
 PNNL-25499

VOLTTRON™ 2016
June 2016

B Akyol JN Haack
CH Allwardt S Katipamula
ZW Beech RG Lutes
JB Chapman KE Monson

PNNL-25499

VOLTTRON™ 2016

B Akyol JN Haack
CH Allwardt S Katipamula
ZW Beech RG Lutes
JB Chapman KE Monson

June 2016

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

iii

Abstract

VOLTTRON is a flexible, reliable, and scalable platform for distributed control and sensing.
VOLTTRON serves in four primary roles:

• A reference platform for researchers to quickly develop control applications for transactive energy.

• A reference platform with flexible data store support for energy analytics applications either in
academia or in commercial enterprise.

• A platform from which commercial enterprise can develop products without license issues and easily
integrate into their product line.

• An accelerator to drive industry adoption of transactive energy and advanced building energy
analytics.

Pacific Northwest National Laboratory, with funding from the U.S. Department of Energy’s Building
Technologies Office, developed and maintains VOLTTRON as an open-source community project.
VOLTTRON source code includes agent execution software; agents that perform critical services that
enable and enhance VOLTTRON functionality; and numerous agents that utilize the platform to perform
a specific function (fault detection, demand response, etc.). The platform supports energy, operational,
and financial transactions between networked entities (equipment, organizations, buildings, grid, etc.) and
enhance the control infrastructure of existing buildings through the use of open-source device
communication, control protocols, and integrated analytics.

v

Acronyms and Abbreviations

API application program interface
BTO Building Technologies Office
CETC clean energy transactive campus
DOE U.S. Department of Energy
IFTTT if this than that
PLC Programmable Logic Controllers
PNNL Pacific Northwest National Laboratory
R&D research and development
UW University of Washington
VIP VOLTTRON Interconnect Protocol
WSU Washington State University

vii

Contents

Abstract ... iii
Acronyms and Abbreviations ... v
1.0 What is VOLTTRON? .. 1
2.0 Example Use Cases for VOLTTRON .. 3

2.1 Clean Energy Transactive Campus .. 3
2.2 Building-Grid Integration Research and Development Innovators Program 4
2.3 VOLTTRON as Data Collection and Management Framework .. 4
2.4 Portland State University ... 5

3.0 Services and Components of VOLTTRON .. 5
3.1 Communications and Networking Features ... 8
3.2 VOLTTRON Security .. 9
3.3 Availability Features .. 10
3.4 Integrity Features.. 10
3.5 Confidentiality Features ... 11
3.6 Security and Usability .. 11
3.7 VOLTTRON Agent Execution Environment Features .. 11

4.0 VOLTTRON Central .. 12
5.0 Extending VOLTTRON ... 16

5.1 Driver Framework .. 16
5.2 Historian Framework.. 17
5.3 Other Services .. 17

6.0 Connecting VOLTTRON to Third Party Software .. 17
7.0 Conclusion .. 19

viii

Figures

Figure 1. VOLTTRON Platform ... 2
Figure 2. VOLTTRON Features and History ... 6
Figure 3. VOLTTRON Central ... 13
Figure 4. Remote platforms .. 13
Figure 5. Registering platforms .. 14
Figure 6. Agents view ... 14
Figure 7. Tree view of platforms .. 15
Figure 8. Tree view of platforms (continued) ... 15
Figure 9. Customizable views ... 16
Figure 10. Driver framework .. 16
Figure 11. Historian framework .. 17
Figure 12. If-this-than-that .. 18

ix

Tables

Table 1. Text obtained from IFTTT Developer's Guide ... 18
Table 2. Text obtained from Microsoft Azure IOT Developer's Guide .. 19

1.0 What is VOLTTRON?

VOLTTRON is an open-source distributed control and sensing platform for integrating buildings and
the power grid. VOLTTRON connects devices, agents in the platform, agents in the Cloud, and signals
from the power grid. The platform also supports use cases such as demand response and integration of
distributed renewable energy sources.

VOLTTRON provides an environment for agent execution and serves as a single point of contact for
interfacing with devices (rooftop units, building systems, meters, etc.), external resources, and platform
services such as data archival and retrieval. VOLTTRON applications are referred to as agents since
VOLTTRON provides an agent-based programming paradigm to ease application development and
minimize the lines of code that need to be written by domain experts such as buildings engineers.
VOLTTRON provides a collection of utility and helper classes that simplifies agent development.

Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s
(DOE’s) Building Technologies Office (BTO) developed and maintains VOLTTRON as a reference
transactional network platform to support buildings and grid integration. VOLTTRON source code
includes agent execution software; agents that perform critical services that enable and enhance the
functionality of VOLTTRON; and numerous agents that utilize the platform to perform a specific
function (fault detection, demand response, etc.). The platform supports energy, operational, and financial
transactions between networked entities (equipment, organizations, buildings, grid, etc.) and enhances the
control infrastructure of existing buildings through the use of open-source device communication, control
protocols, and integrated analytics.

To encourage development and growth of the platform, all VOLTTRON software, platform services,
and agents are open-source and employ a BSD (Berkeley Software Distribution) style license, allowing
the free distribution and development of the software. Contributing back to the project, which is
encouraged but not required, enhances its capabilities for the whole community. The license supports
organizations developing proprietary solutions on top of the open-source code.

A separately licensed (by PNNL) platform plugin provides additional capabilities to the platform for
large-scale, real-world deployments. These enhancements include agent mobility, signing and verification
of agents, and resource management. This plugin allows actors to sign agent packages as an
acknowledgement that the code is useful, reliable, and beneficial. If the code is modified either in situ or
in transit to a remote platform, it will fail verification and not be allowed to run. This mechanism is
especially important for an “app store” use case in which the deploying entity may not have first-hand
experience with the code and must trust the entities who have signed it. Resource management allows
platforms to ensure agents do not consume more resources than are available on the hardware and exhaust
the system resources. The agent mobility service allows agents to move from platform to platform (either
directed by an administrator or self-directed).

An overview of the VOLTTRON platform components is illustrated in Figure 1. The platform
includes several components and agents that provide services to other agents. Of these components, the
Information Exchange Bus is central to the platform. All other VOLTTRON components communicate
through it using the publish/subscribe paradigm over a variety of topics. For example, the weather agent
would publish weather information to a “weather” topic to which interested agents would subscribe. The

platform itself publishes platform related messages to the “platform” topic (such as “shutdown”). Topics
are hierarchical following the format “topic/subtopic/subtopic/…/…” and allowing agents to be as general
or as specific as desired with their subscriptions. For example, agents could subscribe to “weather/all” and
get all weather data for a location or subscribe to “weather/temperature” for only temperature data.

The platform communicates to devices and building controllers through the driver framework.
Drivers periodically read data off devices such as a building automation system controller and publish
data to the message bus via a topic for each device; it also provides a means to send control commands
from agents to controllers. The driver framework simplifies creation of new drivers by handling platform
interaction and allows developers to focus on methods for communicating with devices. Modbus and
BACnet implementations are included with VOLTTRON.

The Actuator/Scheduler agent allows other applications on the platform to schedule times to interact
with devices. This Scheduler agent ensures that only one agent can control a device at a given time and
allows the user to set the relative priority of each application.

Figure 1. VOLTTRON Platform

Historian agents collect data from the message bus for storage and later retrieval, isolating agents
from the specifics of the storage solution used. This data archival architecture allows multiple Historians
to be used. For instance, data can be stored to a local database as well as to an external web service.
Similar to drivers, historians are implemented using a framework that simplifies the addition of new
concrete implementations.

VOLTTRON incorporates several open-source projects to build a flexible and powerful platform:

• ∅MQ: The VOLTTRON message bus, which allows agents and services to exchange data, uses Zero
MQ. This free software is used by National Aeronautics and Space Administration, Cisco, and other
large organizations to provide scalable, reliable, and fast communication. The VOLTTRON team are
active members of this open-source software community, both reporting and developing code to fix
software bugs.

• BACPypes: The VOLTTRON BACnet driver utilizes BACPypes to interact with devices supporting
the BACnet protocol.

• PyModbus: The VOLTTRON Modbus driver builds on PyModbus, which enables Python code to
easily interact with Modbus devices.

• SQLite: The VOLTTRON BaseHistorian uses SQLite for its local data cache. SQLite can also be
used as a main data storage solution. SQLite provides a simple, reliable, and user-friendly solution for
local data storage.

• MongoDB: VOLTTRON supports MongoDB as another historian for archiving data. MongoDB
support is released in VOLTTRON 3.5.

• sMAP: VOLTTRON uses sMAP as an option for a data historian, a database to store device data
(historical trends) and agent analytic results. While sMAP is currently supported, the VOLTTRON
team is not actively developing new features for sMAP.

• Other open-source Python modules being used include 'avro', 'configobj', 'gevent', 'flexible-jsonrpc',
'numpy', 'posix-clock', ‘pyopenssl', 'python-dateutil', 'requests', 'setuptools', 'simplejson',
'zope.interface', pandas, tornado, and ply.

