	0.281		-30.645	402.303	-110./18	-489.431
1.629	1.047	0.34		-/4.539	525.83	-93.03	-555.531
1.868	1.007	0.294		-/0.186	518.638	-99.133	-545.289
1.89	0.844	0.362		-38.566	4/9.098	-101.509	-507.61
1.592	0.756	0.242		-51.519	423.82	-92.254	-445.55
2.033	0.651	0.118		-/1.118	520.112	-103.047	-529.013
1.837	0.953	0.225		-57.238	445.066	-91.154	-466.273

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.649	0.777	0.146	-90.74	686.958	-139.203	-713.759
1.859	0.832	0.36	-79.97	601.16	-118.07	-629.464
1.611	0.717	0.183	-48.504	448.247	-108.448	-470.309
1.669	0.751	0.29	-58.921	481.227	-103.801	-505.983
1.901	0.865	0.322	-88.108	656.922	-126.724	-689.284
1.726	0.692	0.218	-73.443	529.679	-100.59	-548.638
1.668	0.643	0.311	-41.599	399.086	-97.206	-423.948
1.79	0.755	0.319	-71.423	541.965	-108.32	-565.519
1.847	0.879	0.349	-61.008	509.677	-112.482	-535.537
1.675	0.77	0.249	-62.693	477.882	-95.36	-500.982
1.64	0.755	0.265	-61.511	471.85	-97.69	-489.81
1.658	0.88	0.271	-63.039	495.189	-103.564	-518.779
1.811	0.739	0.212	-62.444	487.363	-101.122	-505 402
1 786	0.953	0.359	-75 805	606 489	-127 852	-639 893
1.757	0.914	0.242	-70,774	531.407	-105.328	-555.865
1.734	0.686	0.375	-84 733	604 42	-110 991	-631 378
1.744	0.639	0.249	-70 284	539.46	-108 305	-563 169
1.720	1 109	0.249	-74 957	548 256	-102 646	-583 538
1.556	0.719	0.212	-59 551	473 477	-100.826	-492 571
1 / 89	1 315	0.245	-88.015	596 7/1	-100.020	-40.77
1.402	0.711	0.311	-54 393	440 868	-94 344	-461 336
1.731	0.711	0.315	52 00	430 104	95 080	466.36
1.567	0.820	0.20	-52.99	439.104	100 515	465 286
1.504	0.03	0.231	-43.711	571 327	128 266	-405.280
1.722	0.758	0.309	-07.223	538 034	-126.200	-399.933
1.739	0.751	0.199	-73.433	607 805	-105.417	629 119
1./13	0.895	0.322	-01.320	509 171	-116.031	-030.440
1.04	0.830	0.23	-07.438	541 29	-100.040	-551 272
1.902	0.303	0.244	-77.303	J41.30	-100.389	-352.575
1.606	0.871	0.321	-30.467	400.795	-100.144	-494.271
1.037	0.99	0.230	-03.40	122 277	-104.194	-540.015
1.027	0.028	0.291	-49.00	433.377	-100.009	-437.228
1.302	0.710	0.302	-70.917	520.804	-107.046	-307.003
1./34	0.374	0.162	-07.918	320.894	-106.299	-339.391
1.001	0.740	0.233	-01.505	492.024	-100.427	-313.733
1.031	0.713	0.208	-44.9	449.203	-112.412	-4/9.//1
1.501	0.839	0.297	-32.294	436.27	-105.230	-491.005
1.03	0.807	0.52	-01.463	473.02	-94.007	-303.489
1.015	0.274	0.200	-03.965	546 501	-112.1	-353.93
1.//8	0.070	0.552	-07.490	621 210	-116.332	-3/1.830
1.00	1.078	0.287	-07.342	527 460	-112.072	-030.047
1.0/1	0.817	0.310	-70.900	512 004	-93.024	-304.34
1.902	0.748	0.282	-03.238	512.904	-112.032	-530.082
1.090	0.898	0.373	-/1.920	501.709	-114./51	-594.302
1.085	0.72	0.280	-/0.010	511.100	-94.892	-33/.2/3
1./35	0.531	0.253	-/1.291	541.129	-110.35	-55/.8/8
1.674	0.568	0.184	-59.116	458.372	-96.6/2	-4/0./41
1.583	0.934	0.333	-/3.295	558.6/4	-110.901	-591.942
1.718	0.759	0.25	-44.155	414.346	-100.242	-43/.6/3
2.033	0.794	0.279	-126.842	/81.414	-120.237	- /91.785
1.832	0.795	0.351	-70.334	495.339	-90.265	-515.454
1.681	0.627	0.251	-55.448	426.115	-86.606	-444.638
2.043	0.705	0.299	-122.497	761.809	-118.824	-7/3.049
1.571	0.853	0.269	-63.956	504.852	-105.537	-533.28
1.665	0.555	0.272	-77.209	555.787	-106.455	-572.736

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.72	0.937	0.257	-43.851	385.008	-89.338	-407.418
1.634	1.003	0.185	-127.288	851.812	-143.866	-890.744
1.872	0.83	0.306	-61.232	463.453	-94.34	-480.138
1.713	0.678	0.243	-54.098	461.849	-102.887	-485.342
1.88	0.547	0.264	-61.879	506.621	-109.947	-526.264
1.937	0.776	0.306	-65.119	478.505	-91.213	-498.518
1.739	0.638	0.32	-89.657	666.732	-131.849	-690.996
1.77	0.9	0.353	-66.977	539.283	-112.909	-570.313
1.839	0.886	0.364	-70.37	516.026	-97.289	-542.264
1.719	0.764	0.303	-69.111	537.214	-108.682	-565.111
1.747	0.989	0.316	-72.662	534.863	-102.612	-562.25
1.664	0.614	0.247	-63.799	480.302	-96.78	-496.732
1.701	0.548	0.191	-51.068	398.686	-84.469	-410.643
1.692	0.946	0.294	-63.264	500.366	-105.015	-526.227
1.698	0.79	0.257	-70.278	550.843	-115.446	-574 073
1 475	0.951	0.19	-80 475	613 578	-123 135	-648 495
1 749	0.651	0 335	-46 374	402 498	-91 628	-423 572
1.654	1 16	0.284	-68 76	549 669	-115 356	-584 783
1.654	0.657	0.204	-40 554	416 247	-107 138	-440 846
1.001	0.057	0.22	-58 426	474 029	-102 118	-495 272
1.750	0.722	0.275	-68 004	509 648	-98 693	-536 608
1.000	0.722	0.323	-49 723	417 957	-92 167	-441 982
1.020	0.839	0.284	-47.666	489 364	-127 31	-518 542
1.743	0.059	0.201	-72 774	561 673	-112 874	-591.61
1.500	0.71	0.205	-84 279	570 114	-96 721	-597.614
1.007	0.971	0.210	54 512	441 045	03 175	465.048
1.771	0.805	0.317	-100 768	603 077	-122 709	-403.948
1.605	1 103	0.301	-100.700	093.777	120.073	1032 024
1.090	0.458	0.341	-100.085	516.26	-129.973	522.010
1.605	1.006	0.208	-01.297	615 735	-115.085	-555.919
1.078	1.090	0.385	-93.102	508 605	-97.51	527 200
1.803	0.711	0.51	-09.474	557 212	-109 253	-579 298
1.71	0.711	0.200	52 268	454 175	103.670	470 73
1.74	0.858	0.317	-52.208	510 237	101.012	532 120
1.705	0.780	0.255	-07.742	441 841	-101.012	-552.429
1.001	1 023	0.304	-57.040	530 477	107 516	-405.017
1.403	0.840	0.233	-07.307	108 12	-107.510	532 114
1.033	0.849	0.32	-50.804	498.42	-112.734	512 767
1.60	0.377	0.24	68 771	530 338	108 114	556 582
1.09	0.843	0.302	-50.816	/37 875	-108.114	-462 574
1.702	0.635	0.237	-50.010	410 811	80 713	442 754
1.037	0.033	0.241	-57 8/18	507.8	-114 47	-442.734
1.520	0.715	0.332	-57.040	184 802	08 230	500.038
1.747	0.713	0.177	-62 548	404.092	-107 309	-516 709
1.070	0.552	0.304	-02.548	576.065	-107.509	-510.709
1.791	0.033	0.200	-09.073	404 122	-93.094	-390.97
1./20	1 102	0.313	-37.24	474.122	-106.211	-521.005
1.009	1.102	0.411	-12.213 81 505	601 224	112 704	617 414
1.91/	0.717	0.515	-04.363	508 227	-113.724	-01/.414
1.5/0	0.713	0.240	-30.122	612 295	120 224	-333.209 649 707
1.09/	0.972	0.295	-70.234	476.017	-120.334	-040.727
1./91	0.008	0.293	-02.000	4/0.01/ 6/6 0/4	-74./00	-477.142
1.884	0.934	0.30/	-00.298	127 575	-124.808	-0/1.994
1.382	0.031	0.196	-41.8/1	431.313	-114.0/3	-402./13
1.985	0.414	0.140	-02.409	511.052	-106.419	-202./00

$\alpha_6 (B_2O_3) \alpha_1$	(Li_2O)	α ₃ (CaO)	β0	β1	β2	β3
1.686	0.949	0.304	-57.693	461.789	-96.999	-489.092
1.626	0.778	0.352	-96.604	687.774	-125.95	-721.375
1.833	0.866	0.352	-76.111	584.273	-116.388	-615.649
1.494	1.062	0.361	-48.261	425.249	-95.317	-461.693
1.706	0.542	0.213	-59	472.359	-102.353	-487.398
1.566	0.964	0.181	-76.575	562.03	-108.506	-588.742
1.731	0.799	0.407	-85.644	673.397	-137.353	-713.495
1.723	0.796	0.333	-42.309	383.134	-90.984	-403.83
1.613	1.094	0.277	-68.215	519.33	-101.086	-555.998
1.572	0.982	0.208	-62.692	485.147	-98.842	-512.423
1.764	0.658	0.307	-101.536	697.408	-125.598	-718.004
1.74	0.63	0.259	-70.405	538.064	-108.826	-559.137
1 442	0.825	0.269	-63.518	504.184	-104 325	-536 837
1.886	0.789	0.255	-90.828	640 891	-117.547	-663.541
1.886	1.096	0.408	-92.013	624.767	-106.437	-655.788
1 745	0.63	0.282	-75 551	550 561	-106 881	-567 621
1 769	0.697	0.202	-77 311	549 478	-103.048	-567 304
1.664	0.752	0.213	-64 583	530 601	-117 757	-552.38
1 763	0.709	0.213	-68 748	521 292	-106 781	-536 579
1.705	0.702	0.377	-79 163	593 728	-113 8/2	-627.988
1.602	0.720	0.371	-65 246	199 605	-101 232	-522 672
1.002	0.755	0.331	-76 837	571 863	-112 226	-595 635
1.739	0.880	0.277	-76752	507 300	-121 227	-630 533
1.747	0.905	0.373	63 356	180 030	-121.227	-030.333
1.551	0.904	0.293	-03.330	512 210	-96.00	-322.437
1.555	0.091	0.201	-09.032	J12.219 451.659	-99.378	-334.193
1.604	0.044	0.237	-01.249	502 782	-60.19	-472.31
1.021	1.029	0.293	-07.796	542 780	-90.391	-527.205
1.00	1.030	0.349	-/1.00/	422.04	-101.439	-301.321
1.054	0.795	0.280	-40.0/1	433.94	120 691	-436.737
1.042	0.09	0.336	-124.046	560.002	-120.081	-190.013
1.788	0.027	0.200	-/0.209	309.092	-113.031	-38/.083
1.032	0.704	0.520	-34.072	452.257	-99.499	-4/3./32
1.943	0.024	0.25	-38.01/	401.338	-90.388	-4/7.303
1.732	0.408	0.332	-09.080	516.055	-103.842	-550.855
1./12	0.787	0.338	-55.498	430.801	-93.79	-400.307
1.89/	0.883	0.314	-80.952	555.171	-98.133	-5/4.529
1.821	0.809	0.353	-57.775	409.138	-98.29	-490.514
1.793	0.814	0.288	-03.245	485.415	-95./59	-507.99
1.833	0.786	0.262	-/4.48	553.95	-108./56	-5/5.65/
1.019	0.885	0.245	-01.303	490.341	-103.539	-517.115
1.4	0.821	0.235	-45.08	415.514	-98.001	-447.168
1.812	0.84	0.364	-/6.263	563.813	-109.005	-589.929
1.601	0.561	0.279	-36.564	390.87	-101.595	-417.243
1.642	0.934	0.259	-/5.603	547.738	-105.112	-5/0.259
1.743	0.755	0.335	-65.859	497.042	-99.568	-517.96
1.69	0.624	0.253	-67.721	511.694	-102.228	-531.814
1.631	0.707	0.271	-69.957	518.698	-101.208	-541
1.561	0.611	0.313	-60.442	491.718	-105.477	-517.997
1.58	0.718	0.341	-62.782	501.238	-103.803	-531.53
1.861	0.566	0.281	-65.747	525.982	-111.14	-547.244
1.805	0.717	0.248	-54.632	417.342	-85.462	-432.425
1.633	0.989	0.22	-61.251	481.275	-99.417	-508.392
1.675	0.868	0.302	-53.384	444.477	-97.908	-468.183
1.627	0.745	0.293	-63.617	490.577	-100.211	-513.777

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.798	0.96	0.422	-75.28	555.688	-105.74	-586.497
1.583	0.626	0.296	-58.019	485.243	-106.027	-512.548
1.613	0.627	0.234	-67.16	503.576	-100.034	-524.642
1.707	0.889	0.347	-65.943	544.747	-117.858	-576.632
2.107	0.795	0.315	-128.221	754.828	-107.402	-760.229
1.492	0.891	0.219	-57.234	475.355	-102.986	-505.657
1.684	0.887	0.303	-60.546	495.345	-106.028	-524.97
1.731	0.868	0.278	-62.336	500.13	-106.429	-524.406
1.716	0.777	0.295	-65.102	513.96	-107.767	-537,791
1.546	0.952	0.279	-57.481	464.622	-96.449	-498,498
1.801	0.769	0.296	-72.271	523.038	-99.913	-542.774
1.577	0.718	0.258	-47,934	411.965	-91.407	-437.725
1.696	1.006	0.401	-69.59	546 196	-111.41	-581.094
1.650	0.605	0.315	-76 512	562 773	-108 817	-585 531
1.683	0.005	0.231	-58.006	487 783	-110 707	-507 228
1.526	0.951	0.231	-53 208	449 004	-97 357	-481 638
1.820	0.551	0.232	-80,906	579 518	-110.081	-596 692
1.801	0.054	0.232	-56.053	453 408	-98.061	-474 249
1.501	0.758	0.21	-50.65	456 184	-106 893	-484 921
1.540	0.750	0.24	43 103	300.104	-100.075	422 011
1.051	0.704	0.29	-43.103	460 103	105 282	486 813
1.02	0.988	0.304	-52.087	402.204	-105.282	425 472
1.504	0.017	0.274	-43.361	570.52	-92.43	-423.472
1.031	0.070	0.231	-70.023	266 865	-114.034	-391.515
1.092	0.799	0.239	-42.155	451.09	-04.929	-363.304
1.023	0.787	0.301	-37.432	431.08	-92.633	-4/3./20
1./8	0.831	0.319	-88.704	600.43	-107.141	-028.327
1./01	0.720	0.349	-11.632	406 802	-99.040	-3/3.039
1.480	0.955	0.268	-59.925	496.893	-107.58	-530.795
1.775	0.892	0.325	-66.43	500.604	-100.956	-520.565
1.551	0.905	0.321	-62.928	507.086	-105.395	-542.012
1.808	0./16	0.297	-65.433	492.815	-97.915	-512.739
1.469	0.613	0.325	-53.925	449.934	-99.002	-4/4./23
1.696	0.803	0.25	-83.044	577.21	-102.025	-604.312
1.852	0.566	0.303	-68.486	513.452	-101.479	-531.37
1.827	0.948	0.269	-54.643	459.37	-102.712	-482.015
1.828	0.66	0.225	-//.026	543.569	-101.495	-557.934
1.622	0.937	0.233	-64.808	511.449	-106.701	-539.011
1.763	0.937	0.339	-70.381	542.898	-108.752	-5/3.231
1.637	0.941	0.257	-58.624	475.814	-101.564	-503.341
1.81	0.935	0.356	-79.574	582.893	-110.626	-611.047
1.592	0.642	0.27	-57.236	519.628	-118.831	-557.745
1.78	0.839	0.298	-64.603	505.63	-105.177	-528.256
1.622	0.899	0.263	-55.831	452.385	-98.242	-475.193
1.658	0.762	0.27	-64.653	500.075	-104.216	-519.88
1.758	0.743	0.276	-69.064	527.776	-106.661	-549.781
1.824	0.706	0.266	-58.378	448.015	-91.176	-465.971
1.633	0.831	0.184	-87.594	644.918	-121.578	-680.736
1.371	0.748	0.229	-74.947	565.963	-111.758	-597.689
1.491	0.7	0.212	-53.851	427.405	-89.08	-450.572
1.689	0.993	0.241	-65.412	491.97	-98.176	-515.557
1.799	0.765	0.388	-80.862	590.338	-110.814	-620.403
1.571	0.737	0.287	-55.315	485.017	-111.894	-511.778
1.688	0.738	0.201	-61.813	482.768	-99.649	-504.155
1.748	0.659	0.246	-55.785	439.433	-93.428	-454.598

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.761	0.911	0.329		-67.119	528.378	-109.592	-555.269
1.771	0.838	0.34		-70.289	529.102	-105.284	-553.26
1.542	0.961	0.259		-87.437	630.837	-117.969	-665.295
1.763	0.59	0.252		-69.756	488.668	-89.538	-502.749
1.721	0.238	0.242		-94.167	663.477	-122.538	-678.64
1.684	0.914	0.272		-74.252	516.711	-91.975	-539.908
1.484	0.858	0.242		-27.83	366.817	-108.195	-397.433
1.894	0.837	0.322		-58.823	453.932	-91.539	-476.179
1.644	0.78	0.189		-56.419	475.476	-106.718	-498.97
1.624	0.965	0.238		-56.664	461.684	-99.65	-487.621
1.712	0.91	0.329		-85.324	618.954	-117.006	-648.918
1.757	0.768	0.309		-69.69	510.08	-98.337	-530.452
1.675	1.222	0.422		-58.301	467.115	-97.07	-500.359
1.878	0.778	0.235		-65.288	521.878	-112.443	-540,196
1.676	0.848	0.311		-60.176	479.574	-99.862	-506.984
1.676	0.642	0.285		-72.849	528.073	-101.052	-546.831
1.787	0.864	0.275		-63.593	484.192	-97.469	-505.693
1.796	0.584	0.191		-67.034	494.766	-99.236	-505.812
1.899	0.78	0.301		-68.397	523.116	-105.825	-543.615
1.862	0.839	0.374		-74,498	563.463	-112.049	-588.502
1.71	0.896	0.325		-67.137	504.086	-99.105	-529.445
1.633	0.853	0.254		-80,104	586.632	-113.045	-612.783
1.828	1.028	0.293		-47.827	419.72	-96.213	-444.592
1.671	0.644	0.326		-71.732	540.196	-106.368	-565,115
1.848	0.603	0.34		-49.757	444.432	-103.429	-465.898
1.883	0.655	0.296		-59.415	470.936	-101.03	-486.032
1.901	0.848	0.264		-64.506	505.953	-105.474	-526.019
1.843	0.783	0.339		-78.646	607.908	-122.144	-638.024
1.826	0.865	0.285		-80.222	586,795	-113.146	-609.666
1.843	0.87	0.322		-62.589	486.372	-98.003	-512.793
1.669	0.706	0.19		-69.427	540.772	-113.388	-560.442
1.715	0.706	0.216		-69.967	521.229	-104.049	-538.549
1.535	0.659	0.311		-88.813	580.97	-96.62	-600.798
1.819	0.614	0.288		-70.1	536.952	-111.25	-552.835
1.578	0.861	0.218		-60.06	466.733	-96.279	-489.788
1.912	0.696	0.323		-84.078	602.416	-111.108	-627.439
1.674	0.877	0.283		-42.123	429.523	-110.878	-456.234
1.691	0.552	0.311		-73.236	533.422	-102.204	-553.687
1.465	0.933	0.241		-67.792	531.442	-107.898	-566.951
1.682	0.573	0.336		-54.155	443.754	-94.412	-468.533
1.614	0.884	0.294		-64.947	544.416	-120.41	-576.306
1.836	0.942	0.367		-79.244	571.009	-107.217	-596.931
1.826	0.736	0.363		-68.6	540.404	-110.884	-568.808
1.841	0.831	0.329		-51.314	443.411	-98.49	-469.943
1.852	0.999	0.339		-73.112	505.244	-88.004	-530.988
1.614	0.586	0.206		-67.862	527.683	-108.935	-548.736
1.925	0.91	0.257		-72.76	525.85	-100.116	-545.171
1.709	0.968	0.211		-63.984	480.044	-94.588	-503.193
1.443	0.931	0.215		-71.531	544.506	-104.688	-584.934
1.549	1.021	0.359		-55.776	440.317	-88.789	-473.272
1.674	0.724	0.324		-49.987	441.635	-101.27	-467.478
1.588	0.704	0.227		-64.264	534.057	-117.773	-561.652
1.709	0.949	0.355		-54.156	436.581	-92.069	-463.936
1.726	0.818	0.314		-76.796	564.19	-108.82	-588.448

