
 PNNL-24340

Building the Analysis in
Motion Infrastructure
June 2015

K Kleese van Dam P Sharma
RR LaMothe DV Zarzhitsky
A Vishnu E Stephan
WP Smith TD Elsethagen
M Thomas

PNNL-24340

Building the Analysis in Motion
Infrastructure

K Kleese van Dam P Sharma
RR LaMothe DV Zarzhitsky
A Vishnu E Stephan
WP Smith TD Elsethagen
M Thomas

June 2015

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

iii

Abstract

Science and national security missions are driven by the need to assimilate and interpret ever-
increasing volumes of data to accelerate scientific discovery and make critical decisions, so the speed of
analysis is as important as the choice of data to be collected. The Analysis in Motion Initiative (AIM)
proposes to develop a new analysis paradigm—persistent/ dynamic knowledge synthesis—that will
provide continuous, automated synthesis of new knowledge and dynamic control of measurement systems
contemporaneously with observed phenomena. Working on streaming data, this new capability will
automate the current time-intensive manual analysis and interpretation steps and collaborate with
scientists and analysts to optimize insight creation, decision making, analysis, and data capture adaptation
to meet the needs of their discovery process in a timely manner. This technical report outlines the creation
of the underpinning software infrastructure that enabled the streaming and adaptive analysis approach of
AIM. We report the results of our requirement capture, technology selection, initial infrastructure design,
and changes introduced based on year-one operational experiences.

iv

Summary

Today the ability to make sense of data is foundational to all discoveries, innovations, and decision
making; the outcome of our work often critically depends on the speed and adaptability of the analysis
and interpretation processes we employ. While much progress has been made in automating the analysis
of standard events, little is available to support complex or rare event analysis situations that require
human knowledge and ingenuity in addition to high-speed, high-volume analytical and interpretive
processes. Consider examples such as emergency response, scientific discovery, national security, or
critical business decisions where humans play a key role in analyzing facts as the situation evolves. The
Analysis in Motion (AIM) Initiative is developing streaming analysis applications and an infrastructure to
support this new analysis paradigm for high-volume, high-velocity data situations. This report describes
the first 12 months of AIM infrastructure development. The work discussed can be broken into three
principal stages: selection of key enabling technologies and their initial integration, extension of the
original design to support multiple users, and transition to the OpenStack-based Pacific Northwest
National Laboratory (PNNL) Institutional Research Cloud to scale past the limitations of the initial
single-server hosting model.

Current commercial stream data processing frameworks (e.g., Amazon’s Kinesis or International
Business Machine’s Infosphere Streams) as well as state-of-the-art scientific systems, like the Large
Hadron Collider’s triggers, use highly parallel scale-out techniques and have been shown to reliably
process millions of data elements per second; however, they are strongly oriented towards implementing
fixed, fully-automatic workflows (e.g., real-time retail microtargeting) and leave the user out of the loop.
As part of the AIM Initiative we decided to investigate if we could build an adaptive, user in the loop,
high data velocity infrastructure from these existing commodity software components and evaluate which
would be most suitable for our challenge.

We started the work by defining key infrastructure requirements in terms of maximum throughput,
ability to adapt the mixture of analysis models at runtime, and easy integration of different programming
languages and models. This list of requirements was then translated into evaluation criteria that were used
to review a wide range of existing solutions. Interestingly, while basic requirements such as throughout
rates could be met by many, the native and high-performance support of multiple programming models
proved to be the deciding factor. Based on our evaluation we chose the Apache Kafka framework as our
key infrastructure component for our initial implementation, coupled with Apache Avro containers and
the PNNL-developed Laboratory Integration Framework and Toolset (or LIFT) integration infrastructure.

The initial implementation was hosted on a single high-performance computing node and provided a
web interface controlled test and execution environment where individual users could control analysis
models, data streams and message queues. In initial user tests we discovered difficulties in providing
stream state synchronization between low-level Kafka primitives and higher-order representational state
transfer interfaces in the AIM server software. In addition, the single-node PNNL Institutional Computing
hosting environment with shared, network-based file repository proved to be a suboptimal configuration
for running the ZooKeeper services that support Kafka messaging. Network issues, increased latency, and
lapses in reliability of InfiniBand connections all contributed to periodic failures of the AIM software,
requiring complete system reinitialization. Although tolerable for short-term development activities and
useful for evaluating various aspects of AIM design, reliability and scalability concerns required a
rethinking of the future direction for the software development effort. However, the initial infrastructure

v

could sustain message rates of up to 600K/sec when running, it provided the flexibility to integrate
different programming languages and models and analysis model configurations could be changed at
runtime. It was therefore deemed sensible to continue with the initial core components, but improve them
as we moved into phase two of the infrastructure development.

Our development work coincided with the introduction of PNNL Research Cloud infrastructure,
which enabled us to take advantage of a number of foundational technologies to improve the AIM
codebase in a principled and significant way. The cloud ecosystem brought elastic capabilities to AIM,
while OpenStack Infrastructure-as-a-Service (IaaS) features provided a path forward to ensure high
availability and horizontal scale out of the AIM services. The popularity of OpenStack and active
community support allowed us to use existing solutions for template-based specification of AIM services,
leveraging OpenStack HEAT orchestration, meaning that AIM clients can expect a consistent level of
system performance regardless of the data volume being processed by the system. (This does assume a
certain reasonable limitation on the network capacity and ability to combine virtual machines into a
reliable cluster with a distributed-memory data repository capability for massive parallel processing
tasks.) AIM clients will also benefit from active, real-time monitoring of the system, with automated
response to outages and service interruptions. Overall, the cloud migration of AIM enables both a
significantly greater performance scale and an operationally improved reliability of AIM service at only a
modest increase in hardware resource usage—a cost that is optimally shared across all cloud tenants.
Based on these assessments, the team migrated the existing AIM infrastructure into a cloud-based
environment, making the necessary changes to ensure greater stability of the environment and enabling
multiuser access to its capabilities. The new system is currently under extensive user testing and holding
up well.

Based on experiences with the current infrastructure implementation, the team has identified a range
of additional research and development areas, core among them are the runtime adaptation of analysis
model coupling and scalability work to reach the necessary data throughput on high data volumes.

The AIM software infrastructure team plans to release any modifications or contributions to the open-
source software used in the AIM implementation back to the community. There is an important, virtuous
cycle of innovation, contribution, and idea sharing that factors into the value of the AIM Initiative’s
contributions. We hope that by actively integrating the most innovative concepts and fielding novel
technologies in challenging problem domains we advance the state of the art in streaming data analytics.
We expect that feedback as to which of these technologies worked well and which failed to realize their
potential for streaming data analysis will help the community better direct their engineering efforts and
continue to improve the toolbox with which we address important open problems and challenges.

vi

Acknowledgments

The work described in this report is part of the Analysis in Motion Initiative at Pacific Northwest
National Laboratory. It was conducted under the Laboratory Directed Research and Development
Program at Pacific Northwest National Laboratory, a multi-program national laboratory operated by
Battelle for the U.S. Department of Energy.

vii

Acronyms and Abbreviations

AD Active Directory
AIM Analysis in Motion
API application program interface
CEP complex event processing
CPU central processing unit
DOE Department of Energy
GB gigabyte
GMT Global Memory and Threading
GUI graphical user interface
HDFS Hadoop Distributed File System
HPC high-performance computing
HTTP hypertext transfer protocol
IBM International Business Machine
JavaEE Java Enterprise Edition
JMS Java Message Service
JMX Java Management Extensions
JNI/JNA Java Native Access/Java Native Interface
JSON JavaScript Object Notation
JVM Java virtual machine
LDAP Lightweight Directory Access Protocol
LIFT Laboratory Integration Framework and Toolset
MPI Message-Passing Interface
MQ message queue
NMR nuclear magnetic resonance
NPM Native Programming Model
OPA Online Predictive Analysis
PIC PNNL Institutional Computing
PNNL Pacific Northwest National Laboratory
RAM random access memory
REST Representational State Transfer
SHyRe Streaming Hypothesis Reasoning
SPL Streams Processing Language
TCP/IP Transmission Control Protocol/Internet Protocol
TLS Transport Layer Security

viii

Contents

Summary ... iv
Acknowledgments ... vi
Acronyms and Abbreviations ... vii
1.0 Introduction .. 1
2.0 Infrastructure Requirements ... 2

2.1 Quantitative Infrastructure Requirements .. 3
2.2 Levels of Parallelism and Model Coupling .. 4
2.3 Programming Language and Model Expertise ... 4
2.4 New Development versus Utilization of Existing Technologies ... 4
2.5 Business Requirements .. 4

3.0 Evaluation of Existing Infrastructure Frameworks ... 6
3.1 Resulting Evaluation Criteria ... 6
3.2 Evaluated Solutions .. 6

3.2.1 Embarrassingly Parallel Computations ... 7
3.2.2 Embarrassingly Parallel + Reduction/Aggregation ... 8
3.2.3 Bulk Synchronous Communication + Reduction/Aggregation 8
3.2.4 Irregular Communication with Varying Computation .. 8

3.3 Architecture Decisions ... 9
4.0 AIM Infrastructure Implementation Phase 1 .. 10

4.1 Kafka Setup .. 10
4.2 Kafka/LIFT Integration .. 11
4.3 Data Producer ... 12
4.4 User Interface for Testing Range ... 13
4.5 Avro Container ... 16
4.6 Initial Deployment Environment .. 17
4.7 Initial Infrastructure Performance Tests ... 18

4.7.1 Third-Party Test Results .. 18
4.7.2 PNNL Tests on OS X Laptop .. 19
4.7.3 PNNL Test on High-Performance Computing Cluster Head Node 20
4.7.4 Tests after Further Optimization ... 21

4.8 Initial Model Integration and Use Case Tests .. 21
4.9 Conclusion and Final Setup .. 22

5.0 AIM Infrastructure Deployment Phase 2 .. 24
5.1 Multiuser Support ... 24
5.2 Scalability and Stability Measures ... 25
5.3 Provenance and Metrics Capture .. 26

ix

6.0 Future Work .. 28
6.1 Cloud/HPC Plans ... 28
6.2 Scalability Research ... 29
6.3 Adaptive Workflow .. 30
6.4 Community Support ... 30

7.0 References .. 32
Appendix A Streaming Framework Features .. A.1

x

Figures

1. AIM Conceptual Analysis Framework .. 2
2. AIM Phase 1 Core Infrastructure Components .. 10
3. GUI for Testing Range ... 13
4. Infrastructure Connect ... 14
5. Data Streaming ... 14
6. Graphical Results ... 15
7. Metrics ... 16
8. Functional Block Diagram of AIM Server Software on the PIC Head Node 18
9. AIM Initial Kafka Test Configuration on Standard Laptop ... 19
10. AIM Initial Kafka Test Configuration for Target HPC Environment .. 20
11. Results of Two Experiments .. 22
12. Second Revision of AIM Server Software with High-Availability ZooKeeper Configuration 26
13. Functional View of a Cloud-Ready AIM Infrastructure Software ... 28

Tables

1. Results of Initial Evaluation of Possible Messaging Framework Solutions 7
2. Programming Model Support Offered by Selected Messaging Frameworks 9
3. Performance Test Results ... 20
4. Optimized Test Results ... 21

1

1.0 Introduction

Science and national security missions are driven by the need to assimilate and interpret ever-
increasing volumes of data to accelerate scientific discovery and make critical decisions, so the speed of
analysis is as important as the choice of data to be collected. Ideally we would like to identify and
interpret phenomena and events of interest as they are emerging and adapt our analysis and data collection
as they evolve to create an optimized set of information in support of our discoveries and decisions.
However, today’s predominant analysis paradigm remains the post-hoc evaluation of results, often relying
heavily on manual labor, in particular in the value-adding areas of results interpretation in the domain
context and hypothesis evaluation. This strongly human-centered approach does not offer the scalability
required for timely decision making in big data environments, delaying or preventing necessary decisions
and actions by days, months, or years.

The Analysis in Motion (AIM) Initiative proposes to develop a new analysis paradigm—persistent/
dynamic knowledge synthesis—that will provide continuous, automated synthesis of new knowledge and
dynamic control of measurement systems contemporaneously with observed phenomena. Working on
streaming data, this new capability will automate currently time-intensive manual analysis and
interpretation steps and allow scientists and analysts to optimize data taking to meet the needs of their
discovery or decision-making process in a timely manner. To achieve this goal, AIM will focus its
research activities on four areas that combine to accelerate the complete analysis cycle:

1. Streaming characterization methods that can identify and tag features of importance in high-rate,
large-volume data streams

2. Continuously evolving models that can interpret identified features as early indicators for phenomena
of interest and relate these features and phenomena into explanatory hypothesis that can assist
humans and machines in interpretation of results and optimization of future data taking

3. Capturing human background knowledge through a new interaction paradigm that will not only
support evaluation of candidate hypothesis, but introduce new knowledge into the analysis process

4. A streaming analysis integration and execution environment that will ensure the timely analysis,
interpretation, and steering required.

This technical report will outline the results of our requirement capture, technology selection, initial
infrastructure design, and changes introduced based on year-one operational experiences.