2.0 Example Use Cases for VOLTTRON

The following section summarizes a few example use cases for the VOLTTRON platform.
VOLTTRON has been used in large deployments such as the clean energy transactive campus (CETC)
demonstration and in small deployments where there is one VOLTTRON instance collecting data from a
small commercial building. Finally, VOLTTRON is being actively used in educational context at multiple
universities including an entire class at Portland State University based on VOLTTRON for their
laboratory assignments.

2.1 Clean Energy Transactive Campus

The transactive campus demonstration project is a major milestone for Washington State. The Clean
Energy Fund, matched by DOE, is funding the $4.5 million project. The project is one of the first use of
transactive energy controls at this scale, spanning multiple campuses including PNNL, University of
Washington and Washington State University across hundreds of miles. CETC project combines energy
generation, renewables, battery storage, and demand response. The result will improve energy generation
and consumption across the state while also improving grid intelligence, durability, and disaster response.
Insights gained from the project will inform grid modernization efforts across the United States.

The three campuses are pursuing unique but interconnected experiments and activities:

• PNNL is developing network infrastructure to connect the three campuses and enable testing of
transactive methods. PNNL also is deploying VOLTTRON and its associated agents in five buildings
to monitor operating conditions, run diagnostics, and improve building performance. This capability
will help enable active power load control, allowing loads to be optimized and adjusted to balance
fluctuations from solar energy and other sources. VOLTTRON also serves as a central technology
platform in projects with University of Washington (UW) and Washington State University (WSU).
PNNL will be generating a transactive coordination signal to coordinate experiments across all
campuses.

• UW is installing multiple smart inverters to control power production from campus solar panels and
eventually will feed campus-produced photovoltaic power into the power grid. UW also is installing a
lithium-ion battery energy storage system to increase flexibility of the power consumption across
campus and using its data analytics expertise to develop strategies to make buildings responsive to
transactive control signals.

• WSU is installing photovoltaic modules on campus for the first time and integrating them with
Pullman’s “Smart City” test bed and WSU’s micro-grid system. Experiments will show that campus
energy generation can power critical city infrastructure in the event of an outage. WSU also is
developing strategies for sharing energy between WSU’s smart buildings and the solar modules.

2.2 Building-Grid Integration Research and Development Innovators
Program

The BTO within DOE is continuing its engagement with universities through the Building-Grid
Integration Research and Development Innovators Program. The goal of this program is to explore
building-grid integration research and development (R&D) technology concepts that can improve the
operating efficiency of buildings and increase penetration of distributed renewable energy generation,
leading to more efficient buildings and cleaner generation of electricity. The intent of this program is to
engage university professors and students directly to support BTO goals. Furthermore, this program links
faculty members, graduate students, DOE national laboratory scientists and engineers, and BTO to bring
the innovation and discovery process of the university together with unmet needs in the building-grid
integration marketplace. This program encompasses 14 student teams using VOLTTRON to achieve their
research goals.

2.3 VOLTTRON as A Data Collection and Management Framework

Driven by changing regulations and the desire to cut costs and reduce carbon emissions, demand is
increasing to use energy analytics to find equipment faults, to deploy control strategies that save energy,
and to identify opportunities for equipment upgrades with a high return on investment. This increased
demand has resulted in a number of start-up energy analysis service companies. These companies collect
data from buildings, store it in the Cloud, and run analytics to identify faulty equipment, inefficiencies in
configuration, or potential energy savings.

VOLTTRON provides a way for these energy analytics companies to reduce their costs by providing
a free, open-source solution that can run on commodity hardware. Additionally, since nothing in

VOLTTRON is proprietary, companies can modify or enhance the platform themselves (if capable)
instead of working with a vendor who may have other priorities.

2.4 Portland State University

Portland State University is offering an experimental graduate Electrical and Computer Engineering
class entitled "Distributed Control Systems for Grid Applications." This class focuses on the emerging
capabilities being researched and developed for distributed energy resource control and management. The
students are building an energy management system that emulates a microgrid consisting of a central
control system and distributed control agents.

VOLTTRON was selected as the software framework for the microgrid energy management system.
The central control agent will be where the agents are managed and centralized control decisions are
made. VOLTTRON Central will be used for the managing the agents in the system, and VOLTTRON
Interconnect Protocol (VIP) is used to connect and communicate between the distributed agents (over Wi-
fi).

