
PNNL-25330

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Reverse Engineering Integrated
Circuits Using Finite State Machine
Analysis

Kiri Oler

Carl Miller

March 2016

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

This document was printed on recycled paper.

 (9/2003)

PNNL-25330

Reverse Engineering Integrated
Circuits Using Finite State Machine
Analysis

Kiri Oler

Carl Miller

March 2016

Prepared for

the U.S. Department of Energy

under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory

Richland, Washington 99352

Reverse Engineering Integrated Circuits Using Finite State Machine
Analysis

Abstract

Due to the lack of a secure supply chain, it is not possi-
ble to fully trust the integrity of electronic devices. Cur-
rent methods of verifying integrated circuits are either
destructive or non-specific. Here we expand upon prior
work, in which we proposed a novel method of reverse
engineering the finite state machines that integrated cir-
cuits are built upon in a non-destructive and highly spe-
cific manner. In this paper, we present a methodology
for reverse engineering integrated circuits, including a
mathematical verification of a scalable algorithm used to
generate minimal finite state machine representations of
integrated circuits.

1 Introduction

The integrity of our computing hardware is of criti-
cal concern in industries such as energy generation and
distribution, aviation, and health care. Currently, there
is no way of verifying the integrity of the entire supply
chain, from design to use, to ensure the level of integrity
needed. In dividing this work into smaller, more feasible
pieces, we have chosen to focus on examining the end
product–the integrated circuit (IC). Many modern ICs are
built upon finite state machines (FSMs). In this research,
we have developed a method for rediscovering the FSM
that an IC is built upon using a nondestructive and intel-
ligent brute force method. Prior work has focused on de-
structive reverse engineering methods that use images of
the transistor levels to determine function [1], and non-
destructive characterization techniques like power usage,
timing delays, current leakage, and EM imaging which
can be used to certify an IC against a known-good IC.
[7, 3, 9].

The mathematical theory behind our approach is pre-
sented in two parts. First, we construct a tree represent-
ing the IC, and then we determine the underlying state
machine based on said tree. The evaluation tree is con-

structed by evaluating every possible input stream on the
IC. Each evaluation tree is unique for each FSM, and
any two FSMs that share the same evaluation tree are
equivalent. It should be noted that evaluation trees are
normal, as defined in [2], meaning the ordering on the
nodes is preserved, allowing for the concept of descen-
dant nodes and subtrees, which will be necessary as we
proceed. Through basic pattern matching we can reduce
the nodes and subtrees to work backwards towards the
original state machine. This work will verify that both
operations yield a state machine equivalent to the im-
plemented machine. In addition, to mathematical veri-
fication, we tested our approach using a combined hard-
ware/software implementation.

We begin by discussing the motivation behind this
work in greater detail. We then present our contribu-
tion to the problem by first providing the mathematical
foundation and then outlining the software and hardware
implementation used to test our theory.

2 Motivation

Many of the ICs that control our desktop computers,
servers, SCADA systems, and a range of other devices
are designed in the U.S. but put into silicon overseas.
[6] This creates a large gap in our control of the sup-
ply chain which puts all systems that use this hardware
at risk for modification or injection attacks. Today, many
organizations spend enormous amounts of money veri-
fying the integrity of a given piece of hardware; they are
then locked in to that hardware for decades afterwards,
resulting in obsolete hardware and software running crit-
ical systems.

There are a few destructive existing methods for deter-
mining if an IC deviates from the original design; these
are expensive and time consumptive but extremely accu-
rate. Alternatively, there are a variety of non-destructive
imaging methods for determining if an unknown IC is
different from an assumed-good benchmark IC. How-

1

ever, these methods often only work for large or active
differences, and are based on the assumption that the
benchmark chip has not been corrupted. What is needed,
and what we will detail in the following sections, is an
algorithm to enable a fast, non-destructive method of re-
verse engineering ICs to ensure their veracity. We must
assume the worst case scenario in which we have no prior
knowledge, no design documents, no labeling, or an out-
of-production IC.

3 Prerequisites

Below we define the structures and notation relevant
to the proposed method, culminating with the concept of
tree equality for the purpose of manipulating those trees
representing the FSMs.

3.1 Assumptions
The work presented here relies upon a few critical as-

sumptions:

• The IC state machine must be a Moore FSM (i.e.
the output depends only on the machine’s state), and
more specifically, not a Mealy FSM (i.e. the output
depends on both current state and the input).

• An isolated state machine.
The FSM must be in isolation and separated from
any outside source which may affect the states or
state transitions. In practice, this means that the
FSM cannot be connected to any sort of non-volatile
memory. Also, it cannot be allowed to take any in-
put outside of that which is provided via the algo-
rithmic testing apparatus.

• Scalability is possible.
Though we have a theoretic basis for trees with any
number of children/input pins, the larger this num-
ber, the greater the impact to the efficiency of our al-
gorithm, which is a topic to be explored more thor-
oughly in future work.

• The single origin point is always accessible.
There must be a single point of origin that can be
accessed through a reset-style input. Physically this
may be embodied in the power-off/power-on reset
or a designated reset pin. To explore the tree prop-
erly, it is necessary that the exploration always be-
gin at the same point.

