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Executive Summary 

This report evaluates the physics of the upwell flow in pulse jet mixed systems in the Hanford Tank 
Waste Treatment and Immobilization Plant (WTP).  Although the initial downward flow and radial flow 
from jets characteristic of pulse jet mixers (PJMs) has been analyzed, the upwells have received 
considerably less attention despite having significant implications for vessel mixing.  Do the upwells 
behave like jets?  How do the upwells scale?  When will the central upwell break through?  What 
proportion of the vessel is blended by the upwells themselves?  Indeed, how the physics of the central 
upwell is affected by multiple PJMs (e.g., six in the proposed mixing vessels), non-Newtonian rheology, 
and significant multicomponent solids loadings remain unexplored. 

The central upwell must satisfy several criteria to be considered a free jet.  First, it must travel for 
several diameters in a nearly constant direction.  Second, its velocity must decay with the inverse of 
elevation.  Third, it should have an approximately Gaussian profile.  Fourth, the influence of surface and 
body forces must be negligible.  A combination of historical data in a 12.75 ft test vessel (Bontha et al. 
2003a, b; Bamberger et al. 2005), newly analyzed data from the 8 ft test vessel, and conservation of 
momentum arguments derived specifically for PJM operating conditions demonstrate that the central 
upwell satisfies these criteria where vigorous surface flow is achieved. 

An essential feature of scaling from one vessel to the next is the requirement that the underlying 
physics does not change adversely.  One may have confidence in scaling if 1) correlations and formulas 
capture the relevant physics; 2) the underlying physics does not change from the conditions under which 
it was developed to the conditions of interest; 3) all factors relevant to scaling have been incorporated, 
including flow, material, and geometric considerations; and 4) the uncertainty in the relationships is 
sufficiently narrow to meet required specifications.  Although the central upwell satisfies these criteria 
when vigorous surface flow is achieved, not all available data follow the free jet profile for the central 
upwell, particularly at lower nozzle velocities.  Alternative flow regimes are considered, and new models 
for cloud height, “cavern” height, and the rate of jet penetration (jet celerity) are benchmarked against 
data to anchor scaling analyses. 

This analytical modeling effort has significant implications for vessel mixing, because jet physics 
underlies “cavern” height, cloud height, and the volume of mixing considerations.  A new four-parameter 
cloud height model compares favorably to experimental results where input parameters are available.  
This model is predictive of surface flow in 8 ft vessel tests with the two-part simulant.  Analysis of the 
upwell in the presence of yield stresses finds evidence of expanding turbulent jets, confined turbulent jets, 
and confined laminar flows.  For each, the critical elevation at which jet momentum depletes is predicted, 
which compares favorably to experimental “cavern” height data.  Partially coupled momentum and 
energy balances suggest that these are limiting cases of a gradual transition from a turbulent expanding 
flow to a confined laminar flow.  This analysis of the central upwell alone lays essential groundwork for 
complete analysis of mode three mixing (i.e., breakthrough1 with slow peripheral mixing).  Consideration 

                                                      
1 Breakthrough is colloquially used to describe jet flow driving surface flow for both Newtonian and non-Newtonian 
simulants.  However, Bontha et al. (2015) reserves the term breakthrough for yield stress materials.  Here the term 
surface flow refers to both breakthrough in yield stress materials and jet induced surface flow in Newtonian 
simulants.  The terms breakthrough region to denote the region of the fluid surface disturbed by the central upwell 
and breakthrough velocity to denote the velocity that the central upwell would have as projected to the fluid surface 
have both been retained. 
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of jet celerity shows that the rate of jet penetration is a governing consideration in surface flow.  
Estimates of the volume of mixing are presented. 

The evaluation of the physics related to the central upwell in a pulse jet mixed vessel has identified 
the following: 

 The central upwell behaves as a free jet in the absence of body and surface forces as supported by 
consideration of suitable test data. 

 When the axial velocity of this free jet is scaled on the jet nozzle velocity and the elevation on the 
nozzle diameter, the data collapse onto curves that depend only on the jet coefficient and the location 
of a virtual origin with respect to the vessel bottom.  These parameters have been extracted from 
historical and 8 ft testing with multiple simulants at multiple scales. 

 The radial distribution of velocities is essential to quantify flow within mixing vessels.  The fractional 
width of the jet was approximately 10% to 20% of the vessel width in the 12.75 ft vessel.  Available 
data leave uncertainty in the radial spread of the jet of approximately a factor of three. 

 The Poirier-Etchells criterion1 presents a cutoff velocity for jet turbulence that is approximately 
predictive of surface flow when coupled with the free jet equation. 

 Conservation of momentum may be used to predict jet coefficients for free jets.  A geometric 
approximation may be used to estimate how the central upwell depends on the number of PJMs 
within a mixing vessel.  Shear forces along the vessel bottom only weakly influence the upwell flows.  
Predicted jet coefficients for a free jet typically remain within a factor of three of measured jet 
coefficients for Newtonian simulants. 

 A general framework that combines momentum and species conservation establishes relationships 
among jet momentum, buoyancy, and yield stresses.  The framework is sufficiently general to permit 
simultaneous evaluation of buoyancy and yield stresses (e.g., for simulants with low yield stresses 
and density stratification). 

 Jet flow governs the central upwell with and without solids until the negative buoyancy force 
becomes influential.  The Froude number based on nozzle diameter without density contributions 
collapses the data from 8 ft vessel tests regardless of pulse volume fraction, PJM firing sequence, or 
Newtonian simulant with separate critical Froude numbers for each nozzle diameter.  A Froude 
number based on tank diameter would not lead to a single critical Froude number.  The Froude 
number alone in its various forms, therefore, cannot reliably predict scale-up of flows below the upper 
surface because the critical Froude number varies with at least nozzle diameter. 

 A new cloud height model was developed from first principles and validated against the 8 ft vessel 
tests with the two-part simulant.  This model requires four parameters:  the Froude number, the jet 
coefficient, the ratio of the density at the base of the upwell to the density far from the jet centerline, 
and the ratio of the depth of the virtual origin below the vessel bottom to the nozzle diameter.  The 
first is clearly scale dependent, and the second is scale independent.  How the latter two scale between 

                                                      
1 This criterion asserts that at any location the local velocity must be in excess of a cutoff velocity to remain 
turbulent.  When coupled with the free jet velocity equation that relates the local velocity to elevation (Eq. (2.1)), the 
elevation at which turbulence will fail, and consequently if the turbulent jet will fail, may be estimated.  This 
elevation may be compared to the elevation of the fluid surface to predict whether the upwell will reach the surface 
as a metric of surface flow. 
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vessel sizes remains unclear.  When these are known, this cloud height model predicted if surface 
flow occurred. 

 Conservation of energy alone suggests that in a yield stress material, the jet initially expands and then 
contracts.  Without solving the coupled momentum and energy conservation equations together, three 
limiting cases are considered.  First, an expanding turbulent jet predicts the critical elevation at which 
the velocity ceases due to insufficient jet momentum.  This model, validated against “cavern” height 
data in laponite, collapses the data from multiple scales onto a single curve.  Second, the turbulent 
confined jet of constant radius shows that the jet radius increases as the yield Reynolds number 
(defined on the Bingham yield stress, not the shear strength) increases until it is large enough that 
viscous forces become influential.  Analysis shows that the upwell flow loses turbulence and becomes 
laminar.  Third, when upwell flow is laminar (supported by measured radial velocity profiles), the 
square of the ratio of the centerline velocity to the nozzle velocity decays linearly with the elevation 
scaled on nozzle diameter.  The third case represents velocity data in the 8 ft vessel well at 8 m/s.  
Further work is needed to consider fully coupled momentum and energy to add fidelity to these 
relationships. 

 Flows within mixing vessels holding yield stress materials may be independent of geometric scaling 
at constant nozzle velocity when the yield Reynolds number is sufficiently small so long as the virtual 
origin does not shift between scales.  When the ratio of the yield Reynolds number to jet Reynolds 
number, which represents the ratio of viscous stresses to yield stresses, is order one, the jet Reynolds 
number becomes influential.  For the 16 ft vessel, this ratio is order one.  The jet Reynolds number 
depends on geometric scale, so that scaling between vessels may depend on geometric scale.  See 
Wells et al. (2015) for further analysis. 

 Velocities and diameters of the upwell flows in the presence of yield stress materials are presented, 
laying important groundwork for evaluating the surface and downwell flows that govern 
mixing/blending outside the upwell flow (i.e., the remainder of mode three mixing).  The radial 
velocity distribution determines the local effective viscosity, which in turn governs hydrogen release. 

 The rate at which the upwelling jet propagates or penetrates toward the fluid surface (termed jet 
celerity) determines whether the jet achieves surface flow or not. 

 Simply integrating the centerline jet velocity underestimates the time a free jet takes to rise to the 
fluid surface.  The time-dependent conservation of momentum equation was solved to show that the 
radial distribution of velocities serves as a key correction factor.  Including the radial distributions 
improves prediction of surface flow.  The time for the jet to transit from the vessel seam, tangent, or 
knuckle to the fluid surface comprises a strong majority of jet transit time. 

 Conservation of momentum shows jet flow along the walls to be independent of geometric scaling 
(the vessel diameter is divided by the nozzle diameter), but the velocity decays with the inverse of the 
square root of the elevation instead of with the inverse of the elevation directly.  Even though more of 
the PJM momentum flows toward the wall, the momentum spreads out over the perimeter and is 
countered by a down flow, so that the jet flow along the wall is typically both weaker and slower than 
the central upwell.  Therefore, this report focuses on the central upwell. 

 Jet physics permits estimation of the volume mixed (i.e., sheared) by the central upwell during a 
single pulse at the moment surface flow is achieved (lateral flow not included).  Mixing caused by 
only the central upwell as it achieves surface flow is estimated to vary from <0.5% to ~75% 
depending on the radial distribution of velocities (Table 9.1).  Additional flow may proceed after 
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surface flow has been achieved until the end of the PJM pulse, in other parts of the vessel (below 
seam, 18%; wall upwell, typically <15%), and due to the leading vortex (a measurement opportunity 
in the 16 ft vessel with radially distributed velocity probes). 

Quality Requirements 

Pacific Northwest National Laboratory (PNNL) complies with the requirements found in the 
following standards and implements them in their Waste Treatment Plant Support Program (WTPSP) 
Quality Assurance Program: 

 ASME NQA-1-2000, Quality Assurance Requirements for Nuclear Facility Applications, Part I, 
Requirements for Quality Assurance Programs for Nuclear Facilities 

 ASME NQA-1-2000, Part II, Subpart 2.7, Quality Assurance Requirements for Computer Software 
for Nuclear Facility Applications 

 ASME NQA-1-2000, Part IV, Subpart 4.2, Guidance on Graded Application of Quality Assurance 
(QA) Requirements for Nuclear-Related Research and Development. 

Records will be stored as hardcopy records in a 2-hour fire-rated container. 

This project recognizes that quality assurance applies in varying degrees to a broad spectrum of 
research and development (R&D) in the technology life cycle.  The R&D elements in the technology life 
cycle are listed below.  The WTPSP uses a graded approach for the application of the quality assurance 
controls such that the level of analysis, extent of documentation, and degree of rigor of process control are 
applied commensurate with their significance, importance to safety, life cycle state of work, or 
programmatic mission.  The technology life cycle is characterized by flexible and informal quality 
assurance activities in basic research, which becomes more structured and formalized through the applied 
R&D stages. 

 Basic Research:  Basic Research consists of research tasks that are conducted to acquire and 
disseminate new scientific knowledge.  During Basic Research, maximum flexibility is desired in 
order to allow the researcher the necessary latitude to conduct the research. 

 Applied Research:  Applied Research consists of research tasks that acquire data and documentation 
necessary to ensure satisfactory reproducibility of results.  The emphasis during this stage of a 
research task is on achieving adequate documentation and controls necessary to be able to reproduce 
results. 

 Development Work:  Development Work consists of research tasks moving toward technology 
commercialization.  These tasks still require a degree of flexibility and there is still a degree of 
uncertainty in many cases.  The role of quality in Development Work is to make sure that adequate 
controls to support movement into commercialization exist. 

 Research and Development Support Activities:  Support activities are those that are conventional 
and secondary in nature to the advancement of knowledge or development of technology, but allow 
the primary purpose of the work to be accomplished credibly.  An example of a support activity is 
controlling and maintaining documents and records.  The level of quality for these activities is the 
same as for Development Work. 
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Symbols 

a  constant with the value of a=21/2-1 
A  dimensional jet coefficient equal to hcUodo for a free jet 
Ari   Archimedes number of species i  
b  standoff distance of the nozzle from the vessel bottom 
B’   an empirical correction factor 
C  constant in Prandtl’s mixing length theory 
cf  skin coefficient of friction 
Cfountain constant in fountain height scaling 
cj  additional jet fitting constant or ratio of experimental to model prediction of hc or hw 
Ck   nozzle coefficient 
C2  constant in Boussinesq’s eddy viscosity model 
D   vessel or tank diameter 
Ddiff  total diffusivity of species i 
Di   molecular diffusivity of species i 
dp  particle diameter 
DPJM  PJM diameter 
Dt  turbulent diffusivity 
do  nozzle diameter 
d50   species specific median particle diameter 
fB  friction factor in a Bingham fluid 
fc  scaled or normalized radial velocity distribution of the central upwell 
fL  laminar friction factor in a Bingham fluid 
fN   total fraction of the PJM flow that contributes to the central upwell 
fr   fraction of the flow that returns to contribute its momentum to the central upwell 
Fr  Froude number 
Frc  critical Froude number at which surface flow occurs 
fR   ratio of distance from vessel centerline to PJM centerline versus the distance from vessel 

centerline to the wall 
Fshear shear force acting on a hemispherical head 
fT  turbulent friction factor in a Bingham plastic 
fu   dimensionless ratio of upwell radius to vessel radius based here on a projection of c down to the 

vessel bottom 
fvortex  ratio of the radius of the leading vortex to Rjet 
fw   scaled or normalized lateral velocity distribution of the wall 
g  gravitational constant 
g  gravitational vector 
H  vessel fill level 
hc   jet coefficient of the central upwell 
He  Hedstrom number 
hhead height of the cap or head 
hj   jet coefficient of the primary jet emerging from the nozzle 
hr   jet coefficient for a radial jet 
Hs   height above the seam or distance from the seam to the vessel surface 
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hw   jet coefficient for the wall jet 
i  index in species counting 
j   index in species counting 
ji   mass flux of particles of species or size i  
ji,z   mass flux of particles of species or size i in the z direction 
K  kinematic momentum flow 
kb  Boltzmann constant 
Ku  Kuhn number 
l  mixing length of Prandtl 
lPJM  level in PJM tube 
L   slot width 
Lo  Loni number, ratio of the rate of momentum of a jet to that of the peripheral bulk fluid 
m  regularization parameter in Bingham-Papanastasiou model with time units 
mB  smoothing constant to join turbulent and laminar Bingham friction factors 
Mlost rate of momentum loss to shear along a solid vessel surface 
Mo  rate of momentum addition to a control volume 
n  exponent in celerity equation 
N  number of PJMs or nozzles in a vessel 
P   pressure 
   dynamic pressure 

Pe  Peclet number 
q  total number of species 
Q   volumetric flow rate for one PJM 
Qcentral  volumetric flow rate through the top of the central upwell 
Qtotal total volumetric flow rate including central and wall upwells 
Qwall  volumetric flow rate through the top of the wall upwell 
r  radial coordinate 
R  vessel or pipe radius 
R2  one minus the sum of the square of the errors for the trendline divided by the sum of the square of 

the errors for a horizontal line at the elevation of the arithmetic average both relative to the data 
(not the square of the correlation coefficient) 

rc  location of the solid liquid interface closest to the jet centerline in a Bingham plastic 
rcone  radius of the cone that defines the jet volume 
rhead  radius at the base of the head or cap 
Rjet  radial extent of the jet 
ReB  Bingham Reynolds number or Reynolds number using Bingham consistency for the dynamic 

viscosity 
Reo  nozzle Reynolds number defined on the nozzle velocity, diameter, and density along with nozzle 

viscosity or Bingham consistency as appropriate 
Re  yield Reynolds based on the Bingham yield stress 
s  density ratio in densimetric Froude number 
sf  single fitting parameter in the normalized Fermi-Dirac function 
Sct  turbulent Schmidt number 
scloud time averaged slope in concentration profile at the cloud height 
Sr  Strouhal number (Sr=tDUo/do) 
T  temperature 
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t   time 
tD  PJM drive time 
tprimary time for the primary jet flow to traverse from the nozzle opening to the vessel bottom 
tradial time for the secondary jet flow to traverse radially from the centerline of the jet to the centerline 

of the vessel along the vessel bottom 
tupwell time for the tertiary jet flow to traverse from the origin of the upwell (vessel bottom or seam) to 

the fluid surface 
u   local velocity in the axial direction 
uc  constant velocity of the solid slug at the center of an axisymmetric Bingham plastic flow 
uco  cutoff velocity in the Poirier-Etchells criterion 
ui

T   magnitude of the terminal settling velocity of particle i 
um,c  velocity along the centerline 
um,r  maximum velocity in the radial velocity profile along the vessel bottom 
um,w  maximum axial velocity of the jet proximal to the wall 
uw  velocity along the vessel wall 
U1  fluid motion parallel to but away from jet axis 
Uo  nozzle velocity 
v   velocity in the radial direction 
v   velocity vector 
Vcentral  volume of the central upwell at the moment surface flow is achieved 
Vhead  volume of the vessel head 
Vi   volume of species i 
Vvessel total vessel volume 
Vwall volume of the wall jet 
v  velocity in the  direction 
wi   mass or weight fraction in suspension unless otherwise designated 
wi

c   mass or weight fraction in suspension at vessel centerline unless otherwise designated 
wi

max maximum in the concentration profile along the jet axis 
wi
∞   reference weight fraction of species i far from the center of the jet 

ww   mass or weight fraction in suspension unless otherwise designated of water 
ww

∞  reference weight fraction of water far from the center of the jet 
y  distance from the wall 
ycone distance from the wall to the edge of the jet 
z  position along the axial direction of the jet or the vertical coordinate, typically referenced to the 

vessel bottom (central upwell) or vessel seam (wall upwell) 
zc  critical elevation at which the jet momentum exhausts 
zcloud cloud height 
zl  elevation that corresponds to the lower limit of integration often asserted to be the seam, tangent 

or knuckle of the vessel 
zo   depth of the virtual origin below the vessel bottom 
zref  an arbitrary reference elevation suggested by Witze (1980) 
zt   top most elevation that the wall jet achieves 
ztip   the instantaneous elevation of the jet tip or penetration front 
zu   level of the upper fluid surface 
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Greek Symbols 

  celerity coefficient 
  a Reynolds number based on the Bingham consistency 
c’   a constant 
 constant in determining the Bingham friction factor 
c jet spread as the ratio of the radius at half the jet velocity to the total axial distance from the 

virtual origin of a central jet 
i  solutal coefficient of species i 
w jet spread as the ratio of the radius at half the jet velocity to the total axial distance from the 

virtual origin of a wall jet 
   shear rate 

c  central jet width defined where the local jet velocity falls to half the jet centerline velocity 
w  wall jet width defined where the local rising jet velocity falls to half the maximum jet velocity 

(the one farthest from the wall) 
c  dimensionless similarity variable relative to central upwell jet centerline 
c

99
  dimensionless location where 99% of the centerline velocity has decayed 

w  dimensionless similarity variable for the rising wall jet 
  angular or azimuthal position 
  weight fraction ratio 
  angle between the centerline of the primary jet and the vessel bottom 
i  volume fraction of species i 
o  dynamic viscosity or Bingham consistency 
eff   local effective dynamic viscosity in a Bingham plastic 
f   dynamic viscosity of the fluid surrounding the particle of interest 
  kinematic viscosity 
t  turbulent kinematic viscosity 
   local density of the fluid or slurry 
b   mobile slurry density along bottom of vessel (not the density of a particle bed along the vessel 

bottom) 
c   slurry density along the vessel centerline 
f   density of the fluid (not slurry) surrounding the particle of interest 
i   density of a species i, often of the solids 
max  slurry density at the base of the jet, which is the maximum slurry density associated with the jet 
o   slurry density emerging from the nozzle 
s,i   density of solids i 
w   density of water 
∞   reference slurry density far from the jet centerline 
  shear stress 
  deviatoric stress tensor 
lam  shear stress due to non-turbulent viscous stresses 
lam  deviatoric stress tensor for usual deviatoric stresses 
turb  shear stress due to turbulent viscous stresses 



 

xviii 

turb  deviatoric stress tensor for the turbulent Reynolds stresses 
o  Bingham yield stress; shear strength is not used in this report 
w   shear stress along a wall or solid vessel surface; mathematical expressions for this variable differ 

by which wall or surface is implied from section to section 
B   numerical constant that the represents the integral over the radial distribution of axial velocities in 

a laminar Bingham plastic flow 
i,j,k  numerical constant that represent integrals over the radial distributions where i, j, and k represent 

the number of fc, c, and 
ccf  factors, respectively; final factor k optional 
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1.1 

1.0 Introduction: Jet Physics in the Mixing Vessels 

Interest in the performance of pulse jet mixers (PJMs) in the high solids vessels of the Hanford Tank 
Waste Treatment and Immobilization Plant (WTP) leads to consideration of the physics of flow within 
these vessels.  Slurry suctioned into a PJM at the end of the prior pulse is pneumatically driven from the 
PJM toward the bottom of the vessel, forming a jet at the beginning of a new pulse.  A jet is defined as “a 
stream of material that travels for many diameters in a nearly constant direction” (Birkhoff and 
Zarantonello 1957).  The jet front quickly traverses the distance from nozzle outlet to the bottom of the 
vessel.  The vessel bottom is either spherical for the 8 ft test vessel or elliptical for the planned 16 ft 
standard high solids vessel.  The flow spreads out radially along the bottom of these vessels with some 
portion of the flow headed toward the vessel wall and the remainder flowing toward the center.  As the 
centrally directed flow proceeds along the vessel bottom, it approaches the center and collides with 
neighboring jets to create a central upwell.  This upwell flow both in the center and along the vessel wall 
is the primary consideration herein (see Figure 1.1). 

  

Figure 1.1.  Visualization of Flow Within a Pulse Jet Mixed Vessel Between PJMs, Highlighting the 
Sheared Regions Including the Flow Along the Vessel Bottom and the Central Upwell.  This 
report evaluates the central and wall upwells.  Simulation for 16 ft vessel with Uo=12 m/s, 
do=4 inches, o=30 mPa.s, and =1200 kg/m3 without solids.  Asymmetry in central upwell 
due to suction pipe (not shown) blocking upward momentum.  Courtesy of Kurt Recknagle. 
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The physics of jet flow pertaining to the primary downward flow and second radial flow along flat 
vessel bottoms has been considered in some detail.  The initial downward flow is governed by a 
developing circular free jet where the plug flow of the jet core gives way to the shear forces that induce 
vortices and an approximately Gaussian velocity distribution.  This process is complete within 4 to 8 
nozzle diameters (the nozzle diameter remains the essential characteristic length of a jet throughout its 
traverse).  This jet is termed a “free jet” because surface and body forces remain negligible relative to jet 
momentum and has been described by numerous authors (see Bird et al. 2002; Rajaratnam 1976).  As the 
jet impinges on the vessel bottom, it develops a pressure that redirects the flow radially (Beltaos 1975; 
Beltaos and Rajaratnam 1977; Phares et al. 2000).  Radial jets, so named because the flow spreads out 
radially with respect to the impinging jet centerline, experience shear forces along the vessel bottom and 
lose their dependence on nozzle conditions (but retain the nozzle velocity and diameter as characteristic 
scales).  Yet, when the flows of impinging nozzles collide, the physics that govern the central upwell has 
received considerably less attention.  Kuhn et al. (2013) considered how a pair of impinging jets might 
interact to form a planar upwell and also suggested that the central upwell may be described as a free jet 
with a velocity that decays with elevation.  How the central upwell is affected by multiple PJMs, 
significant multicomponent solids loadings, and generalized Newtonian or non-Newtonian rheologies 
remains unexplored from a jet physics perspective. 

Therefore, this report considers mixing phenomena1 above the vessel bottom, drawing heavily on 
both jet physics and data at the largest scales available to obtain the necessary insight and address the 
following three questions. 

1. Is the central upwell a hydrodynamic jet?  Jet physics models impose specific and unescapable 
consequences on the upwell, and free jets that reach and break through to the upper fluid surface 
represent preferred mixing scenarios using PJMs.  Section 2 argues that the central upwell may be 
described as an approximately circular free jet with velocity that decays as the inverse of the 
elevation, for nozzle velocities that are sufficiently large.  Large-scale data sets including both 
historical data from a 12.75 ft vessel in Sections 2.1 and 2.2 (Bontha et al. 2003a, b; Bamberger et al. 
2005) and newly analyzed data from the 8 ft vessel in Sections 2.3 and 2.4 concur with this 
perspective.  Section 2.5 considers the minimum jet velocity necessary for the jet to be a turbulent 
free jet as the Poirier-Etchells cutoff velocity.  Section 3 derives conservation of momentum 
arguments that relate PJM operating conditions to the functional form of the velocity decay for a free 
jet. 

2. Under what conditions does the central upwell change flow regimes from a central free jet to 
something else, and what are the alternatives from a jet physics perspective?  Section 4 presents 
the governing differential equations for both momentum and species conservation in which both 

                                                      
1 The terms mixing, blending, and shearing have an abundance of definitions.  Blending may refer to 
homogenization of miscible liquids and mixing to homogenization of solids.  Alternatively, mixing may refer to 
thermodynamic processes in which one body of molecules adjacent to another body of another type of molecules 
form a single body by exchange of energies, which is essential for chemical reactions (e.g., neutralization, leaching, 
etc.) to occur.  This typically happens at length scales smaller than the Kolmogorov length scale within its own time 
scale that may be longer or shorter than time scales for jet convection and chemical reactions.  Here the terms 
mixing, blending, and shearing are used interchangeably herein and refer specifically to regions of the vessel in 
which substantial jet flows occur.  These flows include both the convective flow and turbulent vortices at length 
scales larger than the Kolmogorov length scale that are essential to any significant mixing, blending, or chemical 
reactions by any definition. 
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negative buoyancy and shear forces participate.  Sections 5 through 7 then use these equations to 
predict how negative buoyancy, yield stresses, and jet transience affect the flow.  Section 5 evaluates 
the Froude number as a predictor of surface flow and derives a new four-parameter cloud height 
model that compares favorably to experimental data.  Section 6 considers the influence of yield 
stresses on expanding turbulent jets, confined turbulent jets, and confined laminar flows.  For each, a 
critical elevation is predicted at which jet momentum depletes that compares favorably to 
experimental “cavern” height data.  Section 4.3 shows that these are each limiting cases of a gradual 
transition from a turbulent expanding flow to a confined laminar flow.  When the jet expands the 
critical elevation depends on the yield Reynolds number (a ratio of jet momentum to fluid yield 
stresses) to the 1/2 power, and when the jet is confined the critical elevation depends linearly on the 
yield Reynolds number.  This analysis of the central upwell alone lays essential groundwork for 
complete analysis of mode three mixing (Bamberger et al. 2005).  Section 7 considers jet celerity (i.e., 
the rapidity or swiftness of jet front penetration) and shows that this may be a governing 
consideration in jet flow reaching the surface. 

3. What are the implications of jet physics for vessel mixing?  The vessel is mixed by both the 
annular wall jet and the central upwell.  Section 8 shows that flow along the vessel wall is weaker and 
sluggish.  Section 9 then evaluates the implications of upwell flows for vessel mixing on a per pulse 
basis.  Vessel mixing may also be assisted by the leading vortex that defines the leading edge of jet 
penetration that extends beyond the boundaries of the jet and by down flow along the vessel wall. 

In summary, this analysis shows that achieving surface flow for a Newtonian simulant may depend on 
the ratio of the virtual origin to the nozzle diameter of the jet, the Froude number, and ratio of the density 
at the base of the upwell to the density far from the jet centerline, in addition to factors that do not depend 
on geometric scaling.  For a non-Newtonian simulant, surface flow is primarily governed by factors that 
do not depend on geometric scale but may be modestly influenced by the jet Reynolds number through 
the effective wall stresses and the ratio of the virtual origin to the nozzle diameter.  This report concludes 
with a gap analysis. 

This analysis is limited to the upwells in the center of the vessel and along the vessel wall.  Analysis 
of bottom motion, downward flow peripheral to the central jet, or downward flow that derives from 
central upwell flows that cross the upper surface and then move down the vessel walls remains outside the 
scope of this analysis.  Particles that are mobilized by bottom motion but are not elevated into the central 
upwell are not incorporated in the analysis to follow. 

1.1 Scope 

Pacific Northwest National Laboratory (PNNL) was asked to provide a Basic Research technology 
level report that evaluated the physics of the upwell flow in pulse jet mixed systems.  This understanding 
of the central upwell would be used to evaluate PJM performance in small-scale testing and full-scale 
PJM vessel performance with Newtonian and non-Newtonian simulants.  This report developed models 
that can be used in conjunction with full-scale testing to evaluate the central upwell flow within the 
vessel.  The review of prior testing and literature did not provide a simple method for direct scaling of 
central upwell performance from small-scale testing to full-scale vessels. 
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This application is for PJMs arranged in circular/distributed arrays in vessels with dished bottoms.  
The circular arrays contain no central PJM and the bulk flow patterns are dominated by a central upwell 
within the PJM array and downward flow in the annular region surrounding the circular array. 

The scope for this report is provided in the TP-WTPSP-132 Test Plan, Section 5.1, tasks i and j, with 
the contractual direction authority for this report provided in Section 3.3.1 of Hazen (2014). 

1.2 Quality Requirements 

PNNL complies with the requirements found in the following standards and implements them in their 
Waste Treatment Plant Support Program (WTPSP) Quality Assurance Program: 

 ASME NQA-1-2000, Quality Assurance Requirements for Nuclear Facility Applications, Part I, 
Requirements for Quality Assurance Programs for Nuclear Facilities 

 ASME NQA-1-2000, Part II, Subpart 2.7, Quality Assurance Requirements for Computer Software 
for Nuclear Facility Applications 

 ASME NQA-1-2000, Part IV, Subpart 4.2, Guidance on Graded Application of Quality Assurance 
(QA) Requirements for Nuclear-Related Research and Development. 

Records will be stored as hardcopy records in a 2-hour fire-rated container. 

This project recognizes that quality assurance applies in varying degrees to a broad spectrum of 
research and development (R&D) in the technology life cycle.  The R&D elements in the technology life 
cycle are listed below.  The WTPSP uses a graded approach for the application of the quality assurance 
controls such that the level of analysis, extent of documentation, and degree of rigor of process control are 
applied commensurate with their significance, importance to safety, life cycle state of work, or 
programmatic mission.  The technology life cycle is characterized by flexible and informal quality 
assurance activities in basic research, which becomes more structured and formalized through the applied 
R&D stages.  

 Basic Research:  Basic Research consists of research tasks that are conducted to acquire and 
disseminate new scientific knowledge.  During Basic Research, maximum flexibility is desired in 
order to allow the researcher the necessary latitude to conduct the research. 

 Applied Research:  Applied Research consists of research tasks that acquire data and documentation 
necessary to ensure satisfactory reproducibility of results.  The emphasis during this stage of a 
research task is on achieving adequate documentation and controls necessary to be able to reproduce 
results. 

 Development Work:  Development Work consists of research tasks moving toward technology 
commercialization.  These tasks still require a degree of flexibility and a degree of uncertainty exists 
in many cases.  The role of quality on Development Work is to make sure that adequate controls to 
support movement into commercialization exist. 

 Research and Development Support Activities:  Support activities are those that are conventional 
and secondary in nature to the advancement of knowledge or development of technology, but allow 
the primary purpose of the work to be accomplished credibly.  An example of a support activity is 
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controlling and maintaining documents and records.  The level of quality for these activities is the 
same as for Development Work. 

This report was conducted at the Basic Research technology level. 





 

2.1 

2.0 The Central Upwell is a Free Jet—At Least Sometimes 

This analysis begins with the premise that the PJM mixed vessels above the vessel bottom achieve 
optimal performance when the upwells flow like circular free jets.  This report then evaluates whether the 
upwells follow free jet physics and determines the conditions under which the upwells do not flow like 
free jets.  The central upwell must satisfy several requirements to be considered a free jet.  First, it must 
travel for several diameters in a nearly constant direction.  Second, the influence of surface and body 
forces must be negligible, hence the term “free.”  Third, its velocity must decay with the inverse of 
elevation.  Fourth, the radial velocity profile should be self-similar if not approximately Gaussian.  This 
section demonstrates that the central upwell satisfies these requirements (at least sometimes) as discussed 
below. 

The historical central upwell velocity data in both water and kaolin-bentonite (KB) clay are shown in 
Figure 2.1, with the local upwell velocity along the centerline of the jet, um,c, scaled on the nozzle 
velocity, Uo, and the elevation, z, scaled on the nozzle diameter, do.  This scaling was selected because 
free jet data collapse onto a single curve with this scaling (Rajaratnam 1976).  This universal scaling is 
consistent regardless of rheology (Newtonian or generalized Newtonian) so long as the jet remains free 
(i.e., negligible surface and bulk forces), and Bird et al. (2002) in their Table 5.1-1 show that this scaling 
is true for both turbulent and laminar circular jets.  The curve is given as 
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where zo is distance from the vessel bottom to the virtual origin, with the virtual origin located at the 
vertex of the cone defined by the expanding jet (Kuhn et al. 2013; Rajaratnam 1976), and hc is a jet 
coefficient that depends strongly on geometry (e.g., numbers of PJMs) and more modestly on density 
gradients and so forth as derived below.1  Therefore, fitting velocity data with a power law will yield an 
exponent of -1 regardless of nozzle Reynolds number.  On a log-log plot such a power law fit would be a 
straight line with a slope of -1, though the virtual origin may induce curvature. 

