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Abstract 

Prognostic health management technologies are expected to play a vital role in the deployment and safe, 

cost-effective operation of advanced reactors  by providing the technical means for lifetime management 

of significant passive components and reactor internals. This report describes a Bayesian methodology for 

the prediction of remaining life of materials and passive AR components. This approach, previously 

applied to predict time-to-failure of materials subjected to localized aging and degradation, is adapted for 

component-level prognostics. The Bayesian framework for component-level prognostics incorporates the 

ability to fuse information from multiple sources, including information on localized degradation and 

component-level condition indicators. The ability to switch between multiple models of degradation 

accumulation rate and/or multiple models of measurement physics becomes important in this context, and 

a reversible jump Markov chain Monte Carlo methodology has been developed for this purpose. 

Evaluations of the Bayesian framework and the model switching and selection methodology were 

performed using synthetic data as well as experimental measurements on a high-temperature creep 

testbed. Results to date indicate that the feasibility of the proposed Bayesian framework for prognostics, 

though an improvement over previous methods’ accuracy, will require the ability to quantify sources of 

uncertainties within the various models used in the prognostic framework. Ongoing efforts are focused on 

sensing and measurement (particularly in-situ measurements) that would be applied as inputs to the 

prognostics framework, with the objective of identifying measurement methods that can provide early 

indicators of material degradation and quantifying the reliability and sensitivity of these measurement 

methods. 
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Executive Summary 

Advanced reactors (ARs) and advanced small modular reactors (AdvSMRs; based on modularization of 

advanced reactor concepts) may provide a longer-term alternative to traditional light-water reactor 

concepts, given their passive safety features and the ability to incrementally add modules over time. 

Information on component condition and failure probability is considered critical to maintaining adequate 

safety margins and avoiding unplanned shutdowns, both of which have regulatory and economic 

consequences. The relatively lower level of operational experience with AR concepts (when compared 

with light-water-cooled reactors), and the consequent limited knowledge of physics-of-failure 

mechanisms in AR environments, when combined with the potential for increased degradation rates, point 

to the need for enhanced situational awareness with respect to critical systems. 

Prognostic health management (PHM) technologies provide one approach to overcoming these 

challenges. PHM is a proactive philosophy where operational decisions, maintenance, and repairs to 

systems, structures, and components are performed prior to failure based on diagnostic input on 

component condition and models that predict when failure is likely to occur given the present condition of 

the component. Diagnostics and prognostics provide the technical means for enhancing affordability and 

safe operation of ARs over their lifetime by enabling lifetime management of significant passive 

components and reactor internals. 

The use of PHM technology is anticipated to be of particular importance in the management of 

degradation in passive components. A significant component of operations and maintenance (O&M) costs 

is associated with the management and mitigation of degradation of passive components because of their 

increased safety-significance in AR concepts (which increasingly rely on passive safety mechanisms), and 

the need to provide longer lead-times for maintenance planning as passive components constitute large 

capital expenditures. In particular, degradation (such as cracking, creep, or creep-fatigue damage) in 

passive components, if not addressed in a timely fashion, is likely to result in unplanned plant shutdowns. 

Traditional approaches to detecting and managing degradation such as periodic in-service nondestructive 

inspections are likely to have limited applicability to ARs, given the expectation of longer operating 

periods and potential difficulties with inspection access to critical components because of compact 

designs and submersion of primary-circuit components in pool-type designs. 

To predict failure, PHM systems require some type of input (data) about the state of the component(s) of 

interest. These inputs could be in the form of information on stressors to which the system or component 

is exposed, or information on the condition of a specific system or component. Consequently, 

measurements and diagnostics, in addition to prognostics, are key elements to a PHM system. 

Given the potential need to provide PHM for several systems within the hierarchy of an AR design, a 

hierarchy of PHM systems is being explored, with information at one or more levels of this hierarchy 

being supplied to a supervisory plant control system for optimizing plant operations with respect to O&M 

requirements. This hierarchy corresponds to PHM systems operating on localized measurements, PHM 

systems operating on component-wide measurements, and global PHM systems that integrate diagnostics 

and prognostics information across multiple components. For example, component-level PHM systems 

may be applied to assess the condition of components or sub-systems, such as the intermediate heat 

exchanger. The use of multiple PHM modules provides increased opportunity to monitor the health of 

critical sub-systems within the plant. However, it increases the amount of information that must be 

aggregated prior to use with risk monitors and in plant supervisory control actions. Figure ES.1 shows a 

possible scenario for the aggregation, where each PHM module is associated with a risk monitor resulting 

in predictive estimates of the subsystem health and the associated risk metrics. This information is used to 
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augment data for supervisory control and plant-wide coordination of multiple modules by providing the 

incremental risk incurred from aging and demands placed on components that support mission 

requirements. 

 

Figure ES.1. Schematic Showing the Integration of PHM Systems with Enhanced Risk Monitors, and 

Their Location within the Hierarchy of Supervisory Control Algorithms for ARs 

This report describes research results to date in support of the integration and demonstration of 

diagnostics technologies for prototypical AR passive components (to establish condition indices for 

monitoring) with model-based prognostics methods. Achieving this objective will necessitate addressing 

several of the research gaps and technical needs described in previous technical reports in this series. 

The focus of the PHM methodology and algorithm development described in this report is at the 

component scale. Multiple localized measurements of material condition (using advanced nondestructive 

measurement methods), along with available measurements of the stressor environment are expected to be 

used to enhance the performance of localized diagnostics and prognostics of passive AR components and 

systems. 
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A Bayesian methodology for prognostics is described for the prediction of remaining life of materials and 

components. Bayesian methods for prognostics have many advantages, including the ability to update the 

prognostic result as new information (for instance, measurement data) becomes available, and the ability 

to inherently provide confidence bounds on the prognostic result. While this approach has been 

previously applied to predict time-to-failure of materials subjected to aging and degradation, a similar 

approach may be applied to component-level prognostics. For component-level prognostics, appropriate 

models of component degradation growth and measurement physics will be needed, and these models are 

likely to describe performance degradation. 

The Bayesian framework for component-level prognostics incorporates the ability to fuse information 

from multiple sources, including information on localized degradation, and component-level condition 

indicators. The ability to switch between multiple Degradation Rate models and/or multiple Measurement 

Physics models becomes important in this context, and a reversible jump Markov chain Monte Carlo 

(RJMCMC) approach has been developed for this purpose. 

Evaluations of the Bayesian framework and the RJMCMC model switching/model selection were done 

using synthetic data as well as experimental measurements on a high-temperature creep testbed. Results 

to date using this data indicate that the proposed Bayesian framework can be used to identify distinct 

stages of creep progression. 

Ongoing efforts are beginning to focus the research on sensing and measurements (particularly in-situ 

measurements) that would be applied as inputs to the prognostics framework. This renewed focus on 

measurements and sensing is with a view to identifying measurement approaches that are most likely to 

provide indicators of materials and component degradation that are applicable within the prognostics 

framework. The research will also address the need for quantitative nondestructive evaluation (NDE) 

analysis tools by examining the sensitivity of selected advanced NDE methods to relevant degradation 

mechanisms, and leverage other recent results in this area. Degradation condition indices (along with any 

associated uncertainties) calculated from these measurements will be integrated with models of material 

or component failure to enable estimation of remaining life of passive components with detected 

degradation. Gaps with respect to deployment of sensors and instrumentation, and integration with plant 

control algorithms, exist and will be addressed as this research progresses. The outcomes of these next 

steps in this research will enable the development of methods for supporting emerging needs within other 

Technical Areas in the Advanced Reactor Technologies (ART) program, particularly the Materials and 

Fuels areas. 

The research described in this report, as well as in the previous reports in this series, provides some of the 

essential instrumentation and control (I&C) technologies that are vital to safe, cost-effective operation of 

nuclear power plants. Innovative use of advanced technology can have a significant impact on achieving 

safe and efficient operability, optimizing plant staffing, and controlling O&M costs. While the cited areas 

of impact for these technologies are beneficial for all ARs, the latter two outcomes are essential for the 

economic viability of ARs. The research, development, and demonstration described in this report (and 

related reports) resolves gaps in technology capabilities, and enables these advanced technologies to be 

matured to the appropriate readiness level in a timely manner while ensuring the associated capabilities 

can be incorporated into reactor designs at an appropriate early stage. 

 
.
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1.1 

1.0 Introduction 

Prognostic health management (PHM) is a proactive philosophy where operational decisions, 

maintenance, and repairs to systems, structures, and components (SSC) are performed prior to failure 

based on diagnostic input on component condition and models that predict when failure is likely to occur 

given the present condition of the component. 

PHM technologies are expected to play a vital role in the deployment and safe, cost-effective operation of 

advanced reactors (ARs). Diagnostics and prognostics provide the technical means for enhancing 

affordability and safe operation of ARs over their lifetime by enabling lifetime management of significant 

passive components and reactor internals. 

A key characteristic of AR concepts, which include sodium-cooled fast reactors (SFRs) and high-

temperature gas reactors (HTGRs) (Abram and Ion 2008), are the harsh environments within the primary 

and intermediate loops, and include high temperatures (in excess of 500°C), potential for fast spectrum 

neutrons, and corrosive coolant chemistry. These environments in proposed advanced reactor concepts 

increase the possibility of degradation of safety-critical components and therefore pose a particular 

challenge for deployment and extended operation of these concepts. The relatively lower level of 

operational experience with AR concepts (when compared with  LWRs), and the consequent limited 

knowledge of physics-of-failure mechanisms of materials and components in AR environments, when 

combined with the potential for increased degradation rates, point to the need for enhanced situational 

awareness with respect to critical systems. Information on component condition and failure probability is 

considered critical to maintaining adequate safety margins and avoiding unplanned shutdowns, both of 

which have regulatory and economic consequences. 

Under these conditions, PHM is a key enabling technology for providing dependable, high-fidelity 

assessments of component conditions and incipient failure detection in AR  SSCs. Periodic in-service 

inspection (ISI) technologies already exist and are used in operating nuclear power plants to provide an 

assessment of passive component condition, including whether significant cracking exists that could 

compromise structural integrity. However, the applicability of existing technologies may be limited in 

ARs, because of their compact design, restricted access to key in-vessel and in-containment components, 

and extended periods between inspection and maintenance opportunities. PHM systems, with their 

emphasis on increased in-situ structural health monitoring and prognostics to assess remaining service life 

(also referred to as remaining useful life or RUL) provide a mechanism to address the limitations of 

current ISI approaches for use with ARs. PHM technologies provide improved awareness of system 

condition, and when integrated during design of AR, can provide the tools necessary for quantifying the 

operational envelope for safe economic O&M of the AR, and in coordination with supervisory control 

algorithms, enable these reactors to stay within the operational envelope while maintaining adequate 

safety margins. 

ARs are expected to benefit by the use of PHM systems through: 

 Providing early warning of potential degradation in inaccessible passive components leading to 

failure in AR environments. Such early warning can inform operational planning and maintenance 

scheduling decisions during infrequent refueling outages; 

 Reducing risks by providing enhanced situational awareness of plant equipment and component 

conditions and margins to failure, particularly in conditions where knowledge of physics-of-failure in 

the AR environment is limited; 
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 Enhanced affordability and safe operation during their lifetime by enabling lifetime management of 

significant passive components and reactor internals (especially for critical passive safety 

components) in harsh environments (high-temperature, fast flux, and corrosive coolant chemistry); 

 Relieving the cost and labor burden of currently required periodic ISI during refueling outages, 

especially for components in hard-to-access areas such as those in-vessel/in-containment; and 

 Supporting a science-based justification for extended plant lifetime by ensuring reliable component 

operation. 

To predict failure, PHM systems require some type of input (data) about the state of the component(s) of 

interest. These inputs could be in the form of information on stressors to which the system or component 

is exposed, or information on the condition of a specific system or component. Consequently, 

measurements and diagnostics, in addition to prognostics, are key elements to a PHM system. 

This report documents research towards developing and deploying prototypical PHM systems that, if 

integrated with supervisory plant control systems and enhanced risk monitors, can provide the capability 

requirements listed and meet the goals of controlling O&M costs. 

1.1 Research Objectives 

This report describes research results to date in support of the integration and demonstration of 

diagnostics technologies for prototypical AR  passive components (to establish condition indices for 

monitoring) with model-based prognostics methods. Achieving this objective will necessitate addressing 

several of the research gaps and technical needs described in Meyer et al. (2013a). 

Given the potential need to provide PHM for several systems within the hierarchy of an AR design 

(Meyer et al. 2013a; Meyer et al. 2013d), a hierarchy of PHM systems was proposed (Meyer et al. 2013c), 

with information at one or more levels of this hierarchy being supplied to a supervisory plant control 

system for optimizing plant operations with respect to O&M requirements. This hierarchy corresponds to 

PHM systems operating on localized measurements; PHM systems operating on component-wide 

measurements, and global PHM systems that integrate diagnostics and prognostics information across 

multiple components. 

Previous research in this project performed a gap assessment, and focused on the development of a 

framework for PHM at the localized scale. Meyer et al. (2013a) discussed a number of technical gaps that 

limit the applicability of current PHM systems in ARs. The major limiting factors identified were: 

(i) advanced sensor technology for operating under harsh environments; (ii) accurate models for material 

degradation accumulation and subsequent progression; (iii) prognostics under different sources of 

uncertainty such as measurements noise, temperature variations, fluctuations in pressure and loading 

profiles, and model uncertainties; (iv) sensor data fusion; and (v) verification and validation of the PHM 

systems. A number of technical requirements for PHM systems in ARs were identified based on these 

gaps, and technologies were developed to address several of these requirements. These technologies are 

documented in several previous reports in this series (Ramuhalli et al. 2014b; Meyer et al. 2013a; Meyer 

et al. 2013d). 

The focus of the PHM methodology and algorithm development described in this report is at the 

component scale. Multiple localized measurements of material condition (using advanced nondestructive 

measurement methods) along with available measurements of the stressor environment are expected to be 

used to enhance the performance of localized diagnostics and prognostics of passive AR components and 

systems. 
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The research described in this report, as well as in the previous reports in this series, provides some of the 

essential I&C technologies that are vital to safe, cost-effective operation of nuclear power plants. 

Innovative use of advanced technology can have a significant impact on achieving safe and efficient 

operability, optimizing plant staffing, and controlling O&M costs. While the cited areas of impact for 

these technologies are beneficial for all ARs, the latter two outcomes are essential for the economic 

viability of AdvSMRs. The research, development, and demonstration described in this report (and related 

reports) resolves gaps in technology capabilities, and enables these advanced technologies to be matured 

to the appropriate readiness level in a timely manner while ensuring the associated capabilities can be 

incorporated into reactor designs at an appropriate early stage. 

1.2 Organization of Report 

This technical report is organized as follows. Section 2 includes background information on AR concepts 

and characteristics, PHM for ARs, and requirements and assumptions for PHM methodology (framework) 

development for ARs. Section 3 describes the benefits of prognostics for ARs. Section 4 describes the 

comploent-level PHM framework for passive components. Section 5 provides an assessment of the PHM 

framework for passive components. Section 6 summarizes the status of research to date. Finally, Section 7 

briefly outlines planned research and opportunities going forward. 
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2.0 Background 

ARs generally encompass all non–LWR concepts, and are being considered as a longer-term option for 

meeting electrical generation and process heat needs in the United States (Abram and Ion 2008). Among 

the concepts being considered are SFRs and HTGRs, both of which have some operational history in the 

United States and elsewhere. A detailed description of these concepts is available in previous reports in 

this series (Meyer et al. 2013a). Additional details of AR concepts as they apply to AdvSMRs and likely 

O&M approaches are provided in the previous reports in this series associated with AdvSMR prognostics 

and ERM research (Coble et al. 2013b; Meyer et al. 2013a; Ramuhalli et al. 2013; Ramuhalli et al. 

2014a). 