2

2.0 Infrastructure Requirements

AIM is focused on use cases where:

• Data arrive at such high velocity and volume that storage for later analysis might not be possible

• Critical decisions have to be made while data are still arriving

• Events of interest are so rare that it is not possible to train algorithms sufficiently for reliable
detection

• Tacit knowledge is required for accurate interpretation of the data.

To address these use cases effectively, AIM proposes to provide a streaming model (see Figure 1)
where:

• A wide range of models work collaboratively or in parallel on analyzing and interpreting the data
streams together with the user

• Data are forgotten; each model’s cache is small relative to the data volume

• Single pass with no access to the data stream beyond the sample

Figure 1. AIM Conceptual Analysis Framework

3

The AIM infrastructure will need to provide:

• An integration framework that supports communication between the different models as required. It
is anticipated that different use cases and problem settings within them will require different
combinations of models. We also foresee that, driven by the observed phenomena or user decisions,
the combination and interaction of models might change at runtime. Therefore, the infrastructure
needs to provide the ability to support creation of flexible model couplings, potentially on the fly.

• Real-life data streams (e.g., extreme scale computers, experimental instruments, or sensors) made
available to the models involved in the analysis.

• Test data repository and testing range that provide test data of known quality and can create data
streams of varying rates, volumes, and window sizes. Provide code instrumentation, capture
application performance and results, and evaluate test results against expected results, metrics, and
previous performance.

• A development environment in which models can test their functionality and algorithms
performance, and tradeoffs can be characterized.

2.1 Quantitative Infrastructure Requirements

Key factors in the infrastructure design are the data rates and volumes to be supported. These rates are
determined by a number of initial use cases that were selected by the AIM Initiative, foremost those in the
chemical imaging domain, which displays the highest data rates and volumes. The most challenging of
these is the analysis and interpretation of images produced by transmission electron microscopes, which
are currently experiencing a fast-paced technology change that is driving its data rates into unprecedented
rages. In evaluating the use case, we see that the infrastructure needs to support the following initial
maximum data rates and volumes:

• Maximum – 2Kx2K image, 1,000,000/second, 2 terabytes/second, 10-second burst

• Moderate – 2Kx2K image, 1000/second, 2 gigabytes (GB)/sec, 1-hour burst

The maximum number of data sources is not yet
determined, but likely will not exceed five to ten different
sources during the runtime of the initiative. At present we
expect the data rate per source to be lower if there are more
data sources; for example, if we have a maximum data rate
of 1,000,000 2Kx2K images per second it will come only
from one source. Very high data rates will only be
sustained for a short period, whereas lower data rates might
be sustained indefinitely.

The time from initial data taking to initial hypothesis
generation will vary between the different science use
cases, but are expected to range from a few seconds to
several minutes, thus providing a stringent time window on the execution of the complete analysis
pipeline.

The combination of potentially high data
volumes and rates, short time to

decision, and a complex multistep
analysis process will require the

resulting system to be closely coupled
and highly optimized in its orchestration

and execution from an algorithmic,
hardware, and networking point of view.

4

The combination of potentially high data volumes and rates, short time to decision, and a complex
multistep analysis process will require the resulting system to be closely coupled and highly optimized in
its orchestration and execution from an algorithmic, hardware, and networking point of view. This
excludes solutions that require intermediate file input/output (e.g., Hadoop) or commercial cloud access
(e.g., Amazon Kinesis) due to latency.

2.2 Levels of Parallelism and Model Coupling

In examining the use cases further we can detect different
levels of parallelism and coordination that are required.
Single analysis applications might range from modest to
highly parallel. These applications might be run in parallel
with others of the same type, requiring modest coordination
at the start (who works on what) and the end (combination,
correlation, or bakeoff of results). Furthermore, these clusters
of applications of the same type might be run in parallel with
other clusters of other applications, with a potential need for coordination at the end to assess, rank, and
filter results. The more parallel the single analysis algorithm is, the less of these algorithms will need to
be run in parallel at any given time. It is expected that instances of all analysis steps are running at any
given time; however, they might not all be working on the same data window at the same time, but on
prior or subsequent windows. The user will be able to give feedback that will flow into the system in the
opposite direction of the data stream, influencing future analysis steps.

2.3 Programming Language and Model Expertise

AIM researchers need to use familiar programming languages and models to be most effective in their
model design and development, given the complex nature of their research and relatively short individual
project life cycles. A brief survey revealed that different project groups have varied experiences in
programming languages, ranging from C, C++, Fortran, R, and MATLAB to Python and Java. Most
researchers are familiar with one or two languages but feel the learning curve to adapt a third would be
too high an overhead for their project. When it comes to parallel programming models, Message-Passing
Interface (MPI) programming is the predominant expertise, with only a few researchers familiar with
functional programming models such as MapReduce.

2.4 New Development versus Utilization of Existing Technologies

Given the requirements of the AIM Initiative, a fast complex event processing (CEP) system was
determined to be most suitable. As this is not a green field and many solutions already exist, we will use
existing tools and capabilities as far as possible and focus any development needs on areas than cannot be
met by existing tools.

2.5 Business Requirements

Laboratory directed research and development programs (LDRD) such as AIM are the principle
mechanism to develop novel ideas, extend the laboratory’s capabilities, and attract new business.

Projects need to run at moderate to
high parallelism, requiring

orchestration and coordination of
multiple tasks running in parallel.

5

Therefore, when designing the computational fabric for an initiative, we need to also consider which
capabilities would allow us to build future business with key clients. For AIM we have identified two key
client areas: open science and national security.

Open science requirements include:

• Basic science research, which is currently funded by the Department of Energy (DOE) Office for
Advanced Scientific Computing Research, the National Institute of Health, and the National Science
Foundation, all require the developed and utilized tools to be open source in their entirety.

• Applied research, tools, centers, and services are funded by DOE Office for Biological and
Environmental Research, DOE Basic Energy Research, DOE High Energy Physics, the National
Institute of Health, and the National Science Foundation, all require the utilized tools to be open
source in their entirety.

• Internal usage that the Environmental Molecular Sciences Laboratory at Pacific Northwest National
Laboratory (PNNL) would be prepared to accept with commercial licensing and costs at a moderate
rate, if benefits can be demonstrated.

• Open science prefers complete solutions, analysis models and infrastructure, and do rarely adopt tools
that require significant additional development or integration effort.

• National security requirements include:

• The analytics business model is a deploy-in-client-platform approach for most national security
clients.

• Clients use a plethora of platforms (streaming or not) so the technical approach should be platform
independent to the extent possible, but it would be beneficial if the newly developed capability could
be demonstrated in an environment that is similar to the client’s in its main characteristics.

• Where clients adopt platforms they tend to be commercial or commercially supported open source, if
possible.

• Cloud computing solutions, including cloud + high-performance computing (HPC), are beginning to
dominate.

Clearly the business requirements for the two client spaces are quite different; however, there is a
middle ground that would serve both. Commercially supported open-source software is a model that
works for both client spaces; solutions that use standard programming languages and models as well as
being modular are preferred by both communities to enable easier, low-risk transition.

6

3.0 Evaluation of Existing Infrastructure Frameworks

As a result of our requirements gathering process, CEP solutions were evaluated to see if they met the
initiative’s needs and which would be most suitable.

3.1 Resulting Evaluation Criteria

Our initial evaluation criteria included the following metrics:

• Technical

– Performance capabilities

– Framework programming language

– Supported programming languages and model

– Third-party integration capabilities

– Instrumentation (monitoring, debugging)

• Available ecosystem

– Available analysis libraries

– Visualization tools

– Training

– Support

• Costs

– License

– Training

– Support

– Learning curve

• Risk Opportunities

– Risk

– Experience with solution at PNNL

3.2 Evaluated Solutions

As part of our review we investigated the following frameworks:

• Amazon Kinesis

• Apache Spark

• Apache Storm

• Cloud::Streams

7

• GridGain In-Memory Streaming

• International Business Machines (IBM) InfoSphere Streams

• PNNL Laboratory Integration Framework and Toolset (LIFT)

• Red Hat JBoss Data Grid + Infinispan

• SAS® Event Stream Processing Engine

• Yahoo Big Data

• Yahoo SAMOA

• Native Programming Models (NPMs)

Evaluation of the above frameworks provided the following high-level results for the front runner
technologies (see Table 1, a fuller list of evaluation criteria and results can be found in Appendix A).

Table 1. Results of Initial Evaluation of Possible Messaging Framework Solutions

Framework Technical Ecosystem Cost Risk

Apache Storm 1. Java
2. C, C++

Java/Scala
ecosystem

Open Source
Supported

Medium/Low
PNNL known

GridGain 1. Java, Scala Java/Scala
ecosystem

Open Source/
Commercial

Medium/Low
PNNL known

InfoSphere 1. SPADE/SPL
2. C, C++, Java

Application Library Commercial High
Learning curve

LIFT All languages All
models

Java/Scala
ecosystem

Open source Medium/Low
PNNL known

Yahoo Big Data 1. Java, Scala
2. C, C++,R

Vast No. of open
libraries

Open Source
Supported

Medium

NPM MPI All languages Vast No. of open
libraries

Open source Low
PNNL known

In the end no clear front runner could be identified in this field, given the selected criteria. However,
our investigation found that most of the frameworks were limited in the range of programming models
they could support, while still providing high performance. We decided to investigate in more detail
which programming models needed to be supported by the AIM infrastructure framework to help narrow
our choices.

3.2.1 Embarrassingly Parallel Computations

Each computation is entirely independent of the other and there is no requirement for
synchronization. The teams have several algorithms that can be classified in this category. For these types
of applications, a MapReduce-based programming model with in-memory computation would be
sufficient, although MPI-based solutions would provide similar or better performance.

8

3.2.2 Embarrassingly Parallel + Reduction/Aggregation

These algorithms divide data among parallel entities, perform computation locally (such as kernel
calculation K-means or self-self-distance calculation in canopy clustering) and synchronize at the end of
each step for reduction/aggregation. Several AIM algorithms fall under this category. These algorithms fit
well with both MapReduce and MPI, with the choice of programming solution dependent on the
algorithm and data requirements.

3.2.3 Bulk Synchronous Communication + Reduction/Aggregation

Many clustering algorithms require asynchronous data movement for distance calculation (e.g.,
hierarchical agglomerative clustering, canopy clustering, and support vector machines). MapReduce will
not work; MPI-based solutions will require careful writing to overlap communication with computation,
but present a viable option.

3.2.4 Irregular Communication with Varying Computation

These algorithms provide a very high degree of irregularity in communication and little to no
computation. The semantic graph algorithms fall under this category. MapReduce or MPI are not suitable
for this type of problem. Giraph and Pregel suffer from communication only at the synchronization
points. An alternative is Graphlab, which performs aggregation to reduce the overhead of communication.
Within PNNL, the Global Memory and Threading (GMT) run time developed under the Center for
Adaptive Supercomputing Software can be considered as an alternative.

We could identify three programming models that AIM is likely to pursue; MapReduce (in-memory),
OpenMP/MPI, and Graphlab/GMT. Next we evaluated which of these programming models would be
supported by the top framework contenders. For our assessment we used a number of categories:

• Native – framework naturally supports this programming model without any changes or adaptations
necessary.

• Potential – framework could support this programming model; however, changes would be needed
that would affect the performance to a significant extent.

• Unknown – no information could be found if this programming model can or has been successfully
supported by this framework.

• Yes – programming model can be supported but requires changes to the framework; however, no
significant performance implications are expected from these changes.

The results of our investigation are presented in Table 2.

9

Table 2. Programming Model Support Offered by Selected Messaging Frameworks

Frameworks MapReduce OpenMP/MPI Graphlab/GMT

Apache Storm Native Potential Potential

GridGain Native Potential Potential

InfoSphere Streams Unknown Native Unknown
Yahoo Big Data Native Potential Potential

LIFT/NPM (MPI) Yes Yes Yes

LIFT/Apache Kafka Yes Yes Yes

The most complete, flexible, and performant solutions are enabled by low-level messaging models
such as MPI or Apache Kafka. A combination of Apache Kafka and LIFT offers the necessary
orchestration, configuration, and instrumentation support.

3.3 Architecture Decisions

We decided to recommend the adoption of the Apache Kafka and LIFT combination as the basic
event processing framework. Kafka is a message bus to which all components will have access, giving
them the ability to sample data or communicate with other components, while remaining independent in
their execution (MPI would have required a tighter, direct coupling of the components).

Applications will interact directly with the message bus. If using a programming model with specific
higher-level framework for execution such as Apache Storm, Storm will take its data stream directly from
Kafka.

LIFT will in particular orchestrate the configuration, start up, and monitoring of the different
components involved in the complete AIM analysis process.

10

4.0 AIM Infrastructure Implementation Phase 1

Based on our core architecture decision we developed and deployed Phase 1 (from May to September
2014) of the AIM infrastructure. On top of Kafka and LIFT, we decided to develop a test data provider
that could stream data at user-selected rates and an interface that would allow users to test their models in
the infrastructure against the available test data. We also settled on the use of Apache Avro, which is
flexible, standard “big data” open-source messaging container (see Figure 2).

Figure 2. AIM Phase 1 Core Infrastructure Components

In the following sections we describe our initial development and deployment work.

