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Abstract 

Science and national security missions are driven by the need to assimilate and interpret ever-
increasing volumes of data to accelerate scientific discovery and make critical decisions, so the speed of 
analysis is as important as the choice of data to be collected. The Analysis in Motion Initiative (AIM) 
proposes to develop a new analysis paradigm—persistent/ dynamic knowledge synthesis—that will 
provide continuous, automated synthesis of new knowledge and dynamic control of measurement systems 
contemporaneously with observed phenomena. Working on streaming data, this new capability will 
automate the current time-intensive manual analysis and interpretation steps and collaborate with 
scientists and analysts to optimize insight creation, decision making, analysis, and data capture adaptation 
to meet the needs of their discovery process in a timely manner. This technical report outlines the creation 
of the underpinning software infrastructure that enabled the streaming and adaptive analysis approach of 
AIM. We report the results of our requirement capture, technology selection, initial infrastructure design, 
and changes introduced based on year-one operational experiences. 



 

iv 

Summary 

Today the ability to make sense of data is foundational to all discoveries, innovations, and decision 
making; the outcome of our work often critically depends on the speed and adaptability of the analysis 
and interpretation processes we employ. While much progress has been made in automating the analysis 
of standard events, little is available to support complex or rare event analysis situations that require 
human knowledge and ingenuity in addition to high-speed, high-volume analytical and interpretive 
processes. Consider examples such as emergency response, scientific discovery, national security, or 
critical business decisions where humans play a key role in analyzing facts as the situation evolves. The 
Analysis in Motion (AIM) Initiative is developing streaming analysis applications and an infrastructure to 
support this new analysis paradigm for high-volume, high-velocity data situations. This report describes 
the first 12 months of AIM infrastructure development. The work discussed can be broken into three 
principal stages: selection of key enabling technologies and their initial integration, extension of the 
original design to support multiple users, and transition to the OpenStack-based Pacific Northwest 
National Laboratory (PNNL) Institutional Research Cloud to scale past the limitations of the initial 
single-server hosting model. 

Current commercial stream data processing frameworks (e.g., Amazon’s Kinesis or International 
Business Machine’s Infosphere Streams) as well as state-of-the-art scientific systems, like the Large 
Hadron Collider’s triggers, use highly parallel scale-out techniques and have been shown to reliably 
process millions of data elements per second; however, they are strongly oriented towards implementing 
fixed, fully-automatic workflows (e.g., real-time retail microtargeting) and leave the user out of the loop. 
As part of the AIM Initiative we decided to investigate if we could build an adaptive, user in the loop, 
high data velocity infrastructure from these existing commodity software components and evaluate which 
would be most suitable for our challenge. 

We started the work by defining key infrastructure requirements in terms of maximum throughput, 
ability to adapt the mixture of analysis models at runtime, and easy integration of different programming 
languages and models. This list of requirements was then translated into evaluation criteria that were used 
to review a wide range of existing solutions. Interestingly, while basic requirements such as throughout 
rates could be met by many, the native and high-performance support of multiple programming models 
proved to be the deciding factor. Based on our evaluation we chose the Apache Kafka framework as our 
key infrastructure component for our initial implementation, coupled with Apache Avro containers and 
the PNNL-developed Laboratory Integration Framework and Toolset (or LIFT) integration infrastructure. 

The initial implementation was hosted on a single high-performance computing node and provided a 
web interface controlled test and execution environment where individual users could control analysis 
models, data streams and message queues. In initial user tests we discovered difficulties in providing 
stream state synchronization between low-level Kafka primitives and higher-order representational state 
transfer interfaces in the AIM server software. In addition, the single-node PNNL Institutional Computing 
hosting environment with shared, network-based file repository proved to be a suboptimal configuration 
for running the ZooKeeper services that support Kafka messaging. Network issues, increased latency, and 
lapses in reliability of InfiniBand connections all contributed to periodic failures of the AIM software, 
requiring complete system reinitialization. Although tolerable for short-term development activities and 
useful for evaluating various aspects of AIM design, reliability and scalability concerns required a 
rethinking of the future direction for the software development effort. However, the initial infrastructure 
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could sustain message rates of up to 600K/sec when running, it provided the flexibility to integrate 
different programming languages and models and analysis model configurations could be changed at 
runtime. It was therefore deemed sensible to continue with the initial core components, but improve them 
as we moved into phase two of the infrastructure development. 

Our development work coincided with the introduction of PNNL Research Cloud infrastructure, 
which enabled us to take advantage of a number of foundational technologies to improve the AIM 
codebase in a principled and significant way. The cloud ecosystem brought elastic capabilities to AIM, 
while OpenStack Infrastructure-as-a-Service (IaaS) features provided a path forward to ensure high 
availability and horizontal scale out of the AIM services. The popularity of OpenStack and active 
community support allowed us to use existing solutions for template-based specification of AIM services, 
leveraging OpenStack HEAT orchestration, meaning that AIM clients can expect a consistent level of 
system performance regardless of the data volume being processed by the system. (This does assume a 
certain reasonable limitation on the network capacity and ability to combine virtual machines into a 
reliable cluster with a distributed-memory data repository capability for massive parallel processing 
tasks.) AIM clients will also benefit from active, real-time monitoring of the system, with automated 
response to outages and service interruptions. Overall, the cloud migration of AIM enables both a 
significantly greater performance scale and an operationally improved reliability of AIM service at only a 
modest increase in hardware resource usage—a cost that is optimally shared across all cloud tenants. 
Based on these assessments, the team migrated the existing AIM infrastructure into a cloud-based 
environment, making the necessary changes to ensure greater stability of the environment and enabling 
multiuser access to its capabilities. The new system is currently under extensive user testing and holding 
up well. 

Based on experiences with the current infrastructure implementation, the team has identified a range 
of additional research and development areas, core among them are the runtime adaptation of analysis 
model coupling and scalability work to reach the necessary data throughput on high data volumes. 

The AIM software infrastructure team plans to release any modifications or contributions to the open-
source software used in the AIM implementation back to the community. There is an important, virtuous 
cycle of innovation, contribution, and idea sharing that factors into the value of the AIM Initiative’s 
contributions. We hope that by actively integrating the most innovative concepts and fielding novel 
technologies in challenging problem domains we advance the state of the art in streaming data analytics. 
We expect that feedback as to which of these technologies worked well and which failed to realize their 
potential for streaming data analysis will help the community better direct their engineering efforts and 
continue to improve the toolbox with which we address important open problems and challenges. 
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1.0 Introduction 

Science and national security missions are driven by the need to assimilate and interpret ever-
increasing volumes of data to accelerate scientific discovery and make critical decisions, so the speed of 
analysis is as important as the choice of data to be collected. Ideally we would like to identify and 
interpret phenomena and events of interest as they are emerging and adapt our analysis and data collection 
as they evolve to create an optimized set of information in support of our discoveries and decisions. 
However, today’s predominant analysis paradigm remains the post-hoc evaluation of results, often relying 
heavily on manual labor, in particular in the value-adding areas of results interpretation in the domain 
context and hypothesis evaluation. This strongly human-centered approach does not offer the scalability 
required for timely decision making in big data environments, delaying or preventing necessary decisions 
and actions by days, months, or years. 

