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Summary 

Tidal and instream turbine technologies are currently being investigated for power generation in a variety 
of locations in the US. An environmental permitting and consenting requirement parallels this exploration 
generating the need to ensure little or no harm, in the form of strike or collision, befalls marine animals 
from device deployments. Monitoring methods (e.g., underwater cameras, active acoustics, passive 
acoustics) around turbine deployments provide empirical data allowing regulators and other stakeholders 
to assess risk. At present, there is a high level of concern and limited data precluding robust conclusions, 
which creates a challenge to regulators who must make decisions based on perceived risk versus actual 
risk. However, the data that are currently available to the scientific community for analysis indicate the 
issue to be of low risk to date, and strike or collision to be rare events. One such dataset that provides 
insight to the rarity of strike and collision risk to fish came from an instream turbine deployment in 
Alaska that used underwater video as the monitoring method. 

This document describes the analysis of video data collected around the Ocean Renewable Power 
Company’s RivGen® device deployed in the Kvichak River during July and August 2015 to gain an 
understanding of the implications of using underwater video cameras as a fish monitoring technique. The 
data were analyzed manually and used to develop automated algorithms for detecting fish in the video 
frames and describing their interaction behavior relative to the device. In addition, Pacific Northwest 
National Laboratory (PNNL) researchers developed a web application, EyeSea, to combine manual and 
automated processing, so that ultimately the automated algorithms could be used to identify where human 
analysis was needed (i.e., when fish are present in video frames). 

The goal of the project was to develop software algorithms that could identify video frames with fish 
present to inform and accelerate manual analysis. To achieve this, independent manual analysis was 
completed for specific video clips (i.e., visual analysis and annotation by a human observer was the 
standard for assessing the algorithms). The analysis process indicated that some confounding aspects of 
the algorithm development could potentially be solved with recommended improvements in the initial 
camera data collection methods. 

The manual analysis began to look at all data from the start of deployment of the RivGen® device, 
primarily using video from Camera 2 that looked directly at the upstream side of the turbine so any 
interaction could be identified; this was to ensure rare events were seen, and initially focused on 
Nighttime Data when more fish were present. This process highlighted the amount of time it takes to 
identify fish, and ultimately only 42.33 hours of video were reviewed because of the time-consuming 
analysis. The data were classified as “Fish” when the reviewer was confident it was a fish, and “Maybe” 
fish when it was difficult to distinguish. The two classes were distinguished based on the movement, 
shape, and color characteristics. Fish Events were further classified by “adult”, “juvenile”, or 
“unidentifiable” age. Behavioral attributes were noted and were broadly divided into Passive and 
Avoidance activities. In over 42 hours of the data reviewed, there were only 20 potential contact 
interactions, of which 3 were Maybe classifications, 12 were juveniles, and 5 were adults. While only 
11.5% of the video data were analyzed from Camera 2, these results are from the time when most fish 
were present over the turbine deployment period (from Alaska Department of Fish and Game data) and 
provide preliminary evidence that fish strike or collision of fish in the Kvichak River with an instream 
turbine is rare. 

On only one occasion was an actual contact confirmed, and this was an adult fish that contacted the 
camera, not the turbine itself. This experience highlights the difficulties associated with confirming a 
strike or collision event as either having occurred or having been a near-miss. More interactions were 
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detected at night; this was probably biased by nighttime use of artificial light, which may have attracted 
fish, but also could have increased detection probability because the light is reflected from the fish itself. 

For the algorithm development, background subtraction, optical flow, and Deep Learning techniques were 
considered. The Deep Learning approach was determined to need too much training data for this 
application, so its use was not continued. The optical flow analysis was considered promising, but did not 
give immediate results, so it needs further investigation. Therefore, background subtraction was the main 
focus in algorithm development. Three methods of background subtraction were tried: Robust Principal 
Components Analysis (RPCA), Gaussian Mixture Model (GMM), and Video Background Extraction 
(ViBE). A classification technique was then applied to the foreground images to determine fish presence. 
Using this combination, fish could be accurately identified when occupying a higher number of pixels 
(>200 pixels, 98.2% correct; 100–200 pixels, 99.6% correct; 5–100 pixels, 85.4% correct; 2–5 pixels, 
66.3% correct). 

In parallel, EyeSea was developed to convert the video data to a usable form and to enable manual and 
automated analysis of the data that would have a standardized output. 

Recommendations for further research, and optimizing methods for enhancing data collection and 
analysis include the following: 

• Research 

– Conduct more studies of the effect of lights on fish behavior. 
– Investigate the use of low light video applications as an alternative to using lights. 
– Further investigate optical flow techniques and their applicability for automated analysis. 
– Further refine the parameters for background subtraction in automated analysis. 

• Standardized techniques 

– Include markings on the turbines to determine relative range and size of fish within the field of 
view. 

– Use a standardized (non-proprietary) video format that has a consistent frame rate of at least 25 
frames per second. 

– Use a scientific camera designed for underwater measurement in low light environments that has 
a field of view appropriate for the observations and a pixel resolution high enough to determine 
fish within the given range. 

– Carefully consider the use of lights and how they illuminate the areas of interest. 
– Standardized and detailed record keeping and metadata collection 
– Use other monitoring technologies (e.g., strain sensors on turbine blades) to determine actual 

collision or strike events. 
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Acronyms and Abbreviations 

DOE U.S. Department of Energy 
FY fiscal year 
GMM Gaussian Mixture Model 
MPC-HC Media Player Classic-Home Cinema 
MHK marine and hydrokinetic  
LGL LGL Alaska 
ORPC Ocean Renewable Power Company 
PNNL Pacific Northwest National Laboratory 
RPCA Robust Principal Components Analysis 
TRL Technology Readiness Level 
ViBE Video Background Extraction 
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Glossary 

Term Definition 

asynchronous 
architecture 

A system that does not depend on strict arrival times of signals for operation. 

avoidance Used in all instances to encompass behaviors that showed some form of active change; no 
attempt was made to distinguish between avoidance and evasion. 

background subtraction A computer vision technique used to separate an image (or video frame) into background 
and foreground, where foreground means objects or regions of interest and is application-
dependent. 

bilateral filter A non-linear, edge-preserving, and noise-reducing smoothing filter for images. 

“blobs” Groups of connected pixels of similar intensity. 

canonical analysis A method of regression analysis to determine relationships between a predictor variable 
and a criterion variable. 

collision When a fish swims into a static object. 

compare/ 
comparison 

Qualitative, nonstatistical assessment of the project video data. 

contrast stretch An image enhancement technique that improves the contrast in an image by increasing the 
range of intensity values. 

Deep Learning Application of learning tasks to artificial neural networks. 

directed motion Motion that demonstrated intended movement; used in this report to describe fish-like 
movement 

EyeSea A database-driven website for accessing video data files and analysis data. 

Event A place in time during manual video processing marked by a reviewer as having a fish-
like object or fish in two or more frames 

false positive Detection of a fish by the algorithm when there was not a fish 

Fish An object that is deemed to be a fish during a manual analysis event 

Fish Event An event deemed to contain a fish during manual analysis 

forward-stepping linear 
discriminant analysis 

A method for finding a combination of features that characterizes two or more classes of 
objects. 

histogram equalization A technique for adjusting image intensities to enhance contrast. 

July 22 Data The full 24-hour manual analysis data of July 22, 2015. 

Maybe An object that during manual analysis is deemed to possibly be a fish, but not a definite 
identification. 

Maybe Event An event that during manual analysis is deemed to contain an object that could possibly be 
a fish  

MySQL An open-source relational database management system. 

near-field Relative term referring to an object or fish being relatively close the turbine within the 
video camera field of view. 
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neural network A computer system based on how networks within biological brains work, which “learns”, 
i.e., improves its performance, by considering examples that have been labeled with key 
parameters. 

Nighttime Data Data from hours 00:00 – 06:00 and 23:00 – 00:00 from July 19, 23:00 to July 23, 03:00 

OpenCV Open Source Computer Vision Library 

optical flow An image processing technique used to compute motion of an object based on changes in 
the individual pixels in an image. 

Rayleigh distribution A continuous probability distribution characterized by a shape parameter used to model 
the magnitude of a multi-component vector. 

strike When a fish is hit by a moving part of the turbine 

true negative An object classified as non-fish by automated analysis that was deemed to be a non-fish 
by a human reviewer, or a frame classified by automated analysis as containing no fish 
that was not included in the frames containing fish noted by human analysts. 
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1.0 Introduction 

The Triton initiative is a U.S. Department of Energy (DOE)-funded capability at the Pacific Northwest 
National Laboratory’s (PNNL’s) Marine Sciences Laboratory in Sequim, Washington. It aims to support 
DOE-funded projects that are developing technologies for measuring and monitoring the environment 
around marine energy devices through the mid- to high-level Technology Readiness Levels (TRLs). 
Ultimately, the initiative is intended to facilitate the permitting process and reduce the overall cost of 
marine renewable energy. 

As part of the initiative, the Igiugig Fish Video Analysis project described herein used video data 
collected by LGL Alaska around an Ocean Renewable Power Company (ORPC) RivGen® device 
deployed in Alaska. The data on fish interactions around the operating device were made available to 
PNNL for further manual/human processing and use in developing automated processing software. 

This final report summarizing the project tasks and results follows two previous reports: a data quality 
report (Trostle 2016) and a project progress report (Avila et al. 2016). The ensuing sections of this report 
briefly describe the project, the manual analysis of the video data, development of an automated 
algorithm for detecting fish presence in video frames, development of the software to enable data 
processing, and finally present conclusions and recommendations for future projects. Appendices A and 
B, respectively, contain manual annotations and the video data set used to develop the algorithm. 