3.2 Tree Framework
In order to better understand the unknown function-

ality and processes of a given FSM, the behavior of that

10 11 12 13 14 15 16 17 18 19 20

0

1 2 3 4

5 6 7 8 9

0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 1: Example of a tree with nodes and edges labeled
and an example path highlighted in red.

FSM will be modeled using a tree structure. More specif-
ically, an FSM is represented as a tree T with a set of
nodes N, where each node has, at most, c = 2x children,
where x ∈ N+, implying the FSM being modeled has x
input pins. A node without any children is referred to as a
leaf. For algorithmic purposes, nodes are labeled numer-
ically (top to bottom, left to right), beginning with 0 for
the root node and reading left to right down each level of
the tree. Likewise, edges originating from the same par-
ent node are grouped together and labeled numerically
from left to right. See Figure 1 for an illustration of the
node and edge labeling conventions. Each node in the
tree represents a state in the FSM, with the child nodes
representing the states that can be transitioned into from
the given node or state. The root node of the tree is the
FSM’s initial state. A tree with no nodes or children is
referred to as the empty tree and denoted 0. As with the
formal definition of a tree, each tree is a set N with c
functions defined as follows:

Si→: N→ N∪0

For example, if node n has children s1,s2, . . . ,sc, then

n
Si→ si for 1 ≤ i ≤ c or Si(t) = si. Additionally, conven-

tions dictate that a tree T is referred to by its root node,
meaning notationally S1(T) refers to the leftmost child
of node T , which is, in turn, the root node of the leftmost
subtree of T . Likewise, the subtree labels proceed in as-
cending order from left to right. Therefore, ScT refers to
the rightmost child of T and rightmost subtree of T . We
write Si(T)≤ T to denote that Si(T) is a subtree of T .

The behavior of the FSM is then mapped as
paths through its representative tree. A path P =
p0, p1, ..., pd−1 where d is the length of the path and each
p j, where 0 ≤ j ≤ d− 1, indicates the label of the edge
to select when moving from the current node in the se-
quence, e.g. a 0 indicates a move to the node’s leftmost
child, while a 1 indicates a move to the node’s second
leftmost child and so on. Paths pass through a sequence
of nodes, the labels of which can be referenced as follows
labels = l0, l1, ..., ld , such that lk

Si→ lk+1 for 1≤ k≤ d−1
and 1≤ k≤ c. Further, a node n is classified as a descen-
dant of node l if and only if there exists a path from l to

2

n. In the context of FSMs, the input to state l1 led to a
transition to state l2 and so on and so forth through the
state machine and on down the tree.

For a given path, p, or series of inputs to the FSM, the
label l of the final node reached is given by the following:

l =
d

∑
i=0

(2ix + c(i)) (3.1)

where

c(i) = (2x−1)
i−1

∑
j=0

(c(j))+ pi (3.2)

Conversely, if we are given a label, l, and need to solve
for the path, p of length d from the root to the node with
the given label, i.e. the series of inputs to the FSM, is
given by the following:

pi = (li+1−1) mod 2x (3.3)

Which means we start with the given label ld and work
our way backwards up the tree to the root node, by first
solving for pd−1 as follows:

pd−1 = (ld−1) mod 2x (3.4)

where ld is the given label. We can use the given label to
solve for the label of its parent node using the following
equation:

li+1 =
li+1+1− (2x)i+1+1−1

2x−1

2x
+

(2x)i+1−1
2x−1

(3.5)

which in turn, requires knowing the length of the path d,
given by:

d =

⌈
log(2lx− l+1)

log(2x)
−1

⌉
(3.6)

Equations 3.6 and 3.5 are derived from the fact that the
number of nodes in a tree is (2x)d+1−1

2x−1 .

3.3 Equality

We now examine what it means for two trees to be
equal. For Moore’s FSMs [5], equality of nodes is estab-
lished if the output is the same for both nodes. This is
an example of an equivalence relation (denoted as =N),
illustrating that equivalence relations are valid on evalua-
tion trees. Let =N be an equivalence relation on nodes of
a tree. Two trees are equal T1 = T2 if and only if T1 and
T2 are both 0 or all of the following are true: T1 =N T2,
and Si(T1) = Si(T2) for all i such that 1≤ i≤ c.

Theorem 3.1. = is an equivalence relation.

Proof. The proof is by structural induction.
Base Case: 0 = 0. This is trivially true, since there is
only one empty tree.
Let T1,T2, and T3 be trees in which all of their subtrees
are equal.

Reflexive We know T1 =N T1 by reflexivity on =N .
Since all the subtrees of the given trees are equal,
we also know Si(T1) = Si(T1). Therefore, T1 = T1.

Symmetric Let T1 = T2. We know T2 =N T1 by sym-
metry on =N , since =N is an equivalence relation.
Furthermore, Si(T2) = Si(T1), since all subtrees of
the given trees are equal. Thus T2 = T1.

