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Abstract 

This project involved the development of enhanced risk monitors (ERMs) for active components in 
Advanced Reactor (AdvRx) concepts by integrating real-time information about equipment condition 
with risk monitors. Health monitoring techniques in combination with predictive estimates of component 
failure based on condition and risk monitors can estimate the future risk posed by continued plant 
operation in the presence of detected degradation. This combination of predictive health monitoring based 
on equipment condition assessment and risk monitors can also enable optimization of maintenance 
scheduling with respect to both economic and safety metrics. This report summarizes PNNL’s multi-year 
project on the development and evaluation of an ERM concept for active components while highlighting 
FY2016 accomplishments. Specifically, this report provides a status summary of the integration of the 
prototypic ERM framework with the plant supervisory control algorithms being developed at Oak Ridge 
National Laboratory (ORNL), and describes additional case studies conducted to assess sensitivity of the 
technology to different quantities.  
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AdvRx advanced reactor(s) 
AdvSMR advanced small modular reactor 
AFI aging fractional increase 
ART Advanced Reactor Technologies 
AST aging start time 
CDF core damage frequency 
ECA equipment condition assessment 
EMP electromagnetic pump 
ERM enhanced risk monitor 
ICHMI instrumentation, control, and human-machine interface 
LWR light-water-cooled reactor 
O&M operations and maintenance 
ORNL Oak Ridge National Laboratory 
PHM prognostics and health management 
PNNL Pacific Northwest National Laboratory 
POF probability of failure 
PRA probabilistic risk assessment 
RUL remaining useful life 
RWB Reliability Workbench 
SCS supervisory control system 
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1.1 

1.0 Introduction 

The goal of the research described in this report was the development of enhanced risk monitors (ERMs) 
for active components in advanced reactor (AdvRx) concepts by integrating real-time information about 
equipment condition with predictive risk monitors. Health monitoring techniques can be used to establish 
condition indicators for active components in AdvRx; in combination with predictive estimates of 
component failure based on condition and risk monitors, such health monitoring techniques can serve to 
estimate changes in future risk posed by continued operation in the presence of detected degradation. This 
combination of predictive health monitoring based on equipment condition assessment and risk monitors 
can also enable optimization of maintenance scheduling to avoid unplanned plant shutdowns while 
maintaining required safety margins. The multi-year project involved the development of a framework for 
ERM, and the evaluation of this concept for active components using a series of case studies. 

The research conducted in this project supports the safe, efficient, and economic operation of AdvRx by 
providing a real-time assessment of changes in system risk based on component degradation by: 
(1) informing operations and maintenance (O&M) planning for targeted maintenance activities during 
outages, (2) optimizing plant performance to maintain safety margins and maximize economics while 
operating with components with detected degradation, and (3) supporting extended operating cycles by 
ensuring reliable component operation over the long term.  

1.1 Research Objectives 

The overall objective for this project under the Advanced Reactor Technologies (ART) Program was to 
develop a framework to move from measurements through condition assessment and predictive estimates 
of probability of failure (POF) assessment to ERMs.  

Research on this project in prior fiscal years (FYs) (Coble et al. 2013; Ramuhalli et al. 2013; Ramuhalli et 
al. 2014; Ramuhalli et al. 2015) focused on: (1) assessing the state-of-the-art in ERMs to identify 
technical gaps, and developing a preliminary framework for ERMs for prototypic active components that 
includes a methodology for combining equipment condition assessments with enhanced risk monitor 
frameworks; (2) evaluating this framework for enhanced risk monitors; and (3) integrating prototypic 
ERM framework with uncertainty quantification and non-traditional risk metrics. 

Activities described in this report focus on the specific objective of integrating the prototypic ERM 
framework with the plant supervisory control algorithms being developed at Oak Ridge National 
Laboratory (ORNL).  

1.2 Research Assumptions 

The following assumptions are being made in the research described in this report: 

• Background information about representative AdvRx designs, components, and concepts of 
operations for these designs is assumed to be available.  

• The overall focus will be on active components key to the safe operation of AdvRx (including 
advanced small modular reactor; AdvSMR) concepts, such as liquid metal-cooled fast reactors or 
high temperature gas-cooled reactors. 

• AdvRx-specific information about active components as well as representative component testbeds, 
simulations, and/or other design information for active components will be available. 
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• Available active component reliability data sets from AdvRx operations are representative of active 
components expected to be used in future AdvRx concepts. 

• Equipment condition assessment (ECA) methods are assumed to be available, or can be adapted for 
application to key AdvRx active components. 

• Integration of research results with ORNL supervisory control algorithm development is possible and 
can be used to establish acceptance criteria for different risk measures. 

• Availability of supervisory control simulation environment to integrate the ERM framework software 
into the platform currently being utilized by ORNL for demonstrating the supervisory control 
algorithms is assumed. 

1.3 Organization of Report 

This technical report is organized as follows. Section 2 includes background information on AdvRx and 
briefly summarizes previous research in this project. Section 3 describes additional evaluations of the 
prototypic ERM framework that have occurred since Ramuhalli et al. (2015). Section 4 summarizes the 
integration of ERM module with the ORNL supervisory control system framework. Section 5 summarizes 
this report and discusses the envisioned role of ERM in O&M of AdvRx and future research needs in this 
area. 

 



 

2.1 

2.0 Background 

This section briefly describes background information on O&M characteristics for AdvRx and 
summarizes ERMs and previous research accomplished on this project. 

2.1 Overview and Operational Characteristics for Advanced Reactors 

Advanced reactors generally encompass all non–light-water-cooled reactor (LWR) concepts, and are 
being considered as a longer-term option for meeting electrical generation and process heat needs in the 
United States (Abram and Ion 2008). AdvRx and AdvSMRs (based on modularization of advanced 
reactor concepts) with their passive safety features and the ability to incrementally add modules over time 
offer alternatives to traditional LWRs. However, the challenging environments found in AdvRx increase 
the possibility of degradation of safety-critical active and passive components adding to the challenges of 
their deployment and extended operation. For example, harsh environments within the primary and 
intermediate loops of AdvRx include high temperatures (in excess of 500°C), potential for fast spectrum 
neutrons, and corrosive coolant chemistry. These environments in proposed AdvRx concepts increase the 
possibility of degradation of safety-critical components and therefore pose a particular challenge for 
deployment and extended operation of these concepts. Therefore, critical to longer-term adoption and 
ensuring wider deployment of AdvRx concepts are management of O&M costs including the prediction 
and management of component integrity as a way to impact planning for maintenance activities and 
staffing levels.  

Health monitoring techniques are among a class of technologies that can be used to establish condition 
indicators; in combination with predictive estimates of component failure based on condition, such 
techniques can be applied to manage O&M costs through improved scheduling of maintenance activities 
and selection of operational decisions that minimize the risk of unplanned plant shutdowns. 

Recent Pacific Northwest National Laboratory (PNNL) research has focused on developing technologies 
in the areas of various condition monitoring methods for assessing component condition (Dib et al. 2016; 
Prowant et al. 2016); predicting passive (Ramuhalli et al. 2016; Roy et al. 2016) and active (Coble et al. 
2013) component integrity, and development of a prototypic ERM framework (Ramuhalli et al. 2013; 
Ramuhalli et al. 2014; Ramuhalli et al. 2015). 