Degradation and failure of materials that make up passive components in ARs are likely to be key factors 

impacting safety and economics of ARs. The challenges associated with materials operating under 

conditions likely to be encountered in SFR and VHTR (very-high-temperature gas reactor) reactors 

(Appendix A) include degradation mechanisms not encountered in LWRs, and potentially unexpected 

materials performance under the expected complex loading conditions in ARs. The limited knowledge of 

physics-of-failure mechanisms of materials used in structural components in AR environments (high 

temperatures, fast neutron fluxes, potentially corrosive chemistry due to the coolant), and longer exposure 

times due to extended periods between maintenance and refueling outages are likely to challenge 

available inspection and maintenance technologies. 

Material damage accumulation in structural components of ARs can be monitored by employing a 

combination of several nondestructive evaluation (NDE) techniques (Bond et al. 2008) such as eddy 

current inspection, ultrasound, acoustic emission, magnetic Barkhausen noise measurements, etc., with 

the selection of specific techniques dependent on the material, degradation mechanism, and location 

within the reactor system. Meyer et al. (2013a) discussed a number of technical gaps that limit the 

applicability of current inspection and predictive maintenance approaches in AR. Among the major 

limiting factors identified were: 

 advanced sensor technology for operating under harsh environments; 

 accurate models for material degradation accumulation and subsequent progression; 

 predictive maintenance under different sources of uncertainty such as measurements noise, 

temperature variations, fluctuations in pressure and loading profiles, and model uncertainties; and 

 sensor data fusion to assess material degradation state. 

2.1 Prognostic Health Management for Advanced Reactors 

PHM is a proactive maintenance philosophy where maintenance or repairs to systems or components are 

performed prior to failure based on models that estimate (predict) when failure is likely to occur. To 

estimate time-to-failure, PHM systems require some type of input (measurement data) about the state of 

the component(s) of interest. These inputs could be in the form of information on stressors to which the 

system or component is exposed, or information on the condition of a specific system or component, or 

both. Keys to effective PHM are the ability to detect incipient failure through increased monitoring, 

application of advanced in-situ diagnostics tools for degradation severity assessment, and the reliable 

estimation of remaining service life (also often referred to as RUL) (see Meyer et al. 2013a). 

All PHM systems have several elements including: (1) sensors for performing measurements of both 

process parameters as well as indicators of degradation; (2) diagnostic algorithms that use the sensor 



 

2.2 

measurements to estimate the condition of the component; (3) prognostics algorithms to calculate the 

RUL of the component with degradation; and (4) interfaces to decision and control systems that are used 

to make O&M decisions. 

Given the potential need to provide PHM for several systems within the hierarchy of an AR design 

(Meyer et al. 2013a; Meyer et al. 2013d), a hierarchy of PHM systems is being explored (Meyer et al. 

2013c), with information at one or more levels of this hierarchy being supplied to a supervisory plant 

control system for optimizing plant operations with respect to O&M requirements. This hierarchy 

corresponds to PHM systems operating on localized measurements, PHM systems operating on 

component-wide measurements, and global PHM systems that integrate diagnostics and prognostics 

information across multiple components. 

Research conducted to date on PHM systems in ARs and AdvSMRs was previously documented in a 

series of technical reports (Ramuhalli et al. 2014b; Meyer et al. 2013a; Meyer et al. 2013d). Meyer et al. 

(2013a) discussed a number of technical gaps that limit the applicability of current PHM systems in ARs. 

The major limiting factors identified were: (i) advanced sensor technology for operating under harsh 

environments; (ii) accurate models for material degradation accumulation and subsequent progression; 

(iii) prognostics under different sources of uncertainty such as measurements noise, temperature 

variations, fluctuations in pressure and loading profiles, and model uncertainties; (iv) sensor data fusion; 

and (v) verification and validation of the PHM systems. A number of technical requirements for PHM 

systems in ARs were identified based on these gaps, and technologies were developed to address several 

of these requirements. These technologies are documented in other reports in this series (Ramuhalli et al. 

2014b; Meyer et al. 2013a; Meyer et al. 2013d). 

2.1.1 Prototypic Prognostic Methodology 

The overall approach to PHM that is taken in this research is a system-of-systems approach. As shown in 

Figure 2.1, individual systems are expected to be needed to address the prognostics requirements for each 

component or subsystem; higher levels in the hierarchy are used to mediate the information flow and 

integration from these lower-level PHM systems. 

The specific details of these interfaces are not yet determined. In this research, the focus is on further 

developing the framework for the lower-level PHM systems. This framework, and a potential approach to 

performing prognostics, is described in Ramuhalli et al. (2014b). Figure 2.1 illustrates a system-of-

systems approach, with individual PHM systems monitoring the different SSCs, with additional systems 

in the hierarchy integrating the output from the individual PHM systems and providing the necessary 

interfaces to plant supervisory control systems, operational risk monitors, and O&M decision making. 
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Figure 2.1. Proposed Hierarchy of PHM Systems 

The representative drill-down into an individual PHM system shown within Figure 2.1 illustrates the 

process flow from measurement to diagnostics, prognostics, and decision making. The hierarchy within 

this system-of-systems approach may be developed in many ways. The approach taken in this research is 

to largely map the PHM system hierarchy to the measurement location hierarchy, resulting in: PHM 

systems operating on localized measurements, PHM systems operating on component-wide 

measurements, and global PHM systems that integrate diagnostics and prognostics information across 

multiple components. 

2.1.2 Bayesian PHM Systems – Overview 

An initial methodology for estimating RUL from spatially localized NDE measurements was previously 

described (Meyer et al. 2013b; Ramuhalli et al. 2014b; Roy et al. 2015). This methodology for PHM uses 

Bayesian approaches and multiple filtering algorithms to diagnose and predict the RUL of materials. 

Applying this type of “tracking” filter to the problem of predicting degradation accumulation in materials 

from NDE measurements requires two models—one (Degradation Rate model) that captures the 

progressive accumulation of degradation in the material from one or more stressors, and the second 

(Measurement model) that relates the level of material degradation to one or more measurements. This 

approach provides a relatively simple Bayesian mechanism for updating the predictions when additional 

measurements are available. Modifications to these algorithms to account for model selection and 

uncertainty quantification are described in detail in this present document in Section 4.0. 

Specifically, we developed a particle filtering algorithm integrated with a RJMCMC method for this 

purpose. 

Figure 2.2 shows the schematic of this Bayesian prognostic framework using the automatic RJMCMC 

method (Green 1995; Hastie and Green 2012) and particle filtering algorithm (Ristic et al. 2004) to enable 
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model selection while accounting for uncertainty from various sources. The approach requires a 

predefined set of models that capture the different stages of degradation growth. For the specific example 

of creep damage, we begin with a set of damage progression models that capture the three distinctive 

stages of creep growth; namely, primary stage, secondary stage, and tertiary stage. The objective is then 

to infer the present state of material degradation from the measured sensor response, select an appropriate 

damage growth model as well as the parameters of the model, and predict the RUL of the component. 

 

Figure 2.2. Automated Model Selection Methodology During Prognostics 

2.1.3 Risk-informed In-service Inspection and Monitoring 

Risk-informed ISI (RI-ISI), as used by the U.S. Nuclear Regulatory Commission, implies that decisions 

on component selection for periodic inspections are based on risk insights along with deterministic and 

licensing basis information (Phillips 2005). The concept of RI-ISI has been successfully implemented in 

several countries, as reported in the Committee on the Safety of Nuclear Installations (CSNI) state-of-the-

art report (OECD/NEA 2005). Current practice for in-service degradation detection in passive 

components in the nuclear industry is generally geared towards the detection of macroscopic degradation 

(such as cracking or material loss). Given the likely impracticality of inspecting every component in a 

power plant, recommended practice in the nuclear industry is to follow RI-ISI (Atkinson and Kytömaa 

1992) to identify risk-significant components and prioritize inspection activities. 

The Benchmark Study on Risk-Informed In-Service Inspection Methodologies (RISMET) project 

(OECD/NEA 2010) compared qualitative and quantitative RI-ISI with traditional in-service inspection 

programs, and augmented programs developed in response to a particular issue (e.g., break exclusion 

regions, flow assisted corrosion, localized corrosion). This comparative study was aimed at identifying 

the impact of such methodologies on reactor safety and how the main differences influence the final result 

(i.e., the definition of the risk-informed inspection program). Included was the recognition that the next 

challenge facing the industry is the development of RI-ISI programs for new reactor designs, that could 

include AR designs. Conclusions of the RISMET project supported further RI-ISI research efforts in the 

field of risk-informed selection of components for inspection. Among the questions reported for future 

RI-ISI research and development (R&D) efforts to provide answers were the following relevant to this 

PHM effort: 

 Consistent criteria are needed to determine the potential for a certain damage mechanism. 

 Better information regarding the efficacy of various NDE methods. 

 The use of probabilistic methods to determine inspection intervals. 

 Methods enabling reliable probabilistic analyses for some damage mechanisms. 
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Along these lines, Unwin et al. propose a semi-Markov model for integrating information on passive 

component degradation with conventional risk models (Unwin et al. 2012; Unwin et al. 2011). This 

approach provides a cost-effective solution to integrating degradation-growth information (such as crack 

growth rates) with risk calculation. This approach is now being incorporated into newer models for risk 

assessment in LWRs (Guler et al. 2014). 

In Ramuhalli et al. (2014b) it was noted that for ARs an assessment of risk-significance may not be the 

sole deciding factor for deployment of PHM systems as degradation growth may occur fastest in locations 

that are not considered to be high-risk. Further, taking a plant offline for unplanned maintenance or 

repairs (even on non-risk-significant components) will impact the economics of operation. Thus, 

achieving reliability and integrity goals for passive components will require careful choices in design, 

fabrication, operation, and maintenance, with PHM systems forming the final level of defense-in-depth 

for selected components. 

2.2 Role of PHM in Advanced Reactor Control and Coordination 

PHM systems (Figure 2.3) can potentially contribute to the affordability of ARs by providing greater 

awareness of in-vessel and in-containment component and system conditions. In turn, such increased 

awareness can help inform O&M decisions to target maintenance activities that reduce risks associated 

with safety and investment protection through a greater understanding of precise plant component 

conditions and margins to failure. 

 

Figure 2.3. Overview of a Typical Prognostics Health Management System 
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Available information from AR design concepts, expected operational characteristics, and relevant 

operating experience may be used to both define requirements for the various elements of the PHM 

system, as well as bound estimates of RUL with high confidence. Interfaces with plant supervisory 

control systems ensure that the information about component RUL and system conditions are utilized as a 

basis for planning maintenance activities. In particular, the ability to estimate remaining life provides a 

basis for determining whether continued safe operation (over some pre-determined interval) is possible, or 

whether operating conditions need to be changed to limit further degradation growth until a convenient 

maintenance opportunity presents itself. 

The basis of the overall approach for PHM, risk monitors, and plant control technologies used in this 

research (Ramuhalli et al. 2014b) takes into account the PHM system hierarchy and its relationship with 

an AR supervisory control architecture that has resulted in the prototypic prognostic methodology that 

follows. 

2.3 Requirements and Assumptions for PHM Methodology 
(Framework) Development 

2.3.1 Requirements for Prototypic Prognostics Health Management Systems 

Based on an assessment of the drivers for PHM in ARs (including AdvSMRs), Meyer et al. (2013a) 

described the initial requirements for PHM systems for passive components in ARs. These are 

summarized below: 

 Sensors and instrumentation for condition assessment of AR passive components 

 Fusion of measurement data from diverse sources, such as NDE and stressor information 

 Address coupling between components or systems, and across modules 

 Incorporate lifecycle prognostics 

 Integrate with risk monitors for real-time risk assessment 

 Interface with plant supervisory control system 

2.3.2 Assumptions 

Several assumptions are made in the development of the prototypic prognostic methodology for PHMs 

for use in ARs that use time-dependent stressor information with measurements of material or component 

condition: 

 Information about representative materials and conditions in AR concepts, and concepts of operations 

for these designs, is available. 

 Research is focused on detection of early stages of degradation in selected safety-critical passive 

components (such as heat-exchanger tubing and major structural elements such as vessel and key 

piping), and the assessment of the RUL of these components. Specifically, the PHM will be on 

inaccessible passive components key to the safe operation of AR concepts, such as liquid-SFRs or 

HTGRs. 

 Laboratory-scale testbed for degradation assessment and prognostics for a prototypical AR (including 

AdvSMRs) passive component will only simulate conditions and features necessary for proof-of-

principle demonstration for target degradation mechanism. 
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– High-temperature creep will be the focus of measurements and prognostics in this stage of the 

research effort as it is a damage mechanism of concern in several AR  concepts. Specifically, the 

goal will be to examine primary and secondary stages of creep damage. The material of choice is 

austenitic stainless steel because of its anticipated wide use in several AR  concepts. 

– NDE methods that provide measurements sensitive to creep damage in austenitic stainless steel 

are available and may be readily applied. Localized NDE measurements of material condition, 

along with measurements of temperature and mechanical load, are assumed sufficient to detect 

creep damage and predict its progression. 

– Measurements will be taken periodically (interrupted testing); such testing is assumed to not 

impact the progression of creep degradation in the material. 

– Accelerated creep testing is assumed to result in measurements and damage accumulation that is 

representative of creep damage that occurs during the lifetime of components in ARs. 

 Harsh-environment sensors for measurement/monitoring of safety-critical AR passive components are 

assumed to be available and provide measurement sensitivity similar to those obtained from sensors 

in a laboratory setting. 

The choice of degradation mode, measurements, and prognostic models are based on a state-of-the-art 

summary included in requirements, research gaps, and technical needs analysis documented in Meyer et 

al. (2013a). 

2.4 Assessment Approach: High-Temperature Creep as Prototypic 
Mechanism 

To provide context to the description of PHM requirements and research developments, we are exploring 

the example of high-temperature creep degradation in passive components. Creep degradation is the 

plastic deformation that occurs in materials under stress at high temperatures, and is a relevant mechanism 

for materials damage in AR environments. Creep damage accumulation in structural components of ARs 

can be monitored by employing a combination of several NDE techniques (Sposito et al. 2010) such as 

eddy current inspection, ultrasound, acoustic emission, magnetic Barkhausen noise measurements, etc., 

with the selection of specific techniques dependent on the material, degradation mechanism, and location 

within the reactor system. 

Interim research results were reported in Ramuhalli et al. (2014b) supporting the integration and 

demonstration of diagnostics technologies for prototypical AR passive components (to establish condition 

indices for monitoring) with model-based prognostics methods. These results also addressed the need for 

quantitative NDE analysis tools by examining the sensitivity of advanced NDE methods to relevant 

degradation mechanisms. 
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3.0 Benefits of Prognostics Technologies for Advanced 
Reactors 

PHM systems are expected to play a vital role in the safe and economic operation of ARs by ensuring 

early warning of material damage accumulation in structural components. This will pave the way for 

condition-based maintenance activities with a positive impact on safety and operating economics of ARs. 

3.1 PHM as a Tool for Advanced Reactors Design, Deployment, O&M 

A primary challenge to wide deployment of ARs is the relatively lower level of operational experience 

with AR concepts (when compared with LWRs), and the consequent limited knowledge of physics-of-

failure mechanisms in advanced reactor environments. This is especially the case with structural materials 

that are used in passive components (e.g., components that are internal to the reactor vessel as well as 

components such as heat-exchanger tubing or Class 1 piping that is external to the vessel), given the 

desire to increase operating temperatures, refueling intervals, and the increased dependence on passive 

safety systems. The resulting stresses on the materials may result in failure mechanisms that are not 

experienced in the current fleet. 

Information on AR passive component condition and failure probability is considered critical to 

maintaining adequate safety margins and avoiding unplanned shutdowns (which have regulatory and 

economic consequences), and for providing sufficient lead-time for planning O&M activities. 

Technologies that provide improved awareness of system condition, when integrated during design of the 

AR, can provide the tools necessary for quantifying and maintaining the operational envelope for safe 

economic O&M. 