2.0 Description of Project 

The ORPC RivGen® device (Figure 2.1) was deployed in the Kvichak River (Figure 2.2) from 19 to 25 
July and 19 to 28 August in 2015. The device’s two-turbine turbine generator unit (TGU) is supported by 
a chassis incorporating a pontoon support structure. The structure acts as a foundation when the device is 
deployed on the riverbed and gives it self-deployment and retrieval capabilities. The system is designed to 
generate reliable, renewable electricity in rivers near remote communities that have no access to large, 
centralized power grids. 
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Figure 2.1. Photograph of the ORPC RivGen® device.  
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Figure 2.2. Location of the RivGen® device near Igiugig, Alaska. 

Five video cameras were attached to the ORPC RivGen® device to monitor fish upstream and 
downstream of the turbine foils. While the system was deployed, LGL Alaska (LGL) monitored the video 
for fish-turbine interactions, subsampling 10 minutes per hour (at the top of the hour) (LGL 2015). After 
the deployment was completed, the raw data, metadata, and a spreadsheet with processed events were 
released to PNNL for further analysis. Specifically, this was to develop automated algorithms that 
detected fish within the frames so that manual analysis could focus only on times when fish were present. 
To do this, manual analysis was required to annotate the video so that it could inform the algorithm 
development. 

3.0 Manual Analysis 

3.1 Methods 

The development of tidal current and in-stream river current turbines as an industry is relatively new. It is 
in the early research and development stages that require testing to determine ideal technology and 
resource choices. The required technologies for monitoring fish interactions around turbine installations 
have the same early research stage limitations. This project used an underwater optical camera data set 
that captured numerous instances of fish and a turbine in the same field of view. Cameras and lights were 
manufactured by IAS systems. Cameras were customized SeeMate™ color to monochrome units with a 
F2.9 angle lens. Lights were SeeBrite™ omnidirectional model 24L-SS-LED-350. Power came from shore 
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and data were stored on digital video recorders. Manual processing of the data provided a baseline for 
software algorithm development as well as qualitative comparisons of fish behavior near the device. 

3.1.1 Data Set 
The data set comprised underwater video data from five cameras aligned on one side of the RivGen® 
device (Figure 3.1)—two upstream of the rotor and three downstream—recording 24 hours per day from 
19–26 July and 19–28 August. Illumination from two artificial light sources was used between 
approximately 2300 and 0600 each night. PNNL received the raw video data (6,418 files; 368 hours), 
along with supplemental reports from LGL in December 2015. LGL had previously processed the first 10 
minutes of certain hour blocks of the data, typically coincident with the turbine spinning; observed events 
were recorded in a spreadsheet that was provided to PNNL with the data set. 

For PNNL, the first step was to determine whether the data quality was good enough for the proposed 
analysis. The research team needed to be able to visually observe fish presence, behavior, species, and 
any adverse impacts. In February 2016, the data quality was deemed satisfactory, but not suitable for 
species determination/identification. For additional information regarding the usability and overall quality 
of the video, see the Quality Check Summary Report (Trostle 2016).  

During an Advisory Committee meeting (including participants from 
ORPC, PNNL, the University of Washington, and the University of 
Maine) held in March 2016, it was decided that the data set should be 
manually processed giving priority to nighttime segments (00:00 – 06:00 
and 23:00 – 00:00) from July, for which previously subsampled data 
from LGL showed the highest frequency of fish interactions with the 
turbine. Additionally, camera 2 (Figure 3.1) was given priority because it 
showed the upstream view of the rotor. This meant that it:  

• could show potential fish collision or strike interactions with the turbine,  
• could show near-field avoidance behavior,  
• had a sufficient light source, and 
• could be used to coarsely estimate the size and distance of fish relative to the turbine and supporting 

structures.  

As data processing progressed, team members realized that full manual analysis of both July and August 
nighttime video data would be excessively time-consuming. For every 1 hour of raw video data, it took 
reviewers approximately 13 to 15 hours to manually review and annotate the video. Due to the amount of 
time it took for manual review, only part of the July Nighttime Data (July 19, 20, 21, and some of July 
23), all of the July 22 Data, none of the August data, and the data required for the test bed development 
were reviewed (see Section 4.1). Of 18 days of video data recorded by LGL, PNNL was able to review 1 
full day, 3 nighttime segments, 4 half-hour blocks on July 23, and 16 five-minute sections for the test 
bed—a total of 42.33 hours. The PNNL team decided to concentrate on particular subsets of data that 
would allow for meaningful comparisons. Statistical analysis was not performed on any of the manual 
review data because of the relatively short period analyzed. Therefore, all uses of the term 
compare/comparison regarding manual processing for this report refer to qualitative, non-statistical 
assessment of the data. These comparisons have been grouped into four categories: 

• July 22 Data: A full day, July 22 (hereafter referred to as July 22 Data), was analyzed because it was 
important to include a full day inclusive of daytime data for preliminary comparisons of the first 10 
minutes of each hour to the full 60 minutes of each hour. This also allowed for diel differences to be 
qualitatively compared.  

In this study, “collision” 
refers to when a fish 
swims into a static 
object, and “strike” 
refers to a moving part 
hitting a fish. 
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Figure 3.1. Schematic showing approximate locations and views of cameras by number on the RivGen® 

device.  
Lights are represented by blue rectangles. (Not to scale. The pontoon structure is 19.8 m long, 11.5 m wide and 
1.7 m high. The turbine [TGU] is 10.4 m long, 1.5 m wide, and 1.5 m high.) (Figure courtesy of LGL and ORPC.)  

• Nighttime Data: Nighttime only (00:00 – 06:00 and 23:00 – 00:00) data from July 19, 23:00 to July 
23, 03:00 (hereafter referred to as Nighttime Data) were processed as mentioned in the bulleted 
paragraph. The data from July 23 Nighttime Data consist of only the first half-hour of each hour 
block (e.g., 01:00 to 01:30). These data represent the majority of the processing effort for this study. 
The first night (July 19) of data collection had technical issues with the lighting system and data were 
collected without a light source.  

• Light Effects Data: The hour block from 23:00 – 00:00 for July 19–22 were processed with varying 
artificial light operations to gain a preliminary understanding of any effect lights may have on fish 
detection probability and fish behavior.  

• Collision/Strike Data: Events with fish interactions where possible collision or strike occurred were 
separated into a small subset and further analyzed. Reviewers observed a total of 20 events that had 
possible collision or strike interactions. These events were separated for further comparisons. 

3.1.2 Manual Processing 
The data were provided in a proprietary format that was difficult to manipulate for the proposed 
processing and analysis procedures. Data files were changed to .mp4 format for ease of use with minimal 
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change in data quality. Two reviewers worked together to establish processing protocols and definitions 
for parameters annotated for each event. A subsample of data was processed by each reviewer and 
compared for similarity to ensure data processing would be consistent and accurate throughout the 
analysis. 

The reviewers visually processed the data in half-hour blocks using Media Player Classic-Home Cinema 
(MPC-HC). Reviewer 1 processed the first half-hour and Reviewer 2 the second half-hour. Whenever a 
reviewer visually assessed a fish or an object that had characteristics different from the surrounding water 
column debris (i.e., shiny and/or non-passive movement) that was present in the field of view for more 
than one frame, it was deemed an event. For each event, the numerical annotation method explained in the 
Igiugig Video Analysis – FY16 Progress Report (Avila et al. 2016) was used to describe the event 
characterizations. Parameters for these characterizations are described in Appendix A. Manual review did 
not distinguish between the terms “avoid” and “evade” throughout this report. Because the reviewers 
were unaware of the exact distance of the objects from the turbine, and because they did not use the 
behavioral responses of the objects and fish to decide between the two terms, “avoid” was used in all 
instances to describe behaviors that showed some form of active change assumed to be related to the 
turbine. Important classification annotations referenced throughout this report are whether or not an event 
was a Fish Event or a Maybe Event. A Fish Event meant that the reviewer was positive the object was a 
fish, whereas a Maybe Event meant the reviewer was not sure (hereafter referred to as Fish or Maybe 
Events, respectively). The designations between these two annotation descriptions are important for 
comparison and analysis purposes, as well as for informing the algorithm development. 

Objects that were not definitively defined as fish were still deemed events and recorded as Maybe Events. 
It was important to include these for two reasons. First, video quality could possibly affect the reviewer’s 
determination of whether or not an event contained a fish, and erring on the side of capturing all events 
with some false positives was preferable to missing some Fish Events. Second, software and automated 
algorithm development was a major objective of this research. Objects often had characteristics similar to 
fish and could be identified as events by the automated algorithms. This again allows more confidence in 
capturing all Fish Events at the cost of some additional false positives.  

To keep the reviewers calibrated during review, both started with a training period to go over the 
parameters and define characterizations. They separately reviewed the same video and compared results 
for 2–3 weeks, addressing any discrepancies in annotations. As the reviewers began processing the data 
individually, they kept in regular contact, went over interesting or questionable interactions, reviewed 
each other’s annotations, and discussed methods to ensure calibration at bi-weekly meetings. 

Even with these checks, during analysis, an inconsistency was discovered between reviewers. While both 
reviewers saw a similar number of events, meaning they were stopping for the same objects, the 
distinction between calling an object a Fish Event or Maybe Event did not always correspond. This meant 
that some of the objects one reviewer deemed as a Fish, the other reviewer deemed as a Maybe fish. 

Comparisons were made using the July 22 Data to show any similarities that exist in event occurrence and 
fish count estimates between processing of the first 10 minutes per hour, and processing of the full hour. 
Additionally, figures for visualization were also made to display 

• differences between definite Fish Events and objects with non-passive behavior,  
• fish count differences between day and night, and 
• fish count differences between when the device was spinning and static. 

