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1.0 Introduction 

 

Effective cyber defense requires rigorous solutions to the following fundamental and 

crosscutting research challenges:  

 Characterizing adversaries, such as characterizing botnets as a class or classes of 

adversaries. 

 Characterizing cyber attacks, such as characterizing commonalities and differences in 

the attacks on Sony and Anthem.  

 Expressing confidence in characterization and data, such as providing the technical 

basis for determining low, medium, or high level of confidence or importance of given 

data. 

 

A large number of models have been developed to simulate actions over the Internet. However, 

the current modeling of uncertainties associated with these models and data is very limited, and 

is typically applied to a very specific type of problem.  

“The research for systematically handling uncertainty and risk in cyber space is still in a 

preliminary stage. However, without addressing this problem in a scientific manner, it will 

be difficult to achieve sustainable cyber defense.” [Li, 2013] 

 

This report describes our initial research to quantify uncertainties in the identification and 

characterization of possible attack states in a network. The result of this work should ultimately 

enable estimates of the current state in which the network is operating, based on a wide variety of 

network data, along with a defensible measure of confidence to this state estimate. The output of 

this research will be new uncertainty quantification (UQ) methods to help: 

 Develop a process for model development and apply UQ to characterize 

attacks/adversaries. 

 Understand the degree to which methods scale to “big” data. 

 Offer methods for addressing model approaches with regard to validation and accuracy. 

 

In our research, we study a complementary suite of UQ approaches aimed at demonstrating how 

uncertainty quantification can be incorporated into existing cybersecurity anomaly detection and 

classification methodologies. The general scope of our work is based on the core processes of 

cybersecurity data estimation and classification, and the need to propagate uncertainty in the data 

through these two processes to a measure of confidence in classification or characterization of 

the state of a network that is reflected by the data.  

 

Explicitly, we view characterization of “states” of the network as a two-step process:  

1. Estimate a network state vector as a function of time. For example, we estimate a traffic 

matrix (a representation of volume of flow between routers, IPs, ports, or other network 

IDs) or corresponding graph, or a set of summary statistics such as information entropy, 

based on NetFlow data and a statistical model that captures the uncertainty in those data. 

2. Classify the network state, based on prior training data containing ground truth, as being 

a particular type of network event/attack/anomaly (or unknown anomaly). Ideally, the 

outcome is not merely a decision as to the current state class, but a measure of confidence 
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in that decision, or better yet, a measure of likelihood or probability of being in each of 

the known or unknown state classes. 

We are developing a state-space model for UQ in dynamic state estimation. This approach 

intends to implement a standard time-series model, such as the Kalman Filter (KF), to summary 

statistics on NetFlow data such as information entropy as they change in time. The KF is a 

Bayesian approach that estimates both the true state and a measure of uncertainty on the state 

based on collected data and a model of the underlying uncertainty in those data. Here we focus 

on the uncertainty that arises from the fact that NetFlow data may be incompletely sampled 

(missing data or sampling rates), and the data may be “corrupted” in certain ways, such as having 

inaccurate time stamps. The estimate of uncertainty produced by the KF can then feed into 

estimates of uncertainty/confidence in classification. 

 

In classification, we are studying the quality of machine-learning-based classification as a 

function of uncertainty due to data sampling, potentially mislabeled training data, and the choice 

of algorithm parameter values in classification schemes, and other sources of uncertainty as they 

are identified. To make our study concrete, we begin our study with support vector machines 

(SVM), a popular machine-learning approach in many domains including cybersecurity, and 

consider the impact of these sources of uncertainty on classification boundaries, and how those 

propagate to confidence in classification.  

 

Concurrently, we are working to extend network-traffic graph-based clustering to probabilistic 

traffic graphs that capture uncertainty in data collection and processing. Our goal is to develop 

stochastic graph-based clustering as a basis for classification with measures of confidence. 

Graphs generated from traffic matrices, for example, are already a popular tool for clustering to 

identify and characterize anomalous network behavior. Incorporating uncertainty in nodes and 

edges (e.g., existence, or weights) poses a challenge for clustering, especially in computational 

complexity. We will take advantage of well-established techniques such as the Karhunen-Loève 

(K-L) stochastic expansion to develop efficient spectral clustering algorithms that propagate data 

uncertainty to clustering. This approach can be viewed as both an alternative and complement to 

our state-space modeling and classification studies. 