Detecting and managing component degradation has been and continues to be critical to ensuring the safe 
operation of nuclear reactor components. In general, the ability to monitor, assess, and predict 
component/equipment health in terms of POF or planning O&M actions is fundamental in the ability to 
achieve overall enterprise risk management in AdvRx.  

Figure 2.1 depicts the areas considered by this project to develop a framework to move from 
measurements through condition assessment and predictive estimates of POF assessment to ERMs. The 
overall concept for integration of prognostic health management (PHM) systems with ERMs, and their 
location within the hierarchy of supervisory control algorithms as envisioned for AdvRx is depicted in 
Figure 2.2. 



 

2.2 

Additional details of AdvRx concepts and likely O&M approaches are provided in the previous reports in 
this series associated with AdvRx and AdvSMR prognostics and ERM research (Coble et al. 2013; Meyer 
et al. 2013a; Ramuhalli et al. 2013; Ramuhalli et al. 2014; Ramuhalli et al. 2015). Given the possibility of 
frequently changing plant configurations to meet multiple mission goals, and the relative lack of 
component reliability data for AdvRx, techniques to integrate advanced plant configuration information, 
equipment condition information, and predictive risk monitors are needed to support plant control and 
real-time decisions on O&M (Coble et al. 2013).  

 

Figure 2.1. Considerations and Steps to Achieving an Enhanced Risk Monitor (Coble et al. 2013) 
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Figure 2.2. Schematic Showing the Integration of PHM Systems with Enhanced Risk Monitors, and 
Their Location within the Hierarchy of Supervisory Control Algorithms for AdvSMRs 

2.2 Brief Overview of ERMs for Advanced Reactors 

ERM, as a component of overall enterprise risk management, is a proactive philosophy where greater 
situational awareness can be provided to plant supervisory control and O&M planning routines as 
depicted in Figure 2.3. Essentially, ERMs are predictive risk monitors that incorporate the time-dependent 
failure probabilities from PHM systems to dynamically update the risk metric of interest. Specifically for 
AdvRx, enhanced risk assessment of AdvRx that incorporates real-time degradation information of 
critical active components will greatly improve overall asset protection and management, allowing for 
safe, reliable generation during extended operating cycles and longer reactor lifetimes.  
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Figure 2.3. ERMs Can Provide Greater Situational Awareness to the Plant Supervisory Control and 
O&M Planning Routines (Coble et al. 2013) 

Risk monitors expand on probabilistic risk assessment (PRA) by incorporating changes based on day-by-
day plant operation and configuration (e.g., changes in equipment availability, operating regime, 
environmental conditions). Currently deployed risk monitors assume that components are either available 
or unavailable. For complex engineered systems like nuclear power plants, PRA systematically combines 
event likelihoods and the POF of key components, and combined with the magnitude of possible adverse 
consequences determines risk. Currently, most nuclear power plants have a PRA that reflects the as-
operated, as-modified plant; this model is updated periodically, typically once a year.  

Traditional PRA uses population-based POF information to estimate the average plant risk over time. 
Health monitoring techniques, like PHM, can be used to establish condition indicators and monitoring 
capabilities that estimate the component-specific POF at a desired time (or over a desired time-horizon), 
which can then be incorporated in the risk monitor to provide a more accurate estimate of future risk (and 
changes in future risk) under different plant operational configurations.  

This is particularly important for active systems, structures, and components (SSCs) proposed for use in 
AdvRx concepts. These SSCs may differ significantly from those used in the operating fleet of LWRs (or 
even in LWR-based small modular reactor designs). Additionally, the operating characteristics of AdvRx 
can present significantly different requirements, including operations in different coolant environments, 
higher operating temperatures, and longer operating cycles between planned refueling and maintenance 
outages. These features, along with the relative lack of operating experience for some of the proposed 
advanced designs, may limit the ability to estimate event probability and component POF with a high 
degree of certainty. Incorporating real-time estimates of component POF may compensate for a relative 
lack of established knowledge about the long-term component behavior and improve O&M planning and 
optimization.  
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In their use of real-time component condition, ERM technologies differ from conventional risk monitors 
(Kafka 2008; Wu and Apostolakis 1992) that use a static estimate for event probability and POF, typically 
based on historical observations and engineering judgment. More recently, time-based POF values 
derived from operating experience and traditional reliability analysis have been used (Arjas and 
Holmberg 1995; Vesely and Wolford 1988); however, these are usually not specific to the component. 
Critical to the ERMs is a predictive estimate of POF of the component, which is precisely what PHM 
provides (Coble et al. 2012). As a result, PHM technologies are likely to be applicable to achieving 
enhanced risk monitoring to obtain a realistic assessment of dynamic risk that is unit-specific and 
accounts for the operational history of the component (Ramuhalli et al. 2013). Therefore, ERM systems 
are expected to play a vital role in AdvRx operations specifically by incorporating real-time component 
condition into the calculation of plant risk [usually measured in terms of core damage frequency (CDF) or 
some other safety-related risk metric (Coble et al. 2013; Ramuhalli et al. 2014)].  
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3.0 Prototypic ERM Framework Evaluation 

The ERM framework was developed with the intent that timely component wear-out detection, 
monitoring, and proactive maintenance scheduling leads to optimal performance and viable economic 
operation of the plant through avoidance of unplanned outages. Earlier case studies distinguished ERM-
based preventive component maintenance from conventional strategies relying on replacement at the end-
of-service-life or on aging failure rate models. The need for an ERM methodology and the benefits of 
implementing it for developing an array of decision alternatives were discussed through the estimation 
and comparison of safety and economic metrics across various case studies. In this study, we describe 
additional results on the safety and economic metrics associated with changes to maintenance strategies in 
light of new component health condition information acquired during the life of a plant. In particular, we 
investigate in this study through sensitivity analysis changes to maintenance strategy following a 
deteriorated or improved health condition, as determined by ECA, and the sensitivity of the result to 
prognostic model output. 

3.1 Economic Model 

In this section, we briefly review the economic model before venturing into the individual impact and 
case studies. We use the PRA model that was developed for a simplified generic two-reactor (each a 
liquid metal reactor) power block, with a common balance of plant (Ramuhalli et al. 2014; Ramuhalli et 
al. 2015). The PRA model was vetted for cutsets that would lead to operational failures and associated 
unplanned shutdowns as opposed to core damage. Cutset probabilities for these specific cases were 
quantified so that expected replacement costs, keeping in view the replacement time, could be evaluated. 
In particular, electromagnetic pumps (EMP) are used for illustration of the effects of ECA. Two out of 
three of these pumps are required to be PRA functional at any time, in the absence of which an unplanned 
shutdown may be required for replacement. The reactor is assumed to be taken offline for maintenance 
and refueling every two years. During this maintenance and refueling time, ERM-informed repairs based 
on a chosen maintenance strategy are assumed to be performed. While costs associated with lost power 
are considered during operational periods, costs associated with minimal repairs are considered during 
planned shutdowns. During both operational and planned shutdown periods, random failure and 
replacement costs are considered. These costs are accounted for on a two-year basis for quantifying the 
economic index. Aggregation of these biennial costs across the reactor life provides an overall reactor 
economic index for comparative purposes. The EMP replacement and repair cost, and associated time, for 
the existing fleet of pressurized water reactors is used as a proxy for that of AdvRx technologies. 

