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Abstract 

This report summaries the work performed under the LDRD project on the preliminary study on knowledge 

automation, where specific focus has been made on the investigation of the impact of uncertainties of human 

decision making onto the optimization of the process operation.  At first the statistics on signals from the 

Brain-Computing Interface (BCI) is analyzed so as to obtain the uncertainties characterization of human 

operators during the decision making phase using the electroencephalogram (EEG) signals. This is then 

followed by the discussions of an architecture that reveals the equivalence between optimization and closed 

loop feedback control design, where it has been shown that all the optimization problems can be transferred 

into the control design problem for closed loop systems. This has led to a “closed loop” framework, where 

the structure of the decision making is shown to be subjected to both process disturbances and controller’s 

uncertainties. The latter can well represent the uncertainties or randomness occurred during human decision 

making phase. As a result, a stochastic optimization problem has been formulated and a novel solution has 

been proposed using probability density function (PDF) shaping for both the cost function and the 

constraints using stochastic distribution control concept. A sufficient condition has been derived that 

guarantees the convergence of the optimal solution and discussions have been made for both the total 

probabilistic solution and chanced constrained optimization which have been well-studied in optimal power 

flows (OPF) area.  

 

A simple case study has been carried out for the economic dispatch of powers for a grid system when there 

are distributed energy resources (DERs) in the system, and encouraging results have been obtained showing 

that a significant savings on the generation cost can be expected.
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1.0 Introduction 

Operation of manufacturing systems involves raw material supplies chain, material processing lines and 

after-sales services. Examples are steel making, mineral processing, power systems, car manufacturing, 

papermaking and petro-chemical plants, where in the production phase there are a lot of control systems 

working collaboratively to fulfill the required production.  These control systems have multiple layered 

interface with the on-site human operators at different level and the whole system works horizontally 

through material processing along production lines and vertically through the integration of different layers 

of operation control, planning and scheduling as well as operational management ([1]-[2]).  Such a structure 

is shown in the following figure. 

 

During the operation of these processes, the ultimate purpose is to achieve optimized product quality and 

production efficiency.  This means that at least there are several performance indexes that need to be 

optimized at the same time, namely the product quality indexes, runnability and costs.  This constitutes a 

multi-objective optimization problem.  Indeed, it is well-known that once the production structure is fixed, 

it is the control systems that would play a vital role to realize the optimality of the operation. Assuming that 

the control loop layer has been well designed, the final stage of decision variables would be the set-points 

applied to these control loops along the concerned production line.  

 

 

 

 

 
Figure 1. The 2D operational structure of complex industrial processes 
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With the multiple layer structure as shown in Figure 1, optimization would generally take place in each 

layer and at different time scale.  For example the optimization at the control loop layer would be realized 

in line with the closed loop sampling rate of the concerned closed loop system using the knowledge of the 

process, the operation control layer would require certain degree of the involvement of human operators 

who help to fine tune the set-points to the control loops whilst the optimization at the planning and 

scheduling level would require a longer time and involve significant assistance of human operators for the 

decision making.  This presents new challenges for the optimization where human-in-loop aspects need to 

be considered, and in particular the effect of uncertainties of human operators in the decision making phase 

need to be quantitatively analyzed so as to assess the optimality effect and the related robustness of the 

optimal operation of the concerned complex systems when they are subjected to unexpected variations in 

either raw materials or the operational environment.  

 

It is therefore imperative to access how the decision-making of human operator is integrated with the actual 

process information so as to optimize production performance in terms of enhanced product quality and 

reduced costs (e.g., raw materials and energy usage, and effluent discharge).  

 

At present, the plant level operational control and management have been largely solved ([1-2]), where a 

group of manipulated (decision) process variables can be generally formulated from the models of the 

process to optimize the process operation together with the decisions made by the human operators.  In 

general, the decision making phase of human operators contains uncertainties in the time-horizon in terms 

of observation, use of knowledge and decision realization. Since these uncertainties will affect the effect of 

the decision-making, there is a challenging issue here on how the negative effect of these uncertainties on 

the optimization can be minimized. This constitutes one of the key issues yet to be solved for the knowledge 

automation for industrial processes control which is a new concept nowadays following the launch of 

industrial 4.0 in Germany.       

 

A preliminary study by Hong Wang [3] has shown that the uncertainties of human operator’s decision 

making can be measured through EEG (brain) signals, where the brain signals of inexperienced operators 

would generally exhibit large portion of uncertainties and randomness which lead to a widely distributed 

probability density functions (pdf) as shown in Figure 2. It is therefore imperative that such a measure be 

used by well-defined process variables in the minimization of the impact of uncertainties embedded in 

human operator’s decision making.  This forms the main objective of the proposed study.  

