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Abstract

Homology has been gaining traction as a tool for studying patterns in real-
world datasets. During the past year, I have sought to understand a slight variant
on the typical computation of homology of a metric space which we term anti-
homology. This exposition will survey that work. In section 2, I begin with
findings from computations on samples from common spaces (the circle, the disc,
and the square). Section 3 presents one conjecture and one lemma regarding
1-dimensional cycles on the circle with evenly space points and the circle with
random sampling. In section 4, I applied antihomology to power grid datasets and
compared results with more traditional data reduction techniques. Lastly, section
5 reveals the connection between antihomology and location covering problems.

1 Introduction

To the author’s awareness, this is the first time homology has been systematically
explored (or even computed) with the space described below. We seek to gain a better
understanding of what the computation is capturing with respect to abstract spaces and
data alike. Of particular interest is how to interpret the result. Ordinarily, homology
roughly finds voids in a space (think of bubbles in pancake batter, or a hole punched
in a sheet of paper). In our application, we construct an “anti-space” from proximity
data, where points that are normally far apart in proximity are represented as being
close. The homology of this anti-space is what we deem antihomology.



Some of the spaces described in this paper are straightforward and don’t require ex-
plicit construction (the circle for example). In other instances, we are required to
construct a space for the homology and antihomology calculations. The reader should
be somewhat familiar with simplicial complezes, although a complete comprehension
is not required. We construct the Vietoris-Rips complex in all our computations (ho-
mology and antihomology alike). For this complex, each point is the space is a “0-cell”
in the Vietoris-Rips complex. Higher dimensional cells (or cliques in graph theoretical
conceptions) are added whenever k points are sufficiently close to one another. That
is, k + 1 points form a k-cell if all pairwise distances are less than some threshold t.
This space is used for homology. To compute the anti-space, rather than k-cells being
formed from distances less than ¢, a k-cell is formed from distances greater than t.
Thus, a 1-cell (a line segment) in the anti-space connects two points that are very far
from each other.

For each threshold, ¢ we have a new space and anti-space by following the Vietoris-Rips
construction. Homology can be computed on each space for each threshold. There are
natural functions relating the homologies from this family of spaces. The collection
of homologies for different thresholds is called persistent homology. The relationship
between homology groups across thresholds is described in Carlsson (2008). We will
see how the notion of persistence aids in extracting robust findings for antihomology.

For both antihomology and homology, the output is a collection of “voids,” varying in
dimension. A 1-dimensional void, (think of a loop or a hole in a doughnut), may coexist
with other dimensional voids in a space. We call a k-dimensional void, a k-cycle. In
our computation, points from the sampled space are provided to describe each k-cycle
(for example the 1-cycle, [1,2] [2,3] [3,4] [1,4] has points 1, 2, 3, 4, and 5). For all of the
following investigations we are only concerned with 1-cycles. All results, if not explicit,
should be assumed to be with about 1-cycles.

2 Patterns with Antihomology

Antihomology cycles appear to intimate information possibly related to the convex
hull of a space. A cycle is created when several points are long distances from adjacent
points, but close to all other points. To gain a better handle on what this pattern
should look like, here we will compute the antihomology of familiar spaces and discuss
findings.



2.1 Method

Points were sampled uniformly from the circle (z* + y* = 9), ellipse (.252° + 9y* =
2.25), line, and square ([0, 1] x [0,1]). The antihomology of each space was computed
and observational notes were recorded. These notes included the total number of
cycles, most frequent cycle length, and the maximum cycle length. Since the spaces
are 2-dimensional, an image was produced and points included in the same cycle are
highlighted.

2.2 Beginning Statistics

We uniformly sampled 25 points from a circle 50 times. For each sample, the threshold
was varied and persistent antihomology computed. We found that the average number
of 1-dimensional cycles were 84 and that the most frequent cycle length was four. Cycle
length is the number of unique points named in a cycle. On average, length four cycles
accounted for 62% of all cycles from antihomology for the circle. The average maximum
length of a cycle was 14. From construction, the minimum length of a cycle must be
4. These calculations can be found for all spaces in table 1.