3.2 Component Aging 

In the absence of specific ECA-based measurements for EMP1A, we assume that the failure rate for this 
component follows a two-part piecewise nonlinear aging profile. Similarly, we also assume the presence 
of a prognostics algorithm that would in essence take these measurements into consideration and predict 
component failure rate following the same aging profile. The base failure rate 𝜆𝜆 remains constant until an 
aging start time (AST) and then nonlinearly increases with time based on a notional aging fractional 
increase (AFI): 
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For demonstration purposes, AST was assumed to be 9.0 years and AFI was 3.5. The base failure rates 
(independent, common cause failure, failure to start and run) were assumed to be equivalent to those 
observed in the current fleet of reactors. 

3.3 Evaluation of Prototypic ERM Framework 

3.3.1 Changes to Maintenance Strategy 

The presence of uncertainties in measurement, diagnostics, and prognostics results in a window of 
opportunity to choose among decision alternatives and to implement a feasible maintenance strategy. In 
the case studies discussed earlier, it was assumed that such maintenance actions reset the failure rate of a 
degrading component instead of assuming an as-bad-as-old or worse status (also called imperfect repair). 
This is, however, seldom the case, especially with aging systems. The combination of uncertainties and 
imperfect repairs has impacts on maintenance decisions taken in response to the outcomes of prognostics. 
An accelerated component aging and maintenance action not enough closely spaced could lead to early 
system failure. A slowly degrading component maintained too often results in economic burden. We 
illustrate these implications and the need for making changes to the maintenance strategy in light of new 
component health information through the following case study. 

The electromagnetic pump EMP1A is assumed to degrade at a rate as estimated by the diagnostics 
module. The measurements reflect a constant failure rate until an aging start time (assumed nine years) 
and a prognostics algorithm indicates that the component health will follow a nonlinear profile thereafter. 
While all components age with time, it is assumed that EMP1A ages the most and is identified as such by 
a predictive PRA importance measure (e.g., Fussell-Vesely importance) (van der Borst and Schoonakker 
2001). Let us assume that a change to the maintenance frequency is decided for such an identified 
component after observing its condition index. A notional plot of condition index for EMP1A is presented 
in Figure 3.1 and Figure 3.2 under different maintenance assumptions. Assume that a condition index of 
0.5 is unacceptable and would represent a threshold for replacement of the component rather than a cost-
effective repair. Also, consider a requirement in change of maintenance strategy when condition index is 
reduced or increased by at least a point (e.g., 10%) within an observation window of four years. The 
following cases are discussed in this case study: 

• Decision 0: Hypothetically, there is no significant aging, minimal repairs are conducted as necessary, 
and hence the condition index remains at 1.0.  

• Decision 1: There is accelerated nonlinear aging; however, no maintenance is performed. The 
condition index drops below 0.5 around 30 years, signaling the requirement for a major corrective 
action such as replacement. 

• Decision 2: A default maintenance frequency of once in six years starting at 12 years is assumed for 
the rest of the reactor life. The condition index never falls below a point and does not fall below the 
threshold during the design life. 

• Decision 3a: Follows Decision 2, but the component condition degrades around 20 years (index drops 
from 0.9 to 0.7 within an observation window of four years). However, maintenance interval 
continues to be six years. 

• Decision 3b: Follows Decision 2, but the component condition degrades around 20 years (index drops 
from 0.9 to 0.7 within an observation window of four years). Maintenance interval is changed to four 
years. 
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Figure 3.1. Component Condition Index Corresponding to Various Maintenance Decisions (worsening 
case) 

 

Figure 3.2. Component Condition Index Corresponding to Various Maintenance Decisions (improving 
case) 
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• Decision 4a: Follows Decision 2, but the component condition improves around 20 years (index 
increases from 0.9 to 1.0 within an observation window of four years). However, maintenance 
interval continues to be six years. 

• Decision 4b: Follows Decision 2, but the component condition improves around 20 years (index 
increases from 0.9 to 1.0 within an observation window of four years). Maintenance interval is 
changed to eight years. 

3.3.1.1 Decision 0 

Decision 0: Hypothetically, there is no significant aging, minimal repairs are conducted as necessary, and 
hence the condition index remains at 1.0. The CDF is the lowest in the case remaining around the static 
value of 4.19E-07 and at the least economic index of 22.23. 

3.3.1.2 Decision 1 

Decision 1: There is accelerated nonlinear aging; however, no maintenance is assumed. The condition 
index drops below 0.5 around 30 years signaling the requirement for a major corrective action such as 
replacement. 

Consider the first decision involving no maintenance strategy in which case the CDF is anticipated to 
cross the safety threshold around 30 years as illustrated in Figure 3.3 (Decision 1: green curve). In the 
absence of maintenance, the economic index follows the shape of safety profile as seen in Figure 3.4. The 
time-averaged CDF is 8.1E-7 and the economic index is 26.54. In the next few sensitivity studies, we 
demonstrate the value of ERM-based decision-making with the added analysis of reacting to changes in 
the reactor component health and the need to switch decisions along the reactor’s aging life. 

3.3.1.3 Decision 2 

Decision 2: A default maintenance frequency of once in six years starting at 12 years is assumed for the 
rest of the reactor life. The condition index never falls below a point and does not fall below the threshold 
during the design life. 

Consider a second decision, which involves a maintenance conducted on EMP1A every six years starting 
from year 12. It is assumed that these maintenance actions do not represent perfect repair activities, rather 
improve the component’s health to a state at which it was three years earlier. The impact of this decision 
as indicated by the prognostics module is shown in Figure 3.3 (Decision 2: red curve). There is a drop in 
the predicted CDF every six years starting from age 12 and the economic index spikes correspondingly 
owing to ERM-related maintenance costs involving minimal repairs and replacement costs due to chances 
of random failure. Also notice that the economic index in general increases with time due to increasing 
degradation rate and relatively higher probability of system failure leading to unplanned shutdowns (not 
necessarily core damage). The estimated safety and economic indices in this case are 5.0E-7 and 23.02, 
respectively. 
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Figure 3.3. CDF Profiles Following Different Decisions (worsening case – case 1) 

 

Figure 3.4. Cost Profiles Following Different Decisions (worsening case – case 1) 
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3.3.1.4 Decision 3 

Decision 3a: Follows Decision 2, but the component condition degrades around 20 years (index drops 
from 0.9 to 0.7 within an observation window of four years). However, the maintenance interval 
continues to be six years. 

While component health improves after a scheduled maintenance, let us assume that aging and operating 
environment lead to an accelerated aging that overrides the recent repair activity. This leads to a condition 
where at around 20 years the component is assumed to be as old as one whose age is already advanced by 
three more years than anticipated. If the same maintenance interval of six years is continued, the predicted 
CDF is expected to cross the safety threshold after 38 years as presented in Figure 3.3 (Decision 3a: violet 
curve). The safety metric is 5.9E-7 and economic index is 24.49. At this point in time, a decision is 
required to ensure CDF is within the safety goal at least until the design life of the reactor. So we consider 
a four-year maintenance interval in the next case. 

Decision 3b: Follows Decision 2, but the component condition degrades around 20 years (index drops from 
0.9 to 0.7 within an observation window of four years). Maintenance interval is changed to four years. 