2.1 Analysis of Historical Centerline Velocity Data 

Equation (2.1) was evaluated using historical data with three or more PJMs.  Testing with four PJMs 
was performed by Bontha et al. (2003a, b) and Bamberger et al. (2005) in the large tank test stand (LTTS) 
with a tank diameter of 12.75 ft and in a geometrically downscaled equivalent (4.53x) with a diameter of 
2.82 ft.  Bontha et al. (2003a, Appendix D) evaluated the vertical upwell velocity in water along the 
vessel centerline in the LTTS using Valeport velocity probes.  Figure 2.1a shows this data with the 
centerline velocity divided by the nozzle velocity versus elevation divided by the nozzle diameter or with 
scaled velocity versus scaled elevation.  The centerline velocity was averaged from the approximate 
leading inflection point to the approximate end of pulse with a nozzle velocity of 8.86 m/s.  Subsequently, 
Bontha et al. (2003b) further evaluated the upwell velocity in water in the LTTS.  Data were tabulated 
electronically (see file 021108T for centerline velocity measurements per Table 4.1 of Bontha et al. 

                                                      
1 Although prior work has called hc a constant or a jet constant, it is termed a coefficient herein because of its 
dependence on vessel and flow properties. 
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2003b), and Figure 2.1a presents the average centerline velocity data using Valeport probes in the vertical 
direction across many pulses with a nozzle velocity of 8.76 m/s.  Bontha et al. (2003b) also evaluated the 
vertical velocity profile of 10 and 35 m glass beads at 5 and 30 wt% in the LTTS with four PJMs 
(tabulated in files 02115C, 02115J, 021121B, 021204C, 021204J, 021212C, 021212I as given in 
Tables 5.2, 5.5, 5.8, and 5.11 of Bontha et al. 2003b) as in Figure 2.1b.1  Bamberger et al. (2005) 
evaluated the vertical upwell velocity in KB slurry in both the 12.75 ft and 2.82 ft vessels.  Velocities 
were measured using ultrasound probes (see Tables 4.21 and 4.22 and Sections 4.7, 5.4, A.5, and B.3.6 of 
Bamberger et al. 2005) and scaled on the reported peak average velocity.  These data from the 12.75 ft 
vessel were collected 0.5-5.1 inches off vessel center and in the 2.82 ft vessel 2.5 inches off centerline. 

 

Figure 2.1.  Compilation of the Historical Central Upwell Velocity Data with Upwell Velocity and 
Elevation Scaled on a Nozzle Velocity and the Nozzle Diameter, respectively.  Curve fits 
from Eq. (2.1).  Vertical line at z/do=48 represents the dimensionless fill height of the 
proposed standard high solids vessel and the geometrically scaled 8 ft vessel for the 
1.94 inch nozzle.  The nominal fill height of the 2.82 and 12.75 ft vessels was at z/do=29-36. 

The resulting data are presented in Figure 2.1a for water (blue) and KB slurry (red).  The data were fit 
by inverting Eq. (2.1) as 
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which shows that a plot of Uo/um,c versus z/do should be a straight line.2  The inverse of the slope is hc and 
the intercept multiplied by hc is zo/do, the scaled virtual origin depth.  Fitting the data accordingly gives 
hc=2.17 and zo/do=-0.318 for water (blue solid), hc=1.50 and zo/do=-5.19 for the KB slurry in the 2.82 ft 
vessel (red dotted), and hc=2.07 and zo/do=-5.19 for the KB slurry in the 12.75 ft vessel (red dashed).  
These fits are for the higher velocities reported (Bamberger et al. 2005) (>10 m/s in the 2.82 ft vessel and 
>6 m/s in the 12.75 ft vessel) as slow velocities (in grey solid symbols) may represent a different flow 

                                                      
1 Tests with only two PJMs were also performed, which should induce a planar fan jet along the vessel centerline 
with scaled velocity decreasing with scaled elevation to the -1/2 power (Rajaratnam 1976) as anticipated by Kuhn et 
al. (2013).  Such analysis may be relevant when only two PJMs are operational in the WTP Pretreatment Facility.  
This report focuses on systems with three or more PJMs for which a non-planar central upwell is anticipated. 
2 More advanced fitting techniques are available to minimize fitting error but are not necessary for scaling analyses. 
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regime (see Sections 4 through 7).1  Data within entrance/transition regions (z/do<10) have been excluded 
from the fits because the velocity may not be sufficiently developed there, and the water data of Bontha 
(2003a) at the highest elevation were excluded because of observed crossflow transverse to the axial jet 
velocity (see Bontha et al. 2003b, Figure 4.5).  Similarly, the data for glass beads have been fit with 
hc=2.55 and zo/do=6.31 for 10 m beads at 5 wt% (red dotted), hc=2.48 and zo/do=5.67 for 10 m beads at 
20 wt% (green short dash), hc=2.69 and zo/do=6.19 for 35 m beads at 5 wt% (blue long dash), and 
hc=2.46 and zo/do=5.79 for 35 m beads at 20 wt% (brown solid).  Similarly, data within 
entrance/transition regions (z/do<10) and for the 35 m glass beads at 20 wt% at the highest elevation due 
to a developing cloud height have been excluded.  The implication of these data is that flow within the 
central upwell does follow the free jet profile for both Newtonian and generalized (i.e., non-Newtonian) 
rheologies for at least some operating conditions. 

This plot has significant implications for scaling between the 8 ft and 16 ft vessels.  The nominal fill 
height of both vessels is located as high as an elevation-to-nozzle-diameter ratio of 48 (i.e., 
16 ft/4 inches), denoted on Figure 2.1 by the vertical line.  Using a larger nozzle diameter of 5 inches in 
the proposed standard high solids vessel, for example, places the nominal fill height at only z/do=38.4.  If 
1) the data for the 8 ft vessel fall on (or are parallel to) one of these curves for free jets for both 
Newtonian and non-Newtonian simulants, 2) the free jet curves (lines in the log-log plots) can be 
reasonably extrapolated to 48 in the time allotted,2 and 3) the flow regime does not change between 
scales, then these curves may be used to 1) predict that the breakthrough velocity (i.e., the projected 
velocity at the fluid surface)3 will be greater than zero at the vessel surface, and 2) assert confidence that 
the 16 ft vessel will mix, at least within the zones of influence of the jets as defined by at least the jet 
radius (see Section 9).  The first two conditions may be resolved by evaluating data from the 8 ft vessel 
testing and may be confirmed with the 16 ft vessel testing.  The last condition is analyzed in Sections 4 
through 7. 

                                                      
1 Some of the jets may also have attached, which could affect velocity as a function of elevation.  This becomes 
more problematic at higher elevations within the mixing vessels.  Agelin-Chaab and Tachie (2011) show that the 
scaled velocity decays with scaled distance from the nozzle with a power law exponent between -1.15 and -1.21, 
which may explain the slight dropoff of the KB slurry data from the expected curve of around z/do~30.  
Representations of an off-center breakthrough region in Appendix A of Bamberger et al. (2005) suggest jet 
attachment to the PJMs or to other vessel internals.  Similar trends may be anticipated in the current vessels of 
interest.  Yet, even though the attached jet flow regime is fundamentally distinct from the free jet and very likely to 
be present in 8 and 16 ft vessels, the ~20% change in power law exponent from free to attached jet remains modest 
and this flow regime will not be analyzed further herein.  However, minimizing vessel internals where feasible may 
modestly improve mixing by averting the attached jet flow regime. 
2 The actual surface of the liquid exceeds the nominal fill height, depending on the volume of the PJMs as defined 
by their internal diameters and the vertical difference between the nominal fill height and the lowest liquid level in 
the PJM.  For the 8 ft test vessel, the upper liquid surface reached 90.0 to 93.5 inches from the seam or 103.9 to 
107.4 inches from the vessel bottom (email from Christopher Chapman, 4/29/2015 at 9:32 am) so that  
z/do=53.6-55.4 for the 1.94 inch nozzle and z/do=41.6 to 43.0 for the 2.50 inch nozzle.  Some extrapolation of the jet 
curve to the liquid surface remains necessary because obtaining reliable data from resubmerging velocity probes 
remains challenging.  The advantage of this approach is that the extrapolation remains on a firm physical basis. 
3 The breakthrough velocity is the velocity that the jet would have at the surface.  It is a projection because other 
forces, including fountains and varicose instabilities, may alter the path of the jet immediately at the surface.  
Nevertheless, if the projected jet velocity is significant at the fluid surface, flow reaches the vicinity of the surface 
and blending within the jet’s zone of influence may be reasonably asserted up to the vessel surface. 
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2.2 Analysis of Historical Radial Velocity Distribution Data 

Equation (2.1) is derived based on self-similar velocity profiles (Rajaratnam 1976; Bird et al. 2002), 
which define a jet radius.  A jet is self-similar if the axial velocity as a function of radius retains the same 
functional form or shape as the jet progresses in the axial direction.  When scaled properly (i.e., the axial 
velocity on the nozzle velocity and the radial distance on the radial location of half the centerline 
velocity), the data at different distances from the jet nozzle should collapse onto a single curve. 

Figure 2.2 and Figure 2.3 show the axial velocity contours as a function of radial position for a jet in 
water at multiple elevations in the 12.75 ft vessel.  These plots were generated by measuring the velocities 
at multiple, specific locations and then interpolating to generate the contour maps (Bontha et al. 2003a, b).  
Even though these central upwells were produced by four PJMs located outside the viewable area, these 
figures suggest that the velocity profile becomes approximately circular,1 presumably after an entrance 
region below the elevations represented in the figures.  With additional PJMs (e.g., from four to six), the 
circularity of the profiles may be expected to improve.  In addition, Bontha et al. (2003a, b) describe other 
reasons why the velocity profiles may be asymmetric.2 

                                                      
1 In the absence of attachment, all jets become circular jets regardless of the shape of the entry region or nozzle 
form.  Bejan et al. (2014) argue that the transition from a turbulent slot jet to a turbulent circular jet is accomplished 
over a characteristic distance of 9.6L, where L is the width of the slot.  Rajaratnam (1976, p. 272) likewise indicates 
that a square jet behaves like a round one within 10 nozzle diameters. 
2 “For example, since the JPPs regulating the airflow to the pulse tubes were not identical, the actual drive times 
were not identical.  In addition, the 4 PJMs were not situated exactly in the center of each quadrant of the tank (one 
was closer to the wall than the others).  Also, the pulse tube nozzles were not exactly at the same distance from the 
tank floor.  Finally, there were two tie beams half way into the tank, which were used to provide additional support 
to the pulse tubes (these tie beams could not be removed during the testing due to structural stability concerns.)” 
(Bontha et al. 2003a, p. 5.16).  “In all of these figures, the pulse tubes A, B, C, and D are located in the NW, SW, 
SE, and NE directions, respectively, at a radial position of ~4.25 ft (~1.2954 m).  Although the geometric 
dissimilarity (presented in Section 3.0) still causes some asymmetry in the flow, the differences in the individual 
pulse tube operation also contributes to the asymmetric flow.  This is illustrated in Figure 4.6 in terms of the cycle 
averaged liquid levels in the pulse tubes.  It can be seen from this figure that pulse tubes B and D drive much harder 
than pulse tubes A and C.” (Bontha et al. 2003b, p. 4.2). 
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Figure 2.2.  The Upwell Velocity as a Function of Radial Position in Water in the 12.75 ft Diameter Test 
Vessel in the LTTS in PNNL 336 Building (Bontha et al. 2003a).  PJMs located in the 
corners outside the field of view.  Original caption: “Figure 5.13. Contour Maps of the 
Maximum Velocities Measured in During the Large Tank Hydrodynamic Tests: (a) 1.308 m 
(51.5 in) Horizontal Plane and (b) 1.842 m (72.5 in) Horizontal Plane.” 

 

Figure 2.3.  The Upwell Velocity as a Function of Radial Position in Water in the 12.75 ft Diameter Test 
Vessel in the LTTS in PNNL 336 Building (Bontha et al. 2003b) Measured at the Centerline 
and Vertices of the Bounding Polygon.  The pulse tubes are located in the corners outside the 
field of view.  Original captions: (left) “Figure 4.2. Contour Map Showing the Fluid 
Velocities in a 2 ft Diameter Core Around the Center of the Tank and an Elevation of 
30 inches (0.762 m)” and (right) “Figure 4.3. Contour Map Showing the Fluid Velocities in a 
2 ft Diameter Core Around the Center of the Tank and an Elevation of 54 inches 
(1.3716 m).” 

Despite the uncertainties, Figure 2.4a shows that the profiles in Figure 2.2 are indeed self-similar 
because the scaled data from multiple locations overlap each other indistinguishably.  This figure was 
prepared by finding the velocity as a function of radius from the image center along the eight compass 
directions (cardinals and primary intercardinals) and estimating the centerline velocities to be 1.7 and 
1.55 m/s.  The radial location where the local velocity is half the centerline velocity was determined by 
linear fitting and used to scale the x-axis of Figure 2.4.  This figure also shows various predictions of the 
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self-similar velocity profiles.  In each case, the axial velocity, u, as a function of both axial and radial 
coordinates, z and r, respectively, is  

   cccm furzu ,,  (2.3) 

where um,c is the axial velocity along the centerline of the jet, fc is a functional form defined by this 
equation and elucidated below as a function of 

c=r/[c(z+zo)]=r/c, (2.4) 

where c characterizes the rate of entrainment or the radial decay of the central upwell and c is the jet 
width where the local velocity falls to half the jet centerline velocity.  Perhaps the most convenient 
functional form for fc for a free jet is approximately Gaussian, 

    22c c cf Exp Ln      (2.5) 

modified from Shekarriz et al. (1995a) and Wiegel (1964) as referenced by Meacham et al. (2012) with 
the Ln(2) so that fc(1)=1/2 as required for uniform scaling.  For compound circular jets, where the fluid 
parallel to the jet also has a finite velocity in the axial direction, Rajaratnam (1976) recommends the 
cosine expression of Squire and Trouncer,  
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which holds only for values of c between 0 and 2 inclusive.  Formally, analytical solutions for the radial 
distribution of the axial velocity fall out of either a Prandtl mixing length hypothesis or from an eddy 
viscosity model attributed to Boussinesq (Bird et al. 2002), Prandtl (Abramovich 1963), and Goertler 
(Abramovich 1963; Rajaratnam 1976).  The Prandtl mixing length hypothesis leaves no simple analytical 
solution but requires a power series solution given by Tollmien and tabulated in columns 2 and 4 of 
Table 2-1 in Rajaratnam (1976), shown graphically in Figure 2.4 and approximated as 

fc(c)=0.00940c
5-0.09859c

4+0.39979c
3-0.60105c

2-0.22051c+1.00394 (2.7) 

The eddy viscosity model gives several solutions, perhaps the most convenient of which is 

fc(c)=(1+ac
2)-2 (2.8) 

where a=21/2-1 so that this function equals 1/2 when c=1 (Bird et al. 2002; Bajpai and Tirumkudulu 
2008).1  Rajaratnam (1976) and Bird et al. (2002) argue that the eddy viscosity model does marginally 
better near the center of the jet but worse than the mixing length hypothesis further way from the jet 
centerline, hence the preference for the latter herein.  Figure 2.4a for water suggests that the Tollmien 
solution may do marginally better for the data presented both in the center and at the largest radial 
positions measured.  However, all represent reasonable fits of the central upwell data, and none of the 
                                                      
1 This solution is termed a Goertler solution in Figure 2.4 for historical reasons following the nomenclature of 
Rajaratnam 1976, though the form of Eq. 2.8 was first reported by Loytsianskiy (Abramovich 1963) and has been 
renormalized here. 
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expressions does markedly better than any other, so each may be used herein where most convenient and 
mathematically consistent. 

 

 

 

Figure 2.4.  Self-similar Velocity Profiles in the Central Upwell with Velocity Scaled on the Centerline 
Velocity and Radius Scaled on the Radius Corresponding to Half the Velocity for (a) Water, 
(b) KB Slurry, (c) 10 m Glass Beads at 5 wt%, (d) 10 m Glass Beads at 20 wt%, (e) 35 m 
Glass Beads at 5 wt%, and (f) 35 m Glass Beads at 20 wt%.  Numbers in legends denote 
elevation scaled on nozzle diameter.  Curve fits include the predicted profiles of a Gaussian 
(Meacham et al. 2012), Squire and Trouncer (Rajaratnam 1976), Goertler (Abramovich 1963; 
Rajaratnam 1976), and Tollmien (Rajaratnam 1976) as described in the text.  Fits with the single 
parameter normalized Fermi-Dirac function, Eq. (2.9), take sf =0.368 (not shown), 0.130, 0.351, 
0.259, 0.206, and 0.385 in panels a through f, respectively. 
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Radial profiles in the presence of glass beads are shown in Figure 2.4c through Figure 2.4f as 
extracted from Bontha et al. (2003b).  They measured the velocity profiles along the centerline and at 17 
and 24 inches from the jet/vessel centerline using Valeport probes at five elevations affixed to a vertical 
mast.1  The average velocities of all electronic data were tabulated for all reliable pulse cycles associated 
with tests using water (Table 4.1, Bontha et al. 2003b), 10 m glass beads at 5 wt% (Table 5.2, Bontha et 
al. 2003b), 10 m glass beads at 20 wt% (Table 5.5, Bontha et al. 2003b), 35 m glass beads at 5 wt% 
(Table 5.8, Bontha et al. 2003b), and 35 m glass beads at 20 wt% (Table 5.11, Bontha et al. 2003b).  The 
beads had a specific gravity of 2.49 (Section 5.1, Bontha et al. 2003b; size distributions at various 
locations given in Appendix B, Bontha et al. 2003b). 

Each of these panels (Figure 2.4c through Figure 2.4f) clearly shows overlap of the scaled radial 
distributions across the elevations, confirming the self-similarity of the profile except perhaps at the 
lowest elevation that may lie in the entrance region.  Panels with simulant appear to have a marginally 
steeper slope than expected, suggesting that the particles may enhance the velocities closer to the jet 
centerline.  The larger particle sizes or higher concentrations tend to show more steepening.2  This is 
consistent with the findings of Melville and Bray (1979a, b), Mostafa and Mongia (1988), and Barlow 
and Morrison (1990), who show that increasing the particle density or size increases the local velocity and 
that the particles tend to concentrate toward the center of particle-laden jets relative to the fluid velocity 
profile and the entrained fluid at the periphery of the jet remains more dilute (see Section 4.2).  To 
facilitate analysis in Section 3, a best fit curve was prepared with a normalized Fermi-Dirac function 
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where sf is the single fitting parameter.  The fits are also shown in Figure 2.4. 

Figure 2.4b shows the velocity profiles for KB slurry obtained from Bamberger et al. (2005).  They 
measured velocities 10.5 inches away from a center 15.6 inches to the west of the centerline of the 
12.75 ft vessel along each of the four cardinal directions.  Although this center may coincide with the 
approximate jet center as expressed at the fluid surface due to persistent superficial crossflow at the top of 
this vessel (see Figure 4.5, Bontha et al. 2003b), at lower elevations the east-most probe consistently 
measures higher velocities, which comports with the jet centerline remaining closer to the vessel 
centerline.  Taking the vessel center as the jet center and linearly fitting the west probe velocity and 
average of north and south probes to find the distance corresponding to half the velocity of the east probe 
yields Figure 2.4b.  The velocity profiles remain self-similar for the available data regardless of 
breakthrough (see Appendix A for definition), though data near the jet penetration front are not available.  

                                                      
1 The vertical mast may marginally affect the flow by providing a shear surface.  Figure 3.2 of Bontha et al. (2003b) 
suggests that the uncertainty in probe position from the centerline is ~0.5 inches.  Conversely, the centerline mast is 
a 0.75 inch pipe (Figure 3.2, Bontha et al. 2003b) analogous to a sparger, suggesting that spargers may not 
significantly adversely affect local flow profiles. 
2 Radial velocity profiles cannot be ascertained from testing in the 8 ft vessel at ≤12 m/s.  Probes were only located 
near the vessel centerline at the walls for all Newtonian simulants in run sheets 1, 2, 6, and 7.  Therefore, how the 
radial velocity profiles of the central upwell were affected by increasing particle size remains unknown.  A middle 
velocity probe was included for testing in the 8 ft test vessel 18.9 inches from center for run sheets 3 through 5 for 
the KB slurry.  However, at velocities ≤12 m/s, no net upward flow was registered by this probe after the initial 
vortex passed.  The vortex was found at 12 m/s but not at 8 m/s, as discussed in Section 9. 
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However, this panel shows that the radial velocity profiles for the KB slurry do not follow the Tollmien 
solution or similar radial velocity profiles derived for homogeneous fluids without a yield stress.  Indeed, 
the velocity profile falls off precipitously as a function of radial position, similar to a plug flow 
approximation discussed in Section 6.3.  The physics underlying these profiles and their implications is 
discussed in Section 6. 

The radial location at half the centerline velocity, c, is the characteristic width of the jet.  Figure 2.5 
shows how this characteristic dimension, determined as described from Eq. (2.4), varies as a function of 
elevation, where both are scaled on nozzle diameter.  Where the fluid contains particles, larger particle 
concentrations lead to a broader base but a narrower spread, whereas lower particle concentrations have a 
narrow base but a larger spread (Figure 2.5).  The jet appears to narrow with larger particle size at all 
elevations, though how this trend would continue with increasing particle size remains unknown.1  
Similarly, the KB slurry jet increases in diameter as a function of elevation, but this increase remains the 
slowest for all conditions for which data are available.  Though the radial increase is marginal, it is 
significant (the error bars shown are very small) and supports an expanding jet flow regime when the jet 
achieves breakthrough, which in turn implies a contraction at least sometimes when the jet fails to break 
through. 

                                                      
1There is a compelling counter-argument that the yield stresses may be a model artifact.  Yield stresses may arise 
from particle jamming for larger particles (Man et al. 2005) or from interparticle repulsive forces for smaller 
particles (Larson 1999, 6.4.2; Russel et al. 1989).  (That repulse forces instead of attractive forces are the source of 
colloidal yield stresses and hindered settling [Russel et al. 1989, Chapters 12 and 14] suggests that the term 
“cohesive” solids may be a convenient but inaccurate misnomer.)  For hard spheres, Larson (1999, Chapter 6.2) 
argues that although the relative viscosity may increase at low shear stresses, it plateaus so that a yield stress does 
not develop, though extrapolations at larger shear stresses would have suggested a yield stress.  Alternatively, for 
electrostatically charged colloidal particles, Russel et al. (1989, Chapter 14) argue that as the ionic strength 
decreases, the relative viscosity may increase by orders of magnitude and the particles may undergo an 
order-disorder transition.  Without such a transition, the particles may be simply a disordered, high-viscosity fluid 
like a slowly flowing glass.  However, neither the charge distributions of the waste feed nor the viscosities of actual 
waste at sufficient low shear stress have been reported (Wells et al. 2011; Gauglitz et al. 2010), and as such it 
remains unclear whether the yield stress arises from a locally ordered solid state or is simply a fitting artifact.  
(Simulants have only been explored preliminarily and remain inconclusive with respect to the larger question [Chun 
et al. 2010].)  If the yield stress is artificial, then the “cavern” height limits given Section 6 do not govern, the 
12 m/s-is-12 m/s arguments do not necessarily hold regardless of apparent yield stresses, and momentum 
conservation must include as yet unmeasured buoyancy considerations in the presence of significant interparticle 
forces.  Moreover, the mixing may be much more substantial than projected in Section 9.  However, because the 
WTP design process assumes a yield stress, in the absence of conclusive evidence either way, this report considers 
the influence of a putative yield stress and addresses the physical implications thereof. 
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Figure 2.5.  Jet Width c Scaled on Nozzle Diameter as a Function of Scaled Elevation for Water (Bontha 
et al. 2003a, b), KB Slurry (Bamberger et al. 2005), and Glass Beads of Size and 
Concentration Indicated (Bontha et al. 2003b).  Error bars shown for KB slurry (inside red 
circles). 

Table 2.1 summarizes the trends in c, the fractional width at the base of the upwell, fu, the virtual 
origin scaled on the nozzle diameter, and zo/do, in the region of z/do from 10 to 30 where entrance effects 
and superficial surface crossflows do not influence the data significantly.  These values were determined 
by asserting the jet to be a right cylindrical cone of radius c through its full traverse from the virtual 
origin upward (to the right in the plot) in the 12.75 ft vessel.  The water curves give values of c of 
0.112-0.123 (see Table 2.1) in approximate agreement with the literature values of c of approximately 
0.065 to 0.14 (see Rajaratnam 1976; Bird et al. 2002; Bajpai and Tirumkudulu 2008; Crapper and Baines 
1976; Shekarriz et al. 1996).  Notably, the fractional width is approximately 10% to 20% of the vessel 
radius but may vary between vessel sizes.  This value is used in Section 3.  Though the radial distribution 
of velocities that informs these values is essential to evaluating flow within mixing vessels, radial 
distributions of velocity and density have not been collected at other scales. 

The scaled virtual origin also varies substantially, from 15 to 64.  The range of variation is 
unexpected because straightforward models of the jet would have anticipated that the virtual origin could 
be approximated by the total distance the jet travels from the jet nozzle to the upwell (central or wall).  
For example, “cavern” height models anticipate that the distance from the central upwell may be 
approximated by the sum of the nozzle stand-off distance from the vessel bottom and the distance along 
the vessel bottom to the upwell (Poloski et al. 2004; Bamberger et al. 2005; Meyer et al. 2006; Meyer and 
Etchells 2007; Gauglitz et al. 2009).  For the 12.75 ft vessel, the 4 inch nozzles stood off the bottom 
6-9 inches and were located ~95 inches across the center from each other (Figure 2.8, Bontha et al. 
2003b).  This leads to a suggested travel distance of only zo/do=13, which remains at the lower end of 
values determined across the set of simulants but is much smaller than the value of 64.3 determined 
experimentally for the KB slurry.  Nevertheless, this variation in zo/do may explain the variation in the 
intercept of the “cavern” height models and motivates the effort described in Sections 4 and 6 to 
understand jets traversing non-Newtonian materials. 

It is noted that the data in the radial direction remains limited with measurements of at most three 
radial locations and scaled elevations to z/do≤35.  Each data set was obtained in a vessel with a 2:1 
elliptical head, yet how jet spread may be affected by the shape of the vessel bottom has not been 
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explored.  Nevertheless, the data analyzed here support the argument that the central upwell velocity 
profiles are self-similar and follow jet characteristics within the domain explored. 

Table 2.1.  Values Defining Central Jet Cone from Figure 2.5 for 10<z/do<30 

Reference Fluid c fu zo/do 

Bontha et al. (2003a) Water 0.123 0.142 22.1 
Bontha et al. (2003b) Water 0.112 0.105 17.9 
Bamberger et al. (2005) KB slurry 0.0551 0.185 64.3 
Bontha et al. (2003b) 5% 10 m glass beads 0.154 0.128 15.9 
Bontha et al. (2003b) 20% 10 m glass beads 0.117 0.181 29.6 
Bontha et al. (2003b) 5% 35 m glass beads 0.0763 0.170 42.7 
Bontha et al. (2003b)(a) 20% 35 m glass beads 0.0676 0.118 33.4 

(a)  Based only the centerline and one radial position whereas the remaining Bontha et al. (2003b) results are based 
on the centerline and two radial positions. 

2.3 Attributes of 8-Foot Vessel Testing 

Velocity data from the 8 ft test vessel have also been analyzed.  Table 2.2 gives the physical 
properties of simulants used in these tests, including mass or weight fraction of species i, wi, median 
particle size,1 d50, terminal settling velocity ui

T, and Archimedes number, Ari, given as 

Ari=f
2g(si-1)d50

3/f
2 (2.10) 

where f and f are the dynamic viscosity and density of the fluid surrounding the particle of interest, g is 
the gravitational constant, and si is the ratio of the solids density to the fluid density of species i.  For a 
Newtonian slurry, Wells et al. (2012) find preferred agreement of Hanford wastes with the model of 
Camenen (2007) as 
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1 The median particle size has been retained here, though Peurrung et al. (2015) suggest a variety of other particle 
size and velocity metrics that may be used in its place.  Russel et al. (1989) indicate that settling properties depend 
strongly on interparticle forces and potentials, which have not been measured for Hanford wastes but may be the 
source of the proliferation of some of these metrics. 
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This model is essentially a hard sphere model that neglects interparticle repulsive or attractive forces 
in an otherwise Newtonian fluid (Russel et al. 1989).  Figure 2.6 shows the shear stress versus the shear 
rate for the KB slurries used in these tests.1 

Table 2.2.  Ambient Physical Properties of Simulants Used in the 8 ft Test Vessel 

Constituent 
Run 

Sheet Order 

Particle 
Density 
(g/cm3) 

wi  
(solids 
only) 

wi  
(in 

suspension) 
d50 
m) Ar 

ui
T 

(m/s) 
Glass powder 1-2(a) - 2.5 0.900 0.027 96 13 6.2.10-3 
Al2O3 1-2(a) - 3.9 0.100 0.003 350 1.2.103 7.2.10-2 
KB slurry 3(b) - 2.6 0.80:0.20 0.3234 ~5 - - 
SiC 7(c) 3 3.2 0.520 0.0628 5 2.7.10-3 3.0.10-5 
W(d) 7(c) 2 9.6 0.040 0.0048 16 3.5.10-1 1.2.10-3 
Glass powder 7(c) 1 2.5 0.380 0.0459 103 16 7.0.10-3 
Al2O3 7(c) 5 3.9 0.035 0.0042 432 2.3.103 9.0.10-2 
Sand 7(c) 5 2.65 0.010 0.0012 876 1.1.104 1.3.10-1 
Glass beads 7(c) 4 2.5 0.015 0.0018 1080 1.9.104 1.4.10-1 
(a) Settling velocities from run sheet 1, CCN 270902; confirmed with Eq. (2.11).  Ar from Eq. (2.10).  FIO. 
(b) Personal communication from Carolyne Burns of PNNL.  Ar and ui

T from Eqs. (2.10) and (2.11).  FIO. 
(c) From Tables 1 and 2 of Herting et al. (2012) and from M. Minette “MCE Loni testing through 10.doc” on 

3/19/2015 with order of addition and suspension weight fractions based on 12.08%.  FIO. 
(d)  W denotes the dense tungsten component, tungsten carbide with a density of 9.6 g/cm3. 

                                                      
1From CCN 272779, pp. A14-A15.  The hysteresis in these curves remains negligible with data collected across 
weeks, so that physical or chemical gelation processes will not be considered further herein.  However, hysteresis 
and temporal transience have been significant in prior simulants, and gelation rates have been estimated in WTP 
simulants (Poloski et al. 2003, 2004; Powell et al. 1997).  Where this is significant, it may be analyzed from 
irreversible thermodynamics principles, recognizing that cavern formation, for example, may be simply a two-phase 
phenomenon with fluid and solid phases.  Eq. 2-32 in Rajaratnam (1976) shows that turbulence production in the 
vessel is associated with entropy production and may be mapped out spatially with velocity profiles developed 
herein.  Turbulence production is equivalent to power per unit volume as shown by Kuhn et al. (2013).  Russel et al. 
(1989) and Larson (1999) provide expressions for and from which colloidal enthalpy and aggregation rates may be 
expressed that may vary spatially, with even modest stratification in composition.  Gordon (2003) describes how to 
generate the relevant phase diagrams that can then be mapped out spatially.  Combined, this analysis may establish 
the time-average “cavern” map from first principles using rheology and particle size, density, and charge 
measurements directly. 
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Figure 2.6.  Shear Stress versus Shear Rate for Up Ramp (blue +) and Down Ramp (red circle) for KB 
Slurry Used in Run Sheets 3 and 4.  This shows that creep flow may set in at shear rates 
below ~0.3 s-1.  The characteristic curves are (solid) for the Bingham-Papanastasiou model 
(=o[1-exp(-m  )]+o  with a consistency of o=25.75 mPa.s and the yield stress is 

o=27.58 Pa, and m (~1 s) is a regularization parameter with dimensions of time [Mitsoulis 
2007]) and (dashed) the ideal Bingham plastic (m→∞).  The former allows for determination 
of yielded/unyielded regions a posteriori and facilitates theoretical analysis in Section 4.  For 
information only (FIO).  Data courtesy of Carolyne Burns of PNNL. 

Central upwell data with three velocity probes located along the vessel centerline were collected for a 
two-part Newtonian simulant composed of alumina and glass beads in run sheets 1 and 2, for a KB slurry 
in run sheet 3, and for multipart Newtonian simulants in run sheet 7.  See Figure 2.7.  The velocity probes 
were moved to near the vessel wall in run sheets 4 through 5. 
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Figure 2.7.  Positions of Valeport Velocity Probes for Run Sheets (a) 1; (b) 2, 6, and 7; (c) 3; and (d) 4 
and 5.  Courtesy of Korey Peterson and Christopher Chapman.  Lateral/radial probe positions 
not verified.  FIO. 

To put the analysis that follows in perspective, characteristic curves are considered below for which 
surface flow was and was not achieved.  For example, Figure 2.8 shows a Newtonian simulant for which 
surface flow was achieved.  Figure 2.8a shows that within a fraction of a second after the pressure pulse 
begins, the level in the PJM tube begins to drop and the radar level measurement begins to rise.  The level 
drop continues linearly until the pressure is turned off, then the levels in the PJM tube and the vessel 
reach their minimum and maximum levels, respectively.  These levels then gradually and smoothly return 
to their initial values.  Approximately 2.5 s after the start of the pulse (see Figure 2.8b), a velocity is 
registered at the vessel centerline at the seam.  (The velocity data includes a 2.25 s delay due to a signal 
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processing constraint not adjusted herein.)  The steepest slope (a measure of the penetration front of the 
jet similar to the thresholding of Bajpai and Tirumkudulu 2008) is registered at the seam 3.9 s after the 
pulse begins, 5.1 s at 34 inches above the seam, and 6.5 s at 68 inches above the seam.  These times 
represent the transience or celerity of the jet; celerity means rapidity or swiftness of motion.  As the jet 
reaches the highest probe, both azimuthal (hoop) and vertical velocities were registered.  This 
synchronous measurement of the velocities in both directions is commensurate with the passage of a 
turbulent leading vortex. 