Space | # of Cycles | Mst. Freq. Lth. | Percent Mst. Freq. | Max Lth.

Circle | 85.96+7.2589 4 64.5454+6.7193 14.3£2.0127
Ellipse | 98.72+13.208 4 97.807+3.7012 4.86+£1.2124

Line | 82.244+19.328 4 98.001£3.2383 4.84+1.1493
Square | 50.28+12.058 4 61.7994+10.351 7.944+1.3463

Table 1: Averages on Cycle Results

The measures ‘number of cycles’, ‘percent of most frequent length’, and ‘maximum
length’ provide a means for distinguishing these spaces. The circle has the longest
cycles, while the ellipse has the largest number of cycles. Figure 1 shows example
cycles for both the circle and ellipse. Cycles seem to occur at points furthest away
in both spaces. A cycle oscillates across the space. For the ellipse, we find that two
points that lie close together near the vertex create a cycle with another two points
close to the opposite vertex. for a given pair of neighboring points, since the ellipse (as
compared to the circle) has more points on the opposite vertex, there are more length
4 cycles. Thus, the pictured cycles match some intuition about the absolute number
of cycles. Almost all cycles are of length 4 in the ellipse and line. Only about half of
the cycles are of length 4 in the square.
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Figure 1: Antihomology Cycles for Circle and Ellipse

Figures 1 and 2 show the longest cycle and a length 4 cycle for each of the four sample
spaces for the fiftieth sample. Cycles for the square depicted, show a pattern that was
pervasive in all simulations. Namely, the points that are named in 1-cycles may include
several points that exist on the hull of that space. For these contrived examples, we
can see that the longer a cycle naming is, the spread of those named points across the
space also seems to increase. We also note that no two cycle names will be the same in
a given antihomology. The collection of all points named on a cycle may be a slightly
larger superset to the hull of the space. Consequently, the total number of 1-cycles
may be a heuristic for the density of the space. The square contains the fewest number
of cycles on average, and has the highest density of the four spaces. Although, this is



speculative, we believe that these statistics from a topological measure are capturing
particular geometric patterns in the space that ordinary homology cannot.
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Figure 2: Antihomology Cycles for Line and Square

2.3 Comparisons Across Known Spaces

Also of interest to the authors was the capability of persistent antihomology (like
ordinary homology) to distinguish spaces. The notion of persistence proves useful
when considering data, that is often noisy and not precise. Under persistent homology,
we create a family of related complexes and compute homology for each complex in
order to determine homological structures that exist over a wide range of scale values



for the space. When considering antihomology, the number of cycles increases to a level
where individual cycles are likely not a sufficient characteristic of the space. Rather,
we must look at the collective number of cycles over varying scale values as provided
by persistent antihomology.

We randomly sampled 25 points from one of four spaces (random points on the circle,
evenly spaced points on the circle, the disc - or filled in circle, and the square). For that
sample, we computed the function relating scale value (threshold at which the simplicial
complex was created) with number of 1-cycles from antihomology computations. A
population of these functions was created by repeating this procedure 50 times with
the choice in which space to sample from also being random. A complete-linkage
clustering procedure was applied to the normed differences of all pairs of functions to
provide a clustering of the spaces based on antihomology.

For the clustering procedure, we varied the number of clusters from 2 to 5. Frequency
tables are included below. For all clusterings, the evenly spaced circle and randomly
sampled circle clustered together. For the 3 and 4 cluster solutions, all disc samples
clustered together, but 3 of the square samples were intermixed in that cluster. The
majority of the square samples clustered together consistently. The separation of the
disc and square is a result that ordinary persistent homology cannot produce. Thus,
persistent antihomology can distinguish noisy spaces to a fairly good degree, even with
small (25 point) samples.