PHM systems that use in-service nondestructive inspections and online structural condition monitoring 

are one such class of technologies that (Ramuhalli et al. 2014b): 

 Enhance affordability and safe operation of AR over their lifetime by enabling lifetime management 

of significant passive components and reactor internals (especially for critical passive safety 

components) in harsh environments (high-temperature, fast flux, and corrosive coolant chemistry); 

 Relieve the cost and labor burden of currently required periodic ISI during refueling outages, 

especially for components in hard-to-access areas such as those in-vessel/in-containment; 

 Reduce risks by providing increased understanding of plant equipment conditions and margins to 

failure, particularly in conditions where knowledge of physics-of-failure is limited; 

 Inform O&M decisions to target maintenance activities during infrequent refueling outages; and 

 Support a science-based justification for extended plant lifetime by ensuring reliable component 

operation. 

Ironically, PHM systems are seldom considered as a part of a component design process and are deployed 

only at the very later stages of its operational/service life. This often puts constraints on the optimal 

design of sensor configuration, affecting structural condition monitoring and diagnostics of critical plant 

components, and thereby reducing the overall effectiveness of a PHM system. 

However, if PHM systems are designed concurrently as a part of the overall system design, then they will 

help optimize the performance of the entire plant. There is a wide consensus that damage initiation and 

rate of damage accumulation in a structural component is dependent on the initial loading conditions. 
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Gathering this information and making appropriate use in AR O&M requires appropriate sensors and 

diagnostic/prognostic systems to be integrated during the design process for ARs. The deployment of 

PHM systems earlier in the lifecycle of the components will also provide vital clues about degradation 

and performance from the very early stages of service life; this in turn will reduce the uncertainties 

associated with lifecycle prediction and RUL estimation. 

3.2 PHM as an Enabling Tool for Research 

Fundamental challenges with PHM for AR passive components include the potential for detecting and 

managing degradation mechanisms not common to the existing LWR fleet, and the potential for changing 

plant conditions as new operating regimes and diverse missions are being proposed. Degradation 

mechanisms in materials used in passive components are expected to be significant in the harsher 

operating environments in ARs and are expected to challenge NDE technologies currently used in ISI for 

detecting macroscopic cracking. At the same time, the introduction of modularity in some designs can 

introduce interconnections or dependencies between SSCs in reactor modules and generation blocks 

(multiple reactor modules connected to common balance-of-plant systems, such as the power-blocks 

proposed for the Power Reactor Innovative Small Module [PRISM] reactor). Such interconnections can 

impact overall degradation accumulation rates in ways that are very different from current operating 

nuclear power reactors, and challenge approaches to estimating RUL of these components (Meyer et al. 

2013a). 

Given that materials being considered for AR components need to be able to handle such requirements, a 

considerable amount of research is being conducted to better understand materials performance in such 

environments and ascertain their limits. PHM systems are expected to be valuable in this endeavor as 

first-of-a-kind reactors can be instrumented with these types of systems to provide the necessary data that 

form the basis for increasing confidence in materials performance. Such data will need to be backed up 

with appropriate experimental data from laboratory and other smaller-scale testbeds, so as to provide the 

necessary technical basis for qualification and licensing. 

However, for AR components, PHM systems will also need to account for uncertainty, be able to change 

models of degradation growth as needed, accommodate redundancies in information, update current state 

and projections as new information becomes available, and be able to handle a modest amount of missing 

information (ambiguity) (Meyer et al. 2013b). 

Note that the needs for monitoring and performance assessment of novel components planned for use in 

AR systems are similar and may be addressed using similar technologies. 

3.3 Technologies for Augmenting Information 

The need for deploying PHM systems for ARs would require advances in the following key thrust areas: 

 In-situ NDE sensing techniques under harsh environments: An increased and sustained effort is 

currently required for near real-time, online diagnostics of passive structural components. The 

behavior of both the sensors and the substrate material under extreme temperature, pressure, and 

radiation environments needs to be investigated to interpret the sensor data and relate them with the 

structural changes associated with damage accumulation and growth. 

 Data interpretation and fusion strategies: There is a need to understand and investigate the role of 

varying environmental conditions on the sensor signals to be able to accurately interpret the structural 

changes from the sensor data. There is also need to relate sensor measurements with the 

microstructural changes in the structure, known as damage precursors, before actual irreversible 
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damage initiates and starts accumulating inside the material. Furthermore, no single measurement 

technique would be sufficient to capture the onset of different damage types, which calls for fusion of 

information from different sensor types and locations. 

 PHM as a design tool for next-generation structures: As mentioned earlier, there is a need for 

concurrent design of PHM systems and the structural components in order to optimize the design 

performance criteria for both of them. Furthermore, integration of PHM systems in the initial 

prototypes would give reliable and accurate estimates of the in-situ strength and material 

characterization. Thus, PHM systems can be used as an efficient design tool for the next-generation 

structures to be more economical by moving away from the traditional factor-of-safety–based designs 

allowing lighter, thinner walled and lower cost structures. 

3.4 PHM Integration with Emerging Technologies 

3.4.1 High-Temperature Sensing 

As discussed earlier, in-situ NDE sensing in harsh environments will require sensors capable of tolerating 

high temperatures and/or high neutron flux levels. Recent developments in this area may be leveraged for 

a subset of NDE measurement techniques that rely on the interaction of stress waves with materials. 

High-temperature piezoelectric sensors that are radiation tolerant are being investigated (Daw et al. 2014; 

Turner et al. 1994; Daw et al. 2015; Sinding et al. 2014b; Sinding et al. 2014a) at a number of institutions. 

Further, techniques for field fabrication/application of these sensors are also being investigated (Sinding 

et al. 2014b; Sinding et al. 2014a; Veilleux et al. 2013; Kobayashi et al. 2002). These technologies are 

being examined within this project to determine if they can be integrated into ongoing experimental 

studies for degradation monitoring. 

3.4.2 Enhanced Risk Monitors 

ERMs incorporate real-time component condition into the calculation of plant risk [usually measured in 

terms of core damage frequency (CDF) or some other safety-related risk metric (Coble et al. 2013a; 

Ramuhalli et al. 2014a)]. In their use of real-time component condition, ERM technologies differ from 

conventional risk monitors (Wu and Apostolakis 1992; Kafka 2008) that use a static estimate for event 

probability and probability of failure (POF), typically based on historical observations and engineering 

judgment. More recently, time-based POF values derived from operating experience and traditional 

reliability analysis have been used (Vesely and Wolford 1988; Arjas and Holmberg 1995); however, these 

are usually not specific to the component. 

Critical to the ERMs is a predictive estimate of POF of the component, which is precisely what PHM 

provides (Coble et al. 2012b). As a result, PHM technologies are likely to be applicable to achieving 

enhanced risk monitoring to obtain a realistic assessment of dynamic risk that is unit-specific and 

accounts for the operational history of the component (Ramuhalli et al. 2013). 

3.4.3 Automated Plant Control Systems 

It is likely that PHM technologies can also support higher-level I&C functions, such as plant supervisory 

control systems. In SMR/ICHMI/ORNL/TR-2013/03, Cetiner et al. (2012) describe the rationale for 

designing a supervisory control system for AdvSMR plants, based on the financial incentive to reduce 

staffing requirements and to enhance plant availability, and on the more complex operating regime 

expected for AdvSMR plants. This rationale also holds for AR plants, as supervisory control can simplify 

the operator’s workload in managing startup, load changes, and shut down of individual reactors within a 
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multi-reactor power-block. Beyond operations, the supervisory control can provide for automated 

diagnosis of failed/failing components and automated plant response to isolate the failure, and monitor 

condition of equipment to allow O&M personnel to avoid overloading failing equipment and to make 

preparations for repair. Under these conditions, technologies for determining component condition 

become important, and PHM technologies play a vital role in this regard. A possible scenario for the 

aggregation of multiple PHM modules and ERMs was shown previously in Figure 2.1 (Ramuhalli et al. 

2014a); where each PHM module is associated with a risk monitor, resulting in predictive estimates of the 

subsystem health and the associated risk metrics. This information is used to augment data used for 

supervisory control and plant-wide coordination of multiple modules by providing the incremental risk 

incurred because of aging components and demands placed on those components to support mission 

requirements. 
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4.0 Component-Level Prognostics Health Management 
Framework for Passive Components 

In general, a PHM system for passive components will consist of the elements described earlier—sensors, 

diagnostic and prognostic algorithms, and interfaces to other elements of plant operations and control. 

The process of applying the various stages in the PHM system is iterative, and is illustrated in Figure 4.1. 

 

Figure 4.1. Elements of a PHM System for Passive AR Components 

In proposed AR concepts, a number of passive components may be identified (see Appendix A for 

examples) that may benefit from the use of PHM. 

In this section, we describe an overview of the Bayesian approach and its applicability to localized and 

component-level PHM. Bayesian methods for prognostics have many advantages, including the ability to 

update the prognostic result as new information (for instance, measurement data) becomes available, and 

the ability to inherently provide confidence bounds on the prognostic result. 

4.1 Bayesian Approach to Prognostics 

Damage accumulates in materials over time from one or more stressors and may be monitored using one 

or more of NDE measurements (Appendix B). These measurements, when combined with a model that 

defines the relationship between the measurement and the underlying material condition or state, are used 

to assess the underlying material condition. Given the assessment of the current material condition, the 

RUL can be determined by using a model of degradation accumulation and growth. As additional 

measurements become available, the current material state estimate and RUL may be updated using the 

same process. 

Mathematically, the process is described through two models. The Degradation Rate model defines the 

relationship between degradation levels xk and xj (k > j) and is a representation of the evolution of damage 

in the material or component with time. The model may also include information on stressor history; that 

is, 
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  1, , ,... ,k j k k j kx f x      (4.1) 

where 1, ,...,k k j    are the stressor values at times k,k–1,…,j, with j < k. In this Degradation Rate model 

(Eq. 4.1), k represents the uncertainty in the state transition model and is a measure of the amount of 

knowledge available regarding the damage accumulation process. Typically, this is represented by a 

probability density function (PDF). For the moment, we postpone the discussion of how the material state 

is defined. This is addressed in Section 5, where the evaluation approach and results to date are described. 

The second (Measurement Physics) model relates the degradation level to the measurements zk at the 

present time instant: 

  ,k k kz h x v  (4.2) 

with the quantity k representing the level of uncertainty in the relationship between the degradation 

condition and the measurement. As with k, k is generally represented by means of a PDF. 

The problem of prognostics (estimating the RUL from the measurements) is decomposed into the two 

related problems discussed above—estimation of xk from zk (i.e., determining the current degradation 

state from the measurements) and the estimation of the corresponding time-to-failure and the RUL. 

Mathematically, the problem of estimating xk from zk using these two models is identical to the 

formulation of a tracking problem (Ristic et al. 2004; Arulampalam et al. 2002; Khan and Ramuhalli 

2008), and therefore, solutions to the tracking problem can also be applied to the material state 

prognostics problem. If the functions f(•) and h(•) are linear (Horn and Johnson 1985), and k and k are 

independent and Gaussian-distributed, the optimal solution to the tracking problem can be shown to be 

the Kalman filter (Ristic et al. 2004). However, when the functions are non-linear and/or the noise terms 

are non-Gaussian (as is likely in the early degradation estimation problem), then more general solutions to 

the tracking problem are necessary, and include algorithms such as the extended Kalman filter, unscented 

Kalman filter, and the particle filter. In this study, we use the particle filter because of its applicability to 

non-linear, non-Gaussian models. A detailed description of the particle filter is given elsewhere (Ristic et 

al. 2004; Arulampalam et al. 2002), and its applicability to material state prognostics is discussed in 

Ramuhalli et al. (2012) and Meyer et al. (2013d). 

Below, we describe the particle filter’s use for component-level prognostics, and discuss some of the 

advances in model selection. These advances are currently being studied for localized prognostics, but are 

equally applicable (with appropriate Degradation Rate and Measurement Physics models) to component-

level prognostics. 

4.2 Overview of Component-Level Prognostics Framework 

Demonstrating a prototypic PHM system to manage degradation of passive AR components necessitates 

addressing several of the research gaps and technical needs described in previous reports (Meyer et al. 

2013a). Specific concepts needed are: 

 The use of multiple condition and stressor measurements to enhance the performance of diagnostics 

and prognostics of passive components and systems in AR. 

 Ability to quantitatively account for uncertainties and to propagate uncertainties in RUL predictions. 
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 A lifecycle prognostics framework that can enable updating of models. This includes the ability to 

perform accurate RUL prediction on a passive component subject to changing or time varying 

stressors. 

 Ability to account for coupling effects between passive components in performing diagnostics and 

prognostics. 

The component level of the PHM system consists of the measurements and algorithms used to diagnose 

and predict failure of a component. Measurements of stressor variables will be one key source of 

information for component-level diagnostics and prognostics. Other potential sources of information 

include global condition measurements such as vibration measurements or acoustic emission 

measurements. These measurements provide an indirect assessment of component degradation, which 

will introduce significant uncertainty into diagnostics and prognostics. The uncertainty can be reduced 

and the PHM performance can be enhanced by fusing component-level measurements with relevant local-

level information. In addition to reducing uncertainty, the fusion of global and local information also 

potentially provides the opportunity to detect failures that might occur at non-weld locations (weldments 

have been the traditional focus of ISI). The fusion of global condition, local NDE, and process (stressor) 

information to enhance PHM of a passive AR component is notionally illustrated in Figure 4.2. 

 

Figure 4.2. Notional Illustration of Enhanced Component-Level PHM Performed by Fusing Data from 

Global Condition, Local NDE, and Process (stressor) Measurements 

4.2.1 Fusion of Information from Multiple Locations 

For component-level prognostics, the Bayesian approach described in Section 4.1 may be effectively 

adapted by choosing appropriate models of component degradation-growth and measurement physics. At 

the (passive) component level, a simplified approach to prognostics would be to determine the time-to-

failure at one or more locations on the component based on local measurements of material degradation 

(localized PHM), and use the smallest time-to-failure as the component time-to-failure. This approach has 

a couple of drawbacks. First, this requires measuring material degradation at many locations, increasing 

overall cost and. Also, the probability of over-estimating the time-to-failure increases from degradation 

that was missed at one or more locations due to these locations not being inspected/monitored. Second, 

the approach fails to take into account the possibility of multiple, individually small-scale, degraded 

locations that collectively may impact the ability of the component to provide the necessary functionality. 
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Finally, this approach is entirely reliant on the reliability of the localized measurements for detecting 

degradation onset and growth. However, the reliability of localized measurements (using NDE methods) 

can be variable and depend on the size, shape, location, and type of degradation (Singh 2000). 

An alternate approach is to specify, at the component level, degradation in terms of loss of performance 

or functionality. In this case, measurements (at the global and local levels) are treated as observables that 

provide some insight into the state of the component and its ability to meet its performance metrics. This 

approach also raises the possibility of fusing information from global and local scales, as well as 

integrating information on stressors. 

As a consequence, the appropriate degradation models are likely to describe performance degradation and 

not the accumulation of damage in the material that forms the component. 

Using this approach, degradation states xk and xj (k > j) are then simply representations of the state of the 

component relative to its inability to meet its functional requirements. For instance, an appropriate state 

description might use two possible states that the component may be in: Normal (i.e., capable of meeting 

its functional requirements) and Degraded (incapable of meeting its functional requirements). 

Alternatively, the state may be a suitably normalized metric quantifying the inability to meet functional 

requirements. An example here may be the reduction in the amount of flow possible in heat-exchanger 

tubing in the presence of fouling, normalized with respect to its nominal value. The Degradation Rate 

model (Eq. 4.1) is a representation of the change in the component functionality with time. The model 

may also include information on stressor history as shown in Eq. (4.1). 

 A key challenge with this approach to component degradation prognostics is the possibility of 

information from multiple sources/locations. For example, in the degradation monitoring of steam 

generator (SG) tubing, vibration data may be available to monitor the overall vibrational profile of the SG 

tube, while crack length information from the NDE inspection of individual tubes in the SG bundle 

provides a local view of degradation. For component-level prognostics, it is clear that this disparate 

information (at different scales) will need to be merged properly to provide a holistic view of the 

component condition and RUL. 