4.1 Kafka Setup

Apache Kafka is a distributed message-processing system based on a disk-first approach, where
incoming messages are committed to a disk-backed queue as soon as they are received. [1] The messages
remain in the queue until a user-specified age threshold is reached, at which point the queue is truncated
and the messages are discarded. Kafka’s designers were interested in tracking LinkedIn user interactions
with the site in detail and needed a way to collect high-volume streams of data from multiple sources.
Kafka architecture incorporates functional elements of both queue-based and subscribe-and-publish
methodologies, allowing a high degree of customization while retaining an ordered, deterministic
interface for message retrieval. Kafka takes advantage of the high-performance state management

11

provided by Apache ZooKeeper to support a large-scale, high-availability configuration on low-end
commodity hardware.

In Kafka terms, a message queue (MQ) is called a topic and it represents the most general message-
grouping attribute available. To support distributed message processing, Kafka introduces the notion of a
partition, which is a sequentially ordered subset of messages in a given topic, with the subset partition
key defined by message senders (called producers in Kafka documentation). To support high-availability
configurations, each topic partition is replicated (copied and kept synchronized) across multiple network
hosts. Kafka brokers are built-in software services that coordinate client access to the partitions. On the
client side, concurrent consumers of Kafka messages are organized into consumer groups, with each
individual consumer in the group dynamically assigned to a partition within the topic. This design ensures
that messages from each partition are consumed in their original order, without placing performance
limits on the number of messages that can be sent and received for a given topic.

As messages are read, Kafka brokers maintain a set of partition offsets for different consumer groups.
This means that each consumer process can effectively rewind and fast-forward the shared MQ to
facilitate its own processing requirements without affecting concurrent consumers in other groups. Kafka
brokers also handle failover scenarios, so that topics with a replication factor of N can continue to serve
messages (perhaps with increased latency) even if N-1 hosts become unavailable. Since only one client in
the consumer group can read from a given topic partition, the number of topic partitions determines the
maximum size of a consumer group for that topic. There is no limit on the number of concurrent
consumer groups that can participate in the message exchange. Similarly, until they expire due to age
limits, all messages can be retrieved an unlimited number of times by the consumers.

AIM infrastructure automated deployment support for Kafka-based messaging services uses a set of
Puppet-based configuration scripts. Puppet is a script-based application management system with both
commercial and open-source licenses. [3] Hierarchical template files are used to specify active
components and their startup options. Puppet also supports active monitoring of service availability, a
functionality we plan to exploit in the future. Puppet’s ability to query its operating system environment
simplifies deployments to multiple targets such as development and production, and supports cross-
platform configurations between Linux, Windows, and MacOS hosts. Use of Puppet to manage AIM
operational configuration also reduces the need to manually customize source code distribution, thus
significantly reducing the amount of time to stand up a fully operational analytic environment “out of the
box” on a new system.

4.2 Kafka/LIFT Integration

Keeping with the design ideas of cross-platform support and template-based automation, the AIM
infrastructure team based the core software on LIFT. This software package is an internal PNNL product
used by several teams for research and large-scale production purposes. [2] At its core, LIFT is a Java-
based platform focused on enterprise integration patterns through the strategic use of open source Spring
and Spring Integration packages. AIM software built with LIFT support is designed to run within a Java
Enterprise compliant container environment. Apache Tomcat application server is used to host AIM at
PNNL, but the server software should be compatible with products from other vendors such as Red Hat
JBoss Application Servers or any Java Enterprise Edition (JavaEE) compliant servlet engine.

12

LIFT provides developers with a complete solution for rapidly bootstrapping their code and its
dependencies into functioning web applications with industry standard build tools, such as Maven and
Gradle. Support provided by the Spring modules helps add advanced enterprise features such as
authentication against Lightweight Directory Access Protocol (LDAP) and Active Directory (AD),
Transport Layer Security (TLS) encryption, dynamically generated web services with support for both
Simple Object Access Protocol (SOAP) and Representational State Transfer (REST) based designs.
[8][7] Web service components support both annotation and XML-based configurations to produce
documented resource descriptions and contracts that clients can access in a programmatic way. Build
utilities used by LIFT include convenient dependency injection capabilities to set configuration values in
code at run time, so that the same software can be deployed on multiple different machines without
additional code changes. To help maintain software engineering quality, LIFT integrates popular Java
quality assurance tools, such as findbugs and cobertura, which help analyze and report on potential
software defects. [4][5] Programmer-directed validation using the JUnit testing framework is also
supported. [6] All of these development tools and aids are fully integrated with the Eclipse development
environment, supporting developer productivity while encouraging good design and implementation
practices.

In support of the AIM Initiative, we extended the built-in LIFT connectivity options to provide a web
enabled interface for managing and accessing Kafka streams. This interface follows the REST design
principles and exposes each Kafka topic as a web service resource. Clients connect using a hypertext
transfer protocol (HTTP) family of transfer protocols to a specific endpoint that represents a data resource
on the system. Some of these endpoints represent interfaces to predefined data streams and others act as
frontends for dynamically created resources. LIFT provides the templates needed to embed several data
producing sources to support AIM client data requirements. Each data producer is a Spring bean (in
JavaEE terms). This architecture relies on LIFT to manage all interactions between the client and the data
backend, and effectively abstracts all implementation details about Kafka into a consistent, platform
agnostic web interface. True to the original design goals for LIFT, the AIM web services components
were constructed with minimal custom code and enforcement of industry standard interfaces. The AIM-
driven improvements to LIFT were subsequently backported to the core LIFT distribution for reuse by
others.

4.3 Data Producer

The data producer is responsible for reading data from a location, creating messages from the data,
and streaming them into a specific Kafka topic. A separate data producer is defined for each type of data.
The AIM infrastructure management web service is responsible for calling the data producer when a user
requests to start a data stream. In response the matching data producer creates a single stream. In a
multiuser test environment, each data stream will further be associated with a specific user (e.g.,
NMR_Raw_Data_Kerstin). If a user requests to start the same stream twice then an appropriate error
message is sent back to the user via the management web service.

The location of the data and the Kafka topic to which it needs to be streamed are specified as a key-
value pair in gradle.properties in the AIM infrastructure setup parameters. In multiuser test environments,
the data producer appends this topic name with username to create a unique topic for the requesting user,
it then iterates over the data location to parse the data and divide them into messages. Each data producer
works with a specific Avro schema. It creates the message as a Java object associated with the Avro

13

schema and serializes it into byte buffer. This byte buffer is then sent to the topic created for the user. The
data producer continues to parse the data, create Avro messages, and send them to the topic until the user
requests to stop the stream.

For the current use cases, data are stored in csv file format on the system where the AIM
infrastructure and models are executed. A single data location contains multiple csv files, each containing
data for a large number of messages (e.g., all messages for one complete experiment). The data producer
iterates over these files and reads a single row from each file to create an Avro message. For example, it
reads the first row of the first file and creates the Avro message, then sends the message over the created
topic. When the last row of the last file is read and sent over the topic, it restarts from the first row of the
first file. This loop continues until the user requests to stop the stream.

4.4 User Interface for Testing Range

To use the infrastructure to test algorithms we developed a testing range graphical user interface
(GUI). In phase one of the infrastructure setup we had two research projects that we supported in their
model development—Online Predictive Analysis (OPA) and Streaming Hypothesis Reasoning (SHyRe).
The test case scenario we chose allowed them to test their models separately or together. The initial data
stream provided consisted of nuclear magnetic resonance (NMR) spectra records.

The user interface was implemented using a GUI toolkit implemented in MATLAB (MathWorks
2014a), shown in Figure 3.

Figure 3. GUI for Testing Range

The tool has four major components:

1. Infrastructure Connect: Enables the user to select data stream characteristics, administer the data
streams, and select the models to be tested (Figure 4).

14

(a) Message Consumption
Settings

(b) Data Ingestion or Resetting
of Topics

(c) Algorithms And Models

Figure 4. Infrastructure Connect

As shown in Figure 4, (a) allows the user to select the number of data streams, the number of
overall messages to be streamed (by selecting the number of experiments to be streamed), speed of
the data stream (by selecting the waiting time between messages), and the success condition for each
experiment; (b) allows users to start selected data streams as well as to reset the message topics (i.e.,
deleting all messages from previous tests that might still be in the MQs); and (c) enables the user to
select the models to be tested.

2. Data Streaming: The tool displays content for each stream of incoming messages (NMR spectra) in
the live streaming window and ground truth for the current experimental sample being streamed to the
models as shown in Figure 5 (a). For the latter we display the list of all possible compounds that
could be in our test examples as shown in Figure 5 (b). This particular example set had a maximum of
ten compounds (A-J) per experiment. The compounds present in the current stream are highlighted in
green.

(a) Live Incoming Spectra (b) Library Compounds Used to Generate NMR
Data

Figure 5. Data Streaming

3. Results: The results are presented in two ways.

15

In Figure 6 (a), each experiment has three rows and ten columns, one each for each possible
compound. The bottom row for each experiment shows the compounds actually present, the middle
row shows compounds only predicted by model 1, and the top row shows compounds that have been
identified by model 2. The graphics uses three colored bars. The green bars represent the compounds
that are actually present in each incoming stream, the yellow bars represents compounds identified by
one algorithm, and the blue bars represent compounds identified by both algorithms. Two blue bars
denote that the compound is most likely present and a blue/yellow combination suggests that more
validation is required to confirm the presence of that compound. Usually each experiment will consist
of 100 scans; the aim is for the algorithms to minimize the number of messages they are required to
process to identify all present compounds correctly. The box to the right of the middle and top row
per experiment provides the number of scans that they required to complete the analysis.

The ‘Variations in cpds identified’ vs. ‘# of scans’ plot shown in Figure 6 (b) represents the
number of consecutive messages with identical results by a horizontal line.

(a) Results for Multiple Experiments (b) Plot for Variations in Compounds Identified vs

Number of Scans

Figure 6. Graphical Results

4. Metrics: Some basic metrics are generated and stored for each full test run. The average percentage of
successful identification of all compounds present from all experiments in the current test run is
represented in Figure 7 (a). The average number of scans taken to identify all compounds is displayed
in the pie charts in Figure 7 (b) for the current experiment and (c) for all experiments. The horizontal
bars in Figure 7 (d) represent the average amount of compounds identified at < 25%, <50%, <75%,
and >75% where the red bar is for the current experiment and blue bar is for the average of previous
experiments.

16

(a) Average Success Percentage for ‘n’
Experiments

(b) Average Scans to Identify All Compounds
Current Experiment (right)

(c) Average Scans to Identify All Compounds for
All Experiments

(d) Percentage of Compounds Identified

Figure 7. Metrics

4.5 Avro Container

The Apache Avro data serialization system was selected as the messaging container for use by the
AIM infrastructure. A key feature of Avro is that each message includes the message schema as well as
the message itself. Avro’s message data model is based on JavaScript Object Notation (JSON) and can be
represented as either JSON or in a compact binary form. Avro provides a sophisticated schema language,
also in JSON, used to describe message data structure. Avro has many benefits including direct mapping
to and from JSON, compact binary representation making it efficient for high-volume usage, multiple
language bindings for client development, a robust schema language (also in JSON), and support for
schema evolution.

Schemas are a critical feature within Avro, conceptually similar to a relational database table schema,
affording producers and consumers the capability to exchange message data knowing they are correctly
formatted. Avro schemas can also be self-describing; they can provide semantics of data fields listed in
the schema through use of their “doc” field. Also, unlike other popular messaging systems (e.g., Thrift,
Protocol Buffers), Avro provides dynamic typing. That is, Avro does not require data access codes to be
generated at build time based on the schema definition. This enables development of a generic data
processing framework using Avro’s API to reference the schema at runtime.

For AIM, Avro was the ideal message format choice as it provides the means for flexible model
coupling developments due to its language independence and the possibility for the consumer to interpret

17

and use the message as it arrives. Using Avro in this way proved a means for application developers to
prototype messages with JSON and quickly generate, receive, and analyze messages from other
applications through the interface. However, this approach does represent a cultural shift for most
developers who are used to working on their own or are familiar with messaging methods such as MPI,
where message format and interpretation have to be discussed and agreed between developers rather than
be available in the message.

4.6 Initial Deployment Environment

The first version of the AIM server software accessible to internal PNNL clients was hosted on a
single Red Hat Enterprise Linux 5 node provided by PNNL Institutional Computing (PIC). [8] This host
has two 16-core Advanced Micro Devices (AMD) Opteron processors (32 cores total) operating at 2.1
GHz, 64 GB of random access memory (RAM), and a one-terabyte local disk allocation with sustained
read speeds of 125 MB/sec. In addition to local storage, the system also has access to several common file
shares accessed via a parallel Lustre file system over a 40GbE high-performance QDR InfiniBand
interface. [10]

AIM server software deployments for this host configuration consist of two phases: the initial
configuration and launch of the Kafka messaging infrastructure via Puppet scripts, followed by update of
the application web archive (WAR) file within the Tomcat server with Java code hosting web services
and data producer routines. Kafka bootstrapping is executed manually via shell scripts and, under normal
operating conditions, no additional work is required. The Puppet scripts handle ZooKeeper configuration,
Kafka broker start up, as well as the initial creation of test and validation topics to assist with debugging
and confirmation of successful installation of the messaging system. The Tomcat server is configured to
monitor its web applications folder continuously and to reinitialize applications once their source WAR
file is updated. The WAR file for AIM is deployed via the one-button deploy Jenkins build system using
the Subversion repository as its source. Jenkins build jobs encapsulate system access credentials, provide
environment configuration, and perform scripted tasks that automate package updates.