The observed increase in the CDF owing to EMP1A that could potentially lead to a safety breach is now 
brought under a four-year maintenance interval following the CDF spike at 20 years. This action is 
anticipated to decelerate the aging process and help manage the safety metric stay within the safety goal for 
at least the stipulated design life of the reactor as seen in Figure 3.3 (Decision 3b: blue curve). 
Correspondingly, the economic index does not increase at 20 years as there is no maintenance undertaken 
until the next scheduled maintenance at 24 years (every four years from age 20). The impact of this decision 
is observed in the safety and economic indices (5.5E-7 and 24.47). Although degradation continues to grow 
despite the four-year schedule, which corresponds to increased cost of maintenance, the overall economic 
index has decreased following the spike in observed degradation at 20 years. The reason for this profitable 
economic index is attributed to the fact that if no decision is taken at 20 years to increase the maintenance 
frequency, the predicted costs would be relatively larger owing to accelerated aging. 

This is an example for the application of ERM methodology to risk-inform changes to the maintenance 
strategy over time as more observations are made available to update the economic index along with the 
presence of a robust prognostic algorithm. 

In this case study, change of maintenance frequency from once in six years to once in four years was 
chosen for illustration. The use of an optimization algorithm with safety and economic constraints is 
anticipated to provide a customized schedule that better meets objectives of the decision maker. 

3.3.1.5 Decision 4 

Decision 4a: Follows Decision 2, but the component condition improves around 20 years (index increases 
from 0.9 to 1.0 within an observation window of four years). However, maintenance interval continues to 
be six years. 

While component health improves after a scheduled maintenance, let us assume that maintenance strategy 
has paid off to the extent that it leads to a condition where at around 20 years the component is assumed 
to be as healthy as one whose age is earlier by three years than anticipated. The earlier maintenance action 
at 18 years witnessed a drop in the overall CDF and due to the improvements there is further dip in the 
CDF at 20 years; however, there is no increase in the economic index because this decrease does not 
correspond to a maintenance action. If the same maintenance interval of six years is continued, the 
predicted CDF is expected to be within the safety goal as shown in Figure 3.5 (Decision 4a: violet curve). 
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The expected safety and economic indices are 4.24E-7 and 21.87 if there is no change made to the 
maintenance schedule. These metrics indicate a relatively healthier and economically profitable state for 
the residual life of the reactor. Though no change is required at this time, we will study the sensitivity of 
relaxing the maintenance interval from six to eight years given the further improvement in the overall 
safety. 

Decision 4b: Follows Decision 2, but the component condition improves around 20 years (index increases 
from 0.9 to 1.0 within an observation window of four years). Maintenance interval is changed to eight 
years. 

Frequent maintenance on an otherwise healthy component may lead to an increased economic burden. Let 
us assume that a decision is made to relax the maintenance schedule by conducting it every eight years 
instead of six years. This strategy leads to a predicted CDF at 40 years that is relatively larger than that 
observed due to Decision 4a; however, the CDF is still within the safety goal with slight increase in the 
economic index. This visual comparison in CDF and cost is shown in Figure 3.5 and Figure 3.6, 
respectively (Decision 4b: blue curve). The next maintenance action owing to this decision would be at 
36 years. The increase in the economic index is due to continuation in the aging process despite the 
improvement at 20 years. Cost associated with maintenance would decline by relaxing the maintenance 
frequency; however, the economic index would still increase due to aging and relatively higher 
probability of equipment failure and unplanned shutdowns. The expected safety and economic indices if 
the maintenance frequency is relaxed to eight years would be 4.27E-7 and 22.23, respectively. 

 

Figure 3.5. CDF Profiles Following Different Decisions (improving case – case 2) 



 

3.8 

 

Figure 3.6. Cost Profiles Following Different Decisions (improving case – case 2) 

3.3.1.6 Discussion 

The safety and economic summary of results for the worsening and improving case studies are presented 
in Table 3.1. In the worsening case, there is merit in increasing the maintenance frequency both in the 
safety and economic sense. In the improving case, it is better to remain on the same schedule for 
economic reasons although there is further improvement in the safety metric by relaxing the schedule. 
These recommended decisions are for demonstration purposes only; specific circumstances, regulations, 
and business interests might warrant a different decision trajectory. 

Table 3.1. Summary of Safety and Economic Metrics Associated with Each Decision 

Decision 

Safety 
(time-

averaged 
CDF) 

Economic 
Index 

Decision 0: No significant aging; minimal maintenance 4.19E-07 20.32 
Decision 1: Aging; no maintenance 8.07E-07 26.54 
Decision 2: Aging; maintenance every 6 years 4.95E-07 23.02 
Decision 3a: Accelerated aging around 20 years; maintenance every 6 years thereafter 5.86E-07 24.49 
Decision 3b: Accelerated aging around 20 years; maintenance every 4 years thereafter 5.48E-07 24.47 
Decision 4a: Decelerated aging around 20 years; maintenance every 6 years thereafter 4.24E-07 21.87 
Decision 4b: Decelerated aging around 20 years; maintenance every 8 years thereafter 4.27E-07 22.23 
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3.3.2 Prognostic Result 

In this section, we describe sensitivity analyses results, conducted to evaluate the sensitivity of the ERM 
metrics to the prognostic result. We will restrict this analysis to investigating the impact of predicting a 
nonlinear aging profile for a component that happens to be linearly aging, and vice versa. Such analysis 
enables an assessment of the impact on maintenance decisions and overall plant safety risks when the 
prognostic results are non-conservative. 

For this specific case study, consider a change to the component profile. The following profile for 
EMP1A varies based on the AFI and is scaled such that the CDF at the age of 40 is the same despite a 
variation in the profile during the plant life: 

 ( )
AFI

max

λ λ
 

′ =  
 

tt
T

  (3.2) 

For this study, we examine the impact on CDF and economic risk metrics as a function of the predicted 
aging profile, where the predicted aging profile (using a fixed value of AFI) is assumed to be the output of 
the prognostic model. 

3.3.2.1 Evaluation Results 

Tmax is assumed to be 40 years with AFI ranging from 0.2 to 1.8. A value of 0.2 represents early wear out 
and gradual worsening of component condition as opposed to a value of 1.0, which represents a linear 
increase in degradation. Though all components in the plant age simultaneously with varying degrees, this 
case study assumes EMP1A ages according to the specified profiles. The impact of this aging influences 
the overall CDF as seen in Figure 3.7, in the absence of any maintenance actions. The time-averaged CDF 
remains relatively stable (within the same order of magnitude, ranging from 4.13E-7 to 4.18E-7) and the 
economic index stays constant as well (around 20). The largest increase within this range is observed for 
early wear-out (with AFI of 0.2 for EMP1A). It is also of interest to observe the metrics in the presence of 
maintenance actions such that the end of design life CDF is approximately constant. In this case, the 
maintenance start time and maintenance frequency were adjusted to achieve the desired assumptions. 
These configurations included maintenance start times of 6, 12, 12, 24, and 28 years corresponding to the 
AFI assumptions of 0.2, 0.6, 1.0 (linear), 1.4, and 1.8 respectively. The corresponding maintenance 
intervals were set to 4, 6, 16, 16, and 16 years, respectively. These settings strive to achieve the same end 
of design life CDF by letting the degradation rate increase at a level sufficient to follow approximately the 
same assumed aging profile as the case without maintenance. The results shown in Figure 3.8 once again 
indicate that time-averaged CDF slightly decreases relative to the no-maintenance case and remains 
within the range of 4.12E-7 to 4.17E-7. The economic index varies by about one point. However, the 
observations indicate that decisions about the choice of an appropriate maintenance strategy are relatively 
insensitive to the aging profile. 