This challenge may be met by adapting the Bayesian prognostic approach to incorporate information from 

these diverse sources. To achieve this, we utilize the common definition of component-state described 

above to underlie the prognostic process. Two sets of Measurement Physics models are then defined: a set 

of Measurement Physics models that relate the localized measurement to the component-state, and a set of 

global condition measurements that are linked to the global-state. 

Given these models, the prognostic approach follows the multisensor fusion method described in Khan 

(2009) and Khan et al. (2011). Specifically, we assume that Q measurements ,1q
kz q Q   are available. 

Define 1 2, ,..., ,.q Q
k k k k kz z z z z    . The Bayesian approach then reduces to evaluating the posterior density 

1: 1( | ) ( | , )k k k k kp x z p x z z  . As described in Appendix C, the Bayesian tracking filter method utilizes 

samples and associated weights for each possible state, where the weights are computed using the 

likelihood function ( | )i

k kp z x , the transitional prior density 1( | )i i

k kp x x  , and an importance density 

1( | , )i i

k k kq x x z , and the superscript i in the state variable represents the i-th sample. 

For multisensor fusion, Khan (2009) adapts the the weight assignment process to utilize multiple 

likelihood functions ( | )q i

k kp z x , and under assumptions of independence of the measurement modes, the 

weight 
i
kw  assigned to the ith sample 

i
kx  may be derived as: 
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When the measurements cannot be considered to be independent, the weight assignment calculation will 

need to account for the covariance between the various measurement modes. 

4.2.2 Component Degradation Models and Model Selection 

A critical necessity for component-level prognostics is an appropriate Degradation Rate model that 

operates over the degradation state for the component. Such models are difficult to obtain, as they deal 

with macroscopic systems that are impacted by changes (damage accumulation) at microscopic scales. As 

described earlier, to overcome this issue, we use a degradation state description wherein the degradation 

state is a coarse representation of the inability of the component to meet its functional requirements. A 

Degradation Rate model is then defined where the component condition evolves over time under the 

influence of stressors. 

The component condition may be defined over a continuum of states, or over a discrete set of states 

depending on the needs of the problem. In either case, the component may exist in only one degradation 

state at a given time. However, the Degradation Rate model may be dependent on the condition the 

component experiences as well as the degradation state that the component is in. For instance, the rate of 

component degradation change over time may be substantially higher as the component experiences more 

and more degradation. Clearly, in this case, the ability to choose the correct model at any instant in time 

becomes important. For this aspect, we use the model selection approach that is described in greater detail 

in Section 4.3.2, in the context of local-level prognostics. 

4.2.3 Integration of Stressor Information 

The incorporation of stressor information in the component-level PHM framework is complicated by the 

fact that stressors, such as mechanical, thermal, or chemical stresses over time, generally result in the 

localization of degradation and the formation of microcracking that, if left unchecked, will result in 

failure of the component. For this reason, we focus on the incorporation of stressor information 

predominantly in local-level Degradation Rate models. 

The incorporation of stressor information occurs through the use of an appropriate local-level 

Degradation Rate model (Equation 4.1 in Section 4.1). For instance, during the course of this study, high-

temperature creep has been explored as a prototypic degradation mechanism of relevance to AR 

components. Thermal creep has several likely underlying mechanisms of which dislocation-creep, also 

known as power-law creep, is likely to be the creep mechanism of most significance to consequential 

aging in AR components (Ashby and Jones 2012). The rate of dislocation-creep depends on the 

movement of dislocations within a material, which is affected by intrinsic lattice resistance and resistance 

caused by obstacles such as precipitates, solute atoms, or other dislocations. Ultimately, the rate of 

dislocation-creep,  , is dependent on the diffusion processes in a given material (Ashby and Jones 2012), 

and is a function of both atomic diffusion as well as stress effects that result in dislocation movement: 

 n Q
A Exp

RT
 

 
  

 
 (4.4) 

where R is the ideal gas constant, σ represents the applied stress, t represents time, T is the temperature, 

and Q is the activation energy representing the height of the energy barrier atoms must overcome in a 
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given diffusion process. It should be noted that the stressors, applied stress σ, and temperature T, may 

vary as a function of time and the information can be incorporated in the Degradation Rate model for 

estimating RUL of the structural components using prognostic algorithms. 

4.3 Local-level Prognostics 

4.3.1 Bayesian Local-level Prognostics 

As described previously, the local level of the PHM system refers primarily to direct measurements of 

material condition performed by the application of NDE technologies during an outage or possibly online. 

This is illustrated in Figure 4.3, with details of the PHM process outlined in Figure 4.4. As shown in these 

two figures, the localized PHM process utilizes the NDE measurements at one location, and estimates 

RUL of the material based on the degradation level at this location. As discussed earlier, this may also be 

viewed as component remaining life assessment with a single set of measurements at one location, with 

the component failure occurring when the degradation at this location reaches a level that results in 

material failure. 

At the localized level, the PHM system can be thought of as several individual units that could be defined 

as a single measurement location (for instance, a portion of a weldment or other small region of a 

component). In addition to the condition measurements, it is possible to combine stressor measurements 

with the condition measurements for local diagnosis and prognosis. Either the measurement data and/or 

the processed prognosis data may be transferred up to the component level for use in component health 

assessment. 

 

Figure 4.3. Depiction of Local PHM Based on Local NDE Measurements 
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Figure 4.4. Local Prognostics Health Management Framework 

4.3.2 Prognostic Model Selection 

The Bayesian prognostics framework, as described earlier, is readily applicable if the material 

degradation phenomenon is well understood and the degradation rate model is defined. Quite often it is 

difficult to quantify all the stressors that exist in real-world operating conditions. Material degradation 

under such conditions can be highly non-linear, making it difficult for a single Degradation Rate model to 

track evolution of damage in a material with time. Thus, a combination of different Degradation Rate 

models that capture changes in different physical properties of the material may be needed for accurate 

and reliable prognostics. 

To provide context for the development of mode-selection approaches, high-temperature creep damage is 

selected as the prototypic degradation mechanism for structural materials in ARs. Creep degradation is 

the plastic deformation that occurs in materials under stress at high temperatures. Deformation from creep 

is a function of time, temperature, and stress (Ashby and Jones 2012): 

 
 , ,f t T 

 (4.5) 

where ε represents the strain, σ represents the applied stress, t represents time, and T is the temperature. In 

this case, high temperature is roughly defined as temperatures greater than 0.3Tm where Tm is the melting 

temperature of the material. Different mechanisms for thermal creep are dominant depending on the 

applied mechanical and thermal stresses that will result in different Degradation Rate models (Figure 4.5). 

Furthermore, Degradation Rate models can also transition from one level of complexity to another until 

the point of material failure due to creep progression as shown in Figure 4.6. 
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Figure 4.5. Prognostic Model Selection 

 

Figure 4.6. Schematic Showing Variation in Creep Rates as a Function of Applied Load (mechanical and 

thermal) 

The Bayesian material state estimation and prognostics framework, as described earlier, is readily 

applicable if the material degradation phenomenon is well understood and the degradation rate model is 

defined. Quite often it is difficult to quantify all the stressors that exist in real-world operating conditions. 

Material degradation under such conditions can be highly non-linear, making it difficult for a single 

Degradation Rate model to track evolution of damage in a material with time. Thus, a combination of 

different Degradation Rate models that capture changes in different physical properties of the material 

may be needed for accurate and reliable prognostics. 

Given multiple possible material Degradation Rate models, it will be imperative for any prognostics 

algorithm to select the appropriate model before estimating the remaining life. As discussed earlier, this is 

especially important if the appropriate model changes over the lifecycle of the material or component. 

The selection of the appropriate model will require the prognostics algorithm to calculate posterior 

probabilities for each model based on the evidence (likelihood) at each measurement update. In this 

section, we briefly describe an algorithm that provides these model posterior probabilities, and is 

integrated into the particle filter-based Bayesian framework. This algorithm acts as a wrapper (or outer 

loop) to the particle filter. Appendix C contains additional details of this approach. 

Let 
(k)

IM  represents I-th model being considered at time index k from a finite set of material degradation 

models  1 2: , , NmodelsM M M  (Guan et al. 2011). Nmodels is the total number of models under 
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consideration. Let 
(k)
Iθ  represent the model parameters for the I-th model at time index k. Let 

 (k) (k)

k I Ip z ,θ ,  M  be defined as the joint probability distribution of model 
(k)
IM , model parameters 

(k)

Iθ , 

and observed state zk at time index k, which can be expressed as 

        (k) ( ) (k) (k) ( )
I I I,θ ,  θ |  ( | θ ,  )

k kk k
k I I I k Ip z M P M p M p z M  (4.6) 

where  (k)

iP M  is the probability of 
(k)
IM ;  (k) (k)

I ip θ |  M  is the prior density for the parameter set for 

(k)

iM ; and  (k) (k)
k I Ip z |θ ,  M  is the posterior distribution of observed state zk given model 

( )k
IM , and 

model parameters 
(k)

Iθ , at time k. 

Identifying the appropriate model (and model parameters) at each time index k may be done in one of two 

approaches (Guan et al. 2011; Newton and Raftery 1994b).The first approach is to evaluate the marginal 

likelihood of the observed data zk under each model 
 k

IM M  using Monte Carlo-based importance 

sampling schemes (Newton and Raftery 1994b). However, the marginal likelihood estimate has to be 

obtained for each model at each measurement update. This may become computationally expensive as the 

size of M increases (Nmodels >> 1). 

An alternate approach to calculate posterior model probabilities is to consider model itself as a variable 

(Guan et al. 2011). Eq. (4.6) can be re-expressed as: 

 
  

     
 

(k) (k)
I I(k)

I

|θ ,  θ | 
θ ,  |

k k

k I Ik

I k

k

p z M p M
p M z

P z
  (4.7) 

A standard Markov chain Monte Carlo (MCMC) simulation using Metropolis-Hastings (M-H) algorithm 

(Hastings 1970) can be used to obtain samples of 
  (k)

Iθ ,  |
k

I kp M z  if all models in set M have their 

parameters belonging to the same dimensional space. In the case where model parameters span different 

dimensional spaces, a reversible jump MCMC (RJMCMC) approach is necessary (Green 1995). 

In this study, we use an automatic RJMCMC, as described in Guan et al. (2011) and Hastie and Green 

(2012), to evaluate posterior Degradation Rate model probabilities at each measurement update. This 

approach allows for transition from one model to the other using a pre-defined set of model transition 

probabilities. Material state estimation is obtained using particle filtering algorithm as discussed earlier. 

In addition, a model averaging procedure is incorporated wherein the state trajectory estimation is 

obtained using the weighted average of each model in the set M, the weights are the model posterior 

probabilities obtained using the automatic RJMCMC algorithm at the latest measurement update time 

index. A schematic representation of this approach is shown in Figure 4.7. 
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Figure 4.7. Schematic of Material State Estimation Using Automatic RJMCMC and Particle Filtering 

Method 

At the end of the single simulation instance of the RJMCMC chain, posterior model probabilities can be 

calculated as (Guan et al. 2011): 

     
  |

   

k I
I k

total burn

N
P M z

N N



 (4.8) 

where NI is the number of samples in the RJMCMC chain under I-th model, Nburn is the number of burn-

in samples used in the RJMCMC chain, and the total number of samples is represented by Ntotal. Burn-in 

samples are used to initialize the RJMCMC chain and are discarded once the RJMCMC chain converges. 

Given the posterior model probabilities at time index k, the mean state trajectory estimation at time 𝑘 is 

calculated by taking the weighted average of the trajectories obtained under each model: 

 
  ,

1 1

1
    |

SNNmodels
k i

mean k I k k

I iS

x P M z x
N  

    (4.9) 

To summarize, the problem of Degradation Rate model selection for lifecycle prognostics may be 

addressed using the following process: 

 At a given time step, obtain relevant measurement data that is sensitive to the degradation. 

 Determine the appropriate current phase of degradation (for instance, primary, secondary, or tertiary 

creep) by using information from available measurements. 

 Determine the likelihood of each Degradation Rate model (from many possible models) and the 

model parameters for the current phase of degradation. 

 Project the degradation growth to future time instants over a given time horizon using the each of the 

Degradation Rate models. 

 Using the likelihood information as weights, compute the weighted average of the projected 

degradation-growth trajectories. 

 As the material or component ages, repeating the steps above to update the lifecycle prognostics 

Degradation Rate model and parameter selection as more measurements become available. 

Uncertainty in this context can arise from many sources. In the case of creep damage, the strain rate in 

each stage of creep depends on the applied load and environmental conditions (e.g., temperature). 

Consequently, Degradation Rate model parameters will vary as a function of the load (mechanical and 

thermal) (Figure 4.8). The variation introduces uncertainties in Degradation Rate model parameters that 
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prognostics algorithms use for RUL prediction. Further, the dependence of creep rates on the material 

microstructure (which may not always be known in practice) indicates that a source of uncertainty is the 

set of creep model parameters. Finally, the measurements themselves are noisy and do not provide a 

unique mapping back to the material condition domain. Consequently, the available measurements add to 

the uncertainty in diagnostics and prognostics. 

 

Figure 4.8. Schematic Showing Variation of Creep Strain with Load. Adapted from Li and Dasgupta 

(1993). 
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5.0 Assessment of PHM Framework for Passive Components 

An effective PHM system for ARs should be able to adapt or adjust its prognostics methodology to the 

stage the component or degradation is in its lifecycle (Hines et al. 2009). For passive components, this 

requirement may be posed in terms of degradation growth lifecycle and is fundamentally one of 

Degradation Rate (reference Section 4.0) model selection based on available data. This formulation is 

particularly useful where classical population-statistics–based approaches for prognostics may not be 

viable, as the volume of historical failure data necessary to develop reliability models may not be 

available for long-lived passive structures such as reactor vessels or piping. Indeed, different models may 

be more appropriate (e.g., more accurate, more precise, or suitable to runtime requirements) during 

different stages of component degradation (Nam et al. 2012). The issue of lifecycle prognostics for 

passive components is addressed by formulating the problem as one of model selection (Section 4.3.2) 

within the context of a Bayesian prognostic algorithm. 

As discussed earlier, to provide context to research described here, high-temperature creep damage is 

used as the prototypic degradation mechanism for structural materials in ARs. 

Creep degradation is the plastic deformation that occurs in materials under stress at high temperatures. 

Unlike the deformation of materials under stress at low temperatures, which is independent of time, 

deformation from creep is a function of time, temperature, and stress (Ashby and Jones 2012). In general, 

the evolution of creep appears over three distinct phases (Li and Dasgupta 1993; Hosford 2005) from fault 

onset to rupture: primary, secondary, and tertiary. In the primary (or transient) phase, the rate of creep 

strain decreases with time. In the secondary phase, the strain rate is approximately constant. The strain 

rate increases rapidly in the tertiary phase until material rupture or failure. 

A combination of synthetic and measurement data is being used in the evaluation process. These are 

described below, followed by a summary of the results to date on the evaluation. 

5.1 Assessment Using Synthetic Data 

Several models have been proposed to describe the primary, secondary, or tertiary phase of creep 

(Naumenko and Altenbach 2007). Some of these models have been proposed to describe two phases in a 

unified model (Brear and Aplin 1994). The most appropriate model for each phase of creep depends on 

the material properties and environmental conditions. 