 

Each approach (UQ in state-space modeling, machine learning, and graph models) tackles a 

piece of the problem of propagating uncertainty to measures of confidence in state classification. 

We anticipate that the component methods can either be directly combined (e.g., KF-based state 

vector estimation with uncertainty estimate can be input to SVM-based classification with 

uncertainty) and/or benefit from concurrent development (e.g., the efficiency gained via K-L 

expansions in stochastic graph-based clustering might be applied in a similar way to represent 

uncertainty in the other approaches). 

 

The specific algorithms for modeling cyber attacks that we are currently adapting are discussed 

in Section 2 of this document. In Section 3, we discuss the UQ development for each of the cyber 

models. Data and use-case scenarios for testing our models and UQ methods are discussed in 

Section 4, followed by an overall research discussion in Section 5. 
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2.0 Cyber Modeling 

The objective of our research is to develop methods and tools to comprehensively quantify the 

different uncertainties in cyber systems and identify sources in need of additional modeling 

and/or data collection. To achieve this, we are applying advanced uncertainty quantification 

techniques to three different types of models (i.e., state-space models, graph models, and 

machine learning) that are currently used within the cybersecurity realm. In this section, we 

discuss our selection process for these three modeling areas; we also document the current state 

of the models, and our implementation and enhancement to the models.  

 

2.1 State Space Model 
We started our research with the study of existing methods in the literature for state-space 

models for Internet traffic data. We found that a promising methodology used in the literature is 

to represent the data as a traffic matrix. Each element in the traffic matrix represents amount (as 

number of bytes or packets) of traffic flowing from the source to the destination. Traffic matrices 

are usually constructed from Simple Network Management Protocol (SNMP) link data and/or 

NetFlow data. Since it is impractical to measure the traffic data for the entire network in real 

time due to storage and speed issues, it is usually sampled at certain time intervals. Traffic 

matrices are useful for network optimization, traffic design, protocol design, and anomaly 

detection. We studied various methods and models in the literature to estimate the traffic matrix 

as temporal, spatial and spatio-temporal [Tune, 2013] from the sampled traffic data. We also 

obtained synthesized NetFlow data from the 2013 VAST mini challenge-3. We will use this data 

to build and test UQ methods within state-space models for detection, identification, and 

characterization of cyber attacks during the duration of the data collected.  

 

2.1.1 Modeling NetFlow data as traffic matrix (current methods) 

The relation between the traffic matrix, the routing, and the link counts is y = Ax, where y is a 

vector of link counts, x is the traffic matrix organized as a vector, A is a routing matrix in which 

element Aij is equal to 1 if OD (origin-destination) pair j traverses link i or zero otherwise. Link 

counts y can be obtained by standard SNMP measurements and the routing matrix A can be 

obtained by computing shortest paths using interior gateway protocol (IGP) link weights together 

with the network topology information. Then the problem at hand is to estimate the traffic matrix 

x given, y and A. The following methods are discussed in the remaining of this section: [Soule, 

Lakhina, et.al., 2005; Soule, Salamantian, Nucci, et.al., 2005; Soule, Salamantian, and Taft, 

2005; Tune, 2013] 

 

 second generation methods 

o tomogravity method 

o route change method 

 third generation methods (uses partial flow measurements) 

o fanout method 

o PCA method 

o Kalman method 

 

Notation 

 x is a traffic matrix at a specific point in time represented as an Nx1 column vector, 
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 y is the column vector of L links at any point in time, 

 A is the LxN routing matrix, 

 X is the traffic matrix over time and is a TxN matrix where each column j corresponds to 

the time series of OD flow j, 

 Y is a TxL multivariate time series of link traffic. 

 

Tomogravity method 

Let x(i,*) be the total traffic entering an ingress node i and x(*,j) be the total traffic departing 

from node j. Then the gravity model is 

 

𝑥(𝑖, 𝑗) = 𝑥(𝑖,∗)
𝑥(∗, 𝑗)

∑ 𝑥(∗, 𝑗)𝑗
 

 

which implies that the total amount of data node i sends to node j is proportional to the amount 

of traffic departing the network at j relative to the total amount of traffic departing the entire 

network. 