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3	
1.711	0.904	0.286		-91.076	624.105	-107.633		-655.298
1.875	0.755	0.327		-80.189	595.651	-116.014		-618.651
1.649	0.779	0.203		-45.442	419.508	-99.968		-444.758
1.69	1.054	0.357		-58.7	474.999	-99.962		-506.242
1.764	0.746	0.246		-78.773	556.816	-102.141		-577.379
1.928	0.751	0.346		-59.636	489.179	-104.295		-514.176
1.803	0.578	0.247		-67.174	523.06	-111.756		-535,171
1.678	1.041	0.335		-61.696	491.709	-100.279		-526.707
1.656	0.818	0.276		-71.609	509.431	-93.571		-532.79
1.655	0.835	0.246		-60.687	452.36	-88.846		-474.246
1.828	0.824	0.309		-62.569	479,761	-96,181		-502.565
1.804	0.749	0.279		-58.296	456.655	-94.878		-476.136
1.985	0.766	0.372		-133.63	787.828	-105.659		-809.594
1 562	0.874	0.286		-45 344	419 694	-99 248		-450 138
1.802	0.755	0.200		-79 183	576 245	-107.662		-603 756
1 482	0.486	0.28		-79 549	576 287	-110 602		-597 688
1 749	1.002	0 249	-	100 689	620 757	-89 282		-648 132
1.745	0.924	0.249		-70.058	531 415	-106 219		-558 204
1.725	0.724	0.300		-64 878	/00//03	-96.083		-515 188
1.700	0.755	0.307		62 027	516 845	112 508		545 401
1.775	0.819	0.278		-44 501	421 546	-101 501		-450 788
1.034	0.000	0.317		70 3/3	556 178	115 540		583 206
1.740	0.728	0.292		64.061	516.10	100.066		542 814
1.039	0.708	0.234		04.001	610.001	109.000		642.052
1.597	0.000	0.214		-02.007	480 760	-123.273		-043.032
1.012	0.013	0.208		-00.222 00.567	400.709	-99.723		-300.09
1.09	0.647	0.258		-00.307	625 421	-123.002		-057.407
1./30	0.087	0.191		-09.30	520 291	-115.005		-047.073
1.797	0.991	0.239		-00.300	540.505	-107.701		-338.201
1.095	0.952	0.255		-/1./95	549.595	-108.417		-383.27
1.036	0.713	0.314		-03.321	491.33	-93.094		-318.278
1.825	0.808	0.310		-33.338	502.708	-119.254		-529.114
1 727	0.629	0.145		-00.857	433.819	-84.273		-441.545
1./3/	0.977	0.321		-00.044	521.775	-107.492		-552.509
1.442	0.824	0.229		-12.159	555.191	-101.983		-501.54
1.709	1.020	0.374		-//.304	353.004	-101.414		-585.444
1.838	0.864	0.348		-55.255	408.051	-105.655		-491.493
1.795	0.894	0.315		-51.192	431.576	-95.156		-454.115
1.855	0.893	0.378		-84.284	580.704	-106.289		-609.431
1.826	0.786	0.244		-64.061	4/8.862	-95.888		-494.003
1.709	0.795	0.307		-00.052	525.945	-108.755		-555.409
1.812	0.807	0.325		-/8.2/	573.227	-110.186		-596.351
1.726	0.74	0.27		-59.//8	455.226	-91.9/1		-4/3.449
1.727	1.088	0.448		-87.362	635.215	-116.481		-6/7.422
1.723	0.882	0.296		-05.582	497.223	-97.372		-525.579
1.782	0.789	0.398		-66.631	518.204	-104.373		-546.524
1.931	0.591	0.351		-/6.166	556.087	-107.816		-571.897
1.723	0.924	0.283		-63.486	505.391	-105.834		-533.094
1.83	0.642	0.327		-82.604	604.81	-116.983		-625.459
1.78	0.747	0.274		-64.013	499.895	-104.602		-519.754
1.527	0.896	0.301		-65.786	536.118	-114.525		-569.808
1.409	1.315	0.275		-66.035	533.35	-109.544		-582.234
1.558	1.275	0.355		-69.92	526.524	-100.827		-567.008
1.668	0.831	0.256		-79.244	595.099	-115.53		-626.717
1.705	0.852	0.326		-58.066	471.353	-100.119		-498.266

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α_3 (CaO)	80		β1	β2	β3
1.895	1.033	0.364		-55.453	446.031	-92.866	-472.955
1.929	0.626	0.407		-61.472	494.148	-104.148	-516.233
1.513	0.557	0.323		-74.904	555.225	-107.64	-580.849
1.516	0.9	0.241		-54.972	480.174	-111.259	-507.364
1.744	0.789	0.295		-59.232	483.305	-102.237	-510.419
1.724	0.925	0.296		-51.266	440.625	-97.753	-469.575
1.738	0.509	0.3		-48.319	438.329	-102.527	-460.495
1.653	0.631	0.246		-65.866	561.107	-126.226	-588.392
1.617	1.201	0.284		-79.932	605.387	-117.426	-648.329
1.617	0.696	0.269		-74.246	546.237	-106.998	-567.995
1.724	0.839	0.209		-83,799	631.526	-126.333	-658.363
1.672	0.593	0.275		-68.333	523.669	-105.702	-546.54
1.834	0.956	0.305		-60.31	475.253	-96.883	-503 412
1 743	0.795	0.307		-64 565	518 998	-110.636	-543 367
1 582	0.793	0.159		-71 235	560 301	-119 679	-581 852
1.562	0.626	0.292		-71 965	542 078	-108 665	-561 756
1 999	0.020	0.272		-52 079	414 328	-87.13	-430.084
1.557	0.72	0.145		-64 904	510.402	-107 637	-533.47
1.557	0.633	0.143		-51 382	453 529	-105 399	-474 609
1.717	1.12	0.25		-87 154	644 539	-122 991	-685 644
1 828	0.833	0.201		-67 163	460 789	-89 669	-481 347
1.626	0.655	0.252		46 576	30/ 881	88 380	415 465
1.000	0.07	0.203		60 208	534.601	108 071	-415.405
1.50	0.697	0.312		57 422	460 552	-106.071	-305.907
1.000	1.061	0.234		52 52	400.333	-90.346	-465.457
1./04	1.001	0.349		-55.52	443.622	-90.039	-4/1.309
1.309	1.042	0.207		-30.83	401.049	-100.001	-303.821
1./10	0.709	0.200		-34.947	437.002	-101.518	-4/1.103
1.055	0.55	0.316		-05.455	509 405	-122.507	-373.43
1.803	0.823	0.313		-90.92	398.493	-97.644	-022.230
1.74	0.000	0.299		-00.438	400.020	-95.177	-510.408
1.003	1.007	0.292		-10.085	192.069	-111./33	-5/7.919
1.010	0.001	0.274		-04.044	462.908	-94.634	-304.181
1.00	0.949	0.200		-12.033	228.913	-113.475	-590.811
1.012	0.909	0.440		-36.514	4//.438	-99.429	-511.577
1.041	0.817	0.319		-04.723	494./99	-99.105	-520.521
1.049	0.842	0.24		-/0./44	370.19	-111.02	-392.004
1./33	0.903	0.268		-03.1/3	487.833	-97.879	-515.005
1.830	1.072	0.308		-09.333	504.06	-93.388	-552.087
1.658	0.948	0.412		-60.37	401.221	-90.381	-491.134
1./8/	0.826	0.348		-/9.9/0	590.08	-111.980	-620.052
1.708	0.857	0.418		-59.059	4/0.036	-96.894	-498.752
1.762	0.617	0.261		-43.412	423.616	-107.38	-443.262
1.662	0.761	0.313		-51.265	426.268	-93./98	-449.024
1.481	0.85	0.261		-/1.099	527.45	-102.048	-556.154
1.84/	0.68/	0.27		-11.422	572.94	-112.027	-592.552
1.656	0.659	0.309		-58.041	485.764	-109.935	-505.372
1.786	0.864	0.305		-62.272	478.724	-94./11	-505.81
1.73	0.535	0.248		-82.445	604.301	-118.074	-622.315
1.671	0.948	0.245		-85.299	620.813	-116.408	-654.833
1.72	0.673	0.261		-65.131	522.69	-112.846	-543.532
1.838	0.794	0.342		-75.915	564.724	-110.246	-588.953
1.644	0.676	0.226		-64.374	510.285	-107.999	-531.871
1.876	0.822	0.264		-57.948	463.846	-99.971	-481.292
1.656	0.555	0.304		-59.777	470.796	-98.051	-491.968

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α_3 (CaO) β	80	β1	β2	β3
1.725	0.782	0.246	-45.231	423.031	-102.948	-446.049
1.624	0.671	0.275	-66.218	529.604	-111.805	-555.276
1.579	0.757	0.239	-59.054	455.563	-92.316	-479.897
1.626	6 0.913	0.291	-42.772	425.816	-108	-453.389
1.65	5 0.88	0.341	-53.205	483.849	-111.342	-519.593
1.87	0.777	0.371	-61.964	471.193	-92.482	-494.945
1.827	0.618	0.267	-83.288	613,706	-119.943	-634.28
1.726	5 0.933	0.284	-62.764	504.275	-107.36	-531.114
1.644	0.95	0.346	-72.895	537.494	-101.42	-570.394
1.84	0.865	0.341	-63.78	500.144	-102.589	-524.677
1.43	3 0.7	0.212	-47.643	445,948	-108.633	-473.337
1.739	0.728	0.189	-60.504	466.433	-95.637	-484.695
1.761	0.702	0.321	-71.333	562.1	-117.63	-586,992
1.809	0.927	0.326	-75 663	556 882	-105 974	-584 554
1 796	5 0.838	0.28	-63 411	516 207	-112 092	-538 411
1 811	0.867	0.278	-58 655	482.68	-103 919	-508 836
1.687	0.007	0.325	-59 153	471 833	-99.465	-496 222
1.002	0.042	0.325	-61.053	487 572	-102 905	-514 917
1.731	0.70	0.303	-62.868	407.572	-102.003	-527 303
1.622	0.072	0.303	-02.000 80.134	608.076	105 236	638 33
1.072	0.530	0.319	-70.968	545 356	-112 409	-561.34
1.522	2 0.552	0.308	71 77	538 546	100 606	558 001
1.04.	8 0.912	0.298	63 321	501 138	104.027	-538.901
1.09.	0.902	0.208	-05.521 97.400	620 718	-104.027	-528.801
1.632	0.039	0.207	-07.409	510 228	-120.314	-049.343
1.032	0.7	0.240	-03.004	522.951	-106.312	-332.333
1.0/3	0.63	0.558	-07.321	522.031	-107.180	-347.830
1.041	0.056	0.204	-70.272	523.745	-104.390	-339.303
1.015	0.33	0.169	-12.941	323.209	-102.404	-551.011
1.740	1.005	0.338	-02.304	488.201	-98.983	-519.208
1.770	0.801	0.279	-90.007	607.921	-105.651	-028.902
2.004		0.429	-95.244	0/8.039	-124.28	-708.459
1.//3	0.791	0.310	-82.700	580.121	-107.084	-010.422
1.04	0.873	0.287	-12.45	333.233	-115.011	-381.//3
1.051	0.829	0.26	-35.235	457.75	-100.142	-485.108
1.895	1.035	0.317	-97.598	634.229	-101.649	-660.783
1.647	0.613	0.266	-03.102	516.052	-113.001	-537.672
1.013	0.58/	0.28	-04.343	496.621	-100.227	-520.562
1.709	1.093	0.373	-/0.4//	542.855	-108.467	-5/6./35
1.65	0.966	0.319	-08.968	556./18	-118.353	-588.921
1.846	0.779	0.34	-57.253	460.024	-96.348	-485.17
1.749	0.523	0.241	-49.58/	404.011	-89.458	-416.209
1.797	0.881	0.364	-64.664	502.736	-101.1//	-532.124
1.598	0.911	0.269	-/9.66	567.803	-101.813	-602.562
1.724	0./88	0.327	-68.682	516.302	-102.919	-538.158
1.777	0.59	0.321	-67.391	534.475	-111.93	-556.923
1.841	0.78	0.297	-61.789	472.646	-95.004	-494.225
1.813	0.98	0.337	-71.188	529.414	-101.009	-560.803
1.771	0.827	0.323	-57.456	480.359	-105.587	-506.276
1.741	0.663	0.261	-66.795	508.397	-103.424	-526.57
1.664	0.934	0.384	-78.726	593.937	-117.317	-626.396
1.713	3 1.012	0.392	-68.482	521.364	-102.424	-553.504
1.54	0.508	0.277	-67.157	506.919	-102.496	-526.967
1.682	2 1.024	0.33	-66.93	503.264	-97.093	-535.559
1.734	0.865	0.257	-51.682	420.539	-90.048	-442.59

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.714	0.449	0.272		-70.082	536.567	-109.053	-555.333
1.661	0.711	0.248		-58.999	498.315	-113.172	-518.568
1.847	1.21	0.3		-82.023	641.086	-129.585	-682.273
1.817	0.946	0.209		-45.838	407.373	-93.703	-431.596
1.958	0.635	0.352		-80.914	567.021	-103.643	-584.162
1.695	0.64	0.259		-56.99	442.37	-91.927	-458.486
1.908	0.874	0.31		-78.282	560.793	-104.073	-582.626
1.774	0.612	0.158		-57.328	479.601	-107.784	-496.432
1.844	0.855	0.333		-69.583	536.55	-108.804	-561.92
1.575	0.794	0.134		-67.311	521.637	-106.952	-546.332
1.867	0.652	0.284		-58.663	438.614	-84.851	-457.401
1.659	0.896	0.327		-60.446	501.591	-108.179	-534.321
1.516	0.987	0.347		-67	520,995	-104.773	-556.011
1.84	0.472	0.202		-93.927	615.636	-104.829	-624 121
1.696	1.085	0.32		-58.104	465.644	-97.677	-495 454
1.654	0.488	0.279		-65 045	515 463	-110.036	-532.46
1.805	0.721	0.16		-56 32	449 885	-96 156	-465 831
1 733	0.678	0.297		-63 324	485.035	-98 438	-506 103
1.733	0.0764	0.297		-62 049	519 403	-111 943	-554 166
1.032	0.704	0.50		-02.049	682 331	-136 638	-710.047
1.577	0.037	0.255		-63 683	503 58	-100 817	-539.648
1.405	1 10	0.271		50 357	465 617	108.057	506 121
1.529	0.732	0.209		47 031	405.017	110.50	470 351
1.914	0.732	0.273		70 362	604.5	123 477	676 220
1.000	0.370	0.238		73 035	564 956	-123.477	-020.229
1.730	0.519	0.289		70 109	504.950	105.2	548.062
1.037	1.041	0.27		-70.108	507.085	-105.2	-346.003
1.602	0.602	0.349		-05.002	461 622	-101.361	-333.192
1.049	0.092	0.313		-49.041	401.023	-106.423	-492.720
1.932	0.77	0.550		-39.040	400.219	-98.337	-308.224
1.022	0.944	0.207		-04.909	515 112	-100.074	-336.390
1.013	0.719	0.200		-00.413	507 605	-104.342	-341.079
1.017	0.979	0.373		-04.011	544.009	-103.931	-330.730
1.099	0.733	0.247		-09.023	344.908	-114.217	-307.303
2.104	0.439	0.24		-131.17	426.005	-123.366	-691./01
1.039	0.762	0.28		-39.218	420.095	-111.312	-459.087
1.39	0.901	0.29		-09.000	329.301	-105.571	-301.092
1.833	0.954	0.210		-02.241	4/1.518	-95.022	-489.073
1./01	1.137	0.517		-/1.011	519.247	-94.379	-332.2
1.708	0.982	0.205		-//.298	5/5.28	-112.87	-601.852
1.702	0.934	0.317		-51.580	460.347	-104.914	-491.801
1./85	0.849	0.372		-59.746	4/8.448	-99.472	-507.32
1.612	0.676	0.331	-	-107.854	/16./36	-122.623	-/39.941
1.699	0.83	0.301		-/4./5/	584.432	-119.679	-015.303
1.952	0.6/1	0.259		-67.925	529.312	-107.349	-551.22
1.902	0.765	0.351		-66.852	508.896	-101.693	-531.02
1.725	0.962	0.32		-59.44	475.323	-99.347	-503.434
1.736	0.692	0.202		-54.802	451.465	-99.653	-469.193
1.872	0.607	0.281		-61.778	478.498	-98.121	-496.61
1.744	0.512	0.216		-64.033	484.129	-98.495	-498.008
1.783	0.837	0.285		-80.91	551.404	-97.013	-570.433
1.669	0.835	0.263		-58.438	489.824	-107.552	-518.89
1.784	1.182	0.379		-78.105	583.012	-112.129	-619.832
1.671	1.085	0.332		-69.176	532.288	-107.48	-563.224
1.876	0.63	0.278		-63.631	457.704	-85.365	-475.123

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.838	0.799	0.335	·	-66.893	524.879	-109.716	-547.403
1.696	0.936	0.383		-68.257	521.586	-105.035	-549.523
1.619	0.951	0.304		-48.225	427.621	-98.784	-455.558
1.729	0.95	0.362		-74.076	540.712	-99.479	-574.686
1.692	0.778	0.24		-62.975	487.425	-101.826	-504.965
1.506	0.652	0.317		-51.449	438.667	-98.367	-464.798
1.743	0.817	0.355		-70.429	553,384	-112.29	-585.64
1.627	0.656	0.271		-46.353	437.417	-104.647	-465.111
1.794	0.567	0.139		-67.431	482,743	-92.561	-493,185
1.499	1.072	0.243		-67.398	559,918	-118.626	-605.982
1.789	0.561	0.232		-77.521	563,454	-108.035	-580.386
1.711	0.972	0.363		-74.233	518.882	-91.553	-547.987
1.606	1.239	0.326		-88.765	680.924	-135.898	-727.409
1 777	0.773	0.282		-45 548	395 328	-91 399	-413.7
1 496	1.071	0.202		-76.264	582.644	-115.531	-621.088
1.802	0.778	0.425		-79 579	599 456	-115 447	-634 123
1 814	0.501	0.125		-76 591	561 548	-107 989	-580 566
1 881	0.501	0.203		-63 466	517 17	-112 342	-535 795
1.601	0.072	0.217		-58 408	466 304	-96 791	-496 304
1.02	0.921	0.317		-70.637	557 11	-115 754	-585 472
1.741	0.004	0.213		-65 817	502 028	-100 355	-526 869
1.701	0.937	0.213		67 287	554 504	110.555	500.03
1.505	0.932	0.234		54 444	449.028	-119.452	470 528
1.705	0.933	0.313		71 254	520 527	100 465	-479.328
1.000	0.703	0.28		67 129	512 924	-109.403	-339.498
1.010	0.662	0.408		-07.130	614 049	-102.771	-342.048
1.97	0.091	0.269		-00.321	588.00	-114.923	-030.999
1.700	0.304	0.207		-03.142	162 650	-111.140	-003.409
1.330	0.857	0.301		-37.131	403.039	-99.750	-469.750
1.084	0.725	0.297		-32.034	433.467	-99.319	-462.039
1./1/	0.860	0.231		-39.903	402.745	-94.409	-400.139
1.603	0.803	0.343		-00.045	620 515	-105.407	-338.401
1.032	1.134	0.521		-00.900	206.041	-113.449	-0/5.04/
1.529	0.539	0.333		-13.277	402.052	-100.80	-320.287
1.742	0.969	0.303		-55.510	402.933	-109.239	-454.525
1.500	0.909	0.277		-/0.8//	557.045	-115.081	-594.295
1.811	0.937	0.399		-8/.134	602.441	-105.678	-030.999
1.0/	0.785	0.342		-08.241	500.711	-94.414	-527.057
1.504	0.837	0.194		-38.384	4/1.305	-100.611	-495.581
1.894	0.914	0.352		-94.820	618.648	-98.505	-045.040
1.932	0.832	0.335		-/0./88	534.283	-105.178	-557.445
1.62	1.21	0.34		-82.045	588.823	-104.891	-633.514
1.851	0.907	0.263		-67.693	526.626	-110.092	-548.044
1./68	0.747	0.358		-/1.283	631.456	-14/.941	-662.479
1.806	0.729	0.319		-57.919	457.047	-96.46	-4/6.414
1.602	0.599	0.195		-62.829	501.582	-106.862	-523.442
1.777	0.947	0.354		-66.027	516.235	-108.372	-539.016
1.662	0.678	0.304		-73.247	550.673	-109.917	-572.7
1.727	0.975	0.342		-81.317	572.97	-104.607	-599.372
1.78	0.722	0.31		-75.679	564.292	-111.319	-587.311
1.707	0.902	0.381		-81.694	614.48	-118.615	-652.61
1.966	0.941	0.403		-74.415	547.14	-104.078	-573.261
1.626	0.89	0.352		-63.735	534.352	-117.125	-568.891
1.757	0.735	0.231		-54.2	434.636	-92.767	-453.226
1.652	0.597	0.326		-70.779	562.077	-119.816	-584.452

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.939	0.855	0.383	·	-93.217	629.685	-107.3	-655.047
1.782	0.754	0.294		-75.294	574.602	-116.32	-598.187
1.66	0.558	0.206		-59.559	445.586	-88.574	-461.905
1.435	0.608	0.282		-66.261	504.554	-102.12	-528.174
1.616	0.823	0.284		-62.407	506.725	-110.725	-531.965
1.799	0.917	0.418		-70.752	501.23	-89.945	-528.132
1.644	0.827	0.27		-64.374	502.082	-101.809	-530.916
1.843	1.004	0.232		-67.225	488.466	-92.922	-509.528
2.029	0.685	0.269		-92,499	581.049	-89,995	-593.718
1.741	0.946	0.271		-69.25	522,447	-101.703	-552.512
1.813	0.766	0.284		-50.676	405.813	-84 486	-427.635
1.587	1.04	0.211		-68.912	554,977	-116.153	-591.474
1.764	0.692	0.157		-63.105	517 495	-116 351	-531.065
1 609	0.892	0.165		-80 177	617.82	-124 001	-652 34
1.005	0.052	0.102		-74 827	562.83	-110 267	-590.074
1.775	0.465	0.191		-60 664	448 772	-88 501	-462 109
1.731	0.405	0.303		-49 643	474 778	-94 312	-449 162
1.712	0.724	0.303		-80 541	588 543	-112 277	-613.14
1.710	1.012	0.349		-50.602	408 626	-86 708	-432 501
1.75	1.012	0.342		-86.044	616 105	-113 956	-648 211
1.602	1.121	0.433		-71 5	546.976	-108 683	-581 338
1 704	0.868	0.270		70 701	510 747	100.348	543 637
1.704	0.808	0.324		55 043	163 736	102 020	-545.057
1.59	0.589	0.231		-55.045	202 227	-102.929	415 462
1.003	0.079	0.319		-44.92	570 199	-90.378	-413.403
1.731	0.903	0.313		-13.921	500 614	-112.227	-596.170
1.431	1.107	0.310		-00.230	460 822	-109.995	-334.492
1.652	0.623	0.239		-40.655	400.823	-110.393	-405.295
1.002	0.087	0.555		-00.177	492 (95	-123.041	-041.331
1./13	0.774	0.185		-00.25	403.003	-103.037	-303.200
1.803	0.747	0.5		-11.143	507.704	-102.456	-576.524
1.700	0.732	0.311		-/3.00/	397.794	-125.019	-027.092
1.704	0.093	0.293		-32.155	430.127	-102.003	-4/2.346
1.//	0.595	0.271		-09.91	520.971	-101.479	-541.907
1.034	1.010	0.527		-40.205	404.374	-101.403	-430.071
1./	1.285	0.29	-	-102.127	707.877	-121.0/1	-/33.82/
1.419	0.929	0.244		-00.425	302.944	-97.303	-558.091
1.54	0.591	0.19		-44.512	434.770	-109.3	-402.04
1.531	0.742	0.246		-/5.905	552.909	-105.008	-5/8.200
1.662	0.903	0.278		-01.514	4//.080	-95./95	-507.318
1.720	1.027	0.55		-39.393	480.169	-101.134	-510.105
1.708	0.599	0.266		-0/.12/	517.362	-105.829	-538.183
1.53	0.608	0.182		-42.722	411.479	-102.215	-434.318
1.792	0.675	0.235		-/6.301	570.189	-113.//4	-588.019
1.597	0.853	0.257		-63.481	5/2.34	-135.118	-607.729
1.693	0.949	0.297		-64.05	517.081	-111.432	-543.395
1.731	0.786	0.249		-54.161	440.954	-94.592	-463.549
1.752	0.586	0.214		-67.919	508.417	-100.161	-528.079
1.805	0.84	0.3		-70.588	541.575	-109.634	-565.174
1.623	0.685	0.243		-87.813	641.731	-122.431	-669.39
1.614	0.747	0.327		-71.701	564.468	-118.826	-591.154
1.87	0.972	0.35		-75.317	568.847	-111.666	-598.207
1.726	0.782	0.301		-65.817	506.316	-103.917	-527.862
1.958	0.865	0.455	-	120.295	698.589	-90.516	-718.77
1.566	0.826	0.282		-75.061	575.791	-117.562	-603.598