To assess the PHM framework, we used synthetic data generated using three different models (Table 5.1), 

one for each stage of creep progression; that is, primary, secondary, and tertiary. We assume that the 

material state is defined as the level of creep strain experienced by the material, and that measurements 

are of the creep strain itself. A zero-mean Gaussian process is used to generate noise  0,1  2eN  that is 

added to each data point to simulate measurements under noisy environments. The resulting data is shown 

in Figure 5.1 where the creep strain is in percent strain while time is represented using arbitrary units. The 

relevant parameters for the Degradation Rate models used for generating the data in Figure 5.1 are 

provided in Table 5.1; the resulting creep progression curves are consistent with the creep-rupture curves 

of welds (Manjoine 1985). 
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Table 5.1. Example: Thermal-Creep Prognostics from Synthetic Data for Degradation Rate Model 

Creep Stage Model 

Duration 

(time units) a0 a1 a2 a3 

Primary (I)  0 11 expa a k        k < 6 0.40 1.00 - - 

Secondary (II) 
1 0a k a    6 < k < 24 0.75 0.07 - - 

Tertiary (III) 3 2
3 2 1 0a k a k a k a      k > 24 12.93 −0.63 −1e-5 3.53e-4 

 

 

Figure 5.1. Synthetic Measurements from Table 5.1 Data Using Three Different Models for Thermal-

Creep Progression 

The results of applying the prognostics algorithm for model selection and RUL prediction using this data 

are summarized here; additional details may be found in Roy et al. (2015). A key finding of model 

selection (Figure 5.2) is that the improved RUL estimates are obtained through dynamic selection of 

models. Figure 5.2(a) shows the predicted creep strain using a sequence of measurements, and the updates 

to these predictions as subsequent measurements become available. As each measurement becomes 

available, the need is to determine if the material is in the primary, secondary, or tertiary stage. To this 

end, the model selection algorithm is applied to identify the most likely model (out of the three models – 

primary, secondary and tertiary – shown in Table 5.1); the probabilities of each model being selected are 

shown in Figure 5.2(b). Finally, Figure 5.2(c) presents the remaining life of the material with and without 

the model selection process. The RUL data are only shown as the material transitions into the tertiary 

stage of damage, to simplify the calculation process. 
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Figure 5.2. Example Results: Model Selection 

These results, and other similar results to date using alternate noise levels, indicate the feasibility of the 

model selection approach and show that the use of model selection can improve the accuracy of the 

prognostic result for AR  passive components. The results also indicate that within the Bayesian 

prognostic framework, the accuracy of the model selection may be impacted by the noise levels assumed 

in the process and measurement models. 

5.2 Assessment Using Experimental Data 

Experimental evaluations to date have relied on the use of data from purpose-built testbeds for inducing 

creep damage, and quantifying the level of degradation using destructive and nondestructive 

measurements. These are described briefly next, with details provided in Appendix C. 
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5.2.1 Testbed Concepts for Prognostics 

5.2.1.1 Laboratory-scale Testbed for Ex-situ Measurements 

To perform initial validation of the prognostic algorithms, a laboratory-scale creep degradation testbed 

was designed and built (Figure 5.3) to allow ex-situ NDE measurements. Using this testbed (“ex-situ 

testbed”), specimens are removed after a defined amount of time and measured using advanced NDE 

techniques, and can be re-inserted for inducing additional creep damage if needed. Measurements include 

ultrasonic, eddy current, magnetic Barkhausen, and creep-strain measurements that provide the true state 

(level of accumulated creep strain). Details of these measurement methods are provided in Appendix B. 

 

Figure 5.3. Creep-Test System for Validating Prognostic Algorithms 

The ex-situ creep testbed (Figure 5.3) consists of a mechanical load frame, furnace, 5-ton actuator, power 

supply enclosure, and control system enclosure. The control system enclosure houses the electronics that 

run the system, including the motor drive for the stepper motor that is used in conjunction with the 5-ton 

actuator. The load frame is the base that all components are mounted to, and is based off a 20-ton shop 

press. The furnace, actuator, and both electrical boxes mount to the load frame. The machine allows the 

user to specify a force to be applied to the specimen, as well as a temperature for testing. During a test, 

the machine logs the date, stepper position, sensor position, temperatures, and force applied to a file for 

future analysis. 

A programmable logic controller is used to control the operation of the testbed, and enables independent 

control of temperature and load. Heating is controlled by means of three control circuits for the heater, 

with a 5-point thermocouple to control the heat independently in each of the three heater circuits. The 

load is controlled by means of a 5-ton actuator with a 24:1 gear reduction ball screw, which allows the 
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system to apply a force of 5 tons to the specimen. A stepper motor with a 100:1 gear reduction allows for 

very precise control of the actuator. A separate position sensor is mounted to the actuator to monitor the 

position of the actuator. 

5.2.1.2 Laboratory-scale Testbed for In-situ Measurements 

A second creep-test system (with similar capabilities as the one described in Section 5.2.1.1) that was 

available at Pacific Northwest National Laboratory (PNNL) was repurposed for use as a testbed 

facilitating in-situ measurements (“in-situ testbed”). Figures 5.4 and 5.5 show this testbed. Within this 

testbed, specimens are instrumented with ultrasonic probes at either end (Figure 5.5) and enable ultrasonic 

measurements as the specimen is experiencing creep damage. The specifications for this in-situ testbed, 

including the load frame, furnace, actuator, and control system, are identical to the ex-situ testbed. The 

primary difference is that the specimen grips have been modified to accommodate the ultrasonic sensors 

at either end of the specimen, and the grips are cooled using chilled water to keep the probes within their 

temperature limits. Measurement data is automatically acquired (on a set schedule) using an automated 

data acquisition system. Figure 5.6 shows the user interface for this automated data acquisition system. 

 

Figure 5.4. In-Situ Creep-Test Frame 
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Figure 5.5. In-Situ Creep-Test Frame Specimen Chamber 

 

Figure 5.6. Interface for In-situ Creep Testbed Automated Measurement Data Acquisition System 

5.2.1.3 Laboratory-scale Testbed for Component-Level Measurements 

A concept design for a component-level testbed, that utilizes passive components such as tubes and 

piping, was developed based on the ex-situ and in-situ testbeds. This concept is shown in Figure 5.7, 

where mechanical and thermal loading is applied to the component to induce degradation (thermal aging, 
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mechanical degradation, or creep damage) while facilitating in-situ measurements such as vibration, 

guided ultrasonic waves, or other NDE methods. Details of this concept are in Appendix D. 

 

Figure 5.7. Concept Drawing, Showing a Potential Modification to Creep Testbed, to Enable Testing of 

Scaled Versions of Components 

5.2.2 Creep Test Specimens 

A number of stainless steel coupons (specimens) were fabricated to facilitate measurements in both the 

in-situ and ex-situ testbeds. 

5.2.2.1 Specimens for Ex-situ Measurements 

Early in the research lifecycle, a preliminary test specimen geometry was utilized (Figures 5.8 and 5.9) 

for conducting the accelerated thermal-creep experiment using the ex-situ testbed. The specimens were 

designed to determine the constraints associated with the NDE measurements and with attempting timely 

thermal-creep aging of specimens at high temperature. The specimens are also marked with scribe lines in 

the gage section to facilitate a redundant and potentially more accurate measurement of creep strain, in 

addition to the displacement measurements. 
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The gage section in these specimens is approximately 12.5 cm (5 in.) long, 1.0 cm (0.4 in.) wide, and 

0.1 cm (0.04 in.) thick. The initial simulation analysis (using the ANSYS program) of these specimens is 

documented in Ramuhalli et al. (2014b). 

Measurements (such as conventional through-thickness pulse-echo ultrasound measurements) were 

obtained at several measurement locations along the specimen. Creep damage causes localized 

microstructural changes in the specimens due to plastic deformation, which is expected to affect 

ultrasonic wave propagation velocity, electrical conductivity, and magnetic permeability. Measurements 

obtained to date on these specimens indicate that the variation in the measurements within each region 

was low (on the order of a few hundredths of a percent). 

 

Figure 5.8. Creep Test Preliminary Specimen Geometry 

 

Figure 5.9. Initial Flat Stainless Steel Specimens for Creep Testing to Validate Prognostic Algorithms 

Based on information regarding measurement constraints gathered during the initial shake-down tests, a 

new specimen design was developed and specimens fabricated, to ensure repeatable measurements. The 

new design for ex-situ creep specimens is shown in Figure 5.10. In addition to re-designing the 

specimens, the ex-situ testbed was also modified to better constrain the specimen during the creep test to 

stabilize the specimen during testing. 
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Figure 5.10. New Specimen Design for Creep Tests and NDE Measurements 

5.2.2.2 Specimens for In-situ Measurements 

Given the knowledge gained from the ex-situ specimen design with respect to measurement constraints, a 

set of specimens for use in the in-situ testbed were designed and fabricated (Figures 5.11 and 5.12). These 

specimens are cylindrical in nature to simplify the attachment of the ultrasonic probe for in-situ 

measurements, as well as to simplify the assessment of ultrasonic wave propagation for waves that are 

guided along this structure. The specimen is threaded at either end to enhance heat loss and keep the 

ultrasonic probes (attached at either end) cool. As described in Section 5.2.1.2, the cooling is further 

enhanced using chilled water circulating around this region. 

 

Figure 5.11. In-situ Testbed Creep Specimen Design 

 

Figure 5.12. Specimen Design for Creep Testing with In-situ Test-frame 
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5.2.3 Measurement Methods 

A number of NDE measurements are being used with both the ex-situ and in-situ testbeds, and include 

magnetic Barkhausen, linear and non-linear ultrasonics, and eddy currents (Figure 5.13). Magnetic 

Barkhausen noise measurements are sensitive to the presence of dislocations and precipitates that form 

during the aging process (Jiles 2000, 2011). These act as pinning sites for magnetic domains and their 

effect may be inferred by applying a low-frequency (generally < 100 Hz) sinusoidal magnetic field to the 

specimen and measuring the potential energy released as magnetic domains overcome the pinning. 

Effectively, these interactions lead to changes in the magnetic hysteresis of the material, which manifests 

itself as a change in magnetic permeability. Eddy current measurements, usually conducted at higher 

frequencies up to about 10 MHz, rely on changes in the electrical conductivity (in addition to magnetic 

permeability changes) due to similar microstructural changes. Ultrasonic measurements, on the other 

hand, rely on the interaction of elastic or stress waves with the material. This interaction is governed by 

the elastic properties of the material, which in turn is affected by the presence of microstructural changes 

such as dislocation loops, precipitates, and slip planes. Higher order changes to the elastic constants due 

to such damage result in the generation of harmonics, which may be used to compute a non-linear 

ultrasonic parameter. Details of these methods are provided in Appendix B. 

 

Figure 5.13. Schematic Description of NDE Measurements Used for Evaluating Prototypic Prognostic 

Methods 

5.2.4 Results 

Initial (or baseline) measurements using multiple NDE methods were completed on several creep 

specimens, including on a specimen set aside as a reference or verification standard. The relative change 

in the measurements provides an understanding of the sensitivity of the NDE technique, and can be 

related back to the level of accumulated creep strain in the specimen. Note that inferring the present state 

of material degradation from the measured sensor response is equivalent, in the case of creep damage, to 

estimating the level of accumulated creep strain in the specimen. 
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For this reason, we used the creep-strain measurements directly for the purposes of validating the 

prognostics algorithms. Follow-up assessments using ultrasonic data are ongoing (given the longer-than-

anticipated timelines for the creep testing), and analysis status using the ultrasonic data will be presented 

in subsequent reports. 

Figure 5.14(a) shows an example of the experimental strain measurements obtained from accelerated 

thermal aging of a stainless steel specimen (described in the previous section) at 625°C and 110 MPa in 

the ex-situ testbed. The measured strains were observed to rise quite rapidly during the first two hours of 

testing as the specimen temperature and applied load increased to their final values, and the specimen was 

exposed to steady temperatures and loads. Data from this time period was discarded for the prognostic 

analysis in this study. After this stage, natural creep progression follows, with the primary and secondary 

stages of creep damage seen in the data. Specifically, it can be observed from Figure 5.14(a) that there are 

two distinct stages of creep progression—a rapid increase in creep strain until about 4 hours into the test, 

followed by a somewhat linear increase in strain after that until the end of the data set at 15 hours. For the 

purposes of this validation, the creep strain after 15 hours is assumed to indicate end-of-life, based on this 

test duration (additional studies beyond this limit are ongoing). 

The end-of-life threshold for creep strain at t = 15 hours is shown in Figure 5.14(b). Figure 5.14(b) also 

shows strain measurements selected at an interval of one hour, which will be used as the intermittent 

measurements for updating Degradation Model predictions. The figure also shows the model-fits from 

two distinct Degradation Models for characterizing primary and secondary stages of creep progression (Li 

and Dasgupta 1993; Evans et al. 1992). Model parameters are fitted with the experimental strain 

measurements and can be mathematically described as: 

 Primary stage (Degradation Model 1): 

 1 0 1 01 exp ; 6; 0.0012; 0.7936.a a k t a a          

 Secondary stage (Degradation Model 2): 

1 0 1 0; 4 ; 0.0756 3; 0.9757 3.a k a t a e a e         

It should be mentioned that the experiments were not carried out until failure of the specimen. As a result, 

the tertiary stage of creep damage (rapid accumulation of creep strain leading to failure) is not observed 

from the experimental data. 

To validate the algorithms, we examined the process uncertainty by varying the model parameters for 

both primary and secondary stages of creep progression. The shaded regions in Figure 5.14(c) and 

Figure 5.14(d) are obtained by random sampling from the following assumed distribution of the model 

parameters. 

 Primary stage (Degradation Rate Model 1): 

   2 3
1 0, 0, ; 1.5 10 .primary primarya a     N  

 Secondary stage (Degradation Rate Model 2): 

   2 4
1 0, 0, ; 5 10 .secondary secondarya a     N  

As can be observed, most of the experimental data (>95%) lies within these shaded regions. Thus, these 

distributions may be used to characterize process uncertainty in the primary and secondary stages of creep 

progression. The automatic RJMCMC algorithm developed within this project is used to obtain posterior 

probabilities of two different models based on the experimental measurements. 
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Figure 5.14 Comparison of Strain Measurements. (a) experimental strain measurements on stainless steel 

specimen under accelerated thermal creep; (b) strain measurements for model prediction 

update and identified creep models; process uncertainty quantification for (c) primary stage, 

and (d) secondary stage 

Assuming that transitions are equally likely from any model to any other model, and assuming that prior 

probabilities of each of the Degradation Rate models are equally likely, the posterior probabilities of 

primary and secondary stage Degradation Rate models after a measurement update is shown in 

Figure 5.15(a). The posterior probabilities are shown for two different process and measurement noise 

levels (Figure 5.15(a) and (b)), to determine the sensitivity of the model selection procedure to various 

uncertainties. Also shown (Figure 5.15(c) and (d)) are the corresponding RUL values, which are estimated 

by taking the difference between the time index corresponding to the current measurement and the time 

index when the creep strain is estimated to reach the end-of-life threshold. 

The posterior probabilities show the ability of the approach developed within this project to identify the 

appropriate model, and account for various uncertainty levels. Because the true time-to-failure is known 

(15 hours, in this example), the error in the estimated RUL may be used as an indicator of the 

performance of the algorithm. Results from the present data set indicate that the algorithm overestimates 

the RUL somewhat (as seen in Figure 5.15(c) and (d)); however, the error in RUL appears to be a 

function of the amount of uncertainty in the data, with higher levels of noise (uncertainty) introducing 

higher uncertainty into the estimated RUL). Thus, accurate characterization of process uncertainties and 

measurement noise is important for reliable and robust performance of prognostics algorithms. 
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Figure 5.15. Model Posterior Probabilities for Two Models. ‘Model 1’: Primary Stage, ‘Model 2’: 

Secondary Stage and RUL Estimation for Different Process and Measurement Noise Terms; 

(a) and (c) Process Noise:  20, ; 1 4process process e   N , 

Measurement Noise:  20, ; 5 5measurement measurement e   N ; 

(b) and (d) Process Noise:  20, ; 1 4process process e   N , 

Measurement Noise:  20, ; 5 5measurement measurement e   N . 

5.2.5 Status of Ongoing Experiments for Local and Component-Level PHM 

Several experiments are ongoing with a view to generating additional measurements for evaluating the 

algorithms, as well as to support anticipated future emphasis on measurements and sensing approaches 

that provide indicators of degradation early in the component lifecycle. In addition to several specimens 

being tested using the ex-situ testbed, experiments have been initiated in the in-situ testbed. Figure 5.16 

shows an example of the measurements obtained during a shake-down test. In particular, measurements of 

applied load were made, with periodic ultrasonic measurements also taken using the automated data 

acquisition system. Measurements at several times are shown in the figure, and indicate a gradual change 

in the shape of the of the measured signal (indicating a change in overall specimen dimensions, resulting 



 

5.14 

in a change in propagating modes in the stress wave). In addition, the non-linear parameter was computed 

and shows a gradual increase with time (indicative of slowly accumulating damage). 