The Analysis in Motion (AIM) Initiative proposes to develop a new analysis paradigm—persistent/ 
dynamic knowledge synthesis—that will provide continuous, automated synthesis of new knowledge and 
dynamic control of measurement systems contemporaneously with observed phenomena. Working on 
streaming data, this new capability will automate currently time-intensive manual analysis and 
interpretation steps and allow scientists and analysts to optimize data taking to meet the needs of their 
discovery or decision-making process in a timely manner. To achieve this goal, AIM will focus its 
research activities on four areas that combine to accelerate the complete analysis cycle: 

1. Streaming characterization methods that can identify and tag features of importance in high-rate, 
large-volume data streams 

2. Continuously evolving models that can interpret identified features as early indicators for phenomena 
of interest and relate these features and phenomena into explanatory hypothesis that can assist 
humans and machines in interpretation of results and optimization of future data taking 

3. Capturing human background knowledge through a new interaction paradigm that will not only 
support evaluation of candidate hypothesis, but introduce new knowledge into the analysis process 

4. A streaming analysis integration and execution environment that will ensure the timely analysis, 
interpretation, and steering required. 

This technical report will outline the results of our requirement capture, technology selection, initial 
infrastructure design, and changes introduced based on year-one operational experiences. 
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2.0 Infrastructure Requirements 

AIM is focused on use cases where: 

• Data arrive at such high velocity and volume that storage for later analysis might not be possible 

• Critical decisions have to be made while data are still arriving 

• Events of interest are so rare that it is not possible to train algorithms sufficiently for reliable 
detection 

• Tacit knowledge is required for accurate interpretation of the data. 

To address these use cases effectively, AIM proposes to provide a streaming model (see Figure 1) 
where: 

• A wide range of models work collaboratively or in parallel on analyzing and interpreting the data 
streams together with the user 

• Data are forgotten; each model’s cache is small relative to the data volume 

• Single pass with no access to the data stream beyond the sample 

 
Figure 1.  AIM Conceptual Analysis Framework 
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The AIM infrastructure will need to provide: 

• An integration framework that supports communication between the different models as required. It 
is anticipated that different use cases and problem settings within them will require different 
combinations of models. We also foresee that, driven by the observed phenomena or user decisions, 
the combination and interaction of models might change at runtime. Therefore, the infrastructure 
needs to provide the ability to support creation of flexible model couplings, potentially on the fly. 

• Real-life data streams (e.g., extreme scale computers, experimental instruments, or sensors) made 
available to the models involved in the analysis. 

• Test data repository and testing range that provide test data of known quality and can create data 
streams of varying rates, volumes, and window sizes. Provide code instrumentation, capture 
application performance and results, and evaluate test results against expected results, metrics, and 
previous performance. 

• A development environment in which models can test their functionality and algorithms 
performance, and tradeoffs can be characterized. 

2.1 Quantitative Infrastructure Requirements 

Key factors in the infrastructure design are the data rates and volumes to be supported. These rates are 
determined by a number of initial use cases that were selected by the AIM Initiative, foremost those in the 
chemical imaging domain, which displays the highest data rates and volumes. The most challenging of 
these is the analysis and interpretation of images produced by transmission electron microscopes, which 
are currently experiencing a fast-paced technology change that is driving its data rates into unprecedented 
rages. In evaluating the use case, we see that the infrastructure needs to support the following initial 
maximum data rates and volumes: 

• Maximum – 2Kx2K image, 1,000,000/second, 2 terabytes/second, 10-second burst 

• Moderate – 2Kx2K image, 1000/second, 2 gigabytes (GB)/sec, 1-hour burst 

The maximum number of data sources is not yet 
determined, but likely will not exceed five to ten different 
sources during the runtime of the initiative. At present we 
expect the data rate per source to be lower if there are more 
data sources; for example, if we have a maximum data rate 
of 1,000,000 2Kx2K images per second it will come only 
from one source. Very high data rates will only be 
sustained for a short period, whereas lower data rates might 
be sustained indefinitely. 

The time from initial data taking to initial hypothesis 
generation will vary between the different science use 
cases, but are expected to range from a few seconds to 
several minutes, thus providing a stringent time window on the execution of the complete analysis 
pipeline. 

The combination of potentially high data 
volumes and rates, short time to 

decision, and a complex multistep 
analysis process will require the 

resulting system to be closely coupled 
and highly optimized in its orchestration 

and execution from an algorithmic, 
hardware, and networking point of view. 
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The combination of potentially high data volumes and rates, short time to decision, and a complex 
multistep analysis process will require the resulting system to be closely coupled and highly optimized in 
its orchestration and execution from an algorithmic, hardware, and networking point of view. This 
excludes solutions that require intermediate file input/output (e.g., Hadoop) or commercial cloud access 
(e.g., Amazon Kinesis) due to latency. 

2.2 Levels of Parallelism and Model Coupling 

In examining the use cases further we can detect different 
levels of parallelism and coordination that are required. 
Single analysis applications might range from modest to 
highly parallel. These applications might be run in parallel 
with others of the same type, requiring modest coordination 
at the start (who works on what) and the end (combination, 
correlation, or bakeoff of results). Furthermore, these clusters 
of applications of the same type might be run in parallel with 
other clusters of other applications, with a potential need for coordination at the end to assess, rank, and 
filter results. The more parallel the single analysis algorithm is, the less of these algorithms will need to 
be run in parallel at any given time. It is expected that instances of all analysis steps are running at any 
given time; however, they might not all be working on the same data window at the same time, but on 
prior or subsequent windows. The user will be able to give feedback that will flow into the system in the 
opposite direction of the data stream, influencing future analysis steps. 

2.3 Programming Language and Model Expertise 

AIM researchers need to use familiar programming languages and models to be most effective in their 
model design and development, given the complex nature of their research and relatively short individual 
project life cycles. A brief survey revealed that different project groups have varied experiences in 
programming languages, ranging from C, C++, Fortran, R, and MATLAB to Python and Java. Most 
researchers are familiar with one or two languages but feel the learning curve to adapt a third would be 
too high an overhead for their project. When it comes to parallel programming models, Message-Passing 
Interface (MPI) programming is the predominant expertise, with only a few researchers familiar with 
functional programming models such as MapReduce. 

2.4 New Development versus Utilization of Existing Technologies 

Given the requirements of the AIM Initiative, a fast complex event processing (CEP) system was 
determined to be most suitable. As this is not a green field and many solutions already exist, we will use 
existing tools and capabilities as far as possible and focus any development needs on areas than cannot be 
met by existing tools. 

2.5 Business Requirements 

Laboratory directed research and development programs (LDRD) such as AIM are the principle 
mechanism to develop novel ideas, extend the laboratory’s capabilities, and attract new business. 

Projects need to run at moderate to 
high parallelism, requiring 

orchestration and coordination of 
multiple tasks running in parallel. 
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Therefore, when designing the computational fabric for an initiative, we need to also consider which 
capabilities would allow us to build future business with key clients. For AIM we have identified two key 
client areas: open science and national security. 

Open science requirements include: 

• Basic science research, which is currently funded by the Department of Energy (DOE) Office for 
Advanced Scientific Computing Research, the National Institute of Health, and the National Science 
Foundation, all require the developed and utilized tools to be open source in their entirety.  

• Applied research, tools, centers, and services are funded by DOE Office for Biological and 
Environmental Research, DOE Basic Energy Research, DOE High Energy Physics, the National 
Institute of Health, and the National Science Foundation, all require the utilized tools to be open 
source in their entirety.  

• Internal usage that the Environmental Molecular Sciences Laboratory at Pacific Northwest National 
Laboratory  (PNNL) would be prepared to accept with commercial licensing and costs at a moderate 
rate, if benefits can be demonstrated. 

• Open science prefers complete solutions, analysis models and infrastructure, and do rarely adopt tools 
that require significant additional development or integration effort.  