Figure 2.9 depicts the structure of the leading vortex at the jet penetration front.  Kuhn et al. (2013) 
argue that flow rate within the core of the jet exceeds the penetration rate of the jet front.  This difference 
in flow rates causes the fluid to diverge radially outward, which gives rise to the leading vortex.  
Turbulence associated with this vortex gives rise to transient azimuthal velocities.  Therefore, an essential 
feature of a leading vortex is transverse flow near the inflection point in the axial velocity profile.  Indeed, 
a spike in the azimuthal flow profile is observed at the inflection point in the axial velocity profile as 
expected.  The magnitude of instantaneous velocity variations about the average velocity after passage of 
the leading vortex suggests that the turbulence remains strong even at the highest probe.  Also worth 
noting is the gradual increase in the axial velocity at the top probe before the first vortex passes, 
indicative of bulk level rise in the vessel before the first pulse arrives.  The magnitude of this velocity is 
on the order of tens of millimeters per second for bulk fluid motion. 
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Figure 2.8.  Exemplary Characteristics of Test 1-8.4.3 (time stamp 075218): (a) PJM Level, PJM 
Pressure, and Radar Level Average; (b) Vertical Velocities 0, 34, and 68 inches Above the 
Seam; and (c) Vertical and Horizontal Velocities at 68 inches Above Seam Versus Time 
from the Start of the Pulse.  This test was conducted in the 8 ft vessel with H/D=1.0, 
do=1.94 in, Uo=12 m/s, pulse volume fraction (PVF)=0.1 using the S firing sequence with the 
two-part Newtonian simulant.  Surface flow reported as “sustained roll-over of entire field of 
view” (Bontha et al. 2015, Appendix G).  FIO. 
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Figure 2.9.  The Leading Penetration Front of a Jet Showing the Jet Core and Leading Vortex Ring 
(Shekarriz et al. 1995b).  The leading vortex may be stationary.  Original caption: “Fig. 4 
Schematic diagram showing the various flow regions within the pseudoplastic jet.”  Used 
with permission from ASME. 

Figure 2.10 shows similar characteristics for test 1-8.4.2, which differs only in that the nominal 
velocity is 9.4 m/s and surface flow was not achieved.  This figure shows again a smooth rise and fall of 
the levels and pressures similar to Figure 2.8.  The vertical velocities rise as before with maximum slopes 
at 4.6 and 6.2 s at the seam and 34 inches above the seam, respectively.  There are strong suggestions of a 
leading vortex at 34 inches with both horizontal and vertical motion.  However, here a cloud height was 
observed at 62 inches and flow characteristic of a turbulent jet never arrives at the upper velocity 
transducer 68 inches above the seam.  At the top transducer there is a steady initial rise suggestive of the 
bulk level rise, albeit smaller as expected for a longer drive time.  Undulations around the time-averaged 
velocity are small and smooth, suggesting that the turbulence has all but vanished.  Low frequency 
oscillations akin to the coherent motion reported by Kuhn et al. (2013) in Meyer et al. (2012) data may be 
observed.  However, there is no indication of a vortex or turbulence 68 inches above the seam. 
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Figure 2.10.  Exemplary Characteristics of Test 1-8.4.2 (time stamp 052539): (a) PJM Level, PJM 
Pressure, and Radar Level Average; (b) Vertical Velocities 0, 34, and 68 inches Above the 
Seam; and (c) Vertical and Horizontal Velocities at 34 inches Above Seam Versus Time 
from the Start of the Pulse.  This test was conducted in the 8 ft vessel with H/D=1.0, 
do=1.94 inches, Uo=9.4 m/s, PVF=0.1 using the S firing sequence with the two-part 
Newtonian simulant.  Surface flow reported as “not near surface” (Bontha et al. 2015, 
Appendix G).  FIO. 

Similar insight is obtained for the processes occurring along the vessel centerline for the 
non-Newtonian KB slurry of run sheet 3.  Figure 2.11 shows an initial sigmoidal increase in velocity that 
occurs simultaneously throughout the vertical extent of the vessel, both along the vessel centerline and 
along the wall (data not shown).  This is consistent with rigid solid motion because all four of these 
probes register a change in velocity of the same magnitude at the same time.  This suggests a time scale 
for release of the bulk solid of 1.8±0.1 s (range).  The rate of level change in the PJM tubes (i.e., the 
change in slopes) occurs at 2.0±0.3 s, nearly simultaneous with the initial sigmoidal increase in the 
velocity.  The magnitude of the slope in the PJM level drop decreases thereafter.  This change in slope 
occurs at the same time that the surface level begins to rise.  All of the non-Newtonian files analyzed (see 
Table 2.3) have this initial sigmoidal increase in velocity, suggesting that this is a systematic trend instead 
of a small test anomaly.  This sigmoidal velocity increase or double slope in the level is not present in 
data files for any of the other simulants analyzed.  Once motion begins, the speed associated with bulk 
rigid motion is approximately 45 to 75 mm/s (see Section 3.3).  Because bulk motion appears to be free of 
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acceleration after an induction period from ~1.8-2.5 s in test 3-8.5.1, bulk motion may be subtracted 
kinematically from the apparent jet velocity to arrive at the actual jet velocity if desired (see Section 3.3). 

As the pulse reaches up into the central bulk of the fluid, the front end of the pulse does not seem to 
slow with a square root or fourth root dependence suggested for jets or puffs, respectively (Kuhn et al. 
2013; Bajpai and Tirumkudulu 2008; Sangras and Faeth 1999).  Again, velocities are registered both 
vertically and azimuthally, characteristic of the leading vortex.  Thereafter several vortices follow.  The 
width (i.e., frequency) and magnitude of these pulses is an indication of the turbulence.  At higher 
elevations, both change.  The frequency seems to decrease in nearly all of the velocity measurements with 
higher elevation, indicative of damping of higher frequency vortices, but the magnitude of the turbulence 
may or may not dampen. 

At the tail end of the passing jet, the velocity crosses through zero at approximately the same time for 
all elevations.  Less temporal spread is observed at the back end of the pulse than at the front end.  A 
suction pulse (positive velocity in these plots) is observed at multiple elevations and is typically, though 
not always, observed at all elevations.  This is consistent with the observation that some fraction of the 
fluid breaking through the surface returns back down the same hole through which it emerged (CCN 
272778).  These curves suggest that this is not exclusively a surface effect.  Suction affects the estimates 
of the rate of vessel mixing because it implies that subsequent pulses mobilize some of the same fluid 
repeatedly. 
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Figure 2.11.  Exemplary Characteristics of Test 3-8.5.1 (time stamp 140349): (a) PJM Level, PJM 
Pressure, and Radar Level Average; (b) Vertical Velocities 0, 34, and 60 inches Above the 
Seam; and (c) Vertical and Horizontal Velocities at 60 inches Above Seam Versus Time 
from the Start of the Pulse.  This test was conducted in the 8 ft vessel with H/D=1.0, 
do=1.94 inches, Uo=12 m/s, PVF=0.2 using the S firing sequence with the KB slurry.  
Surface flow reported as “1-Strong” (Bontha et al. 2015, Appendix G).  FIO. 
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Figure 2.12.  Exemplary Characteristics of Test 3-8.1.44 (time stamp 032930): (a) PJM Level, PJM 
Pressure, and Radar Level Average; (b) Vertical Velocities 0, 34, and 60 inches Above the 
Seam; and (c) Vertical and Horizontal Velocities at 60 inches Above Seam Versus Time 
from the Start of the Pulse.  This test was conducted in the 8 ft vessel with H/D=1.0, 
do=1.94 inches, Uo=8 m/s, PVF=0.15 using the S firing sequence with the KB slurry.  
Surface flow reported as “5-NA” (Bontha et al. 2015, Appendix G).  FIO. 

Figure 2.12 shows the same intriguing behavior along the front of the pulse with two slopes on the 
PJM level curves.  As before, the PJM pressure pulse first peaks and resolves and then the surface 
registers a rise.  The steepest slope occurs at the seam at 4.5 s, at 34 inches at 6.2 s, and at 60 inches at 
8.6 s.  Again, this suggests a jet front that advances approximately linearly with time instead of the nth 
root dependencies suggested elsewhere (Kuhn et al. 2013; Bajpai and Tirumkudulu 2008; Sangras and 
Faeth 1999). 

An important feature of the curves in Figure 2.12 is the fluctuations around the mean velocity.  The 
fluctuations are strong at the seam but dampen considerably in frequency and magnitude with increasing 
elevation, suggesting that the turbulence of the jet vanishes at higher elevations.  Indeed, the jet is fully 
turbulent at the bottom of the vessel but begins to lose its turbulence by the middle of the vessel with 
larger vortices preserved, but the smaller vortices have dampened.  Near the top probe, only one or two of 
the largest eddies remain, including the initial vortex, and the flow is all but laminar.  By the top of the 
vessel, no surface flow was reported.  The surface for H/D=1 (H is the vessel fill height and D is the 
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vessel diameter) would be located at 78.6 inches above the seam so the jet had 18 inches remaining in its 
rise, but did not arrive based on visual observations.  Since the vessel composition is nearly homogeneous 
and the particle size is small, buoyancy effects would not necessarily be expected to be a dominant 
mechanism for loss of turbulence, though this report does not quantitatively evaluate or confirm the 
validity of this claim. 

2.4 Analysis of Centerline Data from the 8 Foot Vessel 

Among the data collected in the 8 ft vessel, each data file contained at least five complete pulses 
(often many more) from which averages were obtained.  The PJMs (labeled 0501 through 0506 arranged 
clockwise) were operated with S, A1, and A2 firing sequences.  In the S sequence, all six PJMs were fired 
simultaneously.  In the A1 sequence, every other PJM was fired and then half of the cycle time later the 
remaining PJMs were fired.  In the A2 firing sequence, every other PJM was fired and at approximately 
the end of the drive time of the first set, then the remaining PJMs were fired (while the first began to 
refill).  The pulse was identified from the level of PJM 0501 for the S and A1 firing sequences (every 
other pulse was analyzed for the A1 sequences), or from the combined levels of PJMs 0501 and 0502 for 
the A2 firing sequence.  The beginning of the pulse was determined when the level thereafter dropped 
consecutively for 0.7 s (data was collected at 0.1 s intervals).  The end of the pulse was identified as the 
time when the level (PJM 0501 for S or A1 and PJM 0502 for A2) was lower than or equal to the PJM 
level for the proceeding and following 0.3 s. 

For noisier files, the beginning of the pulse was determined by averaging over 0.3 s intervals to 
smooth out the noise and the end of the pulse was determined as the minimum or first of multiple minima 
of equal depth over 2.1 s.  Please note that this pulse definition includes both drive and possibly some 
portion of the vent processes, though the suction phase of the drive may not yet have started.  For each 
velocity probe, the largest magnitude1 was identified and the beginning of velocity averaging proceeded 
from the first moment in the pulse that the velocity crossed half of the largest magnitude.  This estimates 
approximately (but perhaps not exactly) the inflection point characteristic of the initial vortex passing 
(Shekarriz et al. 1995b; Kuhn et al. 2013).  The end of velocity averaging coincides with the end of the 
pulse as measured from the level drop.2  This definition of velocity may or may not differ from those 
reported elsewhere.  The probe velocities were divided by the actual nozzle velocity as reported by 
Bontha et al. (2015) or nominal test velocity where the actual nozzle velocity was unavailable to obtain 
the scaled velocities plotted hereafter.  The operating conditions and visual observations of upwell (for 
Newtonian simulants) and breakthrough (for non-Newtonian simulants) as recorded by the test 
completion team are summarized in Table 2.3 (Bontha et al. 2015).  These tests used the definition of 
breakthrough from Bontha et al. (2015). 

To succinctly characterize upwell and breakthrough in a single number, a surface flow metric is 
established (see Table 2.3).  This metric is 

 1 if (a) any of the following were observed including upwell visually observed, breakthrough 
observed, surface video shows sustained roll-over of entire field of view or a breakthrough type of 

                                                      
1 Probes were oriented such that the data read a negative value when the velocity was opposed to the gravitational 
vector (i.e., up).  Therefore, the absolute value of all data was taken. 
2 Signal transduction of the Valeport velocity probes delays recording of the velocity information by 2.25 s relative 
to the recording of other data such as level and pressure (Bontha et al. 2015, p. 54). 
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1-Strong or 2-Good (Bontha et al. 2015, Appendix G), and (b) top probe turbulent or turbulent but 
attenuating unless the top probe was deemed unreliable in which case criteria (a) held independently 

 0 if any of the following hold N for upwell, N for brk tru, Not near surface, 5-NA (Bontha et al. 2015, 
Appendix G) 

 0.5 for all others (e.g., at or near surface, Bontha et al. [2015], Appendix G). 

Essentially, the metric is one if turbulent jet flow may be asserted with confidence, zero for no flow at the 
fluid surface and 0.5 for closer calls. 
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Table 2.3. Summary of Test Operating Conditions and Reported Observations for Tests Evaluated(a)  

Test Line 
Time 
Stamp Simulant 

Uo 
(m/s)(b) 

do 
(inch) PVF Firing 

Surface 
Flow 

Cloud 
Height(c) 

Turbulence at 
Top Probe(d) 

Commissioning 112414 water 12 1.94 NR S NR NR Y 
1-8.3.1 163117 2-part 6.23 1.94 0.1 A1 No 24 in N 
1-8.3.2 204721 2-part 9.40 1.94 0.1 A1 No 44 in N 
1-8.3.3 225515 2-part 11.97 1.94 0.1 A1 Uncertain 78 in Pulsy 
1-8.4.1 041232 2-part 6.24 1.94 0.1 S No 26 in N 
1-8.4.2 052539 2-part 9.33 1.94 0.1 S No 62 in N 
1-8.4.3 075218 2-part 12.03 1.94 0.1 S Yes 79 in Y 
1-8.5.1 091231 2-part 11.98 1.94 0.1 A2 Uncertain 74 in Unreliable 
1-8.5.2 102908 2-part 9.35 1.94 0.1 A2 No 45 in N 
1-8.5.3 113936 2-part 6.21 1.94 0.1 A2 No 25 in N 
1-8.6.3 204941 2-part 11.94 1.94 0.2 A2 Yes 79 in Unreliable 
1-8.7.1 220632 2-part 11.93 1.94 0.2 S Yes 79 in Unreliable 
1-8.7.2 001944 2-part 9.41 1.94 0.2 S Uncertain 76 in Pulsy 
1-8.7.6 081911 2-part 12.01 1.94 0.1 S Yes 79 in Y 
1-8.9.2 201434 2-part 9.37 1.94 0.2 S Uncertain 73 in Unreliable 
1-8.9.3 220002 2-part 12.03 1.94 0.2 S Yes 79 in Unreliable 
2-8.3.1 212533 2-part 7.14 2.50 0.1 S No 47 in N 
2-8.3.2 224950 2-part 5.60 2.50 0.2 S No 44 in N 
2-8.3.3 004933 2-part 3.69 2.50 0.2 S No 35 in N 
2-8.3.4 030446 2-part 7.22 2.50 0.2 S No 64 in Pulsy 
2-8.3.5 043608 2-part 9.33 2.50 0.2 S Yes 79 in Y 
2-8.3.6 081004 2-part 10.54 2.50 0.2 S Yes 79 in Y 
2-8.5.1 144130 2-part 3.72 2.50 0.2 S No 38 in N 
2-8.5.2 165007 2-part 5.66 2.50 0.2 S No 53 in N 
2-8.5.3 190406 2-part 7.14 2.50 0.1 S No 55 in N 
3-8.1.37 012317 KB 8.0 1.94 0.15 S No - N 
3-8.1.38 021715 KB 12.0 1.94 0.15 S Yes - Attenuating 
3-8.1.44 032930 KB 7.9 1.94 0.15 S No - N 
3-8.1.45 042131 KB 12.1 1.94 0.15 S Yes - Y 
3-8.3.1 123732 KB 12.0 1.94 0.2 A2 Uncertain - Attenuating 
3-8.5.1 140349 KB 12.0 1.94 0.2 S Yes - Attenuating 
3-8.58.3 151941 KB 15.0 1.94 0.2 S Yes - Y 
3-8.58.4 160201 KB 15.0 1.94 0.15 S Yes - Y 
7-8.2.6 071838 1-part(e) 15 1.94 0.2 S Yes - Y 
7-8.2.9 122520 1-part(e) 15 1.94 0.2 S Yes - Y 
7-8.2.13 071858 1-part(e) 15 1.94 0.2 S Yes - Y 
7-8.4.2 131839 2-part 15 1.94 0.2 S Yes - Y 
7-8.6.2 103104 3-part 15 1.94 0.2 S Yes - Y 

7-8.6.8.3 142759 3-part 5.5 1.94 0.2 S No - N 
7-Change #50 131504 3-part 9.5 1.94 0.2 S Uncertain - Pulsy 
7-Change #51 134344 3-part 12 1.94 0.2 S Yes - Y 

7-8.8.2 140601 4-part 15 1.94 0.2 S Yes - Y 
7-8.10.2 102228 6-part 15 1.94 0.2 S Yes - Y 

7-Change #79 152733 6-part 9.5 1.94 0.2 S No - Pulsy 
7-Change #80 154932 6-part 10.5 1.94 0.2 S No - Pulsy 
7-Change #82 085206 6-part 11.5 1.94 0.2 S No - Pulsy 
7-Change #83 091401 6-part 12 1.94 0.2 S Uncertain - Pulsy 
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Test Line 
Time 
Stamp Simulant 

Uo 
(m/s)(b) 

do 
(inch) PVF Firing 

Surface 
Flow 

Cloud 
Height(c) 

Turbulence at 
Top Probe(d) 

7-9.2.2-E 132953 6-part 12 1.94 0.2 S Yes - Y 
7-9.2.3-E 143502 6-part 13 1.94 0.2 S Yes - Y 

(a) Compiled from Bontha et al. (2015) (Appendix G), Data Acquisition System (DAS) test logs, and run sheets.  
FIO. 

(b) Nozzle velocity is the “Actual PJM Velocity (m/s)” reported in Bontha et al. (2015) or from DAS test logs.  
Target velocities for run sheets 1 through 6 were 6.3, 8.0, 9.4, 12.0, and 15.0 m/s with do=1.94 and 3.8, 5.7, 7.2, 
9.4, and 10.5 m/s for do=2.5 m/s. 

(c) From Bontha et al. (2015), Appendix G, based on side cameras 1 and 2 reported in inches above the seam.  Cloud 
height not consistently reported for run sheet 7 and not observed/relevant to run sheet 3.  Surface flow at 15 m/s 
confirmed in email from Fred Damerow on 4/29/2015 at 10:09 am. 

(d) Observed from the magnitude and frequency of the instantaneous velocity as compared to the local average 
velocity at the central upper probe (Valeport 0579).  The Valeport probe 0581 at the seam along the centerline 
was found to be bent during run sheet 7 testing (email from John Geeting to Kurt Recknagle on 3/24/2015 at 
3:34 pm with attached photo dated 3/23/2015 at 9:25 am).  Though the influence of bending remains unclear, the 
velocity measurements do not of themselves indicate failure of this probe. 

(e) Glass powder added consecutively in three steps of 127, 127, 205.9 kg for concentrations of 1.27, 2.54, and 
4.59 wt%, respectively, per email from Loni Peurrung on 4/27/2015 at 9:35 am. 

Analysis of the data from the 8 ft test vessel is shown in Figure 2.13 in pairs of panels.  The panel on 
the left shows the data for which surface flow was observed visually and the panel on the right shows data 
for which surface flow was not observed visually as recorded in Table 2.3.  The first pair of panels (a and 
b) displays data from the two-part simulant, the second pair represents data for the KB slurry simulant, 
and the third pair represents data from the multipart simulants of run sheet 7.  The data for which surface 
flow was achieved was fit with Eq. (2.1) as described above.  The panels on the left show the fits to be 
reasonable.  The modest curvature of these fits arises from the presence of a significant virtual center as 
summarized in Table 2.4.  The same curves are shown in the panels on the left.  Here the data deviates 
significantly from the curves that represent surface flow, particularly at the higher elevations.  The 
reasons for these deviations are the focus of Sections 4 through 7. 
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Figure 2.13.  Experimental Data from the 8 ft Test Vessel with Central Upwell Velocity and Elevation 
Scaled on a Nozzle Velocity (see Table 2.3) and the Nozzle Diameter (1.94 inches except 
where listed), Respectively, for (a and b) the Two Part Simulant of Run Sheets 1 and 2 at 
Two Diameters, (c and d) the KB Slurry of Run Sheet 3 and Water, and (e and f) the 
Multipart Simulants of Run Sheet 7.  Panels a, c, and e include data for which surface flow 
was observed (fits do not include velocities below um,c/Uo<0.05; surface flow not reported 
for water) and panels b, d, and f represent data for which surface flow was not observed.  
Vertical line at z/do=48 represents the dimensionless fill height of the proposed standard 
high solids vessel and the geometrically scaled 8 ft test vessel. 
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Although velocity probe data cannot be collected precisely1 at the surface of the vessel and a higher 
fill height may have added more confidence, data were collected out to z/do=42 in run sheet 1, z/do=24 in 
run sheet 2, and z/do=38 for run sheets 3 and 7 and clearly approach the nominal fill height.  Figure 2.13, 
therefore, affirms that the data for the 8 ft vessel fall on free jet curves for both Newtonian and 
non-Newtonian simulants, and that these curves may be reasonably extrapolated to the fluid surface in 
many cases.  This analysis does not support the premise that this jet scaling is a distinctive phenomenon 
exclusive to Newtonian or non-Newtonian simulants. 

Table 2.4 summarizes the essential parameters from fitting Eq. (2.1) using Eq. (2.2) for all of the 
available data sets.  When surface flow is achieved with Newtonian simulants, the value of hc ranges from 
2.41 to 5.58, and hc generally remains less than 1 when surface flow is not achieved.  Caution should be 
exercised in using smaller values of hc because they tend to be associated with curvature that calls into 
question the linearity asserted in Eq. (2.2) (see Sections 5 and 6 for the development of jet velocity 
equations that account for curvature).  When surface flow is achieved, zo/do is generally positive.  
Although this would suggest that hc and zo/do may serve as a success metric, neither of these values have 
yet been predicted a priori from first principles or directly from operating conditions for tertiary jets (this 
is the purpose of Section 3), and the effect of head shape on virtual origins remains unknown.  
Nevertheless, zo/do is clearly nonzero and significant and cannot, therefore, be excluded a priori unlike 
prior analyses of primary or secondary jets2 (Rajaratnam 1976, pp. 48 and 235). 

                                                      
1 Because fluid associated with the pulse volume fraction must be suctioned into the PJM, the liquid level in these 
tests decreases below the nominal fill height.  This leaves some velocity probes too close to the nominal fill height 
dry.  The inability to establish a baseline velocity prior to the pulse leaves such data less reliable. 
2 The central upwell is a tertiary jet.  A primary jet issues directly from a nozzle.  A secondary jet results from the 
impingement of a primary jet on a surface.  The central upwell is a tertiary jet because it arises from the 
impingement of secondary radial jets. 
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Table 2.4.  Central Upwell Fits(a) 

Reference Constituents 
Surface 
Flow 

Average 
hc 

Average 
zo/do 

zo 
(inch) 

Bontha et al. (2003a) Water NR 4.64 15.8 63.1 
Bontha et al. (2003b) Water NR 2.64 5.14 20.5 
Bontha et al. (2003b) 10 m glass beads 5 wt% Y 2.55 6.31 25.2 
Bontha et al. (2003b) 10 m glass beads 20 wt% Y 2.48 5.67 22.7 
Bontha et al. (2003b) 35 m glass beads 5 wt% Y 2.69 6.19 24.7 
Bontha et al. (2003b) 35 m glass beads 20 wt% Y 2.46 5.79 23.2 
Bamberger et al. (2005) KB slurry, APEL, Uo>10 m/s Y 1.50 -5.19 -4.57 
Bamberger et al. (2005) KB slurry, APEL, Uo<10 m/s Y 0.209 -20.4 -18.0 
Bamberger et al. (2005) KB slurry, LTTS, Uo>7 m/s Y 2.07 -5.19 -20.8 
Bamberger et al. (2005) KB slurry, LTTS, Uo<7 m/s N 0.290 -10.2 -41.0 
Commissioning(b) Water NR 6.49 46.1 89.3 
Run sheet 1(b) Glass powder, Al2O3 Y 4.26 32.8 63.5 
Run sheet 1(b) Glass powder, Al2O3 N 0.0349 -8.76 -17.0 
Run sheet 2(c) Glass powder, Al2O3 Y 2.41 7.65 19.1 
Run sheet 2(c) Glass powder, Al2O3 N 0.109 -7.63 -19.1 
Run sheet 3(b) KB slurry, Uo~12-15 m/s Y 5.29 51.1 99.0 
Run sheet 3(b) KB slurry, Uo~8 m/s or A2 firing N 0.915 3.04 5.89 
Run sheet 7(b) Glass powder, 1.27 wt%, Uo=15.0 m/s  Y 4.76 26.9 52.1 
Run sheet 7(b) Glass powder, 2.54 wt%, Uo=15.0 m/s Y 5.10 29.4 57.1 
Run sheet 7(b) Glass powder, 4.59 wt%, Uo=15.0 m/s Y 4.98 27.6 53.5 
Run sheet 7(b) Glass powder, W,(d) Uo=15.0 m/s Y 4.14 22.3 43.2 
Run sheet 7(b) Glass powder, W,(d) SiC, Uo≥12.0 m/s Y 4.54 27.0 52.4 
Run sheet 7(b) Glass powder, W,(d) SiC, Uo≤9.5 m/s N 0.188 -0.347 -0.674 
Run sheet 7(b) Glass powder, W,(d) SiC, beads, Uo=15.0 

m/s 
Y 5.58 36.3 70.4 

Run sheet 7(b) Glass powder, W,(d) SiC, beads, Al2O3, 
sand, Uo≥12.0 m/s  

Y 4.35 28.7 55.6 

Run sheet 7(b) Glass powder, W,(d) SiC, beads, Al2O3, 
sand, Uo≤11.5 m/s 

N 0.287 -9.41 -18.3 

APEL is Applied Process Engineering Laboratory. 
(a) Values um,c/Uo<0.05 were not included in the fits where surface flow was achieved (they were included when 

surface flow was not achieved) as they present significant curvature on plots of Uo/um,c versus z/do, which 
indicates that another flow regime has set in.  This occurred at the upper probes for tests 1-8.3.3, 1-8.7.2, 
3-8.58.3, 3-8.58.4, 7-change #83, 7-9.2.2-E, and 7-9.2.3-E.  A change in regimes is perhaps expected for the 
KB slurry of run sheet 3 as indicated in Section 6.  The remainder indicate that the jet flow itself did not 
achieve surface flow, but that jet-induced motion, perhaps akin to the coherent motion near the cloud height, 
did reach the surface. 

(b) Eight foot vessel test data from run sheets 1, 2, 3 and 7 FIO. 
(c)  Run sheet 2 differs from the other run sheets as abstracted here in that it has a nozzle diameter of do=2.5 inches 

instead of 1.94 inches.  Eight foot vessel test data from run sheets 1, 2, 3 and 7 FIO. 
(d)  W denotes the dense tungsten component, tungsten carbide with a density of 9.6 g/cm3. 

2.5 Minimum Turbulent Velocities and the Poirier-Etchells Criterion 

An essential question that arises from the analysis of experimental velocity data is what local velocity 
is necessary to sustain jet turbulence.  How much can the jet velocity attenuate before turbulence 
vanishes?  This is particularly important on a log-log plot where the velocity never completely vanishes. 
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This question is addressed by the Poirier-Etchells criterion.1  This criterion asserts that at any location 
the local velocity must be in excess of a cutoff velocity to remain turbulent.  When coupled with the free 
jet velocity equation that relates the local velocity to elevation (Eq. (2.1)), the elevation at which 
turbulence will fail and consequently the turbulent jet will fail may be determined.  This elevation may be 
compared to the elevation of the fluid surface to predict whether the upwell will reach the surface as a 
metric of surface flow.  Each part of this argument is now evaluated in turn. 

First, the local velocity metric asserts that turbulence persists where the local jet velocity remains in 
excess of a specific velocity, originally given as 0.5 ft/s (0.15 m/s).  This is a purely empirical, 
experienced based rule of thumb.  The cutoff velocity applies not only at the upper surface but may apply 
at any point throughout the vessel.  For example, Figure 2.14a compares the local velocity at both the top 
and middle probes to readings of turbulence at each probe in the 8 ft vessel tests.  The turbulence metric is 
unity if the temporal velocity trace shows signs of turbulence (e.g., instant velocities that differ 
significantly from the average velocity), zero if the temporal trace of the local velocity shows no sign of 
turbulence, and 0.5 if the jet is pulsy for the Newtonian simulants or the turbulence is attenuating for the 
non-Newtonian simulant.  When the local velocity remains greater than 0.18 m/s the jet shows indications 
of turbulence, which is in approximate agreement with the 0.50 ft/s (0.15 m/s) cutoff originally proposed, 
though the jet flow may remain pulsy or attenuated.  Conversely, when the local velocity is greater than 
0.33 m/s for the Newtonian simulant or 0.42 m/s for the non-Newtonian simulant, the upwell jet is fully 
turbulent.  The difference in the cutoff velocities suggests that the cutoff velocity may depend on the 
material through which the flow is penetrating, but there is no a priori reason to expect that the cutoff 
velocity for the central upwell would depend on vessel dimensions because turbulence is a property of the 
flow unless the vortex itself is large enough to be confined by the vessel or vessel internals.  This 
intimates the possibility of evaluating the cutoff velocity from small scale measurements.  Additional 
modeling of the turbulence structure and stability in the presence of a full range of slurries may predict 
the cutoff velocity directly as a function of slurry properties (Landa et al. 2005).  For wall jets, different 
cutoff velocities may apply because the turbulence structure may be significantly affected by the presence 
of a bounding surface (Bird et al. 2002; Masuyama et al. 1980). 

The cutoff velocity dictates the conditions under which the jet begins to fail, but does not predict the 
location within mixing vessels where the failure may occur.  This is important because if the jet velocity 
drops below the cutoff velocity at an elevation significantly below the fluid surface, then the upwell may 
not disturb or induce flow at the surface.  Fortuitously, Eq. (2.1) provides a relationship between a 
decaying centerline velocity and elevation for a free jet.  One may then construct a ratio of the centerline 
velocity to the cutoff velocity, uco.  When this ratio meets or exceeds one, the jet should reach the surface.  
This ratio may be rearranged as  
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Remarkably, this dimensionless group (i.e., the one in the middle) is independent of geometric scale (as 
one might expect of a useful rule of thumb) where zo/do does not change and Uo is held constant, because 
hc will be shown previously to be independent of vessel geometric scaling for a free jet (see Section 3).  
Sections 5-6 present alternative velocity profiles from which hc can be approximated in the presence of 
                                                      
1 Personal conversation with Michael Poirier, 3/4/2015. 
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strong negative buoyancy or yield stresses.  This may be necessary where hc is small to account for the 
curvature found in fitting Eq. (2.2) to slurries. 

To evaluate whether this dimensionless criterion may be used to predict observations of upwelling, 
surface flow or breakthrough of the central upwell at the fluid surface in WTP vessels, Figure 2.14b 
shows this dimensionless group versus a surface flow metric.  Essentially, the metric is one if turbulent jet 
flow may be asserted with confidence, zero for no flow at the fluid surface and 0.5 for closer calls.   
Figure 2.14b shows that this group does a remarkably good job in estimating whether surface flow occurs 
using the two velocity cutoffs for the two types of materials. 

 

Figure 2.14.  (a) The Local Velocity versus Turbulence Metric Described in the Text for Various 
Simulants at Two Probe Elevations (top 60-68 inches above seam and middle 34 inches 
above seam).  The original Poirier-Etchells cutoff velocity of 0.50 ft/s (0.15 m/s) (dots) and 
the revised velocity cutoffs of 0.33 m/s (dashed) and 0.42 m/s (dash dot) for Newtonian and 
KB slurries, respectively, are shown as horizontal lines.  (b) The Dimensionless 
Poirier-Etchells Group Differentiated on the Surface Flow Metric Described in the Text. 

A test of this criterion may be predicting the cloud height.  Setting the dimensionless group in 
Eq. (2.12) to 1 and solving for the elevation where this criterion fails may be a predictor of cloud height, 
zcloud.  In scaled form, 
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Predicted cloud heights were compared to the cloud heights measured in run sheets 1 and 2 and a least 
squares technique was used to estimate the cutoff velocity as uco=0.60 and 0.48 m/s for the 1.94 and 
2.50 inch nozzles, respectively.  Figure 2.15a compares these two with the single value of uco estimated 
for each of the two nozzle diameters.  The figure shows that the agreement is reasonable with scatter 
anticipated for a rule of thumb.  Figure 2.15b shows that this simple projection reasonably but not 
perfectly differentiates surface flow from no surface flow.  The lower cutoff velocity of uco=0.33 m/s did 
not accurately predict either the cloud height or surface flow conditions.  This indicates that other effects 
also contribute to the cloud height as discussed in Section 5.2. 
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Figure 2.15.  (a) Predicted versus Experimental Cloud Height Scaled on Nozzle Diameter with uco=0.60 
and 0.48 m/s for the 1.94 and 2.50 inch Nozzles, Respectively, for Tests from Run Sheets 1 
and 2 Listed in Table 2.3 Compared to Fill Height/Nozzle Diameter for do=1.94 inches 
(dash, blue) and 2.50 inches (dash dot, red).  (b) Predicted Cloud Height Differentiated on 
the Surface Flow Metric of Table 2.3 with uco as in Panel a. 