These results are preliminary and additional specimens are being tested within this setup as well, with 

follow-on studies planned on microstructural characterization, to quantify relationships between the 

microstructural changes and the observed measurement changes. 

 

Figure 5.16. Ongoing Testing: In-situ Creep Monitoring 

5.3 Discussion 

Two laboratory-scale testbeds (ex-situ and in-situ) havebeen built for obtaining data for evaluating (and 

eventually validating) prognostic algorithms. Results to date using ex-situ testbed data indicate that the 

proposed Bayesian framework can be used to identify distinct stages of creep progression. However, the 

accuracy of the prognostic result is dependent on the ability to quantify the sources of uncertainties within 

the Measurement model and Degradation Rate model used within the Bayesian prognostic methodology. 

NDE measurements using the various testbeds also show promising results, with respect to the ability to 

track degradation in materials and components. These studies will be continued with a view to 

determining reliability and sensitivity of these measurement approaches, and the applicability of these 

approaches to use in prognostics for passive components in ARs. 
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6.0 Summary 

PHM technologies are expected to play a vital role in the deployment and safe, cost-effective operation of 

ARs. Diagnostics and prognostics provide the technical means for enhancing affordability and safe 

operation of ARs over their lifetime by enabling lifetime management of significant passive components 

and reactor internals. PHM technologies provide one approach to overcoming challenges due to relatively 

lower levels of operational experience with AR concepts (when compared with LWRs), and the 

consequent limited knowledge of physics-of-failure mechanisms of materials and components in AR 

environments, and can enhance situational awareness with respect to critical systems. 

A Bayesian methodology for prognostics has been described for the prediction of remaining life (also 

know as RUL) of materials and components. Bayesian methods for prognostics have many advantages, 

including the ability to update the prognostic result as new information (for instance, measurement data) 

becomes available, and the ability to inherently provide confidence bounds on the prognostic result. 

While this approach has been previously applied to predict time-to-failure of materials subjected to aging 

and degradation, a similar approach may be applied to component-level prognostics. For component-level 

prognostics, appropriate models of component degradation-growth and measurement physics will be 

needed, and these models are likely to describe performance degradation. 

The Bayesian framework for component-level prognostics incorporates the ability to fuse information 

from multiple sources, including information on localized degradation, and component-level condition 

indicators. The ability to switch between multiple Degradation Rate models and/or multiple Measurement 

Physics models becomes important in this context, and an RJMCMC approach has been developed for 

this purpose. 

Evaluations of the Bayesian framework and the RJMCMC model switching/model selection were done 

using synthetic data as well as experimental measurements on a high-temperature creep testbed. Results 

to date using this data indicate that the proposed Bayesian framework can be used to identify distinct 

stages of creep progression. However, the accuracy of the prognostic result is dependent on the ability to 

quantify the sources of uncertainties within the Measurement model and Degradation Rate model used 

within the Bayesian prognostic methodology. The use of an explicit model selection method appears to 

improve the accuracy and error bounds of the prediction, though this needs further evaluation. 
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7.0 Path Forward 

As described in Section 5.0, a set of testbeds (ex-situ and in-situ) are being used to develop the data sets 

for validation of the prognostic algorithms. Going forward, this effort is going to be used to increase the 

focus of this work on sensing and measurements (particularly in-situ measurements). This renewed focus 

on measurements and sensing is with a view to identifying measurement approaches that are most likely 

to provide indicators of materials and component degradation that are applicable within the prognostics 

framework. Specifically, the research will address the need for quantitative nondestructive examination 

analysis tools by examining the sensitivity of advanced NDE methods to relevant degradation 

mechanisms. Degradation condition indices (along with any associated uncertainties) calculated from 

these measurements will be integrated with models of material or component failure to enable estimation 

of remaining life of passive components with detected degradation. The outcomes of these next steps in 

this research will enable the development of methods for supporting emerging needs within other 

Technical Areas in the program, particularly the Materials and Fuels areas. 

Gaps with respect to deployment of sensors and instrumentation, and integration with plant control 

algorithms, exist and will be addressed as this research progresses. A key element in the sensing and 

measurement activities will be the development of approaches for in-situ monitoring that are likely to be 

applicable in the operational environments of ARs. A critical need for in-situ monitoring is sensors and 

sensor materials that can withstand the harsh environments. Recent research has led to the development of 

high-temperature-resistant sensor materials as well as methods for field deployment. These techniques 

and sensors will be leveraged to enable in-situ monitoring of materials and components. 

The testbeds will be further leveraged to generate additional measurement data sets for validation of the 

prognostic methodology. In addition, opportunities to use other test setups for generating supporting data 

of relevance to ongoing research within other Technical Areas in the Advanced Reactor Technologies 

(ART) program will be explored. Results of these efforts will be presented in future reports. 
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Summary Description of Near-Term Advanced Reactor 

Concepts and Expected Environments 

A.1 Sodium Fast Reactors 

The sodium-cooled fast reactor (SFR) features very high core power densities, high reactor outlet 

temperatures, low system pressure (atmospheric), and a fast neutron spectrum. An advantage of sodium 

coolant is its relatively high heat capacity, which enables very efficient heat transfer from the core. 

However, internal core and reactor vessel components are exposed to a significant fast neutron flux. 

While sodium has the advantage that it does not corrode steel components, it does react chemically with 

air and water so the design of SFR components must take this into consideration. 

The primary coolant system can either be arranged in a pool layout (a common approach, where all 

primary system components are housed in a single vessel), or in a compact loop layout. Several domestic 

SFR designs (e.g., Power Reactor Innovative Small Module [PRISM], traveling-wave reactor [TWR]) use 

a pool-type reactor vessel design containing the reactor core, primary heat-exchanger, and mechanical or 

electromagnetic (EM) pumps. An inert cover gas system is required to maintain sodium purity and to 

prevent the sodium from reacting with moisture in the air. In general, penetrations into the reactor vessel 

occur at the top of the vessel. Further information regarding modularized SFR concepts is provided in 

Table A.1 (Meyer et al. 2013a). 

Key passive components in SFRs that could benefit from PHM include: 

 Heat exchangers 

 Reactor vessel, reactor core, reactor shields / reflectors / absorber 

 Piping 

 Tanks 
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Table A.1. Summary of Typical Operating Parameters for SFRs (Meyer et al. 2013a) 

Parameter Typical Values References 

Temperatures (°C) Coolant Max 704 with max ramp rate of 

9°C/sec 

Minato and Handa (2000) 

Donoghue et al. (1994) 

Sodium Coolant Boiling 980 @ 0.2 MPa TAREF (2011) 

Fuel (Max.) 810; ~ 825 (peak bounding) Minato and Handa (2000) 

Arie and Grenci (2009) 

Toshiba (2011) 

Donoghue et al. (1994) 

Reactor Vessel Wall 

(Operating) 

426 Minato and Handa (2000) 

Arie and Grenci (2009) 

Toshiba (2011) 

Donoghue et al. (1994) 

Reactor Vessel Wall (Max) 705 Minato and Handa (2000) 

Arie and Grenci (2009) 

Toshiba (2011) 

Donoghue et al. (1994) 

Primary Loop (Inlet/Outlet) 338 / 485 Donoghue et al. (1994) 

Secondary Loop 

(Inlet/Outlet) 

282 / 443 Donoghue et al. (1994) 

Steam Generator (water) 285 Donoghue et al. (1994) 

Pressures (MPa) Primary Coolant (normal 

operations) 

Near ambient (enough to 

circulate sodium) to 0.2 

 

Reactor Vessel Design 0.3 Arie and Grenci (2009) 

IHX 0.88 Minato and Handa (2000) 

Water/Steam 6.9–10.5 Minato and Handa (2000) 

Donoghue et al. (1994) 

Flow Rates 

(PRISM) 

Primary Loop (Sodium) 174,128 (l/min)
 

Donoghue et al. (1994)
 

Secondary Loop (Sodium)
 

156,148 (l/min)
 

Donoghue et al. (1994)
 

At Steam Generator Donoghue et al. (1994)
 

Sodium
 

8.30  10
6
 (kg/hr) 

 

Water
 

1.025  10
6
 (kg/hr) 

 

Steam
 

9.30  10
5
 (kg/hr) 

 

Power Density  17 (4S)-210(PRISM) (MW/m
3
 or kW/l)  

Neutron Fluence Peak fast fluence limit 4.0  10
23

 n/cm
2 Hoffman et al. (2006) 

Reactor Vessel
 

6.8  10
12

 n/cm
2 Donoghue et al. (1994)

 

A.2 Very-High-Temperature Gas Reactors 

The very-high-temperature gas reactor (VHTR) is an evolution of high-temperature gas-cooled reactor 

(HTGR) technology. VHTRs are distinguished by the intent to operate at greater temperatures (up to 

1000°C) to facilitate hydrogen production, creating significantly greater materials challenges. The main 

characteristics of VHTRs include the use of helium gas for coolant, use of graphite for major core and in-

vessel components, low power density, high operating temperature, use of coated fuel particles, and 

reliance on passive mechanisms for heat removal in the event of a loss-of-coolant accident (LOCA). 

These design characteristics help maintain the integrity of the fuel and prevent the release of radioactive 
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materials in the event of severe accidents. Another significant advantage of the helium gas reactor designs 

is that they enable direct coupling to He-Brayton energy conversion cycles. 

Two major VHTR design variants include the pebble bed and prismatic block reactors. In the pebble bed 

reactors, coated fuel particles are embedded in spherical graphite pebbles, which circulate through the 

core. Reactivity is controlled through the distribution of pebbles loaded with fuel and absorber materials. 

This reactor concept enables online refueling as individual pebbles can be removed from the core and 

fresh pebbles added continuously. In prismatic block reactors, the coated fuel particles are embedded in a 

graphite matrix that is formed into prismatic blocks, so that the reactor must be shut down for refueling 

and control rods are employed for reactivity control. Table A.2 contains further information about VHTR 

concepts, while Table A.3 contains additional information about gas-cooled reactor concepts (Meyer et al. 

2013a). 

Table A.2. Summary of Design Parameters for Several Recent GCR Concepts (Meyer et al. 2013a) 

General GCR Design Features Parameters 

Coolant He (most common); other: N2, air 

Thermal Capacity Range (MWth) ~5–600 

Gross Electrical Capacity Range (MWe) 2–285 

Refueling Frequency (years) 1.5; 5–10; 30 (continuous for pebble bed) 

Fuel Cycle Once through, breed and burn 

Key passive components in gas-cooled reactors (GCRs) that could benefit from PHM include: 

 Heat exchangers 

 Reactor vessel, reactor core, reactor shields/reflectors 

 Piping – connecting to and outside of reactor vessel 

Table A.3. Summary of Typical Operating Parameters for GCRs (Meyer et al. 2013a) 

Parameter Value Reference 

Temperature Range (°C) Core Inlet 250–587  

Core Outlet 530–850  

For Hydrogen Productions 900–1000  

Fuel (max.) 1238 (limit 1600)  

Pressure Range (MPa) 5–~9  

He Mass Flow Rate (kg/s) 96–320 General Atomics (1996) 

IAEA (2011) 

Power Density (MW/m
3
 or 

kW/l) 

4–6.5  
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Nondestructive Evaluation (NDE) Techniques 

Current in-service inspection (ISI) practices for light-water-cooled reactors (LWRs) are based on 

requirements in the ASME Boiler and Pressure Vessel Code (Code), which were originally developed in 

the 1960s for the management of fatigue degradation (Doctor 2008). Current ISI requirements are 

challenged by the emergence of diverse and challenging degradation mechanisms in nuclear power plants, 

such as stress corrosion cracking (SCC). In addition, as plants continue to age, it can be anticipated that 

new degradation mechanisms will continue to manifest in components (Wilkowski et al. 2002). Advanced 

reactors, with their higher operating temperatures and corrosive coolant chemistry, can be expected to 

experience mechanisms not commonly seen in LWRs (O'Donnell et al. 2008). Mitigation of such 

degradation mechanisms will require early warning to ensure that appropriate actions can be taken before 

significant degradation accumulates to the point where the only possible mitigating action is to replace the 

component. 

To address these issues, it is likely that a combination of online, in-situ monitoring with periodic offline 

measurements of component or material condition will be needed (Meyer et al. 2013a). Such monitoring 

of materials degradation is expected to provide a better understanding of the surface and volumetric 

material changes occurring during the early stages of the incubation and micro-damage accumulation. By 

detecting the presence of material degradation mechanisms early in the process, better insights are gained 

about the state of the material that can be used to understand the precise margins to failure. A brief state-

of-the-art assessment for real-time monitoring of early degradation in materials used in the production of 

nuclear power, including creep measurement techniques is covered in McCloy et al. (2013). 

A critical step in achieving this objective is to develop an appropriate means to detect minor changes in 

material microstructures at the onset of degradation. Measurement techniques to estimate creep 

degradation are intended to address the challenges associated with the ability to perform real-time 

monitoring of material degradation. However, the use of sensors for long-term condition monitoring in 

harsh environments is likely to result in a gradual change in the sensor response and sensitivity because of 

aging and degradation especially in regions of high temperatures and irradiation (neutron and gamma) 

according to Daw et al. (2012). While recent advances (Coble et al. 2012a) may be used to monitor sensor 

drift, techniques to compensate for decreasing sensitivity may be needed to maintain the ability to monitor 

the materials/components over the long term. 

Several NDE technologies have emerged as potential candidates to meet the requirements for early 

material degradation measurement, especially for creep damage, including micromagnetic techniques 

such as magnetic Barkhausen noise, ultrasonic non-linear techniques that are sensitive to early-stage 

material degradation, and electromagnetic methods such as eddy currents, which evaluate changes in 

material conductivity. These are described in PNNL-22889R0 (Meyer et al. 2013a), and are summarized 

below. 

B.1 Magnetic Barkhausen Noise 

The magnetic Barkhausen effect is a result of the magnetic hysteresis of ferromagnetic materials (Jiles 

2000; Stupakov et al. 2008). The magnetic flux density (B) in ferromagnetic materials placed in an 

external applied magnetic field is a function of the applied magnetic field (H) and the magnetic 

permeability (μ): B = μH, with larger numbers of magnetic domains within the material aligning with the 



 

B.2 

applied field direction with increasing applied field strength. This realignment is, however, not a 

continuous process, because the presence of dislocations or other damage precursors results in domain 

wall pinning. Increasing the applied field strength results in abrupt realignment of some domains, and is 

accompanied by a release of energy that may be detected using a sensing coil (Figure B.1). Studies 

indicate that the magnetic Barkhausen effect in many materials is primarily from the motion of 180° 

domains, and its interactions with dislocation tangles (Ranjan et al. 1987a; Krause et al. 1994). The 

number of Barkhausen counts is given by Ranjan et al. (1987b). 

 

Figure B.1. Schematic of Magnetic Barkhausen Noise Measurement System 

In general, two Barkhausen bursts are present—one for positive magnetization and the other for negative 

magnetization. Numerous models have been developed to predict Barkhausen response to microstructural 

defects in steels such as grain boundaries and second-phase precipitates (Perez-Benitez et al. 2005; 

Kameda and Ranjan 1987; Moorthy et al. 1997). 

Like all electromagnetic methods, the magnetic Barkhausen method is predominantly a near-surface 

measurement, with the standard depth of penetration (the distance into the material where the induced 

current density decreases to 37% of its value at the surface) decreasing with increasing frequency (ASNT 

2004). For non-ferritic steel (such as 304 or 316L), the skin depth at 1 kHz is about 13.1 mm. 