• National security requirements include: 

• The analytics business model is a deploy-in-client-platform approach for most national security 
clients.  

• Clients use a plethora of platforms (streaming or not) so the technical approach should be platform 
independent to the extent possible, but it would be beneficial if the newly developed capability could 
be demonstrated in an environment that is similar to the client’s in its main characteristics. 

• Where clients adopt platforms they tend to be commercial or commercially supported open source, if 
possible. 

• Cloud computing solutions, including cloud + high-performance computing (HPC), are beginning to 
dominate. 

Clearly the business requirements for the two client spaces are quite different; however, there is a 
middle ground that would serve both. Commercially supported open-source software is a model that 
works for both client spaces; solutions that use standard programming languages and models as well as 
being modular are preferred by both communities to enable easier, low-risk transition. 
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3.0 Evaluation of Existing Infrastructure Frameworks 

As a result of our requirements gathering process, CEP solutions were evaluated to see if they met the 
initiative’s needs and which would be most suitable. 

3.1 Resulting Evaluation Criteria 

Our initial evaluation criteria included the following metrics: 

• Technical 

– Performance capabilities 

– Framework programming language 

– Supported programming languages and model 

– Third-party integration capabilities 

– Instrumentation (monitoring, debugging) 

• Available ecosystem 

– Available analysis libraries 

– Visualization tools 

– Training 

– Support 

• Costs 

– License 

– Training 

– Support 

– Learning curve 

• Risk Opportunities 

– Risk 

– Experience with solution at PNNL 

3.2 Evaluated Solutions 

As part of our review we investigated the following frameworks: 

• Amazon Kinesis 

• Apache Spark 

• Apache Storm 

• Cloud::Streams 
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• GridGain In-Memory Streaming 

• International Business Machines (IBM) InfoSphere Streams 

• PNNL Laboratory Integration Framework and Toolset (LIFT) 

• Red Hat JBoss Data Grid + Infinispan 

• SAS® Event Stream Processing Engine 

• Yahoo Big Data 

• Yahoo SAMOA  

• Native Programming Models (NPMs) 

Evaluation of the above frameworks provided the following high-level results for the front runner 
technologies (see Table 1, a fuller list of evaluation criteria and results can be found in Appendix A). 

Table 1. Results of Initial Evaluation of Possible Messaging Framework Solutions 

Framework Technical Ecosystem Cost Risk 

Apache Storm 1. Java 
2. C, C++ 

Java/Scala 
ecosystem 

Open Source 
Supported 

Medium/Low 
PNNL known 

GridGain 1. Java, Scala Java/Scala 
ecosystem 

Open Source/ 
Commercial 

Medium/Low 
PNNL known 

InfoSphere 1. SPADE/SPL 
2. C, C++, Java 

Application Library Commercial High 
Learning curve 

LIFT All languages All 
models 

Java/Scala 
ecosystem 

Open source  Medium/Low 
PNNL known 

Yahoo Big Data 1. Java, Scala 
2. C, C++,R 

Vast No. of open 
libraries 

Open Source 
Supported 

Medium 

NPM MPI All languages Vast No. of open 
libraries 

Open source Low 
PNNL known 

In the end no clear front runner could be identified in this field, given the selected criteria. However, 
our investigation found that most of the frameworks were limited in the range of programming models 
they could support, while still providing high performance. We decided to investigate in more detail 
which programming models needed to be supported by the AIM infrastructure framework to help narrow 
our choices. 

3.2.1 Embarrassingly Parallel Computations 

Each computation is entirely independent of the other and there is no requirement for 
synchronization. The teams have several algorithms that can be classified in this category. For these types 
of applications, a MapReduce-based programming model with in-memory computation would be 
sufficient, although MPI-based solutions would provide similar or better performance. 
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3.2.2 Embarrassingly Parallel + Reduction/Aggregation 

These algorithms divide data among parallel entities, perform computation locally (such as kernel 
calculation K-means or self-self-distance calculation in canopy clustering) and synchronize at the end of 
each step for reduction/aggregation. Several AIM algorithms fall under this category. These algorithms fit 
well with both MapReduce and MPI, with the choice of programming solution dependent on the 
algorithm and data requirements. 

3.2.3 Bulk Synchronous Communication + Reduction/Aggregation 

Many clustering algorithms require asynchronous data movement for distance calculation (e.g., 
hierarchical agglomerative clustering, canopy clustering, and support vector machines). MapReduce will 
not work; MPI-based solutions will require careful writing to overlap communication with computation, 
but present a viable option.  

3.2.4 Irregular Communication with Varying Computation 

These algorithms provide a very high degree of irregularity in communication and little to no 
computation. The semantic graph algorithms fall under this category. MapReduce or MPI are not suitable 
for this type of problem. Giraph and Pregel suffer from communication only at the synchronization 
points. An alternative is Graphlab, which performs aggregation to reduce the overhead of communication. 
Within PNNL, the Global Memory and Threading (GMT) run time developed under the Center for 
Adaptive Supercomputing Software can be considered as an alternative. 

We could identify three programming models that AIM is likely to pursue; MapReduce (in-memory), 
OpenMP/MPI, and Graphlab/GMT. Next we evaluated which of these programming models would be 
supported by the top framework contenders. For our assessment we used a number of categories: 

• Native – framework naturally supports this programming model without any changes or adaptations 
necessary. 

• Potential – framework could support this programming model; however, changes would be needed 
that would affect the performance to a significant extent. 

• Unknown – no information could be found if this programming model can or has been successfully 
supported by this framework. 

• Yes – programming model can be supported but requires changes to the framework; however, no 
significant performance implications are expected from these changes. 

The results of our investigation are presented in Table 2. 
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Table 2. Programming Model Support Offered by Selected Messaging Frameworks 

Frameworks MapReduce OpenMP/MPI Graphlab/GMT 

Apache Storm Native Potential Potential 

GridGain Native Potential Potential 

InfoSphere Streams Unknown Native Unknown 
Yahoo Big Data Native Potential Potential 

LIFT/NPM (MPI) Yes Yes Yes 

LIFT/Apache Kafka Yes Yes Yes 

The most complete, flexible, and performant solutions are enabled by low-level messaging models 
such as MPI or Apache Kafka. A combination of Apache Kafka and LIFT offers the necessary 
orchestration, configuration, and instrumentation support. 

3.3 Architecture Decisions 

We decided to recommend the adoption of the Apache Kafka and LIFT combination as the basic 
event processing framework. Kafka is a message bus to which all components will have access, giving 
them the ability to sample data or communicate with other components, while remaining independent in 
their execution (MPI would have required a tighter, direct coupling of the components). 

Applications will interact directly with the message bus. If using a programming model with specific 
higher-level framework for execution such as Apache Storm, Storm will take its data stream directly from 
Kafka. 

LIFT will in particular orchestrate the configuration, start up, and monitoring of the different 
components involved in the complete AIM analysis process. 
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4.0 AIM Infrastructure Implementation Phase 1 

Based on our core architecture decision we developed and deployed Phase 1 (from May to September 
2014) of the AIM infrastructure. On top of Kafka and LIFT, we decided to develop a test data provider 
that could stream data at user-selected rates and an interface that would allow users to test their models in 
the infrastructure against the available test data. We also settled on the use of Apache Avro, which is 
flexible, standard “big data” open-source messaging container (see Figure 2). 

 
Figure 2.  AIM Phase 1 Core Infrastructure Components 

In the following sections we describe our initial development and deployment work. 