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.664	0.773	0.292	-58.216	447.422	-89.648	-470.918
1.754	0.645	0.238	-72.834	534.597	-102.745	-554.565
1.719	0.785	0.301	-87.062	578.015	-98.32	-596.973
1.818	0.89	0.334	-68.223	517.553	-104.351	-540.261
1.67	1.054	0.355	-90.528	630,506	-108.927	-671.307
1.707	0.732	0.344	-68.688	501.621	-95.944	-523.738
1.84	0.561	0.289	-79.727	610.965	-125.589	-629.213
1.494	0.775	0.296	-67.476	520.242	-106.167	-547.624
1.912	0.82	0.338	-124.245	740.068	-103.757	-757.923
1.889	0.652	0.334	-62.028	508,475	-108.493	-533.47
1.721	1.035	0.347	-53,489	472,746	-109.157	-503.89
1.76	0.955	0.36	-72.493	511.938	-91.548	-539.288
1.587	0.846	0.237	-40.069	423.519	-112.894	-449.823
1.689	0.991	0.328	-76.531	577.92	-113.346	-610.965
1.717	1.15	0.406	-66.394	504.12	-98.331	-538.519
1.956	0.712	0.261	-58.858	443.65	-89.013	-458.607
1.754	0.688	0.321	-65.951	517.075	-106.296	-541.679
1.581	0.813	0.195	-56.585	471,703	-102.278	-500.198
1.779	0.869	0.242	-61.227	498.42	-108.147	-520,733
1.516	1.07	0.277	-62.385	488.661	-97.337	-525.809
1.725	0.833	0.334	-60.858	476.264	-95.989	-505.138
1.796	0.902	0.37	-68.07	481.735	-87,118	-505.992
1.779	0.663	0.248	-37.235	413,783	-111.826	-439.274
1.703	0.73	0.273	-77.294	585.16	-118.128	-608 864
1.742	0.883	0.259	-62.081	500.828	-106.83	-525.777
1 779	0 749	0.383	-69.861	508.936	-95 305	-534 288
1.631	0.883	0.241	-64.783	507.425	-106 461	-531.376
1 715	0.685	0.186	-67 887	514.86	-104 194	-533 126
1.715	0.005	0.180	-70.62	510.57	-97 952	-529.089
1.778	0.739	0.202	-66 116	511 914	-106 321	-531 379
1 675	0.819	0.328	-48 806	408.06	-90.081	-430 409
1.651	1.095	0.382	-64.86	521.719	-109.24	-555.795
1 407	0.628	0.154	-74.18	559.015	-110.704	-585.791
1.904	0.586	0.265	-63.539	485.712	-99.126	-500.255
1.664	0.862	0.342	-54.685	466.771	-103.633	-497.734
1.659	0.813	0.29	-84.647	618,531	-114.361	-654 021
1.515	1,135	0.197	-62.131	504.269	-109.586	-533.928
1.693	0.688	0.212	-53.23	398.281	-78.489	-414.845
1.53	0.777	0.217	-51.727	422,592	-91.207	-445.891
1.773	1.039	0.343	-67.03	528.015	-109.341	-557.288
1.815	0.659	0.218	-68.066	534.19	-110.119	-556.256
1.722	0.805	0.331	-71.044	533.867	-106.515	-557.577
1.722	0.813	0.33	-62,199	486.656	-101.341	-510.184
1.743	0.801	0.25	-55.227	452.253	-99.662	-470.721
1.799	0.774	0.344	-57.792	471.066	-102.703	-492.001
1 793	0.785	0.28	-62 829	499 984	-104 909	-524 152
1.98	0.886	0.312	-85.907	625.662	-117.945	-651.823
1 471	0.711	0.279	-78 808	595.583	-120.639	-622.269
1.788	0.947	0.206	-104 296	773,793	-151.709	-806 361
1 53	0.876	0.336	-60.789	492,963	-103.379	-526 483
1.663	0.704	0.271	-59 299	486.752	-107.54	-507.818
1.901	0.709	0.297	-73,394	566,739	-117.738	-585.265
1.566	0.798	0.267	-62.12	488.259	-100.581	-516 367
1.792	0.728	0.296	-58.726	485.561	-105.121	-509.724
		0.220				

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.69	0.588	0.255		-76.511	593.558	-122.841	-616.7
1.59	0.89	0.237		-75.184	571.916	-114.432	-601.952
1.777	0.717	0.294		-62.987	490.425	-100.785	-512.51
1.933	0.92	0.29		-86.296	578.074	-96.163	-602.992
1.764	0.782	0.329		-69.849	564.726	-121.469	-590.327
1.564	1.031	0.232		-87.594	656.043	-127.073	-694.621
1.708	0.688	0.22		-56.113	465.359	-103.402	-485.609
1.865	0.933	0.304		-69.425	523.521	-102.475	-550.966
1.585	0.913	0.28		-62.1	486,705	-101.588	-511.677
1.755	0.836	0.299		-74.132	580.495	-119.218	-610.252
1.695	0.749	0.306		-62.661	497.724	-103.853	-523.946
1.745	0.867	0.346		-66.326	513.926	-104.641	-541.044
1.704	0.803	0.322		-76.113	561 797	-109.974	-584,777
1 712	0.929	0.355		-54 925	448 014	-93 461	-479.067
1 924	0.775	0.298		-66 448	537.23	-115 373	-559 914
1.671	0.649	0.250		-86 727	546 167	-85 746	-560.42
1.816	0.874	0.202		-60.43	503 396	-111 299	-527 669
1.808	0.775	0.347		-56 873	447 293	-92 411	-468 49
1.000	0.773	0.347		-50.075	5/3 929	-118 079	-576 366
1 752	0.584	0.305		78 166	570.084	100 202	501 767
1.752	0.564	0.313		-67.073	526 239	-110 474	-5/19.009
1 837	0.000	0.230		18 836	128 280	-110.474	-545.005
1.653	0.720	0.194		-40.000	428.289	-99.558	517 214
1.055	0.803	0.272		72 112	542.916	105 251	572 647
1.730	0.93	0.3		-72.113	515 101	-103.231	-372.047
1.600	0.04	0.107		-09.407	722.086	-103.732	-327.343
1.001	0.815	0.528		-110.0	723.980	-121.102	-/4/.946
1.430	0.929	0.287		-06.601	560.626	-96.044	-349.04
1.722	1.102	0.292		-/0.001	562.244	-105.125	-395.445
1./11	1.198	0.278		-12.052	424 402	-114.404	-397.101
1.724	0.718	0.279		-50.752	434.402	-96.693	-434.321
1.743	0.923	0.50		-03.313	40/.191	-93.002	-510.054
1.023	1.042	0.557		-08.319	401 215	-98.100	-343.004
1.033	1.018	0.323		-03.23	491.215	-101.344	-518.547
1.098	0.709	0.505		-30.133	4/7.612	-109.390	-498.327
1./02	0.88	0.325		-07.832	497.028	-90.347	-518.094
1.902	0.722	0.500		-00.132	020.003	-110.024	-042.039
1.0/1	0.091	0.111		-00.077	404.933	-95.948	-485.478
1.732	0.823	0.208		-31.005	419.072	-89.300	-441.90
1./18	0.99	0.438		-/3./2	530.029	-105.065	-584.802
1.905	0.563	0.292		-08.221	539.898	-115.519	-554.297
1./41	0.72	0.313		-/0./50	547.295	-100.947	-570.255
1.58	0.722	0.273		-04.014	505.145	-105.80	-529.044
1.81	0.921	0.284		-/1.591	333.233	-101.803	-303.378
1.000	0.578	0.329		-05.155	498.818	-101.629	-518.979
1.689	0.573	0.318		-/2.064	544.123	-10/./13	-567.468
1.59	0.72	0.273		-64.289	517.367	-109.038	-545.6//
1.934	0.8/6	0.305		-51.8/3	417.86	-88.522	-438.142
1.624	0.788	0.308		-78.798	562.56	-103.835	-590.097
1.68	1.008	0.366		-//.165	595.543	-118.786	-633.62
1.718	0.69	0.243		-54.025	432.639	-91.169	-453.682
1.642	0.798	0.251		-/1.802	544.923	-108.83	-570.557
1.613	0.815	0.34		-66.17	548.983	-117.258	-585.192
1.732	0.777	0.3		-44.571	374.38	-81.713	-396.721
1.576	0.916	0.246		-52.39	455.688	-104.826	-482.25

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.414	1.238	0.371	-65.486	499.707	-95.459	-544.315
1.966	0.803	0.225	-157.524	873.567	-101.894	-891.673
1.773	0.862	0.317	-65.181	527.235	-111.4	-556.364
1.676	0.706	0.305	-60.767	500.151	-109.978	-522.85
1.876	0.952	0.305	-82.646	617.543	-121.154	-645.112
1.668	0.706	0.195	-62.779	495.564	-102.777	-518.667
1.852	0.752	0.358	-76.384	579,127	-115.084	-605.323
1.598	0.66	0.233	-63.345	507.995	-110.447	-527.466
1.707	0.545	0.291	-65.087	501.806	-102.413	-522.35
1.901	0.732	0.262	-90.307	595.755	-101.785	-609.116
1 712	0.696	0.322	-55 798	460 605	-98.43	-487 419
1.768	0.753	0.257	-61.293	474,774	-96,938	-495.534
1 838	0.903	0.405	-64 857	516 986	-105 729	-549 962
1.596	0.705	0.103	-42.036	380 139	-89 221	-402 707
1.550	1.008	0.297	-59 417	500.139	-109 418	-533 946
1.710	0.949	0.297	-63 808	481 635	-03 860	-509 328
1.705	0.724	0.284	-76 334	575 746	-114 955	-600 268
1.737	0.724	0.262	-58 675	176 367	-102.13	-500.200
1.071	0.781	0.255	-59.075	470.307	-102.13	-505.314
1.773	1.033	0.44	-59.744	521 306	105 434	-505.514
1.027	1.033	0.224	-00.967	J21.500 484 556	-103.434	-555.511
1.007	0.85	0.334	-00.855	484.550	-101.432	-507.072
1.742	0.80	0.208	-37.922	612.04	-100.23	-309.780
1.013	0.743	0.20	-01.330	760 265	-123.300	-032.792
1./14	0.711	0.515	-107.518	100.203	-139.201	-791.010
1./4	0.748	0.232	-43.047	472.379	-122.493	-300.024
1.05/	0.733	0.248	-04.307	507.51	-106.840	-529.400
1.095	0.99	0.350	-00.400	4/0.803	-97.039	-506.511
1.84	0.050	0.300	-88.914	624.461	-112.574	-049.207
1.682	0.95	0.166	-/1.486	529.79	-105.186	-551.475
1./88	0.901	0.318	-62.525	509.936	-109.48	-537.396
1.584	0.843	0.209	-51.136	435.893	-99.084	-458.066
1.724	0.775	0.376	-67.785	537.813	-111.906	-566.945
1.821	0.934	0.313	-65.916	486.452	-93.136	-510.659
1.546	0.684	0.227	-59.092	462.103	-96.56	-482.63
1.65	0.792	0.265	-62.148	485.19	-99.488	-510.676
1.649	1.064	0.308	-90.762	623.572	-108.247	-656./64
1./56	0.846	0.363	-69.979	527.516	-102.724	-555.978
1.709	0.865	0.278	-66.512	539.318	-116.//8	-363.336
1./51	1.058	0.329	-/9.58/	575.342	-106.116	-608.779
1.593	0.629	0.255	-/1.502	541.108	-107.516	-565.589
1.629	0.853	0.332	-//.632	5/4.86/	-110.459	-606.349
1.749	0.689	0.244	-66.474	497.019	-98.458	-516.124
1.744	0.703	0.297	-59.855	516.827	-117.033	-542.805
1.707	0.758	0.238	-69.812	494.621	-90.836	-514.612
1.689	0.847	0.333	-52.994	436.384	-93.81	-462.979
1.575	0.922	0.233	-70.701	524.502	-101.07	-553.424
1.659	0.818	0.222	-73.782	559.256	-111.997	-585.272
1.632	0.839	0.289	-73.491	589.689	-125.67	-621.047
1.717	0.803	0.299	-68.622	545.363	-112.176	-576.4
1.682	0.801	0.385	-61.279	514.879	-113.604	-545.15
1.866	0.613	0.348	-72.013	538.89	-107.519	-555.871
1.3	1.004	0.306	-63.184	532.645	-112.562	-583.069
1.666	0.75	0.299	-64.043	523.707	-115.213	-547.091
1.595	1.083	0.324	-63.842	484.639	-94.832	-517.695

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.663	0.795	0.252		-62.917	489.973	-100.933	-513.453
1.469	0.643	0.361		-50.415	437.717	-99.082	-466.292
1.677	0.936	0.264		-90.831	705.986	-148.23	-736.443
1.677	0.752	0.418		-61.139	445.573	-83.931	-468.534
1.798	0.876	0.283		-62.503	478.572	-96.681	-500.898
1.617	0.65	0.279		-65.773	477.994	-90.321	-498.837
1.751	1.017	0.337		-66.34	510.904	-103.643	-538,591
1.742	0.846	0.31		-55.292	444.767	-95.334	-466.339
1.821	0.744	0.331		-52.272	437.727	-95.045	-462.245
1.673	0.818	0.257		-80.519	603.988	-119.207	-632.555
1.478	0.689	0.24		-61.63	520.849	-115.417	-551.434
1.661	0.769	0.304		-67.192	542.07	-113.397	-574.215
1.787	0.853	0.203		-67.482	492,999	-95,141	-512.152
1.819	1.042	0.31		-74 999	556.263	-109.196	-580.328
1.618	0.923	0.355		-71.207	548.575	-112.461	-576.479
1 731	0.682	0.367		-68 789	532 772	-109 179	-556 118
1.735	0.91	0.322		-65.237	507.318	-102.474	-537.051
1 844	0.695	0.244		-54 224	434 146	-93 152	-449 981
1 723	0.644	0.252		-49 735	407 14	-87 967	-426 271
1.725	0.011	0.232		-54 716	424 953	-89.429	-442 982
1.525	0.755	0.303		-61 65	499 446	-106 779	-527 642
1.545	0.000	0.305		-77 151	597 503	-121 761	-623 589
1.013	0.883	0.270		-63 568	482 753	-95 557	-507 635
1 818	0.005	0.285		-69.824	517 797	-101 452	-540.012
1.610	0.907	0.203		-50/187	427.008	-94 805	-451 325
1.055	0.804	0.275		14 331	410 000	-74.005	440.684
1.577	0.887	0.303		-58 136	410.909	-103 586	-440.084
1.57	0.608	0.274		62 223	525 267	-105.560	5/0 786
1.764		0.243		67.22	510.006	100.007	-549.780
1.707	1.035	0.319		76 602	584 115	-100.907	-557.28
1.772	0.672	0.330		-70.002	647 422	-110.414	-014.94
1.707	0.073	0.264		64.062	505.076	-113.970	-004.944
1.00	0.923	0.318		-04.002 90.246	506 257	-103.703	-550.518
1.040	0.993	0.312		55 553	450 337	-113.037	-031.412
1.03	0.985	0.271		70 424	582 401	-90.178	-477.001
1.040	0.700	0.329		61 035	108 006	-110.432	-013.400
1.332	. 0.993	0.273		117 457	498.900	-104.472	-552.525
1./02	1.099	0.374	-	74	540.44	-111.20	-775.74
1.733	0.03	0.292		-14	562 092	-100.934	-574.517
1.0/4	0.823	0.555		-13.10	556 657	-108.155	-366.171
1.901	0.733	0.337		-11.323	474 701	-103.994	-377.71
1./30	0.737	0.209		-30.694	4/4./01	-104.721	-490.363
1.00	0.004	0.294		-01.555	495.457	-100.081	-310.117
1.301	0.055	0.212		-30.09	545 401	-107.047	-420.283
1.000	0.379	0.194		-/5.020	545.401	-108.107	-302.23
1.800	0.598	0.298	-	55 52	089.33	-118.525	-708.05
1.722	0.699	0.239		-00.00	457.506	-99.33	-4/8.934
1.54	0.808	0.27		-30.042	455.555	-96.01	-4/8.4/4
1.662	0.6/1	0.302		-11.125	357.791	-105.616	-5/8.302
1.643	0.809	0.303		-45.551	420.434	-103.5/1	-448.16/
1.691	0.822	0.41		-50.265	458.869	-96.677	-489.268
1.455	0.942	0.257		-05.249	542.155	-122.821	-5/6.452
1.588	0.697	0.257		-53.86	433.359	-93./6/	-451.903
1.734	0.758	0.306		-/3.423	548.451	-10/.118	-5/3.493
1.803	0.77	0.252		-05./34	499.69	-101.224	-518.3/8

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.717	0.659	0.244		-68.526	532.71	-110.545	-553.592
1.777	0.894	0.378		-89.02	628.295	-114.271	-656.022
1.681	0.793	0.384		-71.892	541.411	-104.791	-573.436
1.955	1.002	0.323		-76.659	545.155	-98.135	-572.039
1.591	0.72	0.185		-51.955	405.088	-83.945	-424.24
1.874	0.623	0.201		-80.031	567.89	-106.927	-581.748
1.659	0.55	0.224		-89,133	635.352	-120.816	-653.128
1.904	0.687	0.335		-82.612	597.039	-114.38	-616.355
1.849	0.806	0.271		-88.283	630.913	-119.84	-649.835
1.673	0.79	0.285		-72.081	543.605	-109.116	-566.724
1.56	0.938	0.261		-83.578	652.29	-133.825	-689.925
1.763	0.802	0.349		-75.81	554.096	-106.526	-577 495
1 532	0.788	0.341		-53 829	438 777	-92 769	-467 722
1.832	0.802	0.379		-56 807	496 525	-110 717	-528 414
1.041	0.002	0.301		-96 565	709 471	-135 945	-740 923
1.720	0.717	0.288		-84 542	582 079	-103 855	-602.02
1.75	0.717	0.288		-65 154	490 597	-98 /91	-512.964
1.555	0.005	0.107		-50.952	421 807	-93 724	-/137 118
1.803	1 001	0.217		-76.024	580 233	-115 536	-437.118
1.710	0.57	0.295		62 411	164.24	02 584	-012.103
1.636	1.055	0.170		76 208	501.087	-92.364	-470.323
1.019	0.782	0.300		-70.290	155 126	-119.404	-028.302
1.77	0.782	0.339		-30.700	433.430	-95.072	-479.703
1.506	1.012	0.241		-42.329	437.034	-110.030	-470.213
1.70	1.015	0.320		-/3.415	505 422	-122.741	-051.50
1.708	0.785	0.309		-00.092	303.432	-100.558	-329.21
1.798	0.781	0.328		-03.924	485.915	-97.729	-502.515
1.798	1.096	0.441		-83.40	001.330	-106.525	-043.920
2.023	0.729	0.236	-	-120.046	700.843	-95.509	-/10.22/
1.553	0.652	0.201		-//.04	548.219	-102.706	-568.42
1.662	0.902	0.363		-/1.1/1	505.174	-90.049	-535.821
1.83/	0.718	0.238		-96.201	635.77	-106.868	-653.282
1.594	1.017	0.372		-80.963	562.616	-96.747	-598.266
1.658	0.849	0.274		-54.440	480.716	-110.135	-510.349
1.752	0.892	0.213		-/6.896	585.645	-11/./44	-612.447
1./5/	0.628	0.231		-/6.484	547.913	-104.95	-562.892
1.748	0.964	0.354		-56.141	456.824	-97.46	-483.616
1./81	0.85	0.301		-/8.19/	603.748	-121.378	-635.292
1.946	0.611	0.228		-/3.04	486.433	-84.856	-494.504
1.694	1.084	0.348		-69.263	544.596	-109.996	-582.14
1./61	0.799	0.233		-80.493	615.554	-124.788	-641.158
1.833	0.751	0.291		-78.923	581.663	-113.039	-603.714
1./36	0.783	0.338		-62.607	494.022	-101.025	-522.227
1.95	1.109	0.358		-75.473	579.811	-117.691	-609.89
1.757	0.7	0.234		-70.54	564.555	-120.901	-585.618
1.768	0.896	0.324		-75.267	552.189	-103.626	-582.319
1.673	0.969	0.296		-53.313	430.696	-92.214	-455.226
1.599	0.836	0.146		-74.132	568.473	-117.309	-591.676
1.939	1.173	0.403		-90.267	632.555	-109.978	-670.051
1.586	0.892	0.297		-56.85	450.99	-94.294	-476.399
1.853	1.022	0.378		-84.522	608.027	-113.267	-637.605
1.515	0.758	0.311		-50.914	418.09	-90.45	-442.62
1.723	0.844	0.4		-59.745	488.11	-101.266	-522.516
1.803	0.633	0.289		-60.409	457.899	-90.938	-477.09
1.5	0.978	0.174		-75.97	600.078	-123.33	-639.052