For the Nighttime Data, the behavior types that are associated with different categories of events were 
compared. This categorization of events was based on the Appendix A annotation, “Fish?”. This 
annotation was simply a question to the reviewer about whether the object observed during a designated 
event was definitely a Fish or a Maybe. Initially, All Events that included Fish and Maybe Events were 
considered. Categories separated All Events into Fish and Maybe Events. Fish Events were further 
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categorized by annotations from Appendix A designating the fish as juvenile (likely a salmon smolt), 
adult (likely a salmon), or unidentifiable as determined by the reviewer. The category separation flow 
chart is shown in Figure 3.2. After behavior types were attributed to the categories of events by 
percentage (Figures 3.4–3.10), behavior types were coarsely grouped. Each of the behavior types the 
reviewers used for the annotation description was designated as either Avoidance, Passive, or Other 
(Table 2).  

 

 
Figure 3.2. Flow chart showing the different categories of events used to visualize behavior types 

(Figures 3.4–3.9) attributed by data processing reviewers. All events that had potential fish 
collision or strike were placed in a separate subset (3.10). 

Table 3.1. Grouping of annotated behavior types into Avoidance, Passive, and Other. 

Avoidance Passive Other 
Milling Straight across (above or below) Unable to tell 
Pause Through turbine Other 
Against current Toward static parts  
Avoid reverse Face first  
Avoid below   
Avoid above   
Avoid around   

A simple comparison of the Lights Effects Data was to determine whether more events were observed 
when the lights were on or off during varied light operations from July 19–22. This was possible because 
on July 19 the lights were off due to technical difficulties. The lights were turned on the next day and they 
were used for the remainder of Nighttime Data collection. 

The last subset of data comparisons were the events when fish collision or strike may have occurred in the 
Nighttime Data. This data set includes only events that were positively determined by both data reviewers 
to be Fish and excludes the Maybe Events; hence, there is no disparity between reviewer determinations. 

All	Events
(Fish	and	Maybe)

Figure	5

Fish	Events
Figure	6

Maybe	Events
Figure	7

Unidentified	fish
Figure	10

Juvenile	fish
Figure	9

Adult	fish
Figure	8
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3.2 Results 

Currently, no established video data analysis techniques exist for assessing fish interactions. Using the 
above methods, qualitative comparisons were made with the data set to highlight differences in 1) 
subsampling of the first 10 minutes of each hour and the entire hour; 2) nighttime behavior types; 3) 
possible collision and strike events; and 4) the effects of nighttime illumination. The data were further 
summarized between whether an object was a Fish or Maybe Event, and the categorical groupings 
associated with the observed behaviors. 

3.2.1 Fish Presence/Behavior 

3.2.1.1 July 22 Data Subsampling Comparisons 
For the July 22 subset of data there were 2,538 events: 260 were Fish Events, 2,256 were Maybe Events, 
and 22 Events were a combination of Fish and Maybe occurrences. The majority (81%) of events 
occurred during nighttime hours. Only one Fish Event occurred during daytime—in hour 19 in the 
processed data. Fish abundance or frequency of events does not appear to be related to whether the 
turbine was spinning (hours 1–2) or static (hours 3–6), but does seem to coincide with low light levels 
(hours 1–6 and hour 24). To compare the 10-minute sampling regime with full analysis, the 10-minute 
counts were multiplied by six to produce an hour estimate. This assumes that the first 10 minutes is 
representative of the subsequent five 10-minute blocks. The comparison between these processing 
methods shows that when the first 10 minutes is subsampled and multiplied by 6 to approximate an 
hourly estimate the numbers are inflated for hours 3–6. Hour 1 is underestimated, for hour 2 the estimates 
are similar, and hours 3–6 are over-estimated for both the number of Fish and number of events (Figure 
3.3). 
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Figure 3.3. Bar graphs showing processed data for July 22, 2015.  
The horizontal axis represents each hour block for both graphs and the dark shaded numbers represent hour blocks 
that are after sunset and before sunrise (Nighttime Data). The green shaded background of the plot areas show 
when the RivGen®  was spinning. Graph A displays Fish and Maybe counts as observed during manual processing 
by hour blocks. Graph B displays the number of events. The blue bar, “PNNL (10)”, represents the estimates from 
PNNL’s processing of the first 10 minutes of each hour. The orange bar, “PNNL (10)*6”, represents PNNL’s 
estimate multiplied by 6 to be an approximation for the full hour. The gray bar, “PNNL_Fish”, represents PNNL’s 
count of “Fish” for Graph A or “events” for Graph B for the full hour. The yellow bar, “PNNL_Maybe”, represents 
the count of objects (Graph A) or events (Graph B) with non-passive behavior but not determined to be fish. 

3.2.1.2 Nighttime Data Behavior Types 
Other than processing the July 22 Data, PNNL only processed Nighttime Data. For the category that 
includes both Fish and Maybe Events, there were 629 Fish Events, 4,149 Maybe Events, and 51 
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combination events that included both Fish and Maybe occurrences. Each event was broken down into the 
described behavior specific to the annotation list found in Appendix A. Grouping all of these described 
behaviors by annotation behavior type (e.g., avoid around, avoid above—see Appendix A) provides some 
evidence of what the dominant behaviors are within the camera field of view in front of the RivGen® 
during nighttime hours. The dominant behavior for Fish and Maybe Events was “through turbine”, 
followed by “straight across”, followed by “toward static parts” (Figure 3.4). Note that this comparison is 
not separated by Fish or Maybe Events or any other qualifier, and the Passive behavior group dominates 
with 80% of the behavior, compared to ~19% for the Avoidance group. 

 
Figure 3.4. Behavior types recorded by reviewers for Nighttime Data. Data included are both Fish and 

Maybe Events for all sizes; n = 4,829.  
The blue sections of the graph designate the Passive group of behaviors and the brown sections represent the 
Avoidance group of behaviors. 

The Nighttime Data were separated into Fish and Maybe Events to visualize how reviewer-described 
behaviors may be different for each. Combination events (n = 51) that had both Fish and Maybe Events 
were removed because it was impossible to separate behavior annotations associated with a Fish object or 
a Maybe object during the event. For Fish Events the top three dominant behaviors were “through 
turbine”, “avoid around”, and “pause” (Figure 3.5), and for Maybe Events the top three behaviors were 
“through turbine”, “straight across”, and “into static parts” (Figure 3.6). There is a distinct qualitative 
difference in behavior types (Avoidance vs. Passive) between the Fish Events and Maybe Events. Figure 
3.5 shows Fish Events dominated by the Avoidance group of behaviors (62%) and Figure 3.6 shows 
Maybe Events dominated by the Passive group of behaviors (80%). This abundance of passive behaviors 
is expected, because one of the qualifiers when distinguishing between Fish and Maybe Events was how 
the objects moved. It is important to note that there was some disparity between what the two reviewers 
designated as a Fish or Maybe Event as described in “Manual Processing.” 
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Figure 3.5. Behavior types recorded by reviewers for Fish Events in Nighttime Data for all sizes 

(n = 618).  
Maybe and Combination events were removed. The blue sections of the graph designate the Passive group of 
behaviors and the brown sections represent the Avoidance group of behaviors. 

 
Figure 3.6. Behavior types recorded by reviewers for Maybe Events in Nighttime Data for all sizes 

(n = 4,149).  
Fish and combination events were removed. The blue sections of the graph designate the Passive group of behaviors 
and the brown sections represent the Avoidance group of behaviors. 
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Within the Fish Events category, a separation was made to categorize juvenile, adult, and unidentifiable 
fish. Eleven Fish Events had a combination of adult, juvenile, or unidentifiable Fish Events that were 
removed from these comparisons. There were 174 adult Fish Events for which the dominant behaviors 
were “pause”, “avoid around”, and “avoid reverse” (Figure 3.7). There were 259 juvenile Fish Events, for 
which the dominant behaviors were “through turbine”, “avoid around”, and “pause” (Figure 3.8). 
Determining whether it was an adult or juvenile was sometimes impossible. This created the category of 
an unidentified Fish Event of which there were 185. The dominant behavior was “through turbine”, 
“avoid around”, and “pause” (Figure 3.9). Adult fish displayed Avoidance behavior 82% of the time 
compared to only 14% passive behavior. The behavior groups for juveniles were split, showing 50% 
Avoidance behaviors and 44% Passive behaviors. And the fish that were unidentifiable demonstrated 
dominant Avoidance behavior 57% of the time and Passive behavior 36% of the time. 

 
Figure 3.7. Behavior types recorded by reviewers for adult Fish Events in Nighttime Data (n = 174).  
Juvenile and unidentified Fish Events, Maybe Events, and combination events were removed. The blue sections of 
the graph designate the Passive group of behaviors and the brown sections represent the Avoidance group of 
behaviors. 
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Figure 3.8. Behavior types recorded by reviewers for juvenile Fish Events in Nighttime Data.  

(n = 259).  
Adult and unidentified Fish Events, Maybe Events, and combination events were removed. The blue sections of the 
graph designate the Passive group of behaviors and the brown sections represent the Avoidance group of behaviors. 