Random Circ. | Even Spced. Circ | Square | Disc
Cluster 1 9 15 0 0
Cluster 2 0 0 19 7

Table 2: 2 Cluster Solution

Random Circ. | Even Sped. Circ | Square | Disc
Cluster 1 0 0 3 7
Cluster 2 0 0 16 0
Cluster 3 9 15 0 0

Table 3: 3 Cluster Solution



Random Circ. | Even Sped. Circ | Square | Disc
Cluster 1 0 0 1 0
Cluster 2 0 0 15 0
Cluster 3 0 0 3 7
Cluster 4 9 15 0 0

Table 4: 4 Cluster Solution

Random Circ. | Even Sped. Circ | Square | Disc
Cluster 1 0 0 2 3
Cluster 2 0 0 1 4
Cluster 3 0 0 1 0
Cluster 4 0 0 15 0
Cluster 5 9 15 0 0

Table 5: 5 Cluster Solution

2.4 Remarks on the Calculations

Although we’ve gathered some evidence as to what antihomology reflects about a given
space, the method should not be applied without considerations. First, there are
situations where the antihomology calculation will yield no results. Consider a sample
of points from the unit square plus an additional point at (50, 50). Since every point
forms a 1-simplex with the point (50,50), any cycle in the square is contractible, so
thus, there are no cycles for this space! In addition to this, when cycles are produced,
the name of a cycle is up to homotopy equivalence. This means that any one cycle
could have different properties based on which, of potentially many, equivalent names
are chosen. Another naming concern stems from the fact that homology is a vector
space. Given a basis for a vector space, we can always find another basis. The new
basis may be described as linear combinations of the original basis elements. This is
problematic for our goals because we are interested in describing single 1-cycles, and
not the sum of 1-cycles. Figure 3 is one basis element that was named from the javaplex
homology calculation for a sample of the square. This ‘cycle’ is visibly the sum of two
disjoint cycles. The perpendicular orientation of the two cycles is purely coincidental
and should not be misinterpreted as meaningful.
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Figure 3: Undesirable Cycle Naming

2.5 Summary

Antihomology was calculated for small samples from simple 2-dimensional spaces. The
number of cycles and length of cycles provided a means of distinguishing these spaces.
Interpreting these measures is difficult, although some geometric patterns appear to
correlate with the measures. Visualizations of the samples and cycles allowed further
confirmation of the relationship between geometry and antihomology. A broader range
of sample spaces and larger sample sizes is encouraged.

3 Antihomology of the Circle

Two questions are explored with respect to antihomology:

1. Given that we are computing persistent homology, how do specific threshold
values relate to the number of 1-cycles for a given space?

2. In what conditions can the length of a cycle be predicted?

By explicitly relating the threshold value to the length and number of cycles, we seek to
work toward an interpretation of cycles in the context of scaling data or spaces. Con-
necting these themes in a simple space is the first step toward antihomology providing
a robust geometric descriptor for large datasets.



3.1 Method

With varying sample sizes, we compute the antihomology of samples from the circle of
radius 3. A variety of measures are extracted. We sample both uniformly and consider
regularly spaced points along the circle.

3.2 Results

For brevity we state the results concisely here. All results assume that N is larger than
4.

Lemma 1. Given N regularly spaced points around the circle of any radius, v, and

threshold, t, with
( LNJ )
27 E
t= |2r2|1-—

cos | ————=~ ,

N

if N 1s odd, then there is exactly one 1-cycle for antihomology and the cycle has length
N.

Proof. For any N, this threshold corresponds to the largest threshold where a 1-simplex
can exist. For N odd, at this threshold, there are exactly two 1-simplices attached to
each point. Choose any base point, zy and consider an adjacent point on the circle,
x1. By the regular spacing of the circle there exists a unique third point y, so that
{zo,y} and {z1,y} are 1-simplices. Since all points can be reached by a sequence of
1-simplices connecting adjacent points, there exists a cycle with all points. Note that
this is the only cycle, because there does not exist any 2-simplices. O

Conjecture 1 (Antihomology Threshold). Given regularly spaced points around the
circle of radius, r, a lower bound on thresholds such that there 1-cycles exist is

Ccos
N

the distance approximating the length of a side of the square inscribed in the circle.