 

Following the completion of the PDM project where a comprehensive review of existing development on 

knowledge automation has been made, this proposed LDRD project has been focused on the development 

of a method on how the uncertainties in knowledge automation can be measured and used in operational 

optimization for process control. In particular, we are going to use methods from different disciplines 

including techniques from Brain Computer Interface (BCI), EEG signal processing, knowledge 

engineering, data mining, and decision science ([4]-[6]) to look into the following aspects in a logical order: 

 

1) Investigate the ways to quantify knowledge quality and randomness using signals collected from  

the brain via EEG; 

 

2) Develop a method on performance index modeling that can describe the relationships between 

uncertainties of human decision variables and the well-defined process variables.  

 

3) Explore the framework that can be used to realize the risk-minimization of human decision making 

by adjusting a group of well-defined process variables. 
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Figure 2. PDFs of EEG signals for experienced and non-experienced operators ([3]) 

 

 

In line with the above tasks, the following Milestones will be envisaged.   

 

 Select relevant context and define use-cases for BCI-based knowledge automation. (September 

2016) 

 Find a robust method or strategy that can be used to quantify quality and randomness of knowledge 

extracted from human brain (September 2016)  

 

The first milestone has been achieved where a set of BCI based information has been collected and analyzed 

in order to define the uncertainties treatment to be described later.  The second milestone has also been 

achieved where a novel stochastic optimization solution is obtained that uses probability density function 

(pdf) as a means to quantify the randomness of the knowledge extraction in the optimization phase and 

shows how such a pdf can be used to design optimization algorithms.  These will be described in details in 

the following sections.  

 

In specific, a novel sufficient condition has been derived that guarantees that the decision sequence 

converges to a crisp value in solving the stochastic optimization problem that are subjected to both decision-

making uncertainties and process disturbances. 
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2.0 Formulation of Optimization as a Feedback Control 

Design Problem 

Optimization has been a subject of study for many years and is widely required in many areas.  In general 

a simple optimization is formulated as solving the following problem 

 

 

                                                                min
𝑥

𝐽(𝑥)                                                                                      (1) 

                                                                 s.t.   𝑓(𝑥) = 0                                                                            (2) 

 

where J in (1) is a performance function to be optimized and x is a vector that groups a set of decision 

variables to realize such an optimization.  In the optimization x should also satisfy the constraints defined 

by the second equation (see (2)).  

2.1 Optimization is a special case of feedback control design 

 

Without the loss of generality it is assumed that J is always positive.  In this context, the purpose of the 

optimization can be interpreted as to select an optimal value of x so that J is made as close as possible to 

zero. Since in many cases the actual optimization algorithm is realized in a form of recursion for x, if we 

denote xk as the value of x at sample number k, then the following recursive optimization algorithm is 

generally used 

 

                                                              𝑥𝑘 = 𝜋(𝑥𝑘−1, 𝐽(𝑥𝑘−1), 𝜃)                                                            (3)                                    

  

where 𝜋(. , . , . ) is a functional operator that represents the designed optimization algorithm and 𝜃 is a group 

of learning rates.  For example when there is no constraint and J is differentiable and is defined on a compact 

set, the well-known gradient descent algorithm that minimizes J recursively is given by  

 

                                                             𝑥𝑘 = 𝑥𝑘−1 − 𝜃
𝜕𝐽(𝑥𝑘−1)

𝜕𝑥𝑘−1
      𝑘 = 1, 2, …                                          (4)  

 

This means that the functional operator of the gradient descent optimization algorithm expressed in equation 

(4) is given by 

  

                                                              𝜋(𝑥𝑘−1, 𝐽(𝑥𝑘−1), 𝜃) = 𝑥𝑘−1 − 𝜃
𝜕𝐽(𝑥𝑘−1)

𝜕𝑥
                                     (5) 

 

 

Taking the optimization algorithm as a “control” algorithm, this means that to optimize J subjected to the 

required constraints one needs to design a “controller” that can ensure ideally that the following tracking 

error convergence 

 

                                                             𝐥𝐢𝐦
𝒌→+∞

𝒆𝒌 = lim
𝑘→+∞

[ 0 − 𝐽(𝑥𝑘)] = 0                                               (6)                            

 

By taking J as the output of the “plant” to be controlled and x as the control input to be applied to the 

“plant”, the following “closed loop control system” can be readily obtained.  
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Figure 3. Treating the optimization as a closed loop feedback control problem 