 
Figure 3.9. Behavior types recorded by reviewers for unidentified Fish Events in Nighttime Data  

(n = 185).  
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3.2.1.3 Fish Collision and Strike 
Reviewers found a total of 20 events involving possible collision or strike (12 strike and 8 collision). All 
strike events in this data set refer to moving parts of the turbine hitting an object or fish, while collision 
refers to an object or fish coming into contact with a static part of the device (this could include the blade 
when it is not turning). Of these 20 potential events, 17 were Fish Events and 3 were Maybe Events. Of 
the 17 Fish Events, juveniles made up 12 of the events and adults made up 5 events. All but one of the 
juvenile Fish Events had multiple fish in the field of view, up to ~50. All of the adult events were single 
fish. All juvenile Fish Events occurred between 00:00 and 01:00, except two which occurred at 01:03 and 
03:02. The turbine was spinning for all but one of the juvenile Fish Events and none of the adult Fish 
Events. Juveniles made up 11 of the strike events, while the remaining strike occurrence was a Maybe 
Event. No adults were involved in any of the strike events. Of the 8 collision events, adults made up 5, a 
single juvenile made up 1, and the rest were Maybe Events. The one juvenile collision and 4 of the 5 adult 
collision events occurred with a static blade. The last adult collision occurred with the camera and was the 
only confirmed collision. Behavior for these events was dominated by Avoidance group behaviors 
“through turbine”, “avoid around”, and “pause” (Figure 3.10). 

 
Figure 3.10. Behavior types recorded by reviewers for potential collision or strike Fish Events in 

Nighttime Data (n = 17).  
The blue sections of the graph designate the Passive group of behaviors and the brown sections represent the 
Avoidance group of behaviors. 

3.2.1.4 Light Effects 
On July 19, the lights remained off through the night, while on every other night the lights turned on as it 
became dark. A light operations record was not kept during deployment, so manual reviewers at PNNL 
watched the video and estimated the operational status of the lights (Figure 3.11). Events observed over 
four nights during hour block 23 (23:00–00:00) when light operations varied were compared to show fish 
presence while the lights were on and off (Table 3.2). Over the four-night comparison of hour block 23 (a 
total of 4 hours), the lights were off 45% and on 55% of the total time.  
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Only 5 events were recorded by the reviewers on July 19 when the lights remained off the entire hour. All 
5 events on July 19 occurred in the first 9 minutes of the hour block, and they were all Maybe Events. On 
July 20, 1 Maybe Event occurred while the lights were off during the first 34 minutes of hour block 23, 
and 144 events (1 Fish Event, 143 Maybe Events) occurred while the lights were on in the last 26 minutes 
of hour block 23. On July 21, 2 Maybe Events occurred while the lights were off during the first 14 
minutes of hour block 23, and 65 events (2 Fish Events, 63 Maybe Events) occurred while the lights were 
on during the last 46 minutes of hour block 23. On July 22, 135 Maybe Events were recorded by 
reviewers when the lights remained on during hour block 23. Over the four-night comparison, 
approximately 2% of the total events occurred while the lights were off, and 98% occurred while the 
lights were on. 

 
Figure 3.11. Visual approximation of light operations determined by watching the video data and noting 

when the turbine and objects began to look brighter (lights on), or when the turbine and 
objects began to look darker (lights off). 

Although a light operations record was not kept, PNNL staff watched the video data to estimate when the 
lights came on and turned off. The orange bars represent the duration of time the lights were estimated to 
be on, while the blue bars represent the duration of time manually reviewed by the two reviewers. The x-
axis on Figure 3.11 shows a total range of 24 hours, from hour 22:00 on one day and up to hour 22:00 of 
the next day. This was done to show the light operations and review effort in a more continuous manner. 
The major y-axis labels list the dates reviewed with minor label divisions of when the lights were on and 
the hours reviewed on those dates. From the night of July 19 to the morning of July 20, the lights 
remained off, and the reviewers manually processed video data from 23:00–06:00, although only part of 
hour blocks 23 and 5 were visible. From the night of July 20 to the morning of July 21, the lights were 
estimated to be on from 23:35–06:17 and the reviewers manually processed video data from 23:00–06:00. 
From the night of July 21 to the morning of July 22, the lights were estimated to be on from 23:15–06:26 
and the reviewers manually processed video data from 23:00–22:00. From the night of July 22 to the 
morning of July 23, the reviewers manually processed video data from 23:00–00:30, 01:00–01:30, 02:00–
02:30, and 03:00–03:30. The lights were estimated to turn on at 23:00 and remained on during all of the 
manual review effort on July 23, but an estimation of when the lights turned off that day was not done. 
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Table 3.2. Comparison of the number of events recorded by reviewers during hour block 23 (23:00–
00:00) over four nights when the lights were on and off, including the duration of light 
operation status and totals. 

Hour Block 23 Lights Off Lights On Total 
Date Duration Number of Events Duration Number of Events Number of Events 

7/19/2015 60 minutes 5 0 minutes No data 5 
7/20/2015 34 minutes 1 26 minutes 144 145 
7/21/2015 14 minutes 2 46 minutes 65 67 
7/22/2015 0 minutes No data 60 minutes 135 135 
Total 108 minutes 8 132 minutes 344 352 

3.3 Discussion 
Perceived risk and shortage of empirical data about fish interactions with tidal and in-stream turbines like 
ORPC’s RivGen® means that monitoring is required during turbine deployment. For near-field 
interactions, optical cameras are the ideal choice because acoustic devices are limited at such close ranges 
because of transmitted sound scattering from the turbine blades. For this research, the use of cameras 
provided a useful data set that allowed the capture of hundreds of fish interactions with an operational 
commercial-scale device. These interactions included 17 possible collisions with static components and 
possible strike with dynamic components of the device. These 17 events accounted for 2.75% of all 
Nighttime Fish Events and 0.07 % of total hours processed. Only through intense manual processing 
effort was it possible to find the extremely rare events of collisions and possible strikes that were 
observed. These processed data also allowed comparison of a complete manually processed data set to the 
same subsampled processed data set. Of the 17 possible collision or strike events, only 1 was in the first 
10 minutes of the hour. This means that 16 of the events would have been missed, pointing to the 
importance of full data set processing to ensure these rare events are observed. While strike and collision 
are of major concern, the behaviors used by fish as they approach these devices are important for 
continued research and to determine the need for monitoring around turbines. The types of behavior 
provide input parameters to models as well as identifying differences that may exist between different 
species or age classes of fish. 

The previous analysis by LGL primarily processed data to coincide with times that the RivGen® device 
was spinning, which was typically during daylight hours. The PNNL research team concentrated on 
nighttime because 66% of all fish observed by LGL were observed during nighttime even though this 
time composed less than 10% of their total processed data.  

3.3.1.1 July 22 Data Subsampling Comparisons 
PNNL processed the first 10 minutes of each hour, illustrating the difference between subsampling and 
full analysis. Processing sub sets of data is common for researchers faced with the daunting task of large 
data sets, and it is considered a valid way to process large amounts of data. In this instance, when 
subsampled data [(10)*6] were compared to the fully processed (all 60 minutes of each hour) 24 hours of 
data on July 22, the number of Fish Events per hour was the same for hour 2, less for hour 1, and more for 
hours 3, 4, 5, and 6 (Figure 3.3B). While there was some discrepancy between the two, a larger sample 
size for comparison would be required for validation. The number of fish (counts) had similar results with 
the (10)*6 estimates being larger than the actual 60-minute counts for hours 2–6 (Figure 3.3A). Counts be 
skewed if large schools of fish are present. The first hour block in the July 22 fish count data (Figure 
3.3A) is a good example of this; the full hour count data are more than four times the (10)*6 estimate. 
This was simply a case of several schooling Fish Event occurrences that were made up of tens of juvenile 
fish observed from minute 10 to 60. Subsampling may provide a valid estimate of Fish Events but fish 
counts may be biased low if events with large schools of fish are missed. 
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Having the entirety of the July 22 video processed provided evidence that the majority of Fish Events 
occur during nighttime. For this single day, it also indicated that the number of Fish Events did not 
dramatically increase or decrease based on whether the turbine was static or spinning. For the total data 
manually reviewed by PNNL, the turbine was spinning for 44% of the time, and not spinning for 56% of 
the time. After the RivGen® spinning ceased (typically around 01:00), the number of Fish Events 
decreased from then until 06:00. The occurrence of Fish Events is more likely to be related to light levels 
because Fish Events decrease temporally as sunrise approaches. If the driver for frequency of Fish Events 
is light levels, then use of artificial lighting to increase detection probability at night introduces a possible 
complication.  

3.3.1.2 Nighttime Data Behavior Types 
Describing the behavior of Fish and Maybe Events captured from a single camera is subjective for most 
of the descriptions (see Appendix A). While an observed movement upstream or downstream is definitive 
in nature, movement toward or away from the camera or attempting to use depth of field to describe an 
event is difficult and accuracy is impossible. Nevertheless, behavior was described for all Fish and Maybe 
Events during PNNL processing of the data. An extensive list of behavior types that described in detail 
the majority of observed fish behavior was used. Additionally, specific behaviors were qualified as being 
Avoidance or Passive behaviors (Table 3.1). For the manually processed data set, the extent to which 
behavior is addressed for each processed event is important to understand fish behavior in general as well 
as differences between behaviors of fish based on their size or age class. 

The binary grouping of all specific behaviors into Avoidance and Passive behavior groups provided 
evidence of two important findings:  

• First, the amounts of Avoidance and Passive behavior differ between Maybe and Fish Events. During 
the PNNL processing, both reviewers agreed that movement or behavior of the object during an event 
had a strong bearing on whether or not it was deemed to be a Maybe or Fish Event. More movement, 
especially those representing non-passive examples, typically led to classification as a Fish Event. 
The Avoidance group of behaviors is therefore important for separating Fish Events from Maybe 
Events. However, not all fish entering the field of view will necessarily change their behavior before 
exiting. Fish already in line to avoid the turbine may not change their trajectory and thus fall under 
one of the Passive group’s behaviors.  

• Second, the amount of Avoidance/Passive behavior differs between adult and juvenile Fish Events. 
Fish Events that consisted of adult fish had only 17% Passive behavior and of this amount only 4% 
were specifically “through turbine” (Figure 3.7). In contrast, juvenile Fish Events had a 50/50 split 
between Avoidance and Passive behavior and 34% of the Passive behavior was “through turbine”. 
This comparison shows evidence that adult fish are better at avoiding the turbine than juvenile fish. 
Although juvenile fish behavior may consist of Avoidance behaviors, the juveniles tended to be less 
successful in actually avoiding the device and often went “through the turbine” even after attempting 
an Avoidance behavior. 

