PNNL-26197

Pacific Northwest
MNATIONAL LABORATORY

Dynamic Contingency Analysis
Tool (DCAT) User Manual with
Test System Examples

January 2017

NA Samaan M Vallem
JE Dagle T Nguyen
YV Makarov FK Tuffner
R Diao J Conto

B Vyakaranam SW Kang
B Zhang

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
Uniled States Government. Neither the United States Government nor any agency
thercof. nor Battelle Memorial Institute. nor any of their employces, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process. or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed hercin do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
Jor the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DIE-ACO5-76RLMEI0

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728
email: reportsaadonis.osti.gov

Available to the public from the National Technical Infor ion Service
5301 Shawnee Rd., Alexandria, VA 22312
ph: (800) 553-NTIS (6847)
email: orders@ntis.gov <http:/www.ntis.gov/about/form.aspx=>

Online ordering: http://’www.ntis.gov

@ This document was printed on recyeled paper.
(8/2010)

PNNL-26197

Dynamic Contingency Analysis Tool
(DCAT) User Manual with Test
System Examples

NA Samaan M Vallem
JE Dagle T Nguyen
YV Makarov FK Tuffner
R Diao J Conto?

B Vyakaranam SW Kang?
B Zhang*

January 2017

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

! Texas A&M University
?ERCOT

Summary

This document introduces the Dynamic Contingency Analysis Tool (DCAT) software package developed
by the Pacific Northwest National Laboratory and serves as a guide for using this package to conduct
cascading failure simulations. Additionally, the parallel processing module of the DCAT tool, which runs
based on the “MPjobs” package developed by the Electric Reliability Council of Texas, is also
introduced. Detailed instructions on how to use this module on multi-core Windows workstations or
servers are also provided. Full explanation of the DCAT methodology is available in the Phase 1 report

[1].

Section 1.0 lists the system requirements for running the DCAT tool. Sections 2.0, 3.0 and 4.0 describe
how to use the DCAT package, as well as run the parallel processing of the DCAT process: section 2.0
introduces the key functions of different modules or subroutines, and the relationships among them;
section 3.0 describes how to use the DCAT package to run different simulations; and section 4.0 shows
how to use the “MPjobs” package to run parallel processing of the DCAT process.

The detailed introduction of the DCAT package is provided in sections 5.0 and 6.0. Section 5.0 introduces
in detail the different modules in the DCAT package, and section 6.0 gives a detailed introduction to the
module “MainDACT.py”, which is the main module to simulate the potential cascading events in a given
contingency.

Acknowledgments

This project is funded by the U.S. Department of Energy Office of Electricity Delivery and Energy
Reliability (DOE-OE). The project team wants to especially thank Mr. Gil Bindewald, Mr. Ali
Ghassemian Program Managers and Dr. David Ortiz, Former Deputy Assistant Secretary for Energy
Infrastructure Modeling and Analysis (OE-40) for their continuing support, help, and guidance.

The project team appreciates technical support in developing the Dynamic Contingency Analysis Tool
from Siemens Power Technologies staff Mr. Hugo Raul Bashualdo, Mr. Dinemayer Silva, Mr. Jayapalan
Senthil, Mr. James Feltes, Mr. Joseph Smith, and Mr. Krishnat Patil. We would like also to thank
Siemens subcontractor Mr. Eli Pajuelo for his help in protection modeling in PSS/E.

The project team appreciates contributions of the following Pacific Northwest National Laboratory staff:

Dr. Henry Huang, Analytics Subsector Manager

Mr. Yousu Chen, Peer Reviewer

Mr. Dale King, Project Management Office Director

Mr. Carl Imhoff, Electricity Infrastructure Market Sector Manager
Ms. Maura Zimmerschied, Technical Editor

Ms. Carla Raymond, Project Specialist

ACCC
API
DCAT
IDE
PSS®E
SPS

Acronyms and Abbreviations

AC contingency calculation

application program interface

Dynamic Contingency Analysis Tool
integrated development environment
Siemens PT1 PSS®E Power Flow software
special protection system

Contents

ST 0 1T T PSSR iii
ACKNOWIBAGMENTS. ...ttt e sttt e bt s et e e e sbees e e seeeeeeneesaeeneeseaseeneesreeneeseeaneas iv
ACronyms and ADDIEVIALIONScoiiiiiiii ettt e re et re et ra e e nrs v
1.0 SyStemM REQUITEIMENTS ...ttt b b r et nb e nn e n s 1.1
2.0 Introduction t0 the DCAT PACKAGEc.ceviiiriiiriieieieie e 2.1
3.0 HOW t0 USE the DCAT PACKAGEecviiieieieiie st ctie sttt sttt sttt sta et et e st saesteenaenaeaneas 3.1
3.1 Options fOor RUNNING DCAT ..ot 3.1
3.1.1 Run Using Eclipse or Other IDE (recommended)...........cccoovveieieneeiese e, 3.1
3.1.2 Run Directly from PSS®E GUIcccociiiiiiic et 3.1
B0 e | (-3 X 1= TSR 3.4
KR B O N o (=T o Lo PSSR 35
3.3.1 Convert and Modify the Base CaSe........ccccverueiiiiieieiiee s se e 35
3.3.2 Generate the “.SNP” FIlE ..o 35
34 RUN FIAE STAIM ...t ettt bbbttt 3.6
3.5 SIMUIALE CONTINGENCIES......eiuiiiieiieieiiiee sttt 3.6
3.5.1 Traditional Dynamic Simulations (no cascading OULAJES)ccevvrererereriereeiesieniennes 3.6
3.5.2 Modeling of Cascading Outages through DCAT RUNccccoovvieiiiiiie e 3.7
3.6 DCAT Examples and Simulation Results on a PSS/E Test System.........c.cccovevereicivinnenn. 3.11
3.6.1 Example 1: Not a Close-In Fault in Pilot Scheme Line — Using Fictitious Node......... 3.13
3.6.2 Example 2: Not a Close-In Fault in Step Distance Line — Using Fictitious Node 3.15
3.6.3 EXamPple 3: BUS FAUIT ..o 3.16
3.6.4 Example 4: Bus Fault Leads to BIaCKOULccccoveiiiiiiciisece e 3.18
3.6.5 Example 5: Activation of an SPS/RAS ..o 3.22
4.0 Parallel Computing Of DCAT RUNouviiiiiie e 4.1
4.1 Basic Structure and FIOW Of “MPJODS™ ..o 4.2
4.2 Configurations Needed for “MPjobs” t0 RUN DCATccooiiiiiiiieiceeee e 4.3
A R o= o T T I =1 (1 oSSR 4.3
4.2.2 Configuration of the “.ini” FIlEccooiiiiiiii e 4.5
4.2.3 Configuration of the Main Python Script to Run PSS®E Simulation..............cc.cccceeeee. 4.6
4.3 Run Parallel Computing 0f DCAT PrOCESS........coviiiieieseeie st se e ste e sre e sre e sne e 4.6
4.4 S0me NOES 0N “MPJODS™ ..o 4.6
4.5 Example of USING “MPJODS” ..o 4.7
5.0 Introduction of Different Python Modules in the DCAT Packagecccevveviiievieiiicie e 51
5.1 *“Supportingtools.py” (SUPPOIING FIlE)ccoeiiiiiiiiiiieee e 5.1
5.2 “ReadLogFile.py” (Extract Information from “.10g” File).........ccccovevveiiiiiiiiiiiece e 51

5.3 “Make_DYR_withPNNLrelays xx.py” (Obtain “.sav” File and “.snp” for Subsequent
SIMUIALIONS) 1.ttt et a e s te e s e sbesteesbesreere e besre e e entenneens 51

vii

5.4 “RunFlatStart.py” (RUN FIat STAr)........cccceiiiieiiie e 5.2

5.5 “RunTestFault.py” (Dynamic Simulation Given a Certain Contingency)ccccoevvvvevverieane. 5.2

5.6 “MainDCAT.py” (Main DCAT Process Given a Certain Contingency)ccceevevrerenennenn 53

5.7 “CoNfIgUIAtioN FIlE”ociiie e enes 5.3
6.0 Introduction OF “MaiND C AT .PY” ..ot 6.1
6.1 Main FIOW Of “MaiNDCAT.PY” ..ot 6.1
6.2 SUDroULINES IN “MaiND C AT DY oottt et s re e be e e e nreenes 6.1
6.2.1 “RunDynamiCSIMUIALION"cciiiiiieieisest e 6.1

6.2.2 “ISDISCONNECIEAeiieeieiieiieti ettt sttt b ettt bt e 6.2

6.2.3 “Check NDM _ISIand”ccooiiiieie st 6.2

6.2.4 “CheCKOSEIVICEBUS”........i ittt sttt sttt sae et e e s ae s et sre e e e nneaneens 6.3

B.2.5 ST SP S ittt e 6.3

6.2.6 “SPS_WIIEIDVFIIR” ...ttt ettt 6.4

B.2.7 “FINAVITLINE™ .ottt ettt sre st et e e neeseareanente e 6.4

6.2.8 “MOUITYCONFIIE”oiciiiie e et re e resne s 6.5

6.2.9 “TeSt_COITECIVEACTIONottt re et sre e neeanens 6.5

6.2.10 “FINAZONES ...ttt bbb ettt bttt e 6.6

6.2.11 “CheCKOVEITIOWcuiiieieeiee bbb 6.6

6.2.12 “RemMOVEOVEITIOWLINE™coiiiee ettt see e e 6.7

B.2.13 “ATIEID C AT ettt ettt bttt 6.7

7.0 RETEIEICES ...ttt bbbt b bbb bbb e s e bt bt b st bbb e r e 7.1

Appendix A — Modeling of Protection in Dynamic Simulations Using Generic Relay Models and SettingsA.1

viii

Figures

Figure 2.1. Relationship among Different Python Modulescocooiiiiiiiien e, 2.2
Figure 3.1. Selections for Running PSS®E Directly from The GUIccccoiiiiiiiiiiicee 3.2
Figure 3.2. Main Steps for Running DCAT PaCKAQE.........ccceiveieiiiieie st 3.3
Figure 3.3. Example of One Typical “.iav” File.........ccoiiiiiiiiiicc s 3.7
Figure 3.4. One-Line Diagram Of the TeSt SYStEMccviiiiiiiiicce e 3.13
Figure 3.5. A Fictitious Bus between Buses 151 and 152cccccvevveiiiieveiecie e 3.14
Figure 3.6. Voltage Plots of the Terminal Buses of the Faulted Line for Test 1.........cc.cooiiiiiinine. 3.15
Figure 3.7. Channel PIOt fOr TESE 2.....iciiiiii ettt sttt re e 3.16
Figure 3.8. Channel Plot for Voltages at Buses 201 and 202ccccveveveveeiiese s 3.17
Figure 3.9. Channel Plot for Voltage at BUS 211ccooiiiiiiiiiieeieee e 3.18
Figure 3.10. One-Line Diagram of Test System to Show Sequence of Trippingccccovevvevvvveriernenne. 3.19
Figure 3.11. Channel Plots for Voltages at Buses 101 and 102...........cccccvevevveiieieiecrie e 3.21
Figure 3.12. Channel Plots for Speeds of Machines 3018, 206, 3011, and 211cccocveveiviierirnennne 3.21
Figure 3.13. Example 5: Branch FIOWS..........ccooiiioiiiecc sttt 3.22
Figure 3.14. Sequence of Events Performed by DCAT for Example 4 ... 3.22
Figure 4.1. Main Idea of DCAT Parallel COMPULING........cccciiiiiiiiiiciee s 4.1
Figure 4.2. Preliminary Test Results 0f “MPJODS”ccccoiiiiceie e 4.2
Figure 4.3. BasiC FIOW OF “MPJODS ..ot e 4.3
Figure 4.4. xvars Setup for Parallel Computing of DCAT FUNccccveiviiiiiiece e 4.4
Figure 4.5. yvars Setup for Parallel Computing of DCAT FUNccciiiiiiiiiiccc e 4.4
Figure 4.6. Configuration of the “mpJobs.ini” File........c.coiiiiiiiice e 4.5
Figure 4.7. HOW t0 RUN The PrOQIaMooi ittt ettt sttt st be e e nne e 4.6
Figure 4.8. Detailed Hierarchy of New FOIAEIS.........ccooiiiiiiiiicce e 4.8
Figure 4.9. Detailed Configurations on “cases.Ist” and “sh.ISt” ... 4.9
Figure 5.1. How to Disable Extracting Some INfOrmationccoceviiiiiiiiiie i 5.1
Figure 6.1. Illustration of Main FIOW of “MaiNDCAT.......cooiiiireieee s 6.1
Figure 6.2. Illustration of Main Flow of “RunDynamicSimulation”..............cccccoviiieiieiie s, 6.2
Figure 6.3. Illustration of Main FIOW OF “TeSt SPS™cii it 6.4
Figure 6.4. Illustration of Main Flow of “Test_CorrectiveACtIoN”cccooviviirinineiceeese e 6.6
Figure 6.5. Ilustration of Main FIOW of “AfterDCAT ... 6.8

Table 2.1.
Table 3.1.
Table 3.2.
Table 3.3.
Table 3.4.
Table 3.5.
Table 3.6.
Table 3.7.

Tables

Python Modules and Configuration File in the DCAT Package.........cccooveeviviieeieieiieeenen 2.1
Make DYR_withPNNLrelays XX.pY OPLiONScc.oooiiiiiiiiieieiesie e 35
Comparison between Simulation EXamplesccccevviieieieiecse e 3.12
Relay Trips SUMMArY OF TESE 3. ..o 3.16
Tripping Action Details Of TESE 3 ..o e 3.17
Relay Trips SUMMAry Of TESE 4ocviiiiiii e 3.18
Tripping ACtion Details Of TEST 4c..ooviiiiiieiee e 3.20
Generation and Load Loss Summary for EXample 5. 3.23

1.0 System Requirements

The system requirements for running the Dynamic Contingency Analysis Tool (DCAT) package are as
follows:

o Windows 7 or later (64 bit)
e Siemens PSS®E 33.7
e Python 2.7

“NumPy:

“NumPy” is a fundamental package for scientific computing with Python. Follow the download
instructions on the NumPY web page: https://sourceforge.net/projects/numpy/files/NumPy/1.9.2/.