 

Route change method 

The OD flow model is 

𝑥(𝑖, 𝑗, 𝑡) = ∑ 𝜃ℎ
ℎ

(𝑖, 𝑗)𝑏ℎ(𝑡) + 𝑤(𝑖, 𝑗, 𝑡) 

 

where the first term is the Fourier expansion for the diurnal trends and the second term captures 

the stationary fluctuations. 

 

Fanout method 

This is purely a data-driven method that relies on measurements alone to obtain the traffic matrix 

 

𝑓(𝑖, 𝑗, 𝑡) =
𝑥(𝑖, 𝑗, 𝑡)

∑ 𝑥(𝑖, 𝑗, 𝑡)𝑗
 

 

is the fraction of the traffic entering node i that will egress the network at node j at time t. The 

traffic matrix estimate is 

 

�̂�(𝑖, 𝑗, 𝑡) = 𝑓(𝑖, 𝑗, 𝑡)𝑥(𝑖,∗, 𝑡) 

 

where, x(i,*, t) is the total incoming traffic into node i. 

 

Principal components method 

Principal component analysis (PCA) is a dimension reduction technique that captures the 

maximum energy (or variability) in the data onto a minimum set of new axes called principal 

components. Write PCA of X as 

 

𝑋 = 𝑈𝑆𝑉𝑇 
 

Select the top k principal components, 
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𝑥𝑡 = 𝑉′𝑆′𝑢𝑡
′ , 𝑡 = 1, … , 𝑇 

 

and the link measurement is 

 

𝑦𝑡 = 𝐴𝑉′𝑆′𝑢𝑡
′ , 𝑡 = 1, … , 𝑇 

 

Here, the first 𝑢𝑡
′  is computed using pseudo-inverse and is substituted to estimate the traffic 

demand �̂�t. In order to obtain decomposition X = USV
T
, we need the traffic matrix X. This is a 

prior traffic matrix obtained by using Netflow data. Like the fanout method, the PCA method 

also has a recalibration step. 

 

Kalman Filter method 

Let yt be an observation vector at discrete time t and let Yt = {yt} be the set of all observations up 

to time t, and xt denotes the entire OD flow at time t. The Traffic state evolution matrix is then 

 

𝑥𝑡+1 = 𝐶𝑥𝑡 + 𝑤𝑡 
 

where, C is the state transition matrix and wt is the traffic system noise process and the 

measurement matrix is 

 

𝑦𝑡 = 𝐴𝑥𝑡 + 𝑚𝑡 
 

To apply the Kalman filter we need C, Q and R and initial conditions, �̂�0|0 and �̂�0|0. As an 

example, 24 hours of Netflow data can be used to estimate these parameters using maximum 

likelihood estimation. The innovation process it+1 = yt+1 - Axt+1 is used for change detection in 

order to recalibrate the system matrices. 

 

2.2 Graph Model 
In this task, we aim to develop numerical methods to study the anomaly/botnet detection in 

graph-based models for network traffic data superimposed with uncertainty. This enables us to 

quantify the stochastic nature of the anomaly/botnet information identified through graph 

models. More specifically, we focus on the development of multilevel spectral graph-clustering 

techniques. Graph clustering is one of the most popular tools for unsupervised data analysis and 

has been applied to anomaly detection in cybersecurity [Amini, 2014;  Munz, 2007]. There are 

various clustering algorithms for graphs, such as k-means and spectral clustering. We consider 

spectral clustering as it is often more efficient than the traditional k-means algorithm when 

efficient linear algebra packages are employed [von Luxburg, 2007]. Another graph clustering 

algorithm is based on nonnegative matrix factorization (NMF), which provides a lower rank 

approximation of a nonnegative matrix [Ding, 2006]. In [Ding, 2005], it is shown that a 

symmetric NMF is equivalent to the Laplacian-based spectral clustering. An important class of 

graph clustering algorithms is the so-called hierarchical clustering algorithms which create a 

multilevel decomposition of the original graph from either top down (divisive) or bottom up 

(agglomerative), e.g., [Anders, 2003; Zhou, 2008]. In [Boley, 2001], a scalable algorithm has 

been developed for top-down hierarchical clustering. Using spectral clustering, a hierarchical 

representation of complex networks has been developed [Fang, 2013].  
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It is known that network traffic data is associated with many uncertainties arising from data 

collection, transportation, preprocessing, or attacks in progress [Li, 2013]. Probabilistic graph 

models (or uncertain graphs) have been developed for graphs with uncertainties, e.g., [Kollios, 