Behavior types or groups may play an important role in algorithm development in the future. A variety of 
qualifiers are used in algorithm development, and behavior or movement is an important one for animal 
detection algorithms used with remote sensing devices and specifically optical cameras. Often, threshold 
metrics are used for initial investigations into automating an animal being in a frame. However, if this is 
successful and a variety of animal types have potential for being detected, then the next step is grouping 
them by some qualifying characteristic. Often size is the first characteristic for grouping followed by 
movement or behavior. Knowing the movements and behavior associated with the fish detected in these 
data has the potential to further general knowledge or inputs for modeling. Improved automated analysis 
to decrease the effort required to process and analyze these types of data and ultimately create cost-
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effective methods. Use of these methods by developers and researchers can provide meaningful data 
accepted by regulatory bodies that require monitoring. 

3.3.1.3 Fish Collision and Strike 
As fish collision, strike, and near-miss events are generally accepted to be rare at marine and hydrokinetic 
(MHK) installations, it is important to process most, if not all, of the data collected to ensure these events 
are not missed. If an entire data set is not to be processed, then large-scale time blocks likely to coincide 
with the highest probability event occurrences, decided upon with expert opinion or existing empirical 
data and statistical analysis, should be processed. The sequence of the processing steps used for camera 
data set described herein is a good example of efficient gathering of useful information. The initial subset 
processing performed by LGL for the first 10 minutes of certain hour blocks made it clear that most Fish 
Events occurred during nighttime. This is a highly productive first step for a large data set for which no 
established processing methods exist, except for manually reviewing the data. As a logical first step, it 
saved time and provided the foundation for taking the next step to gather meaningful results. PNNL 
followed up and concentrated processing effort on nighttime hour blocks based on the LGL information 
that indicated more events occurred at night. This concentration on the Nighttime Data provided more 
meaningful comparisons of a variety of fish behaviors showing differences in adult and juvenile 
behaviors. The processed data also captured 17 events, out of a total of 618 Fish Events, with possible 
collision and strike between fish and a commercial-scale device, indicating how rare these events are and 
the difficulty associated with observing them. Even with capturing the events with possible collision or 
strike, actual contact is difficult to verify because uncertainty remains based mostly on the data quality 
specific to camera selection, lighting, placement, and field of view. Collision was only confirmed in one 
instance when an adult fish collided with the camera. Additionally, it is important to note that the 
outcome of a collision, strike, or near-miss event was not possible to determine because of data quality 
and the short duration that a fish was in the actual field of view. 

Camera selection for underwater fish observations is not a trivial matter. The field of view, resolution, 
low light capacity, and frame rate are just a few of the parameters that are crucial to gathering high-
quality, meaningful data. After data have been collected, the file type becomes important for effective 
processing that leads to useful analysis. The cameras used to collect the data presented in this report were 
customized SeeMate ™ color to monochrome units with a F2.9 wide angle lens, manufactured by IAS 
systems (North Vancouver, British Columbia). The images had a resolution of 352 × 240 pixels. Each 
camera had a variable frame rate (less than 10 per second), and a field of view of “approximately one-
third of the area between the pontoons and the left (portside) one-third of the TGU”1 (LGL 2015). Pixel 
resolution, field of view, and light capturing ability created limitations in the data set, and complications 
continued because the output files were of a proprietary format. Significant amounts of unplanned time 
and resources were required for file conversion to a non-proprietary format, followed by testing several 
video-file viewers to determine the one best suited for this analysis, which included requirements like 
moving forward and backward through each frame capture without skipping or freezing up. Based on this 
work, literature review, and discussions with other researchers, a brief set of guidelines for camera 
selection for future applications is given in the Recommendations section. 

3.3.1.4 Light Effects 
On every night except July 19 the lights turned on as natural light levels decreased to illuminate continued 
monitoring fish presence and interaction. A comparison was done to better understand the potential 
impact of artificial lights during this environmental monitoring effort during hour block 23 from July 19 

                                                        
1 LGL Alaska Research Associates, Inc., 2015 Fish and Wildlife Monitoring Plan for RivGen® Testing on the 
Kvichak River, Alaska in 2015 
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to 22. As it became dark on July 19, the field of view began to fade into a grainy, grayscale image with 
portions of it becoming black over time. If fish were present during the last 15 minutes of hour 23:00 on 
July 19, it would have been very difficult for the reviewer to see or document their presence. When 
comparing the first half of hour 23:00 on July 19 to the same hour on July 20, the images of both nights 
seem similar, but when the lights appear to turn on at approximately 23:35 on July 20, the turbine is 
illuminated, potentially creating an opportunity for light to reflect off fish and be visible to the camera, as 
well as make the image sharper and clearer. In contrast, on July 19 the image degrades over time. 
Nighttime illumination probably affects the detection probability of fish by the reviewers, and may alter 
an avoidance/attraction response by the fish. 

The number of events that occurred when the lights were on was considerably higher than when the lights 
were off (344 compared to 8, respectively), and with a similar operation duration (55% compared to 45%, 
respectively). The number of events when comparing lights on and off differs considerably, yet the reason 
for this in this application is not well understood. Artificial lights may have attracted fish, thereby causing 
more events, or more fish may have been present during the last half of hour 23 when the lights were 
generally on every night except July 19; the data from July 22 when the lights were on for the full hour 
show more fish during the second half hours (135 vs 94), but this does not account for the extreme 
difference observed overall. Alternatively, fish presence may be similar on all nights, but the artificial 
light provides the source needed to make them visible to the optical cameras and in turn, reviewers. 
Additionally, on July 22 when all 24 hours were reviewed, Nighttime events (when the lights were on 
from 00:00–06:26, and 23:00–00:00) made up 99.9% of the total events for that day, with only 1 daytime 
Fish Event overall (although 436 Maybe Events during the daytime). Due to this clear difference and the 
lack of baseline understanding of fish attraction or deterrence related to this variable, the role of artificial 
lights during environmental monitoring needs to be further investigated. 

4.0 Automated Analysis 

Automated analysis was investigated to develop algorithms for detecting fish presence in the video, so 
that an entire video data set could feasibly be analyzed automatically without the need for manual 
sampling. Reducing the volume of data to just those video segments during which fish were present 
would optimize human labor time, and the reduced-volume approach could also be used to perform a 
quick preliminary analysis of the data. Ultimately, the system could be fully automated, and the software 
optimized to run in real time as part of an underwater observation system for long-term monitoring of the 
effects of MHK devices on animal populations.  

The vision for an automated video processing system consists of three main components: preprocessing, 
detection, and classification (Figure 4.1). The preprocessing component filters the raw video frame to 
improve its quality in terms of contrast, color balance, and smoothness. The detection component 
identifies objects that might be fish, and the classification component classifies the detections to filter out 
false positives such as kelp, shadows, or other objects that are not of interest. These three components 
interact, and each requires many design decisions in order to realize an effective system. Under this 
project, candidate algorithms were investigated for each of the components, and an infrastructure was 
developed to tie the components together into a web-based application developed by PNNL called 
EyeSea. 
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Figure 4.1. The automated processing chain. 

4.1 Methods 

A testbed was developed to evaluate the performance of different algorithms; it consisted of a 
development data set and a processing pipeline. This meant that algorithms could be evaluated in a 
consistent, reproducible manner. A development data set was assembled from a subset of the full Igiugig 
data set consisting of 16 five-minute video segments containing Fish Events (Appendix B). The video 
segments were selected to represent different lighting conditions, different camera views and different 
sizes of fish, individuals and schools (Figure 4.2). Each video consisted of a total of 7500 frames, and 
even though the segments were chosen to include fish, only 6% of the total frames did in fact contain fish 
(the presence of fish is not a common event). The data were annotated as described in the Manual 
Analysis section. The processing pipeline was adapted from the Fish4Knowledge (Boom et al. 2014) 
code2 for fish detection with custom code. The pipeline was used to batch process all the development 
videos using a particular detection algorithm, and to calculate the resulting detection rate and false 
positive rate by comparing the detections to the manual analysis annotations (Figure 4.3). 

 

                                                        
2 http://groups.inf.ed.ac.uk/f4k/ 
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a) Camera 1, daylight  b) Camera 1, night 
   

 

 

 
c) Camera 3, night illuminated  d) Camera 4, night illuminated 

Figure 4.2. Example images of fish in the different cameras with different illumination. 

For the detection algorithms, background subtraction and optical flow were investigated. Three different 
background subtraction techniques were evaluated: Robust Principal Components Analysis (RPCA) 
(Candès et al. 2011), Gaussian Mixture Model (GMM) (Lee 2005) and Video Background Extraction 
(ViBE) (Barnich and Van Droogenbroeck 2009). The optical flow analysis consisted of a dense optical 
flow calculation using the Farnebäck algorithm (Farnebäck 2003) and a sparse feature-based flow 
calculation using the Lucas-Kanade method (Lucas and Kanade 1981), both as implemented in OpenCV.3 
For classification, models were developed using forward-stepping linear discriminant analysis (Lotlikar 
and Kothari 2000) on the detected objects to distinguish between fish and non-fish objects. The features 
used for classification were object size, intensity, shape, and motion. 

                                                        
3 http://opencv.org 
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Figure 4.3. The developed testbed pipeline for evaluating different detection algorithms. 