 

Since J is always positive and the set-point to the above closed loop control system is always zero, the 

optimization can be regarded as a special case of the well-known feedback control system design.  This 

reveals a very important fact which says that any control design methods can be considered as a possible 

candidate in the design of an optimization algorithm.  This fact has therefore broadened the scope of the 

optimization and at least the following statements are true, 

        

 Multi-objective optimization can be treat as a multi-input and multi-output (MIMO) controller 

design problem; 

 

 The rather rich stability and robustness analysis tools (such as Lyapunov stability theory) developed 

in control theory can be directly employed to analyze the performance of the concerned 

optimization. For example, the convergence and dynamic performance of the tracking error given 

in (3) can be readily assessed using either Lyapunov stability theory or Popov’s absolute stability 

theory. 

            

Indeed, the above facts have enlarged the flexibility of selecting and developing optimization algorithms 

for a given problem and can enormously help for structured optimization where the algorithm structure can 

be imposed to the optimization a prior.  For example, one can select a PID-based optimization algorithm 

to first close the loop for a given optimization problem as shown in Figure 2, then the PID gains can be 

regarded as a group of “learning rates” to be selected to guarantee the stability (convergence) of the 

optimization algorithm and the best tracking performance for the tracking error in (3).  

 

For the gradient descent algorithm in (5), if we denote 𝑧−1 as the unit delay operator as in the discrete-time 

control, then the functionality of the “controller” is given by 

 

𝑥𝑘 =
−𝜃

1 − 𝑧−1

𝜕𝐽(𝑥𝑘−1)

𝜕𝑥𝑘−1
 

If a PI structure is used with the performance function as a direct feedback signal, we have 

 

𝑥𝑘 = 𝐾𝑝(0 − 𝐽(𝑥𝑘−1)) + 𝐾𝐼𝜌𝑘 

𝜌𝑘 = 𝜌𝑘−1 + ℎ(0 − 𝐽(𝑥𝑘−1)) 

 

where ℎ > 0 is the sampling length, and {𝐾𝑝, 𝐾𝐼} are the “PI control” gains to be selected so that the closed 

loop control system shown in Figure 2 is stable and the closed loop system has a good tracking performance 

albeit J does not always approach the zero set-point.  We can also control the gradient by using 
𝜕𝐽(𝑥𝑘−1)

𝜕𝑥𝑘−1
 as 

the feedback signal to the controller with a PI structure, in this case the following optimization algorithm 

can be formulated 
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𝑥𝑘 = 𝐾𝑝(0 −
𝜕𝐽(𝑥𝑘−1)

𝜕𝑥𝑘−1
) + 𝐾𝐼𝜌𝑘 

𝜌𝑘 = 𝜌𝑘−1 + ℎ(0 −
𝜕𝐽(𝑥𝑘−1)

𝜕𝑥𝑘−1
) 

 

In comparison with the direct performance function feedback, the above gradient feedback aims at 

achieving a zero gradient when 𝑘 → +∞ as seen in the integration functionality.  

 

Since in general J(x) is a static nonlinear function and the optimization algorithm is in a recursive 

(‘dynamic’) form, the search for a proper optimization algorithm would mean that one need to select a 

dynamic “controller” that can control a static nonlinear plant well.  This has further indicated that 

optimization is indeed a sub-problem of closed loop control system design. 

2.2 Source of uncertainties in decision making – system uncertainties 
vs human behavior uncertainties 

 

        For complex industrial processes, human operators at different layer in Figure 1 generally participate 

in the optimization or decision making.  For example, in the operation control layer the operators can be 

involved in the tuning of the set-points to the control loops in an intuitive way using their operational 

experience.  In this decision making phase there are certain uncertainties involved.  For instance, an 

experienced operator would exhibit less uncertainties in his/her reasoning when making the decision.  Such 

uncertainties can be represented as a disturbance to the “controller” in Figure 3.  Of course the “plant” is 

generally subjected to some degree of uncertainties in terms of the uncertainties embedded in both the 

performance function and the constraints.  Indeed, the effect of uncertainties to the plant has been well 

studied and is generally treated as a robust optimization problem, where the objective of the optimization 

is to select a proper set of decision variables x so that the performance index J is minimized when it is 

subjected to uncertainties.   