2013; Moustafa, 2014; Potamias, 2010; Rotsos, 2010]. A probabilistic graph may be considered 

as a generative model for deterministic graphs. More precisely, let ℊ = (𝑉, 𝐸, 𝑃, 𝑊) be a 

probabilistic graph, where 𝑉 and 𝐸 denote the set of nodes and edges, 𝑃 denotes the probabilities 

associated with the edges, 𝑝(𝑒) denotes the probability of edge 𝑒 ∈ 𝐸, 𝑊 denotes the weights 

and 𝑤(𝑒) is the weight of an edge 𝑒. If 𝐺 is sampled from ℊ according to the probabilities 𝑃, 𝐸𝐺  

denotes the set of edges of 𝐺, then the probability associated with 𝐺 is:  

 

Pr[𝐺] = ∏ 𝑝(𝑒)

𝑒∈𝐸𝐺

∏ (1 − 𝑝(𝑒))

𝑒∈𝐸\𝐸𝐺

 

 

There have been a few papers on clustering algorithms for probabilistic graphs, see e.g., [Kollios, 

2013; Moustafa, 2014; Rotsos, 2010]. For other clustering algorithms developed for general 

uncertain data, we refer to the survey paper [Aggarwal, 2012]. In our research, we will take an 

approach that is different from existing ones which utilizes advance UQ techniques and scalable 

eigensolvers. 

 

2.3 Machine Learning Model 
Recently, we have witnessed technological advances unfolding on many fronts that enable 

capturing and collecting of complicated data sets on unprecedented scales. Resolution and speed 

of sensors continue to increase while cost and resource consumption of sensors continue to 

decrease. Storage capability continues to improve, reducing the cost of retaining big data. Similar 

data growth is common in many fields including cybersecurity. Analyzing and mining big data in 

those fields can uncover interesting patterns that can accelerate scientific discovery, prevent 

failures, and improve system efficiency. However, several challenges must be addressed to make 

big data analytics effective. First, large-scale data sets can contain much noise. This noise can 

include measurement noise or human errors in labeling data. Second, many complex data sets 

can have very high dimensionality and the 

interaction between these dimensions can be 

highly complicated. As a result, some parts 

of a sample space may not contain sufficient 

amount of data. Third, data-mining and 

machine-learning algorithms used in data 

analytics can affect predictions generated by 

these algorithms. If the algorithms are not 

carefully chosen, overfitting or underfitting 

can be possible, especially given the large 

number of attributes in big data. In this 

research, we will focus on the cyber 

modeling with emphasis on the network flow 

applications. 

 

Figure 1  Methodologies for network traffic 

analysis by year. 
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Network security has been an important area of research since the very beginning. Many 

advanced methodologies have been developed for NetFlow and network traffic analysis. A good 

survey of these methodologies has been provided in [Li, 2013]. A chronological plot of methods 

applied from 2000 to 2012 is shown in Error! Reference source not found.. A significant 

number of studies focus on using the machine learning algorithms, a very promising 

methodology with a lot research showing that machine learning approaches are better than 

statistical methods for NetFlow-based intrusion detection because of limited variables in the 

NetFlow data. In particular, [Kim, 2008] completed a comprehensive evaluation of seven 

machine-learning algorithms for the application of traffic classification. These algorithms 

include: Naïve Bayes, Naïve Bayes Kernel Estimation, Bayesian Network, Decision Tree, k-

nearest Neighbors, Neural Networks, and SVM. Their evaluation indicates that SVM 

consistently achieved higher accuracy for this particular application. SVM is one of the most 

popular machine learning algorithms for classification and is widely used in cybersecurity 

applications, e.g., Email spam. Based on previous studies, we identify the support vector 

machine as the starting example for an extensive UQ study.  

3.0 UQ Methodology 

Recognizing that the kind of model development needed to enable UQ in this domain is in its 

very early stages, our research is exploratory in nature. In order to progress along several paths, 

we focus on three subtasks to develop UQ methods, to be coupled to existing modeling 

approaches. In all three subtasks, the scalability of UQ methods for cybersecurity models will be 

studied to understand when and at what scale limitations arise.  