For the distributed agents, Raspberry Pi's running in headless mode will be used. Each agent is
connected to a Programmable Logic Controller (PLC)-based synchronizing relays for synchronous
generators. The objective is for the central controller to link the generators together to meet generation
objectives. The PLCs are accessed using a ModBus TCP-IP interface (using the VOLTTRON ModBus
driver). The register format and content of the PLCs that control the synchronous generators are being
designed by students taking ECE358.

Students are expected to design the communication network between the central and distributed
agents for controllability as well as observability. Once the basic system is in place, future class offerings
may take advantage of the system, expand it to include a richer mix of assets, and explore different
management policies.

3.0 Services and Components of VOLTTRON

VOLTTRON’s services are built on top of the core VOLTTRON platform and are illustrated in
Figure 2.

Figure 2. VOLTTRON Features and History

Services/applications provided by VOLTTRON include:

• Actuator Agent: This platform service is deployed in the form of an agent running on VOLTTRON.
The Actuator agent manages the control of external devices by agents within VOLTTRON.

– Device control: The Actuator agent will accept commands from other agents and issue the
commands to the specified device. Currently Modbus- and BACnet-compatible device
communication is supported.

– Device Access Scheduling: This service allows the scheduling of agents’ access to devices to
prevent multiple agents from controlling the same device at the same time.

– Revert: The Actuator agent sends a signal to the drivers to reset all controlled points to a default
value contained in their configuration file. This can be used in case of agent failure or at the end
of an experiment to reset devices for the next round.

– Lockout Signal: A lockout signal is sent to the platform and prevents any control actions from
being taken. This allows building managers to perform actions/maintenance without
VOLTTRON agents sending commands at the same time.

• Drivers: VOLTTRON driver agents communicate with devices being controlled by the platform.
They isolate device-specific protocols from the rest of the platform by publishing device data to the

message bus and taking commands from the message bus. VOLTTRON currently includes supported
drivers for BACnet and Modbus protocols.

• Historian: Enables the storage of device data obtained by the drivers and application analysis results
in a database (currently SQLlite, MySQL, MongoDB, and sMAP databases are supported). Multiple
historians can run on the platform at the same time.

• Management Interface: Web-based user interface that allows the administration of VOLTTRON
nodes (and the agent/applications) running on the VOLTTRON nodes on one or more networks.

• Message Bus: All agents and services can publish and subscribe to topics on the message bus. This
provides a single and uniform interface that abstracts the details of devices and agents from each
other. At the most basic level, agents and components running in the platform produce and consume
messages and/or events. The details of how agents produce events and how they process received
events are decided by the agents.

• Remote Procedure Calls: VOLTTRON agents can interact via Remote Procedure Calls. This is
especially useful when interacting with service agents such as the Actuator or Historians and
simplifies the code required to use those services.

• VOLTTRON Interconnect Protocol (VIP): VIP is a protocol designed to provide secure
communications within and between VOLTTRON platforms. It allows for attribution of messages
and restriction of access. It also makes it easier to address messages to agents on other platforms. VIP
is a wrapper around the message bus.

• Multi-Node Communication: VIP provides multi-node communication allowing agents to publish
and subscribe to the message bus of a remote VOLTTRON platform. This communication can be
encrypted using 0MQ Curve.

• Supervisory Service: VOLTTRON’s supervisory service comprises several subsystems that the
VOLTTRON Central Management User Interface uses to give an administrator situational awareness
of the health and status of devices in their deployment. These systems can also be used to trigger
emails and other automatic notifications.

– Status: Agents periodically publish their status as simply either Good or Bad and include string
containing further context. The context should provide an error message in case of a Bad status
and allows for easier debugging of issues on platforms.

– Alerts: Developers can use this subsystem to declare high priority errors that should be
immediately brought to the attention of administrators. For instance, if a driver cannot reach a
device then it should produce an alert that will cause VOLTTRON Central Management to send
an email to the administrator.

– Threshold Agents: These agents monitor the message bus for certain points or messages and
trigger an alert when receiving data that fit their criteria.

• Proxy Agents. A proxy agent is an agent that runs on the platform with the sole purpose of
interfacing with a service that does not natively participate in the VOLTTRON messaging bus.

– Weather Information: This platform service is deployed in the form of an agent running on
VOLTTRON. This agent periodically retrieves data from the Weather Underground site. It then
reformats the data and publishes it to the platform on a weather topic accessible to other agents.

– MATLab: The MATLab interface allows VOLTTRON to interact with models in MATLab.
Agents validated through this interface can then transition to work against a real building without
any changes to the agent code.