 

3.10 

 

Figure 3.7. CDF Assuming Various Aging Profiles 

 

Figure 3.8. CDF Assuming Various Aging Profiles and Maintenance Intervals 

3.3.2.2 Discussion 

The safety and economic summary of results for sensitivity around the choice aging predictions from a 
prognostic module in the presence and absence of maintenance is shown in Table 3.2. In both cases, it is 
seen that small differences in prognostic predictions may not lead to significant changes to the choice of 
maintenance strategy. Though safety implications are unlikely to be far-reaching, there could be 
additional economic implications that make a difference from a business perspective. A thorough 
sensitivity analysis capturing these uncertainties and an informed decision is needed to support a viable 
decision. 
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Table 3.2. Summary of Safety and Economic Metrics Associated with Each Assumption 

 No Maintenance Maintenance 
EMP1A AFI CDF Economic Index CDF Economic Index 

0.2 4.18E-07 20.29 4.17E-07 21.76 
0.6 4.15E-07 20.26 4.14E-07 21.13 
1.0 (Linear) 4.14E-07 20.24 4.14E-07 21.12 
1.4 4.13E-07 20.23 4.13E-07 20.81 
1.8 4.13E-07 20.22 4.12E-07 20.50 

3.3.3 Evaluation Summary 

Earlier studies proved the importance of ERM for risk-informed decision making. The present study 
investigated the impacts of (1) decisions made during subsequent condition assessment of degrading 
components for which preventive maintenance was scheduled earlier, and (2) choice of underlying 
prognostics models, with respect to both CDF and economic risk metrics. Additional sensitivity studies 
are needed that incorporate short-term component maintenance decisions that do not require shutting 
down the plant.  
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4.0 Integration of ERM Module with Supervisory Control 
System Framework 

4.1 Overview 

Oak Ridge National Laboratory developed a supervisory control system (SCS) that integrates with a plant 
model and a risk model. The plant model provides the initial component failure rate and operational state 
of the device (e.g., is a valve open or closed, flow rates and pressures, etc.). In the event of a component 
failure, the plant risk model is utilized by the SCS to assess potential success paths (i.e., actions that 
maintain the plant within an operational window).  

PNNL’s ERM module, which consists of both a prognostic element for remaining life estimation and a 
risk-informed decision making module, will need to provide component health predictions based on 
measurements of component health. The output from the PNNL module is given in terms of a POF for the 
component over time, and exported to the risk models. This information on expected POF as a function of 
time enables the SCS to obtain improved estimates of probabilities of success for the different potential 
success paths. 

One challenge with the integration and testing is the nature of the available testbed. The ORNL SCS 
software platform is entirely simulation-based. As a result, hardware solutions for monitoring equipment 
are not viable for integration and testing. The alternative selected here is a purely software-based 
approach for simulating equipment condition monitoring, whereby sensors are simulated for monitoring 
the condition of components. The data from these simulations provide the necessary sensor information 
for condition monitoring and prognostics. The ORNL plant model contains enough component 
granularity to adequately drive the prognostics portion of the ERM module. The necessary simulated 
sensor data for the prognostics and risk-informed decision supplements the ORNL plant model data. This 
approach will allow for use cases to be developed and analyzed. 

4.1.1 ERM Software Design 
The ERM software was written around three functional blocks: 

• Equipment condition assessment and prognostics for predictive health assessment. This module 
simulates the sensor data for ECA and includes the prognostic modules. For initial testing and 
evaluation of the integration activity, the components selected for ECA are valves.  

• Predictive risk assessment (safety and economic). This module contains the predictive risk-informed 
decision-making elements, and includes the ERM with both safety and economic metrics. These are 
described in earlier reports in this series. 

• Uncertainty quantification. This module interacts with the other two modules and evaluates the 
effects of uncertainty from various sources on the prognostic and predictive risk monitors. 

The software modules were written in the Python language and unit tested to ensure proper functionality.  

4.1.2 Evaluation Scenarios 

The evaluation scenarios for the integrated SCS-ERM software are based on a two-reactor power block, 
with a common balance-of-plant (Figure 4.1). Several scenarios may be considered, focused on the power 
conversion module. For initial integration evaluation, the following initiating events are considered: 
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1. Turbine Control Valve from reactor 1 drifts in closed direction 

2. SG 1 FW FCV drifts in closed direction 

3. SG 1 FW FCV drifts in open direction 

In all instances, it is clear that the initiating event is based on a valve failure, and therefore, the ability to 
monitor the condition of a valve and predict the time to failure is critical to ERM and its integration with 
SCS. To this end, the focus of the prognostic module was on valve prognostics, with several possible 
degradation modes considered in the prognostic analysis. This module is described in the next section. 

 

Figure 4.1. Prototypic Advanced Reactor Power Block, Used for the Integration Testing with the SCS 

4.2 Integration Specification 

Integration with the SCS required the development of a specification document, describing the various 
modules in the SCS and within the ERM. Functional requirements for the integration were also included 
in this specification document. The complete document is included as Appendix A.  

Given the focus of the integration on the prognostic module, the following sections describe this module 
in greater detail, with the models of valve degradation used in this initial assessment, and examples of 
prognostic results for different operational conditions.  
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4.2.1 Valve Prognostic Modules 

The prognostic module uses a Bayesian approach for predicting the remaining life, given the estimated 
condition of the component. The Bayesian module utilizes a component-specific Degradation State 
evolution model, and a Measurement Physics model (Khan and Ramuhalli 2008). For the integration 
testing, as described earlier, condition assessment and prognostics for a valve were implemented.  

The valve degradation state evolution utilizes a state dynamics model that relates the system state and 
material degradation accumulation rate (i.e., the states and degradation level at the next time instant given 
their values at all times up to and including the present time). The Measurement Physics model represents 
the quantitative relationship between the measurement and the system states and degradation level at the 
present time instant.  

Several State Dynamics models exist for valves. For the purposes of integration testing, a pneumatic 
valve model (Daigle and Goebel 2011) was utilized for simplicity of implementation and testing. This 
State Dynamics model is capable of accounting for multiple degradation modes. Further, the valve can be 
controlled using signals representing pneumatic pressure inputs that drive the valve to a desired valve 
position.  

The dynamic evolution of system states and material degradation can be obtained by using the solution of 
state tracking problem (Arulampalam et al. 2002; Khan and Ramuhalli 2008; Ristic et al. 2004). For a 
linear system with Gaussian additive noise (uncertainties in the measurements and physical model), the 
optimal solution to the tracking problem can be shown to be the Kalman filter (Ristic et al. 2004). 
However, when the system is nonlinear and/or the noise terms are non-Gaussian (as is likely in the early 
degradation estimation problem), then more general solutions to the tracking problem are necessary, and 
include algorithms such as the extended Kalman filter, unscented Kalman filter, and the particle filter. A 
detailed description of the Bayesian approach used here is given elsewhere (Arulampalam et al. 2002; 
Ristic et al. 2004), and its applicability to prognostics is discussed in Ramuhalli et al. (2012) and Meyer et 
al. (2013b). 