 

In this context, the realistic optimization problem can be further represented as in Figure 4, where two types 

of uncertainties – one to the “controller” and the other to the “plant” are included.  The optimization problem 

can therefore be generalized as to solve the following problem,  

 

                                                          min
𝑥

𝐽(𝑥, 𝑤)                                                                                       (4) 

                                                           s.t. 𝑓(𝑥, 𝑣) = 0                                                                                (5) 

   

where w and v are the uncertainties embedded in the performance function and the constraints and are 

assumed to be independent random processes whose probability density functions are used to represent 

their characteristics (see Figure 2). The purpose of the optimization is therefore to select a good x so that J 

is made to follow the zero set-point as close as possible in the presence of w and v, and the uncertainties in 

the “controller”.   

 

In comparison with standard controller design, the uncertainties embedded in the controller is a new 

phenomenon as in general for the closed loop control design and implementation there is no uncertainties 

for the controller.  This presents a new challenge where uncertainties such as the randomness of human 

decision making need to be considered in the optimization phase.  Indeed, when the constraint is given by,  
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                                                          𝑓(𝑥, 𝑣) = 𝑓(𝑥 + 𝑣) = 0     
then v would represent the uncertainties and randomness in the human decision making phase whose pdfs 

can be obtained using EEG signal as shown in Figure 2. 

Since the uncertainties in the decision making phase of human operators can be characterized using the 

signals from BCI, they can be quantitatively represented as a set of random processes which can be 

eventually expressed by the pdfs of the BCI signals after the subtraction of the signals themselves from 

their mean values.  In this context, the following generalized structure can be obtained which presents a 

framework of optimization when it is subjected to uncertainties from both the process and the optimization 

algorithms. 

 
Figure 4. The generalized optimization framework that incorporates uncertainties from both the process 

and the human decision making phase 

 

This framework reveals that the actual task of the optimization should be to select a “good” x so that J is 

made to be as close as possible to zero when the closed loop system is subjected to uncertainties both in the 

“controller” and in the “plant”, whilst ensuring the closed loop stability and robustness. 
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3.0 The Generalized Framework for Decision Making Using 

Probability Density Function (pdf) Shaping Approach 

Since the process performance is subjected to the uncertainties as represented by w in equations (4), J is a 

random process and its optimization should be performed so that the mean value of J is minimized whilst 

the randomness of the optimized J is minimized.  This is a pdf shaping problem for J where the stochastic 

distribution control theory originated by Wang ([7], [11] – [19]) can be readily applied so that the pdf of J 

is moved as close as possible to the left and its spread area is made as narrow as possible.  This is shown in 

Figure. 5. 

 

 
Figure 5. PDFs of the performance function before and after the optimization 

3.1 PDF shaping for the performance function 
 

Denote the pdf of J as 𝛾𝐽(𝑥, 𝜏) where 𝜏 ∈ [𝑎, 𝑏] is the definition variable that defines 𝛾𝐽(𝑥, 𝜏), a and b are 

two positive known numbers that stands for the definition interval, then to realize the above purpose of 

optimization we need to minimize the following induced functional distance 

 

                                𝜋0(𝑥) = ‖𝛿(𝜏 − 𝑎) − 𝛾𝐽(𝑥, 𝜏)‖ = √∫ [𝛿(𝜏 − 𝑎) − 𝛾𝐽(𝑥, 𝜏)]2𝑑𝜏
𝑏

𝑎
= 𝑚𝑖𝑛                  (6) 

 

subjected to the constraint expressed in (5), where 𝛿(𝜏 − 𝑎) is an impulse pdf function defined as follows: 

 

𝛿(𝜏 − 𝑎) = {
+∞,      𝜏 = 𝑎
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Without loss of generality, one can just minimize the following subjected to constraint (5). 

 

                                                   𝜋(𝑥) = ∫ [𝛿(𝜏 − 𝑎) − 𝛾𝐽(𝑥, 𝜏)]2𝑑𝜏 = 𝑚𝑖𝑛
𝑏

𝑎
                                          (7) 

 

This presents a much generalized approach for stochastic optimization where the existing rather rich results 

on mean value and variance based stochastic optimization become a special case of (7). 
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3.2 Dealing with the constraint 
 

Whilst solving (7) is a straightforward stochastic distribution control problem, dealing with the constraint 

f(x, v) = 0 at the same time is not easy as v is a random process.  Satisfying such a constraint would mean 

that x should be a random variable applied to the actual process.  Here we try to transfer this constraint into 

another pdf shaping problem albeit in general we can use the mean value of the optimized x as the actual 

decision variable to be applied to the plant (see the next section). 