— Eclipse or another integrated development environment (IDE) is highly recommended.

o The recommended Eclipse packages are

o Eclipse IDE for Eclipse Committers 4.5.2. Follow the download instructions on this
version web page:

http://www.eclipse.org/downloads/packages/eclipse-ide-eclipse-committers-452/mars2

o Eclipse IDE for Java EEE Developers. Follow the download instructions on this version
web page:

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/mars2

— Link Eclipse with PyDev to run Python script as PyDev project. PyDev requires Java 7 in order to
run.

11

https://sourceforge.net/projects/numpy/files/NumPy/1.9.2/
https://en.wikipedia.org/wiki/Integrated_development_environment
http://www.eclipse.org/downloads/packages/eclipse-ide-eclipse-committers-452/mars2
http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/mars2

2.0 Introduction to the DCAT Package

The DCAT package, developed by Pacific Northwest National Laboratory (PNNL), consists of seven
major Python modules and one configuration file, as listed in Table 2.1.

Table 2.1. Python Modules and Configuration File in the DCAT Package

File Name

Description

Supporingtools.py

ReadLogFile.py

Make DYR_withPNNLrelays xx.py

RunFlatStart.py
RunTestFault.py

MainDCAT .py

RunFlatStart_Config.ini

set DCAT _path.ini

This module defines some useful subroutines and serves as a supporting
library to be used by other DCAT modules.

This module defines several useful subroutines for extracting tripping
information from the PSS®E simulation log file, and serves as a support file
to be called by other modules.

This module creates “.sav” files and snapshots, “.snp” with converted
models for the subsequent simulations. “_xx” corresponds to example
number. For examples from 5 through 5 “_xx should be replaced by “ 35”.
For example 1 and 2, “_xx” should be replaced by “ 01” and “_02”,
respectively.

This module runs a flat-start dynamic simulation using a given case.

This module runs dynamic simulation of a given contingency with a given
case.

This module is the main function of the DCAT tool, and simulates the
potential cascading events in a given contingency.

This configuration file sets up the parameters needed for the subsequent
simulations. This file is only to run “RunFlatStart.py” and
“RunTestFault.py”.

This configuration file provides the necessary path linking to

contingency definition settings and output folders for running
“MainDCAT.py”.

2.1

The relationship and the sequence of running the above modules are shown in

“ReadLogFile.py” Supporting files set_DCAT_path.ini

; Providing Settings
“Supportingtools
-py” Make_DYR_withPN

Nirelays xxpy — > MainDCAT.py”

v

i “RunFlatStart.py”
RunFlatStart_Config.ini l The step is not mandatory. This is only to

make sure the settings are fine. Python
), ” module “MainDCAT.py” can be called
RunTestFault.py

directly to conduct a full run of DCAT

Providing Settings

Figure 2.1. Relationship among Different Python Modules

The configuration file “RunFlatStart_Config.ini”” provides the necessary settings for running the modules
“RunFlatStart.py” and “RunTestFault.py”. The module “RunFlatStart” is not mandatory. This step is
designed to make sure settings in the model files are correct before running any contingencies or
cascading failure analysis in DCAT. After the “.sav” and “.snp” files are generated, the users can choose
either to run the dynamic simulation “RunTestFault” for a single contingency simulation or to run the full
DCAT process for cascading failure analysis, in “MainDCAT”.

2.2

3.0 How to Use the DCAT Package

3.1 Options for Running DCAT

3.1.1 Run Using Eclipse or Other IDE (recommended)
From our own experience, it is highly preferable to run DCAT from an IDE (Eclipse, for example).

Eclipse is an IDE that provides powerful code editing and debugging tools. Eclipse requires the PyDev
extension to properly develop Python code.

3.1.1.1 Steps to Install PyDev
o From the menu of Eclipse, select “Help/Check for Updates” and install updates if necessary.
o Select “Help/Install New Software”.
o Enter http://pydev.sf.net/updates/ in the “Work with” box and click “Add...”
o Select “PyDev” and click “Next”.
o Follow directions and click “Finish”.

o Select “Window/Preferences”. In this window, select “PyDev/Interpreters” and choose “Python
Interpreter”.

o At the top of the preferences pane, click “New...” and locate your installation of Python (python.exe)
e Click “Apply” and then “OK”.

3.1.1.2 Steps to Create a Python Project
o Click “File/New/PyDev project”.

o Enter the project name and click “Finish”.

3.1.1.3 Steps to Run Python within Eclipse
o Copy all Python and related files into the Python project folder.
¢ Right click on the Python file (.py file) you want to run.

e Chose “Run As/Python Run”. After you have run the code once, you can press the green “Run” arrow
at the top of the Eclipse window to run it again.

3.1.2 Run Directly from PSS®E GUI

If the Python modules are being run directly in the PSS®E graphical user interface (GUI), two settings
need to be modified:

1. In“Program Preferences”, uncheck “Enable interactive data checking” as shown in the upper panels
of Figure 3.1.

3.1

2.

In “Dynamic Simulation Options”, uncheck “Enable checking” as shown in the lower panels of
Figure 3.1.

i File [Edit | View PowerFlow Misc UO Control Tools Help
A Reset all dialog options to defaults ;e a 5
Reset Workspace

K Solution parameters...
. ﬂﬂ Simulation options...
9 Simulation

Define simulation output [CHAN)
I 4f} Define simulation output by subsystem [CHSB)
Delete all output channels
ﬁi Model maintenance...
List »
[? Launch NEVA Eigenvalue analysis
L] Build matrices for LSYSAN program (ASTR)...

Output options
[7] Create a new tab for every report Ouputfontsize 80 5

[¥] Limt cutput windows to 10000 ines of text

Auto-Save option
[] Automatically save the case every |10 | minutes

[7] Use the case name to Auto-Save. rather than "PsseTempSave sav”
Auto bus and equipment numbering
@ i buses, lines, and

Inkidl bus number 1 Incrementbusby 100 |+

General options
(5] Ay prompt to “Sove” madiied s Uncheck this option
Spreadsheet Interactions

[¥/] Use regional settings to fornat numbers
Inttialize subsystems when opening case

z)

Configuration file text edtor
C:\Windows\NOTEPAD.EXE

nww“&n - = e X
[T Network frequency dependence [Scan circuts against generic relay zones
[7] Scan for out-of-step condtions [7] Scan for buses outside of voltage range.
B (15| Vetagemax gu)
orkorentity (050 | Vokagemin pu)

[7] Scan for generators exceeding angle threshold

[180.00 | Angle threshold (degrees) 000 | MBASE threshold (MVA)

[]Scanfor ding

power
[110 | Power unbalance threshold (pu)
] Set relative machine angles Bus (Number) Machine ID

Relative to machine [| [Select.. |

(@) Relative to system average angle
Relative to system weighted average angle

Uncheck this option
Dynamic voltage vidlation checks Ct intialization
[Primary votage recovery criteria
(080 | puvokage (v1)

[0a0 | dustionofdp-sect)

[Secondary woltage recovery crieia

050 W%V";':#W 100 duration of dip - sec 12)
[Z] Voltage dip check

[080 | puvotagevy 020 dusation of dip - sec #3)

[7] 5can only buses in the active bus subsystem

Figure 3.1. Selections for Running PSS®E Directly from The GUI

3.2

The following section describes how to use the DCAT package. There are five main steps to use the
DCAT package, as illustrated in Figure 3.2. Sections 3.2 to 3.5 provide detailed instructions. Section 3.6
shows some examples and results.

Step 1: File Check Step 5: Complete DCAT
Process
‘L set_DCAT_path.ini
Step 2: Case Preparation ﬂ
Make_DYR_withPNNLrelays_xx.py ——— “MainDCAT.py”

Get “*.sav” and “*.snp” files
Full DCAT process, simulates the
P potential cascading events for a

1 /Z given contingency
¥ c 7
< v
Step 3: Run Flat Start Vs l
v /
“RunFlatStart.py” /
/ Step 6: View Result
RunFlatStart l 7
_Config.ini / 4
% Step 4: Simulate Fault,

“RunTestFault.py”

The Steps 3 and 4 are not

Run dynamic simulation mandatory. Python module

for a given contingency “MainDCAT.py” can be called
directly to conduct a full run
of DCAT

Figure 3.2. Main Steps for Running DCAT Package
Step 1: File Check

This step is to make sure that all files needed are ready and located in the correct folders. Section 3.2
provides more detailed instructions on this step.

Step 2: Case Preparation
This step is designed to prepare the converted “.sav” file and *“.snp” file for the dynamic simulations. The
Python module involved in this step is “Make_DYR_withPNNLrelays_xx.py”. Section 3.3 provides more

detailed instructions on this step.

Step 3: Run Flat Start

This step is not mandatory, and the purpose of this step is to make sure the case prepared in Step 1 is
working well before any simulation is conducted. The Python module involved in this step is
“RunFlatStart.py”. Section 3.4 provides more detailed instruction on this step.

3.3

Step 4: Simulate Contingency

This step is to simulate the contingency in a dynamic simulation. The Python module “RunTestFault.py”
will perform dynamic simulation for a specified contingency without cascading to other steps of DCAT.

Step 5: Complete DCAT Process

Python module “MainDCAT.py” is to conduct not only a single-stage dynamic simulation, but also the
simulation of potential cascading events in a specified contingency. Section 3.5 provides more detailed
instruction on this step.

Step 6: View Result

The main results include “.out” files generated during the dynamic simulation, “.log” files that record the
process of the simulation, and “.csv” files that extract the main information during the simulation. The
results will be saved in the folder “RESULTSs” as default. (Users can change the path to save the output
files through the configuration file).

3.2 File Check

Before starting to run any Python modules in the DCAT package, please make sure that the following
files exist in the correct folder:

Under the main code folder “Main Data”
e The “.idv” file specifying the contingency
o The “.inl” file to be adopted in the inertia power flow
e The “.sub” file to be adopted in the alternating current (AC) contingency calculation (ACCC) process

e The “.mon” file to be adopted in the ACCC process

Under the subfolder “CASEs”

e The “.sav” file (serves as the base case file) that is going to be processed and converted in the
“Make_DYR_withPNNLrelays xx.py”

Under the subfolder “DYRSs”

e The “.dyr” files (relay settings, etc.) that are going to be adopted in the
“Make_DYR_withPNNLrelays xx.py”; the details on how to set up the “.dyr” files can be found in
Appendix A.

The files mentioned above are among the most important ones to be checked. It is recommended that

other files that are to be adopted in the Python modules for other purposes be checked (especially when
new files are to be adopted).

3.4

3.3 Case Preparation

3.3.1 Convert and Modify the Base Case

The Python module “Make_DYR_withPNNLrelays_xx.py” should be called to convert the power flow
model and to modify any topology or network parameters. Please note the following:

1.

4.

The text parameter “logfile” in the file ‘config.ini’ sets the name of the “.log” file to be generated, and
it can be modified according to users’ needs.

When loading the PSS®E case, make sure that the name of the “.sav” file is correct.

After calculating the power flow, the program then modifies the base case. Any modification to the
base case should be made in the module “Make_DYR_withPNNLrelays_xx.py”. PNNL made some
changes to the base case including the modification on the tap-ratio, rating of some transformers and
the rate C of the branches. Those changes can be easily disabled by simply “commenting” them.

Finally, the converted case will be saved.

Note: the DCAT package has “Make_DYR_withPNNLrelays_01.py”,
“Make_DYR_withPNNLrelays_02.py” and ““Make_DYR_withPNNLrelays_35.py” modules. The user
has to choose and run the correct “Make_DYR_withPNNLrelays _xX.py” script as shown in Table 3.1.

Table 3.1. Make_DYR_withPNNLrelays _xx.py Options

File Name Examples
Make_DYR_withPNNLrelays _35.py 3 through 5
Make_DYR_withPNNLrelays 01.py 1
Make_DYR_withPNNLrelays _02.py 2

3.3.2 Generate the “.snp” File

The Python module “Make_DYR_withPNNLrelays _xx.py” should be called to generate the “.snp” file.
Note the following:

1.

The text parameter “logfile” in the file ‘config.ini’ sets the name of the “.log” file to be generated, and
it can be modified by users.

Make sure that the previously converted and saved “.sav” file is loaded here.

New “.dyr” files, if any, can be added in this Python module. If the new file is appended before
“psspy.dyre_new”, a new compilation will be needed after this module is executed. Otherwise, there
is no need to compile the file. It should be noted that psspy.dyre_new that is one of the APIs to clear
dynamics working memory, read a Dynamics Data File, and place the model references specified on
its data records into dynamics working memory (activity DYRE).

After adding the “.dyr” files, some modifications will be conducted. Any new modifications related to
the dynamic data can be put here.

Finally, the “.snp” file will be saved, and the name of the file can be modified by users.

35

3.4 Run Flat Start

This step is not mandatory, as mentioned above. “RunFlatStart_Config.ini” and “RunFlatStart.py” are
mainly involved in this step, and “RunFlatStart_Config.ini” provides the necessary settings for running
“RunFlatStart.py”, which should be called to run a flat start to check whether the preparation of the case
files is appropriate. The parameters necessary for running flat start in “RunFlatStart_Config.ini” are the
following:

1. “logfile_flatstart”: this specifies the name of the “.log” file to be generated.

2. “savefile_flatstart”: this is the “.sav” case file for the simulation, and it should be the file generated in
Section 3.3.1.

3. “snapfile_flatstart”: this is the “.snp” file for the simulation, and it should be the file generated in
Section 3.3.2.

“outfile_flatstart™: this specifies the name of the “.out” file to be generated.
“Time_parameter_flatstart”: this determines the time duration of the dynamic simulation.

“timestep_flatstart”: this specifies the simulation time step for the flat start.

N o o &

“filter_flatstart™: this specifies the filter time constant used in calculating bus frequency deviations for
the flat start.

After finishing the parameter configuration, one can run “RunFlatStart.py” to run the flat start, and the
“.log” file and the “.out” files, which will be generated in the main folder, can be checked to see whether
the preparation of the case file is appropriate.

3.5 Simulate Contingencies

3.5.1 Traditional Dynamic Simulations (no cascading outages)

“RunFlatStart_Config.ini” and “RunTestFault.py” are the main modules involved in this step, and
“RunFlatStart_Config.ini” provides the necessary settings for running “RunTestFault.py”, which can be
called to simply conduct a dynamic simulation for a specified contingency. The parameters necessary for
running “RunTestFault.py” in “RunFlatStart_Config.ini” are:

1. *“savefile_testfault”: this is the “.sav” case file for the simulation, and it should be the file generated in
Section 3.3.1.