4.1 Kafka Setup 

Apache Kafka is a distributed message-processing system based on a disk-first approach, where 
incoming messages are committed to a disk-backed queue as soon as they are received. [1] The messages 
remain in the queue until a user-specified age threshold is reached, at which point the queue is truncated 
and the messages are discarded. Kafka’s designers were interested in tracking LinkedIn user interactions 
with the site in detail and needed a way to collect high-volume streams of data from multiple sources. 
Kafka architecture incorporates functional elements of both queue-based and subscribe-and-publish 
methodologies, allowing a high degree of customization while retaining an ordered, deterministic 
interface for message retrieval. Kafka takes advantage of the high-performance state management 
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provided by Apache ZooKeeper to support a large-scale, high-availability configuration on low-end 
commodity hardware. 

In Kafka terms, a message queue (MQ) is called a topic and it represents the most general message-
grouping attribute available. To support distributed message processing, Kafka introduces the notion of a 
partition, which is a sequentially ordered subset of messages in a given topic, with the subset partition 
key defined by message senders (called producers in Kafka documentation). To support high-availability 
configurations, each topic partition is replicated (copied and kept synchronized) across multiple network 
hosts. Kafka brokers are built-in software services that coordinate client access to the partitions. On the 
client side, concurrent consumers of Kafka messages are organized into consumer groups, with each 
individual consumer in the group dynamically assigned to a partition within the topic. This design ensures 
that messages from each partition are consumed in their original order, without placing performance 
limits on the number of messages that can be sent and received for a given topic.  

As messages are read, Kafka brokers maintain a set of partition offsets for different consumer groups. 
This means that each consumer process can effectively rewind and fast-forward the shared MQ to 
facilitate its own processing requirements without affecting concurrent consumers in other groups. Kafka 
brokers also handle failover scenarios, so that topics with a replication factor of N can continue to serve 
messages (perhaps with increased latency) even if N-1 hosts become unavailable. Since only one client in 
the consumer group can read from a given topic partition, the number of topic partitions determines the 
maximum size of a consumer group for that topic. There is no limit on the number of concurrent 
consumer groups that can participate in the message exchange. Similarly, until they expire due to age 
limits, all messages can be retrieved an unlimited number of times by the consumers. 

AIM infrastructure automated deployment support for Kafka-based messaging services uses a set of 
Puppet-based configuration scripts. Puppet is a script-based application management system with both 
commercial and open-source licenses. [3] Hierarchical template files are used to specify active 
components and their startup options. Puppet also supports active monitoring of service availability, a 
functionality we plan to exploit in the future. Puppet’s ability to query its operating system environment 
simplifies deployments to multiple targets such as development and production, and supports cross-
platform configurations between Linux, Windows, and MacOS hosts. Use of Puppet to manage AIM 
operational configuration also reduces the need to manually customize source code distribution, thus 
significantly reducing the amount of time to stand up a fully operational analytic environment “out of the 
box” on a new system. 

4.2 Kafka/LIFT Integration 

Keeping with the design ideas of cross-platform support and template-based automation, the AIM 
infrastructure team based the core software on LIFT. This software package is an internal PNNL product 
used by several teams for research and large-scale production purposes. [2] At its core, LIFT is a Java-
based platform focused on enterprise integration patterns through the strategic use of open source Spring 
and Spring Integration packages. AIM software built with LIFT support is designed to run within a Java 
Enterprise compliant container environment. Apache Tomcat application server is used to host AIM at 
PNNL, but the server software should be compatible with products from other vendors such as Red Hat 
JBoss Application Servers or any Java Enterprise Edition (JavaEE) compliant servlet engine. 



 

12 

LIFT provides developers with a complete solution for rapidly bootstrapping their code and its 
dependencies into functioning web applications with industry standard build tools, such as Maven and 
Gradle. Support provided by the Spring modules helps add advanced enterprise features such as 
authentication against Lightweight Directory Access Protocol (LDAP) and Active Directory (AD), 
Transport Layer Security (TLS) encryption, dynamically generated web services with support for both 
Simple Object Access Protocol  (SOAP) and Representational State Transfer (REST) based designs. 
[8][7] Web service components support both annotation and XML-based configurations to produce 
documented resource descriptions and contracts that clients can access in a programmatic way. Build 
utilities used by LIFT include convenient dependency injection capabilities to set configuration values in  
code at run time, so that the same software can be deployed on multiple different machines without 
additional code changes. To help maintain software engineering quality, LIFT integrates popular Java 
quality assurance tools, such as findbugs and cobertura, which help analyze and report on potential 
software defects. [4][5] Programmer-directed validation using the JUnit testing framework is also 
supported. [6] All of these development tools and aids are fully integrated with the Eclipse development 
environment, supporting developer productivity while encouraging good design and implementation 
practices.  

In support of the AIM Initiative, we extended the built-in LIFT connectivity options to provide a web 
enabled interface for managing and accessing Kafka streams. This interface follows the REST design 
principles and exposes each Kafka topic as a web service resource. Clients connect using a hypertext 
transfer protocol (HTTP) family of transfer protocols to a specific endpoint that represents a data resource 
on the system. Some of these endpoints represent interfaces to predefined data streams and others act as 
frontends for dynamically created resources. LIFT provides the templates needed to embed several data 
producing sources to support AIM client data requirements. Each data producer is a Spring bean (in 
JavaEE terms). This architecture relies on LIFT to manage all interactions between the client and the data 
backend, and effectively abstracts all implementation details about Kafka into a consistent, platform 
agnostic web interface. True to the original design goals for LIFT, the AIM web services components 
were constructed with minimal custom code and enforcement of industry standard interfaces. The AIM-
driven improvements to LIFT were subsequently backported to the core LIFT distribution for reuse by 
others. 

4.3 Data Producer 

The data producer is responsible for reading data from a location, creating messages from the data, 
and streaming them into a specific Kafka topic. A separate data producer is defined for each type of data. 
The AIM infrastructure management web service is responsible for calling the data producer when a user 
requests to start a data stream. In response the matching data producer creates a single stream. In a 
multiuser test environment, each data stream will further be associated with a specific user (e.g., 
NMR_Raw_Data_Kerstin). If a user requests to start the same stream twice then an appropriate error 
message is sent back to the user via the management web service. 

The location of the data and the Kafka topic to which it needs to be streamed are specified as a key-
value pair in gradle.properties in the AIM infrastructure setup parameters. In multiuser test environments, 
the data producer appends this topic name with username to create a unique topic for the requesting user, 
it then iterates over the data location to parse the data and divide them into messages. Each data producer 
works with a specific Avro schema. It creates the message as a Java object associated with the Avro 
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schema and serializes it into byte buffer. This byte buffer is then sent to the topic created for the user. The 
data producer continues to parse the data, create Avro messages, and send them to the topic until the user 
requests to stop the stream. 

For the current use cases, data are stored in csv file format on the system where the AIM 
infrastructure and models are executed. A single data location contains multiple csv files, each containing 
data for a large number of messages (e.g., all messages for one complete experiment). The data producer 
iterates over these files and reads a single row from each file to create an Avro message. For example, it 
reads the first row of the first file and creates the Avro message, then sends the message over the created 
topic. When the last row of the last file is read and sent over the topic, it restarts from the first row of the 
first file. This loop continues until the user requests to stop the stream.  

4.4 User Interface for Testing Range 

To use the infrastructure to test algorithms we developed a testing range graphical user interface 
(GUI). In phase one of the infrastructure setup we had two research projects that we supported in their 
model development—Online Predictive Analysis (OPA) and Streaming Hypothesis Reasoning (SHyRe). 
The test case scenario we chose allowed them to test their models separately or together. The initial data 
stream provided consisted of nuclear magnetic resonance (NMR) spectra records. 