For the initial deployment of the AIM server software, we implemented four preprogrammed data
producers that AIM clients could activate to populate Kafka MQs with known test values. Data sets
containing validation data were generated and stored as a collection of comma-separated-value text files
on a shared network drive. The web services management frontend can intercept client requests for
starting, stopping, and resetting the data stream, and issue the corresponding commands to Kafka on the
client’s behalf. Additionally, this first version of the AIM stream interface enabled clients to access
messages both in a sequential manner (retrieve next message or skip N messages and retrieve the
following message, etc.) as well as the ability to window the stream (select a subset of the streamed data
and process the information using a batch-oriented approach). Figure 8 illustrates the key functional
modules for the first version of AIM server software as deployed on the PIC head node.

18

Zookeeper

Zookeeper

Zookeeper

shared files

…M4M3M2M1T1
…M4M3M2M1T3
…M4M3M2M1T4

Kafka
Broker

…M4M3M2M1T2
…M4M3M2M1T3
…M4M3M2M1T4

Kafka
Broker

shared filesresources

files devices

web
service

state
management

data
interfaces

Kafka
stream
access

network &
Internet

localhost network

Figure 8. Functional Block Diagram of AIM Server Software on the PIC Head Node

4.7 Initial Infrastructure Performance Tests

After the basic Kafka installation we conducted a number of scalability tests to assess if we could
achieve a suitable level of performance or where further optimization might need to be applied.

4.7.1 Third-Party Test Results

To get a measure of the performance we should be able to achieve we identified a set of publicly
available test results:

C++ (librdkafka) Results

https://github.com/edenhill/librdkafka/blob/master/INTRODUCTION.md#performance-numbers

Performance numbers

The following performance numbers stem from tests using the following setup:

• Intel Quad Core i7 at 3.4 gigahertz, 8 GB of memory

• Disk performance has been shortcut by setting the brokers' flush configuration properties as so:

– log.flush.interval.messages=10000000

– log.flush.interval.ms=100000

• Two brokers running on the same machine as librdkafka

• One topic with two partitions

• Each broker is leader for one partition each

• Using rdkafka_performance program available in the examples subdir.

https://github.com/edenhill/librdkafka/blob/master/INTRODUCTION.md%23performance-numbers

19

Test results

• Test1: two brokers, two partitions, required.acks=2, 100 byte messages: 850000 messages/second,
85 megabytes/second

• Test2: one broker, one partition, required.acks=0, 100 byte messages: 710000 messages/second,
71 megabytes /second

• Test3: two broker2, two partitions, required.acks=2, 100 byte messages, snappy compression:
300000 messages/second, 30 megabytes /second

• Test4: two broker2, two partitions, required.acks=2, 100 byte messages, gzip compression:
230000 messages/second, 23 megabytes /second.

4.7.2 PNNL Tests on OS X Laptop

Initially we set up and tested our Kafka configuration on a standard laptop (see Figure 9). Our goal
was to see how long it would take to send 1,000,000 messages through the system; we used a smaller
message size than would be produced by one of our experiments and limited messages to 35 bytes.

Performance numbers

• Processor: 2.3 gigahertz Intel Core i7

• Memory: 16 GB 1600 megahertz DDR3

• Software: OS X 10.9.2 (13C64)

Figure 9. AIM Initial Kafka Test Configuration on Standard Laptop

Test results

• Test 1: three brokers, 15 partitions, three replications: 1 million messages: 272 seconds

20

• Test 2: three brokers, four partitions, three replications: 1 million messages: 247 seconds

• Test 3: three broker, four partitions, five replications: 1 million messages: 199 seconds

• Test 4: 5 broker, 15 partitions, five replications: 1 million messages: 447 seconds

• Test 5: five broker, four partitions, five replications: 1 million messages: 410 seconds

• Test 3: five broker, four partitions, two replications: 1 million messages: 212 seconds.

4.7.3 PNNL Test on High-Performance Computing Cluster Head Node

Our target deployment environment was our local high-performance computing (HPC) cluster, a
20,000 core cluster composed of regular, fat, and HPC nodes. We used one node of the system including
32 central processing unit (CPU) cores, 64 GB RAM, Lustre file system support, and InfiniBand
networking. The Kafka configuration is presented in Figure 10, the related performance results are shown
in Table 3 (five broker, synchronous, acknowledgement from broker required, 7-day queue storage,
sending 1 million messages), and the optimized results are provided in Table 4 (five brokers,
synchronous, no acknowledgement, 60-second queue storage, 1 million messages).

Figure 10. AIM Initial Kafka Test Configuration for Target HPC Environment

Table 3. Performance Test Results

Replication Partitions Run 1 (s) Run 2 Run 3
5 15 1144 1075 1110
4 5 844 945 733
4 1 814 838 768
3 15 643 645 676
3 4 644 663 706
3 2 695 656 599
2 4 629 606 639
2 1 658 633 551
1 1 434 491 503

21

Table 4. Optimized Test Results

Replication Partitions Run 1 (s) Run 2 Run 3
Throughput
Avg. Kb/s

5 15 288 228 265 44.81434059
4 5 209 221 245 51.85185185
4 1 205 213 217 55.11811024
3 15 184 183 215 60.13745704
3 4 208 183 182 61.08202443
3 2 178 181 182 64.69500924
2 4 172 179 181 65.78947368
2 1 177 174 174 66.66666667
1 1 168 164 162 70.85020243

4.7.4 Tests after Further Optimization

Based on the initial configuration test matrix, we selected the settings that resulted in the highest
throughput (i.e., no data replication with a single broker) and repeated the message-publishing test over a
2-hour period. The sustained measured rate with the 35-byte test payload on a single node was 600K
messages per second. The observed high-performance of the direct interface to the Kafka messaging
subsystem in this configuration represents a useful baseline to help drive additional AIM design work.
The next section discusses some of the challenges and issues we identified during integration of Kafka
with the AIM web services.

4.8 Initial Model Integration and Use Case Tests

At the end of the initial AIM infrastructure deployment phase, we were able to successfully integrate
two models into the infrastructure. Once the integration and model testing were completed we carried out
an end-of-deployment performance test. We selected our NMR use case as test scenario; the limiting
factor in these experiments was the number of scans or repetitions of each experiment. Each scan is a
representative summation of all the previous scans and hence produces a cleaner spectrum with improved
signal-to-noise ratio. The challenge for the algorithms was to identify the compounds present in each
experiment within a fixed set of scans. We did two rounds of 100 scans and 65 scans. If all compounds
for an experiment were identified within the set number of scans, the GUI would automatically skip to the
next experiment and repeat the process. Each incoming stream was simultaneously passed through a
single algorithm (OPA) and a combination of two algorithms (OPA and SHyRe) to identify the benefits
of using a single algorithm vs. multiple algorithms in tandem.

Out of the 150 experiments, we determined the algorithms, both individually and in combination,
were able to identify all compounds present with 100% accuracy in an average of 75 scans. The benefits
of using a combination of algorithms were evident when the number of maximum scans available for the
algorithms was limited to 60. For almost all experiments, a single algorithm alone was unable to identify
all the compounds present.

As shown in Figure 11 (a) and (c), executing the algorithms in tandem resulted in some compounds
being identified by both algorithms (blue bars) and some identified only by one (yellow bars) as possibly
present/absent, while green represents actual results. The success ratio shown in Figure 11 (b) and (d) are
biased in that the result is counted as successful only if all compounds are correctly identified.

22

(a) Limited to a Maximum of 60 Scans (b) Success Ratios for Case a

(c) Limited to a Maximum of 100 Scans (d) Success Ratios for Case c

Figure 11. Results of Two Experiments

The infrastructure performed well during the tests, delivering the messages reliably and responding
quickly to the interface commands. We found that message throughput rates were limited by the
algorithms and not by the infrastructure. The OPA model required less than 0.8 second per message, so
could process between 75 and 100 messages per second. SHyRe was limited in their speed by the Pellet
reasoner they were using, and required 10-15 seconds per message, thus had to employ a much more
stringent sampling approach to keep up with the message stream.

4.9 Conclusion and Final Setup

Performance results and message throughput measurements obtained with the direct interface to the
Kafka messaging system represent an optimal goal state for Kafka’s integration with the rest of the AIM
software. Once integrated with the web service components of AIM server code, AIM clients no longer
have direct access to Kafka topic streams. Instead, data upload and download are facilitated via HTTP
REST endpoints using AIM-managed resource locations and application-specific options. The tradeoff of
this approach is a simpler, more robust interface for the client code, which helps focus the AIM interface
code development on solving the science problem without exposing technical aspects of the underlying
infrastructure. The cost of this simplification is a loss of efficiency; client requests are issued to the AIM
server software running as a web services application inside a Tomcat server. The AIM server software
maintains state information about client requests and provides an interface to the Kafka brokers for data
access. The overhead of HTTP-based communication, the extra layer of indirection, and the network
backed data store for shared Kafka log files are some of the main reasons why the web services
implementation is less efficient than the performance evaluation configuration described earlier.

23

In addition, we have identified ZooKeeper’s sensitivity to network latency as a contributing factor to
system instabilities and software faults that have caused periodic instability in the AIM-to-Kafka interface
in production. Monitoring system logs on the PIC head node server revealed periodic network timeouts
on the InfiniBand link that supports the file shares. The operating system has sufficient error handling to
prevent catastrophic data loss, but the latency on input/output access times would sometimes jump by
several orders of magnitude. Normal users of the system would see this manifested as exceedingly long
response times for file system commands like ‘ls’. For Kafka and ZooKeeper, it would appear that the
system services have become unresponsive and the connection would be terminated, resulting in the
perceived downtime of the system. Furthermore, the first version of the AIM server software lacks the
ability to actively poll Kafka configuration to detect such “under the hood” failures; thus from the
standpoint of the client, the original request is still active, resulting in an inconsistent state between all of
the various system components. Recovery in this case consists of explicitly shutting down the client
connection and reinitializing the Kafka and AIM interface parameters. However, since this is a manual
process involving intervention by a system developer, the overall service recovery time varies depending
on the time of initial error detection and developer availability.

Another issue that had an adverse impact on the client experience with the AIM-to-Kafka
implementation was the complexity of the low-level Kafka API that permitted advanced Kafka
functionality, such as rewinding and windowing of stream data (as opposed to the simpler “move
forward-only” access). For example, our testing identified a problem with the Kafka interface, trigged by
a client reading past the end of the stream causing a serious error. When this condition occurred, the
internal Kafka stream access data structure was marked invalid, yet the failure remained invisible to the
higher-level AIM web services code. As a result, subsequent requests for messages using the same stream
access structure would fail silently, giving the appearance that no more data were available in the stream.
Similar to the ZooKeeper issue, recovery involved a manual reset of the entire system, affecting all of the
AIM topics, not just the one with the error. Without a clearly defined and requested requirement for
random stream access, it was our recommendation to limit future revisions of the Kafka stream reader
interface to the simpler approach of forward-only stream access.

24

5.0 AIM Infrastructure Deployment Phase 2

After the deployment and evaluation of phase one, the overall AIM Initiative increased its research
activities in phase 2 (October 2014 – April 2015) to nine model development efforts, with a view to
supporting additional summer student projects as well. To support this increase, the infrastructure needed
to evolve further, to provide:

• Multiuser support

• Load balancing

• Redundancy

• Unrestricted topic partitioning

• Provenance and metrics capture

In the following sections, we will describe our development efforts for phase two.

5.1 Multiuser Support

As described earlier, we identified several stability issues caused by ZooKeeper availability as well as
advanced Kafka stream manipulation that was difficult to track in the higher-level AIM interface code. At
the same time, the project demonstrated a growing requirement to support concurrent users, allowing
them simultaneous access to shared data streams and in need of a coordination/cooperation mechanism to
enable shared data flows between dynamic, interacting components. Taking this as an opportunity to
apply lessons learned from the first iteration, the infrastructure team refactored the AIM server software
implementation to improve robustness and deliver a more consistent and stable environment to the system
users.

The first improvement was the integration of the AIM system with the PNNL LDAP and AD
services. This allowed users to authenticate with the AIM infrastructure using their regular network
credentials. Internally, the AIM software appended network user names to client requests for data when
creating Kafka topics, ensuring that each client had a dedicated MQ and could request and process data
without interfering with other users in the system. The fact that user network credentials were being used
in a web service environment meant that the AIM system needed to protect the data as they traveled
through the network. Therefore, we modified the server configuration to force TLS encryption on all
incoming connections. The AIM REST endpoints were upgraded to use HTTPS and the Tomcat server
was configured to use the PNNL Secured Sockets Layer (SSL) certificate. Integration with AD and
HTTPS, data encryption were implemented within the LIFT base software framework and these
innovations were contributed back to the LIFT codebase to make the same functionality available to other
PNNL projects using LIFT for their web services infrastructure.