Transitive Let T1 = T2 and T2 = T3. We know T1 =N T2
and T2 =N T3, thus T1 =N T3 by transitivity on =N ,
since =N is an equivalence relation. By definition
Si(T1) = Si(T2) and Si(T2) = Si(T3). Finally, since
all subtrees of the given trees are equal, we know
Si(T1) = Si(T3). Therefore, T1 = T3.

Thus by structural induction = is an equivalence relation
on trees.

Corollary 3.2. If A = B and if PA is a path through A
and PB is the same path through B, then PA = PB.

Proof. A path through a tree is also a tree. Consequently,
the corollary follows directly.

Thus far in this discussion of trees, the tree has not
been limited to the finite or acyclic variations. Con-
sequently, this definition of equality will not work for
any practical computation due to real world limitations
on time and space resources. Therefore, we will now
present a limited version where equivalence between
trees is determined out to a given depth, d. Let =d be
a relation on trees, where d ∈ N. Then T1 =0 T2 if and
only if T1 and T2 are both 0 or T1 =N T2. Additionally,
T1 =d T2 if and only if T1 and T2 are both 0 or all of the
following are true: T1 =N T2, Si(T1) =d−1 Si(T2) for all i
such that 1≤ i≤ c.

Theorem 3.3. =d is an equivalence relation on trees.

Proof. Since =d is a limited version of =, the proof is
almost identical to that of Theorem 3.1 and has thus been
omitted.

Corollary 3.4. If PA is a path through A and PB is the
same path through B, and A =d B and |PA|< d then PA =
PB.

By applying the above limitation, we now have an ef-
fective means of comparing trees.

3

a

b c

d e e f

a

b c

d e f

a

b c

d c a f

a

b c

d f

Figure 2: Two simple examples of the folding procedure.

4 Solution

Now that the necessary structures for representing a
FSM as an evaluation tree and a means for comparing
two FSMs based on their respective evaluation trees have
been established, we are ready to present a procedure
for streamlining the creation of evaluation trees to make
them more practical.

4.1 Folding
It is simple to show that if a state machine has a loop,

then the subtrees generated from those states are identi-
cal. The basic premise of the process presented here is to
go in the other direction. That is, we find identical sub-
trees and replace the redundancies with a loop back to a
single copy of the subtree, as shown in the example in
Figure 2.

Theorem 4.1. If two FSMs M and N generate the same
evaluation tree T , then M is equivalent to N.

Proof. Let M and N be two FSMs that both generate
T . Two machines are equal if and only if for every in-
put word w, M(w) = N(w). Let w be an arbitrary word.
M(w) can be evaluated by following the transition func-
tion for M. Now M(w) can be related to a path in T ,
where a transition from one state to another is modeled
as the move from a parent node to one of its children. If
wk = 0, then continue with S1(T); if wk = 1, then con-
tinue with S2(T) and so on. This path will produce M(w).
Since it is possible to do the same thing for N because N
also generates T , M(w) = N(w). Finally, since w was
arbitrary N = M.

Theorem 4.2. Given FSM M and its corresponding eval-
uation tree T , if A≤ T and B≤ T and A = B, then there

is an equivalent machine M′ where A and B represent the
same state in M′.

Proof. Assume that A ≤ T and B ≤ T and A = B. If A
and B are the same state then we are done. Now con-
struct a machine M′ where every transition to state B is
replaced by state A. Let T ′ be the evaluation tree for M′.
Now either B ≤ Si(T) for some i such that 1 ≤ i ≤ c or
B is T , in which case B = T . If B = T then A = T ′, so
T ′ = A = B = T and thus T ′ = T . Otherwise, B≤ Si(T).
Again there are two possibilities: B ≤ S j(Si(T)) (where
1≤ j ≤ c), or B = Si(T). Continue this process until we
find a subtree D of T where B = D. Let D′ be the same
descendant in T ′, then D = B = A = D′. Now Ds par-
ent is equal to D′s parent. Si(p(D)) =N Si(p(D′)), and
D = D′. By induction, every ancestor of D is equal to
every ancestor of D′. Since T is an ancestor of D and T ′

is the same ancestor of D′, then T = T ′. Therefore, since
the two evaluation trees are equal M = M′.

4.2 Algorithm
Using Theorem 4.2 presented above, it is now possible

to formulate an algorithm. The premise of the algorithm
is as follows: a tree or subtree can be replaced with an
equivalent tree while allowing the underlying FSM to re-
main unchanged. It is then possible to eliminate entire
branches of the tree by looping back to a node that has
previously been explored. The implementation shown in
Algorithm 1 employs a basic breadth first search on a
tree, meanwhile, Algorithm 2 replaces every occurrence
of a in the tree with b.

Algorithm 1 Fold
procedure FOLD(Tree T)

Q q
seen← /0
q← T
while q 6= /0 do

t← q
if ∃x ∈ seen : t = x then

switch(t,x,seen)
else

seen← t
q← l(t)
q← r(t)

end if
end while

end procedure

As a consequence of Theorem 4.2, we have the fol-
lowing corollary.

Corollary 4.3. At each step of the algorithm, T is an
equivalent state machine.