 

Figure 2 illustrates our view of how uncertainty propagates from data (e.g., NetFlow data) and 

models (e.g., data filters, distribution assumptions, and classification schemes) through to 

decisions (e.g., identification of a particular type of network attack). The figure also suggests 

capturing that uncertainty at the decision level in the form of, for example, a measure of 

likelihood or probability of the network being in a given state class, as well as a breakdown of 

the importance of the different underlying sources of uncertainty—such as data sampling, data 

quality, model uncertainty, and training data labeling errors—on that overall uncertainty 

estimate. 
 

Using notional data in the insets within Figure 2, our example begins with a NetFlow-based 

traffic matrix (only a very tiny portion of which is indicated), here represented in vectorized 

form, as the matrix evolves over time. The second inset indicates estimation of the true state, 

represented, for example, by either an estimate of the true (incompletely known) traffic matrix or 

a summary statistic, along with an estimate of the uncertainty in that estimated state, over time. 

Based on training data, the state at any given time may be classified as one of many known (or 

an unknown) anomaly or attack states, characterized in terms of probability distributions. Ideally, 

this enables a probabilistic statement about the likelihood of the state being in each of the known 

(and an unknown) class as indicated in the table. Finally, the process should enable an 

uncertainty “budget”, identifying the major contributors to the decision uncertainty.  
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Figure 2  Diagram illustrating our overall UQ methodology 
 

Extending from this example, we view characterization of network states as a two-step process: 

(1) estimate a state vector as a function of time, and (2) classify the network state. Each UQ 

approach that we study tackles a piece of the problem of propagating uncertainty to measures of 

confidence in state classification. As noted in the Introduction, we anticipate that the component 

methods can either be directly combined and/or benefit from concurrent development. 

 

The algorithms that we are developing will be implemented into prototype software and tested 

against available data. Results of these tests will be used to evaluate the effectiveness of each 

model and identify where new development and data are needed.  

 

3.1 UQ for State-space model  
One approach to modeling uncertainties in state space models is by using additive Gaussian 

noise and estimating the covariance matrices of this noise and the state transition matrix using 

maximum likelihood estimation. Then using a Kalman filter, one can estimate the state vector 

(traffic matrix) and its covariance matrix. Due to the additive Gaussian noise in state and 

measurement equations in the Kalman filter equations, the traffic matrix will follow a multi-

variate Gaussian distribution. 

 

Kalman Filter 

Let yt be an observation vector at discrete time t and let Yt = {yt} be the set of all observations up 

to time t and xt denote the entire OD flow at time t. The Traffic state evolution matrix is 

 

𝑥𝑡+1 = 𝐶𝑥𝑡 + 𝑤𝑡 
 

where C is the state transition matrix and wt is the traffic system noise process. The measurement 

matrix is 

 

𝑦𝑡 = 𝐴𝑥𝑡 + 𝑚𝑡. 

Traffic Matrix State Estimation State Classification

State Class Probabilities Uncertainty Estimates

Time Time State Variable
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The prediction step is 

�̂�𝑡+1|𝑡 = 𝐶𝑥𝑡|𝑡 

�̂�𝑡+1|𝑡 = 𝐶�̂�𝑡|𝑡 + 𝑄𝑡 

 

And the estimation step is 

�̂�𝑡+1|𝑡+1 = �̂�𝑡+1|𝑡 + 𝐾𝑡(𝑦𝑡 − 𝐴�̂�𝑡+1|𝑡) 

𝐾𝑡 = �̂�𝑡+1|𝑡𝐴𝑡(𝐴�̂�𝑡+1|𝑡𝐴𝑇 + 𝑅𝑡)−1 

�̂�𝑡+1|𝑡+1 = (𝐼 − 𝐾𝑡𝐴)�̂�𝑡+1|𝑡. 