2. “snapfile_testfault”: this is the “.snp” file for the simulation, and it should be the file generated in
Section 3.3.2.

“log_file_testfault”: this specifies the name of the “.log” file to be generated.
“outfile_testfault”: this specifies the name of the “.out” file to be generated.
“Time_parameter_testfault”: this determines the time duration of the dynamic simulation.

“timestep_testfault”: this specifies the simulation time step for the dynamic simulation.

N o g b~ w

“filter_testfault”: this specifies the filter time constant used in calculating bus frequency deviations
for the dynamic simulation.

3.6

8. *“idvfile_testfault”: this parameter specifies the “.idv” file in which the contingency is applied. One
typical “.idv” file is shown in Figure 3.3. In this contingency, the dynamic simulation first runs to
5 seconds, as circled in red, and this number can be modified if needed. Then the fault condition is
described from line 3. User can find those details in PSS/E API [2]. The upper case letters are Batch
command syntax.

3 initiating_event_201.idv - Notepad - O
File Edit Format View Help
aT_Run e(5)e 15 @ ~

BAT_TIME @

BAT_DIST_BUS_FAULT,201,1, ©.0,0.0,-8.2E+10
BAT_RUN,®, 5.16,0,15,0

BAT DIST CLEAR FAULT,1

BAT RUN,®,15,0,15,0

Figure 3.3. Example of One Typical “.idv” File

After the parameter configurations are finished, “RunTestFault.py” should be called to run the dynamic
simulation. The “.log” file, the “.out” files, and the “.csv” file, which will be generated in the main folder,
can be checked to see the simulation results.

3.5.2 Modeling of Cascading Outages through DCAT Run

In the main code folder “Main_Data”, “set DCAT _path.ini” and “MainDCAT.py” are involved in this
step to run DCAT simulation. “set_ DCAT _path.ini” provides the necessary path linking to contingency
definition settings and output folders for running “MainDCAT.py”.

The corresponding program settings are located in the “Config.ini” file, in the example subfolders, e.g.,
“Examples\Test_system\Examplel\”. After modifying the parameter configuration in “Config.ini”, if
necessary, the Python module “MainDCAT.py” can be called to conduct a full run of the DCAT
procedure, which conducts not only the dynamic simulations, but also potential cascading failure analysis
for extreme contingencies. Section 3.5.2.2 talks about some further modifications that might be needed by
the users; however, the modifications are not needed for a basic DCAT run.

3.5.2.1 Parameter Configurations in “Config.ini”
Before running “MainDCAT.py”, the following parameters could be modified in the file “Config.ini”:

Parameters related to dynamic simulation
e “Time_parameter”: this determines the time duration of the dynamic simulation.

o “MaxNumlter”: is the maximum iteration of dynamic simulation convergence that will be checked to
verify if steady state is reached.

e “timestepl”: is the simulation time step.

o “filterl”: is the filter time constant used in calculating bus frequency deviations.

3.7

Parameters related to judging the steady state

e “TOL”: this determines the tolerance of judging whether the dynamic simulation has reached the
steady state.

e “ck_settle_time”: for example, if ck_settle_time = 2, beyond the dynamic run for “Time_parameter”
seconds, the simulation results of the previous 2 seconds will be scanned every 2 seconds, and the
largest differences will be compared with “TOL” to judge whether or not the steady state has been
reached.

Parameters related to judging the overloading

e “PER”: the threshold to judge overloading; e.g., if PER = 100, this means the threshold will be 100%
of the line rating.

e “RATE_overloading”: defines which rating of the line will be adopted to judge the overloading:
PCTMVARATEA stands for rateA, PCTMVARATEB stands for rateB, and PCTMVARATEC
stands for rateC. Refer to [2] for other options. (Note: rate C is adopted here. During case preparation
step, the Python module “Make_DYR_withPNNLrelays _xx.py” modifies the rate C of the branches
to be the minimum of 130% rate A and 115% rate B, based on common industry practice for longer
time allowed overloading).

Parameters related to the PSS®E base case files

o “savefile”: this is the “.sav” case file for the simulation, and it should be the file generated in
Section 3.3.1. Note that the path, as well as the file name, should be provided, if the file is not located
in the same folder as “MainDCAT.py”.

o “snapfile”: this is the “.snp” file for the simulation, and it should be the file generated in
Section 3.3.2. Note that the path, as well as the file name, should be provided, if the file is not located
in the same folder as “MainDCAT .py”.
Parameter related to the file needed for running the inertia power flow
o “inlfile™: this specifies the “.inl” file that is needed for running the PSS®E inertial power flow
(INLF). Make sure that the correct “.inl” file exists in the same folder as “MainDCAT.py” does.
Parameter related to the file needed for running the inertia power flow

e “sub_file”: this specifies the name of the “.sub” file that is to be adopted for the ACCC process. This
file will also be used to generate a subsystem, where the overloading check is conducted. Make sure
that the correct “.sub” file exists in the same folder as “MainDCAT.py” does.

o “mon_file”: this specifies the name of the “.mon” file that is going to be adopted for ACCC process.

Parameter related to the initial contingency file

o “idvfile”: this specifies the “.idv” file that describes the initial contingency (initiating event) in the
first iteration of dynamic simulation.

Parameter specifying the name of the “.out” file to be generated

o “outfile”: this specifies the name of the “.out” file.

3.8

Parameter specifying the names of the “.log” files to be generated

The following parameters specify the names of the “.log” files to be generated. If the names are set to be
the same, this means the process of all iterations of a DCAT run will be recorded within one log file. They
can also be set differently to record the different processes.

o “logfile”: (logfile: initiating_event.log)

This “.log” file records the information of the first iteration of dynamic simulation and also the SPS
checking process.

o “logfile2”: (logfile2: initiating_event_promptoutput.log)

this “.log” file records the prompt information of the first iteration of dynamic simulation and the
associated SPS checking process.

o “logfile_corr”: (logfile_corr: initiating_event.log)
this “.log” file records the ACCC process during the first iteration of a DCAT run.
o “logfile_after”: (logfile_after: initiating_event.log)
this “.log” file records the process of the later iterations of a DCAT run.
o “logfile2_after”: (logfile2_after: initiating_event_promptoutput.log)
this “.log” file records the prompt information in the later iterations of a DCAT run.
Parameter specifying the names of the temporary files or intermediate files
The following parameters set the names of some temporary files or intermediate files produced during the
DCAT run. They do not need to be modified if DCAT is not to be run for particular purposes.
o Parameters related to temporary files in the SPS checking process
— “SPS_logfile”,:(SPS_logfile: test_ SPS.log)
This log file records the SPS checking process in the first iteration.
“SPS_logfile_after”: (SPS_logfile_after: test SPS.log)
This log file records the SPS checking process for the later iterations.

Both these SPS log files can be specified with the same name or with different names to record
separately. These log files will be finally copied and written into the total log file.

— “spsfile”: (spsfile: SPS_actionl.idv)

This file specifies the .idv file to record the SPS action in the first iterations of DCAT runs
— “spsfile_after”: (spsfile_after: SPS_actionl aftercontingency.idv)

This file specifies the .idv file to record the SPS action in the later iterations of DCAT runs
— “idvfile_react_SPS”,:(idvfile_react_SPS: idvfile_react SPS.idv)

This file specifies the “.idv” file generated, in the first iterations of DCAT runs, to reflect the SPS
action to be utilized in the subsequent dynamic simulation.

— “idvfile_react_SPS_after”: (idvfile_react_SPS_after: idvfile_react_SPS_aftercontingency.idv)

3.9

This file specifies the “.idv” file generated, in the later iterations of DCAT runs, to reflect the
SPS action to be utilized in the subsequent dynamic simulation.

“returnfile_sps”: (returnfile_sps: \Cases\AfterDynamicSim_sps.sav)

This file specifies the “.sav” file returned after the SPS checking, in the first iterations of DCAT
runs, is finished.

“returnfile_sps_after” (returnfile_sps_after:
\Cases\AfterDynamicSim_sps_aftercontingency.sav):

This file specifies the “.sav” file returned after the SPS checking, in the later iterations of DCAT
runs, is finished. This file will be used in the subsequent dynamic simulation immediately after
the SPS checking.

Parameters related to temporary files in the ACCC process

“confile”: (confile: temp.con) To specify the name of the “.con” files to be generated for ACCC
process.

“dfxfile”: (dfxfile: test_corrective_actions.dfx)
This file specifies the “.dfx” file in order to run ACCC analysis in the first iteration of DCAT run.
“dfxfile_after”: (dfxfile_after:test_corrective_actions.dfx)

This file specifies the “.dfx” file in order to run ACCC analysis in the later iterations of DCAT
run. These files can be either set to the same or different names according to the purposes.

Parameters related to intermediate case files (These case files are saved in the process of the DCAT
runs).

“returnfile”: (returnfile: \CASEs\After_dynamic_raw_file.raw)

The file specifies the name of the “.raw” file returned after the dynamic simulation in the first
iteration of DCAT.

“returnfile_sav” (returnfile_sav: \CASEs\AfterDynamicSim_corr.sav)
or “returnfile_raw”: (returnfile_raw: \CASEs\AfterDynamicSim_corr.raw)

these specify the network files to be returned after the ACCC in the first iteration of DCAT. The
“returnfile_raw” file is going to be utilized in the subsequent iterations of DCAT.

“savefile_after”: (savefile_after: \CASEs\After_dynamic_raw_file2_con.sav)

This “.sav” file specifies the converted version of the of the “returnfile_raw” or
“returnfile_raw_after”.

“idvfile_reoverflow”: (idvfile_reoverflow: idvfile_reoverflow.idv)

specifies the “.idv” file generated to switch off the overloading branch during the dynamic
simulation.

“returnfile_after”: (returnfile_after:
\CASES\SAVNW_After_dynamic_raw_file_aftercontingency.raw)

This file specifies the file generated after the dynamic simulation in the later iterations of a DCAT
run.

“casefile_after”: (casefile_after: \CASEs\AfterDynamicSim_sps_aftercontingencyl.sav)

3.10

This “.sav” file specifies the file generated after checking the SPS in the later iterations of a
DCAT run.

— “returnfile_sav_after”: (returnfile_sav_after:
\CASEs\AfterDynamicSim_corr_aftercontingency.sav)

- “returnfile_raw_after”: (returnfile_raw_after:
\CASEs\AfterDynamicSim_corr_aftercontingency.raw)

these files specify the “.sav” and “.raw” files returned after ACCC analysis in the later iterations
of a DCAT run.

After the configurations of the parameters in the “Config.ini” are complete, the “MainDCAT.py” can be
executed to simulate the potential cascading failure analysis in extreme contingencies.

3.5.2.2 Further Modifications

This section describes some further modifications that might be needed by users for other purposes; the
modifications are not necessary for a basic DCAT run.

1. Modify the SPS look-up table

Modification of the SPS look-up table can be done within the subroutine “Make_SPS”.

o The parameters “from_bus”, “to_bus”, “to_bus1”, and “’ckt_id” specify the elements whose flow will
be checked.

e The parameter “str” specifies whether to check “AMPS” or “MVA” on that element.
e “max_value” and “min_value” specify the limitations on each element.

e “SPS type”, “SPS_action”, “SPS_from_bus”, “SPS_to_bus”, “SPS_mach_bus”, and “SPS_ckt_id”
specify the SPS action that is going to be adopted accordingly for each element.

2. Modify the ACCC parameters

The parameters related to conducting the ACCC can be modified through the parameters in application
program interface (API) “psspy.accor_3” in the subroutine “Test_CorrectiveAction”. Note that the API
“psspy.accor_3" appears twice in that subroutine and the parameters should be modified in both
occurrences of that API.

3.6 DCAT Examples and Simulation Results on a PSS/E Test System

This section presents simulation results for DCAT on several examples using a test cases (savhw.sav)
that is provided with the PSS/E software package. The purpose of these examples is to show the
importance of performing hybrid dynamic and steady-state simulations with protection modeling to
accurately mimic the cascading outage process. They also show how planning engineers can use DCAT
for cascading-outage analysis and how the results are reported. This test system has 23 buses and six
power plants. Table 3.2compares different examples. Five different simulation tests are performed using
the test system, and outcomes of each test are presented in the following subsections. Figure 3.4 shows a
one-line diagram of the test system.

3.11

Table 3.2. Comparison between Simulation Examples

First Dynamic Second Dynamic
Example Simulation Corrective Simulation
Section System Initiating Reaches a Stable SPS/RAS Action |Reaches a Stable| Generator and
No. Type Event Point Activated Needed Point Load Outage
PSS/E test Yes
system 3 phase (305s)
511 “savnw” line fault 2 relay actions N/A No N/A None
3 phase
line fault
with
distance
relay failed
PSSJ/E test to send Yes
system transfer (30s)
5.1.2 “savnw” trip signal 2 relay actions N/A No N/A None
3 phase Gen loss
PSS/E test bus fault Yes =600 MW
system for1l0 (755) Load loss
5.1.3 “savnw” cycles 2 relay actions N/A No N/A =0 MW
3 phase Gen loss
PSSJ/E test bus fault = 3,259 MW
system for 12 No (before system
514 “savnw”’ cycles (blackout) N/A N/A N/A collapses)
PSS/E test | 3 phase bus Yes Yes
system fault for 6 (255) (255)
5.15 “savnw” cycles 5 relay actions Yes No No relay actions None

3.12

AREAS5 (WORLD) AREA1 (FLAPCO) AREA2 (LIGHTCO)

Area 1to 2 |nterchange
102 -36.6 MW
2011 101 NYg2B 211 4465 Mvar
3002 NUC-A HYPRO_G
MINE_G 8
= E.MINE
Area 5 Generation
3587 MW
184.0 Mvar
it Bus 154 Load
\%L 879.7 MW
Ja004 619.1 Mvar
3001 fVEST 141 ™ 2;)(1)
MINE E—— CPANT
3003
5.MINE
XA

202
EAST5D0

152
MID50D

B005
EST

\. &
203
EAST2B0O
3006
UPTPDWN
153
—

ID230

3008
cATDAG S 5
EWAN
:018! L, ﬁ \/
CATDOG_G 206
DOWNYN URBGEN
T | ‘ﬁ
VAV | >

PSS(R)E PROGRAMAPPLICATION GUIDE EXAMPLE Bus - VOLTAGE (KV/PUYANGLE
BASE CASE INCLUDING SEQUENCE DATA Branch - MW/Mvar

MON, FEB 022015 18:40 Equipment - MW/Mvar

SAVNW

2DBOOVA TE DIS0UV

kV: <=13.800 <=18.000: <=21.600 <=230.000 <=500.000 >500.000

Figure 3.4. One-Line Diagram of the Test System

3.6.1 Example 1: Not a Close-In Fault in Pilot Scheme Line — Using Fictitious
Node

A line fault is applied on one of the lines connected to Bus 152 at a distance of 90% from it. Distance
relays are modeled on both ends of the line with an ability to send a transfer trip to the other end upon
sensing a Zone 1 fault. Though the other end of Line 152 sees a Zone 2 fault, this pilot scheme trips the
breaker as soon as the other relay on Bus 152 times out on the Zone 1 fault. Upon successful operation of
both breakers, the fault is isolated, and there are no other tripping actions.