The user interface was implemented using a GUI toolkit implemented in MATLAB (MathWorks 
2014a), shown in Figure 3. 

 
Figure 3.  GUI for Testing Range 

The tool has four major components: 

1. Infrastructure Connect: Enables the user to select data stream characteristics, administer the data 
streams, and select the models to be tested (Figure 4). 
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(a) Message Consumption 
Settings 

(b) Data Ingestion or Resetting 
of Topics 

(c) Algorithms And Models 

Figure 4.  Infrastructure Connect 

As shown in Figure 4, (a) allows the user to select the number of data streams, the number of 
overall messages to be streamed (by selecting the number of experiments to be streamed), speed of 
the data stream (by selecting the waiting time between messages), and the success condition for each 
experiment; (b) allows users to start selected data streams as well as to reset the message topics (i.e., 
deleting all messages from previous tests that might still be in the MQs); and (c) enables the user to 
select the models to be tested. 

2. Data Streaming: The tool displays content for each stream of incoming messages (NMR spectra) in 
the live streaming window and ground truth for the current experimental sample being streamed to the 
models as shown in Figure 5 (a). For the latter we display the list of all possible compounds that 
could be in our test examples as shown in Figure 5 (b). This particular example set had a maximum of 
ten compounds (A-J) per experiment. The compounds present in the current stream are highlighted in 
green.  

 
 

(a) Live Incoming Spectra (b) Library Compounds Used to Generate NMR 
Data 

Figure 5.  Data Streaming 

3. Results: The results are presented in two ways.  
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In Figure 6 (a), each experiment has three rows and ten columns, one each for each possible 
compound. The bottom row for each experiment shows the compounds actually present, the middle 
row shows compounds only predicted by model 1, and the top row shows compounds that have been 
identified by model 2. The graphics uses three colored bars. The green bars represent the compounds 
that are actually present in each incoming stream, the yellow bars represents compounds identified by 
one algorithm, and the blue bars represent compounds identified by both algorithms. Two blue bars 
denote that the compound is most likely present and a blue/yellow combination suggests that more 
validation is required to confirm the presence of that compound. Usually each experiment will consist 
of 100 scans; the aim is for the algorithms to minimize the number of messages they are required to 
process to identify all present compounds correctly. The box to the right of the middle and top row 
per experiment provides the number of scans that they required to complete the analysis.  

The ‘Variations in cpds identified’ vs. ‘# of scans’ plot shown in Figure 6 (b) represents the 
number of consecutive messages with identical results by a horizontal line. 

  
(a) Results for Multiple Experiments (b) Plot for Variations in Compounds Identified vs 

Number of Scans 

Figure 6.  Graphical Results 

4. Metrics: Some basic metrics are generated and stored for each full test run. The average percentage of 
successful identification of all compounds present from all experiments in the current test run is 
represented in Figure 7 (a). The average number of scans taken to identify all compounds is displayed 
in the pie charts in Figure 7 (b) for the current experiment and (c) for all experiments. The horizontal 
bars in Figure 7 (d) represent the average amount of compounds identified at < 25%, <50%, <75%, 
and >75% where the red bar is for the current experiment and blue bar is for the average of previous 
experiments. 
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(a) Average Success Percentage for ‘n’ 
Experiments 

(b) Average Scans to Identify All Compounds 
Current Experiment (right) 

  
(c) Average Scans to Identify All Compounds for 
All Experiments 

(d) Percentage of Compounds Identified 

Figure 7.  Metrics 

4.5 Avro Container 

The Apache Avro data serialization system was selected as the messaging container for use by the 
AIM infrastructure. A key feature of Avro is that each message includes the message schema as well as 
the message itself. Avro’s message data model is based on JavaScript Object Notation (JSON) and can be 
represented as either JSON or in a compact binary form. Avro provides a sophisticated schema language, 
also in JSON, used to describe message data structure. Avro has many benefits including direct mapping 
to and from JSON, compact binary representation making it efficient for high-volume usage, multiple 
language bindings for client development, a robust schema language (also in JSON), and support for 
schema evolution.  

Schemas are a critical feature within Avro, conceptually similar to a relational database table schema, 
affording producers and consumers the capability to exchange message data knowing they are correctly 
formatted. Avro schemas can also be self-describing; they can provide semantics of data fields listed in 
the schema through use of their “doc” field. Also, unlike other popular messaging systems (e.g., Thrift, 
Protocol Buffers), Avro provides dynamic typing. That is, Avro does not require data access codes to be 
generated at build time based on the schema definition. This enables development of a generic data 
processing framework using Avro’s API to reference the schema at runtime. 

For AIM, Avro was the ideal message format choice as it provides the means for flexible model 
coupling developments due to its language independence and the possibility for the consumer to interpret 
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and use the message as it arrives. Using Avro in this way proved a means for application developers to 
prototype messages with JSON and quickly generate, receive, and analyze messages from other 
applications through the interface. However, this approach does represent a cultural shift for most 
developers who are used to working on their own or are familiar with messaging methods such as MPI, 
where message format and interpretation have to be discussed and agreed between developers rather than 
be available in the message. 

4.6 Initial Deployment Environment 

The first version of the AIM server software accessible to internal PNNL clients was hosted on a 
single Red Hat Enterprise Linux 5 node provided by PNNL Institutional Computing (PIC). [8] This host 
has two 16-core Advanced Micro Devices (AMD) Opteron processors (32 cores total) operating at 2.1 
GHz, 64 GB of random access memory (RAM), and a one-terabyte local disk allocation with sustained 
read speeds of 125 MB/sec. In addition to local storage, the system also has access to several common file 
shares accessed via a parallel Lustre file system over a 40GbE high-performance QDR InfiniBand 
interface. [10] 

AIM server software deployments for this host configuration consist of two phases: the initial 
configuration and launch of the Kafka messaging infrastructure via Puppet scripts, followed by update of 
the application web archive (WAR) file within the Tomcat server with Java code hosting web services 
and data producer routines. Kafka bootstrapping is executed manually via shell scripts and, under normal 
operating conditions, no additional work is required. The Puppet scripts handle ZooKeeper configuration, 
Kafka broker start up, as well as the initial creation of test and validation topics to assist with debugging 
and confirmation of successful installation of the messaging system. The Tomcat server is configured to 
monitor its web applications folder continuously and to reinitialize applications once their source WAR 
file is updated. The WAR file for AIM is deployed via the one-button deploy Jenkins build system using 
the Subversion repository as its source. Jenkins build jobs encapsulate system access credentials, provide 
environment configuration, and perform scripted tasks that automate package updates. 

For the initial deployment of the AIM server software, we implemented four preprogrammed data 
producers that AIM clients could activate to populate Kafka MQs with known test values. Data sets 
containing validation data were generated and stored as a collection of comma-separated-value text files 
on a shared network drive. The web services management frontend can intercept client requests for 
starting, stopping, and resetting the data stream, and issue the corresponding commands to Kafka on the 
client’s behalf. Additionally, this first version of the AIM stream interface enabled clients to access 
messages both in a sequential manner (retrieve next message or skip N messages and retrieve the 
following message, etc.) as well as the ability to window the stream (select a subset of the streamed data 
and process the information using a batch-oriented approach). Figure 8 illustrates the key functional 
modules for the first version of AIM server software as deployed on the PIC head node. 
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Figure 8.  Functional Block Diagram of AIM Server Software on the PIC Head Node 

4.7 Initial Infrastructure Performance Tests 

After the basic Kafka installation we conducted a number of scalability tests to assess if we could 
achieve a suitable level of performance or where further optimization might need to be applied.  