The timing of these changes was also favorable to upgrade the Java runtime environment from
version 1.7 to 1.8 (or Java 8 as it is sometimes referred to by Oracle). This new version of the Java
development platform offered a redesigned concurrency system that AIM used to simplify management
of multiuser request queues. In particular, the AIM infrastructure used a job stealing executor to
encapsulate AIM user requests for Kafka data. This allowed the AIM infrastructure to manage

25

concurrency in a structured, asynchronous manner with a significant improvement in error detection and
handling capabilities. The new interface served as a natural approach to encapsulating Kafka read
primitives so that failures in the underlying stream would result in an exception report in the main AIM
software, providing a powerful means for reporting problems back to the user. However, to realize these
advantages the design required greater tolerance for latency (as the requests were queued up and
scheduled by execution internal to the Java virtual machine [JVM]). Furthermore, this approach still
relied on a single AIM application to keep track of user requests, thus limiting both scale and robustness
of the overall system. Scalability and stability are the two characteristics that the team has identified as
key target areas for follow-on improvement.

5.2 Scalability and Stability Measures

Drawing on inspiration from the current HPC trends in both research and industry, we have identified
migration to a cloud-based architecture as the most effective and practical path forward for future AIM
development. The cloud-based approach, which in this context can be thought of as a collection of self-
contained services with the ability to scale both vertically (individual node capabilities) and horizontally
(number of nodes) to handle increasing volumes of data, addresses the key problems and challenges we
identified in the earlier revisions of the AIM infrastructure design. For example, issues with network
resource latency are addressed in the cloud via distributed file repositories that provide built-in replication
and redundancy so that intermittent network problems with a single file server node can be overcome by
accessing a copy of the data from a replicated backup. For these cases, the distributed data store typically
employs a sharding (i.e., partitioning) technique that ensures high-speed parallel access for multiple
clients. In the cloud, network resources in general are accessed via a pool of load-balancing gateways that
actively monitor the network resources and route client requests via the optimal path. Failures of
individual nodes do not result in complete failures of the system because their failure is mitigated by peer
nodes that provide temporary relief coverage while the affected resource is repaired and restored.

Because each node must provide for a graceful failover, it is important they carry only the minimal
state information in their local cache. That way, when a failure occurs, one of the peer nodes can pick up
the same task in a manner that is transparent to the client. Out of the box, ZooKeeper installation provides
support for such a high-availability scenario (see Figure 12 below). ZooKeeper uses a quorum; a
coordinated group with a dynamically elected lead node and a set of followers that replicate the leader’s
data. [12] Information can be read from any ZooKeeper server in the quorum, leading to direct
performance gains with distributed applications. New information is written to the lead node only and
then replicated to the follower nodes via several tunable mechanisms. While the second revision of AIM
server software still keeps all of its state management data in local memory, the refactoring of the
software to support multiple users helped define the boundaries of this shared state information.
Encapsulation of the AIM global state in the modern Java concurrency interface should aid in converting
this solution into a truly distributed, stateless, cloud-ready application.

26

Zookeeper

local files

…M4M3M2M1T1
…M4M3M2M1T3
…M4M3M2M1T4

Kafka
Broker

local files

resources

files devices

web
service

state
management

data
interfaces

Kafka
stream
access

network &
Internet

Zookeeper

local files

Zookeeper

local files

…M4M3M2M1T2
…M4M3M2M1T3
…M4M3M2M1T4

Kafka
Broker

local files

software
defined
network

Figure 12. Second Revision of AIM Server Software with High-Availability ZooKeeper Configuration

5.3 Provenance and Metrics Capture

AIM has a range of key targets to achieve with its full system (infrastructure and models). To monitor
how individual projects and the initiative as a whole are progressing towards achieving these goals, it will
be necessary to define, capture, and evaluate a number of crucial success metrics, some of which will be
captured by the infrastructure. The key hypotheses we want to test within AIM are the following:

• Insight generation

– Goal: AIM will allow humans to use streams to develop correct interpretations of the world, with
reproducibility across different users.

– Insight is a tradeoff between utility, throughput, and accuracy.

• Throughput

– Hypothesis: AIM will ingest streams at a rate sufficient for the problem domain.

– Hypothesis: AIM will yield judgments at a speed sufficient for the problem domain.

– Metrics captured by infrastructure: message throughput rate per model, basic and complete
infrastructures, model combination solution, time to solution required.

• Accuracy of algorithms

– Hypothesis: AIM systems will converge to correct interpretations under two gold standards
(compared to the known state of the world as reflected in the data and compared to reference
static analytic algorithms running over the total data).

27

– Hypothesis: F1 (precision/recall) measures will be greater than with algorithms alone or humans
alone.

– Metrics captured by infrastructure: model-specific results, model combination results, model
results with human input, ground truth, results from static algorithms on the same test case,
calculated deviation score.

• Utility of AIM’s output

– Hypothesis: AIM will provide stream interpretations that usefully support insight in its users.

– Utility of human input in AIM (vs. purely algorithmic streaming classifiers).

– Hypothesis: Users will be able to usefully guide streaming classifiers.

– Hypothesis: Correct human interpretations will occur earlier in the stream with AIM.

– Metrics captured by infrastructure: human steering input into the system; number, content and
timing, correlate with accuracy results, capture human insight; conclusion, timing, accuracy
against ground truth.

Next to capturing the pure metrics, we want to enable infrastructure and model developers to identify
root causes for changes (positive and negative) in their performance to aid their further progress. In
consequence, we have decided to develop an extended provenance system that captures what has been
run, when, and where, and combines this information with the metrics listed above. As performance could
be influenced not only be models and the AIM infrastructure, but also the utilized execution environment
and system architecture, we decided to develop a comprehensive workflow performance provenance
model to capture all aspects of performance and the inherent interdependencies. Furthermore, we are
currently developing a high-performance, compact, provenance capture system that is directly integrated
into the AIM infrastructure. The resulting provenance is stored in a scalable archive that will enable users
to easily evaluate and explore their performance details. Our provenance work will be described in
separate publications in more detail.

28

6.0 Future Work

6.1 Cloud/HPC Plans

The next task on AIM infrastructure team’s roadmap is conversion and deployment of the current
single “head node” implementation of the server software into a full-fledged cloud architecture, with
exciting and useful features such as dynamic load balancing (also known as elastic scaling) and high
availability (e.g., the system will have instant failover, with no impact on the client). Cloud architectures
are at the forefront of current computational science innovation and the rapid growth in this area comes
from the union of mutually reinforcing schools of thought. Hardware virtualization, or the ability to
“emulate” self-contained computing units within other operating environments, forms the foundation of
any cloud-based effort. Software-defined networking is the second foundational technology that works
alongside virtualization to enable complete ecosystems of networked virtual hosts.

By relinquishing direct control of the hardware, a cloud-managed application may take advantage of
powerful, high-level interfaces and services provided by the virtualized environment. The AIM
infrastructure team worked closely with the new PIC Research Cloud personnel to ensure close alignment
of future collaboration efforts to ensure maximum leverage of existing investments. AIM is currently in
the process of migrating all of its software for both infrastructure and individual science project teams to
the PNNL OpenStack-based cloud platform, as diagrammed in Figure 13.

Zookeeper

local files

…M4M3M2M1T1
…M4M3M2M1T3
…M4M3M2M1T4

Kafka
Broker

web
service

network &
Internet

Zookeeper

local files

Zookeeper

local files

…M4M3M2M1T2
…M4M3M2M1T3
…M4M3M2M1T4

Kafka
Broker

software
defined
network

swift
(distributed storage)

swift
(distributed storage)

state management
(DB-as-a-Service)

resources

files devices

data
interfaces

Kafka
stream
access

swift
(distributed storage)

VIP

resources

files devices

data
interfaces

Kafka
stream
access

swift
(distributed storage)

web
service

Figure 13. Functional View of a Cloud-Ready AIM Infrastructure Software

29

OpenStack is a union of both open source and commercially supported software with the broad goal
of building a production scale cloud environment compatible (and competitive) with the industry leading
Amazon web services products. OpenStack is a thriving community effort supported by a global group of
volunteers alongside established enterprises, such as IBM, Intel, Hewlett Packard, RedHat, and AT&T.
There are official releases of the core technology maintained by the project, along with many supporting
utilities hosted on GitHub and similar community development platforms. At PNNL, the cloud
installation already provides the principal functionality: software-defined networking with advanced load
balancing and virtual internet protocol management, multiple Linux operating system virtual machine
images, a distributed data file system called Swift, database-as-a-service layer called Trove (supporting
both relational and non-relational data models), and a customizable solution for distributed data
processing service called Sahara.

Abstraction of hardware and the network into fully virtualized entities yields the important
operational advantage of being able to accurately “snapshot” the state of the system, pause and resume
processing, modify the physical location of virtualized resources, and collect in-depth metrics on system
performance to help drive improvements and continuous redesign. Real-time metrics are an important tool
in ensuring availability of the system by helping to detect and mitigate anomalous system performance.
As soon as abnormal operating parameters are detected, another instance of the affected resource can be
created and deployed into service, while the malfunctioning component is quarantined or recycled. In
OpenStack, this functionality is implemented via a component called Ceilometer. The tool makes use of a
special configuration construct called a Heat orchestration template that provides a blueprint for a cloud-
enabled virtual machine or service. OpenStack management software uses these template files to
dynamically create and allocate new resources in response to increased data loads. The ability of a
properly written OpenStack software system to scale its processing capability on demand is an important
motivating factor for steering future AIM design and development toward the cloud architecture.

Because the existing AIM infrastructure is designed as a web services platform, extending its current
implementation to fit a cloud environment is a straightforward task. As explained earlier, decentralization
of internal state-keeping is the first improvement that is needed to enable the transition to the cloud. In the
OpenStack implementation, this will consist of using a distributed database to keep track of client
requests, along with a distributed data store for shared files and other resources. The second step is
ensuring that all AIM services are horizontally scalable; the software design must allow for elastic
addition and removal of compute nodes without imposing artificial restrictions on the number of services
capable of processing data.

6.2 Scalability Research

A key goal for AIM is the analysis of high-velocity, high-volume data streams, such as those
expected from experiments like the Dynamic Electron Transmission Microscopes, which are set to create
1M images/sec, which would equal 1-2 terabytes per second depending on image size. To achieve
throughput on that scale we need to investigate two key questions:
• How to scale the basic AIM infrastructure to support data rates of that magnitude? and

• How best to scale applications in the infrastructure to enable these to work on such data streams?

Over the coming months we will carry out a wide range of scalability tests to identify possible
bottlenecks, research viable optimization strategies and investigate the potential tradeoffs between an easy

30

to use infrastructure implementations and high performance. One key challenge identified early on is the
requirement of our analysis models to receive messages in the same order they were sent, which is not
natively guaranteed by Kafka in the high-performance, multi-partition configuration. We will investigate
how we can provide this functionality, without significant performance impact. Furthermore we will
evaluate the impact that larger numbers of users could have on the infrastructure performance. Finally we
will investigate optimization strategies for different classes of model algorithms that will allow us to
reach the required throughput performance.

6.3 Adaptive Workflow

The AIM analysis paradigm expects to create unique analysis model combinations for each class of
problems addressed, furthermore it is anticipated that the system will need to instantiate and retire
analysis models at runtime depending on user feedback and the events observed in the streaming data. To
facilitate such additivity in workflow creation and change we need a light weight, easy to use, flexible and
scalable workflow description and execution environment. At present we are not aware of a system that
would satisfy all of these requirements. It is our intention of the coming years to investigate existing
solutions and either build on them or develop our own high-throughput, highly flexible workflow
implementation for AIM.

6.4 Community Support

Any discussion of future work on the AIM effort must emphasize the important role that the open
source community and various projects play in influencing the design and evolution of AIM. On one
hand, many technical components of the AIM infrastructure software trace their origin to an open source
project, such as Java Spring and Spring Integration for simplifying web service implementation, Kafka as
the key message-processing framework, or the OpenStack project that offers an integrated cloud-
management environment. Complementing the resources of the open source software community is the
active research and development carried out by the HPC practitioners, who offer advanced algorithms and
mathematical models needed to use the increasingly large amounts of data. By exploiting the best ideas
and effectively applying lessons learned by both communities, the AIM Initiative plans to innovate and
contribute to the state of the art in these fields.

To illustrate the benefits of prudent concept reuse from both of these sources, it is helpful to consider
the Dynamic Transmission Electron Microscope use case and its associated data volume. To produce such
large amounts of data in a short period of time, a massively parallel hardware infrastructure must be
present on the instrument side. Given the constraints of electronic system integration, plus the need for
real-time response, the high-rate instrument is likely to use specialized hardware specially tuned for this
one, specific application. The instrument firmware will not use “heavyweight” technologies such as web
services, user authentication, or an embedded, real-time, streaming analytics engine. Because providing
these advanced features is AIM software responsibility, both systems must define a common interface to
facilitate data hand off.

The distributed (or sharded) data store provided by a cloud computing infrastructure represents an
enabling technology for supporting such data sharing. Because the data store is fully distributed, multiple
external processes can write data to the cloud storage simultaneously without adversely affecting each
other (assuming the network infrastructure can sustain the required data rate). OpenStack provides the

31

Swift file storage system that meets the design objectives for this data transfer. Once the source data is
available in Swift, an Apache Spark (or Apache Spark Streaming) high-performance analytics system can
be tasked with running processing, detection, and analysis algorithms in a horizontally scalable
configuration (i.e., the more nodes, the better the performance, assuming the network can sustain the data
transfer rates).