The above lemma and conjecture concerned points spaced uniformly around the circle.
However, real data may be noisy. As an initial study of variation and antihomology,
we investigate points sampled randomly (uniform distribution) from the circle. We
estimate the probability that four random points form a cycle on the circle. Let a
threshold be given, t. Let x; be a point on the circle. We use the notation ¢; to be the
arc corresponding to t and x; such that points on the circle a distance of ¢ from x, fall
on the arc, ¢;. For convenience, we will use measure theory notation, i to denote the
length of the arc, u(e).

The relationship between four points {z1, s, x3, 24 }(= C) forming a cycle must adhere
to the following:
1. (a) d(z1,23) < t and (b) d(xq,x4) < t,
2. (a) d(x1,22) > t, (b) d(z2,2z3) > t, (¢) d(x3,24) > t, and (d) d(z1,24) > ¢, and
3. There is no point, y such that d(y, ;) > t for i € {1..4}

Consider the construction sequentially with index. Then assuming x; is given, the
probability that C' forms a cycle is equal to the probability that

1. To € €1,
2. w3 € eaN{y|d(y,z1) < t} (given x5 as above),

3. x4 € egNegN{yld(y, z2) <t} (given x3 as above), and

4. y ¢ ( U el-) (given previous conditions hold).
4

i=1..

Since x7 is given, the first inclusion corresponds to 2(a) above. The second inclusion
corresponds to 1(a) and 2(b). The final inclusion corresponds to 1(b),2(b), and (c),
assuming the previous 2 conditions. The final condition on other points implies that
the cycle cannot deformation retract to a point. Given t, the above four conditional
probabilities can be computed and multiplied to give the probability that four points
constitute a cycle. This expression is too cumbersome to include here.

10



4 Power Grid Problem

Consider several power generators on an electric power grid. Each generator provides
a different amount of power depending on several factors including time of day, type
of generator, other generators being off-line, etc. Suppose that we can measure the
output summary for a given generator at time, ¢, as a real value. We are interested in
identifying those generators that are most instrumental in providing power and most
representative of similar generators. Using methods like singular value decomposition
or cluster analysis, one can reduce the set of generators to a smaller representative set
and express the output of each generator as a linear combination of the output from
those in the representative set. These methods are well-established and provide useful
solutions for these questions. We want to see how using antihomology and homology
techniques compare to these methods by fitting a linear model of the reduced set to
the full set.

4.1 Method

We were provided with five datasets of simulated power generators. Each dataset
contains 34 power generators and to each power generator there is an associated time-
series of 381 real values. We treat each dataset independently. For our approach
we consider each power generator in a single dataset as one point in R*!' and the
Euclidean distance between any two points, d(g;, g;). The set of distances allow us to
construct a simplicial complex. Each power generator is a 0-cell in the Vietoris-Rips
complex. Higher dimensional cells (or cliques in graph theoretical conceptions) are
added whenever k£ power generators have sufficiently similar performance outputs. We
compute persistent homology for each dataset.

Homology captures a summary of the topological structures present in a space. These
structures are not limited by dimensionality or complexity. The computation of per-
sistent homology on the power generator datasets provides two useful characteristics
in our view. First, the so called O-cycles correspond to connected components of the
space. The persistent 0-cycles provide a hierarchical clustering of the generators based
on similarity of the outputs. Second, we view the generators as existing in some Eu-
clidean space. As such, when an n-dimensional void (or n-cycle) is found, it indicates
that as a Euclidean embedding, we need at least n-dimensions to describe the space.
Our analysis focused on this point. For example, suppose generators ‘4,” ‘5,” ‘9,7 ‘17,
and 29’ formed a 1-cycle. We would interpret this result as the entire set of power

11



generators exists in at least a 2-dimensional space since there is at least one 1-cycle.
We use the generators listed in a 1-cycle to approximate a basis for the entire set of
generators. First, since we are computing persistent homology, the cycles are ordered
based on the number of thresholds they survive (more thresholds survived = more re-
liable cycle). The generators named in each 1-cycle are added to a ‘potential basis set’
in order of cycle and a linear model is tested. A second method for deriving a basis set
involved ordering power generators by number of 1-cycles each was named in. Each
generator is added one at a time to the basis set and the reduced model was tested.