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.741	0.567	0.321		-42.837	. 449.671	-116.343	-476.914
1.856	1.182	0.341		-63.333	465.72	-88.147	-492.225
1.636	0.899	0.285		-50.916	411.593	-86.852	-437.115
1.424	0.535	0.226		-59.993	431.277	-80.577	-450.905
1.892	0.803	0.374		-47	390.995	-85.143	-411.556
1.919	0.946	0.35		-64.48	485.29	-95.305	-508.493
1.737	0.628	0.254		-67.951	508,488	-102.019	-525,499
1.674	0.76	0.304		-50.509	454.037	-105.262	-483.078
1.87	0.849	0.31		-56.336	486.866	-111.536	-510.219
1.672	0.718	0.369		-87.207	619.661	-113.427	-648.265
1.622	1.069	0.224		-62.64	479,923	-97.393	-506.775
1.871	0.596	0.305		-66.615	527.678	-110.341	-548.526
1.563	1.037	0.271		-63.811	536.815	-116.629	-576.337
1.756	0.819	0.319		-57.032	449.301	-93 634	-471.086
1.764	0.675	0.187		-50.423	407.923	-86.621	-426.369
1 756	0.819	0.323		-65 467	504 406	-99.65	-533 44
1.686	0.717	0.269		-69.871	513.026	-100 452	-530,776
1 791	0.808	0.342		-64 535	507 501	-103 141	-536 59
1 838	0.693	0.312		-84 142	564 338	-98 565	-578 214
1.695	0.983	0.376		-51 882	429 756	-91 401	-460 531
1.003	0.903	0.370		-66 637	540 627	-118.02	-561 999
1.627	1 218	0.251		-69 385	517.97	-97 351	-557 335
1.027	0.671	0.305		-59 326	446 414	-87 196	-466 801
1.735	0.681	0.289		-66 311	518 242	-107 53	-539 381
1.773	1.065	0.205		-61 097	487 972	-100.626	-521.032
1 992	0.58	0.3/9		-76 365	588 1/9	-118.97	-609 193
1.552	0.50	0.349		-88 244	666 439	-132 395	-700 727
1.502	1 1 2 6	0.242		-57 124	477 813	-103 274	-512 326
1.090	0.863	0.253		_71 / 87	545 662	-108 186	-574 236
1.730	0.805	0.231		-79 336	581.072	-109.993	-612 372
1.76	0.524	0.284		-41 508	/11 59	-101 858	-442.572
1 503	0.024	0.204		-57 266	451 474	-05 301	-469 775
1.575	0.545	0.275		-61 25	480 637	-102 879	-517 456
1.042	0.03	0.303		-56 593	452 21	-102.075	-470 512
1.612	0.923	0.255		-63 9/8	520.67	-112 219	-548.016
1.621	0.581	0.348		-84 085	594 762	-108 956	-618 809
1.671	0.964	0.340		-66 324	5/15 967	-119 103	-577 195
1.050	0.964	0.304		-63 801	502 525	-102 664	-529 877
1.007	0.81	0.372		-76 231	570 446	-108.966	-603 635
1.703	0.01	0.372		-52 136	432 482	-100.900	-452 756
1 810	0.990	0.211		-59 106	461.012	-94 592	-485 912
1.019	0.729	0.321		-67 523	514 522	-102 715	-540 431
1.570	1.162	0.273		-96 262	669.020	-11/ 29	-715 182
1.000	0.762	0.273		-62 829	513.054	-110.835	-537.068
1.755	1.054	0.272		8/ 131	596 179	107 356	631 284
1.019	0.761	0.279		61 583	180 /	105 702	508 102
1.008	0.701	0.24		-68 578	520 831	-103.702	-545 893
1.040	0.208	0.32		-79 352	561 129	_00 37/	-595 001
1.000	0.908	0.314		-19.332	58/ 156	-77.574	-595.091
1.003	0.317	0.202		-86 725	656 220	-131 602	-683 840
1.730	1 051	0.273		-50.723	117 066	-100 202	-003.049 -178 205
1.004	1.031	0.20		-52.54 52.649	447.500	01 779	-+ 10.303
1.00	0.809	0.311		-52.048	5/2 080	-91.770	-457.590
1./01	0.743	0.239		-/4	776 761	-103.210	-505.202
1.09	0.700	0.504		-7/.10/	120.701	-141.322	-159.559

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.65	5 1.192	0.317		-77.24	531.461	-89.362	-567.706
1.854	0.691	0.277		-57.202	441.581	-89.868	-460.262
1.568	0.947	0.258		-67.329	510.134	-100.653	-540.631
1.735	0.962	0.347		-88.183	635.518	-118.482	-666.689
1.822	0.925	0.321		-63.093	476.811	-93.279	-502.241
1.671	0.922	0.29		-60.002	474.105	-97.909	-501.574
1.79	0.936	0.359		-81.391	596.261	-112.527	-627.662
1.573	0.775	0.319		-50.132	421.624	-91.535	-450.245
1.618	0.828	0.317		-79.194	573.291	-108.377	-600.115
1.683	0.922	0.249		-60.434	451,949	-88.029	-475.587
1.821	0.751	0.289		-85 204	641.378	-127.85	-666.56
1.795	0.93	0.242		-66.77	521.824	-110.821	-541.118
1.843	0.575	0.214		-70.278	526.99	-105.744	-541 444
1 734	0.974	0.32		-73.065	536 302	-101 769	-565 736
1.73	0.847	0.352		-78 569	577 408	-109.034	-607 389
1 503	1 008	0.231		-73 687	576 146	-117 685	-613 205
1.505	07	0.251		-72 908	576 748	-122 058	-600 504
1.730	0.775	0.203		-78 292	594 128	-118 569	-622 272
1.754	0.775	0.252		-59 528	482 073	-101 167	-510 381
1.75-	0.834	0.330		-56 852	487 392	-108.882	-519.089
1.572	0.034	0.544		-68 523	483 74	-100.002	-498.068
1.721	0.472	0.20		-56 208	460 825	-102 909	-476.000
1.055	0.033	0.244		-74.61	5/3 02	-101.647	-569 128
1.70	0.630	0.202		72 536	533 70	103 647	552 820
1.627	0.079	0.290		68 037	521 555	-103.047	-532.829
1.050	0.098	0.270		65 116	520.565	-102.045	-546.741
1.772	0.743	0.203		-05.110	612 622	-113.090	-554.579
1.504	0.910	0.227		-00.045	614 440	-112.43	-040.430
1.095	0.08	0.233		-07.33	400 265	-111.700	-030.310
1.737	0.748	0.288		-03.339	490.203	-96.920	-514.081
1.//.	1 094	0.337		-00.550	403.270	-102.04	-510.080
1.493	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.298		-32.022	430.349	-102.049	-494.97
1.732	0.978	0.342		-33.024	442.944	-93.410	-472.030
1.578	0.72	0.312		-49.810	4//.12/ 510.652	-114.824	-512.271
1./9/	0.08	0.280		-05.805	510.055	-108.204	-332.343
1.84	0.944	0.41		-75.102	209.809	-115./55	-397.930
1.907	0.849	0.291		-03.742	4/7.954	-94.145	-490.539
1.737	1.155	0.281		-/9.410	589.185	-111.031	-027.700
1.702	0.710	0.295	-	70.496	521 000	-112.593	-088.473
1.843	0.81/	0.308		-/0.480	531.909	-106.097	-554.351
1./53	1.035	0.365	-	-100.575	654.410	-94.193	-085.14
1.65	0.827	0.257		-60.4//	510.186	-113.892	-535.623
1.754	0.92/	0.342		-90.01/	/10.39	-14/.4/3	-/48./5
1.722	2 1.021	0.26		-69.081	516./12	-99.797	-545.278
1.865	1.105	0.407		-86./68	643.166	-121.952	-681.906
1.86	0.881	0.333		-60.312	489.741	-103.119	-517.949
1.717	0.881	0.331		-72.028	567.777	-115.883	-602.161
1.45	0.836	0.259		-68.904	540.017	-112.287	-569.21
1.797	0.559	0.303		-91.303	675.024	-133.048	-694.391
1.753	0.661	0.292		-68.319	531.686	-109.365	-555.154
1.589	0.896	0.393		-90.336	665.037	-123.666	-708.636
1.739	0.637	0.326		-64.471	523.649	-113.886	-544.041
1.796	5 0.64	0.251		-74.379	600.936	-131.59	-620.239
1.691	0.968	0.308		-101.28	697.023	-119.187	-735.912
1.814	0.765	0.322		-76.021	607.67	-128.811	-635.225

$\alpha_6 (B_2O_3)$ α	(Li_2O)	α_3 (CaO) $\beta 0$		β1	β2	β3
1.666	0.986	0.286	-80.48	624.361	-127.093	-660.344
1.609	0.984	0.339	-68.041	515.971	-100.609	-548.61
1.721	0.663	0.232	-64.251	492.42	-100.548	-511.151
1.552	0.935	0.26	-63.285	509.218	-107.136	-540.897
1.693	0.686	0.307	-61.439	514,166	-113.539	-540.056
1.724	0.907	0.361	-77.149	509.831	-81.481	-537.564
1.657	0.995	0.208	-67.95	513,732	-101.761	-540.725
1.662	0.762	0.308	-66.623	524,118	-107.497	-552.969
1.661	0.538	0.305	-85.036	639.512	-126.942	-663.835
1 772	0.550	0.342	-61 756	486 049	-101 177	-508 194
1.7.72	1.097	0.25	-59 642	472 605	-98 143	-502 559
1 787	0.719	0.29	-68 798	528 897	-108 431	-549 497
1.623	0.736	0.309	-49 173	430.46	-97 654	-457 089
1.025	0.750	0.204	-72 9	578 268	-124 848	-596.664
1 744	0.077	0.438	-55 011	478 561	-106 683	-513.032
1.744	0.818	0.430	-73 781	505 324	-127 396	-623 404
1.71	0.010	0.20	-92 154	625 808	-107 199	-653 378
1.030	0.707	0.29	50 106	482,000	103 308	-055.578
1.749	0.001	0.352	-39.100	402.099 5/3.681	-105.508	-308.849
1.791	0.908	0.335	20 769	295 229	-119.303	-570.884
1.577	0.693	0.240	-39.708	122 245	-94.239	-413.90
1.30	0.004	0.219	-55.007	422.343	-91.44	-437.777
1.363	0.002	0.231	-03.40	493.141	-90.492	-324.782
1.727	0.079	0.301	-70.302	522.267	-114.579	-3/6.313
1./14	0.907	0.288	-00.304	532.207	-114.450	-557.811
1.000	0.993	0.338	-04.055	527.095	-111.843	-504.595
1.75	0.623	0.266	-04.153	511.34	-110.38	-528.593
1.645	1.151	0.279	-/4.150	567.998	-111.259	-607.753
1.804	0.883	0.308	-/3./02	567.675	-112.632	-600.497
1./01	0.613	0.322	-82.393	591.4	-111.385	-612.888
1.65	0.722	0.282	-61./21	500.264	-105.424	-527.29
1.655	0.682	0.289	-49.426	424.843	-96.333	-446.727
1.794	0.81	0.352	-69.84/	526.397	-101.621	-555.372
1./15	0.618	0.244	-57.281	484.082	-108.034	-506.354
1.698	0.849	0.287	-91.982	630.207	-111.258	-655.034
1.595	0.661	0.237	-66.689	517.932	-106.395	-541.988
1.806	0.686	0.193	-75.312	591.271	-128.013	-604.231
1.697	0.683	0.306	-75.235	572.265	-115.859	-595.35
1.623	0.682	0.343	-79.032	587.37	-113.275	-616.963
1.698	0.81	0.28	-58.178	469.455	-98.011	-497.435
1.602	1.202	0.199	-103.152	690.892	-117.482	-724.973
1.691	0.832	0.236	-68.916	522.891	-104.637	-547.268
1.784	0.754	0.345	-55.583	463.407	-102.015	-486.641
1.585	0.893	0.289	-61.976	498.949	-105.784	-527.247
1.733	0.774	0.281	-53.462	454.265	-101.114	-479.498
1.702	1.041	0.352	-70.569	559.179	-116.037	-592.954
1.603	0.658	0.255	-68.888	508.926	-98.566	-530.528
1.69	0.706	0.235	-59.353	483.869	-104.718	-506.175
1.784	0.762	0.28	-63.181	499.655	-104.069	-523.069
1.591	0.98	0.315	-54.899	470.667	-104.458	-503.08
1.692	0.909	0.208	-52.793	420.447	-87.121	-444.626
1.747	0.989	0.313	-53.465	421.3	-86.051	-447.52
1.812	0.699	0.253	-63.484	469.888	-91.722	-487.305
1.634	1.02	0.22	-57.946	473.757	-102.682	-500.003
1.786	0.769	0.317	-61.882	487.721	-101.694	-510.709

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.95	0.726	0.274		-67.309	509.054	-103.128	-523.621
1.679	0.697	0.364		-68.255	505.655	-97.793	-529.897
1.823	0.679	0.239		-72.281	525.49	-102.383	-540.263
1.797	0.601	0.256		-72.423	528.316	-101.001	-547.332
1.794	0.777	0.278		-55.975	444.125	-93.23	-464.317
1.704	0.874	0.213		-75.077	562.18	-109.983	-589.36
1.885	0.858	0.327		-70.291	537,745	-107.833	-561.682
1.537	0.987	0.211		-61.458	502.67	-106.009	-538.747
1.924	0.616	0.304		-60.571	465.889	-93.363	-484.706
1.738	0.77	0.367		-44.609	414.775	-98.283	-442.837
1.755	0.668	0.276		-74.233	544,939	-105.838	-564.022
1.719	0.761	0.289		-55.91	450.07	-94.851	-473.084
1.751	0.788	0.298		-68.956	523.83	-104.93	-546.681
1.751	0.678	0.292		-68.535	544,385	-114 579	-568,795
1.867	0.535	0.355		-60.024	474.14	-99 477	-491.107
1.714	0.834	0.35		-62.933	522,494	-114.099	-551.231
1.802	0.965	0.332		-59.326	474.238	-98.726	-502.03
1.538	0.745	0.332		-57 852	493 326	-108 882	-527.018
1.550	0.745	0.254		-76 169	573.066	-113 644	-596 479
1.741	0.713	0.234		-67 272	505 449	-97 351	-536 572
1 825	0.002	0.243		-61 492	496 334	-106 127	-518 566
1.629	0.751	0.274		-57 917	462 008	-98 735	-480 754
1.077	0.751	0.274		-78 077	595 379	-117 93/	-628 622
1.704	0.007	0.365		75 100	558 652	110 104	570.01
1.755	0.750	0.200		50 417	411 965	80.061	-379.91
1.620	0.709	0.285		50 792	411.905	101 877	508 804
1.039	0.872	0.325		-39.762	557 083	-101.877	-500.004
1.920	0.889	0.320		72 724	545 226	105 507	570.024
1.631	1.001	0.320		-13.124	520 256	-105.597	-570.024
1.074	1.001	0.294		-00.407	550 775	-100.049	-552.601
1.776	0.007	0.292		61 721	402 551	-110.201	-571.099
1.73	0.004	0.302		64.005	492.331	-104.741	-515.926
1.910	0.00	0.3		-04.095	461.391	-94.004	-303.103
1.522	0.030	0.219		-54.055	409.291	-100.831	-492.377
1.409	0.807	0.169		-54.065	430.87	-96.323	-477.032
1.069	0.672	0.274		-00.175	509 407	-96.211	-390.907
1.740	0.090	0.132		-70.093	152 62	-96.273	-524.045
1.709	0.90	0.313		-57.465	433.03	-93.021	-401.91
1.037	0.033	0.232		-10.204	162 226	-100.190	-362.009
1./11	0.928	0.202		-01.412	402.520	-92.198	-465.619
1.799	0.050	0.37		-50.59	434.09	-94.411	-4//.//1
1./3/	0.639	0.331		-/0.95/	420 767	-123.311	-028.020
1.032	0.038	0.23		-33.791	430.707	-09.320	-444.514
1.01/	0.992	0.100		-01.137	469.463	-103.093	-310.722
1.08/	0.09	0.272		-35.333	430.389	-96.961	-4/5.909
1.043	0.982	0.25		-05.27	542.880	-118.204	-5/0.0/1
1.791	0.81	0.289		-64.8/8	501.100	-120.198	-558.03
1./4/	0.94	0.365		-/4.203	391.100	-125.959	-023.902
1.662	0.857	0.29	-	104.803	003.897	-102.215	-090.18
1.58	0.872	0.288		-48.903	401.158	-112.235	-490.956
1.62	0.921	0.272		-//.46	586.619	-114.986	-621.213
1.581	0.94	0.282		-32.978	504.579	-96.88	-394.616
1.725	0.766	0.304		-68.396	525.274	-107.035	-548.33
1.68	0.73	0.293		-56.6	469.482	-102.582	-493.887
1.714	0.733	0.221		-36.987	363.484	-91.679	-383.54

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.716	0.552	0.268	-61.321	493.292	-107.23	-510.175
1.672	0.882	0.377	-63.365	530.325	-115.962	-562.79
1.906	0.727	0.287	-51.87	431.689	-94.902	-449.841
1.601	0.791	0.3	-49.311	402.308	-86.845	-424.55
1.635	0.786	0.291	-50.657	422.621	-93.657	-444.337
1.678	0.597	0.311	-66.219	526.229	-110.411	-550.356
1.708	0.803	0.347	-39.329	447.729	-120.126	-483.515
1.759	0.577	0.261	-68.877	511.398	-103.471	-523.704
1.682	0.8	0.29	-55.862	432.846	-88.343	-454.464
1.689	0.945	0.302	-58.347	481.208	-105.308	-507.114
1.466	0.877	0.295	-24.268	321.077	-94.083	-350.758
1.725	0.725	0.365	-63.951	492.949	-99.437	-517.702
1.723	0.518	0.207	-56.362	465.36	-104.142	-479.318
1 618	0 749	0.261	-77.053	596 588	-121 897	-625 73
1.57	0.787	0.201	-62.108	513,173	-112.745	-539.286
1 772	0.456	0.21	-107 598	699.072	-117 653	-708 871
1 644	0.150	0 229	-59.808	498.612	-107 727	-530.606
1 792	0.647	0.222	-75.087	580 447	-117 736	-605 135
1.772	0.047	0.202	-61 699	487 735	-102 778	-507.001
1.687	0.737	0.215	-56 355	467.735	-102.776	_489 325
1 854	0.744	0.23	-78 073	536.47	-90 947	-563 127
1.834	0.728	0.204	-80 395	608 908	-119.266	-640.913
1.024	0.073	0.277	-73 913	541.066	-102.459	-569.01
1.777	0.955	0.307	61.061	403 343	105 600	517 008
1.743	0.858	0.337	01.001	673 482	108.099	650 428
1.000	0.934	0.238	-91.100	560 656	-106.994	-030.428
1.474	0.813	0.193	-72.434	581 245	-114.003	-369.079
1.092	0.785	0.312	-19.331	550.10	-109.465	-008.973
1./12	0.907	0.343	-09.420	239.19	-119.431	-369.913
1.009	1.020	0.512	-04.034	484 024	-125.651	-0/9.039
1.00	0.75	0.200	-00.973	464.934	-102.799	-307.291
1.742	0.878	0.273	-07.903	129 520	-101.405	-340.735
1.007	0.747	0.144	-31.60/	438.339	-97.002	-401./91
1.701	0.962	0.255	-89.149	620.12 500.259	-109.285	-050.995
1.709	0.79	0.524	-01./0/	399.338	-115.554	-023.320
1./52	0.794	0.304	-55.957	452.424	-8/.0//	-455.898
1.40	1.175	0.508	-49.801	433.827	-101.902	-505.049
1.493	0.801	0.255	-08.52	517.976	-99.78	-351.//4
1.010	0.893	0.250	-32.233	430.000	-102.547	-4/2.013
1.847	0.805	0.355	-08.709	542.915	-112.541	-5/0.528
1.//1	0.934	0.209	-108.024	0/9./22	-104.183	-/01.94/
1./13	0.094	0.222	-01.241	495.498	-100.043	-515./51
1.595	0.908	0.21	-55.88	504.01	-119.872	-540.455
1.745	1.188	0.304	-66.886	515.526	-104.73	-544.95
1.785	0.981	0.399	-90.325	038	-124.135	-092.812
1.829	0.835	0.379	-60.133	4/6.6/6	-96.264	-506.542
1.836	0.608	0.174	-/2.997	486.913	-84.961	-496.024
1./26	0.902	0.259	-06.256	510.142	-104.28	-533.815
1.782	0.888	0.389	-/9.081	592.413	-115.289	-623.022
1.696	0.84	0.318	-53.685	420.057	-85.842	-443.861
1.653	0.85	0.274	-46.816	445.024	-109.129	-472.113
1.663	0.69	0.264	-51.479	429.182	-94.972	-449.766
1.8	0.726	0.296	-49.391	426.614	-95.015	-452.21
1.694	0.897	0.302	-56.228	468.088	-103.332	-494.067
1.663	1.022	0.356	-42.404	387.372	-90.873	-415.95