Apache Spark also offers an in-memory processing option, which helps eliminate performance
penalties for the network operations. Commercial vendors, such as GridGain, offer high-performance
extensions to the in-memory cluster data repositories that AIM can use to accelerate processing by
prestaging the required data in each virtualized node’s RAM. [11] Because the various players and
stakeholders in this area are strongly motivated to support each other’s’ software, the overall community
benefit is maximized. As a result, we are able to select the optimal mix of software technologies and
products for maximum AIM performance. At the same time, because these different technologies still
share a similar data interface, costs of maintaining the interoperability are minimal, at least in the short to
medium timeframe that we expect these technologies to exist in their present form. In the long term,
international standards bodies will formally govern evolution of the cloud architectures and data exchange
mechanisms in a manner that is similar to today’s web technologies.

32

7.0 References

[1] Apache Software Foundation. “Kafka 0.8.2 Documentation.” Apache Kafka - a high-throughput
distributed messaging system, accessed May 4, 2015. URL:
http://kafka.apache.org/documentation.html

[2] Vilwock, W and T Stavenger. “LIFT Overview.” Laboratory Integration Framework and Toolset.
PNNL Confluence Wiki, Feb 20, 2015. URL:
https://confluence.pnnl.gov/confluence/display/LIFT/LIFT+Overview

[3] Puppet Labs. “Puppet Labs Documentation.” Accessed May 4, 2015. URL:
https://docs.puppetlabs.com/

[4] Hovemeyer, DH and WW Pugh. “FindBugs ™ Manual.” March 6, 2015. URL:
http://findbugs.sourceforge.net/manual/index.html

[5] Christou, S. “Cobertura.” Jan 11, 2015. URL: http://cobertura.github.io/cobertura/

[6] Birkner, S et al. “JUnit Getting Started.” March 30, 2015. URL: https://github.com/junit-
team/junit/wiki/Getting-started

[7] Mahmoud, QH. “Service-Oriented Architecture and Web Services: The Road to Enterprise
Application Integration.” April 2005. URL: http://www.oracle.com/technetwork/articles/javase/soa-
142870.html

[8] Fielding, RT. “Architectural Styles and the Design of Network-based Software Architectures.”
Ph.D. Dissertation, Chapter 5: Representational State Transfer. 2000. URL:
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[9] Plata, C. “PNNL: Institutional Computing.” Accessed May 4, 2015. URL:
http://pic.pnnl.gov/projects/proposals.stm

[10] Seagate Technology LLC. “About the Lustre File System.” April 16, 2015. URL:
http://lustre.org/about/

[11] Ivanov, N. “In-Memory Database vs. In-Memory Data Grid: Revisited.” June 9, 2014. URL:
http://www.gridgain.com/in-memory-database-vs-in-memory-data-grid-revisited/

[12] Apache Software Foundation. “ZooKeeper: A Distributed Coordination Service for Distributed
Applications.” Accessed May 4, 2015. URL:
https://zookeeper.apache.org/doc/trunk/zookeeperOver.html

http://kafka.apache.org/documentation.html
https://confluence.pnnl.gov/confluence/display/LIFT/LIFT+Overview
https://docs.puppetlabs.com/
http://findbugs.sourceforge.net/manual/index.html
http://cobertura.github.io/cobertura/
https://github.com/junit-team/junit/wiki/Getting-started
https://github.com/junit-team/junit/wiki/Getting-started
http://www.oracle.com/technetwork/articles/javase/soa-142870.html
http://www.oracle.com/technetwork/articles/javase/soa-142870.html
https://www.ics.uci.edu/%7Efielding/pubs/dissertation/rest_arch_style.htm
http://pic.pnnl.gov/projects/proposals.stm
http://lustre.org/about/
http://www.gridgain.com/in-memory-database-vs-in-memory-data-grid-revisited/
https://zookeeper.apache.org/doc/trunk/zookeeperOver.html

Appendix A

Streaming Framework Features

A.1

Table A1. Licensing, Support, and Available Ecosystems

Technology Licensing Support Available Ecosystem

International Business
Machine (IBM)
InfoSphere Streams

Commercial
See Pricing
List prices are
1. IBM InfoSphere Streams Developer

Edition Authorized Single User
License + Software Subscription And
Support for 12 months (D0H5BLL)
$4000

2. IBM InfoSphere Streams for Non-
Production Environment Resource
Value Unit License + Software
Subscription and Support for 12
Months (D0V9ELL) $20,000

IBM InfoSphere Streams Resource Value
Unit License + Software Subscription and
Support for 12 Months (D0V9GLL)
$41,000

Commercial
Included in licensing costs
Training available
See SPL Training. Different courses are
available covering several aspects of the
programming language and model; prices
range from $600 - $2000 per course per
person.

Comes with a number of built-in capabilities
that are provided by IBM, including data
mining, text analytics, predictive analytics,
geospatial analytics, OpenCV, statistics,
mathematical modeling, and acoustics.
Where are graph analytics and processing?
Unknown
Technically, with Streams’ ability to execute
operations via third-party C, C++, or Java
applications, Streams should be able to
leverage all existing software in these
respective ecosystems.
Streams has an Eclipse-based Integrated
Development Environment to support both
text and graphical editing of Streams
Processing Language (SPL) and SPL mixed-
mode applications (SPL + Perl).
See Mining Toolkit
See Deployments and Use Cases

Apache Storm Open source Open-source community, hosted by
Apache Incubator, with active mailing
lists.
• user@storm.incubator.apache.org
• dev@storm.incubator.apache.org
• Freenode: #storm-user
Some third-party companies involved in
analytics offer training with a proprietary
platform:
http://hortonworks.com/hadoop/storm/

Apache Storm does not come with built-in
analytics. Storm is a lower level message-
passing/event-propagation "push" framework
that is intended to provide real-time analytic
capabilities by executing external third-party
code on messages.

https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
http://www-304.ibm.com/services/learning/ites.wss/us/en?pageType=course_description&courseCode=DW723
https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
mailto:user@storm.incubator.apache.org
mailto:dev@storm.incubator.apache.org
http://hortonworks.com/hadoop/storm/

A.2

Technology Licensing Support Available Ecosystem

Apache Kafka Open source Open-source community, hosted by
Apache Incubator.

Apache Kafka does not come with built-in
analytics. Kafka is a lower level message-
passing/event-propagation "push" or "pull"
framework, designed as a distributed commit
log that is intended to provide real-time
analytic capabilities by supporting
publish/subscribe semantics from external
third-party code.

GridGain
In-Memory Streaming

Commercially supported open source
As of February 2014, GridGain now
comes in two flavors: Enterprise and
Open-Source.
Enterprise Version
• $5000 for 4 CPU cores or 16 GB

RAM, whichever is greater
• Annual subscription-based licensing

model
• Perpetual license also available at ~2.5

times the cost of annual license
• Discounts on volume/multi-year

contracts
• Grace period for functionality after

license expires
Open-Source Version
• Open-source version is new as of the

end of February
• See http://gridgain.com and

http://www.gridgain.org respectively

Open-Source version
Support forum:
http://stackoverflow.com/questions/
tagged/gridgain
• Commercial enterprise version

http://www.gridgain.com/
• Training:

http://www.gridgain.com/purchase/
training/

• Quote:
http://www.gridgain.com/purchase/
get-a-quote/

GridGain Systems, makers of widely adopted
open-source software used to build smarter
and faster data processing systems within
finance, retail, healthcare,
telecommunications, government, and other
markets, has an ecosystem to natively support
customers and services written for Amazon's
EC2, Rackspace's OpenStack, and
Microsoft’s Azure cloud hosting platform.
GridGain Systems’ Java and Scala based
open-source middleware platform allows
companies to perform real-time processing
and analytics on live big data.

LIFT Open source PNNL Internal and open-source
community.

LIFT is based on standard enterprise
integration technologies and design patterns.
The primary purpose is to provide integration
with and execution orchestration of any
technology written in any language, as long
as it is reachable via code or network. Since
LIFT uses Java technologies, the ecosystem

http://gridgain.com/
http://www.gridgain.org/
http://stackoverflow.com/questions/tagged/gridgain
http://stackoverflow.com/questions/tagged/gridgain
http://www.gridgain.com/
http://www.gridgain.com/purchase/training/
http://www.gridgain.com/purchase/training/
http://www.gridgain.com/purchase/get-a-quote/
http://www.gridgain.com/purchase/get-a-quote/
http://www.gridgain.com/?utm_source=pr&utm_medium=press-release&utm_campaign=4.0.2-release

A.3

Technology Licensing Support Available Ecosystem
of available software and libraries is
extensive and well-supported including
instrumentation. LIFT does not come with a
suite of analytics, only capabilities to
integrate analytics as needed.

Yahoo Big Data

Uses:
Apache Storm
Apache Spark
Apache Hadoop

Optional:
Apache Mesos
LIFT

Commercially supported open source
Apache Spark is included as a core
component of Cloudera Hadoop 5.0
Enterprise
Licensing information is available here.
Premium support comes with 24/7
availability with 15-minute guaranteed
response time for critical issues.
Costs unknown. NEED TO CONTACT
VENDOR

Commercial support available, otherwise
open-source self-support
Training available
Consulting available
See Cloudera Training

The Apache Storm, Apache Hadoop, and
Apache Spark ecosystem basically covers the
entire spectrum of today's state-of-the-art
big-data analytics.
Storm and Spark are the premier open-source
solutions for streaming analytics. They
approach the problem in different ways and
therefore apply to different types of
streaming analytic problems.
The one major feature of this technology
stack is that every component can run on top
of Hadoop/Hadoop Distributed File System
(HDFS) and specifically use YARN and
ZooKeeper (or Mesos). This means that all of
AIM's data and infrastructure can exist in a
single, distributed, multi-tiered ecosystem of
tightly integrated yet loosely coupled
technologies.

NPMs:
MPI, OpenMP, and
others

Open source
Used in a wide variety of supercomputers
up to 128K node count.

Excellent support available from vendors
essentially included as a component of
package management on most
deployments.

MPI and NPMs are bare bones, but provide
all functionality by use of models such as
Hadoop MapReduce, spark, and others.
The ecosystem comes with everything
needed for scheduling large jobs. For
example, all systems are equipped with
SLURM (Simple Linux Utility for Resource
Management), which is an excellent job
manager. The Lustre file system will provide
fastest access to data with caching
mechanisms for temporal and spatial reuse.

http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise.html
http://www.cloudera.com/content/cloudera/en/products-and-services/product-comparison.html
http://cloudera.com/content/cloudera/en/training.html

A.4

Table A2. Programming Models, Programming Language, and Third-Party Integration Capability

Technology Programming Models Programming Language Third-Party Integration Capability

IBM InfoSphere
Streams

Custom SPADE Programming Model
Main components of SPADE applications
are tuples, data streams, operators,
processing elements, and jobs
Applications written in SPL are designed
around workflows, called topologies,
which operate very similar to how
topologies operate in Apache Storm (see
Storm topologies and tuples). Events are
ingested at a “source,” processed through
a workflow, and emitted to a “sink” or
destination. Stream events can be
propagated in a single stream or sent
across streams depending on the
topology.
SPL is supported with many built-in
operators in the standard toolkit and
special toolkits such as data-mining,
geospatial, and database toolkits. The
standard toolkit operators are grouped in
categories as shown below:
• Adapter operators
• Relational operators
• Utility operators
• XML operators
• Compat operators
See SPADE Programming Model

Primary: IBM SPL
Secondary: C, C++, Java
The InfoSphere framework needs to be
programmed in SPL.
SPL is a special streaming domain
specific language that supports executing
non-SPL languages via "operations" such
as JavaOp.
InfoSphere Streams requires the IBM
Java SE Version 6 SDK.

It is currently how easily existing third-
party toolkits can be plugged into
Streams.
There are some examples of integrating
OpenCV, so it clearly must be possible.
See Description and Background
Example from user exchange: You can
link in C++ code in dynamic or shared
libraries as well as code that is contained
solely within .h files. If you can link it
into a C++ program, you can call it from
SPL. Java code can also be handled using
a Java operator.
Virtually any device, sensor, or
application system can be defined using
SPL, but there are also predefined source
and output adapters that can further
simplify application development. As
examples, IBM delivers the following
adapters:
• Transmission Control Protocol/Internet

Protocol (TCP/IP), User Datagram
Protocol/Internet Protocol, and files

• IBM WebSphere Front Office, which
delivers stock feeds from major
exchanges worldwide

• IBM solidDB® includes an in-memory
persistent database using the Solid
Accelerator application program
interface (API)

• Relational databases that are supported
using industry standard Open Database
Connectivity (or ODBC)

Some of the source and sink adapters

https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams

A.5

Technology Programming Models Programming Language Third-Party Integration Capability
included within the Streams product
allow the developer to define custom
adapters, including custom analytics or
operators written in C++ or Java. Existing
analytics can also be called from Streams
applications.

Apache Storm Storm uses a one-way parallel execution
model where execution is determined by
topologies that process streams of tuples
(data). Each topology is a graph
consisting of spouts (that produce tuples)
and bolts (that transform tuples). This
supports both "pipeline" analytics as well
as "map/reduce" style analytics. Input can
be of any type where a spout exists (or
can be written) and output can be
exported anywhere accessible to Storm.

Primary: Java
Secondary: C/C++, Python

Any code that is available via Java Native
Access/Java Native Interface (JNI/JNA),
stdin/stdout, or web services can be
integrated into these systems.