 

For this purpose, we denote the pdf of f(x, v) as 𝛾𝑓(𝑥, 𝜑) where 𝜑 ∈ [𝑐, 𝑑] is a definition variable for 

𝛾𝑓(𝑥, 𝜑) with known c<0 and d>0, then to realize f(x,v) = 0, we need to make sure that the following 

 

                                                 𝛾𝑓(𝑥, 𝜑) = 𝛿(𝜑),    ∀𝜑 ∈ [𝑐, 𝑑]                                                               (8) 

 

is satisfied for the selected optimal x.  This means that we need to make sure that the pdf of f(x, v) equals 

to a 𝛿 − function, which can be realized “somehow” by minimizing the following functional distance by 

selecting a good decision variable x 

 

                               𝜀0(𝑥) = ||𝛿(𝜑) − 𝛾𝑓(𝑥, 𝜑)|| = √∫ [𝛿(𝜑) − 𝛾𝑓(𝑥, 𝜑)]2𝑑𝜑
𝑑

𝑐
                                    (9)    

 

or to simply minimize the following 

  

 

                                                      𝜀(𝑥) = ∫ [𝛿(𝜑) − 𝛾𝑓(𝑥, 𝜑)]2𝑑𝜑
𝑑

𝑐
 

 

As a result, the actual optimization becomes finding x so that both 𝜋(𝑥) and  𝜀(𝑥) are minimized at least 

and at the same time.  Let 𝑥𝑘   (𝑘 = 1, 2, … ) be the sequence of the decision variable at sample number k, 

then to obtain the optimal 𝑥𝑜𝑝𝑡 that optimizes J subjected to f(x, v) = 0, we need to select 𝑥𝑘 so that the 

following performance function is minimized.  

 

                                            𝐽𝜎 = 𝜋(𝑥𝑘) + ∑ 𝜀(𝑥𝑗)𝑘
𝑗=1 ,     𝑘 = 1, 2, 3, …                                                   (10) 

 

If the above can be minimized (i.e., a sufficient condition) for k going to infinite, the constraint f(x, v) = 0 

can be strictly guaranteed. This is because when k goes to infinite we have  

 

∑ 𝜀(𝑥𝑗)   <  +∞

+∞

𝑗=1

      

which indicates that 

 

                                          lim
𝑘→+∞

𝜀(𝑥𝑘) = lim
𝑘→+∞

∫ [𝛿(𝜑) − 𝛾𝑓(𝑥𝑘 , 𝜑)]
2

𝑑𝜑
𝑑

𝑐
= 0                                     (11) 

 

                                                   lim
𝑘→+∞

𝛾𝑓(𝑥𝑘 , 𝜑) = 𝛿(𝜑),        ∀𝜑 ∈ [𝑐, 𝑑]                                               (12) 

 

As a result, the optimal decision variable can be made to converge by solving (10) which gives 
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                                                       lim
𝑘→+∞

𝑥𝑘 = 𝑥𝑜𝑝𝑡                                                                                  (13) 

 

This leads to the following theorem that states a sufficient condition for solving the stochastic optimization 

problem given in (4) – (5).  

 

 

THEOREM 1 (The Discrete-time Case). A sufficient condition for solving the optimization problem (4) 

– (5) is that there is a sequence of decision variable {𝑥𝑘} for 𝑘 = 1, 2, 3, … so that the following inequality 

holds 

 

∑ 𝜀(𝑥𝑘)   <  +∞

+∞

𝑘=1

 

 

where it has been denoted that 

 

𝜀(𝑥𝑘) = ∫ [𝛿(𝜑) − 𝛾𝑓(𝑥𝑘 , 𝜑)]2𝑑𝜑
𝑑

𝑐

 

  

When ∆𝑥 = 𝑥𝑘 − 𝑥𝑘−1is very small, a continuous-time format can be obtained for (10) to give 

 

                                         𝐽𝜎(𝑥) = 𝜋(𝑥𝑡) + ∫ ∫ [𝛿(𝜑) − 𝛾𝑓(𝑥(𝜏), 𝜑)]2𝑑𝜑𝑑𝜏
𝑑

𝑐

𝑡

0
                                       (14)        

                                   

In this case we need to find a profile 𝑥(𝜏) for 𝜏 ∈ [0, 𝑡] that can minimize (14) for any 𝑡 > 0, this means 

that we need to solve the following optimization problem 

 

min
𝑥(𝜏),𝜏∈[0,𝑡]

{𝜋(𝑥𝑡) + ∫ ∫ [𝛿(𝜑) − 𝛾𝑓(𝑥(𝜏), 𝜑)]
2

𝑑𝜑𝑑𝜏
𝑑

𝑐

𝑡

0

}     ∀𝑡 ∈ [0, +∞) 

 