To supplement this method, we also analyzed the homology of the anti-space of power
generators. A cycle in antihomology tends to include points that are mutually most
distant, while each having many nearby points. In the previously mentioned prelimi-
nary experiments, we find that 1-cycles come close to approximating the convex hull
of 2-dimensional spaces. Thus, the generators named in cycles from antihomology may
represent different time series characteristics of the entire set of power generators. An-
tihomology is assessed with the power generator data with the goal of reducing the
number of generators. After producing antihomology for each dataset, the five ba-
sis sets were derived using the two methods above. For details on the methods we
compared homology methods to, see Purvine et. al. (2017).

Analysis Procedure

1. Each dataset was analyzed independently. For a given basis set size, all methods
that were able to produce a basis set was counted.

2. For each basis set in this collection, a linear model was tested against the entire
time series for all power generators in that dataset.

3. The methods were ranked within the given basis set size.

4.2 Results

The homology methods were especially sensitive to differences across the datasets and
set size. With dataset 1, the homology methods performed poorly at providing a basis
set of generators. Table 6 provides rankings for homology and antihomology methods
for dataset 1. For set sizes where the methods could produce a basis, the methods
ranked near last in most cases. The most frequent named generator method under
homology performed the best for a basis set size of 6. This was comparatively the best
performance of the method.

12



Basis Size | AH: Freq | H: Freq | AH: Srt Cycles | H: Srt Cycles | # of Mthds
4 7 10 8 11 11
) 16 15 13 0 18
6 25 15 0 0 25
7 29 21 28 0 29
8 35 30 33 0 35
9 21 20 23 16 23
10 39 33 41 0 41
11 30 23 26 24 30
12 17 0 14 0 17
13 26 0 0 0 28
14 18 0 0 0 20
15 18 0 0 0 19

Table 6: Table of Homology and Antihomology Data Reduction Method Rankings.
Two methods were used for each homology and antihomology. Rankings of 0 indicate

that method couldn’t produce a basis of the given size. These rankings are for dataset
1.

In other datasets, the methods performed better for particular set sizes. In particu-
lar, the most frequent antihomology generator method ranked first on three occasions
(dataset 5, set sizes: 4 and 17; dataset 3, set size 5). There didn’t appear to be any
systematic reasoning to the success or failure of our homology methods for a given
set size. Despite the methods’ ability to reduce the set of power generators to a rep-
resentative set, there were several times the homology methods performed poorly by
comparison. However, it should be noted that most methods ranked last for some
dataset and some basis set size. Considering the fact that the antihomology methods
outperformed established data reduction methods for many set sizes, we have further
reason to consider antihomology as a useful tool in taming large datasets.

13



Most Frequent Generators in Antihomology

0 50 100 150 200 250 300 350 400

Most Persistent Generators in Antihomology

0 5‘0 1(;0 l‘:’:O 250 2;0 360 3;30 400
Figure 4: Antihomology Methods for Dataset 5 with 9 Generators

For this exploratory analysis, it is useful to see the time series for the basis generators
from the methods. Figure 4 shows the time series for dataset 5 with colored indicators
for basis elements under the two instantiations of antihomology methods. The first
method (depicted in the top figure) was ranked ot out of 18 methods (set size = 9)
and the second was ranked first. As the cardinality of the basis set increases, the two
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methods will converge, but one goal of data reduction is to acquire an interpretable
number of dimensions. To that end, differences between the two instantiations can
have meaningful implications in small set sizes (as observed by the goodness of fit mea-
sure employed here). Figure 5 shows the basis generators for a set size of 5 for both
antihomology methods in dataset 3. Comparing the two figures, the most persistent
generators antihomology method may be capturing outliers earlier than the most fre-
quent generators antihomology method. More analysis is required.