4.3 Progress Summary 

The schematic of the SCS is shown in Figure 4.2. This framework is composed of four main modules: 

1. Components/Sensors: Plant components of interest that are required to be monitored for possible 
degradation. Each component has a set of sensors associated with it that provided sensory information 
and can be interpreted by the ERM system. 

2. Enhanced Risk Monitoring: The main purpose of this module is to perform diagnostics and 
prognostics on the components of interest based on the provided sensory information. This requires a 
mathematical model representing the component. Such a model can be a physics-based model, or a 
data-driven model using historical data of the component or related components. The desired output 
from diagnostics is an estimate of the POF for each component and the confidence in this estimate. 
The desired output from prognostics is an estimate of the remaining useful life (RUL) for each 
component and the confidence in this estimate.  

3. Decision Making: This module is invoked if any of the component RULs computed by the ERM 
module are smaller than the time to the next outage. Decision making involves two steps: 
probabilistic risk assessment and deterministic assessment. Essentially, this module ranks possible 
action paths that will not cause tripping the plant’s safety system. See Cetiner et al. (2014) and 
Muhlheim et al. (2014) for more information about the functionality of the decision-making module. 
Note that, at this stage, the decision-making module within the SCS does not include an assessment of 
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costs (i.e., economic) and predictive safety risks (i.e., predictive CDF). These added functionality will 
need to be added at a later date. 

4. Verification: Once the Decision Making module decides on a single solution for the operational 
strategy of the plant, the solution is verified using a lower-order model of the plant. The required 
actions will be given as inputs to instantiate the lower-order model. This model will output the states 
(sensor data) of the plant components. Then another instance of the ERM module is used to 
re-compute the RUL of all components, and verifies that they all now are within the prescribed 
criteria. 

 

Figure 4.2. Schematic of the General Architecture of the Supervisory Control System 

In the following sections, the functionality of the ERM module will be discussed in detail. 

4.3.1 Integration 

As described in the previous section, ERM requires modeling each plant component for performing 
diagnostics and prognostics. To demonstrate the functionality of SCS, this work considers models for the 
feedwater control valve only. A physics-based model of a pneumatic valve was used to represent the 
feedwater control valve. The implementation of the pneumatic valve is based on the model by Daigle and 
Goebel (2011). Only the parts of the model relevant to this problem and the parts that have been modified 
will be described in the following. 

4.3.1.1 General Description of the Pneumatic Valve 

The valve has a return spring that ensures that it is in the closed position by default when there is no air 
pressure applied to the valve. The valve has two chambers with orifices for the air flow that controls the 
position of the valve. This valve controls the fluid flow rate in the feedwater tube. This is done by a 
control system, which has a specified fluid flow rate set point, and a feed-back controller from the valve, 
which changes the air supply within the top and bottom chamber to reach the required flow rate set point. 

The functional requirements are two-fold: 

1. When air supply within the valve chambers is lost, the valve should be in the closed position. 

2. The fluid flow rate going through the pipe should be achieved within a given time requirement. 

Damage could happen within the valve, which may hinder its ability to satisfy its functional requirements. 
Four sources of damage are possible for this specific valve, and are included in the model used to 
simulate valve operation: 

1. Friction Damage: The contact area between sliding bodies increases with time due to the wear down 
of surfaces. This results in an increase of the friction coefficient, which makes it harder to open/close 
the valve. 
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2. Spring Damage: The spring softens due to use, resulting in a decrease in the spring constant. This 
might result in the valve not being able to fully close when air supply is lost. 

3. Internal Leaks: Internal leaks could result from the sliding wear near the seal surrounding the piston. 

4. External Leaks: Connections for the pneumatic gas supplies at the top and bottom chambers in valve 
are subject to corrosion. This might result in leaks, affecting the supply gas pressure going into the 
valve. 

4.3.2 Evaluation of Valve Prognostic Model 

To test the performance of the prognostic module, input data for the valve and measurements were 
synthesized to represent simplified measurements and inputs from a typical feedwater control valve. It is 
assumed that the plant operates in a load-following mode, and thus the position of the valve, which 
controls fluid flow-rate changes based on demand. 

Figure 4.3 shows the control signal (pneumatic pressure) history for the valve, and corresponding 
measured valve position. In this instance, the valve damage parameters are increased as a function of 
time, and it can be seen from the figure that the valve progressively requires more time to open due to 
increased wear damage. 

 

Figure 4.3. Input Pressure History for Pneumatic Valve with Corresponding Measured Valve Position 
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The prognostic evaluation using the measured valve position and the degradation accumulation model 
indicates that RUL estimate decreases over time, where the remaining life is computed based on an 
estimated time it would take the degraded valve to fail to meet its functional requirements. Figure 4.4 
shows the RUL estimates for this specific example.  

 

Figure 4.4. Pneumatic Value RUL Estimates 

In general, other possible demand profiles can be used to generate RUL estimates. Within the SCS, the 
expectation is that multiple demand profiles (representing expected demand variations in the future) will 
be used to estimate the RUL for degraded valves. The information across these estimates can be 
combined in several ways to provide a general estimate of POF as a function of time and incorporated 
into the risk models for SCS utilization.  
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5.0 Summary 

This M4 report is the final one in a series of technical reports documenting progress on research in the 
area of enhanced risk monitors that integrate equipment condition assessment, predictive assessment of 
POF, and risk monitors. The result is a predictive estimate of changes in plant risk metrics (economic and 
safety) due to changes in the condition of components from degradation and aging. The ERM uses 
component-specific real-time condition information rather than population averages, and is able to 
respond to the effects of degradation that can affect the ability of the component to meet its functional 
requirements. As a result, the ERM has greater flexibility than existing risk monitors that generally only 
utilize component availability or unavailability (binary variable).  

This report covered: (1) background information on AdvRx and briefly summarizes previous research in 
this project; (2) modifications to prototypic ERM framework, with evaluations of the prototypic 
framework, that have occurred since Ramuhalli et al. (2015); and (3) and a status summary of the 
software development activities supporting integration of ERM module with the ORNL supervisory 
control system framework. 

The additional analyses outlined in this report were focused on the sensitivity of the ERM result 
(predictive safety and economic metrics) to decisions that lead to changes in maintenance strategy, and to 
prognostic model outputs that may be at variance with the actual aging curve. In the first case, the ability 
to dynamically adjust maintenance schedules based on the actual condition of the component is 
highlighted. The results also indicate a relative lack of sensitivity to small changes in the prognostic 
output. Collectively, these are an indication of the robustness of the approach. However, these results 
need to be further verified using additional case studies. 

An aspect that was only briefly assessed in this work was the time-lines for the predictive risk estimates. 
The work documented here and in previous reports assumed a long time horizon, with predictions being 
performed out to several years in the future. This was a conscious choice for the early research and was 
selected to illustrate the ability to schedule maintenance actions in the future and the associated trade-offs 
for plant economics that may occur to maintain the required safety margins. However, the time horizons 
for plant SCS integration will require much shorter time horizons (hours to a couple of days) as the 
control actions will need to be taken relatively quickly to ensure that the plant operation is within an 
approved envelope that maintains the necessary margins. Research this year on the predictive models for 
valves has looked into this question, and has shown the ability to use the same general approach for 
predictive assessment of condition over shorter time horizons. We believe that this result can be readily 
integrated with the risk monitor to provide real-time estimates of predictive risk and changes in future risk 
over the shorter time horizons (hours to days) instead of the longer time-lines (years) that were examined 
in previous reports. 