– Framework for Network Co-Simulation (FNCS): FNCS is a co-simulation framework that can
interact with the VOLTTRON platform and allows agents to work with real and simulated
devices through the same platform interface.

VOLTTRON enhancements distributed under license by PNNL include the following:

• Agent Signing and Verification: Agent code and configuration information is signed by several
entities to ensure that it has not been tampered with in transit or while on the server.

• Resource Management: Agents present an execution contract with a resource requirements estimate.
The platform only allows agents to run if it can support their requirements.

• Agent Mobility: Agents can be sent to other platforms via an administrative command or they can
request the move themselves. The receiving platform performs verification of the agent package and
resource requirements before allowing it to execute.

Agents deployed on VOLTTRON can perform one or more roles, which can be broadly classified
into the following groups:

• Platform Agents: These agents provide services to other agents running on the platform such as
weather information, device scheduling, etc.

• Proxy Agents: These agents act as a bridge to remote applications that need access to the messages
and data on the platform. A Proxy agent subscribes to topics of interest and forwards messages to the
remote (or Cloud) application. These Cloud applications can then publish data to the platform via the
Proxy agent.

• Control Agents: Using data from buildings and other agents, these agents make decisions and
interact with devices and other resources to achieve a goal.

• Passive Agents: These agents subscribe to data from the building systems and perform diagnostics to
create actionable information for the operators (faulty operation). The information and knowledge
that these agents create is posted to the Historian or in a local file.

3.1 Communications and Networking Features

Residential and commercial buildings use a range of protocols and communications infrastructure. To
facilitate successful integration of transactive energy into existing buildings, VOLTTRON includes built-
in support for a range of devices and BACnet/MODBUS protocols and is easily extensible to support

other protocols. A key feature of VOLTTRON is the ability to easily integrate new device control systems
and data gathering protocols.

VOLTTRON communicates over many types of communication networks including IEEE 802.11,
IEEE 802.15.4 and IEEE 802.3 networks. VOLTTRON utilizes a gateway or a protocol converter to
communicate over legacy serial links. VOLTTRON includes support for both IPv4 and IPv6
communications and can use both TCP and UDP over IPv4 and IPv6.

3.2 VOLTTRON Security

Security is a primary feature for VOLTTRON. VOLTTRON provides security against unauthorized
access to system data and unauthorized exercise of control functions. VOLTTRON isolates applications
running on the platform from each other (if needed) and enforces resource utilization limits on the
applications to ensure stability. VOLTTRON uses well-established and widely accepted security
mechanisms including elliptic-curve encryption, authentication, and authorization.

Authentication and authorization go hand in hand. When a peer (agent) authenticates to a platform,
the peer is proving they are who they say they are. In other words, authentication is the process of binding
a peer to an identity. Authorization is the processing of granting permissions or capabilities to a peer
based on their identity. VOLTTRON agents use authorization to selectively limit which peers can call
which methods based on the peer’s granted permissions. VOLTTRON authorization gives agent authors
and platform owners fine control over who can use their agents and how their agents can be used.

Additionally, communications with other platforms use authentication and authorization functions to
ensure that only legitimate transactions are performed. Access to the system through local management
interfaces are also protected by similar security measures.

The security requirements may differ between transactional energy applications depending on the
particular aspects of the service and the participants involved. Each transactional energy application must
specify its security characteristics and requirements. These security characteristics include:

• Level of data integrity and encryption required for communication transmissions and for data storage.

• Identification requirements of parties participating in the transactions. For example, attributes such as
non-repudiation, cryptographic mechanisms being used to establish identities (e.g., X.509
certificates), and the establishment of trust roots may need to be specified.

• Security requirements/features for the communication patterns being used by the application. For
example, are there any firewalls or is the network address translation expected to be in the
communication paths? Does it require push or pull for messaging? Is the application event driven?
Does the application require cross-domain transactions? How are cross-domain transactions handled?
Is there a third party broker involved? How do we accommodate different cyber security
authorization policies? Is there a trusted intermediary (e.g., escrow)?

• Transaction validation requirements. Is there an instantaneous enforcement required to ensure against
incorrect or malicious actions? Is there a reconciliation mechanism to ensure compliant behavior? If
the transactive energy messages are modified during transit, how does the system ensure that the
modifications are not erroneous or malicious?