2.6 Summary 

The central upwell may be approximated as a free jet in both Newtonian and non-Newtonian slurries 
at sufficiently high velocities.  Equation 2.1 predicts jet flow when the jet coefficient and depth of the 
virtual origin are known.  See Section 3 for formulas for jet coefficients of free jets, but use of Eq. 2.1 is 
inappropriate when the jet velocity is insufficient.  See Sections 5 and 6 for jet flows at lower velocities 
where negative buoyancy and yield stresses are influential, making the jet not “free”.  What constitutes 
sufficient jet velocity is not determined herein quantitatively. 

The Poirier-Etchells criterion asserts a cutoff velocity above which jet turbulence persists.  The jet is 
predicted to reach the surface when the dimensionless group in Eq. 2.12 exceeds one.  There is 
insufficient evidence to reliably predict performance of full scale jets from smaller scale data because the 
cutoff velocity has not been shown to be scale independent experimentally.  This limitation may be 
overcome by analyzing experimental data at other scales to determine the cutoff velocity, quantifying the 
radial extent of vortices experimentally, and by modeling vortex size.  
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3.0 Upwell Velocity Profile from Momentum Conservation 

Conservation of momentum arguments may be used to describe and predict the jet flow profile of the 
central upwell.  This section evaluates and determines how the free jet profile scales between vessels.  
The momentum flux at any point is u2, where  is the local density and u is the local velocity.  This 
product is used to predict the velocity profiles based on conservation of momentum for various 
conditions. 

3.1 The Upwell Velocity Profile 

The momentum flux leaving a nozzle with velocity Uo and slurry density o is then oUo
2.  To obtain 

the rate of momentum crossing a control surface, the momentum flux is multiplied by its area.  For a 
nozzle diameter of do, the relevant area is do

2/4.  One might imagine that with N nozzles, the total rate of 
momentum contributing to the central upwell is NoUo

2do
2/4.  However, at least some of the momentum 

goes toward the wall instead of the center.1 

To determine how much goes toward the center, consider a control volume of a regular n-gon in the 
plane perpendicular to the PJM tubes with vertices at the PJM centerlines.  This n-gon is a square with 
four PJMs and a hexagon with six PJMs and has a curvilinear bottom that hugs the fluid side of the vessel 
surface.  Each nozzle contributes (N-2)/2N of its flow to the central upwell and (N+2)/2N to the flow 
along the wall, which is precisely true for a vessel with a flat bottom with nozzles sufficiently far away 
from a wall.  However, some of the outwardly directed PJM flow may go up along the side wall and then 
return toward the center, providing a crossflow.2  If the fraction of the flow that returns to contribute its 
momentum to the central upwell is fr, then fN=(N-2)/2N+fr(N+2)/2N is defined as the total fraction of the 
PJM flow that contributes to the central upwell.  (The value of fN is estimated from historical and 8 ft test 
below.)  For N nozzles, the rate of momentum addition to the control volume is then 

22

4 oooNo dUNfM 
 (3.1) 

In the absence of constraints, a larger nozzle diameter for the same velocity would give the most 
momentum and, therefore, be preferred.  However, if the volumetric flow rate for each PJM, Q, is fixed, 
there is a tradeoff between the velocity and diameter.  Replacing the velocity with Uo=4Q/do

2 gives 
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1 If the PJMs were buttressed against the vessel side wall such that all of the flow were toward the center, then the 
rate of momentum addition to the control volume becomesUo

2do
2N/4, which is likely the source of the arguments 

given in Bamberger et al. (2005) and Gauglitz et al. (2009).  However, the PJMs are separated from the vessel wall 
and the proposed standard high solids vessel floor curves with an elliptical head. 
2 Chapter 9 of Rajaratnam (1976) discusses crossflow.  Crossflow leads to deflection of the jet profile in the 
direction of the crossflow.  This would suggest a marginally larger angle of incidence between the centerline (now 
curving) of the jet and the vessel bottom, which would increase the value of hr in Eq. (3.13) toward the center of the 
vessel and decrease it toward the vessel wall (Beltaos 1975; Beltaos and Rajaratnam 1977). 
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which suggests that decreasing the diameter will increase the rate of momentum addition under this 
constraint.1  Similarly, recognizing that the volume of fluid that exits the PJMs is approximately equal to 
the flow rate times the drive time, tD, times the number of PJMs or the pulse volume fraction (PVF)2 or 
drive volume fraction (DVF) multiplied by the total vessel volume (Vvessel).  The rate of momentum 
addition is then 
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When scaling between 8 and 16 ft vessels, the volume will approximately cube, the nozzle diameter will 
approximately double, and the drive time will approximately double while holding all else constant, so 
that the rate of momentum addition will be substantially larger than in the 8 ft vessel.  More momentum 
addition means more upwell velocity and more particle transport.  Of course, in the larger vessel the 
momentum has larger forces to overcome.3 

The objective here then is to use conservation of momentum to find an expression for um,c from the 
momenta of the N jets, assuming the jet to be free.  Jet flows that are not free are covered in Sections 4 
through 7.  The momentum leaving the control volume through the central upwell is  
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Setting the two rates of momenta (i.e., jet forces) equal gives 
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where c=r/c in the absence of surface or body force (see Meacham et al. 2012, Eq. 7-6).  The integral 
becomes a constant 
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The values of 2,1 may be estimated directly from the radial velocity profiles given in Section 2.2.   
Table 3.1 gives 2,1 constant for the four theoretical models of Eqs. (2.5) through (2.8).  Yet, the historical 
data analyzed in Figure 2.4 suggests that the radial profiles may be steeper for slurries than the theoretical 
values of fluid-only jets would suggest.  Values of 2,1 were estimated from the normalized Fermi-Dirac 
function fits of Figure 2.4 as also shown in Table 3.1.  Because the radial distribution of velocity profiles 

                                                      
1 This is consistent with the findings in CCN 272775. 
2 This definition of PVF does not include the vent time as some definitions do and is, therefore, equal to the DVF.  
Please see CCNs 272774 and 272778 for further discussion of pulse volume fraction.  PVF will be retained for 
notational convenience. 
3 These are mostly surface forces so they would at most scale with the square of the vessel dimension canceling out 
the effect, but only if these surfaces or shear forces are significant; they are not for a free jet. 
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was not measured in the 8 ft test vessel, the values of this constant cannot be estimated for the particle 
compositions considered in these vessels. 

Table 3.1.  Constants Derived from Radial Distributions 

Reference Model or Constituent 2,1 c
99(a) 1,1

(b) 
Wiegel (1964) Gaussian (Eq. (2.5)) 1/Ln(16)~0.361 2.578 1/Ln(4)~0.721 
Rajaratnam (1976) Squire and Trouncer (Eq. (2.6)) 3/4-4/2~0.345 1.872 1-4/2~0.595 
Rajaratnam (1976) Prandtl/Tollmien (Eq. (2.7))(a) 0.349 2.493 0.738 
Bird et al. (2002) Boussinesq/Goertler (Eq. (2.8)) (1+21/2)/6~0.402 4.661 (1/2+1/21/2) 

~1.207 
Bontha et al. (2003b) Water 0.383 2.716 0.762 
Bontha et al. (2003b) 10 m glass beads 5 wt% 0.378 2.634 0.736 
Bontha et al. (2003b) 10 m glass beads 20 wt% 0.363 2.194 0.621 
Bontha et al. (2003b) 35 m glass beads 5 wt% 0.369 1.948 0.574 
Bontha et al. (2003b) 35 m glass beads 20 wt% 0.389 2.795 0.787 
Bamberger et al. (2005) KB slurry 0.398 1.597 0.528 

(a) The polynomial fit of Eq. (2.7) has a minimum of 0.00506 at c=2.663.  Integration proceeds to this minimum. 
(b) Defined in Section 7. 

Solving for um,c then gives 
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where cj represents an additional jet fitting constant, where needed to account for variations from a 
circular shape (Rajaratnam 1976), the inclusion of momentum carrying particles if not included explicitly 
(see Section 5), influences of yield stresses, etc.  (This coefficient is evaluated explicitly in Table 3.3.)  
Scaling the local velocity on the nozzle velocity and the elevation on the nozzle diameter gives 
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from which the jet coefficient may be defined as 
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Please note that viscosity is not a significant factor in these expressions because momentum in the axial 
direction is conserved regardless of laminar or turbulent viscosity model in the absence of a yield stress, 
such that the viscous terms vanish in conservation of momentum (Bird et al. 2002).  However, turbulent 
viscosity may play a role in the radial spread through conservation of energy as described in Section 4.3. 

The key addition here is a clear expression for how the number of PJMs contributes to the velocity 
profile.  As the number of jets increases, the central velocity should increase, but fN has not previously 
been estimated.  By simple geometric arguments, one may anticipate that for six PJMs, f6=1/3 because 
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only 1/3 of the radial outward flow from a PJM has a vector component of velocity toward the center of 
the vessel.  Similarly in a four-PJM vessel, f4 may equal 1/4 because only 1/4 of the radial outward flow 
has velocity component toward the center of the vessel, giving f6/f4=4/3.  This ratio may be estimated 
from the water data from historical testing (hc=4.64, Bontha et al. 2003a) and from the 8 ft test vessel 
(hc=6.49) in Table 2.4.  Asserting cj, c, 2,1, o, and  to not vary between tests and scales, 
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Similarly, in the A1 and A2 firing sequences, only three of the PJMs operate at any given time, 
suggesting an approximate comparison between N=3 for A1 or A2 firing and N=6 for S firing.1  By 
geometric arguments, f3=1/6 because only one-sixth of the flow is directed inward toward the vessel 
center, such that one may anticipate f6/f3=2.  Comparing test 1-8.3.3 with A1 firing (hc=2.14 without the 
top probe that was not fully turbulent, N=3 effective) or test 1-8.5.1 with A2 firing (hc=1.96) to 1-8.4.3 
with the S firing sequence (hc=3.96) gives f6/f3=3/6(3.96/2.14)2=1.71 or f6/f3=3/6(3.96/1.96)2=2.05, 
respectively. 

The approximate agreement with these simple geometric arguments is remarkable and somewhat 
unexpected because other factors may influence the momentum available to the central upwell, including 
curvature of the vessel bottom, peripheral flows, and bottom shear stresses.  Nevertheless, this analysis 
suggests that these factors may cancel out.  Mathematically, increasing fN to one by driving all of the flow 
vectors toward the center would substantially increase the momentum addition to the central upwell.  
Evaluation of the substantial increases in cloud and “cavern” heights and changes in bottom 
clearing/motion remains outside the scope of this report. 

3.2 Upwell Velocity Profile Including Shear Along the Vessel Bottom 

This subsection shows that shear stresses along the vessel bottom are small enough to be negligible 
with respect to the upwell flow.  The reader may advance to the next subsection without loss of 
continuity.  The derivation thus far has not included shear stresses along the bottom and the influence of 
the radial position of the PJM or the standoff distance.  To estimate the influence of PJM position on the 
central upwell, consider momentum lost along the vessel floor due to shear stresses.  For convenience to a 
first order approximation, imagine all the flow approaches the vessel centerline radial as if it were 
generated by an infinite number of differentially small PJMs in a circle of radius fRR.2  Momentum is 
primarily lost between the PJM radius at fRR (where fR lies typically in the range of 0.6 to 0.7) and the 
edge of the central vortex at fuR (see Table 2.1), due to the shear stresses along the vessel bottom, w.  
Integrating over the bottom of the vessel surface converts the stress along the bottom into a frictional 
force.  The domain of integration may be divided into 2N domains that integrate from 0 to /N.  For 

                                                      
1 The A1 and A2 firing sequences typically have some suction in one set of PJMs while the other set is firing, 
reducing the momentum available to the central upwell. 
2 An alternative is to set the equations up in the oblate spheroidal coordinate system, do the integrations there, and 
then convert back into a radial or Cartesian coordinate system as desired.  Computational fluid dynamics can of 
course address this directly and provide corrections.  Integration over azimuthal direction would likely not 
significantly affect the functional form, though variations in constants may arise if completed more rigorously.  This 
derivation suffices to build intuition. 
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example, with six PJMs, there are 12 identical wedges that span a 30° angle.  Then the rate of momentum 
loss becomes 
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The stress along the bottom may be expressed in terms of a skin coefficient of friction, cf, as 

w=cfbum,r
2/2 (3.12) 

where this density, b, is the slurry density along the vessel bottom (which may or may not equal o), and 
um,r is the maximum velocity in the radial velocity profile along (nearly parallel to) the vessel bottom.  In 
the form of Eq. (2.1), 

r

dUh
u oor

rm , (3.13) 

where hr is the jet coefficient in the radial direction, r (Beltaos 1975; Rajaratnam 1976; Beltaos and 
Rajaratnam 1977; Phares et al. 2000), and Rajaratnam (1976) suggests the virtual origin for the radial wall 
jet remains small enough to be negligible.  Substitution and integration yields 

 uRoorbflost ffdUhcM ln222 (3.14) 

The momentum available to the rising jet is reduced by Mlost so that conservation of momentum requires 
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where the additional factor on the right-hand side represents the loss of momentum due to surface shear 
forces as the radial jet moves from PJM to vessel center.  Solving for um,c gives 
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where cj represents an additional jet fitting constant as needed to fit data.  In scaled terms, 
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from which the jet coefficient may be defined as 
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This shows that including the shear stress modifies the coefficient and does not provide an intercept 
associated with the distance the jet traveled, as may have been anticipated from prior “cavern” height 
derivations.1  This dimensionless group is cfbh

2ln(fR/fu)/(oNfN).  Beltaos (1975) gives  

cf=0.098Reo
-1/5 (3.19) 

where Reo is the nozzle Reynolds number based on the density, velocity, diameter, and viscosity at the 
nozzle.  Beltaos (1975) also gives  

hr()=1.10[1+cos()]/sin1/2() (3.20) 

in the direction of the vessel center and  

hr()=1.10[1-cos()]/sin1/2() (3.21) 

in the direction of the vessel wall where  is the angle between the centerline of the jet and the vessel 
bottom.2  Because the nozzle Reynolds number is much greater than 1 (~103 to 104) and b/o, hr and 
ln(fR/fu)/NfN are all of order 1, the addition is marginal in terms of the central upwell.3  When fR=0.6 as 
opposed to 0.7, there is less distance and less friction between PJMs and centerline, which suggests a 
larger scaled upwell velocity.  However, curvature along the vessel bottom will enhance hr more with 
fR=0.7 than 0.6.  In either case, these changes likely do not make a large difference.  Beltaos (1975) and 
Beltaos and Rajaratnam (1977) argue that the standoff distance for a radial jet is not significant outside 
the region of impingement, which completes this argument. 

The alternative to this approach to evaluate the influence of PJM position and standoff distance using 
Poreh et al. (1967), which was derived specifically for solids free flows.  Kuhn et al. (2013, p. 2.27) start 
with Eq. 28 in Poreh et al. (1967), which, when rearranged to isolate the shear stress along the bottom, is 
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where b is the standoff distance.  Substituting the kinematic momentum flow K=Ckdo
2Uo

2/4 where Ck is a 
nozzle coefficient gives 
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Integrating the shear stress over the vessel bottom as before gives the shear friction force as 

                                                      
1 Even if one takes a Taylor series expansion of the second square root, an intercept does not arise. 
2 Streeter (1971) gives a different formula with the same trend.  Please note that the 8 ft vessel has a flanged 
spherical head while the 16 ft standard high solids vessel has a 2:1 elliptical head, which modestly affects the value 
of . 
3 Shear stresses may or may not be significant elsewhere in the vessel, but must play a significant role in particle 
transport along the vessel bottom.  The erosion rate can be determined from first principles by a similar analysis 
outside the present scope of this report. 
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(3.24) 

Conservation of momentum in the same pattern as above returns 

 




















































1
Re

1

4
81

4
          

2

3.03.02017
22

0

22
,

2

u

R

Roo

b

N
kooNo

cccccmc

f

f

Rf

b

Nf
CdUNf

dfu






 (3.25) 

Solving for um,c gives 
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where cj represents an additional jet fitting constant as needed.  In scaled terms, 
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from which the jet coefficient may be defined 
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(3.28) 

This new expression suggests that increasing the standoff distance will decrease the scaled velocity.  
Again, the effect is small because b/ReofRR remains much less than 1, and 1/NfN and b/o and (fR/fu)

0.3-1 
are order 1.  Because it is small, it will be neglected in the further derivations, though a simple correction 
factor remains sufficient.  Notably, the nozzle Reynolds number lies in the denominator of the correction 
term. 

3.3 Upwell Velocity Profile in the Presence of Bulk Flow 

Bulk flow may affect the velocity profile of the central upwell.  Bulk flow is induced either by vessel 
level rises due to the injection of large amounts of liquid into the vessel from the PJM tubes or by bulk 
particle settling.  The former clearly induces an upward velocity parallel to the central upwell jet as 
evidenced by level rises observed experimentally.  For the latter, if particles and fluid comprise a single 
phase of average density and the particles are uniformly distributed, then the fall of heavier particles and 
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elevation of lighter liquid gives rise to a net downward mass average velocity.1  In either case, this gives 
rise to a compound jet.  A compound jet comprises a central jet surrounded by fluid in motion with 
velocity U1 parallel to the jet axis. 

Defining the U1 as positive in the upward vertical direction keeping the downward pointing settling 
velocity ui

T positive, U1 may be approximated in terms of the PVF as  
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where Hs is the height above the seam, tD is the drive time, DPJM is the diameter of the PJM tube, wi is the 
mass fraction in suspension, ui

T is the magnitude of the settling velocity2 of particle i, and s,i is the 
density of solids i.  Vhead has been retained, generally because it varies from the spherical head in the 8 ft 
vessel to a 2:1 elliptical head in the proposed 16 ft vessel.  Alternatively, U1 may be approximated as  
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where lPJM is the change in pulse tube level.  These formulations conveniently lump bulk flow from both 
sources together.  To estimate which of the two effects is larger, Table 3.2.1 of run sheet 7 (CCN 271190) 
gives drive times of 5.5 to 33 s for the range of nozzle velocities (5.00 to 15.00 m/s) and PVFs (0.10 to 
0.20) of interest in the 8 ft vessel and Figure 1.1 Hs=78.7 inches (2.00 m) for H/D=1.  Braun (2012) gives 
D=92.5453 inches, and BNI (2014) gives the PJM pipe as 16 inch Schedule 10S so that the outer diameter 
DPJM=16.000 inches and the inner diameter DPJM=15.624 inches.  Then the bulk average velocity from a 
PJM pulse is 0.0015 to 0.044 m/s from the first term on the right in Eq. 3.29 with Vhead=0 in this estimate.  
Similarly, the most challenging simulant that does not have significant hindered settling is the full six-part 
simulant from Table 2.2.  Table 3.2 shows that the contribution of particle settling is approximately 
7.3.10-4 m/s.  This is approximately two orders of magnitude smaller than the velocity due to PJM level 
rise, suggesting that lumped particle settling may be safely neglected in this context (individual species 
may still settle as considered in Section 4.2). 
  

                                                      
1 Solids move down at a rate of ui

T and a corresponding volume of displaced fluid moves up at the same net rate.  
Please note that this derivation does not differentiate between free and hindered settling and only considers the 
terminal velocity.  Expressions for settling in a non-Newtonian fluid may also apply (see Kuhn et al. 2013, 
Appendix E), which is why the term is left somewhat general. 
2 The settling velocity is defined as positive giving the minus sign in this equation. 
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Table 3.2.  Bulk Mass Average Velocity Due to Particle Settling for Run Sheet 7(a) 

Constituent 
Particle Density 

(g/cm3) 
wi 

(in suspension) 
ui

T 
(m/s) 

wiui
T(1-f/s,i) 
(m/s) 

SiC 3.2 0.0628 3.0.10-5 1.3.10-6 
W(b) 9.6 0.0048 1.2.10-3 5.0.10-6 
Glass powder 2.5 0.0459 7.0.10-3 1.9.10-4 
Al2O3 3.9 0.0042 9.0.10-2 2.8.10-4 
Sand 2.65 0.0012 1.3.10-1 9.4.10-5 
Glass beads 2.5 0.0018 1.4.10-1 1.5.10-4 
Sum - - - 7.3.10-4 
(a) From Table 2.2.  Suspension weight fractions based on 12.08% from M. Minette email “MCE Loni testing 

through 10.doc” on 3/19/2015.  FIO. 
(b)  W denotes the dense tungsten component, tungsten carbide with a density of 9.6 g/cm3. 

Following the arguments in the derivation for a compound jet (Rajaratnam 1976, Chapter 4) and 
preserving the constant flow U1 in every derivative preserves the rate of excess momentum of the jet 
alone as 

  rdrUu
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
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2
12 (3.31) 

(Rajaratnam’s derivation limited integration from 0 to 2 in conjunction with the radial profile given by 
Squire and Trouncer, Eq. 2.6).  Following Eq. 4-5 in Rajaratnam (1976), the velocity profile is asserted in 
the central upwell of the form 

   cccm fUuUu 1,1  (3.32) 

consistent with known jet physics to preserve similarity.1  When c is large, fc vanishes and u=U1 as 
expected.  Conversely, when c is small, fc approaches unity and u=um,c as expected.  Rajaratnam (1976) 
shows that momentum of compound jets is conserved.  Therefore, setting the rate of momentum in 
Eq. (3.31) equal to the rate of momentum entering the control volume, Mo, given in Eqs. (3.1) to (3.3) 
gives  
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22
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22  (3.33) 

                                                      
1 Rajaratnam (1976) asserts that this only holds in the strong jet limit where um,c>>U1 but does not offer an 
alternative in the weak jet limit.  The weak jet limit falls out of the derivation of Eq. 4-44 in Rajaratnam (1976), in 
which the momentum flux is uU1.  This would lead to a scaling regime in which the jet velocity scales as z-2/3 with 
a jet spread of z1/3, although the functional form of the radial distribution of velocities was not given; see Rajaratnam 
(1976), Eq. 4-73.  This would be advantageous because it would indicate that the jet would go further even though it 
is weaker, which is partially counterintuitive and partially justified by a lower spreading rate.  However, 
Rajaratnam’s Eqs. 4-44 and 3.31 herein differ only in how the constant U1 is treated in derivatives, and the weak jet 
region only falls out if one arbitrarily forces the derivatives of the constant to zero.  Furthermore, Rajaratnam (1976) 
is left to ponder in Chapter 4 thereof why experimental data for slow jets scales as z-1, suggesting that the weak jet 
scaling regime may be fictitious.  For the purposes of this report, this suggests that the self-similar profile may be 
reasonable for all ratios of um,c/U1.  In Rajaratnam’s strong jet limit, the derivations herein become identical at his 
Eq. 4-49. 
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Solving for um,c gives 
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where cj represents an additional jet constant (if needed to fit data).1  More generally, Lo may be defined 
as the Loni number, which represents the ratio of the rate of jet momentum to that of the peripheral bulk 
fluid,  
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The Loni number is a member of the larger generalized family of Froude numbers that represent the ratio 
of inertia to an external field (there typically gravity) but is distinguished here because the traditional 
Froude numbers vary with geometric scale, but this number does not.  Please note that the square of the 
Loni number was defined such that the Loni number must always be nonnegative regardless of the sign of 
U1.  Then, 
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and in scaled terms, 
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from which the following may be defined 
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j
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h 1

1,28
 (3.38) 

Substituting Eq. (3.1) gives 
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1,28
  (3.39) 

which is otherwise identical to Eq. (3.9).  Substituting Eq. (3.2) gives 

                                                      
1 Abramovich (1963, Chapter 1) argues that the radial spread of jets may be substantially influenced by co/counter 
current flow relative to the jet axis. 



 

3.11 

1
22

16

Ud

QNf
Lo

o

oN





  and 

oo

oN

c

j
c

Ud

QNfc
h

2
1,2

2

2





  (3.40) 

Substituting Eq. (3.3) gives 
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These expressions show how hc may vary in the absence of geometric scaling with constant Strouhal 
number (Sr=tDUo/do) and thereby facilitates comparison of disparate data sets. 

Finally, it is noted that the ratio of U1/Uo is typically small in the systems of relevance.  As discussed 
above, U1=0.0015-0.044 m/s, and Table 2.3 shows Uo=3.7-15 m/s.  This suggests that bulk motion in 
these systems is relatively quiescent compared to the jet itself.  Indeed, a jet that traverses only a few tens 
of millimeters each second will surely fail to reach the surface with drive times of only 5.5 to 33 s.  This 
simplifies the analysis considerably.  Therefore, in the data analysis that follows the ratio of U1/Uo will be 
neglected. 

3.4 Jet Coefficients Compared to Data 

Having removed from consideration a prominent role for bulk motion relative to jet motion, the jet 
fitting constant, cj, may now be determined.  This is the final remaining factor in direct prediction of hc 
for a free jet without necessarily resorting to experiments.  To estimate cj, Eq. (3.9) may be rearranged to 
find 

oN
ccj Nf

hc



 1,28
 (3.42) 

The experimental and model predicted values of hc along with cj are found in Table 3.3.  The agreement 
between prediction and experiment for water from Bontha et al. (2003a) is remarkably good.  With the 
introduction of solids, the agreement diminishes with cj typically in the range of 1/3 to 1/2.  Therefore, the 
model overpredicts the jet flow in the presence of solids by approximately a factor of two to three.  Some 
of this momentum may contribute to fan jets that arise between PJM tubes instead of the central upwell, 
though the fan jets do not rise particularly high (see Figure 1.1).  Some of the momentum is opposed by 
forces from the solids, including negative buoyancy and yield stresses.  For an analytical model that does 
not directly account for the negative buoyancy of solids loadings to come within a factor of approximately 
three is remarkable.  This is particularly true given the uncertainty in the value of c that varies over a 
factor of three as seen in Table 2.1.  Approximations of the jet curve in the presence of nonconservative 
forces (i.e., forces that dissipate momentum) that changes the flow regime are addressed in the following 
sections. 
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Table 3.3.  Central Upwell Jet Coefficients(a) 

Reference Constituents 
hc  

(expt) 
hc 

(model) 
cj 

Bontha et al. (2003a) Water 4.64 4.87 0.954 
Bontha et al. (2003b) Water 2.64 5.11 0.517 
Bontha et al. (2003b) 10 m glass beads 5 wt% 2.55 3.00 0.851 
Bontha et al. (2003b) 10 m glass beads 20 wt% 2.48 5.02 0.494 
Bontha et al. (2003b) 35 m glass beads 5 wt% 2.69 7.63 0.353 
Bontha et al. (2003b) 35 m glass beads 20 wt% 2.46 8.39 0.293 
Bamberger et al. (2005) KB slurry, APEL, Uo>10 m/s 1.5 10.17 0.147 
Bamberger et al. (2005) KB slurry, APEL, Uo<10 m/s 0.209 10.17 0.0205 
Bamberger et al. (2005) KB slurry, LTTS, Uo>7 m/s 2.07 10.17 0.204 
Commissioning(b) Water 6.49 9.98 0.650 
Run sheet 1(b) Glass powder, Al2O3 4.26 9.98 0.427 
Run sheet 2(b) Glass powder, Al2O3 2.41 9.98 0.241 
Run sheet 3(b) KB slurry, Uo~12 m/s 5.29 15.36 0.344 
Run sheet 7(b) Glass powder, 1.27 wt% 4.82 9.98 0.483 
Run sheet 7(b) Glass powder, 2.54 wt% 5.1 9.98 0.511 
Run sheet 7(b) Glass powder, 4.59 wt% 4.98 9.98 0.499 
Run sheet 7(b) Glass powder, W(c) 4.14 9.98 0.415 
Run sheet 7(b) Glass powder, W,(c) SiC, Uo≥12.0 m/s 4.54 9.98 0.455 
Run sheet 7(b) Glass powder, W,(c) SiC, beads 5.6 9.98 0.561 
Run sheet 7(b) Glass powder, W,(c) SiC, beads, Al2O3, 

sand, Uo≥12.0 m/s 
4.35 9.98 0.436 

(a) Assumes NfN=1 for the 12.75 ft vessel with four PJMs and NfN=2 for the 8 ft vessel with six PJMs and /o=1.  
Because c cannot be quantified from the velocity probes in the 8 ft vessel, the value of c is assumed to be 
0.0848 for Newtonian rheologies and 0.0551 for KB slurries unless reported in Table 2.1.  The value of 
2,1=0.349 from the Tollmien solution (Rajaratnam 1976) unless specified otherwise in Table 3.1. 

(b) FIO. 
(c)  W denotes the dense tungsten component, tungsten carbide with a density of 9.6 g/cm3. 

As a purely empirical discovery, Figure 3.1 suggests that there may be a linear relationship between 
zo/do and hc.  Indeed, the linear correlation is remarkable for the 8 ft test data for a variety of simulants 
including the two-part simulant of run sheets 1 and 2 and the various combinations of the multipart 
simulant from one to six components in water.  The correlation also appears to hold within a factor of 
three for other vessel sizes, though it remains unclear whether other vessel sizes require separate linear 
fits.  Additional experimental analysis of scalability and additional modeling is required to assert 
confidence in the extent to which these trends hold across scales and changes in vessel curvature.  In any 
case, the virtual origin appears to deepen (increase in magnitude) as the jet coefficient increases and 
elevate (become smaller) as the jet coefficient decreases.  Remarkably, this purely empirical trend appears 
to hold whether a distinct cloud height is present or not, though further analysis is required based on the 
models formulated in Section 4 and analyzed in Section 5. 
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Figure 3.1.  Depth of Virtual Origin Scaled on Nozzle Diameter Versus Jet Coefficient for a Variety of 
Vessels, Nozzle Diameters, and Simulants 

3.5 Summary 

The jet coefficient may be predicted from conservation of mass for a free jet when the radial 
distribution of velocities is known [Eq. (3.9)].  Shear stress along the bottom and flows parallel to the jet 
axis only marginally affect the magnitude of the jet coefficient [e.g., Eqs. (3.18) and (3.28)].  The depth of 
the virtual origin scaled on nozzle diameter appears to depend approximately linearly on the jet 
coefficient, though this result should be considered preliminary because there is insufficient analyses to 
confirm that this correlation does not contain an implicit scale dependence.  Model predictions based on 
conservation of momentum alone only hold for a free jet and overpredict the jet coefficient by a factor of 
approximately 2-3 (Table 3.3) for Newtonian simulants.  Though the jet coefficient for a Newtonian 
solids laden jet may be approximated by dividing the model jet coefficient by a factor of three, Section 5 
provides a more appropriate expression for the jet coefficient.  Predicted jet coefficients should not be 
used for yield stress fluids; see Section 6 for better velocity profiles as a function of elevation in yield 
stress materials. 
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4.0 Framework for Evaluating Alternative Flow Regimes 

An essential feature of scaling from one vessel to the next is the requirement that the underlying 
physics does not change.  Indeed, one may have confidence in scaling if 1) the correlations capture the 
relevant physics; 2) all factors relevant to scaling have been incorporated, including flow, material, and 
geometric considerations; 3) the uncertainty in the relationships is sufficiently narrow to meet required 
specifications, and perhaps most importantly; 4) the underlying physics does not change from the 
conditions under which the correlations were developed to the condition(s) of interest.  The last is 
particularly critical.  Indeed, while available data convincingly show the central upwell to be a free jet in 
many cases, available data also indicate that the underlying physics does change with lower jet 
momentum and the flow does deviate from the proposed free jet profile for the central upwell. 

This section presents a framework for considering alternative flow regimes that may have yield and 
buoyancy forces both influential simultaneously.  Sections 5 through 7 describe specific flow regimes that 
curtail the central free jet, benchmarks them against experimental data, and evaluates their scalability. 

4.1 Conservation of Momentum Including Yield and Buoyancy 

Several forces may influence transitions from the free jet regime to other competing flow regimes.  
This section returns to species and momentum conservation to evaluate the influence of viscous, yield, 
negative buoyancy, and transient effects together in a single framework.  In so doing, it allows for direct 
comparison of these effects and holds simultaneously for both Newtonian and non-Newtonian fluids, even 
when the adverse features of both are influential simultaneously. 

While negative buoyancy (where material falls instead of rises) can be included comprehensively in 
nonlinear computational fluid dynamics (CFD) code,1 this effect is typically included analytically by 
using the Boussinesq approximation (Deen 2012; Crapper and Baines 1976).  This approximation selects 
a reference density, ∞ (e.g., the density of fluid far from the center of the jet), rewrites the dynamic 
pressure, , relative to this reference density such that a buoyancy term naturally arises, and then asserts 

that all other variations in density (e.g., in the continuity equation or in the generalized expressions for the 
deviatoric stress tensor) may simply be replaced by the reference density (Deen 2012).  The density, , 
relative to the reference density in the buoyancy term may then be expanded in terms of thermal or 
compositional variations. 

Current WTP simulants usually have three to seven species (e.g., two- to six-part simulants in water).  
Yet, previous derivations using the Boussinesq approximation for negative buoyancy have focused almost 
exclusively on thermally driven fountains, where the heat and mass transfer analogy provides limited 
physical insight into multiphase flows.  Formulating the buoyancy term precisely is important because the 
Froude number (a ratio of inertia to gravity) falls out of this analysis and may differ meaningfully from 
prior definitions. 

Defining the dynamic pressure as g P  and inserting it into Cauchy’s momentum 

equation (the precursor to the classical Navier-Stokes equation) gives 
                                                      
1 Many CFD codes linearize the buoyancy term when nondimensionalized on a densimetric Froude number, which 
may not accurately represent the nonlinear influence of this term. 
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where v is the velocity vector, P is the pressure, script   is the dynamic pressure, g is the downward 

pointing gravitational vector, and  is the deviatoric stress tensor (Deen 2012).  The density may be 
approximated in a Taylor series expansion of which the first terms are 
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where wi is the weight fraction of species i and wi
∞ is the corresponding reference weight fraction of 

species i, presumably far from the center of the jet.  A solutal coefficient may be defined in the usual form 
(Deen 2012) as 
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The values of the solutal coefficient may be positive or negative and this formulation allows for 
contributions from multiple species. 