5.1 Envisioned Role of ERM in O&M for Advanced Reactors 

Critical to wider deployment of AdvRx concepts are management of O&M costs through the prediction 
and management of component integrity as a way to impact planning for maintenance activities and 
staffing levels. ERMs can be used to inform O&M decisions to (1) target maintenance activities during 
outages and (2) optimize plant performance to maintain safety margins and maximize economics while 
operating with components with detected degradation. Specifically, using ERMs can support extended 
operating cycles by ensuring reliable component operation over the long-term through assessment of 
component and equipment health using ECA. ERM-supported selection of operational decisions can help 
minimize the risk of unplanned plant shutdowns. Finally, predictive health monitoring based on 
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equipment condition assessment, and predictive risk monitors, can enable optimization of maintenance 
scheduling with respect to the economics of AdvRx plant operation.  

5.2 Research Contributions towards Advanced Reactor O&M 
Optimization 

The research conducted under this project has resulted in advances in predictive risk-informed decision 
making for advanced reactors that are expected to directly impact AdvRx O&M practices. Given the 
possibility of frequently changing plant configurations to meet multiple mission goals, and the relative 
lack of component reliability data for AdvRx, techniques to integrate advanced plant configuration 
information, equipment condition information, and predictive risk monitors are needed to support real-
time decisions on O&M. For AdvRx, enhanced predictive risk assessment that incorporates real-time 
degradation information of critical active components will greatly improve overall asset protection and 
management, allowing for safe, reliable generation during extended operating cycles and longer reactor 
lifetimes. 

5.2.1 Overview of Achievements during this Project 

This project succeeded in developing a prototypic framework that moved from measurements through 
condition assessment and predictive estimates of POF assessment to ERMs. It presented an overall 
concept for integration of ECA, PHM, and risk monitors to develop a framework for predictive risk 
monitors that are capable of being integrated with AdvRx plant SCS for real-time, risk-informed decision 
making. The ERM framework was developed with the intent of enabling timely component wear-out 
detection, monitoring, and proactive maintenance scheduling. These capabilities lead to plant operational 
control decisions and result in viable economic operation of the plant through avoidance of unplanned 
outages. 

During the last year of this project, we performed sensitivity analyses of the prototypic ERM framework 
(Section 3.0) and collaborated with ORNL in the integration and evaluation of our ERM module 
(Section 4.0) with their SCS simulation-based software platform. 

5.2.2 Recommended Path Forward 

The need for an ERM methodology and the benefits of implementing it for developing an array of 
decision alternatives were demonstrated through this project using various case studies. These case 
studies were based on a simplified AdvRx model, and incorporated hypothetical O&M decisions and 
associated costs. These studies will need to be augmented with additional use cases that utilize more 
realistic quantities (costs, decision processes that mimic actual plant operations, etc.). This is difficult as 
there is limited information on AdvRx plant operation. A possible solution is to incorporate information 
on costs and current decision processes from current reactors (light-water), realizing that these may not be 
fully reflective of AdvRx O&M. This leads to the need for additional evaluations of sensitivity and 
uncertainty in the ERM, such as assessing sensitivity to short-term component maintenance decisions 
leading to configuration changes not requiring a shutdown. 

As described in previous reports in this series, implementation of ERM requires modeling component 
operation and degradation accumulation for performing diagnostics and prognostics in addition to any 
need for component modeling by the SCS. As AdvRx concept development progresses further, there will 
be the need for additional research to model proposed plant components (active or passive) for 
performing diagnostics and prognostics in support of integrating an ERM methodology into the SCS. 
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Sensor technologies for monitoring the condition of these components will also be needed to address the 
need for equipment/component condition assessment. Timely research on component modeling, health 
monitoring and prognostics, and improvements in the ERM methodology can complement advances in 
SCS research in its support to developing AdvRx concept designs and O&M strategies. 
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Appendix A 
 

Specification for Integration of Diagnostics and Prognostics 
Module of Enhanced Risk Monitoring with Supervisory 

Control System 

This appendix lays out input-output specifications for integrating diagnostics and prognostics module of 
the enhanced risk monitoring methodology (PNNL) with supervisory control system (ORNL). 

A.1 Overview of Supervisory Control System 

ORNL’s functional architecture in Figure A.1 shows acquired sensory data flowing into two different 
modules—(1) plant state estimation and (2) diagnostics and prognostics. Assuming sensory 
measurements reflect component state, at a minimum, diagnosis enables detection of component 
degradation and prognosis allows for time-dependent estimation of component failure probability. 

 

Figure A.1. Partial Snapshot of the Functional Architecture of the Supervisory Control System (flowing 
into decision making module) (Cetiner et al. 2014) 



 

A.2 

Figure A.2 shows the central role of the supervisory control system in passing inputs to and receiving 
outputs from various modules. For instance, (5) and (6) deal with state of components and command 
alternatives through time-dependent projection of component states. 

 

Figure A.2. Semi-autonomous Nature of Supervisory Control System (Cetiner et al. 2015) 

A.2 Overall Software Architecture 

The software requires different components written by PNNL and ORNL to work together. Figure A.3 
shows the overall proposed software architecture. Packages written by ORNL are colored green, packages 
written by PNNL are colored orange, and the other packages are required for interfacing. This figure 
provides a high-level view of the software architecture, conveys the programming language used for each 
component, and also shows how the different components talk to each other. However, it does not convey 
how and what data flows between different modules. 

The software modules have (or need) the following functionality: 

• Modelica: Written in Modelica language standard, and developed by ORNL. Simulates plant 
operation in normal and off-normal conditions. Embeds supervisory control logic. This component 
receives initial conditions and solver settings from the user, and returns the solution for all the time-
dependent variables in the plant model. Access to internal variables (at the different time steps, as the 
simulation runs) is needed for integration purposes. 



 

A.3 

• Prognostics: Written in Python, and developed by PNNL. Provides probability of failures (POFs) of 
plant components. Currently, this component only implements a prognostic model for the valve. This 
requires measurement inputs related to the valve and outputs the RUL and POF for the valve. Note 
that the other elements (such as the predictive risk calculations and the economic/safety risk 
computation modules) are also available in Python but are not included in this version of the software 
being integrated with the ORNL SCS. 

• Python Interface: This is a middle-ware component used to route information from the Main 
application (described below) to the Prognostics component and Modelica (through the JModelica 
Python library). This middle-ware routes requests coming from the Main application through the 
standard input stream to the appropriate Python component (Prognostics or JModelica). On the other 
hand, it sends data returned from the Python components to the Main application through the standard 
output stream. The purpose of this interface is to separate data transfer between components of 
different languages from the data. Then, it is the responsibility of the Main application to 
appropriately handle the data returned from the Python components. The Python Interface module 
uses the JSON format for transferring objects between the Main application and the Python modules. 

• RWB Model: Developed by ORNL using the Reliability Workbench (RWB) commercial software. A 
DLL file is used to provide an interface with the Main application for modifying and executing this 
model. 

• Main Application: Written in .NET C#, this provides the graphical user interface, and allows the user 
to input data to be sent for configuring and executing the other components.  