When considering the security properties of confidentiality, integrity, and availability, the control
systems community typically takes a much different approach than would typically be taken by the
government, military, banking industry, etc. which typically places the highest priority on confidentiality
and the lowest on availability. The viability of the control systems depends on placing the highest priority
on availability and the lowest on confidentiality. Between these two extremes is the security property of
integrity (source integrity/identity and data integrity) that contributes to reliable operation by preventing
system compromise and by rapidly detecting any system compromise that occurs. The authentication
component of VOLTTRON directly addresses integrity.

There are four broad classes of threats: disclosure, deception, disruption, and usurpation of some part
of a system1. Disclosure is a violation of confidentiality. Deception and disruption are generally countered
by integrity services. Disruption is also countered by availability mechanisms. Availability, integrity, and
confidentiality features for VOLTTRON are discussed below.

3.3 Availability Features
• VOLTTRON is based on top of Linux and can detect resource exhaustion (either malicious or due to

defective software) using system management utilities and take corrective action. VOLTTRON can
also be connected to a monitoring system such as “Big Brother2” or “Xymon3” and integrate with an
enterprise-wide alerting solution.

• As of VOLTTRON 4.0, the VOLTTRON Central platform will deploy a set of agents to specifically
detect anomalous system behavior based on historical trends and alert the system operator.

• VOLTTRON continues to operate when network connections are temporarily disrupted. Historians
are engineered to locally cache data and upload when network connectivity resumes.

• VOLTTRON (licensed code) detects and terminates an application that is not behaving according to
its application/platform contract.

• VOLTTRON has the ability to implement a “liveness” check for each application hosted on the
platform in order to detect and terminate malfunctioning applications. Applications must be written to
respond correctly with this check or they may be stopped prematurely.

• VOLTTRON supports sending security-related logs to a remote security event information
management system.

3.4 Integrity Features
• Agents running on VOLTTRON are authenticated and authorized at every step of the agent life cycle

including agent instantiation and movement.

• VOLTTRON authorization features are configurable via policy statements.

• VOLTTRON detects if code or data have been tampered. Typically, VOLTTRON is configured not
to execute code that has been tampered.

1 https://www.ietf.org/rfc/rfc2828.txt
2 https://en.wikipedia.org/wiki/Big_Brother_(software)
3 http://xymon.sourceforge.net

• Since VOLTTRON runs on top of Linux, it can lock certain memory locations as read-only once the
boot process is completed. This may include all cryptographic and authentication libraries. However,
current VOLTTRON versions do not implement this feature.

• As of VOLTTRON 4.0, part of the anomaly detection feature is going to be able to detect bad or
poorly written software agents. Once such an agent is detected, based on configuration, the agent may
be stopped or prevented from restarting.

• Since VOLTTRON is based on top of Linux, it offers memory protection to hosted agents and
platform services that run as separate processes.

• When configured for automatic software updates, VOLTTRON automatically checks and receives
updates for both security and maintenance from a known, secure resource on the network.

• VOLTTRON notifies administrators of all agent-related security failures.

3.5 Confidentiality Features

Confidentiality concerns arise in regard to business interests and personal privacy and also secrecy if
the agent is, for example, monitoring for illegal usage. Confidentiality features implemented by
VOLTTRON include:

• All communications between VOLTTRON platforms are encrypted according to the configuration set
by the administrator.

• VOLTTRON supports cryptographic algorithms with key strengths higher than what is recommended
in NIST SP800-131Ar11.

3.6 Security and Usability

It is notoriously difficult to make user-friendly secure systems. VOLTTRON has made strides in
usability by reducing the amount of user-input necessary to securely configure and connect platforms.
VOLLTRON introduced a Discovery protocol to easily find and connect platforms. Rather than requiring
the user to enter multiple platform encryption keys in addition to a server address, the Discovery protocol
utilizes key-stores to select the correct keys to establish secure communication. Managing encryption
keys and key-stores has been simplified via the VOLTTRON Control interface.

3.7 VOLTTRON Agent Execution Environment Features

Software agents are entities that can either be stationary or roam between platforms in the system.
Agents are task driven and can be used to accomplish a task that involves many platforms. The following
features are provided by the VOLTTRON agent execution environment:

• Agents run on multiple CPU architectures as long as agent resource requirements are met.
VOLTTRON provides the agents with a runtime environment independent of the underlying CPU
architecture.

1 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf

• The agent execution environment determines whether it has the capabilities to support a particular
agent. In essence, the platform and the agent enter into a binding contract when a platform hosts an
agent.

• The agent execution environment determines if the agent requesting "hosting" is authorized to
execute on that platform.

• The agent execution environment determines if the agent code has been tampered.