Background subtraction is a computer vision technique that is used to separate an image (or video frame) 
into background and foreground, where foreground means objects or regions of interest and is 
application-dependent. In this study, foreground is defined as fish and everything else is considered 
background, even other objects that might be moving such as the turbine itself and floating debris. This is 
a challenging data set for background subtraction because of the low quality of the video and the highly 
dynamic background. RPCA, GMM, and ViBE algorithms were selected based on recommendations from 
researchers at the University of Washington and the Fish4Knowledge project (Boom et al 2014) as being 
robust relative to background motion. The recommended parameter values for each algorithm were used. 

The foreground images resulting from the background subtraction were further processed to group 
connected pixels of similar intensity into “blobs”. These objects were then classified as fish or non-fish. 
The blob size was highly variable ranging from 1 pixel to over 10,000 pixels, so the blobs were divided 
into five size groups and classification models for each group were developed separately. 

The motivation for including optical flow is the hypothesis that fish motion is different than other motion 
in the scene, such as the motion of objects drifting with the current and the motion of the turbine foils 
turning. The researchers who performed the manual analysis said that one of the features they used to 
recognize fish was directed motion. Optical flow is the motion (spatial displacement) of light intensity 
from one video frame to the next. It is calculated for video by matching regions in one frame with regions 
in the subsequent frame, where the matching is based on edges and gradients of light intensity, and the 
flow is the displacement. There are several algorithms for calculating optical flow in the literature. For 
this application, the Farnebäck algorithm was chosen to calculate a dense optical flow over the entire 
image. Initial tests of both the sparse and the dense optical flow methods indicated that the sparse method 
was not effective when analyzing the raw video because of the lack of strong gradient features that could 
be tracked from one frame to the next. Dense methods are more robust relative to some changes in object 
intensity and shape because dense methods use more surrounding context for matching features.  

In a parallel effort, a Deep Learning model was applied to the development data set. The open-source 
machine learning library TensorFlow was used to build a convolution neural network and train it on a 
portion of the data set. This type of neural network must be trained on labeled data to generate a model 
for classifying new data. For this video analysis, the inputs to the network were the individual video 
frames, labeled as “fish” or “no fish”. A subset of the labeled data (video frames) was selected at random 
to train the network and the resulting model was tested on the remaining data. This process was repeated 
over multiple iterations, where a new subset of the data was selected for training at each iteration. This 
iterative process is necessary to find the subset of the data that produces the best model. 
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4.2 Results and Discussion 
One project goal was to reduce human labor time, hence the performance objectives were a 90% detection 
rate and a 30% false positive rate. The detection rate is the percentage of actual fish present that are 
detected, and the false positive rate is the percentage of reported detections that are not fish. It was 
important to detect most of the fish at the cost of some false positives because the false positives could be 
sorted out by human analysts, but too many false positives would reduce the benefit of the automation.  

For an initial comparison of the background subtraction algorithms, the recommended parameter values 
for each algorithm were used (Table 4.1). The algorithms were evaluated for how well they correctly 
identified which frames contained fish. A frame was classified as “fish” if it contained one or more 
detections (foreground objects). The algorithms all performed similarly on the test bed data set (Table 
4.2). The best detection rate was 67.51% (ViBE), which was much lower than the goal of 90%. The false 
positive rate was high, but the best true negative rate was better than 57%, which means that over 57% of 
the frames containing no fish were correctly labeled as such. 

Table 4.1. Background subtraction algorithm parameters. 

RPCA ViBE GMM 

Window size = 50 
Interval = 10 
Threshold = 50 

History = 20 
Learning = 50 
Radius = 20 
Match criteria = 2 
Update probability = 1/8 

alpha = 0.02 
threshold = 0.7 
upper difference = 220 
lower difference = 30 

Table 4.2. Background subtraction frame classification results. 

Algorithm 

Percent of Fish 
Frames Correctly 
Detected 

Percent False 
Positives 

Percent True 
Negatives 

RPCA 57.45 92.18 57.60 

ViBE 67.51 91.51 54.48 

GMM 63.79 92.29 52.19 
The figures in bold indicate the best performance between the algorithms. 

The background subtraction alone is not sufficient to meet the performance objectives, but the results 
offer valuable insight into the effects of night and day, the use of lights, and camera placement (see 
Section 7.0 for specific recommendations). The individual videos were analyzed to better characterize the 
algorithm performance under different conditions (Figure 4.4). All algorithms performed best on the 
videos from camera 1 at night, where there was no turbine in view and lights were on but angled away 
from the camera’s field of view. All algorithms performed poorly in terms of false positives on the video 
from cameras 3 and 4 at night. The turbine was in view in both these cameras and the lights were aimed at 
the turbine. All algorithms performed worst on the video from camera 1 during the day, when most of the 
reported detections were false positives and most of the actual fish present were not detected. During the 
day, the fish were in low contrast with the background, so they were more difficult to detect. The lights at 
night reflected off the fish, increasing the fish’s contrast with the background, so they were easier to 
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detect. Floating debris that was similar in size to small fish also reflected the light causing false positives 
(Figure 4.5).  

 

 

Figure 4.4. The detection rate and false positive rate by test video for RPCA (top) and ViBE (bottom).  
The numbers on the scatter plots indicate the number of frames (out of 7500 per video) that contained fish and the 
number in parentheses is the number of Fish Events. A Fish Event is when a particular fish is in view; an event 
usually spans multiple consecutive frames. 
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Figure 4.5. Example frame from camera 4 at night with small fish (a) and the detected objects from 

ViBE (b). The small fish are detected but there are also some false positives from the 
illuminated debris. These false positives were eliminated during post-processing. 

Using the results of the initial evaluation as a baseline, preprocessing techniques were evaluated. The two 
techniques included with the Fish4Knowledge code were histogram equalization and contrast stretch. The 
preprocessing did not add significant computation time, but neither technique improved the performance 
and in some cases had a negative effect. A bilateral filter (Tomasi and Manduchi 1998) is often used in 
photographic applications, and this technique was tested on two of the videos, one from camera 3 and one 
from camera 4. Only two videos were processed because the computation was extremely slow on a 
desktop computer, but the results were promising (Figure 4.6).  

 
Figure 4.6. The raw frames (a) are preprocessed with a bilateral filter to reduce the clutter from debris 

(b).  

The parameters of the best performing algorithm, ViBE, were varied to find the optimal values for the 
Igiugig data set. An exhaustive search for the optimal values of all five parameters was beyond the scope 
of this project, so two parameters with a strong influence on performance, the radius and the match 
criteria, were varied. The radius is the relative difference in intensity between background and 
foreground; a higher value will reduce the sensitivity and a lower value will reduce the precision (more 
false positives). Because detecting all the fish was more important than eliminating false positives, the 
radius was reduced and values of 20, 18, and 16 were evaluated. The match criterion is the minimum 
number of historical values that must fall within a current pixel’s radius to consider the pixel to be 
background. A lower value will reduce sensitivity and a higher value will increase false positives and 
processing time. Values of 2 and 4 were evaluated. The best combination of values was radius = 16 and 
match criterion = 4 (Table 4.3). 

a) b) 

a) b) 
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Table 4.3. ViBE parameter tuning results.(a) 

 Match = 2 Match = 4 

Radius = 18 52% / 39% 70% / 54% 

Radius = 16 55% / 42% 74% / 59% 

(a)  The first number in each cell is the true positive rate and the second number is the false positive rate.  The 
figures in bold indicate the best combination of values. 

A classification model for the detected objects significantly improved the performance by reducing the 
number of false positives. The detected objects were classified as “fish” or “non-fish” based on human 
analysis, and were divided into five size categories. A random sample of approximately 50 of each class 
(~100 observations) in each size category was used to develop a linear discriminant model for each 
category. For each size class, forward-stepping linear discriminant analysis followed by canonical 
analysis was used to determine the best model. Variables considered for the model included the blob size, 
blob solidity, blob eccentricity, and blob intensity. The models were tested on the remaining blobs that 
were not used for model development and the results are shown in Table 4.4. The larger blobs were 
classified most accurately; the accuracy decreased with decreasing blob size. The size of fish that can be 
accurately classified is dependent on their distance from the camera (the same size blob could be a large 
fish further away vs. a small fish close to the camera), and having the capacity to judge distance more 
effectively is discussed further in the Recommendations. 

Table 4.4. Detected object classification results. 

 Fish Non-Fish  

Object Size in Pixels 
(number of fish objects) 

True 
Positive 

False 
Negative 

True 
Negative 

False 
Positive 

Percent 
Correct 

200+ (549) 533 16 3753 63 98.2 

100 – 200 (320) 290 30 12,715 22 99.6 

5 – 100 (2805) 2281 524 61,356 10,369 85.4 

2 – 5 (2114) 1485 629 109,995 23,365 66.3 

Total 4589 1199 187,819 33,819 84.6 

The optical flow was calculated to generate a displacement in the horizontal and vertical dimensions for 
each pixel in the video frames, dx and dy, respectively. The displacements were then used to calculate the 
direction and magnitude of the motion from frame to frame. Direction was defined with 0 being toward 
the right and 180 toward the left. Five points in different regions of the frame were selected, and the 
motion was characterized at those points for one of the videos from camera 4 at night (Figure 4.7). The 
direction of the motion appeared to be uniformly distributed across all directions and the magnitude 
appeared to follow a Weibull distribution (Figure 4.8). Due to the flow of the current from left to right in 
the video, the direction of motion was expected to be concentrated around 0 degrees. The uniform 
distribution that was observed may be due to the small, random motion of the floating debris. It may also 
indicate that the optical flow algorithm was not accurately matching points from one frame to points in 
the subsequent frame, due to the lack of distinctive features in the scene and the algorithm’s bias toward 
small motion. The distribution of the magnitude of the motion shows that most of the calculated motions 
were small, with some outliers. The small motions may be due to debris and noise in the images, and the 
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outliers may indicate darting fish. The results are inconclusive and indicate a more in-depth investigation 
is needed, including testing the use of the bilateral filter for preprocessing to reduce the clutter in the 
scene.  