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.59	0.634	0.282		-28.879	360.709	-103.041	-387.975
1.615	0.528	0.256		-69.713	544.875	-113.114	-567.271
1.744	0.587	0.26		-55.492	423.616	-85.292	-440.464
1.873	0.539	0.27		-85.69	552.216	-89.887	-564.706
1.797	0.654	0.388		-83.96	574.778	-99.477	-598.534
1.797	0.849	0.28		-73.121	559.412	-113.524	-582,413
1.712	0.923	0.206		-99,109	623.339	-95.229	-646.106
1.666	1.039	0.256		-79.507	592.19	-112.725	-629,492
1.831	1.046	0.29		-63.433	500.193	-104.635	-523.886
1.574	1.056	0.177		-71.969	545.209	-108,446	-575,498
1.767	0.908	0.189		-82.072	574,774	-104.405	-596.809
2.016	0.585	0.399		-88.443	598.227	-105.575	-610.423
1.947	0.846	0.272		-62.214	478.93	-98.87	-494,984
1.791	0.672	0.285		-68.288	531.356	-110.981	-550.525
2.05	0.666	0.306		-55.236	431.928	-89.812	-446.562
1 638	0.957	0.288		-62 423	488 534	-101 145	-515.4
1.000	0.707	0.200		-41 262	391.036	-94 737	-414 146
1 575	0.579	0.313		-69 287	506 355	-95.016	-531 136
1.575	0.748	0.376		-54 797	439 393	-92 713	-459 972
1.683	0.558	0.236		-62 747	495 902	-105 451	-513 816
1.005	0.550	0.230		-62 201	547 684	-124 446	-589 414
1.505	0.563	0.24		-77 717	576 998	-113.84	-596.28
1.700	0.505	0.275		-52 376	/39 127	-96 535	-464 214
1.717	0.050	0.25		-62 978	497.614	-105 125	-518 634
1.003	0.7	0.305	_	-02.978	826 249	-105.125	-846 709
1.677	0.847	0.334		65 240	540.81	121 076	-640.709
1.001	0.852	0.131		51 250	423 131	-121.970	-301.183
1.749	1 263	0.317		87 203	622 035	-91.993	-445.575
1.012	0.016	0.203		57 170	482.033	108 046	-030.110
1.700	0.910	0.202		-57.179	463.032	-108.040	-308.304
1.772	0.73	0.347		-06.412	JIJ./12 464.014	-101.47	-550.578
1.552	0.708	0.269		-51.51	404.014	-109.372	-491.12
1.011	0.938	0.201		52 994	454.556	-99.334	-479.302
1.703	0.008	0.271		57.012	436.304	-105.445	-471.402
1.515	0.071	0.201		-57.915	444.303	-07.133	-4/1.021
1.762	0.93	0.323		-54.970	526 426	-101.757	-409.090
1.705	0.972	0.555		-09.055	556 012	-104.404	-330.002
1.044	0.755	0.22		-12.133	540.225	-112.937	-379.334
1.033	0.634	0.302		-//.430	522 462	-97.109	-362.23
1.005	0.07	0.220		-09.9	JZZ.403 472 508	-100.474	-349.337
1.390	0.992	0.227		-02.08	473.308	-95.746	-505.009
1./34	0.799	0.289		-42.788	402.095	-98.152	-425.03
1.01/	0.319	0.211		-02.124	4/1.313	-95.708	-463.379
1.504	1.424	0.324		-09./10	502 222	-90.318	-300.133
1./30	0.582	0.281		-12.200	302.333	-92.18	-317.207
1.729	0.542	0.288		-55.5//	449.344	-95.294	-4/0.4/1
1.4/	0.608	0.3		-54.021	443.037	-96.738	-466.564
1./66	0.698	0.273		-00.92	500.056	-98.294	-520.64
1.58/	0.66	0.294		-85.512	549.572	-135.456	-690.056
1.643	0.807	0.363		-69.0/8	548.572	-115.46	-5/8.465
1.945	0.661	0.325		-63.645	492.61	-101.734	-509.157
2.024	0.809	0.335	-	115.571	/19.76	-107.118	-742.019
1.61	0.924	0.319		-59.42	465.435	-94.542	-494.109
1.672	0.627	0.3		-67.387	518.098	-105.009	-540.833
1.842	0.852	0.215		-83.074	610.414	-119.328	-631.414

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.68	0.906	0.357	-69.311	548.71	-114.007	-579.716
1.811	0.747	0.304	-66.375	503.917	-101.077	-524.472
1.675	0.619	0.224	-71.454	552.714	-114.709	-572.315
1.852	0.894	0.403	-109.635	671.837	-95.512	-698.671
1.708	0.643	0.234	-78.307	572.408	-113.663	-587.866
1.856	0.635	0.324	-66.299	479.154	-91.014	-495.026
1.77	1.024	0.305	-69.675	521.678	-103.474	-546.409
1.951	0.729	0.349	-71.454	526.278	-101.114	-546.782
1.615	0.808	0.246	-72.549	573.387	-120.036	-602.928
1.867	0.879	0.352	-76.543	592,737	-119.157	-623.851
1.75	0.616	0.283	-45.974	407.187	-93,916	-427 324
1.834	0.649	0.315	-92.865	631.829	-115.799	-642.87
1.729	0.798	0.258	-64.376	491,954	-98.65	-516.315
1 649	0.837	0 249	-39.819	400 286	-100 649	-428 293
1 909	1 084	0.243	-67 973	526 592	-107.034	-555 112
1.505	0.929	0.213	-79 706	627 925	-128 855	-664.09
1 745	0.52	0.404	-49 668	425 33	-95 779	-447 472
1.745	0.074	0.251	-73 896	494 677	-82 593	-516 651
1.757	1 236	0.301	-83 604	607 162	-109.928	-653 809
1.552	0.557	0.301	81.057	601 453	-105.528	626 650
1.803	0.337	0.332	-81.037	572 311	-115.074	-020.039
1.645	0.373	0.318	-72.954	422.511	-110.082	441 727
1.091	0.743	0.283	-48.038	422.312	-96.347	-441.727
1.009	0.732	0.304	-38.873	494.439	-106.172	-522.745
1.743	0.002	0.200	-42.041	433.13	-109.917	-439.370
1.073	0.034	0.155	-92.823	520.12	-142.303	-731.993
1.735	0.785	0.312	-05./50	504 207	-110.065	-330.91
1.079	0.808	0.555	-64.309	594.507	-100.474	-025.521
1.00	0.987	0.323	-77.131	5(2,407	-127.084	-043.087
1.001	0.714	0.269	-75.558	502.497	-109.474	-388.318
1.908	0.041	0.55	-74.942	334.639	-101.140	-349.772
1.091	0.484	0.295	-50.727	431.329	-97.187	-450.521
1.082	0.95	0.275	-09./33	557.109	-110.703	-388.334
1./10	0.969	0.31	-/1.801	557.578	-112.772	-389.472
1.724	0.748	0.199	-09.38	530.39	-110.100	-572.88
1.500	1.1/4	0.245	-08.45	538.201	-109.845	-5/0.823
1.004	0.743	0.285	-91.378	645.022	-118.891	-009.802
1.629	0.618	0.346	-79.568	587.531	-112.609	-015.10/
1.083	0.878	0.304	-59.897	489.128	-105.008	-517.193
1.8/1	1.063	0.393	-87.156	589.005	-98.324	-621.651
1.589	1.018	0.253	-50.745	461.701	-90.035	-494.509
1.749	0.8	0.321	-64.588	517.875	-112.293	-538.834
1.855	0.634	0.204	-82.484	576.922	-106.686	-590./19
1.762	0.837	0.303	-62.702	477.93	-97.162	-497.753
1.586	0.776	0.347	-81.056	605.907	-11/.989	-638.079
1.806	0.746	0.247	-59.086	472.843	-100.962	-491.599
1.669	0.718	0.286	-23.583	365.066	-113.391	-395.367
1.623	0.684	0.314	-58.505	503.577	-112.748	-533.876
1.697	1.112	0.313	-101.35	631.5	-93.071	-661.23
1.848	0.762	0.336	-71.289	530.313	-101.845	-556.056
1.816	0.826	0.248	-64.462	494.77	-100.383	-516.061
1.485	1.024	0.308	-69.806	522.979	-99.971	-559.89
1.918	0.856	0.341	-84.458	608.907	-113.438	-635.664
1.809	0.698	0.279	-61.057	485.729	-102.217	-507.253
1.366	0.509	0.316	-57.142	530.396	-126.357	-567.271

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.689	0.699	0.317	•	-59.175	468.582	-97.776	-490.94
1.795	0.948	0.281		-75.464	556.09	-106.097	-584.835
1.751	0.894	0.295		-62.306	538.681	-124.033	-565.618
1.591	0.934	0.275		-80.98	580.392	-104.33	-617.765
1.632	0.625	0.299		-66.882	542.029	-118.787	-564.042
1.615	0.735	0.297		-72.726	544.852	-106.787	-571.87
1.851	0.8	0.348		-73.351	540.168	-103.678	-563.719
1.972	0.696	0.343		-68.213	503.361	-97.622	-521.874
1.633	0.516	0.187		-58.249	450.578	-94.252	-464.227
1.861	0.705	0.364		-66.393	504.543	-97.627	-532.268
1.597	0.781	0.238		-71.801	556.714	-114.473	-582,945
1.537	0.809	0.221		-76.413	573.929	-114.266	-601.311
1.829	0.871	0.348		-74.587	537.034	-98.534	-564.414
1.654	0.949	0.271		-54 079	485.075	-111.059	-520.82
1.807	0.664	0.261		-68.35	500.701	-96 482	-519.164
1 715	1 058	0.337		-91 147	663 563	-124 532	-701 382
1.733	0.957	0.316		-70.815	568.604	-118.57	-602.842
1 798	0.994	0 224		-53 478	435 67	-94 878	-455 828
1.639	0.699	0.221		-41 121	418 298	-105 395	-448 7
2 017	0.029	0.271	_1	110 255	694 518	-106.955	-712 79
1 695	1 109	0.274		-58 747	471 56	-99 293	-500.811
1.621	0.748	0.274		-68 476	533 473	-111 355	-556 909
1.021	0.828	0.290		-61 484	511 477	-112 121	-537 841
1.012	0.020	0.267		-64 027	500.696	-10/ 975	-522 401
1.703	0.69	0.207		-71 572	567.408	-118 831	-597 653
1.524	0.700	0.312		50 720	/30.01	101 168	457.055
1.304	0.507	0.187		-51 533	439.01	-86.063	-437.903
1.77	0.034	0.204		61 767	400.777	101 42	512 827
1.021	0.955	0.341		71 209	545 979	-101.42	-512.827
1.722	1 033	0.209		75 056	545.670	-110.752	580.084
1.055	0.521	0.203		66 742	502 758	-98.331	-530.984
1.039	0.331	0.323		58 603	106.730	-99.162	-524.201
1.070	0.802	0.275		72 652	490.24 500.2	-111.00	-520.854
1.770	0.903	0.340		64 108	504 402	-00.004	-321.47
1.099	0.829	0.293		52 524	124 208	-100.713	-520.272
1.044		0.333		53 513	424.390	-00.03	-432.810
1.030	0.72	0.233		55 502	439.766	-93.336	-401.330
1.727	0.873	0.212		65 805	4/0./05	-104.018	-490.294
1.035	0.628	0.309		67 741	520,220	-132.191	-020.742
1.939	0.028	0.324		60 259	320.229	-104.177	-342.132
1.709	0.002	0.308		76.02	557.02	-91.02	-464.209
1.70	0.93	0.347		-70.95	337.23	-105.108	-366.092
1.314	1.072	0.200		-38.044	439.303	-94.423	-466.007
1.023	0.861	0.331		64 091	493.124	-100.781	-529./11
1./02	0.801	0.257		-04.981	495.417	-102.237	-308.047
1.//1	0.772	0.278		-50.955	455.527	-97.455	-4/4.80
1.48	0./16	0.267		-05.453	509.212	-105.582	-534.085
1./14	0.812	0.276		-19.109	500 822	-11/.5/4	-019.885
1.6/5	0.86	0.361		-04.308	500.250	-104.303	-539.90/
1.5//	0.5/6	0.29		-82.231	589.559	-110.154	-614.281
1./94	1.018	0.337		-18.342	5/4.954	-107.255	-608.234
1.661	0.811	0.266		-45.369	464.892	-121.052	-491.989
1.568	0.678	0.286		-07.832	532.862	-112.778	-555./58
1.734	0.584	0.321		-84.769	583.651	-106.195	-598.477
1.853	0.961	0.299		-69.05	524.735	-104.574	-550.494

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.57	0.647	0.206	·	-50.532	428.27	· -97.79	-446.233
1.751	0.82	0.235		-69.865	499.512	-93.664	-518.846
1.661	0.579	0.234		-55.599	474.674	-107.458	-495.732
1.884	0.371	0.298		-77.175	525.088	-94.088	-533.489
1.599	0.783	0.212		-70.316	501.215	-93.132	-523.269
1.847	0.533	0.242		-83.169	613.432	-120.707	-629.696
1.676	0.552	0.339		-96.027	648.34	-113.479	-667.343
1.556	0.669	0.298		-80.751	624.613	-127.155	-656.341
1.68	0.956	0.279		-52.647	430,999	-92.488	-457,506
1.765	1.02	0.332		-67.289	480.96	-88.368	-506.099
1.715	0.565	0.269		-72.22	547.978	-109.043	-570.184
1.452	0.958	0.262		-80.138	570.334	-101.874	-608.458
1.812	0.597	0.358		-60.537	471.101	-96.133	-492.899
1.811	0.939	0.384		-89.585	670 454	-129.966	-708 366
1.85	0.691	0.241		-88.087	605.878	-109.887	-619.424
1 793	0.881	0.281		-66 951	515 673	-104 376	-539 714
1.75	1 173	0.261		-94 84	737.95	-146 949	-791 402
1 72	0.826	0.200		-64 126	482 913	-92 856	-509 795
1 791	0.020	0.275		-71 885	498 602	-88.076	-521 686
1.791	0.969	0.239		-61 085	474 942	-96 689	-502 975
1.545	0.708	0.201		-75 034	567 195	-114 642	-591.018
1 759	0.700	0.201		-80 30/	639 0/3	-119 542	-666 235
1.757	0.00	0.374		-07.374	519 981	_00 30/	-541 687
1.000	0.017	0.555		-57 273	530.824	-127 346	-564.002
1.515	1.026	0.198		-57.275	530.624	-127.340	-504.002
1.724	0.717	0.351		75 204	541 602	-113.423	-575.455
1.803	0.717	0.237		-75.294	207 771	-102.946	-338.008
1.700	1.026	0.24		-4/.14	156 127	-07.045	-421.094
1.020	1.030	0.21		-33.090	522.949	-99.9	-400.200
1.370	0.83	0.292		-07.039	JZJ.040 176 979	-100.403	-331.023
1.01	0.75	0.297		74.00	590 272	-00.434	-490.021
1.000	0.830	0.31		-/4.99	360.272	-119.74	-007.319
1.072	0.044	0.312		-30.049	569 029	-103.316	-400.794
1.09	0.824	0.546		-/4.30	400 521	-113.165	-394.746
1.700	1.000	0.437		70 565	499.331 549.000	-100.010	-332.033
1./53	0.983	0.555		-/0.303	348.099	-111.023	-3/9.8/1
1.009	0.028	0.185		-30.199	457.029	-92.103	-431.073
1.314	0.897	0.247		-07.000	400.25	-155.455	-705.005
1.363	0.902	0.298		-44.072	400.55 529 426	-94.023	-420.010
1.063	0.830	0.551		-/1.44/	549.054	-103./13	-300.341
1.910	0.908	0.555		-/1.903	162 692	-108.091	-370.431
1.073	0.939	0.238		-33.720	402.085	-105.087	-465.057
1.030	0.9	0.373		-52.010	414.490	-85.844	-441.897
1.309	0.059	0.298		-33.979	429.707	-87.218	-451.121
1.///	0.842	0.437		-82.833	032.005	-120.557	-003.070
1./65	0.838	0.247		-36.369	459.131	-98./16	-482.015
1.579	0.957	0.227		-/5.03	568.74	-113.994	-596./16
1./84	0.87	0.297		-82.068	625.83	-125.666	-654.394
1.986	0.829	0.33	-	-129.762	810.247	-126.386	-825.687
1.726	1.001	0.301		-56.447	463.441	-101.057	-489.262
1.528	1.105	0.355		-80.728	597.223	-114.628	-634.724
2.003	0.71	0.24		-78.722	546.903	-100.933	-557.506
1.695	0.811	0.224		-48.236	422.392	-96.507	-446.499
1.635	0.701	0.231		-35.253	398.673	-107.439	-427.542
1.869	0.682	0.308		-64.71	515.502	-108.618	-536.268

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.729	0.862	0.268	-58.357	468.151	-98.91	-492.377
1.734	0.632	0.259	-70.948	550.923	-113.671	-573.256
1.646	1.063	0.272	-78.494	610.112	-121.685	-652.245
1.758	1.032	0.387	-59.337	494.409	-103.828	-533.255
1.713	0.764	0.204	-58.714	474.321	-101.676	-496.465
1.868	0.626	0.257	-63.709	469.195	-91.166	-484.726
1.642	1.151	0.288	-70.646	526.339	-100.978	-560.861
1.862	0.83	0.313	-57.869	462.384	-96.461	-487.365
1.843	0.886	0.305	-63,196	510.055	-108.212	-535.665
1.601	0.981	0.312	-65.005	542.076	-117.923	-577.536
1.783	0.821	0.35	-79.534	608,808	-121.934	-638.34
1.776	0.903	0.357	-61.613	489.845	-102.405	-517.351
1.828	0.874	0.315	-106.456	695.178	-115.411	-716.932
1.729	0.907	0.324	-48.729	459.936	-111.182	-490.345
1.783	0.914	0.296	-66.727	503.755	-99.47	-528 954
1 756	0.81	0.282	-84 932	643 017	-127 467	-673 368
1.923	1.045	0.327	-64.48	493.94	-98.971	-519.88
1 68	0.668	0.229	-67 809	544 771	-118 361	-565 333
1 794	1 1 1 4	0.355	-65.2	497 868	-99 282	-526 921
1 845	0	0.243	-71 104	492 271	-91 137	-495 521
1 844	0.728	0.243	-72 966	518 343	-94 944	-539 847
1.644	1 193	0.277	-88.042	649 159	-123 55	-689 235
1.603	0.647	0.276	-56 179	460 208	-100 815	-480 259
1.002	0.047	0.510	-48 721	309.866	-86 647	-418 959
1.000	0.589	0.34	-40.721	534 214	-112 313	-557 139
1 808	0.007	0.301	51 123	173 626	111 400	506 823
1.000	0.917	0.339	-60.025	513 135	-113.066	-547 256
1.702	0.591	0.333	67 705	534 264	111 851	556 178
1.095	1.076	0.229	-07.795	670.002	-111.001	-330.178
1.370	0.644	0.20	-62.809	523.861	110 815	548 185
1.794	0.044	0.313	-03.040	611.056	102.080	-540.105
1.740	0.355	0.24	-93.902	473 518	-102.989	-019.133
1.890	0.801	0.312	-54.850	572.669	-107.202	-497.108
1.615	0.79	0.290	-06./14	555 783	-104.636	-540.555
1.015	0.377	0.208	-/1.1/9	501 557	102 202	-579.050
1.740	0.91	0.294	-04.19	685 525	-105.202	-327.903
1.005	0.379	0.313	-88.203	576.5	-141.541	-715.740
1./10	0.872	0.339	-63.904	441 779	-96.704	-390.170
1.038	0.795	0.291	-00.403	441.779	105 006	406.87
1.721	0.71	0.258	60 700	522 456	103.390	544 232
1.712	0.001	0.232	-09.709	175 367	100.624	-544.252
1.001	0.891	0.238	50 281	475.507	106.622	-504.157
1.721	0.788	0.243	-59.201	545 247	-100.022	-511.07
1.711	0.849	0.271	-70.312	575 633	-101.001	-307.943
1.640	0.809	0.234	-74.311	510 282	-116.65	-398.001
1.512	0.77	0.249	-00.237	410.202	-113.244	-330.093
1.595	0.824	0.27	-43.231	419.024	-104.071	-447.295
1.339	0.4/0	0.202	-10.123	156 675	-107.040	-390.331
1.911	0.578	0.298	-3/.4//	400.0/0	-90.903	-4/2.331
1.804	0.311	0.245	-70.908	510.025	-103.00/	-308.62
1.030	0.981	0.378	- /4.028	504 700	-91.227	-332.403
1.//0	0.749	0.2/1	-03.9/8	100.708	-104.1/2	-320.230
1./3	0.045	0.203	-35.237	422.271	-85.//0	-439.130
1.79	0.917	0.315	-59.992	4/9.821	-98.999	-509.918
1.793	0.772	0.514	-81.069	391./33	-115.8	-014.949

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.739	0.797	0.211	-62.844	496.896	-106.328	-515.638
1.818	1.115	0.316	-59.546	446.39	-85.132	-474.558
1.664	1.074	0.226	-116.388	767.598	-126.6	-802.583
1.732	0.906	0.312	-61.625	492.153	-102.426	-520.897
1.774	0.756	0.29	-72.243	546.466	-107.496	-572.396
1.762	0.891	0.35	-64.48	482.285	-93.745	-508.124
1.608	0.72	0.307	-38,117	420.094	-109.743	-456.246
1.727	0.815	0.286	-61.145	477.868	-99.098	-499.939
1.678	0.941	0.346	-60.989	481,945	-99.535	-510.366
1.811	0.903	0.255	-62.279	465.361	-90.805	-486.279
1.655	0.978	0.249	-71.075	530,994	-104.546	-557.34
1.673	0.925	0.204	-41.698	396.086	-98.714	-417.32
1.878	0.936	0.357	-77.624	586.975	-113.293	-622.228
1 999	0.738	0.365	-68 222	503 266	-95 779	-525 092
1.836	0.765	0.298	-75 348	566 309	-113 665	-587 167
1.630	0.812	0.290	-74 02	590.559	-123 926	-622 583
1 795	0.92	0.219	-70 589	540 782	-107 183	-572 048
1.859	0.52	0.422	-70.898	555 619	-113 912	-580 438
1.575	0.004	0.512	-70.020	116 939	-115.712	-466 732
1.575	0.7	0.27	75 165	570.949	115 443	506 586
1.714	0.877	0.310	-80 303	629 851	-129 684	-663 031
1.755	0.077	0.327	-50.505	513 181	106 533	536 715
1.092	0.77	0.277	-05.015	525.036	124 018	-558 881
1.062	0.793	0.237	-50.714	176 206	-124.910	-558.881
1.500	0.73	0.219	-00.233	576 607	-100.085	-498.031
1.709	0.923	0.394	-00.903	471 209	-100.039	-005.550
1.013	0.931	0.554	-39.008	4/1.396	-98.032	-490.082
1.380	0.890	0.264	-33.490	437.803	-94.30	-405.172
1.011	0.749	0.297	-32.82	440.391	-93.311	-400.33
1.811	0.528	0.239	-50.495	424.892	-94.200	-442./14
1.040	0.709	0.555	-//./0/	343.330	-97.323	-303.828
1./1/	0.755	0.344	-58.00	403.019	-90.329	-490.308
1./18	0.629	0.312	-02.327	511.405	-109.285	-538.099
1./1/	0.752	0.332	-/1.833	538.//1	-105./15	-302./18
1.59	0.858	0.382	-/3.488	547.87	-104.130	-382.335
1.033	0.049	0.259	-/1./5	352.381	-112.975	-5/5.910
1.08	0.921	0.321	-49.52	404.106	-80.280	-427.996
1.558	0.814	0.339	-67.795	522.305	-106.552	-550.049
1.054	0.854	0.298	-02.557	400.023	-89.994	-490.713
1.01	0.724	0.188	-/3.965	557.007	-112.606	-5/7.986
1.490	1.081	0.252	-55.308	4/5.31/	-106.285	-509.205
1.709	0.679	0.242	-79.155	555.806	-102.845	-5/3.893
1.578	0.647	0.333	-108.214	/84./6/	-148.942	-820.044
1.591	0.749	0.207	-64.796	498.834	-100.831	-522.739
1.626	0.9	0.203	-86.242	642.615	-125.843	-6/3.965
1.894	0.826	0.347	-93.915	641.704	-113.617	-662.793
1.515	0.961	0.249	-50.651	428.348	-93.768	-459.055
1.581	0.846	0.299	-60.847	488.81	-100.982	-520.946
1.696	0.974	0.301	-76.685	570.191	-110.069	-602.158
1.772	0.862	0.265	-66.911	512.554	-105.14	-533.848
1.695	1.052	0.328	-75.126	571.857	-111.117	-609.983
1.688	0.542	0.272	-65.931	509.652	-105.846	-526.866
1.781	0.607	0.273	-72.288	541.386	-106.182	-563.982
1.448	1.035	0.3	-82.181	590.329	-106.958	-630.585
1.737	0.793	0.285	-74.924	544.18	-102.733	-568.633