• The agent execution environment provides robust mechanisms to allow agents to store information
on-board.

• The agent execution environment provides access to information collection and dissemination
services for the agent by means of the message bus and historian services.

• When using the licensed software, the VOLTTRON agent execution environment can guarantee
(stochastically) a requested slice of its resources such as memory, storage, and processor cycles to an
agent.

• When using the licensed software, the VOLTTRON agent execution environment detects and
terminates an agent that is not behaving according to its agent/platform contract.

• The agent execution environment collects and transmits an inventory of agents hosted by the platform
to VOLTTRON Central.

4.0 VOLTTRON Central

VOLTTRON Central (Figure 3) is a web-based interface for managing deployed VOLTTRON
systems. The interface improves VOLTTRON’s accessibility as a technology solution by providing
simple, visually intuitive ways to interact with platform instances. The feature extends technical
interactions that previously could only be conducted through the command-line terminal.

Figure 3. VOLTTRON Central

With VOLTTRON Central, administrators and users can access any VOLTTRON instance that has
been registered through the interface. Instances that are managable through VOLTTRON Central include
the local platform hosting VOLTTRON Central and remote platforms running on Internet-connected
machines that could be anywhere in the world (Figure 4).

Figure 4. Remote platforms

VOLTTRON Central is a portal for information related to the monitoring and health of platform
instances. Monitoring refers to the data points generated by devices in a VOLTTRON system. Health is
information describing the state of those devices as well as the software agents installed in a system to
collect and publish the monitoring data.

An overview of the platforms shows each registered instance and includes a summary of its installed
agents. At this level of the interface, users can register additional platforms and deregister platforms to
remove them from the portal (Figure 5).

Figure 5. Registering platforms

Each VOLTTRON instance has a Platform agent that allows it to interact with VOLTTRON Central.
The local VOLTTRON instance also has a VOLTTRON Central agent that allows it to run the portal.
Users can click on a platform’s name link to view and manage its agents.

The agents view shows the agents that have been installed and indicates whether they are running.
Users, depending on their permissions, can start, stop, and remove agents (Figure 6). Crucial agents, such
as a remote instance’s Platform agent or the local instance’s VOLTTRON Central agent, cannot be
stopped or removed, but they can be restarted in the event of a problem. Agents also can be installed by
users with the appropriate permissions, and non-crucial agents can be uninstalled.

Figure 6. Agents view

VOLTTRON Central also includes a tree view of platforms, agents, and devices that displays
additional information about health and status (Figure 7).

Figure 7. Tree view of platforms

Additionally, the tree view is a dynamic component for launching the display of monitoring data
(Figure 8).

Figure 8. Tree view of platforms (continued)

In the Charts view (Figure 9), selected data points in the tree are added to configurable graphs. From
there, the charts can be pinned to the Dashboard, which is the default view users are directed to when they
log into VOLTTRON Central.

Figure 9. Customizable views

Through the workflow of registering platforms, installing agents, and configuring charts,
VOLTTRON Central provides this customizable view of selected live device data—a view that is readily
available each time a user accesses the portal.

5.0 Extending VOLTTRON

A major effort for VOLTTRON 3.0 was to increase the flexibility of the platform and allow
developers to easily customize components for their requirements or technology preferences. The
frameworks for building Drivers and Historians are the two main examples of this.

5.1 Driver Framework

A simple application program interface (API) adds support for new types of devices to the platform
via the Master Driver Agent (Figure 10). Using this API ensures existing Historians, platform services,
and agents will work with the new type of device. Every platform feature available for working with
devices will be available to the new driver.

Figure 10. Driver framework

5.2 Historian Framework

A simple API adds support for new types of data stores to the platform. Using this API ensures that
agents and platform services that use historical data can access it from the new store and automatically
takes advantage of reliability features of the platform Historian agent (Figure 11).

Figure 11. Historian framework

5.3 Other Services

New services can be provided in the form of Agents. For example, an agent was created to provide
current and forecast weather data.

6.0 Connecting VOLTTRON to Third Party Software

This section summarizes how VOLTTRON is connected to third party software platforms. The
recommended method to connect VOLTTRON to any third party software platform is via the “Proxy
Agent” pattern. A proxy agent is an agent that runs on the platform with the sole purpose of interfacing
with a service that does not natively participate in the VOLTTRON messaging bus. A proxy agent can be
as simple as the weather agent currently implemented in VOLTTRON where it gets the current weather
conditions and then pushes the information to the message bus. A more complex proxy agent may be
involved in collecting data from one or more VOLTTRON instances and then uploading the collected
data to one or more web services such as Azure IOT. Another complex proxy agent may interface with a
workflow software such as If-This-Than-That (IFTTT) to implement complex workflows.