4

Algorithm 2 Switch
procedure SWITCH(Tree a, Tree b, Set〈Tree〉 seen)

for x ∈ T do
if l(x) is a then

l(x)← b
end if
if r(x) is a then

r(x)← b
end if

end for
end procedure

Proof. The only modification made to T is the switch
procedure, which only replaces one equivalent subtree
with another, thus the corollary follows.

Theorem 4.4. The Fold algorithm halts.

Proof. T has been generated by a FSM M, so by defi-
nition T is finite. Therefore, the longest path through T
without seeing an equivalent state is |M|. Algorithm 1 is
then guaranteed to cut every branch after length |M|+1.
Thus the output tree is bounded by |T | < c|M|+1. Since
this implementation utilizes a breadth first search, it
is impossible to travel down an infinitely long branch.
Therefore, the algorithm must halt when the tree is fully
folded, or after c|M|+1 steps.

4.3 Finiteness
As already noted, we cannot use the normal definition

of = on trees because the algorithm would then be po-
tentially infinite. Unfortunately, if we attempt to use =d
rather than =, the theorems and resulting algorithm are
no longer true. However, with a little care in selecting an
appropriate value for d, we can show that the theorems
are almost always true and still useful.

First, it should be noted that for trees T1 and T2, intu-
ition dictates that the larger d is, the more accurate our
results will be, since we will be considering a greater
portion of the tree. That is:

lim
d→∞

T1 =d T2 ≡ T1 = T2.

Next, given that the diameter of a graph is defined to
be the length of the longest geodesic, or shortest path,
among all node pairs [4], let Diam(M) denote the diam-
eter of the evaluation tree corresponding to a given FSM,
M.

Theorem 4.5. Theorem 4.2 remains true if the
Diam(M)≤ d.

Proof. Assume that A =d B, but that A and B do not rep-
resent the same state in the machine. Then ∃e > d : A 6=e

B. Let e be the smallest such number where this is true.
This implies that there are paths PA and PB in A and B re-
spectively that are the same path, but are not equivalent
and |PA|= |PB|= e. Since e is the shortest such path, no
loops in the state machine have been made. Therefore,
there are at least e states in M. Furthermore, there is a
path PA that is a minimum path between two states with at
least e states. Thus, by definition, Diam(M)≥ e> d.

Theorem 4.5 is actually much stronger than one
would expect. While there are example state machines
of size d +2 where the folding technique will fail, these
examples are a relatively small set of possible state
machines. In general, using a depth of d for =d will
distinguish between different state machines of size up
to cd−1.

4.4 Confidence Levels
An additional component of this methodology that

must be addressed is at what point it is possible to as-
sert that two states A and B are equivalent? This point
will hereafter be referred to as confidence level. Within
the context of evaluation trees, the confidence level can
be thought of as the depth to which A and B must be eval-
uated and found equivalent before being deemed equiv-
alent states overall. The acceptable confidence level for
a given FSM is determined by multiple factors based on
the system in question. For example, a more critical sys-
tem will require a higher confidence level. To formalize
this concept, let the depth, d = cl, represent the necessary
confidence level. Then A and B are considered equivalent
states if A =cl B. As a consequence, the FSM’s evalua-
tion tree must be evaluated to a minimum of depth cl+1.
Figure 3 shows a fold procedure performed on equivalent
states D and E with a confidence level of 2.

5 Optimization

Now that we have established a valid, finite algorithm,
we turn our attention toward optimizing its speed. The
primary inhibitor faced by the algorithm is the poten-
tial combinatorial explosion. Consider a FSM with 70
states. Constructing a binary evaluation tree that is 70
levels deep requires 270 operations, or 1.18× 1021 op-
erations. Assuming one trillion operations per second,
which is a high estimate, that many operations would re-
quire roughly 3500 years to calculate. Clearly, this is
prohibitively expensive. Furthermore, the vast majority
of the evaluation tree isn’t needed, owing to the likeli-
hood that many of the high level states, those in the first
ten tiers or so of the tree, will be matching states. By it-
eratively exploring the tree to the confidence level depth,

5

A

B C

D E

F G F G

H I J K H I J K

A

B C

D

F G

H I J K

Figure 3: An example of a fold procedure performed with a confidence level of 2.

Figure 4: A graphical representation of the iterative folding process

6

comparing and reducing the tree, and then exploring only
those un-reduced nodes, it is now possible to perform an
intelligent brute force exploration. This method will re-
duce the amount of the tree that must be explored, dras-
tically reducing the time required. For example, to re-
evaluate the 70-state tree described above with a confi-
dence level of five, the algorithm can first explore seven
levels deep in the tree. If the initial tree has one line
of matching states, say the rightmost (a waiting state,
where a given state will remain in that state for all in-
puts except one specific input), we can already eliminate
approximately 1/8 to 1/4 of the tree.

Through this intelligent brute force method, we are
able to iteratively explore and reduce the larger, possibly
infinite tree. To explain this in greater detail, we present
Figure 4 and an example using this graphical represen-
tation. Our initial exploration of the tree should be to a
depth equal to the confidence level plus at least one. A
depth of the confidence level plus one will allow us to de-
tect if the origin node is identical to any of its children,
or if those first level children are identical to each other.