To model a fault in PSS/E at any location in a transmission line other than the two line ends, a fictitious
node needs to be added, as explained in Appendix B. In this test, to model a fault in the line connecting
Buses 151 and 152 that is located at a distance of 0.1 pu of total line length from Bus 151, a new fictitious
node (151152) is added between Buses 151 and 152. Figure 3.5 shows the location of the fictitious bus.

3.13

Distance relays then need to be associated with the two branches newly created by the fictitious bus
addition. That is, one branch is from the near end to the fictitious bus, and the other is from the remote

end to the fictitious bus.

* 465.9 -465.4Q* 465.4

6.7 -19.3§159.4

BUS # 151152
NUCMID 500.00
TYPE 1

AREA 1 FLAPCO
ZONE 1 FIRST
VOLTAGE 1.01041PU
505.206KV

ANGLE 9.69Deg
MISMATCH 0.00
178.66

Figure 3.5. A Fictitious Bus between Buses 151 and 152

The bus fault is introduced at the fictitious bus (151152) at t = 5 s and simulation runs until dynamic
simulation reaches a steady state. In this test, dynamic simulation reaches a steady state at t = 16 s. The

following is the sequence of relay tripping events:

1. Distance relay (DISTR1) at Circuit 1 from 151 to 151152 is activated as Zone 1 and its timer

started att=5s.

2. Distance relay (DISTR1) at Circuit 1 from 152 to 151152 is activated as Zone 2 and its timer

started att=5s.

3. Zone 1 timer timed out at t = 5.017 s; self-trip breaker timer and also transfer trip and breaker

trip timers started at the same time.

4. Circuit 1 from 151 to 151152 tripped at t = 5.05 s and transfer trip timer also timed out at the
same time. In this case, the Zone 1 relay accelerates the other relay, and as a result, the other
end (Circuit 1 from 152 to 151152) trips at the same time (t = 5.05 s), and soon thereafter the

two voltages start to recover.

The channel plot in Figure 3.6 shows that the voltage at Bus 151 collapses more than the Bus 152 voltage.

This indicates that the fault is closer to Bus 151.

3.14

Channel Plot
1.2_ 7 T

1.1

09 5 : _ ;
08 : ; ; i

0.7
0.6
05

0.4

Bus Voltage (pu)

0.3 : \
02]

0.1 . . ' '
4.9 4.95 5 5.05 5.1 5.15 52 5.2¢

Time (seconds)

15-VOLT 151 [NUCPANT 500.00] : fault_151_mod
16-VOLT 152 [MDS00 500.00] : fault_151_mod

v
c2

Figure 3.6. Voltage Plots of the Terminal Buses of the Faulted Line for Test 1

3.6.2 Example 2: Not a Close-In Fault in Step Distance Line — Using Fictitious
Node

This simulation uses the same procedure and files that were used in Test 1 except that the transfer trip
capability of DISTRL1 is assumed to have failed. As a result of that, the near end of the line to the fault at
Bus 151 trips on the Zone 1 setting (4 cycles) and the other end of the line at Bus 152 trips at the Zone 2
setting (22 cycles).

Each end will trip according to the Zone 1 or Zone 2 delays where appropriate. The bus fault is introduced
at the fictitious bus (151152) at t = 5 s and simulation runs until dynamic simulation reaches a steady
state. In this test, dynamic simulation reaches a steady state at t = 16 s. The following is the sequence of
relay tripping events:

1. Distance relay (DISTR1) at Circuit 1 from 151 to 151152 is activated as Zone 1 and its timer
started att=5s.

2. Distance relay (DISTR1) at Circuit 1 from 152 to 151152 is activated as Zone 2 and its timer
startedatt=5s.

3. Zone 1 timer timed out at t = 5.017 s; self-trip breaker timer and breaker timer started at the
same time.

4. Circuit 1 from 151 to 151152 tripped at t = 5.05 s.

5. Circuit 1 from 152 to 151152 trips as Zone 2 fault at t = 5.333 s and the channel plot (Figure
3.7) shows the two voltages start to recover after tripping both ends of the branch.

3.15

Channel Plot
12

1.1

Bus Voltage (pu)

0.1

v)) T) T v
49 4.95 5 5.05 5.1 5.15 52 525 53 535 54
Time (seconds)

-
ra

15-VOLT 151 [NUCPANT 500.00] : fault_151_mod
16 -VOLT 152 [MID500 500.00] : fault_151_mod

Figure 3.7. Channel Plot for Test 2

3.6.3 Example 3: Bus Fault

In Test 3, a fault is applied at Bus 201 at t = 5 s and the fault is cleared after 10 cycles. The simulation
runs until dynamic simulation reaches a steady state. In this test, dynamic simulation reaches a steady
state at t = 75 s. Table 3.3 shows a summary. No corrective action was required for this contingency with
these protection settings. The details of each tripping action in Test 3 are presented in Table 3.4.
Simulation result plots are shown in Figure 3.8 and Figure 3.9.

Table 3.3. Relay Trips Summary of Test 3

Relay Type

DISTR1 TimeOut Busfrom Busto ckt

DISTR1 5.1 201 202 1

Pgen Qgen
VTGTPA TimeOut Bus BusName BuskV (MW) (MVAr) GenBus GenlD GenName GenkV
HYDRO_

VTGTPA 5.237 211 HYDRO_G 20 600 17.75 211 1 G 20
ckt = circuit

Pgen = generator real power
Qgen = generator reactive power

3.16

Table 3.4. Tripping Action Details of Test 3

Relay
Type

DISTR1

TimeOut

Busfrom

Busto

ckt

Details

DISTR1

51

201

202

o Distance relay (DISTR1) at circuit 1 from 201 to 202 is
activated as Zone 1 and its timer started at t =5s.

e Zone 1 timer timed out at t = 5.067 s; self-trip breaker timer
started at the same time.

e Circuit 1 from 201 to 202 is tripped att = 5.1 s.

e Channel plots for Bus 201 and 202 are shown in Figure 3.8.

VTGTPA

TimeOut

Bus

BusName

BuskV

Details

VTGTPA

5.237

211

MINE_G

20

VTGTPA at Bus 211:
e Pickup timer started at t = 5.004 s.
o Breaker timer started att = 5.154 s.
o Breaker timer timed out at time t = 5.237 s.
e Channel plot for Bus 211 is shown in Figure 3.9
¢ Voltage at Bus 211 starts to recover after tripping and
reached a steady state around 60 s.

Bus Voltage (pu)

1.25-

Channel Plot

0.75-
0.5-

0254

-0.25 b
475 4.8

—
4.85

4.9 4.95

————
5.05

L B T Y T Y T Y L L Y
5.1 5.16 5.2 5.25 5.3 5.35 54 5.45 5.8

Time (seconds)

]7—
2

19-VOLT 201 [HYDRO 500.00] : fault_201_mod
20-VOLT 202 [EAST500 500.00] : fault_201_mod

Figure 3.8. Channel Plot for Voltages at Buses 201 and 202

3.17

3.6.4

Channel Plot

0.9-

0.8-

0.7

Bus Voltage (pu)

0.6

05

0.4

0.3

10

Figure 3.9. Channel Plot for Voltage at Bus 211

20

50

Time (seconds)

60

I3

25-VOLT 211 [HYDRO_G 20.000] : faul_201_mod |

Example 4: Bus Fault Leads to Blackout

70

In this dynamic simulation, a fault is applied at Bus 151 at t = 5 s; the fault is applied for 12 cycles and
then cleared. A significant number of undervoltage and underfrequency generator relays were tripped due
to this fault, which leads to system blackout. The network did not converge after t = 6.3708 s. A total of
seven relays are activated during this dynamic simulation; Table 3.5 shows a summary.

Table 3.5. Relay Trips Summary of Test 4

Relay
Type
DISTR1 TimeOut Busfrom Busto ckt
DISTR1 5.1 151 152 1
DISTR1 5.1 151 152 2
Pgen Qgen
VTGTPA TimeOut Bus BusName BuskV (MW) (MVAr) GenBus GenlD GenName GenkV
VTGTPA 5.237 101 NUC-A 21.6 750 81.19 101 1 NUC-A 21.6
VTGTPA 5.237 102 NUC-B 21.6 750 81.19 102 1 NUC-B 21.6
FRQTPA TimeOut Bus BusName BuskV Pgen Qgen GenBus GenlD GenName GenkV
CATDO
FRQTPA 6.362 3018 G_G 13.8 100 80 3018 1 CATDOG_G 13.8
FRQTPA 6.371 206 URBGEN 18 800 600 206 1 URBGEN 18
FRQTPA 6.371 3011 MINE_G 13.8 258.66 104.04 3011 1 MINE_G 13.8
HYDRO_
FRQTPA 6.383 211 G 20 600 17.75 211 1 HYDRO G 20

3.18

The sequence of tripping is shown in Figure 3.10. It is observed that Tripping 1 is due to a distance relay,
Tripping 2 is due to undervoltage at Generators 101 and 102, and the remaining trippings from 3 to 5 are

due to underfrequency at Generators 3018, 206, 3011, and 211. The details of each tripping action in Test
4 are presented in Table 3.6. Simulation result plots are shown in Figure 3.11 and Figure 3.12.

UPT|

8

30
CATDQG

CATDOB

TL

DWN

$ 3 |

3006

AREAS5 (WORLD) AREA1 (FLAPCO)
102
101 NUC-B
3011
3002 NUC-A 2 HY]
MINE_G E.MINE
/EST
e 4 A Y
— AN T
3003
5.MINE
AXA 1 J
EASTS5!
15
MID50P
3005
EST

201
RO

02

AREA2 (LIGHTCO)

211 5
RO_G
Ty g

153
ID230

1
DOWN

EAST2

5
0

—

AV |

sy,
p4
N
Eant

o

Arealto 2
-36.6 MW
-446.5 Mvar

Area 5 Geng
358.7 MW
184.0 Mvar

Bus 154 Lo
879.7 MW
619.1 Mvar

nterchange

ration

PSS(R)E PROGRAMAPPLICATION
BASE CASE INCLUDING SEQUEN!
MON, FEB 022015 18:40

SAVNW

GUIDE EXAMPLE
CE DATA

Bus - VOLTAGE (kV/PUYANGLE
Branch - MW/Mvar
Equipment - MW/Mvar

2DBO0VA TEB.I50UV

kV: <=13.800

<=21600 <=230.000

<=500.000 >500.000

Figure 3.10. One-Line Diagram of Test System to Show Sequence of Tripping

3.19

Table 3.6. Tripping Action Details of Test 4

Relay
Type

DISTR1

TimeOut

Busfrom

Busto

ckt

Details

DISTR1

51

151

152

DISTR1

51

151

152

e Distance relay (DISTR1) at Circuit 1 from 151 to 152 and
relay at Circuit 2 from 151 to 152 are activated as Zone 1
and their timers started att =5 s.

e Zone 1 timer timed out at t = 5.067 s; self-trip breaker
timer started at the same time.

e Circuit 1 from 151 to 152 and Circuit 2 from 151 to 152
are tripped att=5.1s.

VTGTPA

TimeOut

Bus

BusName

BuskV

Details

VTGTPA

5.237

101

NUC-A

21.6

VTGTPA

5.237

102

NUC-B

21.6

VTGTPA at Buses 101 and 102:
e Pickup timer started at t = 5.004 s.
o Breaker timer started at t = 5.154 s.
o Breaker timer timed out at time t = 5.237 s.
e Channel plots for Buses 101 and 102 are shown in Figure
3.11.

FRQTPA

TimeOut

Bus

BusName

BuskV

Details

FRQTPA

6.362

3018

CATDOG_G

13.8

FRQTPA at Bus 3018:
e Pickup timer started at t = 6.275 s.
e Breaker timer started at t = 6.279 s.
o Breaker timer timed out at time t = 6.362 s.

FRQTPA

6.371

206

URBGEN

18

FRQTPA

6.371

3011

MINE_G

13.8

FRQTPA at Buses 206 and 3011:
e Pickup timer started at t = 6.283 s.
o Breaker timer started at t = 6.287 s.
o Breaker timer timed out at time t = 6.362 s.

FRQTPA

6.383

211

HYDRO G

20

FRQTPA at Bus 3011:

Pickup timer started at t = 6.296 s.

Breaker timer started at t = 6.300 s.

Breaker timer timed out at time t = 6.383s.

Channel plots for speeds of machines 3018, 206, 3011,
and 211 are shown in Figure 3.12.

3.20

Speed Deviation (pu)

Channel Plot

Bus Voltage (pu)

1] i
0.75
o.s-:-
0_25-:
o : - - - - - - - :

0 1 2 3 4 5 6 7 8 9 0 1 12
Time (seconds)

13-VOLT 101 [NUG-A 21.600] : fauli_151_mod

~
~ 14-VOLT 102[NUC-B 21.600]: fault_151_mod

Figure 3.11. Channel Plots for Voltages at Buses 101 and 102

Channel Plot

0.03]

001

.0.01_: -
.0.03_:

4.5 475 5 5.25 55 575 6 6.25 6.5
Time (seconds)

12 - SPD 3018[CATDOG_G 13.800]1 : fault_151_mod
9-SPD 206[URBGEN 18.000]1 : fault_151_mod
11-SPD 3011[MINE.G 13.800]1 : fault_151_mod
10-SPD 211[HYDRO_G 20.000]1 : fault_151_mod

<RI

Figure 3.12. Channel Plots for Speeds of Machines 3018, 206, 3011, and 211

3.21

3.6.5 Example 5: Activation of an SPS/RAS

In this example, a bus fault that lasts for six cycles was introduced at Bus 203, which was then tripped to
isolate the fault.. This was one of the extreme events that had the potential to trigger an SPS/RAS. The
fault was introduced at t = 5 seconds and the bus was isolated after 6 cycles, along with a line trip during
the dynamic simulation. There were no relay tripping observed during the dynamic simulation. A graph of
the simulation result is shown in Figure 3.13.