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.858	0.583	0.284	-47.356	435.694	-102.507	-459.195
1.633	0.978	0.183	-63.392	505.482	-106.694	-532.149
1.552	0.743	0.183	-62.237	493.696	-105.38	-513.816
1.597	0.952	0.236	-66.931	511.525	-101.957	-541.091
1.904	0.871	0.343	-88.158	604.513	-104.979	-630.511
1.979	0.921	0.443	-118.378	718.233	-99.994	-747.144
1.685	0.78	0.351	-63.325	530.473	-115.489	-562.516
1.817	1.22	0.315	-71.517	552.869	-110.883	-587.595
2.051	0.758	0.308	-71.405	503.924	-92.58	-520.391
1.785	0.785	0.27	-55.351	491.071	-115.331	-513.734
1.67	0.693	0.301	-99 78	651 408	-110 107	-666 885
1.791	0.895	0.317	-61.373	501.818	-107.05	-530,734
1 76	0.73	0.273	-60 767	482 256	-100 739	-504 741
1 762	0.496	0.279	-70 589	526.2	-103 975	-543 586
1.702	0.450	0.257	-67.94	528.002	-106.72	-558 748
1.044	0.736	0.211	60 138	528.002	106 253	551.003
1.705	0.730	0.310	-09.138	586 232	121 21	-551.095
1.004	0.002	0.252	-70	467 220	-121.21	-007.087
1./00	0.763	0.297	-01.63	201 426	-95.641	-465.010
1.932	0.331	0.302	-40.172	591.420	-00.943	-405.805
1.8/2	0.708	0.291	-88.939	546.072	-140.005	-705.005
1.88	1.022	0.32	-79.103	546.972	-95.800	-5/2.01/
1./96	0.861	0.382	-67.08	522.525	-105.834	-551./1/
1.65	0.76	0.243	-63.079	495.102	-103.608	-516.551
1.706	0.866	0.353	-78.213	572.883	-107.735	-604.157
1.761	0.847	0.323	-80.425	587.994	-111.958	-615.483
1.675	0.929	0.352	-79.767	613.197	-121.566	-651.764
1.624	0.868	0.233	-53.59	442.132	-96.536	-465.717
1.557	0.893	0.217	-71.343	567.169	-120.73	-594.799
1.885	0.972	0.34	-64.27	486.314	-96.323	-510.048
1.744	0.67	0.328	-65.908	498.236	-98.278	-521.04
1.767	1.009	0.37	-64.848	481.975	-91.048	-512.709
1.92	1.069	0.425	-111.661	717.112	-108.804	-755.375
1.667	0.767	0.158	-36.104	351.4	-89.058	-369.137
1.73	0.881	0.374	-74.748	570.087	-112.389	-602.167
1.772	0.623	0.317	-69.883	508.221	-96.248	-528.175
1.725	1.007	0.294	-60.826	466.016	-94.863	-489.338
1.596	0.805	0.275	-39.079	363.864	-86.329	-389.506
1.678	0.939	0.235	-34.315	381.484	-101.545	-412.022
1.807	0.696	0.263	-77.063	533.646	-97.578	-548.495
1.73	0.852	0.332	-68.206	528.642	-106.647	-557.586
1.769	1.025	0.329	-53.32	471.725	-109.54	-499.991
1.858	0.925	0.294	-84.424	568.884	-97.972	-589.04
1.677	0.935	0.229	-89.746	648.965	-121.245	-681.235
1.849	0.826	0.28	-79.796	583.994	-112.747	-604.265
1.792	0.965	0.445	-94.065	619.634	-99.053	-651.941
1.721	0.922	0.274	-59.386	479.257	-101.379	-506.505
1.632	1.014	0.292	-48.801	411.919	-92.09	-436.715
1 737	0.773	0.296	-75 522	542 492	-102.27	-564 644
1.757	0.883	0.270	-61 127	469 311	_93 987	-496 378
1 877	1 0/1	0.272	-69 393	533 10/	-105 104	-564 9
1.022	0.817	0.308	-62.093	483 301	-100.374	-506 511
1.4/9	0.017	0.219	-02.092	171 667	-100.374	-/03 780
1.000	0.710	0.303	-02.203	577 15	-20.030	-475.109 -546.878
1./04	0.779	0.302	-71.402 52.256	164 217	-70.020	-240.070
1.562	0.700	0.203	-33.336	404.21/	-100.893	-400.0/0

$\alpha_6 (B_2 O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0	β1	β2	β3
1.726	0.799	0.274	-73.727	554.425	-111.26	-576.333
1.739	0.763	0.292	-93.133	679.783	-129.769	-708.986
1.541	0.72	0.279	-83.443	586.194	-104.122	-616.531
1.702	1.022	0.306	-57.534	457.922	-95.672	-484.745
1.833	0.861	0.284	-75.274	544.203	-102.806	-567.53
1.617	0.963	0.266	-75.061	570.031	-111.995	-603.468
1.618	0.577	0.214	-64.964	501.083	-102.32	-521.666
1.849	0.706	0.222	-52.867	426.976	-91.807	-443.449
1.688	0.739	0.294	-64.964	472.252	-90.071	-491.517
1.657	0.874	0.32	-36.092	389.775	-102.506	-420.006
1.665	0.892	0.296	-39.896	410.95	-105.868	-439.911
1.717	0.965	0.287	-59.55	470,408	-98.857	-494.455
1.72	0.883	0.313	-87.856	585.609	-99.902	-607.524
1.503	0.772	0.148	-62.39	494 672	-102.334	-522.539
1.896	0.706	0.275	-106.41	657.591	-100.61	-668 759
1.846	0.647	0.278	-65 073	529 699	-113 775	-553 283
1 748	0.892	0.270	-65.608	496 529	-97 313	-522 807
1 795	0.092	0.299	-77 849	552 106	-102 425	-573 281
1.752	0.707	0.200	-60 474	469.074	-96 394	-489 888
1.757	1 027	0.302	-132 587	78/ 583	-105 / 96	-817 523
1.835	0.673	0.220	-78 531	596 119	-118.45	-622 625
1.055	0.679	0.320	-78.551	568 485	103 234	580 478
1.750	1 0.079	0.308	02 057	677 005	124 047	-389.478
1.715	0.728	0.249	47 225	441 276	-124.047	-/21.//1
1.034	0.720	0.333	-47.223	500.44	-105.900	-409.100
1.743	0.709	0.234	-03.099	421 022	-104.496	-520.996
1.035	0.929	0.501	-47.033	451.052	-100.798	-439.331
1.034	1.055	0.143	-36.969	403.017	-94.029	-494.7
1.850	0.025	0.289	-105.997	702.138	-120.293	-/1/.518
1.085	0.845	0.312	-64.621	502.331	-103.381	-527.795
1.811	0.817	0.302	-90.892	050.491	-124.971	-080.204
1.477	0.859	0.226	-42.336	395.763	-96.513	-420.96
1.853	0.624	0.266	-67.712	517.936	-106.396	-532.497
1.65/	0.907	0.321	-/1.4/4	528.25	-100.202	-559.027
1.488	0.545	0.244	-58.963	505.969	-116.185	-529.303
1.58/	0.83/	0.258	-/4.1/6	580.669	-120.007	-611.14
1.791	0.702	0.307	-69.439	535.322	-109.631	-556.681
1.722	0.925	0.378	-64./12	509.305	-103.655	-541.55
1.579	0.776	0.271	-67.275	559.171	-122.415	-590.585
1.552	1.14	0.301	-64.134	513.069	-105.819	-551.247
1.757	0.789	0.278	-61.35	494.69	-106.16	-517.148
1.779	0.869	0.335	-60.281	481.872	-101.502	-507.331
1.826	0.886	0.35	-92.624	702.649	-139.222	-/38.138
1.788	0.73	0.278	-57.504	463.453	-98.111	-484.9
1.712	1.004	0.282	-77.238	572.762	-108.254	-606.669
1.904	0.755	0.33	-79.4	577.623	-108.535	-602.481
1.658	0.903	0.395	-74.392	510.689	-86.818	-541.557
1.643	0.701	0.179	-55.974	466.652	-104.793	-485.265
1.788	0.878	0.151	-76.225	581.61	-120.977	-600.028
1.782	0.656	0.174	-60.2	457.943	-93.257	-472.988
1.458	0.993	0.177	-75.804	603.153	-126.336	-640.309
1.575	0.949	0.281	-70.511	514.513	-96.127	-544.915
1.695	0.956	0.3	-76.336	606.518	-125.905	-641.352
1.762	0.689	0.322	-56.068	464.651	-101.55	-487.537
1.748	0.666	0.344	-70.791	525.015	-100.132	-551.404

$\alpha_6 (B_2O_3)$	α_1 (Li ₂ O)	α ₃ (CaO)	β0		β1	β2	β3
1.782	0.744	0.332		-74.744	565.462	-113.129	-588.916
1.883	0.779	0.292		-64.512	517.818	-109.734	-540.317
1.787	0.917	0.33		-71.413	571.45	-120.209	-601.536
1.525	0.76	0.339		-82.118	620.016	-121.031	-656.54
1.646	0.697	0.267		-71.829	553.753	-113.004	-578.678
1.882	0.634	0.22		-68.937	536.295	-114.629	-548.219
1.804	0.882	0.396		-75.565	586.24	-117.239	-621.088
1.559	0.797	0.238		-62.273	487.053	-98.947	-516.351
1.738	0.702	0.228		-57.821	501.95	-117.157	-522.408
1.466	0.989	0.275		-74.226	576.009	-112.676	-622.395
1.627	0.874	0.219		-51.793	437.689	-97.925	-461.309
1.701	0.982	0.342		-82.416	588.351	-108.018	-618.507
1.773	0.736	0.31		-61.444	474.18	-96.54	-495.49
1.778	0.577	0.28		-57.531	467.034	-101.148	-484.863
1.827	0.61	0.244		-60.848	484.878	-105.398	-498.171
1.813	1.107	0.251		-81.058	581.57	-106.857	-611.349
1.82	0.79	0.241		-70.169	580.81	-129.864	-602.111
1.903	1.012	0.397		-84.1	614.234	-115.211	-646.757
1,703	1.023	0.34		-78.101	579.92	-108 404	-618.504
1.61	0.943	0.302		-57.372	482.778	-105,908	-514.365
1.68	0.839	0.234		-61.291	490.002	-104.086	-512.83
1.60	0.47	0.197		-63 158	483 446	-99 482	-498 789
1.81	0.686	0.197		-71.075	554.058	-115.314	-572.783
1 791	0.868	0.262		-79 855	585 931	-112 076	-612 17
1.666	1.053	0.359		-80.635	619.588	-123.709	-658 935
1.000	1.055	0.187		-72 207	535 377	-102 406	-568 866
1 903	0.787	0.348		-66.836	513 792	-103 153	-536 659
1.752	0.98	0.303		-54 311	436 748	-91 793	-462 209
1.732	0.973	0.348		-60 308	518 362	-115 641	-554 074
1.576	0.975	0.340		-67.87	500 928	-96 886	-522 714
1.61	0.019	0.256		-65 107	523 225	-112 137	-547 171
1 732	0.730	0.236		-62 813	483 988	-99 216	-502 596
1.648	0.738	0.200		-64 61	484 799	-96 418	-506 246
1.040	0.733	0.363		-98 852	686 824	-122 863	-711 416
1.540	1 078	0.305		-75 673	557 425	-104 642	-594 613
1.020	0 704	0.251		-70.961	539 345	-109.414	-558 558
1.697	0.704	0.231		-69.032	543.85	-113 332	-565 949
1.801	0.500	0.239		-60.951	490.038	-104 796	-508.69
1.607	0.891	0.319		-57 773	443 371	-87 299	-472 213
1.617	0.837	0.286		-73 232	535.01	-101 235	-560.076
1.666	0.673	0.186		-85 525	647 295	-130 209	-673 399
1 483	0.075	0.100		-72 882	583 349	-122 107	-621 663
1.405	1.066	0.202		-64 499	513 751	-107 497	-546 721
1.505	0.629	0.274		-45 472	425 039	-102 947	-449 464
1.575	0.022	0.184		-71 483	525 797	-102.947	-546 887
1.024	0.022	0.331		-64 212	475 854	-91 641	_/190 /18
1.700	0.728	0.319		-75 616	578 452	-116 599	-605 558
1.077	0.720	0.315		-64 235	484 472	_97 757	_499 957
1.701	0.781	0.505		-54 867	45/ 708	-98.063	-485 775
1.+20	0.9	0.233		-66 975	490 /05	-90.005	-518 152
1.00	0.754	0.31		-85 102	64/ 705	-120.604	-671 642
1.629	1 10	0.314		-111 25	704 688	-129.072	-733 582
1.094	0.733	0.215		-67.019	515 65	-109.320	-735.382
1.7	0.733	0.275		-68 000	520 665	-102.68	-5/3 03
1.704	0.095	0.209		00.777	520.005	-102.00	-545.75
$\alpha_{6} (B_{2}O_{3})$	α_1 (Li ₂ O)	α_3 (CaO) $\beta 0$		β1	β2	β3	
---------------------------	--------------------------------	----------------------------	---------	---------	----------	----------	
1.605	0.845	0.228	-82.187	592.908	-112.185	-618.095	
1.721	0.739	0.294	-69.486	517.683	-103.106	-537.442	
1.348	1.039	0.295	-80.246	612.241	-117.1	-663.644	
1.588	0.669	0.313	-54.024	435.392	-93.914	-455.495	
1.839	0.59	0.209	-59.081	466.484	-97.404	-483.269	
1.758	0.628	0.272	-82.51	626.034	-126.993	-647.731	
1.7	0.681	0.294	-53.598	447.47	-96.981	-472.766	
1.567	1.033	0.384	-30.994	389.525	-109.562	-430.354	

Table A.7. Variance covariance matrix for HLW Viscosity

Term Al₂O₃ B₂O₃ CaO Cr₂O₃ F LN₂O₃ Li₂O MnO Na₂O NiO P₂O₅ SiO₂ SrO TiO₂ UO₃ ZrO₂ Others Al2O3 0.050 -0.029 -0.022 -0.142 -0.082 0.000 -0.046 -0.001 -0.021 0.042 -0.053 0.005 -0.012 0.075 -0.002 0.026 0.009 $B_2O_3 \quad -0.029 \quad 0.060 \quad 0.000 \quad 0.052 \quad -0.097 \quad 0.060 \quad 0.012 \quad 0.015 \quad 0.005 \quad 0.009 \quad 0.001 \quad -0.011 \quad 0.009 \quad -0.090 \quad 0.005 \quad -0.014 \quad -0.006 \quad 0.012 \quad 0.015 \quad 0.005 \quad 0.001 \quad -0.011 \quad 0.009 \quad -0.090 \quad 0.005 \quad -0.014 \quad -0.006 \quad 0.012 \quad 0.015 \quad 0.005 \quad 0.001 \quad -0.011 \quad 0.009 \quad -0.090 \quad 0.005 \quad -0.014 \quad -0.006 \quad 0.012 \quad 0.015 \quad 0.005 \quad 0.001 \quad -0.011 \quad 0.009 \quad -0.090 \quad 0.005 \quad -0.014 \quad -0.006 \quad 0.012 \quad 0.015 \quad 0.005 \quad 0.001 \quad -0.011 \quad 0.009 \quad -0.090 \quad 0.005 \quad -0.014 \quad -0.006 \quad 0.012 \quad 0.015 \quad 0.005 \quad -0.011 \quad 0.009 \quad -0.090 \quad 0.005 \quad -0.014 \quad -0.006 \quad 0.012 \quad 0.015 \quad 0.005 \quad 0.001 \quad -0.011 \quad 0.009 \quad -0.090 \quad 0.005 \quad -0.014 \quad -0.006 \quad 0.012 \quad -0.011 \quad -0.011 \quad -0.001 \quad -0.011 \quad -0.001 \quad -0.011 \quad -0.005 \quad -0.014 \quad -0.006 \quad -0.014 \quad -0.006 \quad -0.012 \quad -0.011 \quad -0.001 \quad -0.011 \quad -0.001 \quad -0.$ CaO -0.022 0.000 0.137 -0.010 -0.308 0.006 0.024 0.011 0.010 -0.008 0.024 -0.005 0.010 0.028 0.006 -0.009 0.000 Cr2O3 -0.142 0.052 -0.010 9.590 -3.040 -0.019 0.057 -0.297 -0.022 -0.362 -0.520 -0.013 0.060 1.322 0.032 -0.011 -0.006 -0.082 -0.097 -0.308 -3.040 15.635 -0.703 -0.093 0.129 0.003 -0.862 -0.483 0.063 -0.012 -0.167 -0.300 -0.029 -0.046 F $LN_2O_3 \ 0.000 \ 0.060 \ 0.006 \ -0.019 \ -0.703 \ 0.613 \ 0.019 \ 0.083 \ 0.013 \ -0.272 \ 0.020 \ -0.032 \ 0.027 \ 0.116 \ -0.027 \ -0.019 \ 0.013 \ 0.013 \ 0.013 \ -0.272 \ 0.020 \ -0.032 \ 0.027 \ 0.116 \ -0.027 \ -0.019 \ 0.013 \ 0.013 \ -0.027 \ -0.019 \ 0.013 \ 0.013 \ -0.027 \ -0.019 \ 0.013 \ -0.027 \ -0.019 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.013 \ -0.027 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.013 \ -0.027 \ -0.013 \ -0.027 \ -0.019 \ -0.013 \ -0.027 \ -0.027 \ -0.013 \ -0.027 \ -0.$ Li₂O -0.046 0.012 0.024 0.057 -0.093 0.019 0.389 0.013 0.054 0.018 0.049 -0.040 -0.002 -0.149 0.024 -0.042 0.001 MnO -0.001 0.015 0.011 -0.297 0.129 0.083 0.013 0.406 -0.005 -0.100 0.052 -0.008 -0.104 0.045 -0.012 -0.016 -0.020 Na2O -0.021 0.005 0.010 -0.022 0.003 0.013 0.054 -0.005 0.057 -0.047 0.010 -0.014 0.009 -0.009 0.001 -0.020 -0.005 NiO 0.042 0.009 -0.008 -0.362 -0.862 -0.272 0.018 -0.100 -0.047 3.240 -0.460 -0.012 -0.003 0.092 0.100 -0.015 -0.013 P_2O_5 -0.053 0.001 0.024 -0.520 -0.483 0.020 0.049 0.052 0.010 -0.460 1.102 0.007 0.053 -0.634 0.005 -0.026 -0.047 SiO₂ 0.005 -0.011 -0.005 -0.013 0.063 -0.032 -0.040 -0.008 -0.014 -0.012 0.007 0.012 -0.001 0.027 0.003 -0.002 -0.008 -0.012 0.009 0.010 0.060 -0.012 0.027 -0.002 -0.104 0.009 -0.003 0.053 -0.001 0.312 0.273 -0.116 -0.018 -0.016 SrO TiO₂ 0.075 -0.090 0.028 1.322 -0.167 0.116 -0.149 0.045 -0.009 0.092 -0.634 0.027 0.273 11.097 -0.072 0.196 -0.228 UO₃ -0.002 0.005 0.006 0.032 -0.300 -0.027 0.024 -0.012 0.001 0.100 0.005 0.003 -0.116 -0.072 0.466 -0.050 -0.020 ZrO₂ 0.026 -0.014 -0.009 -0.011 -0.029 -0.019 -0.042 -0.016 -0.020 -0.015 -0.026 -0.002 -0.018 0.196 -0.050 0.132 0.011 Others 0.009 -0.006 0.000 -0.006 -0.046 0.013 0.001 -0.020 -0.005 -0.013 -0.047 -0.008 -0.016 -0.228 -0.020 0.011 0.037

Table A.8. Variance covariance matrix for HLW Sulfate

Term	Al_2O_3	B_2O_3	CaO	Cl	Fe ₂ O ₃	Li ₂ O	Na ₂ O	SiO ₂	V_2O_5	ZrO_2	Others
Al ₂ O ₃	0.367	-0.323	-0.118	2.196	0.130	-0.416	-0.173	0.081	0.136	0.119	-0.089
B_2O_3	-0.323	0.518	0.194	0.850	-0.195	-0.348	-0.016	-0.034	0.192	0.139	0.073
CaO	-0.118	0.194	0.636	10.628	-0.002	-0.087	-0.007	-0.059	0.099	0.065	-0.056
Cl	2.196	0.850	10.628	1352.916	-13.047	-10.925	6.204	1.304	12.125	11.862	-14.486
Fe ₂ O ₃	0.130	-0.195	-0.002	-13.047	0.584	0.455	-0.148	-0.088	0.217	-0.376	0.166
Li ₂ O	-0.416	-0.348	-0.087	-10.925	0.455	5.357	1.111	-0.587	-1.687	-0.949	0.077
Na ₂ O	-0.173	-0.016	-0.007	6.204	-0.148	1.111	0.680	-0.172	-0.313	-0.104	-0.162
SiO ₂	0.081	-0.034	-0.059	1.304	-0.088	-0.587	-0.172	0.113	0.021	0.072	-0.037
V_2O_5	0.136	0.192	0.099	12.125	0.217	-1.687	-0.313	0.021	4.207	0.548	-0.066
ZrO_2	0.119	0.139	0.065	11.862	-0.376	-0.949	-0.104	0.072	0.548	1.476	-0.182
Others	-0.089	0.073	-0.056	-14.486	0.166	0.077	-0.162	-0.037	-0.066	-0.182	0.312