After this initial exploration, step 1 in Figure 4, and
initial reduction, step 2, of the primary tree, we then con-
sider any of the leaf nodes (defined to be leaf nodes by
the confidence level in use) that have not been removed
due to higher-level loops and reductions. Each of the
unreduced leaf nodes become the origin of a secondary
tree. All of the secondary trees are explored to the confi-
dence level plus one depth (step 3) and reduced individu-
ally (step 4). After each secondary level tree has been
explored, we then group all the secondary level trees,
or siblings, and combine them with their parent primary
tree. This larger tree, consisting of the entire currently-
explored node space, is then reduced as a whole (step 5).

We then consider any leaf nodes not yet removed or
looped back into the tree. These unexplored leaves be-
come the origin nodes of the tertiary trees and are ex-
plored to the confidence level plus one depth again, as
shown in step 6. We reduce each of the tertiary tree indi-
vidually (step 7) and then join them with only their sib-
lings and secondary-level parent (step 8). This can be
seen in the smaller image in Figure 4. After reducing
all of the tertiary trees with their respective siblings and
parents, we then reduce the entire tree, including the pri-
mary, secondary, and tertiary trees, (step 9).

This process repeats, expanding with each level of the
tree. If at any point all of the leaf nodes are removed or
looped back into the tree, the exploration of new nodes
ends and we simply perform the reduction steps.

Therefore, since we don’t need the entire tree, we
need an algorithm that will work iteratively on subtrees.
Let foldd be the fold procedure while using T1 =d T2 as
our test for tree equality, rather than T1 = T2.

Theorem 5.1. If T is an evaluation tree for M and Tk is
T evaluated out to depth k, then foldd(Tk) =k−d foldd(T)

Before presenting the proof for Theorem 5.1, let us
pause to clarify the notation used. Tk is a tree evaluated k
levels deep. The result is a k−d tree with the leaf nodes
below depth k− d yet to be evaluted, which means that
we are unable to test equality. Therefore, folding a finite
tree will produce the same results for the first k−d levels.

Proof. Since the fold procedure uses a breadth first
search, the evaluation of foldd(Tk) and foldd(T) are iden-
tical for the first k− d levels. Therefore, the resulting
trees are identical.

With Theorem 5.1, it is possible to formulate an
improved, iterated algorithm outlined in psuedocode in
Algorithm 3.

Algorithm 3 Iterative Fold
procedure FOLD-ITER(Tree T , Nk)

while T has empty descendants do
Generate k new levels of T
fold(T)

end while
end procedure

By Theorem 5.1, at each iteration i a new tree with
height ik where Tik =ik−d T is created. A FSM is gener-
ated when T has no empty descendants remaining, which
is to say leaf nodes that do not point back into the tree,
and therefore, still have branches to be explored.

Finally, there is one last optimization to add. This
algorithm can be parallelized by processing each subtree
separately. This requires a theorem slightly more general
than the last one. Theorem 5.1 states that running
foldd(Tk) is equivalent to running foldd(T) for up to
k− d levels. Next we want to show that this is true for
running foldd on any subtree of T .

Theorem 5.2. Let T be an evaluation tree for M, where
D < T , and Dk is D evaluated out to depth k. Then
foldd(Dk) =k−d foldd(D). Furthermore, T is still equiv-
alent.

Proof. The first part follows immediately from Theo-
rem 5.1. For the second part, let D be the ith child of
T . That is, there is a path from T to D of i nodes. Now
let TDk be the tree resulting from folding Dk, and let TD
be the tree resulting from folding D. Every subtree in TDk
and TD that do not include D or Dk are clearly equivalent,

7

so the only subtrees left are the ancestors of D. Let PD be

D’s parent and PDk be Dk’s parent, then PD
Si→D. Clearly

PDk =N PD, and S j(PDk) =k−d S j(PD) for j 6= i, and by
the last theorem Dk =k−d D. Therefore PDk =k−d+1 PD.
By induction, all of the ancestors of D are equivalent,
therefore TDk =k−d+i TD.

With Theorem 5.2 it is possible to process each tree
separately and the final tree will still be equivalent.

The ability to divide the tree into smaller subtrees is
very conducive to an implementation technique which
further speeds the computation along; with this easy di-
vision, we can now pass off the subtrees to a distributed
computing environment. By spreading the load of the
computation over multiple cores and multiple servers, we
have been able to explore trees with more than 50 states
in less than a minute [8].

6 System Design

6.1 Overview

Given that our reverse engineering methodology has
the goal of understanding a state machine-based IC, our
implementation takes the following approach. The first
step in analyzing an ICs functionality is to determine
which pins are connected, i.e, which are input, output,
clock and reset. The next step in determining the state
machine upon which an IC is built is filling out a state
tree of all possible input-output streams. For a single-
input IC, each node in the tree has at most two children
(i.e. one child for each possible value of the input pin);
for a two-input-pin IC, each node in the tree has at most
four children, and so on. From this tree, we can use re-
duction techniques and formal methods in our algorithm
to reduce and prove identical states, bringing us to an
approximation of the original state machine.