In many stainless steels, the effect of increasing damage is an increase in dislocation density and/or a 

change in phase (from austenitic to ferritic). These phenomena combine to impact the Barkhausen noise 

measurement from steels subjected to aging and degradation. However, the correlation between the 

measured parameters and the amount of damage is not linear, and is a function of several other variables 

(such as hardness). The Barkhausen noise measurement method has been applied to determine residual 

stresses in ferritic steels, the amount of hardening or cold work, and other forms of mechanical damage in 

materials (Sullivan et al. 2004; Gorkunov et al. 2000; Hakan Gur and Cam 2007; Sagar et al. 2005; 

Parakka et al. 1997). 

Sposito et al. (2010) summarize the results of several efforts to correlate the Barkhausen emission with 

level of creep damage in ferritic steels. The studies did indicate sensitivity to creep damage through 

changes in the amplitude of the peak in the Barkhausen emission signal and the value of the magnetic 

field at which this peak occurs. The Barkhausen response was attributed to several material phenomena 

such as the formation of precipitates and cavities, the coarsening of precipitates, and grains in the 

material. It is noted that the formation of oxides on the surface of the material can impact the magnetic 

Barkhausen response. 
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In spite of the documented sensitivity of this technique to many forms of degradation, there are multiple 

sources of uncertainty that impact the interpretation of the resulting measurement. Some of these sources 

of uncertainty include: 

 Location of the measurement relative to the location and orientation of the external stressors. 

 Orientation of tensile strain direction, relative to the applied external field direction and the magnetic 

easy axis (Krause et al. 1995). 

 Specimen fabrication variability and residual stress in the specimen (Krause et al. 1995; Lindgren and 

Lepistö 2001). 

 Number, location, and orientation of magnetic domains. In two-phase steels, the volume fraction and 

distribution of the ferromagnetic phase will affect the measurement (Csikor et al. 2007). 

 Probe coupling, and tilt relative to the surface of the specimen. Changes in surface condition with 

degradation can result in improper probe contact with the specimen and lower the overall 

measurement. 

All of these sources are likely to affect the measurement from high-temperature creep-damaged 

specimens. 

B.2 Ultrasonic Measurements 

Acoustic wave propagation in solids is a function of the mechanical properties of the solid (such as 

density) and is affected by the macro and microstructure. Details of wave propagation in solids, and the 

impacts of microstructural changes on the measured parameters, are given elsewhere (for instance, 

Ensminger and Bond 2011; Krautkrämer and Krautkrämer 1990; Goebbels 1994; Doctor et al. 1989; Raj 

et al. 2000). Traditionally, changes in bulk or guided wave ultrasonic velocity and attenuation have been 

correlated with microstructural changes from various forms of degradation. Measurement of non-linear 

elastic wave responses can provide improved sensitivity to accumulated damage. Techniques included in 

this method can employ: 

 Bulk measurements (Cantrell and Yost 2001) 

 Rayleigh wave measurements (Shui et al. 2008) 

 Guided wave measurements (Bermes et al. 2008). 

Non-linear ultrasonics (NLU) techniques are significantly more sensitive to early stages of material 

damage than conventional linear ultrasonic measurements (Nagy 1998). Conventional ultrasonic methods 

apply high-frequency (in excess of 500 kHz, typically between 2.25 MHz and 10 MHz) energy and 

measure the resulting response from scattering and reflection of the energy at interfaces such as crack 

faces or grain boundaries. The presence of cracking is detected by means of a reflection from the crack 

surface, or diffraction from crack tips. Other forms of damage (such as creep damage) may be detected by 

making use of velocity and attenuation measurements through one or more measurement configurations. 

However, such measurements are not as sensitive to earlier stages of damage. NLU methods rely on the 

generation of harmonics from a monochromatic input. The generation of harmonics is from nonlinearities 

in the elastic constants associated with the material (Zarembo and Krasil'nikov 1971). The second 

harmonic is of particular interest, and the resulting non-linear material parameter is represented by  

(Kyung-Young 2000). A schematic of a typical single-sided measurement setup for non-linear acoustics 

measurements is shown in Figure B.2. Alternative setups use a transmitting probe to transmit acoustic 

energy through the specimen and a receiving probe on the opposite side of the specimen (through-

transmission mode), or rely on the generation of Rayleigh surface waves. 
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Figure B.2. Schematic of NLU Measurement System 

NLU has been applied to the characterization of a range of damage mechanisms, including fatigue 

(Kyung-Young 2000; Cantrell and Yost 2001), irradiation embrittlement (Matlack et al. 2012b), SCC 

(Matlack et al. 2012a; Shintaku et al. 2010), and corrosion pitting (De et al. 2010). Sposito et al. (2010) 

indicate that the non-linear parameter exhibits greater sensitivity to creep damage accumulation than 

ultrasonic velocity measurements. 

B.3 Eddy Currents 

Eddy currents are generated in a conducting material by the principle of electromagnetic induction. A coil 

of wire produces a varying magnetic field when an alternating current is applied to it. The magnetic field 

of the coil (the primary magnetic field) induces eddy currents in the conducting specimen, which creates a 

secondary magnetic field in opposition to the primary magnetic field. Because the coil and the conducting 

specimen are a magnetically coupled system, the electrical impedance of the coil is altered by the 

electrical properties of the conducting specimen and distance from the coil. The presence of 

discontinuities in the specimen alters the induced eddy current pattern, further changing the electrical 

impedance of the coil as measured by the eddy current instrument. Both electrical and magnetic 

characteristics of the test object are of importance (Libby 1971). Eddy current flow within the test object 

results in a skin effect, which is a concentration of the current toward the surfaces adjacent to the exciting 

test coils. The skin depth is a function of the frequency of the exciting field, and electrical conductivity 

and magnetic permeability of the test material (ASNT 2004), and also governs the measurement of 

magnetic Barkhausen noise (Section B.1). 

Figure B.3 provides a graphical representation of a typical eddy current examination. There are many 

variations to both coil configurations and coil geometry (ASNT 2004). Probe parameters that influence 

the depth of penetration of the eddy currents and the impedance of the coil include the wire and coil 

diameter, number of turns in the coil, and the type of core and shielding material. 

Eddy current measurements have been used extensively in the nuclear power industry to examine 

components such as SG tubing and reactor internals for cracking, corrosion, and other forms of 

degradation. Because the measurement is a function of test specimen conductivity, eddy current 

measurements have been applied to also determine the electrical conductivity of specimens. Sposito et al. 

(2010) discuss the application of eddy currents to assess creep damage and compare its performance with 

other nondestructive approaches to detecting and assessing creep damage. 
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Figure B.3. Graphical Representation of a Typical Eddy Current Examination 

B.4 Other NDE Methods 

A number of other NDE measurements may be applicable to measure creep degradation (Sposito et al. 

2010). These include potential drop measurements, digital image correlation, x-ray diffraction, small-

angle neutron scattering, acoustic birefringence, acoustic backscatter, etc. Each of these approaches is 

sensitive to different aspects of material microstructural changes due to creep damage, although the level 

of sensitivity varies by technique. 

B.5 Harsh-Environment Probes for NDE 

Meyer et al. (2013a) discuss various probes that may be used for measurements in harsh environments. 

For ultrasonic NDE measurements, piezoelectric and electromagnetic acoustic transducer probes are the 

most common form, with piezoelectric sensing used to measure vibration, acoustic emission, guided 

ultrasonic waves, non-linear ultrasonic, ultrasonic velocity and attenuation, ultrasonic backscatter, diffuse 

fields ultrasonic testing, etc. However, the most common piezoelectric material used in ultrasonic probes 

(lead-zirconate-titanate or PZT) has limited applicability in high-temperature and irradiation 

environments. Materials considered more suitable for high-temperature transducers include bismuth 

titanate, modified bismuth titanate, and lead metaniobate (Ensminger and Bond 2011; Daw et al. 2012). 

In general, probes used for magnetic measurement are limited by the choice of the magnet material (if 

any). As with piezoelectric materials, high-temperature applicability may be limited if the Curie 

temperature of the magnet (at which the magnet loses the ability to be magnetic) is lower than the 

operational temperature. This impacts measurements such as the magnetic Barkhausen noise 

measurement, as well as magnetostrictive probes that are used for measuring temperature. In irradiation 

environments, the activation of elements in typical magnets is a concern. Materials such as cobalt and 

samarium are readily activated by neutron irradiation and can result in difficulties in handling post-

irradiation (such as during probe change-out). 

In this research, we assume the availability of harsh-environment probes for online and/or in-situ 

measurement of the environmental conditions (temperature, flow, pressures, radiation fluence), and 

nondestructive measurement of material condition. In making this assumption, we expect to leverage 

ongoing research in this area (Parks and Tittmann 2011; Parks et al. 2010; Zhang et al. 2010; Veilleux et 

al. 2013; Daw et al. 2013). As a result, the focus of measurements in this research is on using readily 

available probes and probe materials for laboratory-scale NDE and process measurements.
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Bayesian Prognostics Framework 

C.1 Tracking Filters for Prognostics 

Define xk as the material state at time k. The material state is a numeric quantity that describes the 

condition of the material in the early stages of damage. Let zk be the measurement at time k. Further, let 

 f   be a state transition (or process) model that defines the relationship between xk and xj (k > j), and is 

a mathematical representation of the evolution of damage in the material with time: 

  1, , ,... ,k j k k j kx f x      (C.1) 

where 1, ,...,k k j    are the stressor values at times k, k–1, … j, with j < k, and k represents the 

uncertainty in the state transition model (random process noise). Also, let 

  ,k k kz h x   (C.2) 

relate the material state to the measurements, where the quantity k is used to represent the level of 

uncertainty in the measurement (again, using random measurement noise). 

With this problem setup, the particle filter approach is derived as follows. Given the measurement zk, the 

probability density function (PDF) p(x k ,z1:k)  of the material state xk conditioned on all measurements up 

to (and including) zk, may be obtained recursively using prediction and update stages. The prediction 

stage uses the system model (Eq. C.1) to predict the PDF forward from one measurement time step to the 

next. Suppose that the required PDF p(x k - 1 |z1:k-1)  at time step k−1 is available. The prediction stage 

obtains the prediction density of the state at k, conditioned on the measurements up to (and including) zk-1, 

(Ristic et al. 2004) as: 

 1: 1 1 1 1: 1 1( | ) ( | ) ( | )k k k k k k kp x z p x x p x z dx      . (C.3) 

For a Markov process of order-one, p(x k |x k - 1 ,z1:k-1)  = p(x k |x k - 1) . Because the state is usually subject to 

unknown disturbances (modeled as random process noise k), the prediction step translates and distorts 

the PDF. The update operation uses the latest measurement to modify the prediction PDF, using Bayes’ 

theorem as follows: 
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In order to apply particle filtering, the posterior PDF p(x k |z k)  is represented in terms of samples and 

associated weights 
i

kw  at each state 
i

k kx x : 
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( | ) ( )
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i i

k k k k k

i

p x z w x x


   (C.5) 

Here, 
i

kx  are the samples (or particles) used to represent the posterior density, i = 1:Ns, where Ns is the 

total number of samples used and 
i

kw  is the weight associated with sample
i

kx . The samples are drawn 

from the prior distribution 
1( | )i i

k kp x x 
. Normalized weights are chosen using the principle of importance 

sampling (Doucet et al. 2000). If the samples 
i

kx  were drawn from an importance density,
 1: 1:( | )k kq x z , 

the weights are given by 

 1: 1:

1: 1:

( | )

( | )

i
i k k
k i

k k

p x z
w

q x z
  (C.6) 

With the reception of measurement zk at time k, we wish to approximate 1: 1:( | )k kp x z  with a new set of 

samples and weights. Given the set of weights wk−1 at time k−1, the weights at time k may be computed 

recursively using the weight update equation derived from the principle of importance sampling as 

 1
1

1

( | ) ( | )

( | , )

i i i
i i k k k k
k k i i

k k k

p z x p x x
w w

q x x z
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The most commonly used variant the of particle filter, known as the sampling-important resampling (SIR) 

algorithm (Ristic et al. 2004), is used in this study. The importance density in the SIR algorithm is the 

transitional prior: 

 1 1( | , ) ( | )i i i i

k k k k kq x x z p x x   (C.8) 

Therefore from Eqs. (C.7) and (C.8), 

 1 ( | )i i i

k k k kw w p z x  (C.9) 

C.2 Model Selection in a Bayesian Prognostics Framework 

Mathematically, the Degradation Rate model defines the relationship between degradation levels xk and xj 

(k > j) and is a representation of the evolution of damage in the material with time. The model may also 

include information on stressor history; that is, 

  1 1, , , ,k j k k j kx f x       (C.10) 

where k, k-1,…j, are stressor values at times k,k–1,…j with j < k. In Eq. (C.10), k-1 represents the 

uncertainty in the state transition model and is typically represented by a PDF. The Measurement Physics 

model relates the degradation level to the measurements zk at the present time instant: 

  ,k k kz h x v  (C.11) 

with the quantity k representing the level of uncertainty in the relationship between the material 

condition and the measurement. As with k-1, k is generally represented by means of a PDF. Given the 



 

C.3 

measurement zk, the posterior PDF  1:|k kp x z  of the material state xk conditioned on all measurements 

up to (and including) zk may be obtained recursively in two stages (Ristic et al. 2004): prediction and 

update. In particle filtering, the posterior PDF  1:|k kp x z  is represented in terms of samples and 

associated weights at each location as: 

    1:

1

|   |   (   ) 
SN

i i
k k k k k k k

i

p x z p x z w x x


    (C.12) 

Here,  ( 1, , )i

k Sx i N   are the samples (or particles) used to represent the posterior density of the state, 

assumed to depend only on the current measurement zk. NS is the total number of samples used and 
i

kw  is 

the weight associated with sample 
i

kx . Normalized weights are chosen using the principle of importance 

sampling (Doucet et al. 2000). The most commonly used variant of particle filter, SIR algorithm uses 

transitional prior  1|i i
k kp x x 

, as the importance density function. This allows recursive update of the 

sample weights from time step k–1 to k as (Doucet et al. 2000): 

 1  ( | ) i i i
k k k kw w p z x  (C.13) 

The knowledge of statistical distribution of process uncertainty k-1, and measurement noise k enables 

transitional prior  1|i i
k kp x x  , and the likelihood term 

( | )i
k kp z x

 to be deduced from Eqs. (C.10) and 

(C.11), respectively. For the problem of prognostics, measurements may not be available at all instants. 

This can be accomplished by simply running the prediction step (using transitional prior) forward for 

several time steps without the corresponding weight update step. The generic steps for particle filtering-

based state estimation or material degradation as implemented in this study can be enumerated as: 

1) Generate 0  ( 1, , )i
Sx i N   uniformly from known prior P0, Initialize 0 1  / ; 0 i

Sw N k  . 

2) Calculate ,0 0

1

1
 

SN

i
mean

S i

x x
N



  . 

3) While , _mean kx Failure threshold  or _ _k Max time steps , Do: 

 1k k  . 

 For i taking values between 1 and Ns, Do: 

 Draw a particle  1 ~  |i i i
k k kx p x x 

 

 If measurement update zk, is available at time instant k: 

 Evaluate importance weights 
i
kw  using Eq. (C.13). 

 Normalize importance weights for each particle, , 

1

  /
SN

i i i
k normalized k k

i

w w w


  . 

 Implement resampling scheme using systematic resampling procedure as described in 

(Ristic et al. 2004). 
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Material state estimation framework, as described hitherto, can be implemented in practice if the material 

degradation phenomenon is well understood and the degradation rate model is explicitly defined. Quite 

often it is difficult to characterize, as well as quantify, all the stressors that exist in real operating 

conditions such as variation in environmental temperatures, loading conditions, pressure profiles, residual 

stresses, amount of radiation a material is being subjected to, and so on. Material degradation under these 

unknown stressors can be highly non-linear, which can make it even harder for a single degradation 

model to track evolution of damage in a material with time. Thus, a combination of different material 

degradation models that capture changes in different physical properties of the material may inevitably 

have to be used for accurate and reliable prognostics or material state estimation. In the presence of 

different material degradation models, it will be imperative for any prognostics algorithm to calculate 

model posterior probabilities based on the evidence (likelihood) at each measurement update. A wrapper 

algorithm that provides model posterior probabilities, based on Bayesian framework, will now be 

developed that can be used in conjunction with the particle filtering algorithm steps as described earlier. 