Apache Kafka Kafka is a distributed commit log
architecture supporting a robust message-
passing and propagation framework that
underlies a number of large-scale real-
time analytics frameworks such as
LinkedIn's Apache Samza. The
programming model is based on a
publish/subscribe queue/topic design,
where individual clients subscribe to
queues or topics and are notified when
messages they are interested in are
propagating through the system. Kafka
also supports additional advanced
functionality such as guaranteed message
ordering, message replay and more.
Output from Kafka is generally consumed
by other frameworks such as Apache
Storm or Apache Hadoop.

Primary: Java
Secondary: C/C++, Python

The list of supported clients, in addition
to Java, is available here
• Python
• Go (AKA golang)
• C
• C++
• Clojure
• Ruby
• Node.js
• Storm
• Scala DSL
• HTTP REST
• Jruby

GridGain
In-Memory Streaming

Combines distributed stream processing
with CEP, advanced workflow

Primary: Java, Groovy, and Scala GridGain White Paper:
"GridGain also provides many general

https://confluence.pnnl.gov/confluence/display/AIMATB/Apache+Samza
https://confluence.pnnl.gov/confluence/display/AIMATB/Apache+Storm
https://confluence.pnnl.gov/confluence/display/AIMATB/Apache+Storm
https://confluence.pnnl.gov/confluence/display/AIMATB/Apache+Hadoop+YARN
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients

A.6

Technology Programming Models Programming Language Third-Party Integration Capability
management, windowing, user-defined
indexes and more.
Current key technologies include:
• Programmatic Querying
• Customizable Event Workflow
• At-Least-Once Guarantee
• Management
• Sliding Windows
• Data Indexing
• Distributed Streamer Queries
• Co-location With In-Memory Database

Secondary: C, C++, R
Other: Python, others

features that make development of
distributed applications easier and
productive such as zero provisioning and
zero deployment model, support for
aspect-oriented and functional
programming, streaming MapReduce
processing, and integration with a wide
variety of third-party projects."

LIFT Focuses on two forms of programming
model:
• Traditional enterprise integration

patterns and enterprise service bus
• Asynchronous event driven

architecture including event/message
queuing and propagation

LIFT also supports any programming
model that is required by an underlying,
integrated analytic capability.

Primary: Java
Secondary: Groovy, Scala
Other: C, C++, R, Python, others

LIFT was specifically designed to support
integration of third-party tools and
libraries.
Any code that is available via JNI/JNA,
stdin/stdio, or web services can be
integrated into these systems.

Yahoo Big Data

Uses:
Apache Storm
Apache Spark
Apache Hadoop

Optional:
Apache Mesos
LIFT

There is not a single programming model
for these technologies; they each aim to
solve a different problem using a different
programming paradigm.
Storm uses a one-way parallel execution
model where execute is determined by
topologies, which process streams of
tuples (data). Each topology is a graph
consisting of spouts (that produce tuples)
and bolts (that transform tuples). This
supports both "pipeline" analytics as well
as "map/reduce" style analytics. Input can
be of any type where a spout exists (or

Primary: Java, Groovy, Scala
Secondary: C, C++, R
Other: Python, others

Any code that is available via JNI/JNA,
stdin/stdio, or web services can be
integrated into these systems.
The main caveat is how performant the
resultant integration type is overall
(native vs. shell vs. socket).

http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/

A.7

Technology Programming Models Programming Language Third-Party Integration Capability
can be written) and output can be
exported anywhere accessible to Storm.
Hadoop and HDFS are the underlying
backbone of this technology stack.
Hadoop is a distributed batch processing
framework that uses a MapReduce design
pattern to perform analytics. For the
purposes of this initiative, we are only
interested in HDFS and possibly Hadoop
YARN and ZooKeeper, which are
technologies that Hadoop uses to manage
clusters and job execution.
A popular and growing alternative to
YARN is Apache Mesos. While YARN is
limited to Hadoop-only job execution,
Mesos works across multiple different
cluster applications including Hadoop.
"Apache Mesos is a cluster manager that
provides efficient resource isolation and
sharing across distributed applications.
Mesos can run Hadoop, Jenkins, Spark,
Aurora, and other applications on a
dynamically shared pool of nodes."
Spark is an in-memory compute
framework that provides a distributed,
shared-memory programming paradigm.
Its primary programming language
exposes functional idioms but they are
not enforced, for example imperative
programming is also supported (through
Java). A number of frameworks exist that
support streaming, graph analytics, in-
memory database, and more via the
Berkeley Data Analytics Stack (BDAS)
LIFT could be used for instrumentation,
reporting, data and user manipulation/
management.

https://confluence.pnnl.gov/confluence/display/AIMATB/Apache+Spark

A.8

Technology Programming Models Programming Language Third-Party Integration Capability

NPMs:
MPI,
OpenMP and Others

Message-passing programming model
MPI is the basic model to be used. An
abstraction of distributed shared-memory
model can be used with Global Arrays
(optional). Each of these programming
models works on native hardware, with
no virtualization of any other indirection.
For performance analysis, there are
several software stacks available.
HPCToolkit can be used for performance
analysis and source code attribution
(which parts of the source code are slow).
The very generic nature of MPI makes it
an attractive and difficult solution at the
same time. For example, the user still has
to worry about communication and
defining compute structure. At the same
time, it provides maximum flexibility,
which is fairly restricted in functional
programming models.

MPI Primary: C, C++
MPI Secondary: Java. While inter-JVM
Remote Method Invocation (or RMI) is
traditionally used in place of MPI, there
do exist MPI solutions:
• Reference implementations such as

OpenMPI
• Open-source libraries such as

Message-Passing in Java (MPJ)
• Commercial products such as FastMPJ
Provides support for shared memory and
InfiniBand systems.

The premier flexibility provided by MPI
would make it an attractive choice for
designing the solutions.

http://www.open-mpi.org/faq/?category=java
http://mpj-express.org/
http://torusware.com/product/fastmpj/
http://torusware.com/download-fastmpj-for-high-performance-shared-memory/
http://torusware.com/download-fastmpj-for-infiniband/

A.9

Table A3. Performance Capability, Learning Curve, and Instrumentation

Technology Performance Capability Learning Curve Instrumentation

IBM InfoSphere
Streams

High
Expected performance based on
published use cases.
See Deployments and Use Cases
Example application 1600 streams, 3.5
data objects/sec.
What sets Streams apart is its processing
speed. Applications in Streams aim to
execute in microseconds instead of
milliseconds over unbounded streams of
events.

High
All development teams will have to
implement their solutions using SPADE
or provided IBM API.

Medium/Low
See Performance Monitoring Framework
The current performance monitoring
capabilities appear to directly relate to
internal job/queue management within
Streams itself exposed via web interface.
The ability to instrument down to the
algorithm level does not appear to be
present, at least not exposed in the
interface. It is currently unknown if this
information is available in a separate API
that we can tap into via custom code to
develop an appropriate solution for AIM.
"Once developed, the applications are
deployed to Streams Runtime
environment. Streams Live Graph then
enables you to monitor performance of
the runtime cluster, both from the
perspective of individual machines and
the communications between them.”

Apache Storm High/Medium
"Twitter's stream system, but also used in
lots of other places, clocked at 1M tuples
per second per node" - Unknown
Storm has been integrated into online
services widely considered to be some of
the largest data streams currently
available (e.g. Twitter). However,
implementation benchmarks are
dependent on the task, database intensive
vs. CPU, and deployment hardware
architecture.
Note: It is known that Storm's default

Medium
Storm is based on Java as a high-level
programming language but uses a mix of
Java and C/C++ libraries for its
underlying messaging system. Storm can
interact with existing libraries directly via
JNI/JNA or indirectly via traditional
networking protocols or stdin/stdout.

Medium
Storm logs/nimbus server both run on
default ports within the JVM. Hooks
between Storm and secondary
applications (SAMOA) are being created
by independent actors as the project
matures. Since Storm uses Java as its
primary platform, Storm and Nimbus can
both be instrumented with Java
Management Extensions (JMX), allowing
these technologies to provide very fine-
grained instrumentation information via a
well-defined API.

https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

A.10

Technology Performance Capability Learning Curve Instrumentation
message size is incredibly small, 140
characters, so benchmarking on larger
data sizes in less well known.

Apache Kafka High/Medium
Kafka performance has small numbers of
published results and is used as a backing
technology for Storm, so performance is
expected to be on-par with Storm.
One significant benefit of Kafka is that
message sizes are only limited by the
underlying hardware. The framework
itself was not designed to be used only by
Storm.

Medium/Low
Setting up a Kafka framework will need
to be accomplished by the same team
setting up the entire AIM infrastructure,
so learning curve for that task is marked
as Medium.
Using Kafka from a client perspective is
straightforward and well documented;
client code already exists for multiple
programming languages, so the learning
curve for client integration is Low.

Medium
Kafka runs on the JVM. Since Kafka uses
Java as its primary platform, Kafka can
be instrumented with JMX, allowing this
technology to provide very fine-grained
instrumentation information via a well-
defined API.

GridGain
In-Memory Streaming

High
Tasks
GridGain
 341 2,705 33,700
 372,279 338,310350,744
Tasks / Milliseconds.
http://java.dzone.com/articles/
comparison-gridcloud-computing
"In 2008 GridGain was the first Java-
based grid computing middleware that
was independently tested to scale
linearly up to 2048 processing cores on
Amazon EC2 cloud infrastructure."
- GridGain White Paper

Medium
Learning curve is Medium due to the
diversity of products offered by GridGain
and the advanced concepts the software
suite attempts to solve. While the pre-
configured packages available within the
enterprise version of the software may be
easy to configure and install, AIM will
require specialized programming and
training to enable GridGain.

High
GridGain comes with a prebuilt
management and monitoring application
called "Visor":
http://www.gridgain.com/visor/
Visor provides a single unified console
for operations, management, and
monitoring across all GridGain products
and for any applications and systems built
with GridGain.
Visor comes with GUI and command line
interfaces delivering an advanced set of
management and monitoring capabilities.
The GUI version is based on a standalone
application and the command line
interface version is built on top of Scala
REPL providing a fully scriptable and
customizable environment.

LIFT High
Rating is dependent on the published
performance metrics of the Java Message

Medium/Low
This project follows industry standard
design patterns as closely as possible.

Medium
Instrumentation is Medium because each
framework is ultimately running on top of

https://cwiki.apache.org/confluence/display/KAFKA/Performance+testing
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://java.dzone.com/articles/comparison-gridcloud-computing
http://java.dzone.com/articles/comparison-gridcloud-computing
http://www.gridgain.com/visor/

A.11

Technology Performance Capability Learning Curve Instrumentation
Service (JMS)/MQ framework used
inside of LIFT. Currently LIFT uses
ActiveMQ.
The use of JMS inside of LIFT does not
prevent LIFT from handling large
numbers of messages (millions per
second) or large messages (multi-GB).

The difficulty of integration and
performance falls squarely on the
developers writing the tools to be
integrated.

the JVM, meaning AIM test and
performance monitoring infrastructure
will have access to JMX, allowing
applications to provide very fine-grained
instrumentation information via a well-
defined API.
AIM could harvest and manage this
information via LIFT, if desired.
All individual analytics will have to write
their own instrumentation code and find a
way to provide it via JMX. If the
algorithms are written in Java or Scala,
integration with JMX is straightforward;
if written in a third-party library or non-
JVM programming language, integration
will not be as straightforward.
A number of toolkits provide web-based
(HTTP) management consoles, but these
are specifically designed for system-level
management.
Commercial solutions are available for
monitoring JMS/MQ such as
http://www.hyperic.com.

Yahoo Big Data

uses
Apache Storm
Apache Spark
Apache Hadoop

Optional:
Apache Mesos
LIFT

High
The numbers from Yahoo published 9
months ago speak for themselves:
• 100 billion events (clicks, impressions,

email content, metadata, etc.) are
collected daily across all of the
company’s systems.

• A subset of collected events get passed
to a stream processing engine over a
Hadoop/YARN cluster: 133K
events/second are processed, using
Storm-on-Yarn across 320 nodes. This
involves roughly 500 processors and

Medium
Each system has its own requirements
and learning curve.
Storm is based on Java as a high-level
programming language but uses a mix of
Java and C/C++ libraries for its
underlying messaging system. Storm can
interact with existing libraries directly via
JNI/JNA or indirectly via traditional
networking protocols or stdin/stdout.
Hadoop is based on Java as a high-level
programming language and uses Java as a
primary language for development.

Medium
Instrumentation is Medium because each
framework is ultimately running on top of
the JVM, meaning AIM test and
performance monitoring infrastructure
will have access to JMX, allowing
applications to provide very fine-grained
instrumentation information via a well-
defined API.
AIM could harvest and manage this
information via LIFT, if desired.
All individual analytics will have to write
their own instrumentation code and find a

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://confluence.pnnl.gov/confluence/pages/viewpage.action?pageId=35652855
http://www.hyperic.com/
http://developer.yahoo.com/blogs/ydn/storm-yarn-released-open-source-143745133.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://confluence.pnnl.gov/confluence/pages/viewpage.action?pageId=35652855

A.12

Technology Performance Capability Learning Curve Instrumentation
12,000 threads.