Figure 5 illustrates the components of the hardware
evaluation system which consists of an OpenMpi dis-
tributed system comprised of a single Dell PowerEdge
2950 master server (referred to hereafter as “the Boss”)
and several PowerEdge slave servers (referred to here-
after as “the Minions”) along with an FPGA-based hard-
ware test harness (referred to hereafter as “the IC Har-
ness”). The IC to be evaluated is placed into a socket in
the IC Harness (which is connected to the Boss server via
a USB cable) and when instructed by software running
on the boss, performs pin profiling and state machine
branch exploration of the IC state machine. To summa-
rize at a high level how the hardware is used, pin pro-
filing is the initial step, then using the input and output
pin definitions obtained from the pin profiling process,
multiple iterations of state machine branch exploration

commands would be issued by the Boss to the IC Har-
ness, gradually building up and pruning the state tree.
As the Boss retrieves the branch exploration data (which
represents the output states for the corresponding input
stimuli being sent to the IC Harness), the data (usually
subtree information) is parceled out to the Minion servers
for processing with each Minion’s results being amassed
by the Boss into a single tree. This process of requesting
the IC Harness assert a series of input stimuli and return
the corresponding output states, using the output states to
build up nodes in the state tree that is then pruned, folded
and reduced continues until the IC has been explored to
a pre-defined depth (the confidence level) at which point
the final estimated state machine tree is complete.

6.2 Software Implementation

After establishing the mathematical foundation, we
implemented the software side of our approach primar-
ily in C++. Python scripts were used in order to test
and validate proper operation of the hardware testing
components and USB communications. Our initial im-
plementation was limited to processing hard-coded trees
with rigid input requirements and processing methods.
Now the software incorporates multiple options for in-
puts and processing. Via flags passed on the command
line, the user can set the maximum depth of the tree
to be explored, the confidence level to be used in the
folding algorithm, choose whether to use the parallelized
or non-parallelized version of the code, specify the in-
put file containing the required IC information to build
the tree, and set options for what information should be
included when writing the trees to output (e.g. node
ID/address/state/depth), as well as the output directory
and how often the trees should be written throughout the
process.

The software has two options for constructing the tree
representing the FSM in question. The first uses infor-
mation provided by an IC definition file. This option was
implemented for testing and experimentation purposes.
Using a set defintion file where the behavior of the chip
is controlled and predictable, we can verify that the out-
put from the folding process is as expected. The defini-
tion file has two main components: general information
about the IC (primarily the number of inputs expected for
each state and the number of outputs given by each state)
and the truth table for the IC. The truth table functions
similarly to a conventional logic truth table in that it enu-
merates every possible combination of inputs and their
respective outputs. From this the code can determine the
possible transitions between states based on all possible
inputs and construct a tree to process through the folding
algorithm. This method of tree construction is referred to
hereafter as FSM mode, since it operates from a known

8

Figure 5: Diagram of the hardware layout used for testing the algorithm.

FSM rather than directly with an IC.

The second option is to communicate directly with the
hardware being used to analyze the IC. In this scenario,
the state transition information is gathered directly from
the IC using a pin profiling process described in further
detail in the next section. This method is envisioned to
be a small scale version of the practical implementation
of our approach, i.e. how we see our approach being
implemented in the real world.

To visually follow the impact and/or progress of the
folding algorithm the before and after versions of the tree
representing the FSM, as well as intermediate states, if
specified via command line arguments, are written us-
ing the graph description language DOT. Using small
examples (relatively speaking) for testing purposes, we
compared the unfolded (before) version of the tree to
the folded (after) version of the tree in order to see how
much redundancy was removed, and therefore, efficiency
gained. Additionally, we compared the fully folded ver-
sion of the tree to a known IC modeled as tree in order to
verify the correctness of the algorithm. Figure 6 shows
the before version of a tree modeling the FSM of an IC
with a single input pin, and initially explored to a depth
of 5. Figure 7 shows the graph output by the folding
algorithm after processing the tree in Figure 6 using a
confidence level of 3.

Figure 7: Graph output by the folding algorithm using a
confidence level of 3.

9

Figure 6: Tree modeling the FSM of single pin IC explored to a depth of 5 before any folding is done.

6.3 Hardware Implementation
Moving to the hardware side of the implementation,

the functioning of an integrated circuit is explored us-
ing an ARM CPU and a FPGA testing unit (IC Harness),
which characterizes pin functions via pin profiling, then
communicates with the Boss running the software de-
scribed in the previous section to create a FSM model
using branch exploration. This exploration is done via
a stimulus/response process, which will be described in
the remainder of this section.

6.3.1 Pin Profiling

First, the IC Harness uses a pin profiling process to
gather required information about the IC. It does so in
four phases:

1. Take two voltage measures for each pin.
For the first measure, the pin in question is
grounded, then the other pins are pulled toward
power through their pull-up resistors and the sum of
their voltages constitutes the measure. Next, all pins
except the one in question are grounded, while it is
pulled toward the power, and its voltage is stored as
the second measure.