4.3 Summary

In this project we proposed a new method for deriving an approximation to a linear
basis for datasets. This method was tested against several other conventional means
of deriving linear basis approximations and proved comparable. In particular, it out-
performed the other methods on more than one occasion. During this test phase, we
employed four variants of our topological analysis techniques. Not discussed here, we
also provided our basis elements to the power engineer that provided the data sets who
tested the basis as a reduced order model (accounting for power generator derivations
that were not included here) in a related simulation. The engineer reported that the
reduced order simulation resulting from our basis elements was a very good approxi-
mation to the original full simulation.

Since our antihomology method provided good approximations, the authors seek to
answer related questions. The antihomology approaches used here have some built in
redundancies in deciding basis elements. The most pertinent goal remains to find an
efficient way of eliminating those redundancies without compromising the integrity of
the result. We also seek to test the methods with a larger array of datasets.

15
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Figure 5: Antihomology Methods for Dataset 3 with 5 Generators
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5 Open Cover

I briefly present main findings that relate antihomology to covering spaces.

Fact 1 (N-cover Existence). Suppose there ecists a 1-cycle, AG(po,...pn—1). Then
there exists a N-cover such that each neighborhood is a FEuclidean ball of radius T,
where T' 1s the threshold used to create the simplicial complez.

Proof. Consider the union of balls based at points py,...,py_1 of radius 7. Suppose
there is a point, ¢ not covered by this union. Then ¢ forms an edge with each p; in the
simplicial complex. Also, for adjacent points, p;, piy1, ¢ forms a 2-simplex {p;, pi+1,q}-
Thus each edge in AG(po, ...pn-_1) contracts to the point g. So the 1-cycle is not a
1-cycle. O]

Lemma 2 (3-cover). Given Xp with smallest irreducible and non-decomposable 1-cycle,
AG(po,...,pNn) with N > 3, then a 3-cover is always possible.

Proof. Let Xp be as in the statement of the lemma. Consider points py, p2, and ps. We
show that the union of balls U;cq1,9,4yBr(p;) cover Xp. First, we know that all points
of the l-cycle are contained in one of the three neighborhoods since AG(po,...,pn)
is non-decomposable. Let p € Xp. If p is not in Ujc(1 241 Br(p;i), then 1-simplices,
{p,p2} and {p, p4} are formed since the respective proximities are greater than 7. The
proximity between p and ps or p and py is less than 7" by Fact 1 (assume the former is
true). Then p forms a 1-cycle, AG(pa, p3, ps, p). But the smallest generator has length
greater than 4. — o < [

Lemma 3 (2-cover). Given Xp with smallest irreducible and non-decomposable 1-cycle,
AG(po,...,pNn) with N > 4, then a 2-cover is always possible.

Proof. Let X be as in the statement of the lemma. Consider points p; and ps;. We
show that the union of balls Ujc(1 4y Br(p;) cover Xp. Suppose g is not covered by the
union. Since there is no p; € AG so that {pi,p;} and {p;, ps} are in Xr [length of the
generator is more than 5, non-decomposable|, then ¢ # p; for all i. But {¢,p1} and
{q,pa} are in X7 and the set of 1-simplices {{q, p1},{p1,p2}, {p2, p3}, {ps, pa}t: {4, ¢}}
forms a 1-cycle of length shorter than N. — o < ]
Fact 2. For the simplicial complex, Xr, if k € N is such that there is a k — 1 simplex
in X1 not contained by any other simplex in Xp, then there exists a k-cover of Xr.

Proof. Consider the k — 1 simplex, o, in X7 not contained by another simplex. That
simplex consists of k points. By definition, for points not in o, ¢, there must be a point
in o, p so that the distance d(p,q) < T. If not, then the £ — 1 simplex is contained in
{¢} Uo. Thus o provides the base points of a k-cover. O
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