Substitution of the solutal coefficient into Cauchy’s momentum equation yields 
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To simplify the negative buoyancy term, the slurry density may be written in terms of the volume 
fractions i and species particle densities i as =iii.  From masses mi, the volume fractions may be 
constructed via volumes Vi=mi/i as i=(wi/i)/jwj/j for thermodynamically ideal solutions by dividing 
through by the total mass.  Then, 
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because iwi=1.  Taking the derivative of the former gives  
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after back-substituting the definition of density.  It may be shown by induction and a limit proof that 
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for i≠j.  This expression reduces succinctly to the binary case where taking the derivative of w1+w2=1 
with respect to w1 gives the well-known result of dw2/dw1=-1.  Substitution then gives the solutal 
coefficient generally as  
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Adding and subtracting the term on the right for species i after factoring the 1-wi out simplifies this 
equation to 
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The buoyancy term then becomes 
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In the spirit of the Boussinesq approximation, a Taylor series expansion gives 
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In the dilute species limit wi<<1, so that only the first term in the expansion is retained as higher order 
terms introduce nonlinearity.  The buoyancy term then becomes 
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which may be simplified as 
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by repeated application of Eq. (4.5) following distribution.1 

                                                      
1 Admittedly, water itself is not dilute, which adds a term of  

 
w

ww
ww

w w

ww
w







1





g  

to Eqs. 4.12, 4.13, and 4.14, where the subscript w denotes water alone.  Although order 1, this term will not be 
considered further herein due to its nonlinearity. 
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Reynolds averaging for turbulence in the axial direction in the absence of swirl (i.e., v=0) gives 
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where the terms now represent suitable temporal averages (Deen 2012), u and v represent scalar velocities 
in the axial and radial directions, respectively, and the usual deviatoric viscous stress, lam, now has a 
turbulent counterpart in the Reynolds stress, turb.  The corresponding expression in the radial direction 
becomes uninteresting after an initial startup time that is shorter than that in the axial direction by a factor 
of c

2. 

There are two analytically straightforward models for the turbulent stresses, one attributed to Prandtl 
and the other to Boussinesq and Prandtl (Bird et al. 2002; Abramovich 1963).  Both are evaluated herein.  
First, for Prandtl’s mixing length theorem, the axial component of the stress tensors can be written out for 
a Bingham plastic using the Bingham-Papanastasiou formulation (Mitsoulis 2007) with Prandtl’s mixing 
length theory as 
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where the terms on the right represent stresses from the yield, viscous, and turbulent stresses (Rajaratnam 
1976; Bird et al. 2002).  This derivation asserts the working assumption of the existence of a physical 
yield stress at modest shear stresses even though this construct has neither been proven nor modestly 
explored (see footnote in Section 2.2).  With the traditional Prandtl mixing length, l=C(z+zo), where C2 is 
a constant equal to (c/1.24)3 from Rajaratnam (1976, pp. 37-38).  Section 4.3 derives relationships 
between c and C from first principles for a free jet.  The Bingham-Papanastasiou formulation allows for 
continuous differentiation of the shear stress and determination of the solid-fluid boundaries a posteriori.  
The variable m is a regularization parameter with units of time (see Figure 2.6); the ideal Bingham plastic 
formulation is recovered as m goes to infinity as will be done hereafter.  Substitution then gives 
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after expanding the velocity vectors on the left hand side.  The minus sign on the negative buoyancy term 
arises because the coordinate system points up in opposition to gravity.  This is the governing momentum 
equation that includes both negative buoyancy and yield stresses. 

This equation may now be scaled with the axial velocity on Uo, the axial length on do, the radial 
length on cdo, the radial velocity on cUo from continuity, the time on the drive time, tD, the pressure on 
∞Uo

2, and the local slurry density on ∞.  This gives 
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where the O(1) terms for the free jet have been retained and overbars represent scaled values.  These can 
be written out in terms of dimensionless numbers as 
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where  
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Some may prefer the square root of this number as the Froude number. 

This definition of the Froude number differs significantly from others proposed in the literature.  For 
example, Kuhn et al. (2013) conservatively base the Froude number on the tank diameter as  
Fr=Uo

2/[(s-1)gD], where s is a density ratio (Section 2.2.2.4, Chapter 5 and Appendix C).  This makes 
sense if the vessel is mixed by impellers, wall jets, or possibly even for a planar jet that spans the vessel, 
because in each of these cases, a characteristic length is the vessel diameter.  However, the central jet 
does not inherently interact with the vessel walls nor does it necessarily sense the vessel height, 
particularly if the jet changes regime before reaching the upper surface.  Therefore, basing the Froude 
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number on the nozzle diameter for the central upwell is not only appropriate but necessary.1  With 
geometric scaling, both D and do change in parallel, so one might argue that this is a difference without a 
distinction.  However, changing a nozzle diameter remains more straightforward than changing vessel 
diameter, and this formulation provides that flexibility. 

Perhaps more intriguing is the role of density in the Froude number.  Literature models suggest the 
inclusion of a factor of (s-1) in the denominator of the Froude number (see Kuhn et al. 2013).  This 
development shows, however, that the appropriate term in the denominator would be s(s-1), if included.  
Furthermore, this definition of Froude number without including density follows the time honored 
tradition of keeping scales distinct from independent variables unless absolutely necessary and is in 
excellent agreement with the definitions in Deen (2012, p. 264) and Bird et al. (2002, p. 98) that also do 
not include densities.  This Froude number does not vary with axial position and does not change if the 
dilute species limit does not hold. 

An analytically tractable alternative to Prandtl’s mixing length is Boussinesq’s eddy viscosity model, 
also attributed to Prandtl or Goertler in the context of jet physics (Bird et al. 2002; Rajaratnam 1976).  
Here, the dynamic turbulent viscosity is proportional to the product of the reference density, width of the 
mixing zone, and the velocity along the centerline of the jet.2  Because um,c is inversely proportional to z 
and c is proportional to z, this viscosity is independent of spatial position like the usual dynamic 
viscosity.3  Then the deviatoric stresses in the axial direction become 
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(4.23) 

with substitution of Eq. (2.1).  Rajaratnam (1976, pp. 41 and 45) gives C2=18.5-2.  Section 4.3 derives 
relationships between c and C2 for free jets.  For typical values of the jet, the turbulent viscosity (e.g., the 
last coefficient in Eq. 4.23 ∞C2hcUodo≥0.59 Pa.s for ∞=1000, hc≥1, Uo≥4 m/s, and do=2 inches) exceeds 
the molecular viscosity (e.g., ≤0.030 Pa.s), but both terms will be retained through scaling.  Substitution 
then gives 
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This is the governing momentum equation that includes both negative buoyancy and yield stresses. 

This equation may be scaled similarly on the axial velocity on Uo, the axial length on do, the radial 
length on cdo, the radial velocity on cUo from continuity, the time on the drive time, tD, the pressure on 
∞Uo

2, and the local slurry density on ∞.  This gives 

                                                      
1 The radial outward flow along the top of the vessel that moves out to the vessel wall (in the absence of jet 
attachment or crossflow) has the vessel radius as a characteristic length.  However, the scope of this report is limited 
to the upwell portion of the flow.  Velocity probes that would measure radial flow across the fluid surface have not 
been implemented historically or in the 8 ft vessel. 
2 This form assumes peripheral velocities to be much smaller than the centerline velocity. 
3 Except perhaps near a cloud height or jet front where um,c must decay more rapidly than ~z-1 (Shekarriz et al. 
1995b).  A stagnation point arises in these cases, the conceptual equivalent of which is flow approximately normal 
to a flat plate (see Example 9.4-2 in Deen 2012). 
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where the order 1 terms for the free jet have been retained.  These may be written out in terms of 
dimensionless numbers defined previously as 
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The terms in Eqs. (4.18) and (4.26) are evaluated in the remainder of this section.  Please note that 
geometric scale differences are embedded completely in the four dimensionless groups.  Only if these are 
scale dependent will the jet flow be scale dependent.  (Additional scale-dependent parameters may also 
arise in boundary or initial conditions.) 

4.2 Particle Profile Within the Upwell 

The governing momentum equations show that the buoyancy term depends on the species 
concentration profile, coupling species conservation with momentum.  Therefore, this multiphase analysis 
evaluates species conservation to determine how the weight fraction varies as a function of spatial 
position in the presence and absence of a cloud height. 

Where q species (including the fluid) are present and continuity is used, q-1 independent species 
balances may be constructed.  For example, two particles of different sizes or densities in a fluid would 
constitute q=3 species, so two species mass balances may be constructed independently.  (The weight 
fraction of the remaining species derives from iwi=1.)  The mass flux of particles of species or size i, ji, 
crossing an arbitrary control surface is the sum of convective and diffusive terms,  

idiffii wDw vj  (4.27) 

where wi and Ddiff represent the mass fraction and diffusivities of species i, respectively.  The mass 
average velocity vector, v, here contains both the axial and radial velocities described below as well as 
species-specific particle settling velocity (Kuhn et al. 2013).  The diffusivity is the sum of the molecular, 
Di, and turbulent, Dt, diffusivities.  Then the mass flux in the axial direction becomes  
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Within the jet, the molecular diffusivity is much smaller than the turbulent diffusivity such that it can be 
neglected in the remainder of the derivation (Rao 1980).  Conservation of mass requires 
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in the absence of particle formation or degradation (possible with agglomeration/aggregation or the 
opposite).1 

To determine the influence of the settling velocity in this context (a distinct question from its 
influence on momentum), the particle flux may be set to zero at the cloud height at steady state.  In the 
absence of turbulent diffusion, the cloud height may occur where the settling velocity and upwell velocity 
(u=ui

T) balance in the absence of negative buoyancy effects.  Then with Eq. (2.1) 
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where zcloud is the cloud height.  This expression shows that the cloud height increases with the nozzle 
velocity and also suggests that cloud height would increase with nozzle diameter and decrease with 
settling velocity, though there is no substantial evidence to suggest distinct cloud heights for each species 
present due to multiphase jet flow during a pulse.  (Residual clouds from the prior pulse may remain as a 
distinct cloud height from that discussed here.)  Quantitatively, however, Eq. (4.30) remains insufficient.  
For example, consider the two part simulant, which displayed instances with and without surface flow.  
The simulants have unhindered settling velocities of 6.2.10-3 to 7.2.10-2 m/s (Table 2.2), and hc=4.26 and 
zo/do=32.8 from Table 2.4.  For the range of velocities considered, Uo=6.21-12.03 m/s, zcloud/do>300, 
which vastly exceeds the dimensions of the vessel (z/do=48, quiescent) even though a finite cloud height 
was observed.  Similarly, for the particle with the largest settling velocity, the glass beads, ui

T=0.14 m/s, 
hc=5.40, and zo/do=36.3, giving zcloud/do>200.  Therefore, in the absence of accelerated settling, which 
Kuhn et al. (2013, Section C.4.2.10) argue for in Hanford wastes,2 individual particle settling may be 
safely ignored relative to the centerline velocity during the drive portion of the pulse.  Hindered settling 
typically decreases the particle settling rate, further strengthening these arguments. 

When axial turbulence is not negligible at steady state, setting the species flux to zero yields 
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(4.31) 

The turbulent diffusivity is related to the turbulent viscosity through the turbulent Schmidt number, 
Sct=t/Dt.  Bird et al. (2002) assert Sct=0.7 specifically for circular free jets, while Bajpai and 
Tirumkudulu (2008) assert Sct=30.  With the turbulent viscosity from Prandtl’s mixing length theory, the 
turbulent diffusivity becomes 

                                                      
1 For some simulants, agglomeration clearly happens on relevant time scales such that the reaction term neglected 
here may be important in certain settings.  The simulant prepared by Carolyne Burns of PNNL for the 8 ft vessel 
testing does not show significant time-dependent hysteresis (Figure 2.6) such that this mechanism is negligible for 
this simulant. 
2 The settling behavior of multicomponent Hanford wastes remains a compelling but unsolved problem, for which 
no complete analytical solution is available to improve the accuracy and precision of this analysis.  This is at least 
partially true because the interparticle attractive and repulse forces have not been quantified. 



 

4.9 

r

u

Sc

l

Sc
D

tt

t
t 




2
(4.32) 

Taylor and Krishna (1993) argue that the turbulent diffusivity is species independent because it is a flow 
property not a molecular property.1  Substituting in Eqs. (2.1) and (2.3) with the Gaussian profile from 
Eq. (2.5) yields 
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With Boussinesq’s eddy viscosity model 
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Since the exact functional form of the species concentration profile in the vicinity of the cloud height 
remains unknown,2 but experimental observations suggest a distinct density difference above and below 
the cloud height, a Heaviside step function in the weight fraction may be approximated with a 
Fermi-Dirac function so that  
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where wi
max is the concentration at the base of the jet, zcloud is the cloud height, and scloud characterizes the 

slope of the concentration profile at zcloud.  The derivative of the natural log of this expression gives 
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Therefore, evaluating this derivative at the cloud height with Boussinesq’s eddy viscosity model gives 
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1 This form of the diffusivity assumes the thermodynamics and mechanics of particle interaction are negligible, but 
such terms could be included to advance consideration of concentrated suspensions with suitable expressions for the 
chemical potential of the slurry. 
2 A sigmoidal curve may fall out of the shock condition associated with the jet penetration front described in 
Section 7 in the presence of a negative buoyancy force. 
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With C2=18.5-2, hc=1-6, Uo=3-15 m/s, Sct=0.7-30, and scloud/do=1 (based on visual observation of the 
experiments), the second term in Eq. 4.31 ranges from 1.5.10-4 to 0.19 m/s, which is typically larger than 
that of the glass powder in Table 2.2.  Additionally, the term has a sign that opposes the settling velocity, 
further confirming that the settling velocity does not drive cloud height formation.  This does not imply 
that the cloud does not depend on particle properties (the cloud height clearly does depend on particle 
derived properties, see Section 5). 

With settling velocity eliminated as a key player even in the cloud height, the complete expression for 
species conservation may be constructed.  Substitution of Eq. (4.27) into Eq. (4.29) followed by Reynolds 
averaging to account for turbulence gives 
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With Boussinesq’s eddy viscosity model, the turbulent diffusivity in the absence of negative buoyancy 
gives  
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Scaling the axial velocity on Uo, the axial length on do, the radial length on cdo, the radial velocity on 
cUo from continuity, and the drive time on tD then gives 
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This is the governing species conservation equation.  This equation and Eq. (4.26) form a coupled pair 
that may be solved simultaneously to predict the fluid and particle profiles within the vessel.  Because 
c<1, the radial term exceeds the axial term and the coefficient of the radial term is recognized as a Peclet 
number where 
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with substitution of Eq. (4.34).  Numerically, Pe ranges considerably around order one from 0.11 to 244, 
with c=0.0551-0.154, C2=18.5-2, Sct=0.7 to 30, and hc=1 to 6.5 from Table 2.1 and Table 2.4.  As the 
radial spread of the jet increases as measured by c, the radial concentration gradients diminish and the 
right-hand side of the species concentration equation becomes less important.  The implication is that both 
turbulent diffusion and turbulent convection are of similar magnitude. 

Four insights emerge from this development in the absence of a significant settling velocity.  First, 
with the assumption that the particle is in the upwell jet flow created during the drive portion of the PJM 
cycle, the time scale for particle flow is exactly the same as the time scale for jet flow.  As a result, there 
is not a separate particle time scale during the drive portion of the PJM duty cycle within the upwell. 
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Second, in the absence of a compelling settling velocity argument as described above, none of the 
coefficients in Eq. (4.40) depend on species specific parameters.  Therefore, none of the dimensionless 
groups formed by them will be species specific, and, due to the linearity in wi of Eq. (4.40) and its Prandtl 
mixing length equivalent, scaled concentration profiles will also not depend on the species.  Therefore, all 
of the particles in the upwell follow the same time averaged and scaled flow profiles (see Section 5.2).  
(These profiles are, however, influenced by the aggregate or lumped properties from species present; see 
Section 5.2.)  This affirms the assumption of a single solids fraction and a single concentration gradient 
by Kuhn et al. (2013, Eq. C.96). 

Third, this analysis, therefore, requires that cloud height1 formation to the extent it arises from the 
central upwell be governed by negative buoyancy considerations alone.  Only when the fluid dynamics 
are limiting such that the other terms in the flux vanish may the settling velocity act as a restoring force 
with its time scale.  This implies that observations of SiC and W particles above the cloud height in the 
six-part experiments were the result of suspension at higher velocities prior to the beginning of a test with 
incomplete settling between tests and do not comprise a separate cloud height in the sense that the cloud 
height has been used in historical testing (Meyer et al. 2012) and run sheets 1, 2, and 6 in 8 ft testing. 

Fourth, and most importantly, none of the terms in this governing equation are geometric scale 
dependent.  Behavior at one vessel size will be the same in another geometrically scaled vessel in the 
absence of additional constraints through the initial and boundary conditions.  Analysis in Section 5 
suggests that the initial and boundary conditions may incorporate a geometric scale dependence through 
fluid dynamics considerations. 

None of these insights implies or is meant to imply that if the particle’s settling velocity is large 
enough to oppose the turbulent jet flow that it will not settle out or separate from the flow (e.g., gravel 
would clearly settle out).  Clearly far from the jet centerline, the turbulent jet flow decays and particle 
settling dominates as it does when the jet flow is finished.  Furthermore, only particles carried into the 
upwell (an initial condition to these equations) can be transported by the upwell in the manner described; 
particles that never enter the upwell cannot be transported by the upwell.  Other flows including the wall 
jet (shown to be weak in Section 8) or radial wall jets along the vessel bottom may have their own 
distinctive “cloud heights.”  Finally, the cloud height must be a function of particle properties as they 
influence the initial conditions and fluid dynamics of the upwell jets (see Section 5). 

Perhaps the most positive aspect of the absence of a species-specific terminal settling rate is the 
opportunity to use the heat and mass transfer analogy.  Bird et al. (2002) solved the steady state 
temperature profile for a free turbulent jet.  Simplifying the governing species conservation equation for 
steady state, imposing c<<1 (always in Table 2.1), removing the scaling, and letting  
                                                      
1 This analysis clarifies the term “cloud height” associated with multicomponent multiphase flow, which has 
previously been unclear.  A single cloud height may be an intuitively clear experimental observable in the presence 
of a single monodispersed simulant in an otherwise clear solvent.  With two or more types of particles in water, one 
may question whether there is one cloud height for the mixture or one for each solid species.  This analysis argues 
that if the particle settling velocities are substantially smaller than the fluid velocities then there is only one cloud 
height for all of the species, not several cloud heights for the several species individually.  (If some settling 
velocities are so large that the particles never leave the neighborhood of the vessel bottom or reach the upwell, the 
remainder may still have a single cloud height.)  Please note that in run sheets 1 and 2, only one cloud height was 
observed for the two-part simulant in water to which both particles rose.  Particles may be above the 
hydrodynamically defined cloud height from prior runs and that may also be termed a “cloud,” but that is not the 
cloud defined herein. 
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where wi
max and wi

∞ are the mass fraction of species i at the base of the jet and far from the center of the 
jet, respectively, gives 
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This equation is identical to Eq. 13.5-4 in Bird et al. (2002), with the substitution of Sct for Prt as 
expected of the heat and mass transfer analogy.  Asserting that wi=wi

max at z=0 and that wi is finite at the 
centerline of the jet but decays to wi

∞ as r approaches infinity, the corresponding boundary conditions are 

1 at 0z (4.44) 

 is finite at 0r (4.45) 

0 as r (4.46) 

completing the set of necessary equations and alignment with the Eqs. 13.5-5 through 13.5-7 of Bird et al. 
(2002).  The radial distribution of velocities with the functional form of Eq. (2.8) falls naturally out of 
their solution and the radial distribution of the particle concentration profile becomes 
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where max is the concentration profile along the jet centerline.  This may be simplified in our notation as  
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This is commensurate with the work of Melville and Bray (1979a, b), Dawson and Trauss (1966), and 
Rao (1980), who assert that the concentration profiles in circular and radial jets, like the jet profiles 
themselves, are self-similar, albeit slightly more narrow as expected of Sct<1.  Remarkably, the solution 
of Bird et al. (2002) also provides that the concentration profile decays inversely with elevation.  The 
constant of proportionality is anchored to the selection of wi

max via the boundary condition Eq. (4.44), 
giving 
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The implication of this ~1/z decay in weight fraction is that the density will also decay with a similar 
proportionality and asymptote out to the bulk density at higher elevations. 
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The radial density profile may be obtained from the species concentration profile by dividing it 
through by the solid species density i and summing over all species.  Implementing Eq. (4.5) gives 
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Though the functional form may be unanticipated, it may be inverted as  
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and gives the appropriate limits for fc=0 and 1.  Similarly, the axial density profile along the centerline is 
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This may also be inverted to give 
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These expressions feed into an approximation of the cloud height in Section 5.  Additional derivation and 
analysis given in Section 5.2. 

4.3 Coupled Energy Balances 

Energy balances may be coupled with momentum balances.  For example, Eqs. (4.16) and (4.24) in 
the absence of dominating pressure gradients, buoyancy, yield stresses, viscous stresses, and transients 
may be multiplied by urdr and integrated over the domain of r to find 
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respectively.  Following Rajaratnam (1976, Chapter 2.5), integration by parts with combination of the 
first two terms on the right yields  
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For the free jet, the first terms on both sides vanish because the axial velocity goes to zero infinitely far 
from the jet centerline for a free jet, leaving 
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The left-hand sides represent the energy in the jet and the right-hand sides represent the entropic losses to 
the jet.  For the free jet, the momentum balance allows imposition of similarity and assertion of c=r/c to 
find 
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The integrals are constants independent of z and may be defined as 
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leaving 

   
1,3

3,1,0
3

,2223
, 2







c

cm
occm

u
zzCu

dz

d
  (4.59a) 

  2
,

1,3

2,1,0223
,

2
cm

ooc
ccm u

dUhC
u

dz

d




   (4.59b) 



 

4.15 

Table 4.1 gives the values of these constants for the theoretical and experimental profiles in Section 2.2.  
The final column shows that for the Tollmien solution, 20,1,3/3,1)

1/3=1.24 as asserted by Rajaratnam 
(1976); see Eq. (4.15). 

For a circular free jet, Rajaratnam (1976, Chapter 2) argues for proportionalities to z, which Rao 
(1980) gives as um,c=A/(z+zo) and c=c(z+zo) with the addition of a virtual origin.  Modifying the 
derivative with a constant then gives 
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which simplify to 
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recognizing from Eq. (2.1) that A=hcUodo.  This shows that the relationship between c and C as given 
below Eq. (4.15) depends directly on the radial profiles.  Remarkably, this derivation also shows that the 
momentum and energy balances effectively decouple, so that the results of the momentum balance feed 
sequentially into the energy balance.  For a free jet, the selection of a turbulence model only affects the 
value of c of the jet spreading rate. 

Table 4.1.  Constants Derived from Radial Distributions 

Reference Model or Constituent 3,1 1,0 0,1,2 0,1,3 20,1,3/3,1)
1/3 

Wiegel (1964) Gaussian (Eq. (2.5)) 0.240 1.06 0.500 0.284 1.33 
Rajaratnam (1976) Squire and Trouncer (Eq. (2.6)) 0.242 1.00 0.617 0.411 1.50 
Rajaratnam (1976) Prandtl/Tollmien (Eq. (2.7)) 0.215 1.05 0.433 0.206 1.24 
Bird et al. (2002) Boussinesq/Goertler (Eq. (2.8)) 0.241 1.22 0.400 0.195 1.17 
Bontha et al. (2003b) Water 0.257 1.09 0.516 0.298 1.32 
Bontha et al. (2003b) 10 m glass beads 5 wt% 0.257 1.08 0.532 0.320 1.36 
Bontha et al. (2003b) 10 m glass beads 20 wt% 0.267 1.03 0.672 0.530 1.58 
Bontha et al.  (2003b) 35 m glass beads 5 wt% 0.288 1.01 0.822 0.804 1.77 
Bontha et al. (2003b) 35 m glass beads 20 wt% 0.259 1.10 0.501 0.279 1.29 
Bamberger et al. (2005) KB slurry 0.342 1.00 1.284 1.977 2.26 

However, in the presence of a yield stress, the energy balance becomes more interesting.  For 
example, Eqs. (4.16) and (4.24) in the absence of dominating pressure gradients, buoyancy, and viscous 
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stresses but retaining the yield stresses may be multiplied by urdr and integrated over the domain of r to 
find 
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Following Rajaratnam (1976, Chapter 2.5), integration by parts with combination of the first two terms on 
the right yields  
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The terms evaluated at r=0 disappear because r is a factor, and terms evaluated at r=Rjet(z) disappear 
because either the jet is only marginally confined such that u decays sufficiently to zero far from the 
centerline or an approximate no slip boundary condition allows u~0 at Rjet in the absence of bulk motion 
of the adjacent Bingham solid (see Section 6).  Under these approximations, 
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The left-hand sides represent the energy in the jet and the right-hand sides represent the entropic losses to 
the jet due to yield stresses and turbulence, respectively.  Data analyzed to date (Figure 2.4) support the 
assertion of similarity with c=r/c to give 
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An additional integral may be defined as 
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A complete and proper solution of this equation requires coupling with momentum balances.  
Similarly simplifying Eqs. (4.16) and (4.24), multiplying by rdr and integrating over the domain of r 
gives 
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Following Rajaratnam (1976, Chapter 2.5), integration by parts with combination of the first two terms on 
the right yields  
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The first terms vanish for the same reasons as lead to Eq. (4.64), leaving 
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in both cases.  Imposing similarity gives 
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Equations (4.67) and (4.71) form a coupled set that must be solved simultaneously. 

To explore the consequences of the energy balance in the presence of a yield stress on the solution, 
consider for a moment allowing um,c=A/(z+zo) and c=c(z+zo), where hypothetically A and c are ersatz 
constants independent of z.  Eq. (4.67b) gives 
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Evaluating the derivatives and simplifying gives 
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for the two models, respectively.  Solving for c in Eq. (4.73b) then gives 
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Because Eq. (4.73a) is a cubic equation, it may be solved similarly, but no single line solutions exist. 

There are two essential messages from this result.  First, the ersatz constants A and c are not really 
constants but depend on elevation.  Therefore, the radial distribution is not a constant like the free jet but 
may depend on elevation.  Second, unlike the free jet, the energy and momentum equations cannot be 
artificially separated.  Indeed, although solution of the coupled equations is necessary to fully understand 
how the jet flows, Eq. (4.74) suggests that the jet starts out at the base with a width that is similar to the 
free jet.  As the jet rises in elevation, the yield stress terms show that the radial spread would eventually 
vanish (in the absence of a turbulent-to-laminar transition).  Figure 6 in Shekarriz et al. (1995a) hints that 
c decreases with elevation as implied by Eq. (4.74).  Therefore, in the absence of solving the coupled 
equations, Section 6 examines three limited cases: a dispersive turbulent expanding jet as would be 
anticipated near the base of the upwell, a jet of constant diameter (this may exist at some point along the 
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jet trajectory if it starts divergent but mathematically ends with zero width), and a laminar upwell of 
constant diameter.  These limiting cases in Section 6 should be appreciated for what they are: insightful 
approximations that guide consideration of scaling between vessels that are supported by experimentally 
obtained data to the extent available. 

4.4 Summary 

This section establishes the governing differential equations for momentum, energy and species 
conservation (see Eq. 4.18, 4.26, and 4.40).  Both buoyancy and yield stresses are included providing a 
general framework for axisymmetric jets in a variety of fluids.  The Froude number based on nozzle 
diameter without densities (Eq. 4.22) is the appropriate Froude number for jet flows (see Section 5).  The 
density profile as a function of elevation and radial position is estimated in the absence of buoyancy 
forces (Eq. 4.51 and 4.53).  The turbulence length scale governs the jet width (Eq. 4.61) and settling 
velocities are shown to be negligibly small compared to other velocities within the center of the jet.  See 
Sections 5 and 6 for the implications of these developments for cloud and “cavern” heights. 

 





 

5.1 

5.0 Gravitational Forces 

This section begins consideration of mechanisms or flow regimes that confine or limit the free jet 
described in Section 3.  Section 4 developed the governing equations for a jet influenced by viscous 
stresses, buoyancy forces, yield stress, and jet transience.  Viscous forces were shown to be negligible 
relative to turbulence and will not be considered further.  Where turbulence is suppressed by another 
mechanism, viscous forces may become important again, but the essential focus here is on the first 
mechanism to impede the free jet.  This section then considers the influence of buoyancy forces in terms 
of the Froude number, and the cloud height model described in Section 4 is benchmarked against 
experimental data.  Implications for surface flow and dependence on geometric scaling are discussed. 

5.1 Negative Buoyancy, the Froude Number, and Fountains 

Section 4 showed that buoyancy forces may be scaled on the Froude number.  The governing 
momentum equation clarified which of the various forms of the Froude number is relevant to the 
hydrodynamic jet physics that govern the upwell.  Eq. (4.22) (repeated below) showed that the only 
Froude number that included scale factors that were not a function of position and satisfied conservation 
of momentum for the central upwell itself was 

o

o

gd

U 2

Fr   (4.22) 

Although the Froude number clearly plays an integral role in negative buoyancy arguments, the precise 
value at which the Froude number may predict failure of the central upwell remains unclear.  This Froude 
number is termed the critical Froude number, Frc. 

The critical Froude number may be determined from experimental data compiled from 8 ft vessel 
tests.  This dimensionless number is plotted in Figure 5.1 against the surface flow criterion for the tests 
described in Table 2.3.  The figure shows that surface flow is achieved at higher Froude numbers, and at 
lower Froude numbers the upwell fails to reach the surface.  The figure shows that for tests with a nozzle 
diameter of 1.94 inches, there is a reasonable critical Froude number discerning between tests for which 
surface flow was reported and those for which it was not of approximately 285.  Tests for which surface 
flow observation was “at or near the surface” (designation by 1/2 on the x-axis) span the critical Froude 
number.  Remarkably, all of the firing sequences (S, A1, A2), pulse or drive volume fractions, and both 
the two-part simulant of run sheet 1 and the multipart simulant of run sheet 7 are agreed on the same 
cutoff between those that definitely induce surface flow and those that do not.  That all the simulants for a 
particular nozzle size are distinguished by one critical Froude number indicates that further exploration of 
densities remains unnecessary and even unhelpful. 
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Figure 5.1.  The Froude Number Differentiated on the Surface Flow Metric of Table 2.3 

However, the tests that used a 2.50 inch nozzle diameter appear to be of a different population.  The 
cutoff for this set is approximately Frc=120.  That there would be a different cutoff between the two 
nozzle diameters is surprising.  Typically, one would argue that the characteristic length, here the nozzle 
diameter, is the key to scaling between vessel sizes.  With geometric scaling, the nozzle diameter doubles, 
so to achieve the same critical Froude number the velocity would have to increase by the square root of 2.  
Yet, it appears that the nozzle diameter also affects the value of the critical Froude number, complicating 
this argument.  Indeed, a decreasing critical Froude number with increasing scale would suggest it may be 
even easier to overcome negative buoyancy in scaled-up vessels.  However, with only two nozzle sizes 
explored in one vessel size, it is not feasible to determine a reliable critical Froude number for scale-up 
from this data.  Furthermore, attempts to use a vessel diameter instead of a nozzle diameter clearly would 
not cause these curves to collapse, suggesting that the disagreement does not boil down to an argument 
over the characteristic length scale.  Neither a Froude number based on nozzle diameter nor a Froude 
number based on vessel diameter collapses the data sufficiently to enable scaling between vessel sizes.  
Nevertheless, based on these results, one would anticipate that a single critical Froude number for a 
variety of simulants and firing sequences would emerge in tests in the 16 ft vessel. 

The values of the Froude number may seem surprisingly high; however, this is not unreasonable for 
four reasons.  First, intuition around the Froude number has been built on the fountain height literature 
that focuses on Froude numbers in the range of 1 to 20 (Srinarayana et al. 2008, 2009a, b).  However, 
fountain height arguments and Froude number arguments are typically reserved for cases where 
distinctive free surfaces are present with correspondingly large changes in density across the interface.  
No distinctive free surface or density gradients that span orders of magnitude are present in the central 
upwell.  In contrast, they are present at the fluid surface, and one may anticipate that traditional fountain 
height arguments would be validated up there (see Section 6.3).  Second, fountain height arguments often 
use the square root of the Froude numbers in this document (Srinarayana et al. 2008, 2009a, b).  This 
would lower the critical Froude numbers to 11.0 and 16.9 for do=2.50 and 1.94 inches, respectively.  
These are of the same order of magnitude as those studied in the fountain height literature, with larger 
numbers leading to stronger, more turbulent fountains.  Third, although preferable to have a critical value 
of a dimensionless group around unity, not all dimensionless numbers necessarily indicate a change in 
flow regimes around unity.  Classic examples include the persistence of laminar flow pipe until a 
Reynolds number of ~1800 (converging flows have remained laminar out to >5.105) and critical Rayleigh 
numbers 657 to 1708 for the Benard problem involving the stability of fluid heated from below (Deen 
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2012).  Fourth, negative buoyancy is proportional to the inverse of the Froude number, so a large Froude 
number would suggest that the rate of momentum addition is much stronger than negative buoyancy 
forces.  However, the jet momentum also decays as the jet spreads due to entrainment of peripheral fluid.  
Indeed, the rate of momentum addition decays with the scaled elevation.  Where these two balance, a 
cloud height appears, but making the Froude number spatially dependent is unsatisfying and makes 
scaling arguments intricate if not unwieldy. 

Please note that when only two PJMs operate, the momentum spreads out perpendicular to the cross 
section of the jet such that there is much less flow.  This would substantially affect the Froude number 
analysis for those configurations.  These results should not be extrapolated to that flow configuration. 

5.2 Cloud Height 

The use of cloud height correlations to predict surface flow is supported by the observation that when 
the cloud height reaches the upper liquid surface, surface flow must have been achieved.  Table 2.3 shows 
that the cloud height is closely correlated with surface flow.1  Cloud heights for various PJM arrays 
(typically distinctive from the one in the proposed standard high solids vessel) were correlated in Meyer 
et al. (2012) as discussed by Wells et al. (2015). 