4.7.1 Third-Party Test Results 

To get a measure of the performance we should be able to achieve we identified a set of publicly 
available test results: 

C++ (librdkafka) Results 

https://github.com/edenhill/librdkafka/blob/master/INTRODUCTION.md#performance-numbers  

Performance numbers 

The following performance numbers stem from tests using the following setup: 

• Intel Quad Core i7 at 3.4 gigahertz, 8 GB of memory 

• Disk performance has been shortcut by setting the brokers' flush configuration properties as so: 

– log.flush.interval.messages=10000000 

– log.flush.interval.ms=100000 

• Two brokers running on the same machine as librdkafka 

• One topic with two partitions 

• Each broker is leader for one partition each 

• Using rdkafka_performance program available in the examples subdir. 

https://github.com/edenhill/librdkafka/blob/master/INTRODUCTION.md%23performance-numbers
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Test results 

• Test1: two brokers, two partitions, required.acks=2, 100 byte messages: 850000 messages/second, 
85 megabytes/second 

• Test2: one broker, one partition, required.acks=0, 100 byte messages: 710000 messages/second, 
71 megabytes /second 

• Test3: two broker2, two partitions, required.acks=2, 100 byte messages, snappy compression: 
300000 messages/second, 30 megabytes /second 

• Test4: two broker2, two partitions, required.acks=2, 100 byte messages, gzip compression: 
230000 messages/second, 23 megabytes /second. 

4.7.2 PNNL Tests on OS X Laptop 

Initially we set up and tested our Kafka configuration on a standard laptop (see Figure 9). Our goal 
was to see how long it would take to send 1,000,000 messages through the system; we used a smaller 
message size than would be produced by one of our experiments and limited messages to 35 bytes. 

Performance numbers 

• Processor: 2.3 gigahertz Intel Core i7 

• Memory: 16 GB 1600 megahertz DDR3 

• Software: OS X 10.9.2 (13C64) 

 
Figure 9.  AIM Initial Kafka Test Configuration on Standard Laptop 

Test results 

• Test 1: three brokers, 15 partitions, three replications: 1 million messages: 272 seconds 
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• Test 2: three brokers, four partitions, three replications: 1 million messages: 247 seconds 

• Test 3: three broker, four partitions, five replications: 1 million messages: 199 seconds 

• Test 4: 5 broker, 15 partitions, five replications: 1 million messages: 447 seconds 

• Test 5: five broker, four partitions, five replications: 1 million messages: 410 seconds 

• Test 3: five broker, four partitions, two replications: 1 million messages: 212 seconds. 

4.7.3 PNNL Test on High-Performance Computing Cluster Head Node 

Our target deployment environment was our local high-performance computing (HPC) cluster, a 
20,000 core cluster composed of regular, fat, and HPC nodes. We used one node of the system including 
32 central processing unit (CPU) cores, 64 GB RAM, Lustre file system support, and InfiniBand 
networking. The Kafka configuration is presented in Figure 10, the related performance results are shown 
in Table 3 (five broker, synchronous, acknowledgement from broker required, 7-day queue storage, 
sending 1 million messages), and the optimized results are provided in Table 4 (five brokers, 
synchronous, no acknowledgement, 60-second queue storage, 1 million messages). 

 
Figure 10.  AIM Initial Kafka Test Configuration for Target HPC Environment 

Table 3. Performance Test Results 

Replication Partitions Run 1 (s) Run 2 Run 3 
5 15 1144 1075 1110 
4 5 844 945 733 
4 1 814 838 768 
3 15 643 645 676 
3 4 644 663 706 
3 2 695 656 599 
2 4 629 606 639 
2 1 658 633 551 
1 1 434 491 503 
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Table 4. Optimized Test Results 

Replication Partitions Run 1 (s) Run 2 Run 3 
Throughput 
Avg. Kb/s 

5 15 288 228 265 44.81434059 
4 5 209 221 245 51.85185185 
4 1 205 213 217 55.11811024 
3 15 184 183 215 60.13745704 
3 4 208 183 182 61.08202443 
3 2 178 181 182 64.69500924 
2 4 172 179 181 65.78947368 
2 1 177 174 174 66.66666667 
1 1 168 164 162 70.85020243 

4.7.4 Tests after Further Optimization 

Based on the initial configuration test matrix, we selected the settings that resulted in the highest 
throughput (i.e., no data replication with a single broker) and repeated the message-publishing test over a 
2-hour period. The sustained measured rate with the 35-byte test payload on a single node was 600K 
messages per second. The observed high-performance of the direct interface to the Kafka messaging 
subsystem in this configuration represents a useful baseline to help drive additional AIM design work. 
The next section discusses some of the challenges and issues we identified during integration of Kafka 
with the AIM web services. 

4.8 Initial Model Integration and Use Case Tests 

At the end of the initial AIM infrastructure deployment phase, we were able to successfully integrate 
two models into the infrastructure. Once the integration and model testing were completed we carried out 
an end-of-deployment performance test. We selected our NMR use case as test scenario; the limiting 
factor in these experiments was the number of scans or repetitions of each experiment. Each scan is a 
representative summation of all the previous scans and hence produces a cleaner spectrum with improved 
signal-to-noise ratio. The challenge for the algorithms was to identify the compounds present in each 
experiment within a fixed set of scans. We did two rounds of 100 scans and 65 scans. If all compounds 
for an experiment were identified within the set number of scans, the GUI would automatically skip to the 
next experiment and repeat the process. Each incoming stream was simultaneously passed through a 
single algorithm (OPA) and a combination of two algorithms (OPA and SHyRe) to identify the benefits 
of using a single algorithm vs. multiple algorithms in tandem.  

Out of the 150 experiments, we determined the algorithms, both individually and in combination, 
were able to identify all compounds present with 100% accuracy in an average of 75 scans. The benefits 
of using a combination of algorithms were evident when the number of maximum scans available for the 
algorithms was limited to 60. For almost all experiments, a single algorithm alone was unable to identify 
all the compounds present. 

As shown in Figure 11 (a) and (c), executing the algorithms in tandem resulted in some compounds 
being identified by both algorithms (blue bars) and some identified only by one (yellow bars) as possibly 
present/absent, while green represents actual results. The success ratio shown in Figure 11 (b) and (d) are 
biased in that the result is counted as successful only if all compounds are correctly identified. 
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(a) Limited to a Maximum of 60 Scans (b) Success Ratios for Case a 

  
(c) Limited to a Maximum of 100 Scans (d) Success Ratios for Case c 

Figure 11.  Results of Two Experiments 

The infrastructure performed well during the tests, delivering the messages reliably and responding 
quickly to the interface commands. We found that message throughput rates were limited by the 
algorithms and not by the infrastructure. The OPA model required less than 0.8 second per message, so 
could process between 75 and 100 messages per second. SHyRe was limited in their speed by the Pellet 
reasoner they were using, and required 10-15 seconds per message, thus had to employ a much more 
stringent sampling approach to keep up with the message stream.  