 

 

Figure 4.7. The detection rate and false positive rate by test video for RPCA (top) and ViBE (bottom).  
The numbers on the scatter plots indicate the number of frames (out of 7500 per video) that contained fish and the 
number in parentheses is the number of Fish Events. A Fish Event is when a particular fish is in view; an event 
usually spans multiple consecutive frames.  
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a) Magnitude vs. Direction b) Magnitude Distribution 

Figure 4.8. The magnitude and direction of motion at five points in the video were characterized using 
optical flow. The direction appeared to be uniformly distributed across all directions (a), and 
the magnitude appeared to follow a Rayleigh distribution that implies the motion in the x and 
y directions are independent (b). 

The best Deep Learning model developed over the iterative learning process achieved 79% correct 
classification of both “fish” and “no fish” frames. This result is promising and on par with the background 
subtraction/blob classification results. This approach could be suitable for batch processing a large 
volume of recorded data, like the Igiugig data set, especially if the processing can be done on a high-
performance computing system of parallel nodes. However, this approach would not be suitable for a 
real-time system because of the computational intensity, and the requirement for training data that is 
specific to the location being monitored. 

5.0 Software 

5.1 Need and Requirements 
EyeSea is a web application that was developed by PNNL to meet the need for a central repository for 
accessing and analyzing the terabytes of video data from the Igiugig project. During the manual analysis 
of the video data it was found that the proprietary format of the video data required the use of the 
vendor’s specific software, which ultimately did not meet the requirements of the analysis team. 
Fortunately, an open-source video encoder (https://ffmpeg.org/) enabled the transcoding of the video data 
to the standard h264 format. This allowed the analysis team to use other more feature-rich software to 
perform the analysis of the video data. There was still the issue of how to make the h264 encoded video 
data available to the analysis team and also how to store results of the video analysis. To solve this issue a 
database-driven web site was designed, called “EyeSea”. This web-based application was developed in 
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parallel with the algorithm development, and was envisioned as the framework for ultimately providing a 
user-friendly front-end to the automated analysis, combining all the analysis tools into one comprehensive 
“human-in-the-loop” system for video analysis. 

5.2 Functionality 
The database was designed to store video metadata (e.g., date, time, location, timezone), analysis results 
(e.g., fish detected, species of fish, location of fish in video frame), and site-specific data (e.g., log-in 
information, batch processing information). Figure 5.1 shows the schema of the database that was 
ultimately implemented in MySQL. 

Once the database had been designed the next step was to implement the web application. Bottle 
(https://bottlepy.org), a web framework for Python, was used to implement the web site. An asynchronous 
architecture was designed to allow users to query video data and later return and view the transcoded 
results. This was necessary to enable users to query videos encompassing large amounts of time without 
causing a browser timeout. Although the website was designed to play back the video inside the web 
browser, an option was added to allow users to download the video to their local machine for later offline	
playback. The website was later extended to allow for in-browser analysis of video. Figure 5.2 shows a 
screen capture example of the in-browser video playback. 

EyeSea was also designed to facilitate batch processing and analysis of video. A set of scripts were 
written that could be deployed on a cluster of servers for parallel processing of multiple videos. The 
servers query the database for jobs to process and communicate to the database the status of the job as 
they are completed. The batch processing feature of EyeSea was used to extract Fish Events for later use 
in the analysis algorithm development testbed. 
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Figure 5.1. EyeSea database schema. 
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Figure 5.2. The EyeSea web application in playback mode. 

6.0 Conclusions 

6.1 Manual Analysis 
The main points derived from the manual analysis of the data are as follows: 

• Manual review of low-quality data is time-consuming. In this data set it took approximately 13–15 
hours to manually review and annotate 1 hour of raw video data. 

• Most interactions between the fish and the turbine occur at night. 
• The frequency of fish interactions does not appear to be affected by whether the turbine is spinning or 

static. 
• Processing subsamples (10 minutes) is likely effective for capturing unbiased event counts, but may 

not be effective for individual fish counts. 
• Reviewer interpretation of Fish and Maybe Events in this data set is similar across two reviewers 

(qualitative analysis), but care is needed when assigning the designation of objects to introduced 
categories (quantitative analysis).  

• Adult fish are qualitatively more likely to avoid collision or strike than juvenile fish. 
• Adult fish are qualitatively more likely to show avoidance behavior as opposed to passive behavior 

relative to juveniles. 
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• More events occur when lights are on than when lights are off. Fish may be attracted to lights, lights 
may increase detection probability, or both.  

• These data demonstrate the use of optical cameras for observing fish interactions with a deployed 
device in an underwater setting; however, improvements could be made with camera specifications 
and lighting parameters to increase the detection probability of fish, in both manual and automated 
review. Doing so may significantly decrease the manual and automated processing time. 

• Observing “definite” vs. “probable” strike or collision is still extremely difficult and more research 
needs to be done to develop technologies or combine multiple technologies to gain confidence in 
determining actual contact with the device. 

6.2 Automated Analysis 

The main conclusions of the automated analysis effort were as follows: 

• Tools available for detecting and tracking fish and other animals in underwater video are lacking. It 
was necessary to develop a new framework for semi-automated, human-in-the-loop analysis of 
underwater video. This framework can be used to test new algorithms and refine existing algorithms 
for automated fish detection and characterization, as well as support human expert analysis and 
standardized, reproducible information reporting. 

• Reducing data volume is the first issue to address with automated processing. Large volumes of data 
are difficult to work with in terms of transferring, storing, and searching. A computationally simple 
background subtraction algorithm (ViBE) detected 74% of the human-identified Fish and Maybe fish, 
and is suitable for use in a real-time system to reduce data volume by saving only video that might 
contain fish.  

• Reducing false positives is the second issue to address with automated processing. A statistical model 
can be used to classify detections as fish or not-fish, such as the one reported here that achieved a 
correct classification rate of 85% overall, and 92% for detections larger than 5 pixels. However, the 
statistical model required labeled training data that took time to assemble from the data and the model 
may not be transferable to other data sets. A classification model based on motion characteristics 
would potentially be more effective over a wider range of data. 

• Underwater video recorded in energetic locations present challenges to automated processing that 
require algorithms specifically designed for this purpose. “Out of the box” algorithms such as those 
provided in the openCV library exhibited limited effectiveness, especially the optical flow techniques. 
Parameter tuning of the background subtraction algorithms did improve performance. 

A combination of the automated detection developed under this project and human analysis could provide 
more accurate Fish Event information than the current practice of sampling, and with less labor time and 
cost than full analysis. Human analysis is currently the “gold standard” for accuracy, but it is very time-
consuming so labor costs can be high and there may be long delays between collecting data and 
generating results. Sampling the video for analysis, e.g. analyzing 10 minutes of every hour reduces the 
labor time but sacrifices accuracy and increases the risk of missing rare events. The automated fish 
detection algorithms developed under this project can be completed quickly, but the resulting information 
is not as nuanced as that provided by human analysts and the detection accuracy is not yet sufficient so a 
“human-in-the-loop” approach is recommended. The automated detection software can be used to 
eliminate most of the video that does not contain fish, and the ensuing human analysis can be limited to 
those segments most likely to contain fish. With the developed processing system, this approach would 
reduce labor time by half over the full analysis, and would improve the reporting accuracy over sampling-
based methods.  
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The performance of the automated processing can be further improved, based on the promising results 
demonstrated here. Future work should include incorporating computationally efficient bilateral filtering 
as a preprocessing stage, an intelligent scheme for parameter selection based on environmental conditions 
and video quality, and the integration of motion features. Further development of the EyeSea software 
should include a learning mode for tuning algorithm parameters using annotations provided by human 
experts. 

7.0 Recommendations 

The analysis of the Igiugig video data, both human/manual and automated, provided valuable insight into 
how to improve underwater video deployments in the future.  

Since PNNL’s review of the video data incorporated different approaches and anticipated outcomes than 
those of the original monitoring plan, recommendations arose regarding the monitoring process and 
methods for making project development and analysis more efficient in future studies. The water in the 
Kvichak River was described as being very clear compared to other rivers in the original monitoring 
report, yet the video data were described in PNNL’s Quality Check Summary Report (Trostle 2016) as 
being “usable”, in that the reviewers would be able to describe fish presence. The declaration of “usable” 
embodies the overall quality of the video data, including the following factors: resolution, frame rate, the 
placement of the cameras and light sources, the field of view, and the settings of the digital video recorder 
camera system. Careful consideration of the anticipated review and analysis objectives should be applied 
when making a camera selection. Those who will be reviewing the data should consider the questions 
they would like to answer and make sure that their camera selection, settings, and placement have the 
potential to address those questions. 

To increase the quality of the video, future studies should use a low lux camera with a higher resolution 
and faster, even frame rate, but be aware that this will increase data accumulation because the files will be 
larger. Higher resolution video data would increase the likelihood that the manual reviewers could 
decipher between Maybe and Fish Events, identify taxonomic classification, and have more confidence 
regarding strike and collision. An increase in frame rate will improve the ability to detect actual strike 
because there would be more frames to describe the interaction around the turbine. It would also allow the 
reviewer, and possibly the algorithm, to use behavior as a qualifier, because sometimes the object would 
move significantly between frames, making behavior difficult to determine. Additionally, in some cases 
an object would only be in the field of view for one or two frames, making it difficult to determine if the 
object was a fish or not. In this study, objects that were only in one frame were not recorded as an event, 
because there was insufficient information to describe or categorize the object. With a more frequent 
frame rate and higher resolution, those objects could be included and give the study a broader picture, 
because the probability of missed events would be lower.  