Rigorous determination of the cloud height from first principles requires simultaneous solution of 
Eqs. (4.18) or (4.26) and (4.40) for momentum and species conservation, respectively, in conjunction with 
the corresponding energy balance (see Section 4.3).  The cloud height may be approximated, however, by 
asserting knowledge of the density profiles derived in Section 4.2 and then back-solving for the velocity 
profiles in the spirit of a successive substitution method.  Simplifying Eq. (4.18) (Eq. (4.26) leads to the 
same result) for steady state, small-scaled pressure gradients in the absence of yield stresses at modest to 
high jet Reynolds numbers leads to 
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(5.1) 

The final term vanishes for any of the profiles in Table 3.1, and the first terms may be combined via 
integration by parts and continuity (Rajaratnam 1976) to give 
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1 The cloud height in these tests was measured at the wall, not in the center of the vessel, and the Meyer et al. (2012) 
correlations were prepared for cloud height observations at the vessel center.  The two can be expected to be the 
same only if the cloud height is driven by the central upwell and the primary direction of flow at the cloud height is 
from center to wall in a time-averaged sense.  If the primary direction of flow is upward along the wall so that the 
cloud height is determined by this flow (not the central upwell), then one cannot expect the Meyer et al. (2012) 
correlations to apply.  Section 8 suggests that the flows along the wall remain too weak to serve as the primary 
driver of the cloud height in the first instance. 
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Eqs. (4.51) and (4.53) with densities may be scaled on ∞ to give  
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Bringing derivatives and constants into the integral of Eq. (5.2) admits 
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at any point, particularly along the vessel centerline.  This leads to the most optimistic definition of a 
cloud height in keeping with the experiments (Bontha et al. 2105).  Integration of only the centerline 
components (forcing fc=1; a first order approximation indeed but perhaps no more egregious than working 
in the dilute species approximation for water, assuming a free jet density profile in the presence of solids, 
or decoupling energy from the momentum balance and still more insightful than regressive correlation) 
then gives 
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where the integration “constant” was suggested by Eq. (3.8).  Substituting Eq. (5.4) gives 
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The integral may then be resolved directly as 
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(5.8) 

It may be shown for small relative densities (e.g.,  ranges from 0.995 to 1.058 g/mL for run sheets 1 and 
2) that the second term in the brackets is small relative to the first, leaving 
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from which one may argue for a density-dependent Froude number that will be one to three orders of 
magnitude larger than those considered above. 
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The final term may be rewritten in terms of hc as defined previously as 
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This expression shows that the negative buoyancy of the solids opposes the upward momentum of the 
central upwell.  Setting the velocity to zero identifies z as a cloud height, zcloud.  However, the expression 
remains transcendental such that a simple analytical expression does not naturally emerge, but the 
expression is sufficiently straightforward to be evaluated directly.  Remarkably, this expression argues 
that the cloud height depends explicitly on only four parameters: a Froude number, a density ratio, a jet 
coefficient, and a virtual origin.  Because the virtual origin has not been considered in extensive detail 
previously, it may contribute uncertainty to prior analyses of cloud height.  Figure 3.1 provides a 
relationship between zo/do and hc that may be useful (but incompletely benchmarked) in further 
establishing the virtual origin in this equation. 

It is important to note that the cloud height arguments herein assert that particles that make it into the 
upwell will all move together in the core of the jet as long as the settling velocities are sufficiently small 
(the case for the six-part simulant).  This analysis in no way predicts that the cloud height is independent 
of solids loading or slurry density—quite the opposite is true. 

Figure 5.2 compares the cloud heights predicted by Eq. (5.10) to experiments using the two-part 
simulant of run sheets 1 and 2.  The values of hc and zo/do for the two-part simulant are given in Table 2.4 
and only the average values hc and zo/do for which surface flow was achieved were used regardless of 
whether an individual test achieved surface flow or not.  The Froude numbers were calculated based on 
the nozzle velocity and diameter for each test in Table 2.3 from run sheets 1 and 2, and the density ratio 
was estimated by taking the maximum and minimum densities tabulated in Appendix G of Bontha et al. 
(2015), again specific to each test.  Figure 5.2a shows reasonable agreement between prediction and 
experiment, except where the model underpredicts the cloud height (a conservatism), provided that the 
vessel was filled to at least the predicted cloud height.  Figure 5.2b highlights the model’s ability to 
approximately distinguish between surface flow and no surface flow.  Notably, the model does not 
include the finite thickness of the cloud itself, which may be a few nozzle diameters thick. 

Figure 5.2c uses the model to anticipate the cloud height for various cases.  This cloud height model 
depends on only four parameters: hc, Fr, max/∞, and zo/do.  Of these four, only hc may be argued to be 
scale independent or does not change with geometric scaling (see Section 3).  Of the four, Fr clearly 
depends on geometric scale because it is inversely proportional to nozzle diameter (the diameter 
dependence of Frc does not complicate the arguments here).  The dependence of max/∞ and zo/do on 
geometric scaling has not been established in this analysis.  Such analyses are feasible, straightforward, 
and likely quite informative.  In the meantime, to explore the influence of these parameters on the cloud 
height, Figure 5.2c considers what may happen in the 16 ft vessel if hc and zo/do do not change between 
the 8 and 16 ft vessels (an unproven assumption) holding Uo constant at 12 m/s.  The figure shows that for 
values of the two-part simulant or the six-part simulant, approximately doubling the nozzle diameter 
decreases the anticipated cloud height by ~10 to 20 nozzle diameters or ~40 to 80 inches in the 16 ft 
vessel.  Going from a two-part simulant to a six-part simulant modestly changes hc from 4.26 to 4.35 and 
zo/do from 32.8 to 28.7.  This change also adjusts the cloud height by an additional ~5 nozzle diameters.  
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Additional changes due to the density ratio may increase or decrease the cloud height between vessel 
sizes. 

Figure 5.2d shows the measured maximum and minimum slurry densities along with the density ratio 
for run sheets 1 and 2.  This figure suggests that the preferred means of improving the predictive 
capability of the cloud height model is to model the densities that arise using species conservation 
associated with impinging radial wall jets along the vessel bottom because the density ratio most closely 
matches the maximum density.  A similar analysis was completed by Rao (1980), which with thoughtful 
revision may be serviceable for this purpose with boundary conditions proposed by Kuhn et al. (2013, 
Sections 2.2.2.2, A.6, B.8.1) or Wells et al. (2009) in conjunction with revisions of the Prandtl mixing 
length for slurries by Masuyama et al. (1980).  The density far away from the centerline contributes less 
than ~1/4 of the variation and may be analyzed based on the settling analysis in Chapter 12 of Russel et 
al. (1989) with Bingham number corrections to Stokes law (Kuhn et al. 2013, Section E.6.2.1.1.2) as 
appropriate.1  Figure 5.2d does not suggest that the slurry densities are constant at higher nozzle velocities 
because the figure of merit in Eq. (5.10) is max/∞-1.  The density ratio varies from slightly under 1.02 to 
above 1.06.  Subtracting one shows that this modest density variation is approximately a factor of three in 
variation.  Therefore, precise modeling of this value is important to extending this cloud height model 
from a descriptive model of historical experiments into a predictive tool for scale up.  Figure 5.2d does 
not imply or suggest what the density ratio might or might not be for other simulants or operating 
conditions. 

                                                      
1 Interparticle forces should not be neglected in such analyses because the settling rate depends strongly on these 
forces, which may accelerate (even without aggregation) or attenuate the settling velocity relative to the hard sphere 
approximation usually entertained in analyses for the WTP; concentration effects alone are insufficient to produce 
predictive models sufficiently accurate for the present purposes (Kuhn et al. 2013, Section C.4.2.10). 
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Figure 5.2.  (a) Model Prediction versus Experimentally Obtained Values of the Cloud Height Scaled on 
Nozzle Diameter for the Two-Part Simulant of Run Sheets 1 and 2 (Table 2.3) Based on 
Densities from Bontha et al. (2015, Appendix G) and hc and zo/do at Surface Flow Conditions 
per Table 2.4 Compared to Fill Height/Nozzle Diameter for do=1.94 inches (dash, blue) and 
2.50 inches (dash dot, red).  (b) Model Cloud Height Scaled on Nozzle Diameter 
Differentiated on Surface Flow Metric of Table 2.3.  (c) Model Cloud Height Scaled on 
Nozzle Diameter versus max/∞ for the Two-Part Simulant with a 1.94 inch Nozzle Diameter 
(blue solid: Fr=298, hc=4.26, zo/do=32.8) and Extrapolated for the Two-Part Simulant with a 
4 inch Nozzle Diameter (red dash: Fr=144, hc=4.26, zo/do=32.8), the Six-Part Simulant with a 
1.94 inch Nozzle Velocity (green dot dash: Fr=298, hc=4.35, zo/do=28.7), and the 
Extrapolated for the Six-Part Simulant with a 4 inch Nozzle Velocity (purple double dot 
dash: Fr=144, hc=4.35, zo/do=28.7).  (d) Measured Minimum and Maximum Slurry Densities 
from Appendix G of Bontha et al. (2015) versus Nozzle Velocity with the Density Ratio 
Thereof. 

Equation (5.10) not only predicts the cloud height but also predicts the precipitous decay in centerline 
velocity near the cloud height.  For example, Figure 5.3 presents the centerline velocity as a function of 
elevation in the 12.75 ft vessel.  Panel a shows the centerline velocity using Eq. (5.10), and panel b shows 
the centerline velocity for the free jet using Eq. 2.1.  Remarkably, Equation (5.10) succinctly captures the 
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more rapid decay in centerline velocity that the free jet curve simply missed.  However, when the Fr is 
very large or the density gradients vanish, Eqs. (5.10) and (2.1) converge.  Finally, Bontha et al. (2003b) 
observed that all four tests homogeneously mixed the vessel contents.  This observation is approximately 
consistent with the observed velocity profiles because the cloud height for the 20% 35 micron glass beads 
lies at or near the top of the fluid in this vessel (see Table 5.1). 

 

Figure 5.3.  Centerline Velocity Scaled on Nozzle Velocity Versus Elevation Scaled on a Nozzle 
Diameter Comparing (a) Eq. (5.10) and (b) Eq. (2.1).  See Table 5.1 for parameters used to 
fit panel a.  Vertical lines at z/do=36 and 48 represent the dimensionless fill height of the 
12.75 ft vessel (z/do=29-36 in Bontha et al. 2003b) and 8 or 16 ft standard high solids vessel 
designs, respectively. 

Table 5.1 shows the values of the parameters that were used to obtain the curves in Figure 5.3a.  The 
Froude number was determined directly from Eq. (4.22) and does not vary among the tests.  The jet 
coefficient, hc, was not fit to the data but was quantified using Eq. (3.9).  The remaining parameters, zo/do 
and max/∞ were fit by minimizing the square of the difference between predicted and experimental 
velocities, by rastering across anticipated parameter space, and by ensuring that the resulting values lie 
within (not on the edge of) their respective domains.  These parameters are remarkable for three reasons.  
First, the value of hc was determined not by fitting but directly from conservation of mass indicating the 
utility of the predictions in Section 3.  The doubling in hc falls directly from the decreases in c from the 
radial distributions of Tables 2.1 and 3.1, showing that the jet spread significantly affects the value of the 
jet coefficient and subsequent velocity predictions.  Second, the parameters representing the virtual origin 
and the density ratio increase with increasing weight fraction.  Third, the (hc, zo/do) ordered pairs lie 
within the uncertainty of those given in Figure 3.1, supporting the approximately linear correlation 
between the two parameters.  
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Table 5.1.  The Values Used to Fit Eq. (5.10) in Figure 5.3a 

Reference Fluid hc zo/do max/∞ zcloud/do 

Bontha et al. (2003b) 5% 10 m glass beads 3.73 14.4 1.009 57.5 
Bontha et al. (2003b) 20% 10 m glass beads 5.02 22.7 1.016 47.2 
Bontha et al. (2003b) 5% 35 m glass beads 7.63 35.3 1.030 39.9 
Bontha et al. (2003b) 20% 35 m glass beads 8.39 40.0 1.041 33.6 

Determined by finding the minimum with Fr=77.0 from Eq. 4.22, hc from Eq. 3.9 with cj=1 and o/=1, and zo/do 
and max/∞ as least squares fitting parameters in the domains of [10.0-80.0] and [1.0001-1.1001], respectively. 

5.3 Summary 

This section evaluates the influence of buoyancy forces in solids laden jets.  Though the Froude 
number defined on nozzle diameter collapses the data onto one plot (Figure 5.1), the critical Froude 
number to determine whether the upwell jet does or does not reach the fluid surface depends on nozzle 
diameter even when the vessel diameter is held constant.  Because this criteria to date has only been 
evaluated for one vessel size and two nozzle diameters, further dependencies on vessel diameter remain 
unclear.  Therefore, the Froude number and critical Froude numbers are insufficient bases to reliably 
predict performance of full scale jets from smaller scale data without further determination of the critical 
Froude number at other vessel sizes and nozzle diameters. 

Alternatively, a new four parameter cloud height model (Eq. 5.10) was developed and benchmarked 
against data at two scales: 8 ft and 12.75 ft.  This model not only determined the cloud height where input 
parameters are known but is also consistent with the decay in axial velocities as a function of elevation 
using jet coefficients predicted in Section 3 for a free jet.  This model falls short of predicting 
performance at larger scales because model development to predict a density ratio and depth of the virtual 
origin lie outside the scope of this report. 
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6.0 Yield Stresses 

This section considers the influence of yield stresses on jet flows and evaluates the implications of the 
confinement these stresses may induce.  Expanding jets and constant diameter turbulent and laminar 
flows are considered.  Critical elevations at which the flows terminate are benchmarked against “cavern” 
height data, though the expressions developed herein are for a conical or tubular geometry instead of a 
broad cavern (characteristic of impeller flow).  Implications for breakthrough and dependence on 
geometric scaling are discussed. 

6.1 Turbulent Expanding Jets in Yield Stress Materials 

Section 4 developed a mathematical framework to evaluate momentum transfer in the presence of 
hypothesized yield stresses (see final footnote in Section 2.2).  These yield stresses would attenuate the 
momentum as developed herein and at least partially alter the velocity profile (see Section 2.2).  Jets in 
non-Newtonian materials have been considered by a variety of authors, including Shekarriz et al. (1995a, 
1995 b, 1997), Powell et al. (1997), and Cai et al. (2012).  This section considers turbulent jets influenced 
by a yield stress but that continue to expand, albeit weakly as observed in Figure 2.4.  Yield stresses that 
further confine the jet to a constant diameter tube are considered in subsequent sections. 

Section 4 considers conservation of momentum.  Assuming the existence of a physical yield stress 
and at steady state in the absence of significant body forces1 and negligible viscous stresses relative to the 
turbulent Reynolds stresses, both turbulence models reduce to Eq. (4.70).  Integrating over z then gives 
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where o=-w (appropriate when the viscous stresses based on the Bingham consistency parameter remain 
small as expected of a turbulent jet).2  One may immediately recognize the left-hand side as the 
momentum at any point along the jet.  The factor of 2 gives the traditional form of this expression 
(Powell et al. 1997; Rajaratnam 1976).  The first term on the right represents the momentum lost to shear 
stresses and the second term and integration constant is the entering momentum.  It is important to note 
here that this derivation only holds for true yield stress materials.  This development does not hold for 
other rheologies that have only an apparent yield stress, including generalized Newtonian, power law, and 
colloidal rheologies (Larson 1999; Shekarriz et al. 1997).  Apparent yield stresses from extrapolating 
power law fluids to low stresses, for example, do not satisfy this requirement.  The earlier development 
herein without a yield stress applies for each of these rheologies without modification as long as the 
viscous stresses remain much smaller than turbulent stresses.  The form of Rjet may be determined by 
rearranging Eq. (2.4) as 

Rjet(z)=c
99c(z+zo) (6.2) 

                                                      
1 It is possible to have a combination of small, repulsive particles (see final footnote in Section 2.2) and large, dense 
particles where both yield stresses and buoyancy together would be important.  This case is not considered herein, 
but this framework enables evaluation of this adverse case. 
2 Rajaratnam (1976) corrects a minor sign error in Powell et al. (1997) on the right-hand side of this equation. 
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where c
99 represents the scaled position that encompasses 99% of the jet flow defined by fc(c

99)=0.01 as 
tabulated in Table 3.1.  This approach is similar to but more general than that of Powell et al. (1997), who 
assert Rjet(z)=0.2z by similar arguments.  Substituting and evaluating the first term as in Section 3 gives 
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The value of c is given in Table 2.1 and 2,1 in Table 3.1.  Solving for the velocity with Eq. (3.1) finds 
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which shows that the yield stress term is a function of position where zo is nonzero, where cj is an 
additional fitting constant.  In scaled form, 
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The densities have been retained throughout, but with the KB slurry, the change in slurry density is likely 
modest (an unproven assumption not evaluated herein).  The elevation where the momentum exhausts 
may be determined by setting the left-hand side of this equation to zero as the velocity vanishes.  Then  
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where zc is the critical elevation1 where the momentum exhausts, assuming the self-similar profile 
initiated with the expanding jet persists.  Solving the quadratic equation in zc finds 
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for zo/do≥0.  Here the critical elevation depends approximately on the square root of the yield Reynolds 
number, though the presence of a virtual origin makes the dependence modestly more intricate.  In the 
hypothetical absence of a virtual origin,  
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1 The term “critical elevation” suggests a linear measurement along the vessel centerline instead of “cavern” height 
because the former suggests a linear measurement of jet influence instead of a volumetric measurement suggested 
by “cavern” height.  This difference lacks distinction in some cases but is essential in others. 
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The approximate square root dependence is qualitatively similar to the “cavern” height arguments 
(Bamberger et al. 2005), although the geometric arguments remain markedly different.  “Caverns” 
suggest a bulk volume whereas this expression arises from only a conical central upwell.  However, 
Section 2 showed virtual origins to be non-negligible in tertiary flows. 

Prior to achieving the surface, the leading edge of the jet also sustains shear stresses.  The exact 
time-averaged shape of the leading vortex in slurries remains unclear.  The experiments of Cai et al. 
(2012), who experimentally evaluated a sand jet in laponite, suggest that the leading edge of a confined 
jet neither vanishes nor remains self-similar but takes on a hemispherical morphology.  Cai et al. (2012) 
give the shear force (a rate of momentum) on a hemispherical head in the notation as  
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 (6.9) 

where the diameter of the head is equal to the diameter of the jet below multiplied by a factor of fvortex≥1 
to represent the lateral extent of the leading vortex, which may be greater than the jet radius.  (The radial 
extent of the leading vortex in this formulation is Rjetfvortex

1/2.)  The diameter of leading vortices exceeds 
that of the trailing jet.  Additional shear stresses from flow in the head are assumed to be negligible. 

Then, an integral force balance gives 
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Substitution and integration gives 
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Solving for the centerline velocity (out of the head) gives 
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In scaled form, 
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where this yield Reynolds number is based on a Bingham yield stress.  The wall stress contains 
contributions from both viscous and yield stresses.  A critical elevation may be identified where the 
velocity vanishes as 
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The quadratic may then be solved as 
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In the hypothetical absence of the virtual origin, 
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So that, 
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which suggests qualitatively that a) the radius of the expanding jet may increase with the yield Reynolds 
number and with the number of PJMs in the vessel or b) conversely, as the Bingham yield stress 
increases, the radius of the jet decreases.  This is consistent with the finding in Section 2.2 that the KB 
slurry had the smallest value of c in Table 2.1.  Given the importance of the virtual origin, this equation 
should not be used for quantitative prediction in this form. 

Both expressions for the critical elevation (Eqs. (6.7) and (6.15)) depend on only five parameters:  
zo/do, Re, w/o, and the c

99c and NfN products.  The second and fifth are independent of geometric 
scaling.  Figure 6.1 compares both expressions to “cavern” heights experimentally measured in laponite.  
(Limiting elevations cannot be directly visualized in KB slurries.)  When the “cavern” height is 
nondimensionalized on the nozzle diameter and plotted versus the yield Reynolds number based on the 
measured Bingham yield stress, the data generally overlap each other.  Fit parameters summarized are in 
Figure 6.1.  The figure shows reasonable agreement for both models with these parameters, differing 
primarily in the intercept.  The agreement is reasonable given that the model does not account for 
elasticity and fracture or large unmixed particles observed during the experiments (see Appendix A).  
Nevertheless, the data collapse onto essentially a single curve. 

Please note that the yield Reynolds number is not based on shear strength because the governing 
equations specify a Bingham yield parameter instead of a shear strength. 
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Figure 6.1.  “Cavern” Height Data Scaled on Nozzle Diameter Versus Yield Reynolds Number with Best 
Fits to (a) Eq. (6.7) and (b) Eq. (6.15) with Fit Parameters in Table 6.1 

Table 6.1 presents the parameters used to fit the curves in Figure 6.1.  The product of c
99c cannot be 

separated into individual variables, but from the radial distribution measured in Section 2.3, one may 
anticipate c~0.06 (Table 2.1) and c

99~1.6 (Table 3.1) for c
99c~0.10 for KB slurry.  However, in 

laponite the fits for Eq. (6.7) significantly exceed this expectation.  With Eq. (6.15), c
99c decreases by a 

factor of two so that the fit values lie within a factor of 2 to 4 of the actual values.  This degree of 
variation is not surprising given that these values have not been directly measured in laponite (velocity 
data was taken but has not been reduced or analyzed in Bamberger et al. (2005)).  In either case, this 
product appears to increase with vessel size (see Section 9).  Remarkably, only the experiments in the 
1.44 ft vessel at Savannah River National Laboratory (SRNL) fit a value of fvortex>1, suggesting that in the 
larger vessels the leading vortex did not extend significantly beyond the anticipated jet radius.  The 
reasons for this finding and whether this is a vessel size effect are discussed below. 

Table 6.1.  Best Fit Parameters for “Caverns” Measured in Laponite 

Location 
Vessel 

(ft) 

Eq. (6.7) Eq. (6.15) Eq. (6.27) 

c
99c zo/do c

99c fvortex
(a) zo/do Rjet/do Rjet (inches) 

SRNL 1.44 0.371 29.8 0.158 3.00 36.3 17.3±3.4 7.48±1.46 
APEL 2.82 0.497 11.1 0.350 1.00 8.42 12.4±4.3 10.7±3.8 
336 12.75 0.733 0.00 IND(b) IND(b) 0.00 9.51±2.61 38.2±10.5 
All - 0.768 3.21 0.455 1.00 2.84 13.0±4.7 - 
(a) Confined to the domain of 1-3 inclusive given that this is the anticipate range of values for a leading vortex. 
(b) These values were found to be mathematical indeterminate (IND) during the fitting because zo/do was zero. 

6.2 Confined Jets of Constant Radius 

Section 2.2 suggested that the radial velocity profile for the KB slurry may be more plug flow than 
Gaussian, which may confine and channel the turbulence.  Rajaratnam and coworkers in Cai et al. (2012) 
considered sand jets entering laponite gel.  They showed that when the jet velocity was sufficiently large, 
the jet was turbulent and dispersive.  As the jet velocity dropped, the flow eventually took on the profile 
of a laminar tube of approximately constant diameter.  This section considers the intermediate 
approximation of a turbulent jet of constant radius.  Given that the jet spread remains rather modest for 
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the KB slurry, this may not be a bad approximation.  Shekarriz et al. (1997) argue that when a turbulent 
jet becomes confined, the turbulence increases by approximately a factor of 3.5 (see their Figure 2.6), 
which may enhance the persistence of jet momentum.  Without channeling, the jet flow may decay faster.  
For a constant radius, the flow becomes akin to pipe flow, consistent with the arguments of Rajaratnam 
(1976, Chapter 8) for developed confined jets. 

 

Figure 6.2.  Sand Jet in Laponite at Decreasing Entrance Velocities (left to right).  Original caption: “Fig. 
2.  Example images of deformation types I to III of sand jets in Laponite gel.”  Reprinted 
with permission from Cai et al., Copyright 2012, Chinese Society of Theoretical and Applied 
Mechanics and American Institute of Physics. 

In Section 4, the sum of stresses using a Prandtl mixing length model for turbulence was given in 
Eq. (4.15) (repeated below) as 
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Near a pipe wall, Masuyama et al. (1980) cite the work of Hanks and give the mixing length for a 
Bingham fluid as  
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where y is the distance from the wall, M is a Reynolds number based on the Bingham consistency and 
wall velocity, c’ is a constant discussed in their article, and B’ is an empirical correction factor 

 
 2000504.01

00352.0
1'

He

He
HeB


 (6.19) 

with He as the Hedstrom number, 



 

6.7 

2

24

o

jeto R
He




 (6.20) 

At the wall (y=0), Eq. (6.18) shows the mixing length vanishes.  This is consistent with the well-known 
laminar sublayer arguments near flat walls and the discussion of Deen (2012, p. 504), who argues that 
velocity fluctuations must vanish near a wall.  Alternatively, even in approximate confinement where the 
mixing length may not completely vanish, the radial profiles in Figure 2.4b permit fitting by functions 
that require the derivative of the axial velocity with respect to radius to vanish infinitely far from the 
centerline of the jet.  In either case, the turbulent stresses vanish. 

The viscous stresses are more nuanced.  If the axial velocity profile asymptotes to zero so that its first 
derivative also asymptotes to zero, then the viscous stresses vanish at Rjet.  Alternatively, the magnitude of 
the viscous stress may be compared to the magnitude of the yield stress.  The ratio of viscous stresses to 
yield stresses (akin to the inverse of the Bingham number) may be extracted from Eqs. (4.17) and (4.18) 
as 
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which is typically order one for a 30 Pa, 30 mPa.s simulant with a nozzle velocity and diameter of 12 m/s 
and 4 inches and values of c in Table 2.1.  In either case, if the jet is rigidly confined, then following 
Eq. 5.3-8 of Bird et al. (2002), the yield stress and viscous stress may be combined into an equivalent wall 
stress.  Eq. (4.15) reduces to  

wturblam   (6.22) 

in the limit of large m, where the minus sign indicates that the wall stresses act on the fluid.  Eq. (6.1) then 
governs with Rjet as a constant that may be factored out of the integral.  Performing the integration gives 
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from which the axial velocity may be determined with Eq. (3.1) as  
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Scaling finds 
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The critical elevation at which the jet would fail if fully turbulent (in the absence of further laminar 
transition) may be determined where the local axial velocity falls to zero.  Then, 
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This equation shows that the critical elevation depends linearly on the yield Reynolds number instead of 
to the 1/2 power for the expanding jet.  Support for linear fits is found in Figures 5.3 through 5.6 of 
Bamberger et al. (2005), which plot the “cavern” height nondimensionalized on the tank diameter versus 
the yield Reynolds number based on a shear strength.  This data set, using their average velocity (most 
similar to the averaging done elsewhere in this report) and based on the Bingham yield stress alone, is 
replotted in Figure 6.3a without an intercept as indicated by Eq. (6.26).  The fits are not bad if 
uninspiring.1 

To explain the scatter, Eq. (6.26) may be rearranged to determine the jet radius as 
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Figure 6.3b shows that when the yield Reynolds number is zero either due to negligible nozzle velocities 
or large yield stresses, the jet radius begins with a negligible radius.  As the nozzle velocity increases or 
the yield stress decreases, the jet radius increases.  When the velocity increases further, the viscous forces 
become more important and begin to dominate; see Eq. (6.21).  Figure 6.3c replots the scaled jet radius 
versus the ratio of the yield Reynolds number to the jet Reynolds number, which represents the ratio of 
viscous to yield forces.  This figure shows that there is a change in slope and magnitude of the scaled jet 
radius around particular values of Re/Reo.  The precise transition where the viscous forces become 
generally significant remains unclear because the factor of 1/c in the denominator of Eq. (6.21) remains 
unknown.  Nevertheless, Table 2.1 shows that c~0.05-0.20 typically, so that dividing the x-axis by c 
would bring the transition in behavior to around a value of 1, which implies that the curves may collapse 
around that value. 

Importantly, the value of Re/cReo~O(1), suggesting that viscous forces may be influential and the 
jet Reynolds number with its dependence on geometric scale may not be negligible.  By direct 
implication, a velocity of 12 m/s in the 8 ft vessel may or may not be a velocity of 12 m/s in the 16 ft 
vessel, though how much variation may be reasonably expected requires additional analysis.  Please see 
additional analysis by Wells et al. (2015) for quantitative analysis of direct scaling based on historical 
data. 

                                                      
1 The R2 value here does not denote the square of the correlation coefficient but represents one minus the sum of the 
square of the errors for the trendline divided by the sum of the square of the errors for a horizontal line at the 
elevation of the arithmetic average, both relative to the data.  In this sense, a negative R2 value only indicates that a 
horizontal line at the elevation of the arithmetic average provides less deviation than the trendline. 



 

6.9 

  

 

Figure 6.3.  (a) “Cavern” Height Versus Yield Reynolds Number, (b) Rjet Nondimensionalized on the 
Nozzle Diameter versus Yield Reynolds Number, and (c) Rjet Nondimensionalized on the 
Nozzle Diameter versus the Ratio of the Yield Reynolds Number to the Jet Reynolds 
Number for Laponite Gels at Three Vessel Sizes 

Table 6.2.  Best Fit Parameters for “Caverns” Measured in KB Slurry(a) 

Test Location zc/do Re Reo Viscous/Yield Forces Rjet/do Rjet (inches) 
S-16 SRNL 14.1 3167 4267 13.47 28.1 12.2 
M-20 APEL 13.4 1225 4674 4.75 11.5 9.92 
M-21 APEL 13.5 888 7941 2.030 8.20 7.10 
L-18 336 13.5 874 30386 0.522 8.10 32.5 
L-19 336 13.4 1375 35423 0.705 12.8 51.4 
L-20 336 13.4 1361 35235 0.701 12.7 50.9 
(a) Calculated using Eq. (6.27) with NfN=1, o/w=1, c=0.0551 from Table 2.1 for KB slurry in the 12.75 ft 

vessel. 
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When the viscous stress is not negligible, the wall stress no longer equals the Bingham yield stress 
but has contributions from the viscous term.  The wall stress may be approximated by the Fanning friction 
factor in a Bingham fluid, fB, as 
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Kuhn et al. (2013) in Section E.6.2.1.2.2 provide a model for the friction factor of a Bingham fluid.  They 
give 
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The laminar friction factor is given by 
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and the turbulent friction factor is  

193.0Re10  BTf  (6.33) 

with 

  BExp Re1029.0146.01378.1 5  (6.34) 

These equations from Kuhn et al. (2013) must be solved iteratively. 

Figure 6.4a shows with these equations that increasing the Hedstrom number delays the 
turbulent-to-laminar transition.  Similarly, Masuyama et al. (1980) experimentally determined the 
Fanning friction factor for kaolin slurries.  Their data in Figure 6.4b also show a delay in the 
laminar-turbulent transition with increasing He.  In either case, for a jet radius of 0.10-1.0 m moving at a 
velocity of 0.1-1.0 m/s in a Bingham material with =1200 kg/m3, o=30 Pa and o=30 mPa.s, He=1.6.106 
to 1.6.108, and ReB=8.0.102-8.0.104.  Both panels indicate that as the jet speed decreases, the jet becomes 
laminar for the Bingham Reynolds numbers of interest.  This prediction of laminar flow comports with 
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the qualitative trend in Figure 2.12 and should not be surprising because the viscous stresses are of the 
same order of magnitude as the yield stresses.  Laminar flows are examined next. 

 

Figure 6.4.  Fanning Friction Factor for a Bingham Plastic Versus the Bingham Reynolds Number (a) for 
He=1.6.106 and 1.6.108 and (b) for Experimental Data Using Kaolin Slurries from Masuyama 
et al. (1980).  Original Caption:  “Fig. 2 Relationship between f and NReB for kaolin slurries.”  
Note the offset in axes between panels.  Reprinted with permission. 

6.3 Bingham Flow in Constant Radius Laminar Tubes 

Although Section 4.3 suggests that the flow may converge, the last upwell considered herein is a 
completely laminar flow of constant diameter.  Converging flows are known to suppress the instability 
that leads to turbulence.  This flow configuration is supported by Figure 2.12, which shows a complete 
absence of turbulence at the upper probe in 8 ft testing in KB slurries at modest velocities, and by  
Figure 6.2, which depicts laminar flow of a sand jet in laponite.  Chatzimina et al. (2007) examined the 
cessation of laminar annular flows with Bingham plastic rheology.1  Both Chatzimina et al. (2007) and 
Plawsky (2001) give the well-known solution for the velocity profile of a Bingham plastic in a pipe at low 
Reynolds number in the notation herein as 
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in the sheared region between rc and Rjet.  The region between 0 and rc, given by setting the derivative of 
the velocity profile to zero as 
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contains unsheared material moving at a constant velocity, uc, 

                                                      
1 Although not a focus of this report, the transient analysis of Chatzimina et al. (2007) may be used to assess (with 
modification for bubbly flow) the presence of the spargers and the additional shear they impose on the central 
upwell. 
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The velocity profile may then be normalized to give  








































jetjetc

jet

co

jeto

c R

r

R

r

r

R

u

R

u

u
11

2 2

2




(6.38) 

subject to the constraint that the normalized profile must be continuous.   

This normalized dependence contrasts with the 1/7th power law expected of turbulent flow given by 
Bird et al. (2002) as 
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Figure 6.5 compares the laminar, turbulent, and Gaussian axial velocity profiles to experimental data from 
Figure 2.4b for a KB slurry from Bamberger et al. (2005).  The velocity profile shows that the laminar 
profile matches the data well, even though the estimated Reynolds numbers substantially exceed unity.  
The agreement justifies exploring the implication of the low Reynolds number laminar velocity profile 
even though the Reynolds number is not necessarily low. 