4.9 Conclusion and Final Setup 

Performance results and message throughput measurements obtained with the direct interface to the 
Kafka messaging system represent an optimal goal state for Kafka’s integration with the rest of the AIM 
software. Once integrated with the web service components of AIM server code, AIM clients no longer 
have direct access to Kafka topic streams. Instead, data upload and download are facilitated via HTTP 
REST endpoints using AIM-managed resource locations and application-specific options. The tradeoff of 
this approach is a simpler, more robust interface for the client code, which helps focus the AIM interface 
code development on solving the science problem without exposing technical aspects of the underlying 
infrastructure. The cost of this simplification is a loss of efficiency; client requests are issued to the AIM 
server software running as a web services application inside a Tomcat server. The AIM server software 
maintains state information about client requests and provides an interface to the Kafka brokers for data 
access. The overhead of HTTP-based communication, the extra layer of indirection, and the network 
backed data store for shared Kafka log files are some of the main reasons why the web services 
implementation is less efficient than the performance evaluation configuration described earlier. 
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In addition, we have identified ZooKeeper’s sensitivity to network latency as a contributing factor to 
system instabilities and software faults that have caused periodic instability in the AIM-to-Kafka interface 
in production. Monitoring system logs on the PIC head node server revealed periodic network timeouts 
on the InfiniBand link that supports the file shares. The operating system has sufficient error handling to 
prevent catastrophic data loss, but the latency on input/output access times would sometimes jump by 
several orders of magnitude. Normal users of the system would see this manifested as exceedingly long 
response times for file system commands like ‘ls’. For Kafka and ZooKeeper, it would appear that the 
system services have become unresponsive and the connection would be terminated, resulting in the 
perceived downtime of the system. Furthermore, the first version of the AIM server software lacks the 
ability to actively poll Kafka configuration to detect such “under the hood” failures; thus from the 
standpoint of the client, the original request is still active, resulting in an inconsistent state between all of 
the various system components. Recovery in this case consists of explicitly shutting down the client 
connection and reinitializing the Kafka and AIM interface parameters. However, since this is a manual 
process involving intervention by a system developer, the overall service recovery time varies depending 
on the time of initial error detection and developer availability. 

Another issue that had an adverse impact on the client experience with the AIM-to-Kafka 
implementation was the complexity of the low-level Kafka API that permitted advanced Kafka 
functionality, such as rewinding and windowing of stream data (as opposed to the simpler “move 
forward-only” access). For example, our testing identified a problem with the Kafka interface, trigged by 
a client reading past the end of the stream causing a serious error. When this condition occurred, the 
internal Kafka stream access data structure was marked invalid, yet the failure remained invisible to the 
higher-level AIM web services code. As a result, subsequent requests for messages using the same stream 
access structure would fail silently, giving the appearance that no more data were available in the stream. 
Similar to the ZooKeeper issue, recovery involved a manual reset of the entire system, affecting all of the 
AIM topics, not just the one with the error. Without a clearly defined and requested requirement for 
random stream access, it was our recommendation to limit future revisions of the Kafka stream reader 
interface to the simpler approach of forward-only stream access.
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5.0 AIM Infrastructure Deployment Phase 2 

After the deployment and evaluation of phase one, the overall AIM Initiative increased its research 
activities in phase 2 (October 2014 – April 2015) to nine model development efforts, with a view to 
supporting additional summer student projects as well. To support this increase, the infrastructure needed 
to evolve further, to provide: 

• Multiuser support 

• Load balancing 

• Redundancy 

• Unrestricted topic partitioning 

• Provenance and metrics capture 

In the following sections, we will describe our development efforts for phase two. 

5.1 Multiuser Support 

As described earlier, we identified several stability issues caused by ZooKeeper availability as well as 
advanced Kafka stream manipulation that was difficult to track in the higher-level AIM interface code. At 
the same time, the project demonstrated a growing requirement to support concurrent users, allowing 
them simultaneous access to shared data streams and in need of a coordination/cooperation mechanism to 
enable shared data flows between dynamic, interacting components. Taking this as an opportunity to 
apply lessons learned from the first iteration, the infrastructure team refactored the AIM server software 
implementation to improve robustness and deliver a more consistent and stable environment to the system 
users. 

The first improvement was the integration of the AIM system with the PNNL LDAP and AD 
services. This allowed users to authenticate with the AIM infrastructure using their regular network 
credentials. Internally, the AIM software appended network user names to client requests for data when 
creating Kafka topics, ensuring that each client had a dedicated MQ and could request and process data 
without interfering with other users in the system. The fact that user network credentials were being used 
in a web service environment meant that the AIM system needed to protect the data as they traveled 
through the network. Therefore, we modified the server configuration to force TLS encryption on all 
incoming connections. The AIM REST endpoints were upgraded to use HTTPS and the Tomcat server 
was configured to use the PNNL Secured Sockets Layer (SSL) certificate. Integration with AD and 
HTTPS, data encryption were implemented within the LIFT base software framework and these 
innovations were contributed back to the LIFT codebase to make the same functionality available to other 
PNNL projects using LIFT for their web services infrastructure. 

The timing of these changes was also favorable to upgrade the Java runtime environment from 
version 1.7 to 1.8 (or Java 8 as it is sometimes referred to by Oracle). This new version of the Java 
development platform offered a redesigned concurrency system that AIM used to simplify management 
of multiuser request queues. In particular, the AIM infrastructure used a job stealing executor to 
encapsulate AIM user requests for Kafka data. This allowed the AIM infrastructure to manage 
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concurrency in a structured, asynchronous manner with a significant improvement in error detection and 
handling capabilities. The new interface served as a natural approach to encapsulating Kafka read 
primitives so that failures in the underlying stream would result in an exception report in the main AIM 
software, providing a powerful means for reporting problems back to the user. However, to realize these 
advantages the design required greater tolerance for latency (as the requests were queued up and 
scheduled by execution internal to the Java virtual machine [JVM]). Furthermore, this approach still 
relied on a single AIM application to keep track of user requests, thus limiting both scale and robustness 
of the overall system. Scalability and stability are the two characteristics that the team has identified as 
key target areas for follow-on improvement. 

5.2 Scalability and Stability Measures 

Drawing on inspiration from the current HPC trends in both research and industry, we have identified 
migration to a cloud-based architecture as the most effective and practical path forward for future AIM 
development. The cloud-based approach, which in this context can be thought of as a collection of self-
contained services with the ability to scale both vertically (individual node capabilities) and horizontally 
(number of nodes) to handle increasing volumes of data, addresses the key problems and challenges we 
identified in the earlier revisions of the AIM infrastructure design. For example, issues with network 
resource latency are addressed in the cloud via distributed file repositories that provide built-in replication 
and redundancy so that intermittent network problems with a single file server node can be overcome by 
accessing a copy of the data from a replicated backup. For these cases, the distributed data store typically 
employs a sharding (i.e., partitioning) technique that ensures high-speed parallel access for multiple 
clients. In the cloud, network resources in general are accessed via a pool of load-balancing gateways that 
actively monitor the network resources and route client requests via the optimal path. Failures of 
individual nodes do not result in complete failures of the system because their failure is mitigated by peer 
nodes that provide temporary relief coverage while the affected resource is repaired and restored. 

Because each node must provide for a graceful failover, it is important they carry only the minimal 
state information in their local cache. That way, when a failure occurs, one of the peer nodes can pick up 
the same task in a manner that is transparent to the client. Out of the box, ZooKeeper installation provides 
support for such a high-availability scenario (see Figure 12 below). ZooKeeper uses a quorum; a 
coordinated group with a dynamically elected lead node and a set of followers that replicate the leader’s 
data. [12] Information can be read from any ZooKeeper server in the quorum, leading to direct 
performance gains with distributed applications. New information is written to the lead node only and 
then replicated to the follower nodes via several tunable mechanisms. While the second revision of AIM 
server software still keeps all of its state management data in local memory, the refactoring of the 
software to support multiple users helped define the boundaries of this shared state information. 
Encapsulation of the AIM global state in the modern Java concurrency interface should aid in converting 
this solution into a truly distributed, stateless, cloud-ready application. 
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Figure 12.  Second Revision of AIM Server Software with High-Availability ZooKeeper Configuration 

5.3 Provenance and Metrics Capture 

AIM has a range of key targets to achieve with its full system (infrastructure and models). To monitor 
how individual projects and the initiative as a whole are progressing towards achieving these goals, it will 
be necessary to define, capture, and evaluate a number of crucial success metrics, some of which will be 
captured by the infrastructure. The key hypotheses we want to test within AIM are the following: 

• Insight generation 

– Goal: AIM will allow humans to use streams to develop correct interpretations of the world, with 
reproducibility across different users.  