Channel Plot
2,000
1,750]
1,500
1,250
= 1
= 1,000 N
5 1
© 750
= 1
g -
& 500
o Z
2504
X
-250
B o o B B s e e
0 25 5 75 10 125 15 175 20 225 25 275 30
Time (seconds)
~ 109-POWR 202 TO 203 CKT'1': initiating_event
~ 107-POWR 202 TO 152 CKT'1': initiating_event
v 91-POWR 152TO 153 CKT'1': initiating_event

Figure 3.13. Example 5: Branch Flows

After the dynamic simulation, one control condition that could trigger an SPS/RAS was observed in the
post-dynamic steady-state case. A second dynamic simulation has been performed to trigger this
cascading event.

No other trippings have been observed during the dynamic simulation where the SPS/RAS event has been
triggered. The line overloads observed on the system were below 130% of Rate A and no voltage
violations below 0.9 pu were observed. No corrective action was required for this contingency with these
protection settings. The sequence of DCAT actions that were performed for this contingency is shown in
Figure 3.14. This contingency resulted in no tripping actions, generation loss load loss, as given in Table
3.7.

Run Dynamic Perform SPS action
Start 5i lati during D H Testviolations sl
2R imulation uring Dynamic TR
With fault Simulation

Figure 3.14. Sequence of Events Performed by DCAT for Example 4

3.22

Table 3.7. Generation and Load Loss Summary for Example 5

Load loss (MW) 0
No. of Total Tripping Actions 0
No. of SPSs/RASs Triggered 1
No. of Overloaded Lines 0
Corrective Actions None

3.23

4.0 Parallel Computing of DCAT Run

In reality, we may need to simulate the potential consequences of a large number of contingencies, and
therefore, the total running time might become extremely long. To shorten the total simulation time, the
parallel computing technique is adopted here. The main idea of the parallel computing of a DCAT run
with a large number of contingencies can be illustrated in Figure 4.1. The package called “MPjobs”, a tool
developed by ERCOT [3] to run PSS®E scripts in parallel, is used to parallelize the computation of

DCAT processes.
(Parallel ComputD

Contingency 1 I l Contingency 2 I

DCAT package DCAT package . DCAT package

Output 1 Output 2 Output n

Figure 4.1. Main Idea of DCAT Parallel Computing

Figure 4.2 shows a preliminary test result of parallel computing that is based on the package “MPjobs”.
Dynamic simulations are conducted in 1,000 contingency scenarios by using different processors; (when
just one processor is used, the whole process is just like conventional computing without parallel
computing). The maroon line in Figure 4.2 denotes the time needed to finish the whole process; the green
line illustrates the scalabilities when different numbers of processors are adopted. Scalability (n) = (Time
needed when one processor is adopted) + (Time needed when n processors are adopted)

4.1

100

10000
Time(min) e Scalability
1000
5
£
< 100 10
£
'_
10
1 1
1 2 10 20 40 60 80
Processors

Figure 4.2. Preliminary Test Results of “MPjobs”

4.1 Basic Structure and Flow of “MPjobs”

The package “”’MPjobs” is mainly composed of the following files:
o the “.ini” file: this file gives the information for the package to run;
o the main Python script to run PSS®E simulation;

e the main function “mpjobs.py”;

o the files and lists describing the X, Y and Z variables; The variable(s) that change with every run are
assigned to them (X vars Y vars, and Z vars).

¢ other supporting files such as the files to be imported, the files needed for running ACCC, etc.

The basic flow is as follows: the main function “mpjobs” first reads in the “.ini” file to extract
information including how many processors to use, how much delay to apply, the main Python script to
call to run PSS®E simulation, the X, Y, and Z variables and the associated files, etc. Then it searches for
an available processor, and assigns a scenario based on the combination of the X, Y, Z variables. After
that, it calls the main Python script to run PSS®E simulations with the assigned variable files and
scenarios, and stores the outputs in the designated places. This basic flow can be shown as in Figure 4.3.

4.2

“ini"” file: Read information
How may processors, Pool delay,
Main script, Xfile, Yfile, Zfile, Other

Main function “mpjobs”

variables....
More
scenarios?
.C.\55|g.n scena.rlo (dl‘fferent . Search for available
combination of Xfile, Yfile and Zfile) processor

Apply Xfile, ¥file, Zfile

Run main script and store
the outputs

Figure 4.3. Basic Flow of “MPjobs”

4.2 Configurations Needed for “MPjobs” to Run DCAT

Usually, there is no need to modify the main function “mpjobs.py”. The configurations are mainly related
to the main Python script to run PSS®E simulation, the files and lists describing the variables, and the
“.ini” file.

4.2.1 Scenario Setup

The “MPjobs” package can handle three loops of different variables (xvars, yvars, and zvars) at most, and
the different combinations of these three variables form different scenarios. For example, if xvars has two
cases, yvars has three cases, and zvars has four cases, the total number of scenarios is 2 x 3 x 4 = 24,

The parallel computing of the DCAT process is to simulate the potential consequences of the same power
system in facing different contingencies. We can either use one loop of variable (xvars = different
contingencies) or two loops of variables (xvars = base cases, yvars = different contingencies). Here we
choose to use two loops of variables, and in this situation, the simulation can be easily expanded so it can
be conducted on different power systems by adding more system base cases to xvars.

4.2.1.1 xvars Setup

To set up the xvars, simply establish an “.Ist” file and put the system name in it. The system files need to
be put in the same folder as that “.Ist” file. For example, we generate a file named “cases.lst”, in which
the system name “SAVNW_Finalv33” is written. Then the system files “SAVNW _Finalv33.snp” and
“SAVNW _Finalv33_con.sav” are also put in the same folder as the file “cases.Ist”.

4.3

File Edit Format View Help

|savnw_-Flat33

Figure 4.4. xvars Setup for Parallel Computing of DCAT run

Note that files “.snp” and “.sav” adopted here are previously generated in the DCAT package by the
module “Make_DYR_withPNNLrelays__ xx.py”; however, they need to be renamed to be exactly
“SAVNW _Finalv33.snp” and “SAVNW_Finalv33_con.sav”, respectively.

4.2.1.2 yvars Setup

To set up the yvars, simply establish another “.Ist” file with all the “.idv” files, which specify the
contingency conditions listed in it. All the “.idv” files listed in the “.Ist” file need to be put in the same
folder as the “.Ist” file. Here we generate a file named “sb.lIst” to list all the “.idv” files.

File Edit Format View Help

kB1_b152.idv
SB1_b153.idv
SB2_b154.idv
SB2_b2@5. idv
SB3_b201.idv
SB3_b204.idv
SB3_b205. idv
SB4_b202.idv
SB4_b203.idv
SB5_b3084. idv
SB5_b152. idv
SBS_b3006. idv
SB6_b151.idv
SB6_b201.idv
SB6_b152. idv
SB6_b202.idv
// flat.idv

Figure 4.5. yvars Setup for Parallel Computing of DCAT run

Note that the “.idv” file here is the one that can be adopted as the initial contingency file in the previous
examples.

4.4

4.2.2 Configuration of the “.ini” File

The “.ini” file provides important information for the main function “mpjobs.py” to assign the scenarios
and conduct the simulations accordingly. Figure 4.6 shows the configuration on the “mpjobs.ini” file to
run the DCAT process:

o “studyname” and “studyType” will be used to form the first parameter of the vector “ZY Xvars”.
o “CPU” specifies how many processors to use.

o “poolDelay” specifies the pool delay in second (usually the pool delay needs to be increased when the
time of a single run of the “Script” becomes longer).

e “Script” is the name of the main Python script to run PSS®E simulation (here it should be the name
of the script to run the main DCAT process).

o “Xfile” is the path as well as the “.Ist” file to specify the xvars (here it should be “cases.Ist™).
o “Yfile” is the path as well as the “.Ist” file to specify the yvars (here should be “sh.Ist”).

e The parameters within the red rectangle (in Figure 4.3) specify the parameters and supporting files to
be used during the computing process. Those parameters will be referred to in the Python module
specified by “Script” in the “.ini” file. (Note that when referring to those parameters in the Python
module, the name should be all capitalized, and My[*’] should be added. For example, when referring
to “Inlfile” in the Python module specified by “Script”, the name should be modified to
My[*INLFILE’]).

File Edit Format View Help

/mpjobs.ini ~
/run faults with single branch outage
[scenario]

titlel = SAVNW

title2 = SB faults

studyname= SAVNW

StudyType= SBfaults

debug = @

//CPU = 4

//poclDelay = 2

[myvars] //path ending with '\' required

Script = SCRIPTs\run_faultsl1D.py
case = CASES\savnw_flat33
[/Yfile = CASEs\cases.lst
Xfile = eventsisb.lst

Channels = scripts\channels.py
Qutspath = OUTsY

LOGspath = LOGsY

GenRelAng = 1081

GenIDRelAng= 1

simtime = 180.0
Accelerationf = 1.8
Integrationstep= 0.8841667
Freqfactor = 8.01667
‘Itsr‘atiun = 99

BusDim £0000

PsseVersion= 33

PssePath = C:\Program Files (x86)\PTI\PSSE33\PSSBIN

[notes]

Jcomments start with or from /

/path ending with "\' reguired

/in-line comments are stripped before reading keyword value

/string shall be empty, not set to be ="' which is read to has twe chars of ' o

Figure 4.6. Configuration of the “mpjobs.ini” File

4.5

4.2.3 Configuration of the Main Python Script to Run PSS®E Simulation

In the DCAT package introduced above, the Python module “MainDCAT.py” is the main script to run the
full DCAT process. However, before running this script, several steps need to be completed: prepare
“.sav” and “.snp” files, run flat start, etc. Since those steps are not scenario-based and can be done easily
and separately, we are not going to include the previous several steps in the “MPjobs” package.
Therefore, the module “MainDCAT.py” becomes the only main script to be adopted to run the PSS®E
simulation in the “MPjobs” package.

4.3 Run Parallel Computing of DCAT Process

To run parallel computing of DCAT, simply open the “_dos32”, “_dos33”, or **_dos34” shortcut, type in
“mpjobs”, as shown in Figure 4.7, and then press “Enter”.

*runld3.bat’ is not recognized as an internal or external command.
operable program or hatch file.

C:ulsers wyakl 36 workspace2\Test_System_V33\MPjohs_Testsystem_DCATCDCAT,. savnunew>>mpjohs

Figure 4.7. How to Run the Program

4.4 Some Notes on “MPjobs”

There are several notes regarding running the “MPjobs” package:

When a self-developed Python file is imported, it should be put in the folder “SCRIPTs”, which is the
same folder as that of the main function “mpjobs”.

When referring to the parameters specified in the “.ini” file, the name of the parameter should be all
capitalized, and My[‘’] should be added. For example, when referring to “Inlfile” in the “.ini” file, the
name should be modified to My[*INLFILE’].

When writing the subroutines in the “MPjobs” environment, some files need to be imported again at
the beginning of the subroutine, although they are already imported at the beginning of that Python
script.

It seems that there are some limitations on the number of layers of calling a subroutine from another
subroutine.

No “exit()” function shall be used in the main Python script to run PSS®E simulations.

4.6

o The setting of the parameter “poolDelay” is very important, especially when the single run of the
main Python script takes a long time. Try to increase the number specified by “poolDelay” if you
cannot see that all the output files are generated appropriately.

When modifying the Python script for “MPjobs” to run, it is not recommended to do that directly through
Notepad, especially when the modification requires you to add a new line and spaces are needed before
the new line. (One can simply copy and paste the script into Eclipse, do the modification, and then copy
and paste the modified version back to the original file.)

4.5 Example of Using “Mpjobs”

Here is an example showing how to use the “MPjobs” package to simulate the designated initial
contingency. Suppose that the consequences of four contingencies are going to be investigated, and those
contingencies are specified in the following *“.idv” files: “SB1_b152.idv”, and “SB2_b205.idv”.

Step 1: Check Files and Create Folders as Needed

First, make sure the files needed for running the DCAT process are available. Then create folders to store
those files. Here, to be clear, a folder named “TEST” is created in the “MPjobs” folder. Figure 4.8 shows
the detailed hierarchy of the new folders created as well as the files in each folder. The folders “LOGs”,
“OUTs”, and “SAVSs” store the “.log” file, the “.out” file, the “.csv” file (the file to extract the relay action
and other important information) as well as the “.raw” file, “.sav” file produced during the simulation
process.

4.7

0 Favorites 0 Neme

- DESk‘tOp ! E] Cases.lst
4 Downloads y 7 savlst

5 savnw.sav
5l Recent places y =
| savnw_flat3d.snp

| savnw_flat33_cnv.sav

18 This PC
m Desktop
| Docurents
& Downloads
o Music

= Pictures

|| flatidv

) sh.lst

|| 5B1_b152.idw
|| 5B1_b153.idv
|| 5B2 b154.idwv
|| 5B2_b205.idw
|| 5B3_b20.idv
|| 5B3_b20d.idw
|| 5B3_b205.idv

~ mpjobs.py

|| savnw.mon
|| savnw.sub
|| SAVNW accc.acc

Figure 4.8. Detailed Hierarchy of New Folders
Step 2: Set Up Scenarios and Cases

The file “cases.Ist” in the folder “CASESs” sets up the “xvars”. Since the contingency simulation is just
going to be conducted on the same base case, just ONE xvar is needed. Therefore, in the “cases.Ist”, one
just needs to write “SAVNW _Finalv33”, as shown in Figure 4.9.

The file “sb.Ist” in the folder “events” sets up the “yvars”. Four contingency scenarios are supposed to be
investigated, and therefore, the names of the “.idv” files need to be put in the “sh.Ist”, as shown in Figure
4.9.

Step 3: Configure “.ini” File

The configuration on the “.ini” file is shown in Figure 4.6. The path as well as the file name of the
modified Python module “mpjobs.py” is assigned to the variable “Script”; the path as well as the file
name of the “yvars”-specification file “sh.Ist” is assigned to the variable “Yfile”; the path as well as the
file name of the “xvars”-specification file “cases.Ist” is assigned to the variable “Xfile” in the “.ini” file;
the ACCC related files are assigned to the variables “Inlifile”, “MySUB” and “MyMON?”, respectively.