 
Expectation-Maximization 

Consider state variables X, observed variables Y and latent variables Z and parameters of the 

model, θ. The Expectation-Maximization algorithm is then: 

1. Set k=0, initialize θ0 such that 𝐿𝜃𝑘
 is finite, 

2. Expectation step: compute 

𝑄(𝜃, 𝜃𝑘) = 𝐸𝜃𝑘
[log(𝑝0(𝑍, 𝑌)|𝑌)] 

= ∫ log 𝑝0(𝑍, 𝑌) 𝑝𝜃𝑘
(𝑍|𝑌)𝑑𝑍 

 

3. Maximization step: compute 

 

𝜃𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄(𝜃, 𝜃𝑘) 
 

4. If not converged, k=k+1, go to step 2 

 

Traffic matrices obtained from training NetFlow data are large and very sparse. The challenges 

inherent in estimating the traffic matrices have led us to revise our approach to this problem in 

the following ways: 

 Aggregate the source and destination nodes such that the size and sparsity of the traffic 

matrix is reduced. When information about a specific node is needed we can look inside 

the aggregated group in which that node lies.  

 Estimate summary statistics on the traffic matrix, enabling filtering and tracking of a 

much smaller number of state variables. Possible summary statistics include  

o measures of entropy [Nychis, 2008],  

o the dispersion and smoothness measures of Joslyn and Hogan [Joslyn, 2014], and  

o the Ripley’s K-function and L-function [Ripley, 1981], which give a measure of 

deviation from spatial homogeneity. This may be useful in observing patterns and 

changes in the structure of the traffic matrix. 

 

3.2 UQ for graph models  
We design stochastic spectral clustering algorithms for anomaly detection in network traffic data 

by utilizing scalable eigensolvers. We first introduce the deterministic spectral clustering 

algorithm. Given a traffic dataset 𝑋 ∈ ℝ𝑛×𝑘, i.e., 

 

𝑋 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛]𝑇 
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consisting of 𝑛 data points and 𝑘 features for each data point, we can construct an undirected, 

weighted similarity graph 𝐺 = (𝑉, 𝐸) with adjacency matrix 𝑊, where 𝑤𝑖𝑗 = 𝑤𝑗𝑖 ≥ 0, and 

𝑤𝑖𝑖 = 0, ∀𝑖. Each vertex 𝑣𝑖 in this graph represents a data point. Each edge is weighted by 𝑤𝑖𝑗 

representing the similarity between the two corresponding data points 𝑥𝑖 and 𝑥𝑗. The graph 

clustering refers to the partition of the graph such that points in different clusters are dissimilar 

from each other while points in the same cluster are similar. As an example, we can compute 

pairwise similarity between the two data points 𝑥𝑖 and 𝑥𝑗 by the Gaussian similarity function  

 

𝑤𝑖𝑗 = 𝑒−‖𝑥𝑖−𝑥𝑗‖
2

/(2𝜎2). 

 

The unnormalized graph Laplacian matrix is defined by 

 

𝐿 = 𝐷 − 𝑊, 
 

where 𝐷 is the node degree matrix which is a diagonal matrix whose diagonal entries are row 

sums of the weighted adjacency matrix 𝑊. Define normalized graph Laplacian by 

 

𝐿𝑟𝑤 = 𝐷−1𝐿 = 𝐼 − 𝐷−1𝑊, 

 

then the Shi-Malik normalized spectral clustering uses the positive/negative signs of the 

eigenvector associated with the second smallest eigenvalue to bipartition the graph [Shi, 2000].  

 

Modeling the uncertainty within such a graph model is a non-trivial task. A straightforward way 

might be incorporating uncertainty into the graph constructed from the network traffic data, e.g., 

to the edges between the nodes. However, the dimension of the uncertainty introduced through 

this probabilistic graph approach is extremely large, e.g., 𝑂(𝑛2), where 𝑛 is the number of traffic 

data points. As a result, numerical quantification on the stochasticity on network traffic data is 

unsolvable. Alternatively, we propose to introduce the uncertainty to the network traffic data 

with reduced dimensionality. In particular, we can use the Karhunen-Loeve expansion to transfer 

the data uncertainty to parametric form. We define 𝑤(𝑥𝑖, 𝜃) as the randomness imposed on each 

data point 𝑥𝑖. We assume the random function 𝑤(𝑥, 𝜃) has an exponential correlation kernel  

 

𝐶(𝑥1, 𝑥2) =  𝑒−𝑐|𝑥1−𝑥2|, 
 

where c is the inverse of correlation length between the individual data point and the 𝑥𝑖 is 

defined between [-a, a]. Then we can approximate 𝑤(𝑥, 𝜃) with finite dimension of stochasticity 

by 

𝑤(𝑥, 𝜃) =  ∑ 𝜉𝑛(𝜃)√𝜆𝑛𝑓𝑛(𝑥)