– Any I/O sent or received to/from components written in Python (Prognostics or JModelica) is 
handled by the Python Handler component.  

– The RWB Handler handles the data I/O between the Python components and controlling the 
RWB model. 
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Figure A.3. Different Software Components and Their Interactions with Each Other. The packages are 
color-coded, where the green components represent packages written by ORNL, orange are 
packages written by PNNL, and beige are components required for interfacing PNNL and 
ORNL packages. 

A.3 The Prognostics Module 

The prognostics module requires defining a mathematical model for the failure progression of each 
component. Currently, only the model for the turbine control valve is implemented. However, the module 
is designed such that it is easy to plug any type of model on top of the existing one, without changing any 
of the base code. This is implemented by specifying two Abstract classes: MeasurementModel and 
StateModel. These provide the template (or interface) for which ParticleFilter class expects the model to 
provide.  

If the Prognostics module is treated as a black box, then all the inputs and output for the module, 
assuming a valve prognostic model, are shown in Figure A.4. The necessary inputs and outputs will 
change with the type of component. 
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Figure A.4. All the I/O Parameters for the Prognostics Module 

A.3.1 External Dependencies 

Currently the ERM module integrated with the SCS simulation-based software platform (framework) 
depends on interfacing with Modelica and the RWB Model as defined in Section A.2. Specific 
input/output parameters related to the Prognostics Module are depicted in Figure A.4. 
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Table A.1. Functional Requirements for the Prognostics and Diagnostics Module for Integration with Supervisory Control System 

Requirement No. 

Category and 
Reference to Step in 

Figure A.2 Functional Requirement Specific Requirement Expectations 
Prognostics and 
Diagnostics Module 
(PDM) 0 

Definition of success The diagnostics and 
prognostics module should 
seamlessly integrate with the 
SCS 

Need to define what success means 
for a seamless integration. Possible 
criteria are: Demonstrate successful 
change of POF in RWB Model, 
successful passing of valve degrada-
tion measurements to prognostic 
module, etc. 

ORNL and PNNL to jointly define 
success metrics 

PDM1 Overall expectations 

(Step 5 and 6) 

The supervisory control 
system expects components’ 
time-dependent POF curve 
from the diagnostics and 
prognostics module 

Components of interest should be 
known: 

1. Turbine control flow valve(s) 

ORNL to confirm component 
identification numbers from 
RWB/JModelica 

PDM2 Input 

(Step 5) 

Diagnostics should detect 
component degradation 

Component sensory measurement data 
should be available for component 
degradation detection. 

PNNL assumption is that sensory data 
will be provided that reflects a pre-set 
degradation profile. Sensory data 
could be process measurements, as 
well as (simulated) sensor data.  

At a given time instant, a 
measurement will be provided (either 
via ORNL process variables or other 
appropriate mechanism).  

Model (physics-based) will relate 
measured data to diagnostic condition 
of valve or pump. 

ORNL to confirm feasibility of the 
following strategy:  

1. PNNL to develop a pre-set 
degradation profile for a set of 
agreed upon components.  

2. Sensory measurement data 
coming into the diagnostics 
module from the SCS/Data 
Acquisition should reflect the 
profile in Step 1. 
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Requirement No. 

Category and 
Reference to Step in 

Figure A.2 Functional Requirement Specific Requirement Expectations 
PDM3 Input 

(Step 5) 

Prognostics should generate 
time-dependent POF estimates 

Component’s state variable 
information should be available (e.g., 
valve displacement, temperature) 

PNNL to confirm component-
specific, relevant physical 
variables (e.g., temperature, 
pressure) required for the module.  

ORNL to confirm variable names 
from JModelica for the 
corresponding physical 
characteristics. 

Where specific required 
information is not available, PNNL 
should use literature and expert 
judgment. 

PDM4 Input 

(Step 5) 

The current time for which the 
measurements correspond 
should be known 

When SCS passes component’s 
physical state information, the 
following are the options for time 
information: 

1. Component state information 
comes with time stamp 

2. Sensory measurement time is 
explicitly passed to the module 

ORNL to confirm how component 
condition measurement-related 
time information is passed from 
the SCS. If stored in a separate 
variable, identify variable names. 

PDM5 Process Diagnostics should take into 
account component’s 
condition history 

When SCS invokes diagnostics, it 
passes a component’s physical 
variables of interest. The diagnostics 
module should be able to maintain this 
condition history locally between 
calls. 

PNNL is moving forward with 
local archival of component 
condition history within the 
diagnostics module.  

ORNL to confirm if there are 
limitations/restrictions around this 
scheme. 
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Requirement No. 

Category and 
Reference to Step in 

Figure A.2 Functional Requirement Specific Requirement Expectations 
PDM6 Output 

(Step 6) 

Prognostics should return 
time-dependent POF estimates  

The SCS should expect to receive two 
vectors for a component: time and 
corresponding POF.  

PNNL’s current implementation 
returns a vector of POF values for 
a component since the beginning 
of simulation (time zero) until 
component failure probability 
reaches 1.0 or the end of reactor 
life, whichever comes earlier. 

PDM7 Invocation The diagnostics and 
prognostics module should be 
invoked once for each 
component of interest at a 
single time instant. 

There is design philosophy around 
whether diagnostics and prognostics 
module receives information about all 
components at once or once for each 
component. The specific invocation 
mode must be mutually understood. 

Given the modular nature of the 
functional architecture shown in 
Figure A.1, PNNL assumes that 
one function call per component of 
interest at one time instant.  

ORNL to confirm if this 
assumption holds true. 

PDM8 Invocation The diagnostics and 
prognostics module should be 
invoked as often as necessary 
for each component of 
interest. 

(Equivalently, the module 
should receive a trigger when 
sensory measurements are 
made available through the 
SCS.) 

One of the specific options must be 
selected: 

1. SCS invokes module when a 
change in measurement is detected 
with certain sensitivity. 

2. SCS invokes module at frequent 
intervals irrespective of change in 
measurement. 

Can this be tied to the ORNL 
simulation timeline where events may 
unfold at some rate? We will need to 
sense/characterize at a rate that can 
capture these events. Is there value in 
an experiment where some of the 
events may not be captured? 

PNNL to move forward assuming 
option 1. 

ORNL to confirm that invocation 
happens multiple times associated 
with measurement changes for 
each component of interest. 

PDM9 Post-Processing Access to recorded 
diagnostics/prognostics 
information 

Does SCS require locally recorded 
diagnostics/prognostics information 
for post-processing? 

ORNL to confirm if access to 
recorded history is available for 
plotting. If so, the mechanism for 
data access should be stated. 



 

 
 

 
A

.9 
 

Requirement No. 

Category and 
Reference to Step in 

Figure A.2 Functional Requirement Specific Requirement Expectations 
PDM10 Post-Processing Dashboard metrics and 

visualization 
Does the SCS require aggregate 
summaries for dashboard display? 

ORNL to confirm what summary 
information is required. 

Assumption is that visualization, if 
any, will be taken care of by 
ORNL. Please confirm. If so, what 
are the expectations around data 
access from PNNL? 

PDM11 Post-Processing Test plan A test plan with scenarios including 
what events occur, how frequently, 
what data is captured, what are 
metrics of success, etc. should be 
captured. 

ORNL to document test plans with 
scenarios for the diagnostics and 
prognostics module with PNNL. 
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