2. Identify the power and ground pins.
Using the measures from the previous phase we can
determine which of the pins is the power pin and
which is the ground pin. The power pin is the one
yielding the lowest sum of voltages from the other
pins while grounded. Meanwhile, the ground pin
yields the lowest individual voltage while the other
pins are grounded.

3. Determine which pins are input pins and which pins
are output pins.
The averages of the two measures calculated in the
first phase (excluding the power and ground pins)
are used to categorize the remaining pins as either

input pins or output pins. If the voltage of the
ground pin is less than the average, we can infer
that the input pins are those whose summed voltage
values are below the average and the output pins are
those whose summed voltage values are above the
average. Conversely, if the voltage of the ground
pin is greater than the average, we can infer that the
input pins are those whose summed voltage values
are above the average and the output pins are those
whose summed voltage values are below the aver-
age.

4. Find the clock and reset pins.
We assume that the output starts at zero and iter-
ate over all possible combinations of inputs and for
each combination one pin at a time is toggled be-
tween 0 and 1. The clocking state refers to the com-
bination of inputs that trigger a nonzero output. The
clocking pin is the pin that was toggled on in combi-
nation with the particular permutation of inputs that
yielded the nonzero output. The reset pin is the pin
within the clocking state that when toggled on resets
all outputs to zero.

6.3.2 Internal Logic Testing

With the knowledge of each pin’s role within the IC
(i.e. input/output/power/ground/reset/clocking), it is now
possible to explore the IC’s functionality and determine
the FSM upon which it is based and eventually construct
a tree modeling the FSM. The IC Harness communicates
with the software side via the ARM CPU, which can both
take commands and deliver response data. Initially, all
input stimulus strings were generated by the software and
transmitted to the testing unit; however, we discovered
efficiency is greatly improved if the stimulus requests
necessary for exploration of the IC are generated by the
FPGA testing unit’s ARM CPU in response to branch ex-
ploration (i.e. exploring a specific path through the tree)
requests from the Boss.

10

A given branch exploration stimulus request is pro-
cessed as follows: When the request is first received by
the IC Harness, the CPU signals the FPGA to clear its
input and output queues and waits until they are cleared.
Next, using the most recent pin-profile output, and the
starting node address provided by the request packet, the
CPU calculates the unique series of input stimuli to put
the IC into the state represented by the starting node
address. Next, each possible combination of input set-
tings (i.e, for an IC with 2 input pins, this combination
is 00,01,10, 11) is processed as follows, the FPGA is in-
structed to reset the IC, execute the input stimulus string
corresponding to the start node address, and then apply
one of the input pin combinations and record the result-
ing output pin states as an integer value. The previous
process generates the child nodes of the start node spec-
ified in the request packet. The FSM state of each child
node is equal to the value of the output pin value. Re-
peated iterations of branch explorations combine to con-
struct the FSM’s representative tree, which will be dis-
cussed more thoroughly in the next section.

6.3.3 State Exploration

The exploration of the representative tree is done
breadth-wise using a series of spurts. A spurt is a se-
quence of stimulus streams (or paths) starting from a par-
ent node, one for each possible permutation of the inputs,
with a reset in between. The stimulus generator takes a
desired parent node address (as the parent node may not
be the root node) and creates the input stimulus using
Equation 3.3, which finds a path from the initial state to
the given node label. For non-root starting nodes, the
spurt will include the stimulus needed to get from the
root to the desired parent node address, which will be
inserted between the reset and the spurt stimulus. Fig-
ure 8 demonstrates step-by-step the exploration process,
for a 2-input pin IC, depth of one branch exploration, by
showing the tree diagram in the left column and the test-
ing unit’s internally generated stimulus and returned re-
sponse in the right column. The “Request” column repre-
sents the input stimulus string sent fom the ARM CPU to
the FPGA. The “Spurt” component represents one of the
possible input pin state combinations, while the “Stimu-
lus” component of this column represents the input stim-
ulus string for the start node address. The “Response”
column represents the information to be returned to the
Boss server in response to a branch exploration request.
The “Spurt” component represents the node address of a
child node of the start node while the “Stimulus” compo-
nent of this column represents the input pin state of the
child. The output pin state is not reflected in the table
but is returned with the child data in the response packet
sent via USB to the Boss. This table represents a tree

branch exploration using a depth of one, we refer to this
case of depth of one as a “Burst” exploration. In future
work we may extend support for branch explorations to
greater depths.

6.3.4 Communication Protocol

In order to send and receive the request described
above as necessary to the exploration process, a specific
protocol is required. Packets following the protocol have
several required fields, outlined as follows:

• Command: This is the operation to be performed
by the testing unit. Possible commands include: re-
set, obtain pin profile, conduct branch exploration,
switch to FSM mode, and run a diagnostic.

• Status: Used by the testing unit to positively ac-
knowledge requests.

• Parameter: This field is used differently based on
the command. For branch exploration, the depth of
the tree to explore to would be specified. While in
FSM mode, this contains the table ID number for
the FSM to be used. Otherwise, this field transmits
any error codes.