𝐷

𝑛=1

+ ∑ 𝜉𝑛
∗(𝜃)√𝜆𝑛

∗ 𝑓𝑛
∗(𝑥)

𝐷

𝑛=1

  

 

where D is the dimension of the stochasticity and the corresponding eigenvalues are given by 
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  𝜆𝑛 =  
2𝑐

𝑤𝑛
2 + 𝑐2

,     𝜆𝑛
∗ =  

2𝑐

𝑤𝑛
∗2 + 𝑐2

 

 

and the eigenfunctions are given by 

 

𝑓𝑛(𝑥) =  
cos (𝑤𝑛𝑥)

√𝑎 +  
sin (2𝑤𝑛𝑎)

2𝑤𝑛

 ,    𝑓𝑛
∗(𝑥) =  

cos (𝑤𝑛
∗𝑥)

√𝑎 −  
sin (2𝑤𝑛

∗𝑎)
2𝑤𝑛

∗

  

 

With the above formulation, we are able to investigate the stochasticity of the network traffic 

data with reduced dimension of uncertainty D. 

 

With the Karhunen-Loeve expansion model for input data uncertainties, we can use Monte Carlo 

sampling to find uncertainties associated with the spectral clustering results. We will use 

multilevel eigensolvers to increase the computational efficiency [Urschel, 2015]. Furthermore, 

polynomial chaos techniques may further reduce the computational complexity of uncertainty 

propagation through graph clustering for anomaly detection. 

 

Figure 3 illustrates possible notional results of graph clustering for the extension from 

deterministic to random graph models. 

 

 

 
Figure 3  An example of graph clustering for deterministic (top) or random 

(bottom) graphs. 
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3.3 UQ for Machine learning-based models 
Most data analytics such as the set of frequently used machine-learning algorithms generally 

only produces predicted values. The predicted values are the only information for users to take 

action. In many usage scenarios, taking action based on inaccurate predicted values can incur 

significant costs. For instance, false positives of network intrusions can cause many essential 

services to be shutdown or isolated, causing loss of productivity. Tuning data analytics to reduce 

false positives at the cost of more false negatives can cause even more harm. Thus, it is highly 

desirable for big data analytics to produce a confidence level of the predicted values, namely the 

prediction with quantified uncertainty. The confidence level can provide more information for 

users to fine tune their response to achieve optimal results.  

 

There are several studies focused on the machine-learning algorithms with noise-corrupted input 

data [Pant, 2011], and mostly for neural network algorithms [Wright, 1999; Wright, 2000]. In 

addition, previous work in this area generally falls into two categories, statistical learning theory 

[Vapnik, 2013] and cross validation [Jiang, 2008]. In statistical learning theory, training data are 

assumed to be drawn independently from a fixed but unknown distribution. A very loose bound 

on the number of wrong predictions can be given that is not very useful in practice. On the other 

hand, cross validation can require a large number of training samples to be reasonably accurate, 

which may be impractical when the sample space is large and complex. 

 

In our research, we will explore the effect of various sources of uncertainty including sample 

data, model parameters in soft margin SVM, and mislabeling data. We will explore different 

approaches to derive better estimations for the accuracy of SVM results for NetFlow data 

analysis. In our approach, we will quantify the influence of various factors including sample size 

and noise to accuracy of predictions. Instead of estimating overall mis-prediction rates, we will 

leverage attribute values of test samples to get a better estimation. We also design some simple 

models with analytical solutions available to help us understand the overall trend of accuracy of 

machine learning algorithms. Insight will be gained from relatively simple models and applied to 

complex situations where no analytical solution exists. We expect our approach will produce a 

better estimation of uncertainties than previous work [Jiang, 2008]. In particular, a model 

quantifying how various factors including sample size and noise affect prediction accuracy will 

be developed. If users want to achieve a certain level of prediction accuracy and they can control 

various parameters, they can use this model to change parameters to achieve desirable accuracy.  

4.0 Use Cases 

We are using NetFlow and similar traffic data to implement existing models that can be used in 

real time for characterizing the data and detecting and characterizing anomalies and cyber 

attacks, and enhance those models with UQ. To begin our study, we obtained synthesized 

NetFlow data from 2013 VAST mini challenge-3 and the NSL-KDD datasets.  