• Iterative computations are performed
with Spark-on-YARN across 40 nodes.

• Sparse data store: 2 PB of data stored
in HBase, across 1,900 nodes. This is
one of the largest HBase deployments
in production.

• 365 PB of available raw storage on
HDFS, spread across 30,000 nodes
(about 150 PB is currently used).

• About 400,000 jobs/day run on
YARN, corresponding to about 10M
hours of compute time per day.

Hadoop can interact with existing
libraries directly via JNI/JNA or
indirectly via traditional networking
protocols or stdin/stdout (Hadoop
"Streaming" API). Note the "streaming"
API is misnamed and is not a streaming
API at all, but a way to interact with
command-line-driven programming
languages such as Python.
Spark is based on Scala, a next-generation
functional programming language written
for the JVM. Spark also supports Java
and C/C++ via JNI/JNA or indirectly via
traditional networking protocols or
stdin/stdout.

way to provide it via JMX. If the
algorithms are written in Java or Scala,
integration with JMX is straightforward;
if written in a third-party library or non-
JVM programming language, integration
will not be as straightforward.
A number of toolkits provide web-based
(HTTP) management consoles, but these
are specifically designed for system-level
management.

NPMs:
MPI,
OpenMP and Others

High
Since MPI uses native communication
networks and combined with C++, it
would result in minimal overhead in
terms of indirection and performance
loss.
NOTE: This column should be defined in
terms of what should be expected in
execution time of an algorithm, if san "n"
nodes were used. Of course using 2-3
times the number of nodes to get similar
result may be possible, but that would
defeat the purpose.
The rest of the rows in this table should
determine the input, what algorithms
were executed, and missed performance.
In other cases, the interconnectivity is
with Ethernet and using sockets (TCP/IP),
which is not suitable for high-end systems
like PIC, the primary computational
target for AIM.

Medium/Low
While most of the teams have at least
someone with a basic knowledge of MPI;
most developers, unless they are familiar
with C/C++ distributed programming are
not going to be familiar with MPI on an
expert level.
PIC's Olympus cluster currently has
installations of the MPI and OpenMP
ecosystem. It is expected that many of the
large-scale systems deployed on Olympus
would leverage MPI for scalability.

High/Medium
There are several tools that provide
performance analysis at parallel scale,
without requiring source code changes.
For example, HPCToolkit, which
automatically samples messages.
Similarly PAPI provides low-level
information on performance lost and
wrappers to performance counters
provided by hardware. It is widely used in
HPC systems and can be used on
desktops/clouds as well.
An important aspect of using the MPI
ecosystem is the abundance of debugging
large-scale parallel programs. License-
based tools use similarity analysis and
other measures to provide graphical
interface for debugging large-scale
programs. This functionality would be
critical for the AIM teams since they
would eventually write large-scale
analysis algorithms.

A.13

Table A4. Visualization, Risk Opportunities, Expertise at PNNL, and Notes

Technology Visualizations Risk Opportunities
Expertise at

PNNL Notes

IBM InfoSphere
Streams

Low
See Visualization and Dashboards
Built-in visualizations appear to be
limited, displaying basic analytic
and data stream information via a
web console. New visualizations
would have to be developed. It is
unclear if there is an API to develop
custom visualizations, although the
"Surveillance and Physical Security:
TerraEchos" project shows
advanced standalone visualizations.

High/Medium
Risks are related more to licensing
costs and vendor lock-in rather than
ability to process and analyze
streams. For example, even if the
licensing is not prohibitively
expensive for government
customers, will traditional academic
or scientific communities support
commercial licensing costs?
There is also risk that project teams
will have to ramp up on a new
programming language,
programming paradigm(s), and
ultimately learn how to interact with
and optimize execution of their
algorithms within Streams.
Opportunities lie in the ability to
have a fully tested, reliable, and
commercially supported platform to
inject analytics/algorithms.
Many of our National Security
Directorate customers, including in
the Intelligence Community, are
already using Streams or would like
to use Streams (NEED TO
VERIFY) so a clear path to funding
is available.

No Streams is a CEP system and has a
direct comparison table in the Red
Book to other CEP frameworks. See
Pages 38-41 in the IBM Streams
Red Book.

Complex Event
Processing
Analysis on
discrete business
events
Rules-based
processing using
if/then/else) with
correlation
across event
types
Only structured
data types are
supported
Modest data
rates

InfoSphere
Streams
Analytics on
continuous data
streams.
Supports simple
to extremely
complex
analytics and
can scale for
computational
intensity.
Supports an
entire range of
relational and
non-relational
data types.
Extreme data
rates (often an
order of
magnitude
faster).

Apache Storm Low
There are no visualization
capabilities directly related to
Storm, but several companies are
building analytics packages for
integration with Storm.

Medium
Risks of implementing Storm
coincide with the project being a
community supported and open
source. Depending on contributors,
competing projects, and adoption by

Yes

https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams

A.14

Technology Visualizations Risk Opportunities
Expertise at

PNNL Notes
An example of integrating analytics
with Storm:
• http://www.slideshare.net/

Hadoop_Summit/ realtime-
analytics-with-storm

larger commercial interests projects
can be enormously successful
(Apache web server) or fall into
obscurity.

Apache Kafka Low
Since Kafka is a supporting
technology for higher-level
processing and analytics, it does not
provide any visualizations.

Medium
The risks of implementing Storm
coincide with the project being
community supported and open
source. Depending on contributors,
competing projects, and adoption by
larger commercial interests projects
can be enormously successful
(Apache web server) or fall into
obscurity.

Yes/No There is expertise at PNNL for using
Apache ActiveMQ and Code
Connected ZeroMQ, which provide
similar message queuing
functionality as Kafka. There are
also well-supported integration tools
for the Java Spring Framework, so
integration with Kafka is fairly
straightforward.
The risk and expertise ratings were
given because Kafka is much more
than simply a message queuing
platform, as described here, so
configuring and learning how to
properly use Kafka with other
technologies like Storm and Hadoop
will require training.

GridGain
In-Memory Streaming

Low
Analytic visualizations are not
included in GridGain but can be
easily integrated through GridGain's
client-facing APIs.

Medium
The risk for this product falls into
two main categories:
• High-value features of product

may only be available via
commercial licensing.

• Supporting documentation
suggests these features may not
be of high value to AIM, such as
HA in-memory databases and the
Visor GUI.

Researchers will need to write all of

Yes GridGain is an industry leader in the
in-memory compute and data grid
space, and one of the first to produce
a viable commercial product based
on its technology stack.

http://www.slideshare.net/Hadoop_Summit/%20realtime-analytics-with-storm
http://www.slideshare.net/Hadoop_Summit/%20realtime-analytics-with-storm
http://www.slideshare.net/Hadoop_Summit/%20realtime-analytics-with-storm
http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying

A.15

Technology Visualizations Risk Opportunities
Expertise at

PNNL Notes
their applications in a supported
programming language/
programming paradigm.

LIFT Low
Analytic visualizations are not
included in LIFT but can be easily
integrated through LIFT's client-
facing APIs.

High/Medium
LIFT is a mature, yet growing
framework. While support for high-
speed event/message processing is
available and maturing, support for
processing raw byte streams is less
mature. In addition, each technology
that intends to integrate into LIFT
will need to be developed with
either remote execution in mind or
the ability to be wrapped by Java
code for local execution.

Yes The purpose of LIFT is not to
provide a complete streaming
analytics framework, but to integrate
and orchestrate event/message
processing through various remote
and/or third-party tools. LIFT would
also manage the instrumentation,
user-facing API, and additional
features required of a higher-level
framework.
A reasonable option is using LIFT
on top of native project
implementations, with individual
projects scaled as required and
integrated using a suite of common
APIs such as the Advanced Message
Queuing Protocol or a content
management system. Ideally,
projects would be designed in such a
way as to support high-speed
asynchronous two-way messaging.
We could setup LIFT similarly to a
traditional CEP framework, but
appropriately decouple the
architecture and underlying
implementations as needed.
LIFT can also support CEP through
direct integration of technologies
such as Drools Fusion.
The Drools 5 Behavioural Modeling
Platform moves away from any of
the narrow modeling perspectives
that see only rules, processes, or

A.16

Technology Visualizations Risk Opportunities
Expertise at

PNNL Notes
events as their main modeling
concept. To effectively achieve the
flexibility and power of behavioral
modeling, a platform must
understand all of these as primary
concepts and allow them to leverage
on each other strengths.
In this scenario, Drools Fusion is an
independent module, but still
completely integrated with the rest of
the platform, that adds a set of
features to enable it:
• Understand and handle events as

first class citizens of the platform
• Select a set of interesting events

in a cloud or stream of events
• Detect the relevant relationships

(patterns) among these events
• Take appropriate actions based on

the patterns detected
Additionally, LIFT is currently
undergoing proposal development to
become available through PIC as an
institutionally supported "cloud"
resource. This could add significant
value to AIM as additional non-AIM
analytics could be integrated and
leveraged through this capability.

Yahoo Big Data

uses
Apache Storm
Apache Spark
Apache Hadoop

Low
There are no visualization
capabilities inherent with the
provided technologies. All
information will need to be
visualized with third-party tools.

Medium
Maturity is extremely dependent on
the technology chosen.
Hadoop is mature, the current de
facto standard for large-scale batch
processing on commodity hardware
clusters. Open-source actively

Yes This is the infrastructure most widely
used in industry to solve both batch-
based and streaming "big data"
analytics. These technologies were
also designed to scale by simply
adding more commodity hardware,
possibly augmented with some

A.17

Technology Visualizations Risk Opportunities
Expertise at

PNNL Notes

Optional:
Apache Mesos
LIFT

supported by a number of
commercial vendors
Storm is maturing and used in
production environments at Twitter,
Yahoo, and others on mission-
critical data at high volume and
velocity. The open-source project is
still young, although third-party
developer support is growing.
Spark is young/maturing. It is the
open-source equivalent of GridGain,
although as of 02/2014 that may be
a moot point. Spark is still pretty
raw and just recently graduated from
academia to an Apache Incubator
project. Cloudera has recently
picked up commercial support of
Spark in CDH 5.x and third-party
developer support is growing.

specialty hardware such as graphics
or accelerated processing units. The
main question is whether this type of
infrastructure will work for AIM's
specific needs or if a more
traditional, custom, low-level HPC
style system is needed (see below).

NPMs:
MPI,
OpenMP and Others

Low
This section is slightly unclear.
Does it intend to provide
visualization of the output, which
should be dependent on the choice
of application? If there is an existing
visualization app that reads from
files and does the job, it should be a
requirement for parallel analysis
algorithm to output the data in that
format.
The answer to a visualization app is
dependent on the application.

Risk - Low
Low risk since most teams have
someone who could write at least a
basic MPI program. The scale to
1000 nodes is standard for MPI,
which may be the ultimate target for
AIM.
Maturity - High
MPI has been around for 20 years.
The high likelihood of very good
performance and scalability on
smallish node counts such as 1000 is
not a problem.

Yes Not all clients are happy about using
MPI. It has a bare bones feel that is
not appealing, but it will do the job.

	Building the Analysis in Motion Infrastructure
	Disclaimer
	Building the Analysis in Motion Infrastructure (Title Page)

	Abstract
	Summary
	Acknowledgments
	Acronyms and Abbreviations
	Contents
	Figures
	Tables
	1.0 Introduction
	2.0 Infrastructure Requirements
	2.1 Quantitative Infrastructure Requirements
	2.2 Levels of Parallelism and Model Coupling
	2.3 Programming Language and Model Expertise
	2.4 New Development versus Utilization of Existing Technologies
	2.5 Business Requirements

	3.0 Evaluation of Existing Infrastructure Frameworks
	3.1 Resulting Evaluation Criteria
	3.2 Evaluated Solutions
	3.2.1 Embarrassingly Parallel Computations
	3.2.2 Embarrassingly Parallel + Reduction/Aggregation
	3.2.3 Bulk Synchronous Communication + Reduction/Aggregation
	3.2.4 Irregular Communication with Varying Computation

	3.3 Architecture Decisions

	4.0 AIM Infrastructure Implementation Phase 1
	4.1 Kafka Setup
	4.2 Kafka/LIFT Integration
	4.3 Data Producer
	4.4 User Interface for Testing Range
	4.5 Avro Container
	4.6 Initial Deployment Environment
	4.7 Initial Infrastructure Performance Tests
	4.7.1 Third-Party Test Results
	4.7.2 PNNL Tests on OS X Laptop
	4.7.3 PNNL Test on High-Performance Computing Cluster Head Node
	4.7.4 Tests after Further Optimization

	4.8 Initial Model Integration and Use Case Tests
	4.9 Conclusion and Final Setup

	5.0 AIM Infrastructure Deployment Phase 2
	5.1 Multiuser Support
	5.2 Scalability and Stability Measures
	5.3 Provenance and Metrics Capture

	6.0 Future Work
	6.1 Cloud/HPC Plans
	6.2 Scalability Research
	6.3 Adaptive Workflow
	6.4 Community Support

	7.0 References
	Appendix A Streaming Framework Features
	Table A1. Licensing, Support, and Available Ecosystems
	Table A2. Programming Models, Programming Language, and Third-Party Integration Capability
	Table A3. Performance Capability, Learning Curve, and Instrumentation

	Back Cover