 

Figure 6.5.  Axial Velocity Profiles Normalized on the Centerline Velocity Versus Radial Position 
Normalized on the Jet Radius Determined by Linear Fitting.  Experimental data from  
Figure 2.4b compared to the 1/7th law, laminar profile, and Gaussian profiles.  Best fit 
laminar velocity profile constants are rc/Rjet=0.245 and oRjet/ouc=0.857. 
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Eq. (6.1) with a constant radius becomes  
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This time, the velocity in the first term arises from the well-known solutions for laminar flow in a 
Bingham plastic at steady state.  With Eq. (3.1), 
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Integration finds 

222.0

120

1151

2

1

2

2

5

2

2

2



































jet

c

jet

c

jet

c

co

jeto

jet

c
B

R

r

R

r

R

r

u

R

R

r




  (6.43) 

for the best fit values used to fit the data in Figure 6.5.  Solving for um,c finds 
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or in scaled form, 
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This equation anticipates that a plot of the square of the scaled velocity versus the scaled elevation may 
comprise a straight line.  Because the yield Reynolds number is greater than one, the slope should be quite 
shallow.  The intercept depends strongly on Rjet/do, with wider jets decreasing the intercept.  Although the 
parameters share several factors, the intercept depends uniquely on the number and spatial arrangement of 
PJMs.  The slope depends uniquely on the yield Reynolds number and a ratio of the wall stress to the 
Bingham yield stress. 

Figure 6.6 shows that this proposed scaling does remarkably well.  Indeed, the curves are essentially 
flat.  Fit parameters are summarized in Table 6.3.  The curves were prepared with peak average velocities 
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for the 2.82 ft and 12.75 ft vessels.  Reprocessing the raw data (unavailable) with average velocities 
would raise these curves in Figure 6.6 and bring the predicted elevation of breakthrough into closer 
agreement with experiment.  Figure 2.5 suggests that the jet width expands slightly with elevation.  This 
model operates under a lubrication approximation and does not account for this modest expansion.  
Modest improvement in predictions may be expected by including this effect. 

 

Figure 6.6.  The Square of the Ratio of the Centerline Velocity to the Nozzle Velocity Versus the 
Elevation Scaled on Nozzle Diameter.  Nozzle velocity for 2.82 ft and 12.75 ft vessels was 
the peak average velocity (larger than average defined in Sections 2.1 and 2.4).  Data from 
the 2.82 ft vessel taken off center, which reduces values on the y-axis by a factor of fc

2, and 
are included only to inform consideration of predicted linearity.  The vertical line represents 
the nominal fill height of the 8 or 16 ft vessels; the other vessels had a dimensionless fill 
height of 29 to 36. 

Table 6.3.  Laminar Profile Fits 

Vessel 

Nozzle 
Velocity 

(m/s) 

Nozzle 
Diameter 
(inches) Slope Intercept Rjet/do

(a) 
Rjet 

(inches) zc/do 
8 ft(b) 8 1.94 -1.38.10-4 0.00566 14.1 27.4 41.0 
8 ft(b) 12 1.94 -1.20.10-4 0.00789 11.9 23.2 65.6 
12.75 ft 8.2-8.6(c) 4.0 -4.27.10-3 0.120 2.16 8.65 28.2 
12.75 ft 5.48-5.50(c) 4.0 -2.78.10-3 0.0635 2.98 11.9 22.8 

(a) Asserts B=0.222, w/o=1, and o/∞=1 for all conditions, though these have not been measured 
generally. 

(b) FIO. 
(c) Uses peak average velocity in the 12.75 ft vessel.  Using the average nozzle velocity would increase 

intercept and critical elevation estimates. 

An expression for the critical elevation arises when the scaled velocity goes to zero as 
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Again, when the jet is not expanding, the critical elevation depends linearly on the yield Reynolds defined 
on the Bingham yield stress.  The critical elevation is determined by a balance of competing factors that 
control the slope and intercept.  During design stages, the intercept may be determined by selecting NfN, 
but during operations, the slope may be determined by selecting the Re or, when Re is sufficiently large, 
by selecting ReB, He, and Reo.  The inclusion of these dimensionless numbers introduces geometric scale 
dependence through Reo of unknown magnitude. 

Derivations to explore the influence of the jet Reynolds number and the radial variation of the jet 
remain straightforward but intricate.  Two solutions are necessary: one for turbulent flows and one for 
laminar flows.  For the turbulent flows, energy balances and momentum balances must be coupled 
because the energy balance determines the radial spread of the jet (see Section 4.3).  This allays the need 
to artificially distinguish between expanding and confined jets as in Section 6.1 versus 6.2.  Both 
conservation equations must be integrated radially outward from the centerline of the jet.  The outer limit 
of integration may be determined where the fluid shear stress equals the Bingham yield stress, which in 
turn defines the radial derivative of the axial velocity.  This leads to a coupled pair of ordinary differential 
equations, which may then be solved with the usual methods.  The laminar flow solution presented here 
may be modified to account for a slowly changing radius as shown in Figure 2.4 using a lubrication 
analysis.  The transition between flows may be approximated by the friction factor analysis built on the 
work of Masuyama et al. (1980) or preferably with entropy considerations as presented by Bejan et al. 
(2014). 

The estimated diameter has direct implications for surface flow of the slurry.  For example, both the 
Froude number and the fountain height, which induces the pressure driven flow across the solidified 
slurry surface, scale on this diameter.  Indeed, this is the crucial dimension in the problem, without which 
mode three flow as defined by Bamberger et al. (2005) simply could not be analyzed accurately.  (The 
non-Newtonian mixing modes are (I) cavern only; (II) breakthrough with stagnant zones; 
(III) breakthrough with slow peripheral movement; (IV) all turbulent movement.)  For example, for the 
8 ft vessel with a nozzle velocity of 12 m/s, the centerline velocity of a surface at z/do=48 decays to 
0.55 m/s.  With a density ratio of 103, characteristic of water emerging into air, the Froude number is 
approximately 0.0051.  Srinarayana et al. (2008) review axisymmetric correlations to find that the 
turbulent steady-state fountain height in the notation herein is 2CfountainRjetFr where Cfountain ranges from 
2.05 to 2.74, which gives a fountain height of approximately 0.49 to 0.65 inches; start up fountain heights 
may be larger.  Other models may produce other answers.  This height induces the pressure gradient that 
drives the transient lateral flow of the Bingham fluid across the surface with or without the imposition of 
surface waves as described by Lamb (1945).  The flow is transient where both curvature and interfacial 
tension effects may influence the radially spreading fluid.  Additionally, multiple hydrodynamic 
instabilities, including free surface and jet instabilities, influence the fluid flow as the jet approaches the 
surface and as the emerging fluid flows and ripples across the upper surface, the full analysis of which, 
though imminently tractable, lies outside the scope of this upwell analysis (Bouchet et al. 2002; 
Srinarayana et al. 2008). 

6.4 Summary 

This section considers the influence of non-Newtonian fluids that have an actual yield stress (not 
simply an extrapolated yield stress from other non-Newtonian rheologies).  Three cases were evaluated: a 
turbulent dispersive jet (c.f., Eqs. 6.5, 6.7, 6.13, and 6.15), a confined turbulent jet (Eqs. 6.25 and 6.26), 
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and confined laminar flow (Eqs. 6.38, 6.45, and 6.46).  The section shows that the radial distribution of 
axial velocities is a primary variable and that the viscous forces that depend on nozzle diameter cannot be 
neglected (Eq. 6.21).  Of the three cases, the laminar flow case reasonably describes the radial profile 
(Figure 6.5), provides the best fit to velocity profiles in multiple vessels (Figure 6.6), and serves as the 
most conservative case. 

The velocity distributions predicted feed directly into estimates of the local viscosity.  The local 
effective viscosity may be described by the Bingham-Papanastasiou model (see Figure 2.6 and Eq. 4.15) 
as  
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or for the Bingham plastic model 
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which show that the radial distribution of velocities is essential in determining the effective local 
viscosity.  For small (e.g., <1 cm) spherical bubbles in the non-inertial limit (i.e., those trapped by yield 
stresses), the bubble (and gas) release rate through the central upwell (the primary flow channel to the 
surface) is, therefore, governed primarily by the local velocity distribution. 

This analysis is insufficient for complete prediction of the velocity profiles because the elevation at 
which the flow transitions from turbulent at the base to laminar at higher elevations remains unknown and 
may or may not scale with vessel diameter.  Even though the viscous forces cannot be neglected, the 
influence of viscosity has not been quantified herein, and momentum and energy coupling has not been 
completed. 
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7.0 Jet Celerity 

Analysis thus far has focused on the steady-state conditions after the initial jet front (and ring vortex) 
has passed.1  However, the rate at which a jet propagates may also affect whether the flow achieves 
surface flow or not.  The rate at which the leading vortex of a jet moves is called jet celerity (i.e., the 
rapidity or swiftness of jet front penetration).  Consider a jet that has passed the lowest probe in a vessel.  
A few moments later it passes the next probe and then moments after that it passes the third as it rises in 
elevation.  By knowing the time at which the jet passes each probe, a plot of the elevation of the jet front 
versus time may be constructed.  Nondimensionalizing the elevation on the nozzle diameter and the time 
on the jet time, do/Uo, collapses the curves, and the constants in a celerity equation may then be 
determined. 

Sangras and Faeth (1999) give the celerity equation for a free turbulent primary flow as 
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where  is the celerity constant and n is the celerity exponent.  They show that for primary jets in the 
absence of solids n=1/2 for jets and n=1/4 for puffs.  A puff is a jet-like flow that continues to propagate 
after flow at the nozzle has been turned off.  Similarly, Witze (1980, see Eq. 27) finds a consensus in the 
literature around the use of t-tref~(ztip+zref)

2 to describe jet celerity, where ztip is the instantaneous elevation 
of the jet tip or penetration front and tref and zref are fitting parameters.  In either case, knowledge of 
upwell celerity curves in conjunction with the temporal analysis of bottom motion enable prediction of 
whether surface flow may be achieved. 

To place the analysis below in context, two experiments are insightful.  First, for the six-part simulant 
in Table 2.2, the velocity at the seam is always vigorous and turbulent (Figure 7.1).  However, at higher 
elevations, the celerity of the jet may be attenuated.  At Uo=9.5 m/s in Figure 7.1a, the jet gradually 
arrives at the middle probe and fails to reach the upper probe during the drive time.  At 10.5 m/s, the jet 
arrives at the middle probe more quickly and in the last couple of seconds reaches the upper probe.  At 
11.5 m/s, the jet velocity gradually grows at upper probe, but surface flow is not observed until 12 m/s, 
though the flow is fast enough to reach the upper probe.  By 15 m/s, the jet shows excellent celerity at all 
probe levels. 

The gradual penetration of the jet at intermediate velocities suggests that jet celerity is an essential 
factor in achieving surface flow.  Indeed, had the drive time been longer (e.g., at 10.5 m/s), the flow may 
have reached the upper probe and perhaps the upper surface.  This is a significant result because it 
indicates that transient behavior may be important in understanding and predicting surface flow, cloud 
height, and “cavern” height.  This is commensurate with the arguments of Kuhn et al. (2013), who 
indicate in their Section 9, Eq. 9.5, that the rate of cloud height rise is unconstrained but by time, which 
leads to their characteristic mixing time scales for plane jets.  The cloud height then may not be a static, 
steady-state phenomenon but a transient that would elevate higher if the jet pulse were longer. 

                                                      
1 Steady state refers to the flow when the Strouhal number is sufficiently large but before the drive time is over.  It 
does not refer to the absence of changes between pulses. 
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Figure 7.1.  Central Upwell Velocity 0, 34, and 60 inches Above the Seam for a Six-Part Simulant at 
Velocities of (a) 9.5 m/s (time stamp 152733), (b) 10.5 m/s (154932), (c) 11.5 m/s (085206), 
(d) 12 m/s (091401), (e) 13 m/s (143502), and (f) 15 m/s (102228) with PVF=0.2,  
do=1.94 inches, fR=0.6.  Surface flow observed for Uo≥12 m/s. 

A second insightful experiment was reported by Shekarriz et al. (1995b), who considered jets 
propagating in non-Newtonian fluids.  Figure 7.2 shows the nozzle velocity divided by the centerline 
velocity plotted against scaled distance from the nozzle; see Eq. (2.2).  They argue that for these jets, the 
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leading vortex was essentially stationary, suggesting negligible jet celerity.  Jets that fail to reach the 
surface in mixing vessels may exhibit a similar attenuation of jet front celerity.1 

 

Figure 7.2.  Nozzle Velocity Divided by Centerline Velocity Versus Distance from Nozzle Scaled on 
Nozzle Diameter from Shekarriz et al. (1995b).  Original caption: “Fig. 9  Instantaneous 
center-line velocity within the terminating regions shown in Figs. 7 and 8.”  Reprinted with 
permission from ASME. 

In any case, it is clear experimentally that some of the flows may not achieve the surface because 
their rate of propagation remains insufficient.  Intuitively, the transit time for a jet from the seam to the 
surface may be estimated by recognizing um,c=dz/dt and integrating Eq. (2.1) or its equivalents herein with 
an initial condition of z=0 at t=0.  Using this logic, Meyer and Etchells (2007), Bamberger et al. (2005), 
Meyer et al. (2006), and Kurath et al. (2007)2 assert that 
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in the absence of a virtual origin.  This equation may be rewritten in the form of Sangras and Faeth 
(1999): 
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from which alpha may be identified as the square root of 2hc and n=1/2.  Therefore, factors that would 
influence hc also influence the celerity curves.  Comparing this solution to the drive time may provide an 
estimate of whether the upwell would reach the surface in time.  An expression for the transit time may be 
written for each region as 

                                                      
1 Combining the stress balances of Cai et al. (2012), the celerity mushroom of Kuhn et al. (2013), and an elastic 
restoring force as given by Powell et al. (1997) may explain Shekarriz’ s conundrum. 
2 Kurath et al. (2007) consider how this time scale with a virtual origin is affected by parallel or co-flow, which is 
not analyzed here but may affect these time scales at least marginally. 
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and 
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scaled on the drive time.  Adding the times to penetrate each region gives 
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where b is the standoff distance, hj is the coefficient at the nozzle (~6.3), hr is the coefficient along the 
vessel bottom (~1.1), and hc is the coefficient of the upwell (~1 to 5). 

Table 7.1 shows that for the range of tests considered, t/tD is always less than 1, implying that the jet 
always has sufficient time to reach the surface, even though Figure 7.1 shows that not to be the case.  
Because the particle-specific properties vanished in Section 4.2, this time-scale properly formulated is the 
only upwell time scale for the flow problem (turbulence itself has the only other independent time scale).   
Table 7.1 also shows that a strong majority of the transit time associated to achieve surface flow is 
associated with rising through the central upwell; therefore, this portion of the total time remains the 
focus for the remainder of this section. 

Table 7.1.  Penetration Times in the 8 ft Vessel 

 t/tD tprimary/tD tradial/tD tupwell/tD tupwell/t 
Eqs. 5.64-5.67, Short Case(a) 9.58.10-2 5.30.10-5 2.78.10-2 6.79.10-2 70.9% 
Eqs. 5.64-5.67, Long Case(a) 0.994 1.71.10-3 7.56.10-2 0.917 92.2% 
(a) In the 8 ft vessel tests with do=1.94 inches, b=2.9-11.6 inches, fR=0.6-0.7, D=92.5 inches, z/do=47.7-55.4, 

UotD=82.5-165 m per Table 3.2.1 in run sheet 7.  FIO. 

A factor of three in uncertainty may be expected from a scaling analysis, but Eq. (7.2) misses 
essential factors that may affect its value.  To determine what these factors may be, consider the 
following.  In Section 4, the time-dependent momentum balance1 was shown in Eq. (4.16) (repeated 
below) to be 

                                                      
1The influence of bulk motion was not important at steady state, but its influence on transient jets remains 
unevaluated. 
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In the absence of governing pressure gradients (present but not governing), buoyancy, and yield and 
viscous stresses, this equation becomes 
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Section 4.3 showed that the second two terms on the left may be combined and that the term on the right 
vanishes with integration over these limits.  Then, 
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Substituting Eqs. (2.1), (2.2), and (2.4) finds 
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with 
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This is a first order partial differential equation in two variables.  Bajpai and Tirumkudulu (2008) 
recognized that first order differential equations may admit a jump or shock condition.1  The 
Rankine-Hugoniot jump condition (Eq. 7 in Bajpai and Tirumkudulu 2008) where the upstream velocity 
and flux are assumed to be zero becomes 

                                                      
1 The derivation of Bajpai and Tirumkudulu (2008) contains a nonhomogeneity for which the Rankine-Hugoniot 
jump condition does not strictly hold. 
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(see Yarnovsky (2005) for a derivation of the Rankine-Hugoniot jump condition, which only strictly 
holds for homogeneous first order differential equations).  Substitution of Eq. (2.1) leaves 
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Integrating with an initial condition of t=to at z=zl, where zl is an elevation that corresponds to the lower 
limit of integration, gives 
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when a term of dzo/dt is added to the left-hand side of Eq. (7.14).  Due to the nonlinearity of Eq. (7.15), 
either to or zl may be selected by fiat but not both.  Solving for z gives 
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This equation shows that the celerity equation is more intricate than Sangras and Faeth (1999) may have 
anticipated for tertiary jets.  The virtual origin again plays an important role and the limits of integration 
matter.  Even in their absence, these equations show that Eq. (7.3) misses the influence of the radial 
distributions on the jet flows as captured in the ratio of 2,1/1,1. 

Figure 7.3 presents celerity curves from both historical data and recent 8 ft testing.  Figure 7.3a and b 
show the temporal evolution of the jet front for water in both the 12.75 and 8 ft vessels.  Comparing 
Figure 7.3a and b shows that either increasing the number of PJMs from four to six or increasing the 
velocity from <9 to 12 m/s substantially shortens the rise time, even though it takes longer for the radial 
jet that feeds the central upwell to reach the vessel center in the 8 ft vessel.  Either approximately doubles 
the momentum feeding the upwell. 

In the presence of solids, Figure 7.3c and e suggest that there is a small but perceptible increase in the 
celerity time with increased solids loadings when the nozzle velocity is held approximately constant at ~8 
to 9 m/s in the 12.75 ft vessel or 15 m/s in the 8 ft vessel.  Whether the various solids loadings would 
cluster together at other nozzle velocities has not been explored experimentally, but is important because 
nozzle velocities in substantial excess of 12 m/s are not anticipated in the 16 ft vessel.  However,  
Figure 7.3d shows a strong dependence on the nozzle velocity.  As the nozzle velocity drops from 15 m/s 
down to 10.5 m/s, the upwell time more than doubles.  This change is important.  For a nozzle diameter of 
1.94 inches in the 92.5 inch test vessel (~8 ft), the product of tDUo/do=1680, 2520, and 3350 for 
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PVF=0.10, 0.15, and 0.20, respectively.  This explains why the six-part simulant with a PVF of 0.20 in 
the 8 ft vessel may be successful at approximately 12 m/s but not at 11.5 m/s. 

That a nozzle velocity dependence may arise in the experimental data when plotted against tUo/do is 
not obvious from the functional form of Eq. (7.16).  Such an implicit dependence may arise through any 
of the parameters in the equation.  For example, Figure 7.3f displays 21/11 versus the nozzle velocity.  
Remarkably, as the nozzle velocity increases from 11 m/s, the value of this ratio increases, commensurate 
with significant entrainment of peripheral slurry, which in turn appears to concentrate the particles with 
their momentum closer to the centerline of the jet.  Conversely, as the value of this ratio decreases, the 
radial distribution flattens out, as may be expected of a velocity profile approaching a cloud height 
barrier, even a transient one. 

In the anticipated 16 ft vessel, the nozzle diameter approximately doubles relative to the 8 ft vessel, 
but the drive time also doubles, suggesting that the dimensionless group tDUo/do will remain 
approximately (though not precisely) the same.  This would suggest that if the jet remains free, the 16 ft 
vessel will perform approximately as well as the 8 ft vessel.  However, Eq. (7.16) was derived asserting 
that the buoyancy and yield stresses remain negligible.  The former may or may not influence the jet 
celerity curves and therefore the scaling between vessel sizes.  Confidence requires evaluation of the 
influence of max/∞ and zo/do as a function of geometric scale similar to the cloud height arguments in 
Section 5. 
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Figure 7.3.  Elevation Scaled on Nozzle Diameter Versus Time Scaled on the Jet Time (ratio of the 
nozzle diameter to the nozzle velocity) for (a) Water in the 12.75 ft Vessel and (b) Water in 
the 8 ft Vessel at 12 m/s, (c) for Glass Particles (10 and 35 m Glass Beads at 5 and 20 wt%) 
in the 12.75 ft Vessel, (d) for the Six-Part Simulant in the 8 ft Vessel at Various Velocities, 
and (e) the Multipart Simulants in the 8 ft Vessel at 15 m/s, (f) the 2,1/1,1 Ratio versus 
Nozzle Velocity for the Multipart Simulants in the 8 ft Vessel 
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Inversely, Eq. (7.15) may be solved for tupwell=t-to as 
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The presence of a nonzero virtual origin increases the upwell time.  Perhaps more insightfully,  
Table 3.1 finds 1,1 to be greater than 2,1 by approximately a factor of 1.33 to 3.00, which immediately 
implies that the upwell takes longer because of the radial distribution of velocities neglected previously.  
That the actual time may be approximately double that of the jet time is consistent with the arguments of 
Kuhn et al. (2013, Eqs. C.38-C.39), who then use that information to predict the radial spread of the 
leading vortex relative to the width of the jet itself.  They also indicate that the radial head provides an 
additional impediment to momentum that may affect the value of hc during the transient stages of jet 
propagation.  To determine the overall time to surface flow, a similar analysis is required on the radial jet.  
This would be a straightforward analysis because the same governing equations apply with only a change 
in boundary conditions.  In the interest of schedule, an overall expression for the time to surface flow is 
not included, preventing quantitative comparison to experimental data. 

Table 7.2 compares the upwell-time-to-drive-time ratio for the tests in the 8 ft vessel Figure 7.4 shows the 
same information graphically.  When tupwell/tD remains small surface flow is achieved because the jet 
reaches the surface before the drive time ends.  In contrast, when the time ratio is large, the upwell takes 
longer to reach the surface than the drive time allows.  Some of the cases for which there is no surface 
flow may have ratios that are below one, but in nearly each of these cases (except the KB slurry and the 
six-part simulant) the range spans unity and this ratio does not include the time it takes the radial jets to 
travel from PJM nozzle to vessel centerline.  

 

Figure 7.4.  The Ratio of the Upwell Time to the Drive Time Differentiated on the Surface Flow Metric 
of Table 2.3.  When this time ratio is small, surface flow should be achieved, and when it is 
large, the upwell does not reach the surface before the jet turns off. 
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Table 7.2.  Upwell Times in the 8 ft Vessel(a) 

Reference Constituents Surface Flow tupwell/tD 

Commissioning Water NR 0.091-0.26 
Run sheet 1 Glass powder, Al2O3 Y 0.057-0.33 
Run sheet 1 Glass powder, Al2O3 N 2.2-14 
Run sheet 2 Glass powder, Al2O3 Y 0.080-0.47 
Run sheet 2 Glass powder, Al2O3 N 0.83-5.5 
Run sheet 3 KB slurry, Uo~12 m/s Y 0.14-0.23 
Run sheet 3 KB slurry, Uo~8 m/s or A2 firing N 0.30-0.54 
Run sheet 7 Glass powder, 1.27 wt%, Uo=15 m/s Y 0.046-0.13 
Run sheet 7 Glass powder, 2.54 wt%, Uo=15 m/s Y 0.045-0.13 
Run sheet 7 Glass powder, 4.59 wt%, Uo=15 m/s Y 0.045-0.13 
Run sheet 7 Glass powder, W,(b) Uo=15 m/s Y 0.048-0.14 
Run sheet 7 Glass powder, W,(b) SiC, Uo≥12.0 m/s Y 0.048-0.14 
Run sheet 7 Glass powder, W,(b) SiC, Uo≤9.5 m/s N 0.58-1.8 
Run sheet 7 Glass powder, W,(b) SiC, beads, Uo=15.0 m/s Y 0.0468-0.13 
Run sheet 7 Glass powder, W,(b) SiC, beads, Al2O3, sand, Uo≥12.0 m/s Y 0.052-0.15 
Run sheet 7 Glass powder, W,(b) SiC, beads, Al2O3, sand, Uo≤11.5 m/s N 0.25-0.83 
(a) Based on hc and zo/do in Table 2.4, z/do=48-55 for do=1.94 inches, and 2,1/1,1 from Table 3.1 where 

available for the specific test or the minimum and maximum generally of 2,1/1,1 from the Table 3.1 
otherwise.  FIO. 

(b)  W denotes the dense tungsten component, tungsten carbide with a density of 9.6 g/cm3. 

With modifications and comparison to experiment, analysis of jet celerity may become a compelling 
tool to evaluate the scalability between vessel sizes from first principles.  For example, the buoyancy and 
yield stresses may be included in this analysis.  After radial integration, this results in first order 
differential equations as above.  However, these differential equations are nonhomogeneous so that the 
Rankine-Hugoniot jump condition does not strictly apply.  The method of characteristics may be used to 
identify the jump criteria in this case as given in Yarnovsky (2005).  Lin (2000) considers quasilinear 
hyperbolic systems and uses the method of vanishing viscosity to construct shock solutions that provide 
insight into compressive and fan shocks that arise due to the nonhomogeneity and traveling waves 
associated with the shock.  Russel et al. (1989, Chapter 12) consider similar discontinuities that arise in 
the context of settling.  Jenny and Muller (1998) show that the nonhomogeneities (here buoyancy or yield 
stresses) smooth the jet front as observed experimentally so that direct simple solutions may be obtained, 
uncertainty reduced, and confidence in scaling increased. 

In conclusion, this section evaluates the celerity (i.e., the rate at which the jet front rises) of the 
central upwell.  The analysis is confined to a free jet and reasonably discriminates between conditions that 
induce surface flow during the drive cycle and those that do not.  The analysis is incomplete because the 
influence of decelerating yield stresses and negative buoyancy, if any, has not yet been fully evaluated. 

 



 

8.1 

8.0 Wall Upwell Velocity Profiles 

The jet physics along the wall remains different from the physics along the vessel centerline and 
should not be conflated.  To put this assertion into perspective, here the velocity profile along the wall is 
derived parallel to the vertical velocity profiles discussed in Section 3.  Consider an annular control 
volume, the top of which is defined on the inside (radially) by a hexagon with vertices at the centerlines 
of PJM nozzles and along the outside by the vessel wall.  This is the portion of the vessel head not 
included in the control volume of Section 3.1.  The portion of the momentum from the nozzles entering 
this control volume is N(1-fN), where fN was defined in Section 3.1 and represents the fraction of jet flow 
moving toward the centerline of the vessel.  The jet momentum leaving the nozzles, which is the jet 
momentum that drives the wall upwell in the absence of friction losses from shear along the vessel 
bottom, is then 
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Integrating the steady-state Navier-Stokes equations with time-averaged Reynolds stresses 
dominating viscous stresses gives Eq. 10-12 of Rajaratnam (1976), written here as 
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where w is the turbulent shear stress at the wall and uw(y,z) is the vertical velocity along the wall with 
vertical coordinate z and horizontal coordinate y as measured from the wall.  This expression uses the 
Derjaguin approximation, which asserts that the jet is thin relative to the circumference of the vessel, such 
that Cartesian coordinates may be used to describe the jet, much like Cartesian coordinates may be used 
on the surface of the Earth even though it has finite curvature.  Integrating both sides and recognizing w 
to first order approximation to be independent of z gives 
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where the final term is an integration constant that must represent the jet momentum at z=0 per unit length 
along the vessel circumference, D, to preserve dimensionally consistency.  The velocity along the wall is 
self-similar1 in an otherwise quiescent media so that 

   wwwmw fuyzu ,,  (8.4) 

where um,w is the maximum axial velocity of the jet parallel to the wall that depends only on z, fw is a 
functional form defined by this equation, and  

w=y/[w(z+zo)]=y/w (8.5) 

                                                      
1 Strictly true in quiescent media (Rajaratnam 1976, Chapter 10), and often true where there is flow parallel to the jet 
(Rajaratnam 1976, Chapter 12). 
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where w characterizes the radial spread of the wall upwell and zo is the virtual origin for the wall jet 
(Kuhn et al. 2013; Rajaratnam 1976).  The shear stress at the wall can be described in terms of the skin 
coefficient of friction with cf=2w/oum,w

2 (Rajaratnam 1976; Beltaos and Rajaratnam 1977; Meacham et 
al. 2012).  Substituting gives 
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Eq. 1.27 of Verhoff (1963) gives the functional form of fw as 
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The integral then becomes a constant, 
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retaining Verhoff’s significant figures.  Solving for um,w gives 
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Substitution of Eq. (8.1) finds 
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where cj represents an additional jet constant (if needed to fit data).  Scaling the local velocity on the 
nozzle velocity and the elevation on the nozzle diameter gives 
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This would seem to suggest that the value inside the square root depends significantly on the elevation.  
However, in absence of a virtual origin, the factor of z/(z+zo) vanishes, leaving 2cf as the second term in 
the denominator, which is small.  Where zo>0, the value of this term decreases even further.  Eq. (3.19) 
provides an expression for the skin friction coefficient.  Witho=1000-1200 kg/m3, Uo=3.7-15 m/s,  
do=1.94-2.5 inches, and o=1.0-30 mPa.s, cf=0.0060-0.017 from Eq. (3.19).  For comparison, w is similar 
(Rajaratnam (1976) in Eq. 10-36 suggests w=0.068, though this value may vary significantly with solids 
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loadings, see Table 2.1), leaving the first term in the denominator of Eq. (8.11) approximately an order of 
magnitude larger than the second term. 

For comparison, the velocity along the centerline as given in Eq. (3.8) (repeated below) is  
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Although both expressions do not have an intercept other than the virtual origin, the two expressions 
differ in key ways.  First, the velocity along the wall depends approximately on the square root of the 
elevation.  This dependence was anticipated without evaluation by Meyer and Etchells (2007) and 
decreases the rate at which velocity decays with elevation.  Second, unlike the central upwell velocity, the 
tank diameter plays an integral role in the velocity along the wall because the jet’s proximity to the vessel 
perimeter must influence jet flow.  It may, therefore, not be surprising that statistical analyses (e.g., cloud 
height, Meyer et al. 2012) would include tank diameter and possibly find a dependence, though statistical 
analyses may conflate or block covarying factors (Wells et al. 2015).  As in Section 3.2, shear forces 
along the vessel bottom may further strengthen such a relationship.  However, because the tank diameter 
and elevation both scale on nozzle diameter and cf is small, Eq. (8.11) would suggest that geometric 
scaling will preserve the scaled velocity.  Third, the distinction between central and wall upwells has 
important implications for cloud and “cavern” heights.  Cloud heights have been studied experimentally 
(Enderlin et al. 2003; Meyer et al. 2012), statistically (Meyer et al. 2012; Kuhn et al. 2013), and 
theoretically for two impinging PJM flows (Kuhn et al. 2013).  Discussion of cloud height, however, 
often conflates measurements that are taken along the wall with those that are made along the vessel 
centerline.  Meyer et al. (2012) indicate that they measured cloud height at the center of the vessel, though 
solids may also have been elevated in the annulus between the PJM rings.  Enderlin et al. (2003) 
measured the cloud height along the wall of their vessel.  The recent measurements of cloud height in the 
8 ft test vessel have been measured using cameras and tape measures at the vessel wall (Bontha et al. 
2015), though cloud height estimates for the final run sheet 7 may or may not be based on the vessel 
center or wall.  Therefore, comparison of Eqs. (8.11) and (3.8) shows that the functional forms are distinct 
and not interchangeable, with the direct implication that the functional forms of cloud and “cavern” 
heights formed along the wall must be distinct from those formed along the vessel center. 

Eq. (8.11) may be rewritten as 
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when cf remains small.  This form of Eq. (8.12) motivates fitting experimental data with 
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similar to what was done with the central upwell.  Review of the data from the 8 ft vessel considered only 
a limited subset of experimental data to support this equation.  Therefore, the estimates below should only 
be considered a first approximation or estimate of wall jet properties.  Further uncertainty arises in that 
the location of the maximum velocity should not remain a constant distance radially inward from the 
vessel wall, but should increase with elevation due to Eq. (8.7), whereas the velocity probes did not vary 
in distance away from the wall with elevation.  Nevertheless, the available data are insightful. 

Figure 8.1 is characteristic of the velocity data that showed signs of turbulence at the middle probe.  
The lowest probe at the seam shows strong and significant velocities 4.1±0.4 s (1) after the pulse is 
registered as a PJM level drop.1  The jet arrives at the second probe 34 inches above the seam 7.7±1.3 s 
(1) after the pulse begins.  (Note its arrival is slower than at lower nozzle velocities in Figures 2.8 and 
2.10.)  What is remarkable is that the top probe first registers a bulk flow, but before upwell associated 
turbulence may set in, the direction of the velocity reverses and shows signs of turbulence.  About a 
second later, the velocity at the middle probe falls to an average near 0 mm/s.  This suggests turbulent 
flow from the central upwell reaches the upper velocity probe first and that the velocity at the middle 
probe, while turbulent, is affected by both upward flow along the wall and downward flow from the upper 
surface.  In the analysis that follows, only the portion of the velocity profiles prior to the arrival of the 
downward flow is used to estimate the jet coefficients. 

 

Figure 8.1.  Velocity Profiles Along the Wall 0 inches (red, Valeport 0578), 34 inches (blue, Valeport 
0577), and 60 inches (green, Valeport 0576) Above the Seam for Test 7-8.6.2 (time stamp 
103104) for the Three-Part Simulant with Uo=15 m/s, do=1.94 inches, PVF=0.2, and S 
Firing.  Negative probe velocities represent vertically upward flow. 

For the three-part and six-part simulants, hw=0.088±0.042 (1) and hw=0.110±0.055 (1), 
respectively, indicating that the jet coefficients are not of distinct populations for these two simulants.  
These values are markedly smaller than those for hc.  By comparison, Eq. (8.13) predicts hw=0.64 (for 

                                                      
1 Bontha et al. (2015) indicate a 2.25 s delay in registering velocities relative to registering information from other 
sensors. 
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cj=1) for N=6, fN=1/3, /o=1, w=0.068 (Rajaratnam 1976, Eq. 10-36 for no solids), do=1.94 inches, and 
D=92.5 inches, leaving the ratio of hw from experiment to hw for a free wall jet as cj~1/6.  This value of cj 
is not particularly surprising because it is within a factor of ~2 of the estimates in Table 3.3 without the 
inclusion of negative buoyancy effects (see the velocity profile prediction of Section 5.2). 