This is an optimization problem, if it is solvable for any 𝑡 > 0, then it can be concluded that 

 

∫ ∫ [𝛿(𝜑) − 𝛾𝑓(𝑥(𝜏), 𝜑)]2𝑑𝜑𝑑𝜏
𝑑

𝑐

𝑡

0

< +∞,   𝑓𝑜𝑟 ∀ 𝑡 > 0 

which indicates that  

 

lim
𝑡→+∞

∫ [𝛿(𝜑) − 𝛾𝑓(𝑥(𝑡), 𝜑)]2𝑑𝜑 = 0
𝑑

𝑐

 

 

As a result, it can be obtained that 

 

lim
𝑡→+∞

𝛾𝑓(𝑥(𝑡), 𝜑) = 𝛿(𝜑), 𝑓𝑜𝑟  ∀𝜑 ∈ [𝑐, 𝑑] 

 

lim
𝑡→+∞

𝑥(𝑡) = 𝑥𝑜𝑝𝑡 

 

Along with the above formulation, the following theorem can also be readily obtained for the continuous-

time case.  
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THEOREM 2 (The Continuous-time Case). A sufficient condition for solving the optimization problem 

(4) – (5) is that there is a function 𝑥(𝜏) for 𝜏 ∈ [0, 𝑡] so that the following inequality holds 

 

∫ ∫ [𝛿(𝜑) − 𝛾𝑓(𝑥(𝜏), 𝜑)]2𝑑𝜑𝑑𝜏
𝑑

𝑐

𝑡

0

< +∞,   𝑓𝑜𝑟 ∀ 𝑡 > 0 

 

3.3 A total probabilistic solution 

Since constraint (5) indicates that in general x is also a random variable, another way to solve (4)-(5) is 

to find an optimal probability density function for the decision variable x so that the probability density 

function of the performance function J is made as left and as narrow as possible. Denote the optimal 

probability density function of x as 𝛾𝑥(𝜏), 𝜏 ∈ [𝑒, 𝑓] for a known e and f, then with this pdf one can find a 

value of x to apply to the system.  For example, the optimal and applicable 𝑥𝑜𝑝𝑡 can be calculated from 

                                                         𝑥𝑜𝑝𝑡 ≈ ∫ 𝜏𝛾𝑥(𝜏)𝑑𝜏
𝑓

𝑒
                                                                (15) 

Since such as an approach requires the optimal solution of the pdf of x, it is referred to as the total 

probabilistic solution for (4)-(5).  Note that equation (5) is only an approximate as in practice 𝛾𝑥(𝜏) cannot 

be directly applied to the system. This constitutes a marked disadvantage of this type of solution. 

3.4 Relations to chance constrained optimization 

   Problem (4)-(5) can also be regarded as a chance constrained optimization problem ([9] – [10]) studied 

in optimal power flow design in the sense that we need to find an optimal x for the following problem. 

                                                              min
𝑥

𝐽(𝑥, 𝑤)                                                                               (16) 

                                                              𝑠. 𝑡.    𝑃𝑟𝑜𝑏{𝑓(𝑥, 𝑣) = 0} ≥ 1 − 𝛽                                           (17) 

where 𝛽 ≈ 0  is a very small positive number. The above can be further relaxed into the following problem 

                                                              min
𝑥

𝐸𝑤{𝐽(𝑥, 𝑤)}                                                                       (18) 

                                                             𝑠. 𝑡.    𝑃𝑟𝑜𝑏{𝑓(𝑥, 𝑣) ≤ 0} ≥ 1 − 𝛽 = 𝛼                                    (19) 

where 𝐸𝑤{. } is the mathematical expectation operator over random variable w.  Indeed, this is a standard 

chance constrained optimization problem.  In pdf shaping sense, this means that we need to find a good x 

so that the pdf of J is moved as left and as narrow as possible together with the pdf of f(x, v).  As a result, 

the formulation and sufficient conditions stated in Theorems 1 and 2 can all be applied to seek the solutions 

to the above chance constrained optimization problem. 