For example, a simple IFTTT recipe is shown in Figure 12:

Figure 12. If-this-than-that

VOLTTRON can be easily integrated via an IFTTT proxy agent to implement an action such as “If
tomorrow’s forecast calls for 90-plus degree weather AND there is a utility demand response credit
available, pre-cool the building during off-peak periods.”

In this example, the intelligence to determine when to pre-cool the building is shared between IFTTT
and VOLTTRON. IFTTT implements three main constructs: Trigger, Action, and Recipe. The recipe
defines the workflow; the trigger (via the IFTTY Maker Channel) is a web service used to notify third
party devices when a trigger occurs. A VOLTTRON IFTTT proxy agent will implement an interface to
the trigger. This is done via a web services call as shown in Table 1:

Table 1. Text obtained from IFTTT Developer's Guide

To trigger an Event
Make a POST or GET web request to:

https://maker.ifttt.com/trigger/{event}/with/key/<keyID>-
With an optional JSON body of:

{ "value1" : "", "value2" : "", "value3" : "" }

The data is completely optional, and you can also pass value1, value2, and value3 as query parameters or form
variables. This content will be passed on to the Action in your Recipe.

 Once the trigger fires, and the proxy agent connects with IFTTT to receive the trigger, it will post a
message to the message bus indicating the desire to pre-cool the building. This message will then be
picked up by a platform-native demand-response agent to be implemented as if the demand-response
condition occurred natively on the platform.

As a second example, Table 2 shows how to interface with Microsoft Azure IOT platform. Azure IOT
supports the interfaces for the device client.

Table 2. Text obtained from Microsoft Azure IOT Developer's Guide

 Device client:

 Support for C, JavaScript (node), Java and C#

 Support for AMQP, AMQP over WebSockets, MQTT and HTTP/REST for the device–to-cloud communication

 Support for SSL (using third party dependencies such as openSSL or WolfSSL)

 Simple APIs to:

 Establish a secure connection to IoT Hub

 Send messages to IoT Hub

 Receive messages from IoT Hub

Similar to IFTTT, VOLTTRON can be integrated to Azure IOT using a proxy agent that implements
the RESTful HTTP(S) API for Azure IOT to establish and register the VOLTTRON instance, then to
send and receive messages from the Azure IOT hub. Most third party applications implemented in the
Cloud follow a RESTful web services model. All communication with the Cloud is completed via
HTTP(S) calls. The HTTP(S) calls can be used to check on the status of an entity (e.g., get current
weather conditions) or to push a data reading. Events and notifications can be implemented via a polling
web interface where the proxy agent will poll a URL periodically or via an asynchronous interface such
as web sockets. The VOLTTRON proxy agent is a well-understood and commonly used pattern for
integrating third party services to the VOLTTRON platform.

7.0 Conclusion

VOLTTRON is a flexible, reliable, and scalable platform for distributed control and sensing that
serves as:

• A reference platform for researchers to quickly develop control applications for transactive energy.

• A reference platform with flexible data store support for energy analytics applications either in
academia or in commercial enterprise.

• A platform from which commercial enterprise can develop products without license issues and easily
integrate into their product line.

• An accelerator to drive industry adoption of transactive energy and advanced building energy
analytics.

The VOLTTRON team will continue adding features while exploring multiple avenues to transition
VOLTTRON to a joint development model that includes VOLTTRON users.

	Abstract
	Acronyms and Abbreviations
	Contents
	Figures
	Tables
	1.0 What is VOLTTRON?
	2.0 Example Use Cases for VOLTTRON
	2.1 Clean Energy Transactive Campus
	2.2 Building-Grid Integration Research and Development Innovators Program
	2.3 VOLTTRON as A Data Collection and Management Framework
	2.4 Portland State University

	3.0 Services and Components of VOLTTRON
	3.1 Communications and Networking Features
	3.2 VOLTTRON Security
	3.3 Availability Features
	3.4 Integrity Features
	3.5 Confidentiality Features
	3.6 Security and Usability
	3.7 VOLTTRON Agent Execution Environment Features

	4.0 VOLTTRON Central
	5.0 Extending VOLTTRON
	5.1 Driver Framework
	5.2 Historian Framework
	5.3 Other Services

	6.0 Connecting VOLTTRON to Third Party Software
	7.0 Conclusion