4.8

File Edit Format View

jc_flat33
savnw_flat33 SB1 b152.idv

5B1_bl53.idv
5B2_bl54.idv
SB2_b285.idv
SB3_b281.idv
S5B3_b284.idv
S5B3_b285.1idv
S5B4 b282.idv
SBA b283.idv
SB5_b3BB4.idv
5B5_bl152.idv
S5B5_b3B86.idv
SBE_bl51.idv
SB6_b281.idv
5B6_bl152.idv
S5B6_b282.idv
ff flat.idv

File Edit Format View

Figure 4.9. Detailed Configurations on “cases.lIst” and “sh.Ist”
Step4: Run the Program

After typing in “mpjobs” in the DOS environment (as shown in Figure 4.7), press “Enter” and the
program starts to run. The results are stored in the folders “LOGs” and “OUTs”.

4.9

5.0 Introduction of Different Python Modules in the DCAT
Package

5.1 *“Supportingtools.py” (Supporting File)

This Python module defines many useful subroutines regarding file processing that were created by
ERCOT. This module serves as a supporting file and is used by other Python modules. This file does not
need to be modified by users during the regular use of this DCAT package.

5.2 “ReadLogFile.py” (Extract Information from “.log” File)

This Python module defines useful subroutines regarding reading the “.log” file generated by PSS®E and
extracting useful information such as the relay tripping, ACCC action, SPS, etc. This module also serves
as a supporting file and is used by other Python modules. This file does not need to be modified by users
during the regular use of this DCAT package. Please refer to Figure 5.1 if ACCC information, SPS
information, or overloading information is not needed.

Comment this block to disable extracting ACCC information

if Linel.find(t i t)>=8: eventX=3@
if Linel.find(t agctic t edisp)>=@: eventX=31
if Uinel.find(no")y=0: eventx=32 Comment this line to disable extracting overloading information
if Linel.find()>=0:
eventX=33
eventX_record=eventX
datastr+= te
if Linel.find()>=@ or Linel.find(2 t)>=@ or Linel.find()>=@ or Linel.find("B4
eventX=34
eventX_record=eventX
detastri=Linel+ Comment this block to disable extracting SPS information

Figure 5.1. How to Disable Extracting Some Information

5.3 “Make_ DYR_withPNNLrelays_ xx.py” (Obtain “.sav” File and
“.snp” for Subsequent Simulations)

This Python module loads PSS®E case, makes the necessary changes to the network and converts the
case. It basically does the following:

1. Load PSS®E case.

2. Calculate power flow.

3. Make necessary changes to the opened case, including: Transmission System Planning (TSP)changes,
static compensator (STATCOM) modeling, SPS models, etc.

4. Make more changes to the opened case, including: 1) modification of the tap-ratio of some
transformers, 2) modification of the ratings of some transformers, and 3) modification of the rate C of
all branches (both transformer branches and non-transformer branches). (The rate C has been reset to
the minimum (130% of rate A, 115% of rate B), and the rate C will be used to check the overloading
when needed in the subsequent simulation).

5. Convert the case using desired generator and load models.

6. Save the case.

5.1

Note: If any changes related to the network are needed, they should be specified in this Python file.

7. This Python module also reads in the converted “.sav” file, adds dynamic data saved in “.dyr” files
and creates “.snp” files. It basically does the following:

. Load the converted “.sav” file.

Il. Process dynamic files to load dynamic models and link user-defined models. It is important to
note that if any changes are made to the user-defined model, which is the part before
“dyre_new”, a new compilation might be needed.

I1l. Make necessary changes regarding the dynamic models and parameters.

IV. Save the case to the “.snp” file.

Note: If any changes regarding the dynamic models or data are needed, they should be specified in this
Python file.

5.4 *“RunFlatStart.py” (Run Flat Start)

This Python module runs a flat start on the given case, and it basically does the following:
1. Load the converted “.sav” file and the dynamic file “.snp”.

2. Add all the DLLs.
3. Set channels through another Python script, “channels_flat.py”.
4

Run flat start.

The default time is 10 s. If that time duration needs to be modified, you can simply modify the parameter
“Time_parameter” in that module.

5.5 “RunTestFault.py” (Dynamic Simulation Given a Certain
Contingency)

This Python module runs a dynamic simulation in a specified contingency. It basically does the
following:

1. Load the converted “.sav” file and the dynamic file “.snp”.

2. Add all the DLLs.

3. Set channels through another Python script “channels_flat.py”.
4

Run dynamic simulation.

The contingency is specified in an “.idv” file. The default total simulation time is 20 s. If that time
duration needs to be modified, you can simply modify the parameter “Time_parameter” in that module.

5.2

5.6 “MainDCAT.py” (Main DCAT Process Given a Certain
Contingency)

This is the main module of the DCAT package. It is able to simulate the potential cascading events in a
given contingency. The detailed introduction of this module is provided in section 6.0.

5.7 *“Configuration File”

The configuration file provides the necessary settings for the Python modules “RunFlatStart.py”,
“RunTestFault.py”, and “MainDCAT.py”. The detailed introduction on each parameter is both
commented in the configuration file (“RunFlatStart_Config.ini”’/ “Config.ini””) and provided in sections
3.31t0 3.5. Please note:

1. There are three major parts in the configuration file, which provide the settings for the Python
modules “MainDCAT.py”, “RunTestFault.py”, and “RunFlatStart.py”, respectively: “Settings for
MainDCAT?”, “Settings for RunTestFault”, and “Settings for RunFlatStart”;

2. The comment in this configuration file starts with “;”
3. The symbol *:” separates the parameter name and the value of that parameter;

4. If the file is not located in the same folder as the module “MainDCAT.py” is, the path of the file
should also be provided.

5.3

6.0 Introduction of “MainDCAT.py”

“MainDCAT” is the main Python module in the DCAT package, and it consists of several subroutines
and a main function. The description of some major subroutines and illustration of the main flow are
given in this section.

6.1 Main Flow of “MainDCAT.py”

The main flow of the Python module “MainDCAT” is illustrated in Figure 6.1

Configure inputs for sub-functions — “FindZones” > Add DLL files

“RunDynamicSimulation”

No Reached Remove the overloaded branch ‘
steady state? _. Y ”
L Check and deal with islanding |
“Test_SPS” . 7 .
“Test_CorrectiveAction”
Any SPS T
W— re—
action? " No
Yes
“SPS_WritelDVfile”
= _ “Checkoverflow”
L T
Load and convert the case No Overloading
T g
Y
“RunDynamicSimulation” s
“RemoveOverFlowLine” “Checkoverflow”
Reached No {
steady state? “nfterDCAT”
Yes
“Test_SPS” — Remove temporary files and exit _J

Figure 6.1. lllustration of Main Flow of “MainDCAT”

6.2 Subroutines in “MainDCAT.py”

6.2.1 “RunDynamicSimulation”

This subroutine runs a dynamic simulation and returns the number of iterations needed for the dynamic
simulation to reach a new quasi-steady state.

6.1

Input(s):
o the names of the log file and prompt log file to be produced;
o the “.sav” and “.snp” file of the case, the “.idv” file defining a contingency;
o the name of the “.out” file to be generated,

o the name of the “.raw” file returned after the dynamic simulation.

Output(s):

¢ the number of iterations needed for the dynamic simulation to reach a new quasi-steady state.

This subroutine is able to judge whether the dynamic simulation has reached a steady state or not, and if
not, another 5 seconds of dynamic simulation will be performed until the dynamic simulation reaches a
new steady state or the number of iterations, “MaxNumlter”, is reached. The main flow of this subroutine
is shown in Figure 6.2 (“MaxNumlter” is the “nMax” in Figure 6.2).

v
Load Case
o Stable? _— e
) :
Set log filesand channels lNo
\l’ No
?
Set parameters and run nsniaxs i Retum n
dynamic simulation l»,res
{ Run more dynamic simulation,
n=1 =

n=n+1
Figure 6.2. Illustration of Main Flow of “RunDynamicSimulation”

6.2.2 “IsDisconnected”

This subroutine detects whether all the buses have been disconnected from the system. This may happen
during some extreme conditions.

Input(s):

o The name of the “.raw” file to be checked.
Output(s):
e A Boolean value to indicate whether all buses are disconnected or not.
6.2.3 “Check NDM lIsland”
This subroutine checks the log file to see whether there is any island without dispatchable generators, and

it is called when inertial power flow fails to assign new slack buses. This subroutine reads the log file and
returns the list of the islands that do not have dispatchable generators.

6.2

Input(s):
e The name of the “.log” file to be checked.
Output(s):
o A list of islands without dispatchable machines.
6.2.4 “CheckOserviceBus”
This subroutine checks the log file to see whether there is any bus to which no in-service branches are
connected, and it is called when inertial power flow fails to assign new slack buses. This subroutine reads

the log file and returns the list of buses that do not have in-service branches.

Input(s):
o The name of the “.log” file to be checked.

Output(s):
o A list of buses that do not have in-service branches.
6.2.5 “Test_SPS”
This subroutine is called to check the SPS after the dynamic simulation.

Input(s):
o logfile: the name of the log file generated when checking the SPS;

rawfile: the name of the “.raw” file in which the SPS needs to be checked;

inlfile: the “.inl” needed for inertial power flow;

returnfile: the name of the “.sav” file to be saved after finishing the SPS checking;

spsfile: the “.idv” file that will be generated when SPS action is detected:;

logfile_total: the log file that includes all the information during the full run of the DCAT.

Note that an “.idv” file will only be generated in the situation when any SPS action is detected. Besides,
the content within the “logfile” needs to be written into the “logfile_total”, since the “logfile” is just a
temporary file and will be deleted eventually. The main flow of this subroutine is illustrated in Figure 6.3.

Output(s):
e An “.idv” file if any SPS action is detected.

6.3

¥

Load Case . “Check_NDM_lsland”
Conduct inertia power flow Disconnect islands without
I, dispachable machines
Y
= Success ? ‘L
Jpo Conduct inertia power flow
“CheckOserviceBus” ‘|’
i —> Check SPS scheme
Disconnect buses without in- \L
service branches connected SPS No
1 detected?
Conduct inertia power flow ‘LYES
I Generate .idv file
> Conduct power flow \L
J{ Write the “logfile” into
“logfile_total”
No
Success ? \[«
[ves End

Figure 6.3. Illustration of Main Flow of “Test_SPS”

6.2.6 “SPS_WritelDVfile”

This subroutine is called when any SPS action is detected. It reads the “.idv” file generated when
checking SPS and produces a new “.idv” file to be used in the new dynamic simulation.

Input(s):
o The name of the “.idv” file generated during the SPS checking process.
¢ The name of the new “.idv” file to be generated for the following dynamic simulation.
Output(s):
o A new “.idv” file to conduct SPS action for the following dynamic simulation.
6.2.7 “FindVirLine”
This subroutine is used to find a virtual branch in the opened case in order to run the AC contingency
analysis. What this function basically does is to search for an existing non-transformer branch and then

return the information of a new branch in parallel with that branch.

Input(s):

o This subroutine is called after a particular PSS®E case is opened; no other inputs are needed.

6.4

Output(s):
e “From” bus of the virtual branch;
e “To” bus of the virtual branch;

e Branch ID of the virtual branch.

6.2.8 “ModifyConFile”

This subroutine is called to generate a “.con” file, which is to be adopted in the ACCC simulation,
according to the information of the branch that is going to be switched off during the AC contingency
analysis.
Input(s):

¢ The name of the “.con” file to be generated:;

¢ “From” bus of the branch that is going to be switched off;

e “To” bus of the branch that is going to be switched off;

e Branch ID of the branch that is going to be switched off.

Output(s):

e The “.con” file generated to switch off a designated branch during the ACCC simulation.
6.2.9 “Test CorrectiveAction”
This subroutine runs the AC contingency analysis after the dynamic simulation.

Input(s):
e The “.sav” file of the network to be analyzed;

The name of the log file;

The name of the “.con” file to be generated and adopted,;

The name of the “.dfx” file to be generated and adopted,;
The name of the “.sav” file to be saved after the ACCC;
The name of the “.raw” file to be saved after the ACCC.

Output(s):
¢ A label indicating whether ACCC succeeds or not.

The main flow of this sub-function is presented in Figure 6.4.

6.5

Load Case i
Remove the virtual branch and

J ' run power flow
“FindVirLine”
Add the virtual branch and run
‘L power flow
Add the virtual branch and run ¢
power flow
[Conduct DFAX
“ModifyConFile” ~[
1 Corrective actions with
Generator and Load redispatch
Conduct DFAX L
‘L Remove the virtual branch and
Corrective actions with Phase run power flow
shifter and Tap setting
‘L Save case
Succeed? —Yes | l

| no

> Return label

Figure 6.4. Illustration of Main Flow of “Test_CorrectiveAction”

6.2.10 “FindZones”

This subroutine reads the “.sub” file and returns a list of zone numbers listed in the “.sub” file. If the
“.sub” file cannot be found, the subroutine will return a default list of zone numbers.
Input(s):

e The name of the “.sub” file.

Output(s):

e A list of the zone numbers defined in the “.sub” file, or a default list of numbers if a “.sub” file cannot
be found.

6.2.11 “Checkoverflow”

This subroutine checks the overloading on the branches within the subsystem that are generated according
to a list of zone numbers.
Input(s):

o A list of zone numbers generated by the subroutine “FindZones”.

Output(s):

o A label indicating: 1) no overloading; 2) maximum overloading exists in a non-transformer branch or
a two-winding transformer branch; 3) maximum overloading exists in a three-winding transformer
branch;

o The information of the branch with the maximum overloading.

6.6

6.2.12 “RemoveOverflowLine”

This subroutine is called when the subroutine “Checkoverflow” finds and returns the information on the
branch with maximum overloading. It produces an “.idv” file to trip the corresponding overloading
branch for the later dynamic simulation.

Input(s):

o A label indicating: 1) no overloading; 2) maximum overloading exists in a non-transformer branch or
a two-winding transformer branch; 3) maximum overloading exists in a three-winding transformer
branch;

o The information of the branch with maximum overloading;

o The name of the “.idv” file to be generated.

Output(s):

e An “.idv” file to trip the corresponding overloading branch for the later dynamic simulation.