 

Our plan is to use the VAST NetFlow data to build and test various state-space models. As an 

example, we are computing entropies of several features in the Netflow data such as source IP, 

destination IP, source port, destination port, flow size distribution, out-degree the host IP and in-

degree of the destination IP. Entropies are computed for certain time interval (e.g. 5 minute bins) 



 

13 

 

so that we get a time series of entropy for each feature, as shown in Error! Reference source 

not found.. We then use  
Figure 2   Entropy computed for source IP on first week of  VAST data. 

 

dynamic state-estimation methods for these time series for UQ and anomaly/attack 

characterization.  
 

We plan to test UQ for graph models on the NSL-KDD dataset, which has been widely used for 

anomaly detection studies. It contains connection records based on the simulated raw (binary) 

TCP dump data of nine weeks of network traffic on a local area network. Each connection record 

consists of 41 features including length of time duration of the connection, the protocol used in 

the connection (TCP or UDP), number of data bytes transferred from source to destination in 

single connection, number of data bytes transferred from destination to source in single 

connection, and other statistics of the connection [Dhanabal, 2015]. We will use this dataset to 

build our stochastic graph model and apply a scalable eigensolver to find eigenvectors of the 

graph Laplacian for each sample graph. The results will provide a quantification of uncertainty in 

spectral graph clustering results of the network traffic data induced by the input data 

uncertainties. Error! Reference source not found. 

 

We are working to identify prototype machine-learning problems with all necessary elements of 

SVM and UQ relevant to cybersecurity. A good prototype problem will serve as the benchmark 

problem to test and validate the effectiveness and efficiency of the UQ algorithms for 

SVM. Since research in this area is still very limited, this task is considerably important.  We 

will then use NetFlow data as the test bed to examine the efficacy of the results we already 

obtained for the prototype problem, and transfer the algorithms developed for the prototype 

problem to a more realistic problem. Special attention will be put on the scalability in this 

procedure.  
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The more realistic use case scenario for the machine learning development will utilize NetFlow 

data analysis for large-scale distributed systems [Li, 2013; Li, 2011; Fahad, 2013; Hoque, 2014]. 

Monitoring large-scale distributed systems in various levels including hardware level, operating 

system level, middleware level, and application level can produce a large amount of data. 

Applying various unsupervised and supervised machine-learning algorithms can allow us to 

detect various performance anomalies or security breaches. For a given prediction such as a 

security breach, corresponding actions such as shutdown or isolation of certain systems may 

need to be taken. This action can render some parts of the system unusable, causing disruption 

and reducing productivity. Thus false positives can incur significant cost. If we can quantify the 

accuracy of predictions generated by data analytics, we can finely tune the response to minimize 

the disruption without compromising security. 

5.0 Discussion 

From our initial literature review and domain-specific education, we have come to an 

understanding about the overall status of, and approaches to, modeling within cybersecurity. We 

identify this modeling strategy as a classification problem and our research focuses on adding 

confidence to the classification results. 

 

In the beginning of this project, we identified three seemingly distinct modeling methodologies 

to investigate and develop UQ methods for implementation. After this initial research, we have 

identified many overlapping synergistic elements within our modeling efforts. Each approach 

tackles a piece of the problem of propagating uncertainty to measures of confidence in state 

classification. We anticipate that the component methods can either be directly combined (e.g., 

KF-based state vector estimation with uncertainty estimate can be input to SVM-based 

classification with uncertainty) and/or benefit from concurrent development (e.g., the efficiency 

gained via K-L expansions in stochastic graph-based clustering might be applied in a similar way 

to represent uncertainty in the other approaches). 

 

As our modeling direction continues to be guided by the overall needs within cybersecurity 

modeling and specifically from the subject matter experts we consult, our overall development 

strategy remains the same. This strategy is the development of UQ methods and tools, so that 

decision makers will be better informed to assess the reliability and probabilities of modeling 

results, identify network vulnerabilities, and develop computational strategies to improve cyber 

systems based on uncertainty quantification. This research will also lead to advances in the 

design of efficient optimization algorithms and a computational framework applicable for 

uncertainty quantification for large-scale complex network systems. 
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