Of course, in this context the rather rich algorithms developed in stochastic distribution control ([7] – [8]) 

can be used to solve chance constrained optimization. For example, using the B-spline expression for 

𝛾𝑓(𝑥, 𝜑), we have 
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                                                             𝛾𝑓(𝑥, 𝜑) = ∑ 𝜃𝑖(𝑥)𝐵𝑖(𝜑)𝑁
𝑖=1 ,    ∀𝜑 ∈ [𝑐, 𝑑]                              (20) 

where 𝐵𝑖(𝜑), {𝑖 = 1, 2, … , 𝑁} are the set of pre-specified basis functions defined on [𝑐, 𝑑], and 𝜃𝑖(𝑥), {𝑖 =

1, 2, … , 𝑁} are B-spline expansion weights that are related to x. Then the probability constraint (19) is 

equivalent to 

                                                     ∫ 𝛾𝑓(𝑥, 𝜑)𝑑𝜑 = ∑ 𝜃𝑖(𝑥) ∫ 𝐵𝑖(𝜑)𝑑𝜑 ≥ 𝛼
0

𝑐
𝑁
𝑖=1

0

𝑐
                                  (21) 

If we denote 𝛾𝑤(𝜏) as the pdf of w where without loss of generality it has assumed that 𝜏 ∈ [𝑎, 𝑏], then it 

can be obtained that 

                                                       𝐸𝑤{𝐽(𝑥, 𝑤)} = ∫ 𝐽(𝑥, 𝜏)𝛾𝑤(𝜏)𝑑𝜏 = 𝐽1(𝑥)
𝑏

𝑎
                                      (22) 

In this case the chance constrained optimization (18) – (19) can be transferred into the solving of the 

following deterministic nonlinear optimization problem 

                                                                 min
𝑥

𝐽1(𝑥)                                                                                (23) 

                                                     𝑠. 𝑡.    ∑ 𝜃𝑖(𝑥) ∫ 𝐵𝑖(𝜑)𝑑𝜑 ≥ 𝛼
0

𝑐
𝑁
𝑖=1                                                      (24) 

 
  
4.0 A case study in economic power dispatch 

4.1 Case description 
 

In this section, we will apply the proposed pdf-shaping optimization approach to power system dispatch 

with intermittent generation sources such as wind farms, etc. Assume that we have the widely used IEEE 

3-machine 9-bus system shown in Figure 6, and that there is a wind farm connected to bus 7. In this case, 

we will consider the uncertainties of the wind energy and load demand.   
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Figure 6. Case study: the IEEE 9-bus test system 

 

 

The objective of this case is to minimize both the mean and variance of the total generation cost, and it is 

donated as 

 min ( ) ( )E J D J       (25) 

where the performance function is defined as  

 
1 1

( )
T N

it it it

t i

J U f P
 

                                                                (26) 

 

In equations (25) – (26), ( )E J is the mean value of J; ( )D J  is the variance of J; T is the number of hours; 

N is the number of generators; 
itU  is the status of generators ( 1itU   means that generator i is in use in time 

slot t; 0itU   indicates that generator i is out of use in time slot t) ; and ( )it itf P  is the cost function of 

generators shown as follows. 

 
2( )it it i i it i itf P a b P c P          (27) 

 

Here ia , 
ib , 

ic , id  and 
ie  are pre-specified constants; min

itP  is the lower limit of the generator output in 

time slot t.  

 

The actual optimization are subjected to the following constraints: 

 

1. Power balance constraint 

G1 G2

G3

1 2

3

4 8

6

5 7

9
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1 1

0,
N M

W

it it Dt Lt

i j

P P P P t T
 

                                                              (28)     

Here M is the number of wind plants;  W

itP  is the output of wind plant in time slot t;  
DtP  is the load in time 

slot t;  LtP  is loss in time slot t. Here W

itP  and DtP  are stochastic variables.  This type of constraints are in 

line with constraint 𝑓(𝑥, 𝑣) = 𝑓(𝑥 + 𝑣) = 0, where the human decision uncertainties can be grouped 

together with W

itP or DtP .      

 

2. Output of generators constraint 

         min max , ,it it itP P P i N t T                                                                   (29) 

Here max

itP  is the limit of the generator output in time slot t.  

 

3. Ramp rate constraint 

 ( 1) 1, ,Ri it i t RiP D P P U i N t T                                            (30) 

Here RiD  is the ramp down rate; RiU  is the ramp up rate; 1  is the confidence level.  

 

4. Spinning reserve constraint 

 
max

2

1

( ) , ,
N

it it SRt

i

P P P U i N t T


 
     

 
                                      (31) 

min

3

1

( ) , ,
N

it it SRt

i

P P P D i N t T


 
     

 
                                      (32) 

Here SRtD  is the low limit of spinning reserve; SRtU  is the up limit of spinning reserve; 2 and 3  are 

confidence levels.  

 

Assume that all the generators are on operation, namely, 1itU   and N=24. In constraints, by neglecting 

the Spinning reserve constraint and Ramp rate constraint, finally we have the following optimization 

problem:  

 

                            

 

3

1

min max

min ( ) ( )

. .