6.2.13 “AfterDCAT"

This subroutine basically does the following: 1) runs dynamic simulation to switch off the overloading
branch; 2) keeps checking SPS and running dynamic simulation if any SPS action is detected; 3) runs
ACCC simulation; 4) checks overloading. The process will stop if any of the following scenarios occurs:
1) the dynamic simulation does not reach a new quasi-steady state; 2) all buses are disconnected; 3) the
dynamic simulation cannot initialize properly. This subroutine is like one iteration of the DCAT, and it is
called after the first iteration of the DCAT with the initiating contingency.
Input(s):

o The name of the log file to be generated;

o The name of the prompt log file;

e The “.sav” file to be used in the dynamic simulation;

e The “.snp” file to be used in the dynamic simulation;

e The “.idv” file specifying the contingency condition for the dynamic simulation;

¢ The name of the “.out” file to be generated during the dynamic simulation;

e The name of the “.sav” file to be saved after the dynamic simulation;

e The number indicating the maximum iterations in the dynamic simulation;

e The name of the log file temporarily generated when checking the SPS;

e The .inl file needed for the inertial power flow;

¢ The name of the “.sav” file after checking the SPS;

e The name of the “.idv” file to be generated if any SPS action is detected;

e The name of the “idv” file generated that corresponds to the SPS action detected for the later dynamic
simulation;

e The name of the log file during the ACCC,;

6.7

¢ The name of the “.sav” file after removing the overloaded branch and conducting island checking,
and this file is the input for ACCC,;

e The name of the “.con” file to be generated for ACCC;
e The name of the “.dfx” file to be generated for ACCC;
e The name of the “.sav” file to be saved after ACCC;
e The name of the “.raw” file to be saved after ACCC,

e The label indicating whether the maximum loading is within a non-transformer branch, a two-
winding transformer branch or a three-winding transformer branch;

e The branch information.

Output(s):
o A label describing whether the dynamic simulation has reached a steady state;
o A label describing whether all the buses are disconnected,;

o A label describing whether the ACCC has succeeded or not.

The main flow of this subroutine is shown in Figure 6.5.

Load Case

“RunDynamicSimulation”
¥

Steady and No
connected? "

\£-+ES
“Test_SPS”

Y
Any SPS

action? No

\L Yes

.] Remove the overloading branch
“SPS_WritelDVfile”

T !

Check and deal with islanding

Load and convert the case

"RunDynamiSimulation” “Test_Corre;:tiveAction”
U l
::;i?nc.la";t:r;d?_,___-.—----- — > __Return label e
I‘res
“Test_SPS”

Figure 6.5. Illustration of Main Flow of “AfterDCAT”

6.8

7.0 References

[1] NA Samaan , JE Dagle, YV Makarov, R Diao, MR Vallem, TB Nguyen, LE Miller, BG Vyakaranam,
S Wang, FK Tuffner, and , MA Pai, “Dynamic Contingency Analysis Tool — Phase 1”, PNNL-24843,
Pacific Northwest National Laboratory, Richland, WA, 2015. [Online.]_Available:
http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-24843.pdf

[2] “Application Program Interface (API),” Siemens Industry, Inc., October 2013.

[3] José Conto, “MPjobs — a tool to run PSSe scripts in parallel,” ERCOT, 2015.

7.1

http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-24843.pdf

Appendix A

Modeling of Protection in Dynamic Simulations Using
Generic Relay Models and Settings

Appendix A

Modeling of Protection in Dynamic Simulation Using
Generic Relay Models and Settings

NA Samaan , JE Dagle, YV Makarov, R Diao, MR
Vallem, TB Nguyen, LE Miller, BG Vyakaranam, and
FK Tuffner
Pacific Northwest National Laboratory
Richland, WA, 99352

nader.samaan(@pnnl.gov

Abstract—This paper shows how generic protection relay
models available in planning tools can be augmented with
settings that are based on NERC standards or best engineering
practice. Selected generic relay models in Siemens PSS®E have
been used in dynamic simulations in the proposed approach.
Undervoltage, overvoltage, underfrequency, and overfrequency
relays have been modeled for each generating unit. Distance-
relay protection was modeled for transmission system protection.
Two types of load-shedding schemes were modeled:
underfrequency (frequency-responsive non-firm load shedding)
and underfrequency and undervoltage firm load shedding.
Several case studies are given to show the impact of protection
devices on dynamic simulations. This is useful for simulating
cascading outages.

Index Terms— cascading failures, simulation,
planning models, protection system, relays.

dynamic

L. INTRODUCTION

Protection systems in modern power networks have been
identified by the North American Electric Reliability
Corporation (NERC) as a critical reliability asset. After the
2003 North America blackout, based on the U.S.-Canada
Power System Outage Task Force report [1], the NERC stated
that one of the major causes of this large-scale blackout was
overly conservative relay settings, combined with cascading
relay operation. Misoperation of protection systems or
incorrect settings can contribute to the spread of blackouts,
e.g., overreach of Zone 3 protection coverage in transmission
line distance relays. Better understanding of protection
schemes, their sequence of operation and coordination, careful
review of settings, and proper design changes can minimize the
impact of disturbances.

The lack of wide-area consolidated dynamic models with
protection relay models incorporated is a major challenge for
performing power system analysis This includes common
analyses, such as model validation, simulating grid
disturbances, performing sound cascading-outage analysis, and
developing Remedial Action Schemes (RAS)/Special
Protection Systems (SPS). The current practice in dynamic
simulations is to mimic protection actions in dynamic

M.A. Pai
University of I[llinois
Urbana-Champaign, IL

Jose Conto and Sun Wook Kang
ERCOT
Taylor, TX, 76574

simulations by assuming that the fault will be cleared, and
identifying the elements that will be tripped due to this fault
with a certain time delay after fault inception. In addition, some
grid operators model underfrequency and undervoltage load-
shedding relays in their planning models.

Commercial software tools for large-scale power system
steady-state and dynamic simulations, such as GE PSLF,
Siemens PSS®E (PSS/E), Powertech TSAT™, and
PowerWorld Simulator, allow inclusion of some generic
protection scheme elements, but this capability is not
completely adequate or usually employed by utility planning
engineers. Specific software packages such as CAPE and
ASPEN, designed for coordinating protection relay settings,
employ a totally different set of models and simulation
approaches with much smaller time steps. These tools are
typically used by the protection engineers of the generation,
transmission, and distribution asset owners.

Recent research efforts have focused on linking the
dynamic simulations between CAPE and PSS/E to provide a
more accurate simulation result for a large-scale system [2].
There have been ongoing efforts in the Western Electricity
Coordinating Council (WECC) to develop generic relay
models for dynamic simulations such as the development of the
Generic Distance Relay Model [3].

In this paper, an approach for adding generic protection
system models to planning tools and performing more realistic
PSS/E dynamic simulations is described. The generic
protection models available in planning tools are augmented
with settings that are based on engineering experience and
knowledge of general principles and solutions of protection
systems. Selected generic relay models in PSS/E have been
used in dynamic simulations as follows. Undervoltage,
overvoltage, underfrequency, and overfrequency relays have
been modeled for each generating unit. Out-of-step protection
has been implemented through a user-written model that is
applied only to synchronous machines. Distance-relay
protection generic models have been used for the transmission
system. Two types of load shedding schemes were modeled:
underfrequency (frequency-responsive non-firm load shedding)

Al

and underfrequency and undervoltage firm load shedding. The
proposed generic relay settings can later be improved based on
communications between planning and protection engineers.

The remainder of the paper is organized as follows. Section
Il describes generator protection modeling. Section Il
discusses relay models used for transmission protection.
Section IV explains modeling of load-shedding relays. In
section V, case study examples are given to show the impact of
protection modeling on dynamic simulations. Finally, some
concluding remarks and topics for future investigation are
provided in Section VI.

II. GENERATION PROTECTION MODELING

A key aspect to dynamic simulations of power systems is
properly modeling the response of generators to various grid
events. Adequately representing the protective devices on the
generator helps capture their operational and planning impacts
to the system. This section covers two typical protection
schemes for generators and the implementation details inside
PSS/E.

A. Voltage and Frequency Based Generation Protection

Protection modeling of generation units uses under-
voltage/over-voltage generator disconnection relay model,
VTGTPA, and under-frequency/over-frequency generator
disconnection relay model, FRQTPA, from the PSS/E model
library. These relay models are used to protect a single
generator, rather than to disconnect an entire generator bus.
The settings for the tripping of these relays are taken from
NERC Standard PRC-024-1, “Generator Frequency and
Voltage Protective Relay Settings™ [4], which will become
effective in 2016. The over/undervoltage settings used are
shown in Table I. The over/underfrequency settings used are
shown in Table II.

TABLE I. Under/Overvoltage Settings for Generator Protection

High-Voltage Ride-Through Low-Voltage Ride-Through
Duration Duration
Voltage (pu) Time (s) Voltage (pu) Time (s)
=>1.200 Instantancous trip <(.45 0.15
=1.175 0.20 <065 0.30
=1.15 0.50 <0.75 2.00
=1.10 1.00 <(0.90 3.00

TABLE II. Under/Overfrequency Settings for Generator Protection

High-Frequency Duration Low-Frequency Duration
Freqsency Timme) Froquency Tione)
=61.8 Instantaneous trip =57.5 Instantaneous trip
=61.6 30 =58.0 2
=60.6 540 =58.4 30
<60.6 Continuous operation =59.4 540
=59.4 Continuous operation

All the PSS/E generator protection relay models include the
following two parameters:

A2

e TP, which is the relay pickup time in seconds. This
parameter is set to a minimum of 50 ps, which is taken
from the Schweitzer Engineering Laboratories datasheet,
“SEL-700G Family of Generator and Intertie Protection
Relays” [5]. The parameter TP is also used to implement
different time-delayed settings.

e TB, which is the breaker time in seconds is set to 83 ms,
which is taken from “IEEE Standard for AC High-Voltage
Circuit Breakers Rated on a Symmetrical Current Basis -
Preferred Ratings and Related Required Capabilities for
Voltages Above 1000 V* [6].

B. Generator Qut-of-Step Protection

A user-written model, Generator Scan Angle
(GNSCNANG), has been developed by a Siemens PSS/E team
for this study. This model scans all rotor angles at each time
step during the dynamic simulation and trips generators that
have rotor angles advanced across a specified threshold
compared to a chosen reference angle. The operation of this
relay model mimics the operation of out-of-step relay
protection.

The reference angle is chosen as the center of inertia (COI)
angle. This user-written model scans only synchronous
generators. In this work, the threshold is chosen to be 180
degrees, and the reference angle is defined as
(1)

S

N N
= LZHJ(S{; H, = ZH_f; Seor =6, = Sy
Hy 5 i
where
N = total number of synchronous machines considered
H,; = moment of inertia of the /" machine
H; = system inertia
3, = rotor angle of the ;" machine
8cor = reference angle in the COI reference frame
&8'cor = relative rotor angle of the i" machine in the COI
reference frame

As soon as the relative rotor angle in the COI reference frame
is greater than the threshold value, the generator should trip.

II1. DISTANCE RELAY PROTECTION FOR TRANSMISSION LINES

For transmission line protection systems, the PSS/E
distance relay model DISTRI has been used. Given that typical
dynamic simulations only run for 30 seconds, overcurrent relay
models, which typically take longer time to operate, have not
been considered.

A. Distance Relay Placement

Typically, transmission line breaker locations are not
available in the bus-branch planning models; rather, they are
available in grid models used in protection software packages
and node-breaker operation models such as the Common
Information Models (CIM). In our proposed approach,
Category B contingency lists based on their definition in the
old NERC reliability standards (TPL-003-0b and TPL-004-0a)
[7] have been used to determine breaker locations for the

placement of protection within the transmission network. A
more accurate approach for determining placement of
protective devices is to extract the information from CIM
database.

For transmission lines at 230 kV and above, two relays are
assumed, one at each end, to fully protect a line. For lower
voltage lines, breaker placement is based on information
available in Category B contingency definitions which identify
transmission circuits tripping due to the same fault, e.g., upper
part of Fig.l shows a structure consisting of four branches in
series. Distance relays are assumed at each end of the structure.
In the case of n number of lines, the impedance settings for the
two relays are set to treat the length of the structure as the line
length: Zyay = Zjpe 1 + -onnee + Zjine n- There could be some
series branches with a single lateral branch as shown in the
lower part of Fig. 1. In this case, three distance relays are
assumed.

Fig. 1. Distance relay placement for lower voltage branches
B. Distance Relay Model Settings

It is fairly typical to set Zone | for distance relays at 85—
90% of the line length, Zone 2 at 120-150% of the line length,
and Zone 3 at 150% of the next line. Operation of Zone 2 of
the distance relay for the line must be coordinated with the
Zone | setting of the next line such that Zone 1 of the next line
must operate before Zone 2 of the first line does. This
coordination delay for Zone 2 is usually on the order of 0.3 s.
Similarly, operation of Zone 3 for the line must coordinate in
time and distance with Zone 2 of the next line. The operating
time of Zone 3 is usually on the order of 1 s [3].

In the proposed approach, generic Zone | and Zone 2
settings that are similar across all distance relays have been
used, with settings based on the values of X and R of the
corresponding line that could be obtained from the branch table
in the planning model. The Zone 3 protection approach is
beyond the scope of this paper.

IV. MODELING OF LOAD-SHEDDING RELAYS

Two types of load shedding schemes are modeled:
underfrequency (frequency-responsive non-firm load shedding)
and underfrequency and undervoltage firm load shedding.

Underfrequency load-shedding relays drop load on a
predetermined schedule to balance load and generation during
contingencies. Typically there is a sequence of shedding
increments of load if frequency continues to drop [8]. Fig. 2
shows a sequence of frequency load-shedding points on the
frequency (horizontal) axis; time is on the vertical axis. Load-
shedding relay settings are based on the guidance of NERC

Standard PRC-006-NPCC-1,
Load Shedding.”

“Automatic Underfrequency

'y

» fero
Frequency

L
f] !': (k] ty
Rated
Frequency Frequency (Hz)
Fig. 2. Time versus frequency curve showing load-shedding points along the
frequency axis
In addition, undervoltage load-shedding relays drop load on
a predetermined schedule if voltage drops below a certain
value. That is typically done in a number of steps with different
portions of load to be shed and corresponding thresholds for
different steps. Load-shedding relay settings are based on
NERC Standard PRC-022-1, “Under-Voltage Load Shedding
Program Performance.