Table A.9. Variance covariance matrix for LAW PCT

Term	Al_2O_3	B_2O_3	CaO	K_2O	Li ₂ O	MgO	Na ₂ O	P_2O_5	SiO_2	SnO_2	TiO ₂	ZrO_2	Others	$B_2O_3 \!\!\times\!\! B_2O_3$	$K_2O \times K_2O$	Al ₂ O ₃ ×Li ₂ O	CaO×Li ₂ O	Li ₂ O×Li ₂ O	B ₂ O ₃ ×Na ₂ O	K ₂ O×Na ₂ O	Li ₂ O×Na ₂ O	Na ₂ O×Na ₂ O
Al ₂ O ₃	1.013	-1.878	0.029	-0.770	-1.828	0.145	-1.113	0.230	0.225	0.230	0.509	0.126	0.164	8.083	-2.792	-20.321	3.973	18.004	1.894	6.609	15.842	2.058
B_2O_3	-1.878	43.732	-1.333	4.584	-16.823	-1.918	-2.995	-0.700	-2.186	-0.892	-3.374	-2.930	-1.659	-205.279	-8.583	0.909	-11.416	144.499	-29.551	-32.885	57.039	9.398
CaO	0.029	-1.333	0.643	-0.696	-2.126	0.164	-1.236	0.212	0.195	-0.012	0.584	0.315	0.166	5.506	2.965	5.268	-11.690	17.528	2.093	4.922	12.420	3.266
K_2O	-0.770	4.584	-0.696	16.850	2.239	-0.335	2.034	0.091	-0.361	-0.326	-3.111	-0.308	-0.801	-23.286	-188.420	-5.355	5.967	-1.464	-3.366	-41.545	-21.732	-5.720
Li ₂ O	-1.828	-16.823	-2.126	2.239	119.479	-3.045	32.741	-1.476	-3.577	-0.853	-2.707	-3.586	-2.344	71.149	-73.657	-98.258	-56.501	-868.660	-4.015	-2.388	-496.237	-84.031
MgO	0.145	-1.918	0.164	-0.335	-3.045	1.551	-1.239	-0.006	0.252	0.042	-0.001	0.332	0.133	7.525	-2.234	1.689	3.631	15.484	4.071	3.680	15.092	2.637
Na ₂ O	-1.113	-2.995	-1.236	2.034	32.741	-1.239	16.396	-1.496	-1.714	-1.015	-2.073	-1.643	-1.319	22.809	-10.069	-21.228	-9.123	-170.604	-21.903	-19.918	-172.718	-41.097
P_2O_5	0.230	-0.700	0.212	0.091	-1.476	-0.006	-1.496	4.717	0.152	-0.021	0.454	0.302	0.074	0.419	-9.639	-1.736	1.216	9.018	4.736	4.822	10.324	3.354
SiO ₂	0.225	-2.186	0.195	-0.361	-3.577	0.252	-1.714	0.152	0.388	0.150	0.248	0.328	0.170	8.692	2.024	2.860	1.426	20.205	4.507	2.856	18.164	3.900
SnO ₂	0.230	-0.892	-0.012	-0.326	-0.853	0.042	-1.015	-0.021	0.150	1.717	0.700	0.049	0.184	2.937	-13.892	-5.292	10.158	-7.227	4.190	4.932	4.261	1.544
TiO ₂	0.509	-3.374	0.584	-3.111	-2.707	-0.001	-2.073	0.454	0.248	0.700	4.661	0.853	0.112	19.031	23.306	4.040	1.856	1.648	1.840	12.511	21.653	6.343
ZrO_2	0.126	-2.930	0.315	-0.308	-3.586	0.332	-1.643	0.302	0.328	0.049	0.853	1.536	0.286	12.508	-4.379	6.631	-0.370	18.409	4.996	3.730	17.297	3.407
Others	0.164	-1.659	0.166	-0.801	-2.344	0.133	-1.319	0.074	0.170	0.184	0.112	0.286	0.587	8.338	4.200	2.760	3.027	6.130	1.760	5.020	13.772	3.676
$B_2O_3 \!\!\times\!\! B_2O_3$	8.083	-205.279	5.506	-23.286	71.149	7.525	22.809	0.419	8.692	2.937	19.031	12.508	8.338	1059.776	133.488	36.004	93.718	-713.695	31.511	137.960	-240.895	-40.476
$K_2O \times K_2O$	-2.792	-8.583	2.965	-188.420	-73.657	-2.234	-10.069	-9.639	2.024	-13.892	23.306	-4.379	4.200	133.488	4116.753	374.910	-42.274	307.374	-69.922	-131.780	337.169	69.399
Al ₂ O ₃ ×Li ₂ O	-20.321	0.909	5.268	-5.355	-98.258	1.689	-21.228	-1.736	2.860	-5.292	4.040	6.631	2.760	36.004	374.910	1185.957	-36.162	78.082	7.946	-70.077	128.766	82.532
CaO×Li ₂ O	3.973	-11.416	-11.690	5.967	-56.501	3.631	-9.123	1.216	1.426	10.158	1.856	-0.370	3.027	93.718	-42.274	-36.162	703.693	-77.100	11.620	-24.359	179.508	24.134
Li ₂ O×Li ₂ O	18.004	144.499	17.528	-1.464	-868.660	15.484	-170.604	9.018	20.205	-7.227	1.648	18.409	6.130	-713.695	307.374	78.082	-77.100	9033.259	-5.957	-80.419	3215.376	389.557
B ₂ O ₃ ×Na ₂ O	1.894	-29.551	2.093	-3.366	-4.015	4.071	-21.903	4.736	4.507	4.190	1.840	4.996	1.760	31.511	-69.922	7.946	11.620	-5.957	174.187	55.109	48.683	23.286
K ₂ O×Na ₂ O	6.609	-32.885	4.922	-41.545	-2.388	3.680	-19.918	4.822	2.856	4.932	12.511	3.730	5.020	137.960	-131.780	-70.077	-24.359	-80.419	55.109	318.414	130.617	44.618
Li ₂ O×Na ₂ O	15.842	57.039	12.420	-21.732	-496.237	15.092	-172.718	10.324	18.164	4.261	21.653	17.297	13.772	-240.895	337.169	128.766	179.508	3215.376	48.683	130.617	2463.752	455.719
Na ₂ O×Na ₂ O	2.058	9.398	3.266	-5.720	-84.031	2.637	-41.097	3.354	3.900	1.544	6.343	3.407	3.676	-40.476	69.399	82.532	24.134	389.557	23.286	44.618	455.719	114.386

Table A.10. Variance covariance matrix for LAW VHT

TiO₂ Term $Al_2O_3 = B_2O_3$ CaO Fe₂O₃ K₂O Li₂O Na₂O SiO_2 SnO_2 ZrO₂ Others CaO·CaO Li₂O·Li₂O K₂O·Na₂O Li₂O·Na₂O CaO·SiO₂ K₂O·K₂O Li₂O·SiO₂ Al₂O₃ 0.717 -44.230 5.183 1.344 -113.697 -2.794 -2.544 6.346 9.709 2.318 2.947 52.426 485.601 -17.296 280.223 103.449 90.626 107.165 12.746 3.351 -102.487 B_2O_3 0.717 10.804 -40.807 -6.163 0.816 0.844 -3.543 5.031 0.519 3.699 0.975 76.321 24.771 -63.066 81.805 32.649 23.555 -44.230 -40.807 617.498 -37.925 -29.592 312.852 -24.581 38.237 -43.182 -28.746 -12.014 -29.643 -795.889 -1514.524 116.451 -626.993 -1368.016 -280.083 -349.151 CaO 70.259 157.710 Fe₂O₃ 5.183 3.351 -37.925 12.907 -2.946-60.692 0.104 -3.717 7.813 -7.885 5.458 3.207 1.496 119.081 83.080 86.574 81.063 K_2O 1.344 -6.163 -29.592 -2.946 414.284 -676.601 -3.878 1.107 6.921 -33.011 10.215 0.378 3.334 2956.842 -1435.935 1635.399 95.804 -2562.025 694.912 -113.697 0.816 312.852 -60.692 -676.601 5618.445 66.341 20.844 -95.659 -150.804 -131.107 -71.612 -1081.111 -26761.881 3310.805 -12174.931 -673.883 178.923 -6401.233 Li₂O Na₂O -2.7940.844 -24.581 0.104 -3.878 66.341 10.316 -4.120 -2.805 3.097 -6.046 -1.016 47.683 -656.006 23.449 -246.026 45.487 71.573 34.983 SiO_2 -2.544 -3.543 38.237 -3.717 1.107 20.844 -4.120 4.451 -2.990 -6.681 -1.574 -2.421-52.270 111.298 -23.053 24.855 -84.717 -5.993 -82.258 7.813 10.163 SnO_2 6.346 5.031 -43.182 6.921 -95.659 -2.805-2.990 24.829 4.776 2.651 88.206 203.569 -31.182 201.058 96.865 -53.258 105.113 TiO₂ 9.709 0.519 -28.746 -7.885 -33.011 -150.804 3.097 -6.681 10.163 97.242 9.776 2.336 108.370 85.139 159.999 135.046 60.480 123.403 324.192 -25.555 ZrO_2 2.318 3.699 -12.014 5.458 10.215 -131.107 -6.046 -1.574 4.776 9.776 23.459 3.287 70.999 480.686 220.229 19.980 -143.365 162.848 Others 2.947 0.975 -29.643 3.207 0.378 -71.612 -1.016 -2.421 2.651 2.336 3.287 9.340 20.976 376.337 20.973 147.949 71.223 -48.571 72.778 47.683 -52.270 CaO×CaO 52.426 76.321 -795.889 70.259 3.334 -1081.111 88.206 108.370 70.999 20.976 4832.705 -6889.248 -160.396 131.261 759.346 1345.902 3164.818 Li₂O×Li₂O 485.601 -102.487 -1514.524 157.710 2956.842 -26761.881 -656.006 111.298 203.569 85.139 480.686 376.337 -6889.248 282652.050 -14440.190 81168.356 6545.537 -7117.321 7483.857 -160.396 -14440.190 8228.991 -9463.356 -318.559 -1617.293 -2859.521 K₂O×Na₂O -17.296 24.771 116.451 1.496 -1435.935 3310.805 23.449 -23.053 -31.182 159.999 -25.555 20.973 Li₂O×Na₂O 280.223 -63.066 -626.993 119.081 1635.399 -12174.931 -246.026 24.855 201.058 135.046 220.229 147.949 131.261 81168.356 -9463.356 40141.239 1899.236 3175.249 6950.847 -673.883 CaO×SiO₂ 103.449 81.805 -1368.016 83.080 95.804 45.487 -84.717 96.865 60.480 19.980 71.223 759.346 6545.537 -318.559 1899.236 3327.562 229.069 201.205 $K_2O \times K_2O$ 90.626 32.649 -280.083 86.574 -2562.025 178.923 71.573 -5.993 -53.258 123.403 -143.365 -48.571 1345.902 -7117.321 -1617.293 3175.249 229.069 53642.927 -465.127 Li₂O×SiO₂ 107.165 23.555 -349.151 81.063 694.912 -6401.233 34.983 -82.258 105.113 324.192 162.848 72.778 3164.818 7483.857 -2859.521 6950.847 201.205 -465.127 12262.160

Table A.11. Variance covariance matrix for LAW K-3 Neck Corrosion

Term	Al ₂ O ₃	B_2O_3	CaO	Cr ₂ O ₃	Fe ₂ O ₃	K ₂ O	Li ₂ O	MgO	Na ₂ O	P_2O_5	SiO ₂	SnO_2	TiO ₂	V_2O_5	ZnO	ZrO ₂	Others	MgO×MgO	Li ₂ O×P ₂ O ₅	$Na_2O \times P_2O_5$	$SiO_2 \times TiO_2$	Na ₂ O×V ₂ O ₅	V ₂ O ₅ ×ZnO	$SnO_2 \!\!\times \!\!Others$
Al ₂ O ₃	1.221	-0.076	-0.082	-0.432	-0.073	0.075	-1.502	0.440	-0.656	-2.757	0.158	0.098	-4.742	-1.721	-0.812	0.314	-0.210	-19.572	31.342	15.318	11.589	-0.516	58.617	-13.609
B_2O_3	-0.076	1.634	-0.467	-1.029	0.271	0.002	1.278	0.725	0.138	2.296	-0.417	0.963	-5.864	1.702	-0.572	0.429	-1.142	-30.149	-49.941	-8.486	15.447	-6.467	5.696	-10.627
CaO	-0.082	-0.467	1.236	1.175	0.344	0.196	-1.160	-2.311	-0.047	-2.030	0.053	-0.500	3.213	-4.153	-0.378	0.171	-0.488	72.567	41.805	10.578	-5.992	12.383	31.957	61.119
Cr ₂ O ₃	-0.432	-1.029	1.175	180.761	-0.767	-0.305	-5.593	9.739	-1.802	69.659	0.300	-45.505	32.021	-2.782	0.863	0.079	5.351	-212.958	-1323.156	-336.205	-58.112	58.465	-1015.350	2492.961
Fe ₂ O ₃	-0.073	0.271	0.344	-0.767	1.186	-0.391	-0.148	-0.617	-0.031	0.060	-0.218	2.578	0.517	0.472	0.030	0.791	-0.417	8.466	-0.755	-2.979	-0.301	-1.819	33.108	-127.001
K ₂ O	0.075	0.002	0.196	-0.305	-0.391	2.108	1.849	1.052	0.259	4.698	-0.265	-5.018	-5.856	-3.661	-0.474	0.220	0.293	-12.704	-71.499	-23.250	15.266	13.324	22.216	445.272
Li ₂ O	-1.502	1.278	-1.160	-5.593	-0.148	1.849	14.460	5.020	3.130	47.110	-1.705	0.612	-18.963	-2.385	0.081	-0.687	0.359	-162.457	-816.760	-215.811	48.105	20.218	-95.077	-13.422
MgO	0.440	0.725	-2.311	9.739	-0.617	1.052	5.020	86.686	-0.888	4.598	-1.238	9.502	-15.994	-1.703	-4.967	1.202	5.059	-2274.683	-124.851	-34.090	36.928	11.249	40.756	-481.985
Na ₂ O	-0.656	0.138	-0.047	-1.802	-0.031	0.259	3.130	-0.888	1.022	9.533	-0.414	0.784	-4.854	1.612	0.502	-0.557	-0.020	40.549	-146.074	-45.412	12.234	-2.293	-47.241	-77.863
P_2O_5	-2.757	2.296	-2.030	69.659	0.060	4.698	47.110	4.598	9.533	1812.446	-5.886	-56.662	-122.566	17.484	6.576	-1.182	3.621	-679.942	-32061.469	-8471.361	313.660	-35.652	-651.416	5159.127
SiO ₂	0.158	-0.417	0.053	0.300	-0.218	-0.265	-1.705	-1.238	-0.414	-5.886	0.412	-0.497	6.776	-1.564	-0.375	-0.290	0.008	27.046	94.924	26.834	-17.521	3.347	27.199	10.981
SnO_2	0.098	0.963	-0.500	-45.505	2.578	-5.018	0.612	9.502	0.784	-56.662	-0.497	80.005	-0.388	1.492	-1.509	-3.294	0.380	-129.183	1082.934	229.969	4.599	-20.404	578.491	-6561.121
TiO ₂	-4.742	-5.864	3.213	32.021	0.517	-5.856	-18.963	-15.994	-4.854	-122.566	6.776	-0.388	520.421	-58.847	-2.967	-11.124	-1.491	599.431	2025.336	531.455	-1283.638	191.836	506.500	-245.139
V_2O_5	-1.721	1.702	-4.153	-2.782	0.472	-3.661	-2.385	-1.703	1.612	17.484	-1.564	1.492	-58.847	257.351	18.625	-2.686	3.743	154.743	-318.970	-64.224	131.245	-528.481	-5083.903	329.670
ZnO	-0.812	-0.572	-0.378	0.863	0.030	-0.474	0.081	-4.967	0.502	6.576	-0.375	-1.509	-2.967	18.625	8.062	-0.739	1.908	84.784	-31.510	-36.443	5.454	-27.096	-445.202	202.217
ZrO_2	0.314	0.429	0.171	0.079	0.791	0.220	-0.687	1.202	-0.557	-1.182	-0.290	-3.294	-11.124	-2.686	-0.739	4.107	-0.885	-54.482	-9.059	16.961	27.173	-4.968	115.730	182.968
Others	-0.210	-1.142	-0.488	5.351	-0.417	0.293	0.359	5.059	-0.020	3.621	0.008	0.380	-1.491	3.743	1.908	-0.885	5.645	-107.767	-50.172	-27.485	3.880	-2.301	-108.316	9.504
MgO×MgO	-19.572	-30.149	72.567	-212.958	8.466	-12.704	-162.457	-2274.683	40.549	-679.942	27.046	-129.183	599.431	154.743	84.784	-54.482	-107.767	69459.709	12166.362	3361.524	-1396.751	-1132.268	2754.270	124.032
Li ₂ O×P ₂ O ₅	31.342	-49.941	41.805	-1323.156	-0.755	-71.499	-816.760	-124.851	-146.074	-32061.469	94.924	1082.934	2025.336	-318.970	-31.510	-9.059	-50.172	12166.362	593929.474	148142.141	-5190.311	991.599	10515.689	-97200.545
Na ₂ O×P ₂ O ₅	15.318	-8.486	10.578	-336.205	-2.979	-23.250	-215.811	-34.090	-45.412	-8471.361	26.834	229.969	531.455	-64.224	-36.443	16.961	-27.485	3361.524	148142.141	40472.588	-1359.444	93.011	2031.022	-21807.393
SiO ₂ ×TiO ₂	11.589	15.447	-5.992	-58.112	-0.301	15.266	48.105	36.928	12.234	313.660	-17.521	4.599	-1283.638	131.245	5.454	27.173	3.880	-1396.751	-5190.311	-1359.444	3192.268	-446.287	-962.560	460.891
Na ₂ O×V ₂ O ₅	-0.516	-6.467	12.383	58.465	-1.819	13.324	20.218	11.249	-2.293	-35.652	3.347	-20.404	191.836	-528.481	-27.096	-4.968	-2.301	-1132.268	991.599	93.011	-446.287	1902.362	4583.929	1098.163
V ₂ O ₅ ×ZnO	58.617	5.696	31.957	-1015.350	33.108	22.216	-95.077	40.756	-47.241	-651.416	27.199	578.491	506.500	-5083.903	-445.202	115.730	-108.316	2754.270	10515.689	2031.022	-962.560	4583.929	155520.756	-50357.458
$SnO_2 \times Others$	-13.609	-10.627	61.119	2492.961	-127.001	445.272	-13.422	-481.985	-77.863	5159.127	10.981	-6561.121	-245.139	329.670	202.217	182.968	9.504	124.032	-97200.545	-21807.393	460.891	1098.163	-50357.458	615219.982

Table A.12. Variance covariance matrix for LAW Sulfate

Term Al₂O₃ B₂O₃ CaO Cl Cr₂O₃ K₂O Li₂O Na₂O P₂O₅ SiO₂ $SnO_2 V_2O_5 ZrO_2$ Others Li₂OxLi₂O 0.228 -0.04 -0.05 -0.0483 -0.392 0.021 -0.063 -0.0754 0.0049 0.00593 0.044 -0.0206 0.02127 0.00042 Al₂O₃ -1.156 B_2O_3 -0.038 0.165 -0.03 -0.6468 -0.225 -0.003 -0.013 0.02625 0.0808 -0.0371 0.055 0.01019 0.01786 0.01591 0.9863 -0.045 -0.03 0.17 -0.2871 0.181 -0.037 -0.328 0.00582 0.1068 -0.01581 0.123 -0.0888 0.04882 0.03159 CaO 4.4471 Cl -0.048 -0.65 -0.29 19.6498 6.2705 0.824 3.6138 -0.5416-1.489 0.243986 -0.26 1.5278 -0.8566 -0.114 -58.96 -0.392 -0.23 0.181 6.27046 26.834 -0.365 -1.181 -0.3685 -0.996 0.231613 -3 -1.1946 -0.7319 -0.0177 0.8038 Cr_2O_3 K_2O 0.021 -0 -0.04 0.82383 -0.365 0.341 0.4523 0.01943 -0.18 -0.02992 -0.1 0.20537 -0.0582 0.03152 -4.118 Li₂O -0.063 -0.01 -0.33 3.61376 -1.181 0.452 5.1086 0.16011 -0.599 -0.11048 0.078 0.3264 -0.1426 0.14457 -81.36 Na₂O $-0.075 \ 0.026 \ 0.006 \ -0.5416 \ -0.369 \ \ 0.019 \ \ 0.1601 \ \ 0.09633 \ -9 \times 10^{-04} \ -0.03053$ -0 -0.0406 -0.0434 0.01919 0.9899 P_2O_5 0.0049 0.081 0.107 -1.4887 -0.996 -0.18 -0.599 -0.0009 2.7017 -0.03085 0.215 -0.2128 0.21784 -0.0254 8.9113 0.0059 -0.04 -0.02 0.24399 0.2316 -0.03 -0.11 -0.0305 -0.031 0.038062 -0.05 -0.0134 -0.0591 -0.0445 SiO₂ 0.2602 SnO₂ 0.0443 0.055 0.123 -0.2615 -2.998 -0.099 0.0777 -0.0022 0.2146 -0.05104 1.279 0.27211 -0.0925 0.08384 -0.689 -0.021 0.01 -0.09 1.5278 -1.195 0.205 0.3264 -0.0406 -0.213 -0.01344 0.272 1.04019 -0.023 0.04337 -2.685 V_2O_5 ZrO_2 0.0213 0.018 0.049 -0.8566 -0.732 -0.058 -0.143 -0.0434 0.2178 -0.05906 -0.09 -0.023 0.68582 0.07489 0.5904 0.0004 0.016 0.032 -0.114 -0.018 0.032 0.1446 0.01919 -0.025 -0.04455 0.084 0.04337 0.07489 0.0931 Others -1.661 Li2OxLi2O -1.156 0.986 4.447 -58.956 0.8038 -4.118 -81.36 0.9899 8.9113 0.260196 -0.69 -2.6847 0.5904 -1.6606 1623.9