0W

it t Dt Lt

i

it it it

E J D J

s t

P P P P

P P P





   

 


      (33) 

 

Here 
24 3

1 1

( )it it

t i

J f P
 

 ; W

itP is the wind energy, DtP is the load and they are both stochastic variables. Denote 

 W

n t DtP P P    is a stochastic variable with mean nP


and variance nP .  

 

Then the hourly cost function can be given by 
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1 1 2 2 3 3

2 2 2

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

1 2 3

min max

( ) ( ) ( )

. .

0;n

it it it

J f P f P f P

a b P c P a b P c P a b P c P

s t

P P P P

P P P

  

        

   

 

   (34) 

 

Assume that the pdf of
nP is of a normal distribution and known as  2,n nN   . 

1P  is subjected to a normal 

distribution of  2

1 1,N   ; 
2P belongs to a normal distribution of  2

2 2,N   ; and
3P belongs to a normal 

distribution of  2 2 2

1 2 1 2,n nN          ; 
1P  and 

2P are independent. We have the mean of the cost 

function J calculated as follows: 

 
" 2 " 2 " 2

1 1 2 2 3 3 1 1 1 2 2 2 3 3 3

2 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 1 1 2 2 3 3

( ) ( ) ( ) ( ) ( ) ( ) ( )J f f f f f f

a b c a b c a b c c c c

         

        

     

           
 (35) 

 

The variance of the cost function can also be calculated to read 

 
' 2 ' 2 ' 2

1 1 1 2 2 2 3 3 3

2 2 2 2 2 2

1 1 1 1 2 2 2 2 3 3 3 3

( ) ( ) ( ) ( )

( 2 ) ( 2 ) ( 2 )

D J f f f

b c b c b c

     

     

  

     
    (36) 

 

The pdf-shaping method requires to minimize both the expectation and variance of the objective function 

J, which means that we need to solve the following for the optimization 

 

                                                  

( )
0

( )
0

J

X

D J

X


 


 

 

                                                                    (37) 

 

where 
2 2

1 2 1 2, , ,X        . The optimal X can be determined by solving (37). 

4.2 Results and economic profitability analysis 
 

The results of pdf-shaping method on the stochastic economic dispatch is shown in Figure 7. The red-bar 

curve is the generation cost before optimization, while the green line represents the cost after PDF-shaping. 

Note that both the mean value and variance are significantly reduced. The mean cost is reduced from 2204 

to 1847, while the variance is reduced from 89 to 50. 
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Figure 7. PDF-Shaping results on stochastic economic dispatch 

 

 

We have obtained the results as follows. Figure 8 shows the optimization results for the comparison of 

single objective and multi-objective. As it can be seen from Figure 8, the traditional single objective 

optimization results in the long tail pdf phenomenon which means a significant risk of high cost shown in 

Figure 9.  

 

 
 

Fig. 8.  Optimization results of PDF: single objective VS multi-objective 

 

It can be seen from Figure 5 that the probability of single objective optimization for cost being greater 

than 9 million dollars is 15%, namely,  

                                                            $ 9 15%P COST million  .                                                    (38) 

 

However, the proposed multi-objective optimization is able to reduce the probability to 0.5%, namely, 

 

                                                           $ 9 0.5%P COST million  .                                                    (39) 

Cost in $ million   

P
D

F
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This mean that a huge saving can be expected in practice. 

 

 
 

Fig. 9.  Optimization of CDF: single objective VS multi-objective 
 

4.3 Switching strategy for whole horizon economic power dispatch  
 

Of course, it can be seen from Figure 9 that if the cost boundary is below $7.8M, single optimization gives 

better result.  This indicates that further improvement can be made to the proposed algorithm.  For example, 

with a good load forecasting one can determine whether the cost would be less or larger than $7.8M 

threshold. If it is less than $7.8M then we should only use mean value minimization, otherwise we should 

use both mean and variance based minimization.  This indicates that a switching function can be added to 

the proposed pdf shaping based optimization algorithm. 
 

 

 

 

 

 

5.0 Conclusions 

 In this project, a general framework has been obtained which shows that 

(1) The optimization is a special case of closed loop control system design where rather rich control theory 

can be directly applied to deal with optimization issues. 

(2) Uncertainties of human operator’s decision making phase have been characterized and embedded into 

the stochastic optimization scenario in a closed loop framework. 

(3) A sufficient condition on pdf shaping based stochastic optimization has been derived. 

(4) Encouraging results have been obtained for the economic power dispatch where a huge saving on 

generation cost can be expected. 

 

  

Cost in $ million   
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