• Flags: Used to indicate the existence of extended
data meaning that the amount of response data ex-
ceeds what can be represented by the 32-bit Data
Length field. The additional length (not including
what is specified in the Data Length field) is pro-
vided by a 4-byte field which will immediately fol-
low the header. If operating in FSM mode, this field
is used to indicate the format of the input table.

• Data Length: Specifies the length of response data
to be returned by a branch exploration command.
When responding to a pin profile command, this
field specifies how many pins the IC has.

• High Octet: Serves as either the address of the start-
ing node or the current state of the FSM when ex-
ecuting exploration commands and contains the re-
sponse data returned from the testing unit when ex-
ecuting pin profile and diagnostic requests.

7 Future Work

In following work, we plan to explore the following
paths:

• Detailing the required confidence level.
Currently, the confidence number is just a number
with no weight of real-world application behind it.
One user may define a confidence level of 20 as

11

Figure 8: Diagram showing the successive exploration of a tree representing a 2-pin IC

12

sufficient for a critical system, while another user
may require a confidence level of 100 for the same
system. Future work will attempt to provide some
baseline numbers to be used for this purpose.

• Methods for implementing this algorithm that in-
crease speed.
The translation from mathematical notation to a
programming language is not always efficient. We
are exploring methods for implementing the theo-
rems presented here that result in reduced time or
computing cycle usage. We are also considering
customized hardware to increase the speed of pro-
cessing.

• Functional testing on simulated FSMs.
Preliminary usage testing has been performed on
this system, but further testing and abuse is required
to ensure the complete veracity of our implementa-
tion.

• Methods for broadly assigning meaning to parts of
the FSM.
The theorems detailed here bring us from a tree to
a state machine. However, a state machine is still
fairly unreadable to a human without the additional
information about what internal inputs, outputs, and
state transitions relate external impacts.

Other work that may be of interest that builds upon
this work includes:

• Remove the assumptions about the lack of memory
in the IC.
One of the initial assumptions for this work was–
”An isolated state machine ... the FSM cannot be
connected to any sort of non-volatile memory.” The
reason for this assumption was that the inclusion
of memory creates a possible number of inputs as
large as the bits in the memory; this increased the
complexity of the processing enormously. However,
through use of distributed or cloud computing, an
exploration of this may become feasible.

• Breadth-first exploration.
We have been working from the assumption that the
tree will be parsed in a breadth-first manner. In the
general case, this has been proven to be the most ef-
ficient. However, there may be edge cases in which
another tree exploration method may be desired or
needed.

8 Conclusion

The above method demonstrates that given an isolated
state machine with a reset capability, we can model the

machine using a tree framework which allows for ma-
chine to machine comparisons and the comparison of
states within the machine to find an optimal representa-
tion. Through this method it is possible to take a state
machine-based IC and, using only the accepted input
and output pins, re-discover the original FSM. Conse-
quently, we can determine if the in-silicon FSM matches
the designed FSM, or rediscover the functionality of an
unknown IC. Both capabilities provide a non-destructive
means of validation for security purposes.

References

[1] Elliot J Chikofsky, James H Cross, et al., Reverse
engineering and design recovery: A taxonomy, Soft-
ware, IEEE 7 (1990), no. 1, 13–17.

[2] Reinhard Diestel, Graph Theory, Springer-Verlag,
Heidelberg, 2010.

[3] Karine Gandolfi, Christophe Mourtel, and Francis
Olivier, Electromagnetic analysis: Concrete results,
Cryptographic Hardware and Embedded System-
sCHES 2001, Springer, 2001, pp. 251–261.

[4] Frank Harary, Graph Theory, Addison-Wesley,
Reading, Massachusetts, 1969.

[5] Edward Moore, Gedanken-experiments on Sequen-
tial Machines, Automata Studies: Annals of Mathe-
matics Studies (1956), no. 34.

[6] Sydney Pope, Trusted integrated circuit strategy,
IEEE Transactions on Components and Packaging
Technologies (2008), no. 31.

[7] Miodrag Potkonjak, Ani Nahapetian, Michael Nel-
son, and Tammara Massey, Hardware Trojan horse
detection using gate-level characterization, De-
sign Automation Conference, 2009. DAC’09. 46th
ACM/IEEE, IEEE, 2009, pp. 688–693.

[8] Jess Smith, Non destructive state machine reverse
engineering, ISRCS, 2013.

[9] Xiaoqing Wen, Yoshiyuki Yamashita, Shohei Mor-
ishima, Seiji Kajihara, Laung-Terng Wang, Kewal K
Saluja, and Kozo Kinoshita, Low-capture-power test
generation for scan-based at-speed testing, Test
Conference, 2005. Proceedings. ITC 2005. IEEE In-
ternational, IEEE, 2005, pp. 10–pp.

9 Acknowledgments

This work is supported by the Pacific Northwest
National Laboratory’s Supply Chain Integration For

13

Integrity (SCI-FI) project, funded by the Department
of Energy, Office of Electricity Delivery and Energy
Reliability, Research and Development Division, RC-
CEDS-2012-02.
PNNL-SA-100838

14