Table A.13. Variance covariance matrix for LAW Viscosity

Term Al₂O₃ B₂O₃ CaO Fe₂O₃ K₂O Li₂O MgO Na₂O P₂O₅ SiO₂ SiO₂ TiO₂ V₂O₅ ZnO ZrO₂ Others Al₂O₃ 0.119 -0.017 -0.014 0.006 -0.006 -0.083 -0.029 -0.041 0.030 0.006 0.024 0.036 0.000 -0.003 -0.017 -0.030 B₂O₃ -0.017 0.138 -0.002 0.013 0.001 -0.029 -0.017 -0.008 -0.014 -0.023 0.044 0.029 -0.023 -0.016 -0.006 -0.003 CaO $-0.014 - 0.002 \quad 0.064 \quad 0.008 \quad 0.012 - 0.013 \quad 0.019 \quad 0.010 \quad 0.019 - 0.010 \quad 0.018 \quad 0.034 - 0.025 \quad 0.001 \quad 0.001 - 0.033 \quad 0.014 - 0.025 \quad 0.001 \quad 0.001 - 0.033 \quad 0.014 - 0.025 \quad 0.001 \quad 0.001 - 0.033 \quad 0.014 - 0.025 \quad 0.001 \quad 0.001 - 0.033 \quad 0.014 - 0.025 \quad 0.001 \quad 0.001 - 0.033 \quad 0.014 - 0.025 \quad 0.001 \quad 0.001 - 0.033 \quad 0.014 - 0.025 \quad 0.001 \quad 0.001 - 0.033 \quad 0.014 - 0.025 \quad 0.001 \quad 0.001 - 0.033 \quad 0.014 - 0.025 \quad 0.001 \quad 0.001 \quad 0.014 - 0.025 \quad 0.001 \quad 0.001 \quad 0.001 \quad 0.014 - 0.025 \quad 0.001 \quad 0.001 \quad 0.001 \quad 0.001 \quad 0.014 - 0.025 \quad 0.001 \quad 0.0$ Fe₂O₃ 0.006 0.013 0.008 0.132 -0.009 -0.010 -0.011 -0.002 -0.007 -0.019 0.045 -0.114 0.017 0.030 0.020 0.102 K_2O $-0.006 \quad 0.001 \quad 0.012 \quad -0.009 \quad 0.229 \quad 0.075 \quad 0.028 \quad 0.017 \quad 0.058 \quad -0.010 \quad -0.107 \quad -0.094 \quad -0.008 \quad 0.001 \quad -0.054 \quad 0.030 \quad -0.054 \quad 0.030 \quad -0.054 \quad 0.030 \quad -0.054 \quad 0.030 \quad -0.054 \quad -0.030 \quad -0.054 \quad -0.0$ Li₂O -0.083 -0.029 -0.013 -0.010 0.075 0.616 -0.006 0.153 0.052 -0.048 -0.152 -0.013 -0.162 -0.018 -0.043 -0.096 -0.029 -0.017 0.019 -0.011 0.028 -0.006 0.568 0.033 -0.049 -0.022 -0.063 -0.178 -0.069 0.009 -0.023 0.043 MgO Na₂O -0.041 -0.008 0.010 -0.002 0.017 0.153 0.033 0.059 0.005 -0.017 -0.044 -0.017 -0.048 0.006 -0.030 -0.059 0.030 -0.014 0.019 -0.007 0.058 0.052 -0.049 0.005 1.714 -0.012 -0.110 -0.013 -0.047 -0.010 0.072 -0.298 P_2O_5 SiO₂ 0.006 -0.023 -0.010 -0.019 -0.010 -0.048 -0.022 -0.017 -0.012 0.022 -0.002 -0.022 0.019 -0.045 -0.008 -0.022 SnO₂ 0.024 0.044 0.018 0.045 -0.107 -0.152 -0.063 -0.044 -0.110 -0.002 0.463 0.122 -0.116 0.043 -0.007 0.007 TiO₂ 0.036 0.029 0.034 -0.114 -0.094 -0.013 -0.178 -0.017 -0.013 -0.022 0.122 1.025 0.109 -0.003 0.111 -0.093 0.000 -0.023 -0.025 0.017 -0.008 -0.162 -0.069 -0.048 -0.047 0.019 -0.116 0.109 0.653 0.048 0.059 -0.095 V_2O_5 ZnO $-0.003 - 0.016 \quad 0.001 \quad 0.030 \quad 0.001 - 0.018 \quad 0.009 \quad 0.006 - 0.010 - 0.045 \quad 0.043 - 0.003 \quad 0.048 \quad 0.567 - 0.003 \quad 0.051 - 0.003 \quad 0.0$ -0.017 -0.006 0.001 0.020 -0.054 -0.043 -0.023 -0.030 0.072 -0.008 -0.007 0.111 0.059 -0.003 0.295 -0.018 ZrO_2 Others -0.030 -0.003 -0.033 0.102 0.030 -0.096 0.043 -0.059 -0.298 -0.022 0.007 -0.093 -0.095 0.051 -0.018 1.716

Appendix B

Table B.1 Analytical HLW RSDs derived from Dodd and Kaiser (2006)

Comp	Analytical RSD	Comp	Analytical RSD	Comp	Analytical RSD
Ac	22.5%	Mn	5.0%	Ti	10.8%
Ag	6.6%	Mo	15.0%	Tl	15.0%
Al	5.0%	Na	5.0%	U	14.1%
Am	22.5%	Nb	25.0%	V	25.0%
As	30.0%	Nd	6.6%	W	20.0%
В	15.0%	Ni	5.0%	Y	24.2%
Ba	10.0%	Np	22.5%	Zn	9.4%
Be	20.0%	Р	10.0%	Zr	14.6%
Bi	25.0%	Pa	22.5%		
Ca	5.0%	Pb	10.0%		
Cd	15.0%	Pd	25.0%		
Ce	8.9%	Pr	10.0%		
Cl	15.0%	Pu	22.5%		
Cm	22.5%	Ra	15.0%		
Co	15.0%	Rb	30.0%		
Cr	10.0%	Rh	20.0%		
Cs	30.0%	Ru	45.4%		
Cu	14.8%	S	15.0%		
Eu	50.0%	Sb	25.0%		
F	15.0%	Se	50.0%		
Fe	5.0%	Si	5.0%		
Gd	15.0%	Sm	15.0%		
Hg	20.0%	Sn	15.0%		
Ι	15.0%	Sr	6.5%		
K	5.0%	Та	13.2%		
La	11.0%	Tc	22.5%		
Li	9.9%	Te	50.0%		
Mg	13.6%	Th	15.0%		

Rad	Analytical RSD	Rad	Analytical RSD
59Ni	22.5%	233U	22.5%
60Co	22.5%	234U	22.5%
63Ni	22.5%	235U	22.5%
79Se	22.5%	236U	22.5%
90Sr	22.5%	237Np	22.5%
90Y	22.5%	238Pu	22.5%
93mNb	22.5%	238U	22.5%
93Zr	22.5%	239Pu	22.5%
99Tc	22.5%	240Pu	22.5%
106Ru	22.5%	241Am	22.5%
113mCd	22.5%	241Pu	22.5%
125Sb	22.5%	242Cm	22.5%
126Sn	22.5%	242Pu	22.5%
129I	22.5%	243Am	22.5%
134Cs	22.5%	243Cm	22.5%
137mBa	22.5%	244Cm	22.5%
137Cs	22.5%		
151Sm	22.5%		
152Eu	22.5%		
154Eu	22.5%		
155Eu	22.5%		
226Ra	22.5%		
227Ac	22.5%		
228Ra	22.5%		
229Th	22.5%		
231Pa	22.5%		
232Th	22.5%		
232U	22.5%		

Table B.2 Analytical LAW RSDs derived from Dodd and Kaiser (2005)

Comp	CRV aRSD	Comp	CRV aRSD	Comp	CRV aRSD
Ac	25.0%	Mn	15.0%	Ti	25.0%
Ag	20.0%	Mo	10.0%	Tl	25.0%
Al	5.0%	Na	10.0%	U	5.0%
Am	25.0%	Nb	15.0%	V	15.0%
As	25.0%	Nd	15.0%	W	15.0%
В	25.0%	Ni	10.0%	Y	25.0%
Ba	15.0%	Np	25.0%	Zn	25.0%
Be	25.0%	Р	10.0%	Zr	15.0%
Bi	15.0%	Pa	25.0%		
Ca	5.0%	Pb	15.0%		
Cd	10.0%	Pd	15.0%		
Ce	10.0%	Pr	15.0%		
Cl	10.0%	Pu	25.0%		
Cm	25.0%	Ra	15.0%		
Co	25.0%	Rb	25.0%		
Cr	5.0%	Rh	20.0%		
Cs	15.0%	Ru	25.0%		
Cu	25.0%	S	5.0%		
Eu	10.0%	Sb	25.0%		
F	10.0%	Se	25.0%		
Fe	5.0%	Si	5.0%		
Gd	15.0%	Sm	10.0%		
Hg	10.0%	Sn	25.0%		
Ι	10.0%	Sr	5.0%		
K	5.0%	Та	15.0%		
La	10.0%	Tc	25.0%		
Li	15.0%	Те	25.0%		
Mg	25.0%	Th	25.0%		

Appendix C

Minimum, maximum, and most likely concentration of components in each GFC (based on values reported in Table A-4 of Vienna and Kim 2014).

Min	Kyanite	Borax	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr ₂ O ₃ ('e)	Silica	Rutile	Zincite	Zircon	V_2O_5 (b)	SnO ₂ (d)
Ac_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ag ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Al ₂ O ₃	0.54	0	0	0.0013	0.0099	0	0.0003	0	0.0004	0	0	0.001	0	0
Am_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
As ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B_2O_3	0	0.369	0.5625	0	0	0	0	0	0	0	0	0	0	0
BaO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BeO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CaO	0	0	0	0.4477	0	0	0	0	0	0	0	0	0	0
CdO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ce ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cl	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cm_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CoO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr_2O_3	0	0	0	0	0	0	0	0.985	0	0	0	0	0	0
Cs ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CuO	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Min	Kyanite	Borax	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr ₂ O ₃ ('e)	Silica	Rutile	Zincite	Zircon	V_2O_5 (b)	SnO ₂ (d)
Eu_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fe ₂ O ₃	0.0042	0	0	0.0029	0.9615	0	0.0468	0	0.0001	0	0	0.0006	0	0
Gd_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HgO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ι	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
La_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Li ₂ O	0	0	0	0	0	0.4	0	0	0	0	0	0	0	0
MgO	0	0	0	0	0.0001	0	0.4634	0	0	0	0	0	0	0
MnO	0	0	0	0.0009	0.0003	0	0	0	0	0	0	0	0	0
MoO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Na ₂ O	0	0.164	0	0	0	0	0	0	0	0	0	0	0	0
Nb_2O_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nd_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NiO	0	0	0	0	0	0	0.0022	0	0	0	0	0	0	0
NpO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P_2O_5	0	0	0	0	0.0018	0	0	0	0	0	0	0	0	0
Pa ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PbO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PdO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pr_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PuO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RaO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rb ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rh ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Min	Kyanite	Borax	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr ₂ O ₃ ('e)	Silica	Rutile	Zincite	Zircon	V ₂ O ₅ (b)	SnO ₂ (d)
RuO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SO ₃	0	0	0	0	0.0006	0	0	0	0	0	0	0	0	0
Sb_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SeO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SiO ₂	0.39	0	0	0.48	0.0084	0	0.4085	0	0.992	0	0	0.32	0	0
Sm_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SnO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0.999
SrO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ta ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tc ₂ O ₇	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TeO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ThO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TiO ₂	0.005	0	0	0.0001	0	0	0	0	0	0.928	0	0.0007	0	0
Tl ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UO ₃	0	0	0	0	0	0	0	0	0	0	0	0.0003	0	0
V_2O_5	0	0	0	0	0	0	0	0	0	0	0	0	0.992	0
WO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ZnO	0	0	0	0	0	0	0	0	0	0	0.993	0	0	0
ZrO ₂	0	0	0	0	0	0	0	0	0	0	0	0.65	0	0

Max	Kyanite	Borax	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr ₂ O ₃ (e)	Silica	Rutile	Zincite	Zircon	V_2O_5 ©	SnO ₂ (d)
Ac_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ag ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Al ₂ O ₃	0.6	0	0	0.0027	0.0201	0	0.0078	0	0.004	0.0075	0	0.004	0	0
Am_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
As ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B_2O_3	0	0.382	0.568	0	0	0	0	0	0	0	0	0	0	0
BaO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BeO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00017
CaO	0.0004	0	0	0.5023	0.0008	0.022	0.0003	0	0.0002	0	0	0	0	0
CdO	0	0	0	0	0	0	0	0	0	0	0.0002	0	0	0
Ce_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cl	0	0.0007	0	0	0	0.0001	0	0	0	0	0	0	0	0
Cm_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CoO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr_2O_3	0	0	0	0	0	0.0002	0.0078	0.991	0	0.0075	0	0	0	0
Cs ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CuO	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Max	Kyanite	Borax	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr ₂ O ₃ ('e)	Silica	Rutile	Zincite	Zircon	V2O5 ©	SnO ₂ (d)
Eu ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fe ₂ O ₃	0.01	0.0001	0	0.0051	0.9785	0.0001	0.1068	0.0003	0.0004	0.025	0.0001	0.0009	0.00057189	0.00021
Gd_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HgO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ι	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K ₂ O	0.0007	0	0	0	0	0.0001	0	0	0.0002	0	0	0	0.00018069	0
La ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Li ₂ O	0	0	0	0	0	0.4044	0	0	0	0	0	0	0	0
MgO	0.0004	0	0	0.001	0.0037	0.0002	0.4934	0	0.0001	0	0	0	0	0
MnO	0	0	0	0.0011	0.0039	0	0	0	0	0	0.0001	0	0	0
MoO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Na ₂ O	0.0042	0.17	0	0	0	0.0011	0.0004	0	0.0002	0	0	0	0.00033699	0
Nb ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nd_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NiO	0	0	0	0	0	0	0.0052	0	0	0	0	0	0	0
NpO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P_2O_5	0	0	0	0	0.0054	0	0	0	0	0.0007	0	0	0	0
Pa ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PbO	0	0	0	0	0	0	0	0	0	0	0.0001	0	0	0.00054
PdO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pr ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PuO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RaO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rb ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rh ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Max	Kyanite	Borax	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr ₂ O ₃ ('e)	Silica	Rutile	Zincite	Zircon	V2O5 ©	SnO ₂ (d)
RuO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SO ₃	0	0.0005	0.0003	0	0.0009	0.0004	0	0	0	0.0007	0	0	0	0
Sb_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00018
SeO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SiO ₂	0.42	0	0	0.53	0.0186	0	0.4385	0	0.999	0.025	0	0.325	0.00021393	0
Sm_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SnO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0.9999
SrO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ta ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tc_2O_7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TeO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ThO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TiO ₂	0.016	0	0	0.0003	0	0	0	0	0.0005	0.936	0	0.0014	0	0
Tl ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UO ₃	0	0	0	0	0	0	0	0	0	0	0	0.0008	0	0
V_2O_5	0	0	0	0	0	0	0	0	0	0.0075	0	0	0.996	0
WO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ZnO	0	0	0	0	0	0	0	0	0	0	0.9999	0	0	0
ZrO_2	0	0	0	0	0	0	0	0	0	0.025	0	0.67	0	0

Most likely	Kyanite	Borax	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr ₂ O ₃ ('e)	Silica	Rutile	Zincite	Zircon	$V_2O_5(a)$	SnO ₂ (d)
Ac ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ag ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Al ₂ O ₃	0.5703	0	0	0.002	0.015	0	0.0019	0	0.0014	0.005	0	0.0025	0	0
Am ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
As ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B ₂ O ₃	0	0.375	0.5652	0	0	0	0	0	0	0	0	0	0	0
BaO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BeO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bi ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CaO	0.0003	0	0	0.475	0.0004	0	0.0002	0	0.0001	0	0	0	0	0
CdO	0	0	0	0	0	0	0	0	0	0	0.0001	0	0	0
Ce ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cl	0	0	0	0	0	0.0001	0	0	0	0	0	0	0	0
Cm ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CoO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cr ₂ O ₃	0	0	0	0	0	0.0001	0.0013	0.991	0	0.0016	0	0	0	0
Cs ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CuO	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Most likely	Kyanite	Borax	Boric Acid	Wollastonite	Hematite	Li Carbonate	Olivine	Cr ₂ O ₃ ('e)	Silica	Rutile	Zincite	Zircon	V_2O_5 (a)	SnO ₂ (d)
Eu ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
F	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fe ₂ O ₃	0.0078	0	0	0.004	0.97	0	0.0768	0	0.0002	0.007	0	0.0008	0	0
Gd ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HgO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ι	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
La ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Li ₂ O	0	0	0	0	0	0.402	0	0	0	0	0	0	0	0
MgO	0.0001	0	0	0.001	0.001	0.0001	0.4801	0	0.0001	0	0	0	0	0
MnO	0	0	0	0.001	0.0012	0	0	0	0	0	0	0	0	0
MoO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Na ₂ O	0.0042	0.167	0	0	0	0.0008	0.0003	0	0.0002	0	0	0	0	0
Nb ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nd ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NiO	0	0	0	0	0	0	0.0037	0	0	0	0	0	0	0
NpO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P_2O_5	0	0	0	0	0.0027	0	0	0	0	0	0	0	0	0
Pa ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PbO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PdO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pr ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PuO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RaO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rb ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rh ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Most likely	Kyanite	Borax	Boric Acid	Wollastonite	Hematite	Carbonate Li	Olivine	Cr ₂ O ₃ ('e)	Silica	Rutile	Zincite	Zircon	V ₂ O ₅ (a)	SnO ₂ (d)
RuO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SO ₃	0	0	0	0	0.0007	0.0003	0	0	0	0	0	0	0	0
Sb ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SeO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SiO ₂	0.4067	0	0	0.51	0.0135	0	0.4252	0	0.997	0.022	0	0.3225	0	0
Sm_2O_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SnO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0.99945
SrO	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ta ₂ O ₅	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tc_2O_7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TeO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ThO ₂	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TiO ₂	0.0079	0	0	0.0002	0	0	0	0	0.0001	0.932	0	0.001	0	0
Tl ₂ O	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UO ₃	0	0	0	0	0	0	0	0	0	0	0	0.0004	0	0
V_2O_5	0	0	0	0	0	0	0	0	0	0.0045	0	0	0.994	0
WO ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Y ₂ O ₃	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ZnO	0	0	0	0	0	0	0	0	0	0	0.999	0	0	0
ZrO ₂	0	0	0	0	0	0	0	0	0	0.019	0	0.66	0	0

Appendix D

Minimum, maximum, and most likely PERT distribution in $\ln\left[\frac{1}{1-\nu_i}\right]$ with minimum,

based on the values reported by Nelson (2013).

Comp	ln(DF), Min	ln(DF), Most likely	ln(DF), Max	Comp	ln(DF), Min	ln(DF), Most likely	ln(DF), Max	Comp	ln(DF), Min	ln(DF), Most likely	ln(DF), Max
Ac ₂ O ₃	2.9601	6.8772	11.1239	MoO ₃	1.8563	4.194	6.4944	UO ₃	2.9601	6.8772	11.1239
Ag ₂ O	1.8563	4.194	6.4944	Na ₂ O	3.4874	4.8633	6.4944	V_2O_5	1.8563	4.194	6.4944
Al ₂ O ₃	5.0764	7.0814	8.8901	Nb ₂ O ₅	2.9601	6.8772	11.1239	WO ₃	2.9601	6.8772	11.1239
Am ₂ O ₃	1.8563	4.194	6.4944	Nd ₂ O ₃	2.9601	6.8772	11.1239	Y_2O_3	2.9601	6.8772	11.1239
As ₂ O ₅	0.0945	1.5296	4.237	NiO	3.9299	4.7875	6.3835	ZnO	4.7353	6.2383	7.8709
B_2O_3	3.708	4.5886	5.8519	NpO ₂	2.9601	6.8772	11.1239	ZrO ₂	7.2204	8.7143	11.1239
BaO	2.9601	6.8772	11.1239	P_2O_5	2.9601	5.1381	6.7822				
BeO	2.9601	6.8772	11.1239	Pa ₂ O ₅	2.9601	6.8772	11.1239				
Bi ₂ O ₃	1.8563	4.194	6.4944	PbO	3.2542	4.4716	6.2971				
CaO	5.2311	7.0825	8.6034	PdO	2.9601	6.8772	11.1239				
CdO	2.9601	6.8772	11.1239	Pr ₂ O ₃	2.9601	6.8772	11.1239				
Ce_2O_3	2.9601	6.8772	11.1239	PuO ₂	2.9601	6.8772	11.1239				
Cl	0.0979	0.7583	1.9095	RaO	0.0945	1.5296	4.237				
Cm ₂ O ₃	2.9601	6.8772	11.1239	Rb ₂ O	1.8563	4.194	6.4944				
CoO	2.9601	6.8772	11.1239	Rh ₂ O ₃	2.9601	6.8772	11.1239				
Cr ₂ O ₃	1.8563	3.0681	5.3033	RuO ₂	1.8563	4.194	6.4944				
Cs ₂ O	0.47	2.3609	4.237	SO ₃	0.6308	1.9694	3.2089				
CuO	2.9601	6.8772	11.1239	Sb_2O_3	0.0945	1.5296	4.237				
Eu_2O_3	2.9601	6.8772	11.1239	SeO ₂	0.0945	1.5296	4.237				
F	0.1179	1.4682	2.4361	SiO ₂	5.3471	7.5372	9.7527				
Fe ₂ O ₃	4.9381	6.6712	8.8984	Sm_2O_3	2.9601	6.8772	11.1239				
Gd_2O_3	2.9601	6.8772	11.1239	SnO_2	2.9601	6.8772	11.1239				
HgO	0	0	0	SrO	2.9601	6.8772	11.1239				
Ι	0.0945	0.5807	2.266	Ta ₂ O ₅	2.9601	6.8772	11.1239				
K ₂ O	2.0669	3.3844	5.5607	Tc_2O_7	0.0953	0.47	1.6094				
La ₂ O ₃	2.9601	6.8772	11.1239	TeO ₂	0.0945	1.5296	4.237				
Li ₂ O	3.4689	5.987	7.2894	ThO ₂	2.9601	6.8772	11.1239				
MgO	7.2464	8.8618	11.0268	TiO ₂	4.6308	6.1247	8.074				
MnO	2.9601	6.8772	11.1239	Tl ₂ O	0.0945	1.5296	4.237				

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352 1-888-375-PNNL (7665)

www.pnnl.gov