During manual video review, the reviewers realized that full manual analysis was too time-consuming. 
For this data set it took manual reviewers approximately 13–15 hours to process 1 hour of raw video data. 
A number of factors affect this approximation of time, including light operations, whether it was day or 
night, the number of fish, the behavior(s) of the fish, the amount of debris, the quality of the video, and 
whether or not the turbine was spinning. No 1-hour segment was identical to another in terms of time 
spent by manual reviewers due to the variability in the factors listed above, making the time spent 
extremely inconsistent. For this reason, future studies should be cautious when developing a timeframe 
estimate for manual processing, and reviewers should be wary that the anticipated estimation of time 
spent may change. 

As described in the Quality Check Summary Report, a great deal of work and time was put into 
understanding the methods and settings implemented throughout the study, and converting the video from 
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a propriety format (.par), which was designed to be tamperproof, to a more appropriate format for the 
development of automated processing and analysis (.mp4). A more accessible format, such as .mp4 or .avi 
could be used for ease of use and to enable automated analysis before manual review. 

As PNNL reviewers sifted through the video data, they noticed a variation in the light operations. In 
general, the lights seemed to be on at night and off during the day, with at least one exception on July 19, 
but a light operation record was not maintained during the study. Because there were many more Fish 
Events at night, it is important to get a better understanding of the effect artificial lights have on fish 
behavior (e.g., whether lights attract or repel fish). It is also important to quantify the difference the lights 
make to the physical parameters of detection (e.g., define more robust limits of detection, and define 
optimal placement and settings of light sources and cameras to increase manual and automated detection 
potential). 

Recommendations for future underwater environmental monitoring are listed below: 

• General setup. Include an indication of range within the field of view to help reviewers distinguish 
size and location in relation to the turbine. Also, aim the camera so the field of view is aligned with 
particular turbine components, possibly in combination with sensors on the turbine foils to increase 
the detectability potential and promote a higher level of confidence during potential strike and 
collision events. The aiming of each camera will likely require an iterative process of viewing early 
data and making adjustments to achieve ideal viewings for manual processors as well as ideal 
background for algorithm applications. 

• Video format. A standard format (e.g., .avi, .mp4) should be used, rather than a proprietary format. 
When the video is in a standard format, researchers have a wide array of existing tools that they can 
use for analysis and processing. A proprietary format restricts researchers to using vendor-supplied 
software that often is not designed for the type of analysis required. 

• Camera type. Choose a camera that has underwater capability with high pixel resolution in low light 
conditions, the capability to mount and adjust placement settings, appropriate data storage and 
transmission, and a suitable field of view range for the study area. 

• Camera resolution and placement. The camera resolution will determine the size of objects in 
pixels at a given distance from the camera. Objects that are less than five pixels in total size are 
difficult to detect, both algorithmically and visually. Higher resolution will increase the volume of 
data, but low resolution will restrict the size of fish that can be reliably detected. The size of a fish in 
pixels, along the horizontal dimension, is 

length of fish in meters / meters per pixel 

 The meters per pixel is 

2𝑟 tan 𝛼2
𝑛

 

where r is the distance to the fish in meters, α is the horizontal camera field of view angle, and n is the 
number of pixels in the horizontal dimension. For example, a 10 cm (4 in.) fish would be 10 pixels 
long at 10 m from a 320 × 240 pixel camera with a 20 degree horizontal field of view. This 
calculation will also help determine how far from the turbine to locate the camera. Test the placement 
of the cameras and lights to optimize manual and automated detection probability. Note where the sun 
will be throughout the study and test different angles to avoid glare. 

• Frame rate. Ideally, the frame rate should be constant, meaning that there is a fixed interval of time 
between frames. The Igiugig video had a variable frame rate that resulted in uneven motion of objects 
from frame to frame. Higher frame rates increase the volume of data, but if the frame rate is too low 
the number of frames in which a fish may be in the field of view is decreased, decreasing the 
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probability of detection. A rate of 30 frames per second is a reasonable choice to balance data volume 
with detection likelihood. 

• Lighting. Fish specific to this study are typically more active at night, so some sort of illumination is 
needed if video is the only monitoring technique used. The light also generated more false positives 
from reflecting debris. An indirect light source, like the lighting viewed from camera 1 in the Igiugig 
video may be the best choice. If lights are to be used, the lights should be on throughout the study to 
maintain a more controlled environmental setup, and increase light sources with more angles of 
incidence to prevent fish from disappearing when they turn at an angle that does not reflect light from 
a single source. However, while improving the detection of fish and debris, this practice may also 
introduce possible bias because of the lights themselves increasing detection probability or attracting 
fish, both of which complicate comparisons when lights are turned off or confounded by diel 
differences. 

• Detailed record keeping. The following aspects should be recorded: 

– all monitoring operations, including camera operation, light operation, power operation, turbine 
status, and any other introduced monitoring systems. 

– water flow, weather conditions and any significant events that occurred during the study. 
– any maintenance issues or disruptions throughout the study. 
– review efforts. 

• Other monitoring. Consider adding other monitoring technologies to help determine whether actual 
collision or strike occurred and to have a backup technology for behavioral monitoring. Strain gauges 
or other devices physically attached to the blades of a turbine could be used to complement the video 
data for those times when a collision or strike is possibly seen. Having coincident data sets providing 
evidence of collision or strike would be better than just one. For instance, if a reviewer thinks a strike 
was seen on the video data, the same timestamp could be searched for blade-attached strain gauges to 
see if there was a spike. If there was an anomaly on the strain gauge, then that is more evidence of a 
strike. The absence of strain gauge data would be evidence that the interaction was more likely a 
near-miss. 

To inform future studies, additional research into specific aspects would also be useful, in particular a 
study to assess the effects of lights on fish, in conjunction with an evaluation of light and camera 
placement and settings toward the optimization of detection probability to find an ideal experimental 
design for manual and automated detection. The study would record details of the placement, including 
heading, pitch and roll of both the lights and the cameras, light operations, intensity, wavelength, exact 
range in relation to the device and cameras, as well as camera operations, range, resolution, frame rate, 
and settings. For algorithm development, further research is recommended into different optical flow 
techniques, and the refinement of parameters for the background subtraction. Each of these aspects would 
improve the results derived from future monitoring. Each study site will have specific physical 
characteristics that will affect underwater video camera data collection. However, as research continues 
on future data sets, general application principles will arise that can be applied to most situations. 
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Appendix A 
– 

Manual Annotation 

Annotation Description of Annotation 
Event Reference number per event; restarting for each half-hour block of data 
Date Day video data was collected; yyyy/mm/dd 
File Filename given to each half-hour block of data; includes day and time 
FileStartTime Time that file starts on the given day it was collected 
StartTime Time that an event begins; begins 00:00:000 per half-hour block of data 
EndTime Time that an event ends; ends 29:59:999 per half-hour block of data 
Lights Either on or off; binary 
Spinning Either yes or no; binary 
Camera Designated number of camera; these data only include Camera 2 
Fish? Is the event triggering object a fish; yes, no, maybe 
Number How many objects or fish occur during an event 
Size Size of objects or fish seen during an event; measured as length on 

computer monitor; unidentifiable, small (<0.5 in), medium (0.5–3.0 in), 
large (>3.0 in.); was adjusted relative to monitor screen sizes 

Species Visually identifiable relative size designation or salmon; unidentifiable, 
juvenile, salmon, adult 

VideoQuality Relative anecdotal comparison of each event relative to others based on 
clarity of event triggering object in field of view; horrible, bad, okay, 
good, excellent 

Notes To clarify any previous annotation categories 
Location Where the event triggering object is in the water column; based on 

computer monitor divided into thirds; bottom, middle, top 
Direction All observed directions of the event triggering objects or fish; downstream, 

upstream, cross river toward, cross river away 
Behavior Reviewer description of all object or fish behaviors observed during an 

event. 
• straight across 
• against current 
• pause 
• avoid above 
• through turbine 



 

 

• avoid below 
• avoid reverse 
• out of turbine 
• milling 
• toward static parts 
• through wake 
• avoid around 
• unable to tell 
• other 

Impact Reviewer determination if there was collision or strike during an event 
Comments To clarify any previous categories since “Notes” 

 
A- straight across 
B- against current 
C- pause 
D- avoid above 
E- through turbine 
F- avoid below 
G- avoid reverse 
H- out of turbine 
I- milling 
J- toward static parts 
K- through wake 
L- unable to tell (not shown) 
M- other (not shown) 

A
B

C

D

E

F G
H

I

J

A

K
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Appendix B 
– 

Video Data Set Used for Algorithm Development 

Video File (Date, time, camera) 

Day | 
Appendix 
BLights 

Turbine | 
Spinning | 

None 
Fish 

Events 
Fish 

Frames 
20150719_175830-1.mkv Day None 7 308 

20150720_110030-1.mkv Day None 9 307 

20150722_030200-1.mkv Lights None 30 917 

20150722_030200-2.mkv Lights Turbine 72 878 

20150722_030200-3.mkv Lights Turbine 7 283 

20150723_000330-1.mkv Lights None 2 97 

20150723_000330-2.mkv Lights Spinning 68 519 

20150723_000330-3.mkv Lights Spinning 7 268 

20150723_000330-4.mkv Lights Spinning 8 423 

20150724_000000-1.mkv Lights Turbine 5 499 

20150724_000000-2.mkv Lights None 53 438 

20150724_000000-3.mkv Lights Turbine 10 1007 

20150724_000000-4.mkv Lights Turbine 9 311 

20150825_040330-1.mkv Lights None 3 201 

20150825_040330-2.mkv Lights Turbine 38 467 

20150825_040330-4.mkv Lights Turbine 3 160 

Total   334 7569 
(6%) 
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