As a purely empirical discovery, Figure 8.2 compares the zo/do to hw and finds an approximate linear 
trend in the profile.   This is similar to the linear trend found in Figure 3.1 for zo/do versus hc for the 
central upwell. 

 

Figure 8.2.  Depth of the Virtual Origin below the Seam/Tangent Scaled on Nozzle Diameter, zo/do, 
Versus the Wall Jet Coefficient, hw, for the Three-Part and Six-Part Simulants 

In conclusion, this section considers upward directed wall jets.  Based on a limited data set, the jet 
coefficient for the wall jet has been shown to be an order of magnitude smaller than the jet coefficient for 
the central upwell.  The depth of the virtual origin scaled on the nozzle diameter appears to depend 
approximately linearly on the jet coefficient.  Downward flows along the vessel wall oppose the upward 
jets limiting the rise of the upward jets.  The analysis should be repeated on a larger data set where better 
statistics are desired.  Section 9 discusses the implications of these profiles on the fraction of the vessel 
mixed. 

 





 

9.1 

9.0 Implications for Blending 

The development above has important implications for blending generally within the vessel in 
addition to that discussed above.  This section specifically addresses the proportion of the vessel that is 
blended.  Analysis builds on the profiles for the central and wall upwells developed previously.  This 
section then explains why the volume mixed may exceed that defined by the jets themselves and why 
measurements to date remain insufficient to fully quantify this volume. 

9.1 Fraction of Vessel Blended 

The development of expressions for both the central and wall upwells permits estimation of the 
fraction of the vessel blended for free jets.  This analysis considers the narrow question of what fraction 
of the vessel is mixed by the upwells at the moment the central upwell reaches the upper surface and then 
what volumetric flow rate is processed by the conical jet thereafter.  The analysis is limited to a single 
pulse, for a full analysis of vessel mixing must incorporate the suction phase, downwell along the vessel 
sidewalls, and flows peripheral to the central upwell. 

Where surface flow is achieved for free jets, this analysis begins with the assertion that fluid below 
the knuckle, tangent, or seam is well mixed.  Though evaluation of bottom motion remains outside the 
present scope (see Beltaos 1975; Beltaos and Rajaratnam 1977), the experimental data files find that 
turbulent flow is significant and vigorous at the seam in the 8 ft vessel, and upwell only becomes an 
influential consideration if bottom motion has been achieved.1  For a spherical head, as in the 8 ft vessel, 
there is no knuckle so the volume is just that of a partial sphere, given as 
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where rhead is the radius at the base of the head or cap and hhead is the height of the cap or head.  For a 2:1 
elliptical head, Fink and Peterson (2015) give 

Vhead=D3/24 (9.2) 

Above the vessel bottom, the center and wall upwells may define volumes of blending. 

The volume of the central upwell from the seam, knuckle, or tangent to the surface may be estimated 
as a right truncated cone given by a volume of revolution, Vcentral, as 


u

l

z

z

conecentral dzrV 2 (9.3) 

                                                      
1 Conversely, though not necessarily a physical inevitability (e.g., very thick particle beds), review of the last 
summary tables in Bontha et al. (2015) finds that surface flow is achieved only when bottom motion has also been 
achieved.  Ascertainment of surface flow by the central upwell may serve, with further validation outside the scope 
of this document, as a conservative indicator of bottom motion in non-transparent vessels. 
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where zu is the level of the upper fluid surface and zl is the lower limit of integration, here asserted to be 
the seam, tangent, or knuckle of the vessel.  The radius of this cone, rcone, may be determined by 
rearranging Eq. (2.4) as 

rcone(z)=c
99[c(z+zo)] (9.4) 

where c
99 represents the scaled position that encompasses 99% of the jet flow defined by fc(c

99)=0.01.  
Table 3.1 summarizes the values of c

99 for both theoretical curves and fits of experimental data to the 
normalized Fermi-Dirac function, and values of c are given in Table 2.1.  Substituting gives 

      33299

3 oloucccentral zzzzV  
(9.5) 

from which the volume of central upwell after passage of the leading vortex at the upper surface may be 
estimated.  Alternatively, if the central upwell is a right cylindrical tube, then 

 lujetcentral zzRV  2  (9.6) 

Similarly, the volume of the wall upwell from the seam, knuckle, or tangent to the surface is the 
volume of a right cylinder less a truncated cone.  The radius of this cone is defined through the distance 
from the vessel wall to edge of the jet 

ycone(z)=w
99[w(z+zo)] (9.7) 

found by rearranging Eq. (8.5), where w
99 represents the scaled position that encompasses 99% of the jet 

flow defined by fw(w
99)=0.01.  From the Verhoff (1963) profile (Eq. (8.7)), w

99=2.8786, again retaining 
his significant figures.  Rajaratnam (1976) in Eq. 10-36 suggests w=0.068, but the value of w remains 
unmeasured in the presence of significant solids loadings and the uncertainty in this number remains 
unestimated.  Then, the volume of the wall jet may be determined as a volume of revolution with a cone 
defined by D/2-ycone subtracted from a right cylinder of diameter D as 

   
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 (9.8) 

where zt is the highest elevation that the wall jet achieves.  Please note that zt may be time dependent.  
Substituting, integrating, and simplifying gives 

         332992299

32

1
ootwwootwwwall zzzzzzDV    (9.9) 

where the second term remains smaller than the first and zl may be set to zero by establishment of a datum 
at the tangent, seam or knuckle. 

The total volume is then 

Vtotal=Vhead+Vcentral+Vwall (9.10) 
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After the flow has reached the fluid surface, additional volume often circulates through the jets.  The 
fluid-entrained flow through the jet may be estimated from the volumetric flow rate at the liquid-free 
surface.  The volumetric flow rate increases with elevation as the jet entrains fluid as it rises.  The 
volumetric flow rate at the fluid surface (hypothetic since the jet turns there), therefore, represents all the 
flow into the central or wall upwells.  For the central upwell, the volumetric flow Qcentral is 





0

2 urdrQcentral  (9.11) 

Substituting Eqs. (2.1), (2.3), and (2.4) leaves 

 ouoocccentral zzdUhQ  1,1
22  (9.12) 

where 1,1 is a numerical constant defined in Eq. (7.11) and given in Table 3.1. 

Under the Derjaguin approximation for a wall jet,  





0

dyuDQ wwall   (9.13) 

Substituting Eqs. (8.4), (8.5), and (8.12) in the limit of small cf, leaves 

owoowwall zzdUDhQ   0,1 (9.14) 

where 

  098.1
0

0,1  


www df  (9.15) 

from Eq. (8.7).  The total volumetric flow rate including all of the entrained fluid by the jet is 

Qtotal=Qcentral+Qwall (9.16) 

These expressions inform the fraction of the vessel mixed, the time for mixing to be achieved throughout 
the vessel, and the number of pulses required to mix the complete vessel, each under a variety of 
conditions and circumstances pertinent to the vessel in question. 
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Table 9.1 summarizes projected volumes of mixing in the proposed 16 ft vessel at the moment the full 
jet reaches the fluid surface.  These projections are based on Eq. 9.5 or 9.6 with parameters c

99c or Rjet 
from prior sections of this report based on historical data from which the radial spread of the jet was 
estimated.  Projection from historical data is necessitated because the radial distribution of axial velocities 
was not measured in testing in the eight foot vessel.  The calculated volume includes only the volume of 
the jet at the moment surface flow is achieved.  The table shows that the portion of the vessel directly 
mixed by the jet at the moment surface flow is achieved ranges from <0.5% to nearly 75% of the vessel 
volume depending on the flow conditions and slurry characteristics.  Blending in the vessel head alone 
constitutes 15.2 m3 or 18.02% of the vessel blending. 

Specifically, Table 9.1 considers the glass beads for which the axial velocity profiles were measured 
as a function of the radius.  As the solids loading increases at 10 m, the radial spread of velocities 
narrows so that the fraction of the vessel mixed decreases.  The extent to which larger solids would 
further decrease the fraction of the vessel blended remains unknown.  Additional flow after the initial 
cone of the jet is established is given in the final column of Table 9.1.  This flow can be very significant, 
adding cubic meters of flow per second.  However, this flow too diminishes in the presence of significant 
solids loadings.  The lowest prediction is for KB slurry in the laminar flow regime.  Here the flow is 
channeled and does not spread like a free jet such that even though this flow reached the surface it did not 
significantly mix the remainder of the vessel.  This laminar flow model was shown in Section 6.3 to 
provide a good fit to velocity data versus elevation (see Figure 6.6) from testing in the 8 ft vessel even 
though the flow was turbulent at the base of the upwell, but Eq. 6.21 suggests that the viscous stresses 
will be more important in the 16 ft vessel (the ratio of viscous to yield stresses is 2.2 for  
o=0.030 Pa.s, Uo=12 m/s, c=0.0551, o=30 Pa, and do=4 inches in Eq. (6.21)), which may increase the 
radial spread of the jet relative to the 8 ft vessel. 

For the wall jet in the 8 ft vessel test data some turbulent flows reached the probe 34 inches above the 
seam (see Section 8).  Were the wall jet to achieve the same relative height in the 16 ft vessel, this jet 
would mix an additional 6.2-28.7% (14% average) of the total vessel volume.  However, even in the 8 ft 
vessel many of the PJM pulses did not establish a measurable jet to this level and the wall jet in the KB 
slurry was typically negligible above the seam, so the extent to which the upward wall jet may contribute 
to vessel mixing remains uncertain but likely smaller (the downward flow along the wall not analyzed 
herein may be a larger contributor to vessel mixing than the upward jet). 
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Table 9.1.  Projected Volumes of Mixing at Surface Flow Achieved by the Central Upwell Alone per 
Pulse in a 16 ft Vessel(a) 

Basis  Condition(b) 
Vcentral 
(m3) 

Vcentral/Vtotal 
(%) 

Qcentral 
(m3/s) 

Water (Bontha et al. 2003a) Turbulent Dispersive(c) 16.16 19.4 4.69 
Water (Bontha et al. 2003b) Turbulent Dispersive(c) 13.20 15.6 2.12 
10 m glass beads 5 wt% Turbulent Dispersive(c) 21.34 25.6 3.60 
10 m glass beads 20 wt% Turbulent Dispersive(c) 15.22 18.2 2.44 
35 m glass beads 5 wt% Turbulent Dispersive(c) 7.86 9.41 1.10 
35 m glass beads 20 wt% Turbulent Dispersive(c) 9.44 11.3 0.956 
KB slurry  Turbulent Dispersive(c) 4.80 5.75 0.518 
Laponite (1.44 ft vessel)  Turbulent Dispersive(d) 32.0 38.4 - 
Laponite (2.82 ft vessel) Turbulent Dispersive(d) 25.0 29.9 - 
Laponite (12.75 ft vessel) Turbulent Dispersive(d) 26.5 31.7 - 
Laponite (average for all vessels) Turbulent Dispersive(d) 36.8 44.0 - 
Laponite (1.44 ft vessel) Turbulent Dispersive With Vortex(e) 7.27 8.71 - 
Laponite (2.82 ft vessel) Turbulent Dispersive With Vortex(e) 10.6 12.7 - 
Laponite (average for all vessels) Turbulent Dispersive With Vortex(e) 12.6 15.1 - 
Laponite (1.44 ft vessel) Constant Radius(f) 23.7 28.3 - 
Laponite (2.82 ft vessel) Constant Radius(f) 12.2 14.6 - 
Laponite (12.75 ft vessel) Constant Radius(f) 7.15 8.56 - 
Laponite (average for all vessels) Constant Radius(f) 13.4 16.0 - 
KB slurry (1.44 ft vessel) Constant Radius(g) 62.4 74.8 - 
KB slurry (2.82 ft vessel) Constant Radius(g) 10.5 12.5 - 
KB slurry (2.82 ft vessel) Constant Radius(g) 5.32 6.37 - 
KB slurry (12.72 ft) Constant Radius(g) 5.19 6.21 - 
KB slurry (12.72 ft) Constant Radius(g) 13.0 15.5 - 
KB slurry (12.72 ft) Constant Radius(g) 12.8 15.3 - 
KB slurry (run sheet 3) Laminar(h) 11.2 13.4 - 
KB slurry (run sheet 3) Laminar(h) 15.7 18.8 - 
KB slurry (12.75 ft vessel) Laminar(h) 0.37 0.44 - 
KB slurry (12.75 ft vessel) Laminar(h) 0.70 0.84 - 
(a) Approximate vessel dimensions, volume, and nozzle diameter from Fink and Peterson (2015).  Does not 

account for suction.  Based on elevations between seam/knuckle/tangent and nominal fill height. 
(b) Sourced from velocity profiles for jets that both did and did not upwell to the surface or achieve breakthrough 

unless specifically noted. 
(c) c and zo/do from Table 2.1, c

99 from Table 3.1.  Assumes a nozzle velocity of 12 m/s. 
(d) c

99c and zo/do from Table 6.1, Eq. 6.7.  The value of c is not known independently so Qcentral cannot be 
estimated directly. 

(e) c
99c and zo/do from Table 6.1, Eq. 6.15.  The value of c is not known independently so Qcentral cannot be 

estimated directly.  Additional mixing volume may arise from the leading vortex not included here. 
(f) Rjet/do from Table 6.1, Eq. 6.27.  Assumes a simple right cylinder of radius Rjet from seam to fluid surface. 
(g) Rjet/do from Table 6.2.  Assumes a simple right cylinder of radius Rjet from seam to fluid surface.  Sourced only 

from flows that achieved breakthrough. 
(h) Rjet/do from Table 6.3.  Assumes a simple right cylinder of radius Rjet from seam to fluid surface.  The top in 

each pair achieved breakthrough, whereas the bottom of each pair did not. 

Table 9.1 also shows that the fraction of the vessel mixed varies considerably depending on the flow 
regime assumed.  Unsurprisingly, the laponite and KB slurries evaluated in the 1.44 ft vessel usually had 
a larger volume of mixing than the other vessels, because the ratio of the yield Reynolds number to the jet 
Reynolds number was larger in testing of that vessel than in the other vessels (see Section 6).  This ratio 
of Reynolds numbers is characteristic of the ratio of the viscous to yield stresses so that when this ratio is 
large, the jets experience less confinement than when this ratio is small (governed by the yield stresses).  
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However, where this ratio is larger, the jet Reynolds number introduces a scale dependence.  Indeed, this 
may present an interesting case where marginally losing certainty in scaling between vessels (until the 
right equations have been formulated and solved) may be compensated by a substantially larger volume 
of mixing.  Yet, how these two effects balance to create an optimal mixing environment in the 16 ft 
vessels remains unexplored. 

Notably, the ratio of viscous stresses to yield stresses for the 8 and 16 ft vessels is larger than that in 
much of the historical 12.75 ft vessel testing.  This suggests that the volumes of mixing projected from 
the 1.44 ft vessel may be a better projection of mixing than the larger vessel testing.  Additional analysis 
is necessary to quantify these effects.  However, Section 6.3 showed that a laminar flow model appeared 
to fit the data from the 8 ft testing well, leaving significant uncertainty in the anticipated volume of 
mixing due to a gap in the available models, which can in large measure be filled by coupling momentum 
and energy conservation together and benchmarking against relevant test data. 

The estimates in this section depend on four parameters characterizing the radial and lateral 
distributions of the jets: c

99, w
99, c, and w.  These parameters are seldom a focus of testing.  

Measurements in the 16 ft vessel represent an opportunity to ascertain their values more precisely, 
particularly in the presence of significant solids loadings.  Moreover, the wide range of estimates for the 
volume of mixing from the same tests in Table 9.1 highlights the difficulty in extrapolating vessel mixing 
performance from limiting conditions using limited data sources.  Properly coupling momentum and 
energy balances together with the appropriate turbulence models has the potential to substantially 
simplify and consolidate these results.  By so doing, straightforward and user friendly expressions may be 
obtained and increase confidence in the design and performance of PJM mixed vessels. 

9.2 Why the Jet Cone Alone May Underestimate the Mixing Volume 

The jet cone approach remains the most reliable analytical path to estimate the volume of the vessel 
mixed (until the momentum and energy equations are coupled together to give a more accurate 
representation of the sheared volume).  However, other factors may play a role that could enlarge the 
volume estimate.  First, analytical derivations of the velocity profile in the radial direction for both 
circular and wall jets find that the radial velocity far from the jet center does not decay to zero.  For 
example, Table 2-1 of Rajaratnam (1976) shows that the radial velocity v asymptotes to 
approximately -1/3 when normalized on the product um,c and a constant that evaluates to 0.066; see 
discussion above Eq. 2-83, Rajaratnam (1976).  Combined, this implies that this radial inward (from the 
minus sign) velocity remains finite.  This entrainment velocity may or may not represent an asymptotic 
approximation, but to the extent physical, this non-zero radial velocity will marginally enhance lateral 
blending even if only by a few percent of the centerline axial velocity.  Velocity probes were not 
positioned far enough from the vessel centerline to quantify this velocity either historically or in recent 
testing in the 8 ft vessel, likely because it was assumed to be small.  It may not be large, but suggests a 
conservatism in the calculations above. 

In the presence of solids loadings sufficient to induce negative buoyancy, the presence of a fluid 
dynamic cloud height forms a cap that restricts or attenuates the vertical extent of jet flow.  The volume of 
mixing may then be estimated from the jet by replacing zu in the expressions above with zcloud.  Lower 
cloud heights would lead to smaller truncated jet cones and presumably decrease the volume of mixing.  
However, lateral mixing may be enhanced substantially in these flows below the cloud height.  Consider, 
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for instance, the flow entering the central upwell.  If this flow cannot progress vertically, conservation of 
mass demands significant and substantial fluid flow laterally.  One may not be surprised then to find a 
dramatic increase in shearing below the cloud height at elevations above the seam, were they measured.  
Similarly, stress coupling between the fluid below the cloud height and the fluid above the cloud height 
may induce velocities there, including the waves identified by Kuhn et al. (2013) and the rather small 
velocities along the centerline measured in the 8 ft testing with Newtonian simulants.  It is also possible 
that downward flow peripheral to the jet, well recognized in fountain flows (even if they scale 
differently), may enhance mixing, but downward flows in the presence of a cloud height peripheral to the 
primary flow do not appear to have been measured quantitatively to date. 

In the presence of a significant yield stress, experimental data from the 8 ft vessel suggests that the 
steady-state jet cone may not completely define the volume of mixing.  Figure 9.1 shows the vertical 
velocities measured by a probe 1.1 inches off center (Valeport 0580) and at 18.9 inches from the 
centerline (Valeport 0576) are both 34 inches above the seam at nozzle velocities of 12 and 7.9 m/s 
(Bontha et al. 2015).  In Figure 9.1a at the higher velocity, both probes show an initial velocity 
commensurate with bulk motion.  Then, at approximately 4 s, both probes register a sharp velocity rise as 
the initial vortex passes with the Valeport probe at the centerline indicating a velocity rise approximately 
0.11 s earlier at the inflection point.  At the same moment, a spike in the horizontal velocity (oriented 
azimuthally) as measured 18.9 inches from the centerline also indicates the passage of the initial vortex. 

After the initial pulse passes, the velocity along the centerline remains strong, but the velocity 
18.9 inches from the centerline all but decays.  In fact, the figure shows that there is a small but non-zero 
velocity in the opposite direction, suggesting downward flow 18.9 inches from the centerline.  Therefore, 
the primary jet flow does not extend out that far, even though the initial vertex does.  The downward flow 
and the influence of turbulence suggest that the initial vertex mobilized this region of flow outside the 
main jet flow and that it remains mobilized due to passing transient vortices. 

At the end of the pulse, the horizontal velocity again spikes at 18.9 inches from the centerline, 
suggestive of the channel closing.  It is not surprising that the initial vortex would be larger than the main 
jet flow, as Johari et al. (1997) found that the starting entrainment of jets in Newtonian fluids was 
approximately 30% larger than in the main jet flow.  Kuhn et al. (2013) estimated the radius of leading 
vortex to be approximately twice the radius of the jet below.  In contrast, at the lower velocity of 7.9 m/s, 
the initial ring vortex does not pass, the downward flow after the jet traverses the centerline at that 
elevation is absent peripherally to the jet, and the channel does not experience a significant radial flow at 
the end of the pulse.  Combined, this suggests that the jet does not extend out to 18.9 inches at this lower 
velocity. 

In the KB slurries in WTP vessels or more generally in the full range of non-Newtonian fluids 
proposed for processing by the WTP, the full radial spread of the leading vortex remains unknown, but 
depends on nozzle velocity and may play a significant role in vessel mixing beyond that anticipated from 
the main jet flow alone. 
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Figure 9.1.  Fluid Velocities in the 8 ft Vessel in Tests (a) 3-8.5.1 (time stamp 140349) with Uo=12 m/s 
and (b) 3-8.1.44 (time stamp 032930) with Uo=7.9 m/s with Nozzle Velocities Both 
Measured 34 inches Above the Seam and 18.9 inches and 1.1 inches From the Vessel 
Center with Valeport Probes 0576 and 0580, respectively.  A 2.25 s delay in processing the 
Valeport probe information may affect the timing of these curves relative to the pulse start 
(Bontha et al. 2015). 

9.3 Summary 

This section estimates volumes of mixing based primarily on the volume and flow rate of the central 
upwell.  Because the axial and radial lengths of the central upwell may differ dramatically, observation of 
surface flow does not necessarily ensure significant mixing peripheral to the jet, particularly through 
non-Newtonian simulants.  This analysis remains incomplete because the radial distribution of axial 
velocities has only rarely been measured, the size of the leading vortex has not been evaluated, and 
subsequent radial flows along the surface of the fluid and down the vessel walls have not been modeled. 
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10.0 Key Findings 

This section lists the 15 key findings of this report, followed by an analysis that identifies gaps or 
opportunities. 

10.1 Key Findings 
1. The central upwell behaves as a free jet in the absence of body and surface forces as supported by 

consideration of suitable test data. 

2. When the axial velocity of this free jet is scaled on the jet nozzle velocity and the elevation on the 
nozzle diameter, the data collapse onto curves that depend only on the jet coefficient and the location 
of a virtual origin with respect to the vessel bottom.  These parameters have been extracted from 
historical and 8 ft testing with multiple simulants at multiple scales. 

3. The radial distribution of velocities is essential to quantify flow within mixing vessels.  The fractional 
width of the jet was approximately 10% to 20% of the vessel width in the 12.75 ft vessel.  Available 
data leave uncertainty in the radial spread of the jet of approximately a factor of three. 

4. The Poirier-Etchells criterion presents a cutoff velocity for jet turbulence that is approximately 
predictive of surface flow when coupled with the free jet equation. 

5. Conservation of momentum may be used to predict jet coefficients for free jets.  A geometric 
approximation may be used to estimate how the central upwell depends on the number of PJMs 
within a mixing vessel.  Shear forces along the vessel bottom only weakly influence the upwell flows.  
Predicted jet coefficients for a free jet typically remain within a factor of three of measured jet 
coefficients for Newtonian simulants. 

6. A general framework that combines momentum and species conservation establishes relationships 
among jet momentum, buoyancy, and yield stresses.  The framework is sufficiently general to permit 
simultaneous evaluation of buoyancy and yield stresses (e.g., for simulants with low yield stresses 
and density stratification). 

7. Jet flow governs the central upwell with and without solids until the negative buoyancy force 
becomes influential.  The Froude number based on nozzle diameter without density contributions 
collapses the data from 8 ft vessel tests regardless of pulse volume fraction, PJM firing sequence, or 
Newtonian simulant with separate critical Froude numbers for each nozzle diameter.  A Froude 
number based on tank diameter would not lead to a single critical Froude number.  The Froude 
number alone in its various forms, therefore, cannot reliably predict scale-up of flows below the upper 
surface because the critical Froude number varies with at least nozzle diameter. 

8. A new cloud height model was developed from first principles and validated against the 8 ft vessel 
tests with the two-part simulant.  This model requires four parameters:  the Froude number, the jet 
coefficient, the ratio of the density at the base of the upwell to the density far from the jet centerline, 
and the ratio of the depth of the virtual origin below the vessel bottom to the nozzle diameter.  The 
first is clearly scale dependent, and the second is scale independent.  How the latter two scale between 
vessel sizes remains unclear.  When these are known, this cloud height model predicted surface flow. 

9. Conservation of energy alone suggests that in a yield stress material, the jet initially expands and then 
contracts.  Without solving the coupled momentum and energy conservation equations together, three 



 

10.2 

limiting cases are considered.  First, an expanding turbulent jet predicts the critical elevation at which 
the velocity ceases due to insufficient jet momentum.  This model, validated against “cavern” height 
data in laponite, collapses the data from multiple scales onto a single curve.  Second, the turbulent 
confined jet of constant radius shows that the jet radius increases as the yield Reynolds number 
(defined on the Bingham yield stress, not the shear strength) increases until it is large enough that 
viscous forces become influential.  Analysis shows that the upwell flow loses turbulence and becomes 
laminar.  Third, when upwell flow is laminar (supported by measured radial velocity profiles), the 
square of the ratio of the centerline velocity to the nozzle velocity decays linearly with the elevation 
scaled on nozzle diameter.  The third case represents velocity data in the 8 ft vessel well at 8 m/s.  
Further work is needed to consider fully coupled momentum and energy to add fidelity to these 
relationships. 

10. Flows within mixing vessels holding yield stress materials may be independent of geometric scaling 
at constant nozzle velocity when the yield Reynolds number is sufficiently small so long as the virtual 
origin does not shift between scales.  When the ratio of the yield Reynolds number to jet Reynolds 
number, which represents the ratio of viscous stresses to yield stresses, is order one, the jet Reynolds 
number becomes influential.  For the 16 ft vessel, this ratio is order one.  The jet Reynolds number 
depends on geometric scale, so that scaling between vessels may depend on geometric scale.  See 
Wells et al. (2015) for further analysis. 

11. Velocities and diameters of the upwell flows in the presence of yield stress materials are presented, 
laying important groundwork for evaluating the surface and downwell flows that govern 
mixing/blending outside the upwell flow (i.e., the remainder of mode three mixing).  The radial 
velocity distribution determines the local effective viscosity, which in turn governs hydrogen release. 

12. The rate at which the upwelling jet propagates or penetrates toward the fluid surface (termed jet 
celerity) determines whether the jet achieves surface flow or not. 

13. Simply integrating the centerline jet velocity underestimates the time a free jet takes to rise to the 
fluid surface.  The time-dependent conservation of momentum equation was solved to show that the 
radial distribution of velocities serves as a key correction factor.  Including the radial distributions 
improves prediction of surface flow.  The time for the jet to transit from the vessel seam, tangent, or 
knuckle to the fluid surface comprises a strong majority of jet transit time. 

14. Conservation of momentum shows jet flow along the walls to be independent of geometric scaling 
(the vessel diameter is divided by the nozzle diameter), but the velocity decays with the inverse of the 
square root of the elevation instead of with the inverse of the elevation directly.  Even though more of 
the PJM momentum flows toward the wall, the momentum spreads out over the perimeter and is 
countered by a down flow, so that the jet flow along the wall is typically both weaker and slower than 
the central upwell.  Therefore, this report focuses on the central upwell. 

15. Jet physics permits estimation of the volume mixed (i.e., sheared) by the central upwell during a 
single pulse at the moment surface flow is achieved (lateral flow not included).  Mixing caused by 
only the central upwell as it achieves surface flow is estimated to vary from <0.5% to ~75% 
depending on the radial distribution of velocities (Table 9.1).  Additional flow may proceed after 
surface flow has been achieved until the end of the PJM pulse, in other parts of the vessel (below 
seam, 18%; wall upwell, typically <15%), and due to the leading vortex (a measurement opportunity 
in the 16 ft vessel with radially distributed velocity probes). 
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10.2 Gap Analysis 

This analysis identifies the following gaps or opportunities. 

1. Radial distributions of axial velocities need to be measured in vessels other than the 12.75 ft test 
vessel for both Newtonian and non-Newtonian simulants.  This is the most pervasive need.  These 
feed directly into estimates of the jet coefficients, jet dimensions, and estimates of the volume sheared 
by a single pulse, which in turn affect cloud height, “cavern” height, and jet celerity models that 
predict surface flow.  How the radial distributions vary with elevation remains unclear, but is essential 
to predicting surface flow and lateral shearing.  Radial distributions that vary with axial position may 
be predicted and compared to revised models that couple energy and momentum conservation, 
because they are not independent in the presence of buoyancy forces and yield stresses, unlike the 
free jet. 

2. To use the cloud height model to predict scalability, models are needed for the slurry densities at the 
base of the upwell, the slurry density far from the center of the upwell, and the depth of the virtual 
origin, preferably from first principles benchmarked against experiments.  When available the 
combined model will permit prediction of conditions that satisfy mixing requirements. 

3. There is a need for a continuous, unified model for flow in the presence of yield stresses that accounts 
for the influence of radial distributions that surely change with elevation and the turbulent-to-laminar 
transition.  Coupling energy and momentum equations will likely result in simpler quantitative 
equations, replacing the intricate derivations herein. 

4. Jet celerity has been shown to quantify surface flow for the 8 ft vessel tests and a predictive equation 
is available for the free jet.  Modifications for buoyancy and yield stresses are needed to make this 
celerity analysis a predictive tool. 

5. The viscosity or shear stress-shear rate responses of simulants and actual waste have not been well 
characterized at low shear rates.  Characterizing non-Newtonian materials under these conditions is 
important because it determines a boundary condition that governs whether surface flow is achieved 
in these materials. 

6. The new cloud height model has been benchmarked against one simulant in one vessel size.  
Additional benchmarking in other vessels with other simulants will improve confidence in using this 
model.  The jet density distribution should also be benchmarked against experimental data. 

7. Additional flows that have not been considered include lateral flows across the vessel surface or 
“cloud surface,” downwell flows along the vessel wall, and “fan” jets that arise between PJMs. 

8. The analysis herein forms the basis of analytical models of mode three flow and hydrogen release.  
There is an opportunity to address these important aspects of mixing based on this analysis. 
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Appendix A 
 

Historical Breakthrough Definition and Observations 

The following excerpt from LRB-BNW-14471, pp. 34-35, clarifies the historical observations and 
definitions associated with breakthrough in prior testing in the 12.75 ft vessel: 

Most observations made up to Dec. 4, 2003 (all observations in the large scale tank) had 
been with laponite.  However, for the most part the same criteria apply to clay except for 
fracturing of the material.  The observations at various conditions had been made based 
on observations of the liquid surface and sub surface observations through the sides of the 
transparent small scale tank and the submersed cameras in the large scale test setup. 

Five conditions were defined leading up to break through.  All five conditions were not 
necessarily observed prior to break through.  The variation in surface conditions appears 
to be dependent on the initial PJM discharge velocity, the stroke length, and the time at 
which the PJMs had been operating.  For example, if a discharge velocity 20 ft/s with a 
stroke of 8 ft were to cause break through and the PJMs were started at 20 ft/s with a 
stroke of 8 ft then conditions 3, 4, and 5 might be observed.  However, if the PJMs were 
first operated at 10 ft/s for 2 hrs, followed by 15 ft/s for 4 hrs; conditions 1, 3, and 5 may 
be observed.  The five conditions were described as: 

1) Tank surface uniformly rises and falls with minimal variation in relative elevation 
across the un-yielded liquid surface.  Visually tank surface appears homogeneous in 
consistency. 

2) Center region of surface visually appears to be of a thinner consistency.  Usually 
appears to be smoother and shine as though wet paint compared to the surrounding 
material being dried paint.  Fractures may also appear in the surface.  The center region 
may appear to rise slightly higher than the rest of the surface during the discharge portion 
of the PJM cycle.  The center region consistency was assumed to be slow shear thinning 
due to the bulging/swelling created with each cycle due to the fluid plume rising up the 
center of the cavern. 

3) Center region appears to have an elastic component as it expands due to the swell 
created during the discharge portion of the PJM cycle.  Surface expansion is observed in 
which lateral flow is observed during the discharge portion of the PJM cycle but the 
surface appears to return to its original configuration as the surface falls during the 
suction phase of the PJM cycle.  Several have described the center region to appear like a 
flower opening and closing.  With each opening phase the center region of the flower 
appears to be of thinner material.  Tracer particles or small bubbles on the surface that 
appear to move during the discharge portion of the cycle don’t appear to experience any 
net movement after multiple cycles. 
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4) Net lateral flow is observed in the center region, which can take on an appearance of 
applesauce.  A combination of thinner and thicker material or perhaps many small 
fractures that have allowed small chunks of material to move with respect to each other.  
Tracer particles on the surface within the center region appear to experience net flow but 
they stay on the liquid surface.  The surface appears to experience some surface flow but 
no exchange of fluid between the cavern flow and surface material appears to exist. 

5) A very small upwelling of fluid is observed in the center region of the tank.  The fluid 
in the center region of the tank appears to exchange fluid with the cavern flow.  
Depending on the rate at which break through occurred, fluid from the center region may 
also flow out over the top of the surrounding un-yielded material.  This was defined by 
both Carl Enderlin and Jagan Bontha as break through. 

The following excerpt from LRB-BNW-14425, p.137, provides further insight into prior testing in the 
12.75 ft vessel: 

During pump out of laponite from large scale tank to holding tanks located in 336 
parking lot Wayne Wilcox & I noticed several (a dozen or so) non-homogeneous chunks 
of laponite among the various holding tanks.  These chunks were generally the size of 
apricots—they were blue tinted as should have been expected but had a dark center of 
unmixed orange dye. 

These “chunks” were formed in the processing vessel even though the simulant feed had been 
homogeneous.  Evaluation of the degree to which such “chunks” would or would not be formed in WTP 
vessels is outside the scope of this report. 
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