V. CASE STUDIES

Generic protection relay models explained in the previous
section are added to the test case “savnw.sav” available in the
PSS/E example library. A one-line diagram of the test case is
shown in Fig. 3. The following case studies are given to show
the impact of protection modeling on dynamic simulations.

I

|

|

|

|

|

|

| wz

w l___ =

N

|

|

|

|

|

J

Fig. 3. One-line diagram of the test system

A. Test 1: Not a Close-In Fault in Pilot Scheme Line — Using

Fictitious Node

To model a fault in PSS/E at any location in a transmission
line other than the two line ends, a fictitious node needs to be
added. In this test, to model a fault in the line connecting buses
151 and 152 that is located at a distance of 10% of total line
length from bus 151, a new fictitious node (151152) is added

A3

between buses 151 and 152. Fig. 4 shows the location of the
fictitious bus. Distance relays then need to be associated with
the two branches newly created by the fictitious bus addition.
That is, one branch is from the near end to the fictitious bus,
and the other is from the remote end to the fictitious bus.

—an8. 1 ans.4

151
NUGPANT

1oz
S0m9

Fig. 4. A fictitious bus between buses 151 and 152

The bus fault is introduced at the fictitious bus (151152) at
t=5 s and simulation runs until dynamic simulation reaches a
steady state. In this test, dynamic simulation reaches a steady
state at 1 = 16 s. The following is the sequence of relay tripping
events:

1) Distance relay (DISTR1) at Circuit 1 from 151 to 151152
is activated as Zone 1 and its timer starts at /= 5 s.

2) Distance relay (DISTR1) at Circuit 1 from 152 to 151152
is activated as Zone 2 and its timer starts at 1= 5 s.

3) The Zone 1 timer times out at t = 5.017 s; the self-trip
breaker timer and also transfer trip and breaker trip timers start
at the same time.

4) Circuit | from 151 to 151152 trips at 7= 5.05 s and the
transfer trip timer also times out at the same time. In this case,
the Zone 1 relay accelerates the other relay, and as a result, the
other end (Circuit 1 from 152 to 151152) trips at the same time
(t=5.05 s), and soon thereafter the two voltages start to
recover.

The channel plot in Fig. 5 shows that the voltage at bus 151
collapses more than the bus 152 voltage. This indicates that the
fault is closer to bus 151.

Channel Plot

1z
"
+——
os]
= o8)/
a2, =
&
% o8
> o
é LT =
LE 1
[+ |
o1
% 4 L] L] LA LA 82 L
Time (seconds)
A5 VOLT 151 [NUCPANT 500 00 fmll_151_mod

18- VOLT 152 [MDS00 500,001 faul_151_med

Fig. 5. Voltage plots of the terminal buses of the faulted line for Test 1

B. Test 2: Not a Close-In Fault in Step Distance Line — Using
Fictitious Node

This simulation uses the same procedure and files that were
used in Test 1 except that the transfer trip capability of
DISTRI is assumed to have failed. Each end will trip
according to the Zone 1 or Zone 2 delays where appropriate.

The bus fault is introduced at the fictitious bus (151152) at

t=35 s and simulation runs until dynamic simulation reach

€5 a

steady state. In this test, dynamic simulation reaches a steady
state at 1 = 16 s. The following is the sequence of relay tripping

events:

1) Distance relay (DISTR1) at Circuit 1 from 151 to 151
is activated as Zone | and its timer starts at 1 =5 s.

2) Distance relay (DISTR1) at Circuit 1 from 152 to 151
is activated as Zone 2 and its timer starts at 1 =5 s.

3) The Zone 1 timer times out at /= 5,017 s; the self-trip
breaker timer and breaker timer start at the same time.

4) Circuit 1 from 151 to 151152 trips at £ = 5.05 s.

5) Circuit 1 from 152 to 151152 trips as a Zone 2 fault at
t=5.333 s, and the channel plot (Fig. 5) shows the two

152

152

voltages start to recover after tripping both ends of the branch.

Channel Plot

[+
Time (seconds)

[53 535 54

15 VOLT 151 [MUCPANT 500.00] : faus_151_smesd

|7
||7 18- VOLT 152(MDSO0 500.00] - fauk_181_mod

Fig. 6. Voltage plots of the terminal buses of the faulted line for Test

C. Test 3: Bus Fault

2

In Test 3, a fault is applied at bus 201 at 7= 5 s and the fault
is cleared after 10 cycles. The simulation runs until dynamic
simulation reaches a steady state at = 75 s. Table I1I shows a

summary of the tripping events. Simulation result plots are
shown in Figs. 7 and 8.

TaBLE Ill. Relay Trips Summary of Test 3

Relay Type
DISTR1 TimeQOut Busfrom Busto ckt
DISTRI1 5.1 201 202 1
Pgen
VTGTPA TimeOQut Bus BusName BuskV (MW)
VTGTPA 5.237 211 HYDRO_G 20 600

A4

Channel Plot

Bus Vatage (pu)

24
ATS 48 4B 4% AW 8 408 81 81 82 A3 a1 aM a4 Sa af

& W WT 201 0RO 806,00 Iea_7_med
= 0. VLT JTRASTIO 50000 dau_304_mod

Channel Plot

Fig. 7. Channel Plot for Voltages at Buses 201 and 202

| e
([

" = = - [- =
Tima iseconds|
E ovar mieeens me e |

Fig. 8. Channel Plot for Voltage at Bus 211

D. Test 4: Bus Fault Leads to Blackout

In this dynamic simulation, a fault is applied at bus 151 at
t=135 s; the fault is applied for 12 cycles and then cleared. A
significant number of undervoltage and underfrequency
generator relays were tripped due to this fault, which leads to
system blackout. The network did not converge after
1=6.3708 5. A total of seven relays are activated during this
dynamic simulation; Table IV shows a summary. Fig. 9 shows
the speed of the selected machines that have tripped.

TaBLE IV. Sequence of Relay Trippings in Test 4

Relay Type
DISTRI TimeOut Busfrom Busto ckt
DISTRI 5.1 151 152 |
DISTRI 5.1 151 152 2
Pgen
VIGTPA TimeOut Bus BusName BuskV (MW)
VTGTPA 5.237 101 NUC-A 21.6 750
VITGTPA 5.237 102 NUC-B 21.6 750
FRQTPA TimeOut Bus BusName BuskV Pgen
FROQTPA 6.362 3018 CATDOG 13.8 100
FRQTPA 6.371 206 URBGEN 18 800
FRQTPA 6.371 3011 MINE_G 13.8 258.66
FRQTPA 6.383 211 HYDRO 20 600

Channel Plot

Speed Deviation (pu)
/

Time (seconds)

F 12 5PD JOWMCATOOGG 12 B00]1 - faull_151_mod
F - 8- 5FD JOSURBGEN 1R.000]Y - faul_131_mod
F 1-SP0 WVMNLG 1380001 : Faut_ 191 _mod
10- 5P 31IMYORD.G 3000071 faut_181_mo

F
Fig. 9. Channel Plots for Speeds of Selected Machines

V1. CONCLUSION

The lack of integrated dynamic models with protection
relays is a major challenge for performing accurate dynamic
simulations, especially to understand the impact of protection
misoperation. This paper shows main generic relay models that
can be added to planning models to include protection system
actions. The newly issued NERC Standard PRC-024-1 will
make the under/overfrequency and under/overvoltage relay
settings universal for all generating units. Grid operators
should add these relay models to their dynamic models. In
addition, modeling of out-of-step protection for generating
units is important. For transmission protection, the modeling of
distance relays with correct settings could be a challenge,
because this information is typically set by transmission
owners and not available to grid operators. These efforts are
the starting point for developing comprehensive approaches
that consolidate protection models in dynamic simulations that
can be easily used by planning engineers.

VII. ACKNOWLEDGMENT

This study is funded by the Office of Electricity Delivery
and Energy Reliability at the U.S. Department of Energy. The
project team wants to especially thank Mr. Gil Bindewald and
Dr. David Ortiz from the U.S. Department of Energy Office of
Electricity Delivery and Energy Reliability for their continuing
support, help, and guidance. The project team appreciates
technical support from Siemens Power Technologies staff
Hugo Bashualdo, Dinemayer Silva, Jayapalan Senthil, James
Feltes, Joseph Smith, and Krishnat Patil. We would also like to
thank Siemens subcontractor Eli Pajuelo for his help in
protection modeling in PSS/E.

REFERENCES

[1] U.S~Canada Power System Outage Task Force. Final Report on the
August 14, 2003 Blackout in the United States and Canada: Causes and
Recommendations. April 2004, Accessed November 1, 2015 at
hitp://energy.gov/sites/prod/files/oeprod/ DocumentsandMedia/Blackout Fi
nal-Web.pdf.

[2] A, Gopalakrishnan, SG Aquiles-Pérez, DM MacGregor, DB Coleman, PF
MeGuire, KW Jones, J Senthil, JW Feltes, G Pietrow, and A Bose.
“Simulating the Smart Electric Power Grid of the 21st Century —
Bridging the Gap between Protection and Planning.” Georgia Tech
Protective Relaying Conference 2014, Atlanta, Georgia. Accessed
MNovember, 1, 2015.hitp://quanta-technology.com/sites/default/files/doc-
files/Simulating®20the%20Smart%20Grid%20paper.pdf

A5

(7

[10

Generic Distance Relay Model for the Western Electricity Coordinating
Council. Published January 2014. Accessed November 1, 2015 at
https://www.wecc.biz/Reliability/Distance-Relay-Model-Spec-2013-10-
04.pdf.

Generator Frequency and Voltage Protective Relay Settings. NERC
Standard PRC-024-1. North American Electric Reliability Corporation,
Atlanta, Georgia, 2014,

Schweitzer Engineering Laboratories, Inc., “SEL-T00G Family of
Generator and Intertie Protection Relays,” Pullman, Washington, 2015.
IEEE Standard for AC High-Voltage Circuit Breakers Rated on a
Symmetrical Current Basis - Preferred Ratings and Related Required
Capabilities for Voltages Above 1000 V, IEEE Std. C37.06-2009, Nov.
2009,

System Performance Following Loss of Two or More BES Elements.
NERC standard TPL-003-0b. North American Electric Reliability
Corporation, Atlanta, Georgia. Accessed November 1, 2015, at
http:wwwanere.comdfiles/TPL-003-0b.pdf.

W. C. New, “Load Shedding, Load Restoration and Generator
Protection Using Solid-state and Electromechanical Underfrequency
Relays.” General Electric Company, GET-6449. (Undated).

Auwtomatic Underfrequency Load Shedding. NERC Standard PRC-006-
NPCC-1, North American Electric Reliability Corporation, Atlanta,
Georgia,

Under-Voltage Load Shedding Program Performance. NERC Standard
PRC-022-1, North American Electric Reliability Corporation, Atlanta,
Georgia

A.6

U.S. DEPARTMENT OF

Pacific Northwest
NATIONAL LABORATORY EN ERGY

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard
P.O. Box 999

Richland, WA 99352
1-888-375-PNNL (7665)

www.pnnl.gov

	Summary
	Acknowledgments
	Acronyms and Abbreviations
	Contents
	Figures
	Tables
	1.0 System Requirements
	2.0 Introduction to the DCAT Package
	3.0 How to Use the DCAT Package
	3.1 Options for Running DCAT
	3.1.1 Run Using Eclipse or Other IDE (recommended)
	3.1.1.1 Steps to Install PyDev
	3.1.1.2 Steps to Create a Python Project
	3.1.1.3 Steps to Run Python within Eclipse

	3.1.2 Run Directly from PSS®E GUI

	3.2 File Check
	3.3 Case Preparation
	3.3.1 Convert and Modify the Base Case
	3.3.2 Generate the “.snp” File

	3.4 Run Flat Start
	3.5 Simulate Contingencies
	3.5.1 Traditional Dynamic Simulations (no cascading outages)
	3.5.2 Modeling of Cascading Outages through DCAT Run
	3.5.2.1 Parameter Configurations in “Config.ini”
	3.5.2.2 Further Modifications

	3.6 DCAT Examples and Simulation Results on a PSS/E Test System
	3.6.1 Example 1: Not a Close-In Fault in Pilot Scheme Line – Using Fictitious Node
	3.6.2 Example 2: Not a Close-In Fault in Step Distance Line – Using Fictitious Node
	3.6.3 Example 3: Bus Fault
	3.6.4 Example 4: Bus Fault Leads to Blackout
	3.6.5 Example 5: Activation of an SPS/RAS

	4.0 Parallel Computing of DCAT Run
	4.1 Basic Structure and Flow of “MPjobs”
	4.2 Configurations Needed for “MPjobs” to Run DCAT
	4.2.1 Scenario Setup
	4.2.1.1 xvars Setup
	4.2.1.2 yvars Setup

	4.2.2 Configuration of the “.ini” File
	4.2.3 Configuration of the Main Python Script to Run PSS®E Simulation

	4.3 Run Parallel Computing of DCAT Process
	4.4 Some Notes on “MPjobs”
	4.5 Example of Using “Mpjobs”

	5.0 Introduction of Different Python Modules in the DCAT Package
	5.1 “Supportingtools.py” (Supporting File)
	5.2 “ReadLogFile.py” (Extract Information from “.log” File)
	5.3 “Make_DYR_withPNNLrelays_xx.py” (Obtain “.sav” File and “.snp” for Subsequent Simulations)
	5.4 “RunFlatStart.py” (Run Flat Start)
	5.5 “RunTestFault.py” (Dynamic Simulation Given a Certain Contingency)
	5.6 “MainDCAT.py” (Main DCAT Process Given a Certain Contingency)
	5.7 “Configuration File”

	6.0 Introduction of “MainDCAT.py”
	6.1 Main Flow of “MainDCAT.py”
	6.2 Subroutines in “MainDCAT.py”
	6.2.1 “RunDynamicSimulation”
	6.2.2 “IsDisconnected”
	6.2.3 “Check_NDM_Island”
	6.2.4 “Check0serviceBus”
	6.2.5 “Test_SPS”
	6.2.6 “SPS_WriteIDVfile”
	6.2.7 “FindVirLine”
	6.2.8 “ModifyConFile”
	6.2.9 “Test_CorrectiveAction”
	6.2.10 “FindZones”
	6.2.11 “Checkoverflow”
	6.2.12 “RemoveOverflowLine”
	6.2.13 “AfterDCAT”

	7.0 References
	Appendix A – Modeling of Protection in Dynamic Simulations Using Generic Relay Models and Settings