Let 
(k)

IM  represents I-th model being considered at time index k from a finite set of material degradation 

models  1 2: , , NmodelsM M M  (Guan et al. 2011). Nmodels is the total number of models under 

consideration. Let 
(k)
Iθ  represent the model parameters for the I-th model at time index k. Let 

 (k) (k)

k I Ip z ,θ ,  M  be defined as the joint probability distribution of model 
(k)
IM , model parameters 

(k)

Iθ , 

and observed state zk at time index k which can be expressed as 

        (k) ( ) (k) (k) ( )
I I I,θ ,  θ |  ( | θ ,  )

k kk k
k I I I k Ip z M P M p M p z M  (C.15) 

where  (k)

iP M  is the probability of 
(k)
IM ;  (k) (k)

I ip θ |  M  is the prior density for the parameter set for 

(k)

iM ; and  (k) (k)
k I Ip z |θ ,  M  is the posterior distribution of observed state zk given model 

( )k
IM , and 

model parameters 
(k)

Iθ , at time k. 

        (k) ( ) (k) (k) ( )
I I I,θ ,  θ |  ( | θ ,  )

k kk k
k I I I k Ip z M P M p M p z M  (C.16) 

where  (k)

iP M  is the probability of 
(k)
IM ;  (k) (k)

I ip θ |  M  is the parameter prior for the 
(k)

iM ; and 

 (k) (k)
k I Ip z |θ ,  M  is the posterior distribution of observed state zk given model 

( )k
IM , and model 

parameters 
(k)

Iθ , at time index k. As discussed in Newton and Raftery (1994b) and Guan et al. (2011), 

marginal likelihood of observed data zk under model 
( )k
IM  can be obtained as: 

 
        (k) (k)

I I|  |θ ,  θ | 
k k k

k I k I I iP z M p z M p M d   (C.17) 

According to Bayes theorem, posterior probability of 
 k

IM  at time index k given observed data zk is 

defined as: 
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The ratio of posterior probabilities of model 
 k

IM  and 
 k

JM  can be used to infer the preference of one 

model over another based on the measurement update at time index k as 
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  (C.19) 

Considering an additive normal distribution for k-1, k, and a linear h (one-to-one mapping of the 

measurements with the states) in Eq. (C.11), the probabilistic description of the measurements zk, given 

model 
 

 
k

IM can be expressed as 

 
    (k) 2 2

I 1 1|θ ,  ( , , , ,  ),   
k

k I j k k j k kp z M f x        N  (C.20) 

Eq. (C.20) can be used to evaluate the marginal likelihood integral specified in Eq. (C.17) using Monte 

Carlo-based importance sampling schemes. As mentioned in Newton and Raftery (1994a), the following 

two estimates of marginal likelihood are possible based on the nature of importance sampling 

distributions. 
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where 
  |ˆ  
k

Prior k IP z M  is the estimate of the marginal likelihood using samples ( )
, : ( 1,2, , )k

I J J m    

from the prior distribution 
  (k)

Iθ |  
k

Ip M , whereas 
  ˆ |  
k

Posterior k IP z M  is the marginal likelihood 

estimate using the samples from the posterior distribution 
  (k)

Iθ |   ,  
k

I kp M z . Both estimates approach to 

the true 
  |  
k

k IP z M  as    m  . It should be noted, however, that the marginal likelihood estimate 

has to be obtained for each model in the finite model set M to calculate the preference of one model over 

another, at each measurement update. This may become computationally expensive as size of M increases 

(Nmodels ≫ 1). An alternate approach to calculate posterior model probabilities is to consider model 

itself as a variable (Guan et al. 2011). Eq. (C.16) can be re-expressed as: 

 
  

     
 

(k) (k)
I I(k)
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A standard MCMC simulation using Metropolis-Hastings (M-H) algorithm (Hastings 1970) can be used 

to obtain samples of 
  (k)

Iθ ,  |
k

I kp M z  if all models in set M have their parameters belonging to the same 

dimensional space. Green (1995) had proposed a reversible jump MCMC (RJMCMC) approach, which 

removes the restriction on the dimensional space of the model parameters. Basically, it allows trans-

dimensional moves (move across models with varying dimensional parameters) within the standard 

MCMC simulation and simplifies the evaluation of model posterior probabilities to a great extent by 

using only one simulation instance for the entire model set M. 

In this study, a specific implementation of automatic RJMCMC, as described in Guan et al. (2011) and , 

is used to evaluate posterior model probabilities at each measurement update. Material state estimation is 

obtained using particle filtering algorithm as discussed earlier. Furthermore, a model averaging procedure 

is incorporated wherein the state trajectory estimation is obtained using the weighted average of each 

model in the set M, the weights are the model posterior probabilities obtained using the automatic 

RJMCMC algorithm at the latest measurement update. Thus a wrapper code is developed to calculate 

posterior model probabilities at each measurement update, and the results are used in the previously 

discussed particle filtering-based state estimation or material degradation algorithm to obtain damage 

evolution over time. A schematic representation of this approach is shown in Figure C.1. 

 

Figure C.1. Schematic of Material State Estimation Using Automatic RJMCMC and Particle Filtering 

Method 

The implementation steps of the wrapper code to calculate model posterior probabilities at each 

measurement update zk are enumerated as follows 

1. Initialize burn-in samples Nburn, and total number of samples Ntotal for the RJMCMC chain. 

2. Initialize model transition probabilities TNmodels  Nmodels wherein TIJ refers to the probability of 

moving from model I to model J; I,J = 1,2,…,Nmodels. 

3. Initialize model prior probability 
  k

IP M , and model parameters 
 

θ
k

I  for k = 0. 

4. Begin with count = 1; I = 1; Model_Index(count) = I. 

5. While count ≤ Nburn + Ntotal, Do 

 count = count + 1; 

 Generate a random number from uniform distribution umodel ~ U(0,1). Construct a CDF vector 

using I-th row of model transition probability matrix TNmodels  Nmodels such that 

 
1

CDF p   ; 1,2, , 

p

Ia

a

T p Nmodels


   . Select model index J such that umodel < CDF(J). 
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 If I = J 

 Model_Index(count) = I. 

 Perform within-model MCMC move by generating a sample from the posterior distribution

  (k)

I  θ ,  | 
k

I kp M z  as shown in Eq. (C.23) using standard M-H algorithm. 

Else 

 Perform pilot MCMC runs for each model using 
'  0.5 burn burnN N  and 

' 0.5 total totalN N , and 

construct 1nI-dimensional mean vector µI and covariance matrix I from the resulting 

MCMC samples. Obtain BI such that  ΣT
I I IB B   

 Generate    2 ~    0, uu p u  ; u is a random quantity used for dimensional matching such 

that |   |J Iu n n  . 

 Calculate: 
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 Calculate acceptance probability as:
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 |BI| and |BJ| are the determinants of 

matrices BI and BJ, respectively. 

 

 Generate a random number from uniform distribution utest ~ U(0,1). 

 If IJ > utest; Model_Index(count) = J, else Model_Index(count) = I. 

 

End If 

6. Discard the starting Nburn samples of the vector Model_Index. 

At the end of the single simulation instance of the RJMCMC chain, posterior model probabilities can be 

calculated as (Guan et al. 2011): 

     
  |

   

k I
I k

total burn
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P M z

N N
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where NI is the number of samples in the RJMCMC chain under I-th model. Once the posterior model 

probabilities are obtained at a specific measurement update, the mean state trajectory estimation at time k 

is calculated by taking the weighted average of the trajectories obtained under each model 
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Appendix D 

 

Passive Component Testbed for Demonstrating Prognostics 

Prognostic Health Management (PHM) is a proactive maintenance philosophy in which maintenance or 

repairs to systems or components are performed prior to failure based on models that predict when failure 

is likely to occur. To predict failure, PHM systems require some type of input about the state of the 

component(s) of interest. These inputs could be in the form of information on stressors to which the 

system or component is exposed, or information on the condition of a specific system or component. 

Thus, measurements and diagnostics, in addition to prognostics, are key elements to a PHM system. 

As described in previous reports (Meyer et al. 2013a; Meyer et al. 2013d), PHM for prototypical 

advanced reactor (AR) passive components will require measurements of component condition in 

addition to measurements of stressors. In order to evaluate the algorithms at each level of the hierarchy 

described earlier in this document, testbeds are required to be able to generate relevant data sets (unless 

such data sets are available through other sources). Given the sequential progression of R&D beginning at 

the localized level, a laboratory-scale testbed that can be scaled with the different stages of R&D is 

preferable. A set of requirements for such a testbed are described next. 

D.1 Preliminary Requirements for Laboratory-scale Testbed 

The laboratory-scale testbed concept must address the need to measure nondestructive evaluation (NDE) 

data from a representative passive component at multiple length scales—localized, component level, and 

potentially at a global level. A number of potential requirements for the testbed may be identified based 

on the need to use the testbed to validate the PHM algorithms, including: 

 Materials and degradation: The testbed should be capable of incorporating components made of 

materials relevant to AR. In addition, as the objective is to evaluate prognostics for degradation 

accumulation in passive components, the testbed should include degradation modes of relevance to 

AR. 

 Accelerated aging. The time taken to age a specimen should be accelerated when compared to the 

time taken to field-age specimens. While there is an open question about the applicability of 

accelerated aging tests to understanding mechanisms of degradation under non-accelerated conditions 

(i.e., under field-use conditions), the use of accelerated aging tests is expected to provide relevant data 

applicable for demonstrating prognostic algorithms. 

 Simulate operational conditions. The testbed should be capable of simulating operational conditions 

likely to be seen in AR concepts (such as varying the temperature or load on a component over time). 

 Measurements: The testbed should enable periodic or continuous measurements using one or more 

NDE methods. In addition, measurements of the stressors (temperature, load, etc.) on the materials or 

components should be enabled. Continuous measurements (of condition or stressors) should be 

performed synchronously. The measurements may be performed in-situ or ex-situ. 

 Scalability. To increase efficiency and reduce costs, the testbed must be capable of addressing PHM 

evaluation needs at component and global scales with potentially modest changes to the testbed. 
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D.2 Testbed Concept 

D.2.1 Localized Degradation and Measurements 

To provide an initial context for the development of prognostics algorithms, high-temperature creep 

(effect of loads below the yield point for long periods of time, especially at elevated temperatures) was 

selected as the prototypical degradation mechanism for initial evaluation of prognostics for passive 

components. 

A laboratory-scale creep-test machine was designed as the ex-situ testbed for the first phase of 

measurements and prognostics. Figure D.1 shows a design schematic for this machine, with the major 

components highlighted, while Figure D.2 shows a picture of the fabricated creep-test machine. Figure 

D.3 shows the interface used for control of this testbed. The creep-test machine consists of a mechanical 

load frame, furnace, 5-ton actuator, power supply enclosure, and control system enclosure. The control 

system enclosure houses the electronics that run the system, including the motor drive for the stepper 

motor that is used in conjunction with the 5-ton actuator. The load frame is the base that all components 

are mounted to, and is based off a 20-ton shop press. The furnace, actuator, and both electrical boxes 

mount to the load frame. The machine allows the user to specify a force to be applied to the specimen, as 

well as a temperature for testing. During a test, the machine logs the date, stepper position, sensor 

position, temperatures, and force applied to a file for future analysis. 

A programmable logic controller is used to control the operation of the testbed, and enables independent 

control of temperature and load. Heating is controlled by means of three control circuits for the heater, 

with a 5-point thermocouple to control the heat independently in each of the three heater circuits. The 

load is controlled by means of a 5-ton actuator with a 24:1 gear reduction ball screw, which allows the 

system to apply a force of 5 tons to the specimen. A stepper motor with a 100:1 gear reduction allows for 

very precise control of the actuator. A separate position sensor is mounted to the actuator to monitor the 

position of the actuator. 

Materials and Degradation: High-temperature creep is relevant to several of the AR concepts that are 

being considered, including the liquid-metal and HTGR concepts. The mechanism also enables the 

verification and validation of several concepts unique to proposed ARs, including multiple phases of 

degradation that require monitoring, variable loading, and long-term effects in harsh environments. Initial 

studies are being conducted using austenitic stainless steel, though the testbed may be used with other 

structural materials of relevance to ARs. 

Accelerated Aging and Simulation of Operational Conditions: The ability to independently control 

temperature and load on a specimen enables the application of different stressor profiles on the test 

specimen to perform accelerated aging tests as well as simulate stressor profiles for different operational 

conditions in AR. 
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Figure D.1. Design Schematic of Creep-Test Frame 
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Figure D.2. Laboratory-scale High-temperature Creep-Test Machine 

 

Figure D.3. Main Screen of the User Control Interface for Creep System to Validate Prognostic 

Algorithms 

D.2.2 Ex-situ and In-situ Measurements 

Two sets of measurement protocols have been developed. The first of these enables periodic ex-situ 

condition measurements on specimens in the creep testbed. Each specimen is placed in the testbed and 

subjected to elevated temperatures and loading for a prescribed time period. After this time, the specimen 

is unloaded, allowed to cool, and NDE measurements are performed. The specimen may be either re-
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inserted into the ex-situ testbed after the measurements (for an additional cycle of creep testing, followed 

by more measurements), or set aside for future destructive testing. NDE measurements that are currently 

being evaluated include: 

1) Non-linear ultrasonic testing 

2) Ultrasonic through-transmission testing 

3) Eddy current 

4) Magnetic Barkhausen emission 

5) Digital measurements of thickness and width 

6) Linear strain assessment using a Smartscope 

The second protocol enables periodic in-situ condition measurements on specimens in the creep testbed 

using ultrasonic methods. Each specimen has two ultrasonic probes attached on either end. Each specimen 

is placed in the testbed and subjected to elevated temperatures and loading for a prescribed time period. 

During this process, ultrasonic measurements are collected at specified intervals using pre-determined 

parameters by pulsing one of the ultrasonic probes and receiving the resulting response on the second 

probe. After this time, the specimen is unloaded, and allowed to cool. The specimen may be either re-

inserted into the in-situ testbed after the measurements (for an additional cycle of creep testing, followed 

by more measurements), or set aside for future destructive testing. 

As described earlier, measurements of the stressor variables (temperature, load, position) are also 

recorded and time-stamped. 

D.2.3 Component-scale and Global-scale Measurements 

The creep testbed is flexible enough to be modified for future component-scale and system-scale 

measurements. Specifically, we plan to augment the system to eventually incorporate a small-scale flow-

loop that includes the ability to change (and monitor) temperature, loading, and chemistry. Figure D.4 

presents a simplified concept diagram for such an extension, and shows a tube-within-a-tube arrangement 

that may be used for inducing localized degradation (such as corrosion or creep) while studying its effects 

on component- or system-level measurements (such as flow-induced vibration). The diagram does not 

show a furnace or heat source; however, such a source may be included through the use of induction or 

resistance heating, or a conventional furnace. 

As the testbed grows to include component- or system-level features, additional measurements will be 

needed to evaluate the ability to measure and monitor the growth of degradation in larger-scale test 

specimens. For this purpose, accelerometers and acoustic emission sensors will be used to augment the 

periodic localized measurements listed above. In the example of concentric tubes, the sensors may be 

placed inside the inner tube to protect them from a corrosive environment in the space between the tubes. 

Other measurement techniques (and sensor locations) will be evaluated as needed. 
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Figure D.4. Concept Drawing, Showing A Potential Modification to Creep Testbed, to Enable Testing of 

Scaled Versions of Components 

D.3 Summary 

A testbed concept has been developed to acquire condition and process measurements for evaluating the 

proposed hierarchical PHM system and associated prognostics algorithms. Two versions of this testbed, 

one allowing ex-situ measurements and the second enabling in-situ measurements, for evaluating 

prognostics based on localized measurements has been built and are currently in use. Future modifications 

to this testbed are envisioned to address measurement needs at component- and global-system levels. 

 

 





 

 

 