– Insight is a tradeoff between utility, throughput, and accuracy. 

• Throughput 

– Hypothesis: AIM will ingest streams at a rate sufficient for the problem domain. 

– Hypothesis: AIM will yield judgments at a speed sufficient for the problem domain. 

– Metrics captured by infrastructure: message throughput rate per model, basic and complete 
infrastructures, model combination solution, time to solution required. 

• Accuracy of algorithms 

– Hypothesis: AIM systems will converge to correct interpretations under two gold standards 
(compared to the known state of the world as reflected in the data and compared to reference 
static analytic algorithms running over the total data). 
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– Hypothesis: F1 (precision/recall) measures will be greater than with algorithms alone or humans 
alone. 

– Metrics captured by infrastructure: model-specific results, model combination results, model 
results with human input, ground truth, results from static algorithms on the same test case, 
calculated deviation score. 

• Utility of AIM’s output 

– Hypothesis: AIM will provide stream interpretations that usefully support insight in its users. 

– Utility of human input in AIM (vs. purely algorithmic streaming classifiers). 

– Hypothesis: Users will be able to usefully guide streaming classifiers. 

– Hypothesis: Correct human interpretations will occur earlier in the stream with AIM. 

– Metrics captured by infrastructure: human steering input into the system; number, content and 
timing, correlate with accuracy results, capture human insight; conclusion, timing, accuracy 
against ground truth. 

Next to capturing the pure metrics, we want to enable infrastructure and model developers to identify 
root causes for changes (positive and negative) in their performance to aid their further progress. In 
consequence, we have decided to develop an extended provenance system that captures what has been 
run, when, and where, and combines this information with the metrics listed above. As performance could 
be influenced not only be models and the AIM infrastructure, but also the utilized execution environment 
and system architecture, we decided to develop a comprehensive workflow performance provenance 
model to capture all aspects of performance and the inherent interdependencies. Furthermore, we are 
currently developing a high-performance, compact, provenance capture system that is directly integrated 
into the AIM infrastructure. The resulting provenance is stored in a scalable archive that will enable users 
to easily evaluate and explore their performance details. Our provenance work will be described in 
separate publications in more detail.
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6.0 Future Work 

6.1 Cloud/HPC Plans 

The next task on AIM infrastructure team’s roadmap is conversion and deployment of the current 
single “head node” implementation of the server software into a full-fledged cloud architecture, with 
exciting and useful features such as dynamic load balancing (also known as elastic scaling) and high 
availability (e.g., the system will have instant failover, with no impact on the client). Cloud architectures 
are at the forefront of current computational science innovation and the rapid growth in this area comes 
from the union of mutually reinforcing schools of thought. Hardware virtualization, or the ability to 
“emulate” self-contained computing units within other operating environments, forms the foundation of 
any cloud-based effort. Software-defined networking is the second foundational technology that works 
alongside virtualization to enable complete ecosystems of networked virtual hosts. 

By relinquishing direct control of the hardware, a cloud-managed application may take advantage of 
powerful, high-level interfaces and services provided by the virtualized environment. The AIM 
infrastructure team worked closely with the new PIC Research Cloud personnel to ensure close alignment 
of future collaboration efforts to ensure maximum leverage of existing investments. AIM is currently in 
the process of migrating all of its software for both infrastructure and individual science project teams to 
the PNNL OpenStack-based cloud platform, as diagrammed in Figure 13.  
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Figure 13.  Functional View of a Cloud-Ready AIM Infrastructure Software 
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OpenStack is a union of both open source and commercially supported software with the broad goal 
of building a production scale cloud environment compatible (and competitive) with the industry leading 
Amazon web services products. OpenStack is a thriving community effort supported by a global group of 
volunteers alongside established enterprises, such as IBM, Intel, Hewlett Packard, RedHat, and AT&T. 
There are official releases of the core technology maintained by the project, along with many supporting 
utilities hosted on GitHub and similar community development platforms. At PNNL, the cloud 
installation already provides the principal functionality: software-defined networking with advanced load 
balancing and virtual internet protocol management, multiple Linux operating system virtual machine 
images, a distributed data file system called Swift, database-as-a-service layer called Trove (supporting 
both relational and non-relational data models), and a customizable solution for distributed data 
processing service called Sahara. 

Abstraction of hardware and the network into fully virtualized entities yields the important 
operational advantage of being able to accurately “snapshot” the state of the system, pause and resume 
processing, modify the physical location of virtualized resources, and collect in-depth metrics on system 
performance to help drive improvements and continuous redesign. Real-time metrics are an important tool 
in ensuring availability of the system by helping to detect and mitigate anomalous system performance. 
As soon as abnormal operating parameters are detected, another instance of the affected resource can be 
created and deployed into service, while the malfunctioning component is quarantined or recycled. In 
OpenStack, this functionality is implemented via a component called Ceilometer. The tool makes use of a 
special configuration construct called a Heat orchestration template that provides a blueprint for a cloud-
enabled virtual machine or service. OpenStack management software uses these template files to 
dynamically create and allocate new resources in response to increased data loads. The ability of a 
properly written OpenStack software system to scale its processing capability on demand is an important 
motivating factor for steering future AIM design and development toward the cloud architecture. 

Because the existing AIM infrastructure is designed as a web services platform, extending its current 
implementation to fit a cloud environment is a straightforward task. As explained earlier, decentralization 
of internal state-keeping is the first improvement that is needed to enable the transition to the cloud. In the 
OpenStack implementation, this will consist of using a distributed database to keep track of client 
requests, along with a distributed data store for shared files and other resources. The second step is 
ensuring that all AIM services are horizontally scalable; the software design must allow for elastic 
addition and removal of compute nodes without imposing artificial restrictions on the number of services 
capable of processing data. 

6.2 Scalability Research 

A key goal for AIM is the analysis of high-velocity, high-volume data streams, such as those 
expected from experiments like the Dynamic Electron Transmission Microscopes, which are set to create 
1M images/sec, which would equal 1-2 terabytes per second depending on image size. To achieve 
throughput on that scale we need to investigate two key questions: 
• How to scale the basic AIM infrastructure to support data rates of that magnitude? and 

• How best to scale applications in the infrastructure to enable these to work on such data streams? 

Over the coming months we will carry out a wide range of scalability tests to identify possible 
bottlenecks, research viable optimization strategies and investigate the potential tradeoffs between an easy 
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to use infrastructure implementations and high performance. One key challenge identified early on is the 
requirement of our analysis models to receive messages in the same order they were sent, which is not 
natively guaranteed by Kafka in the high-performance, multi-partition configuration. We will investigate 
how we can provide this functionality, without significant performance impact. Furthermore we will 
evaluate the impact that larger numbers of users could have on the infrastructure performance. Finally we 
will investigate optimization strategies for different classes of model algorithms that will allow us to 
reach the required throughput performance. 

6.3 Adaptive Workflow  

The AIM analysis paradigm expects to create unique analysis model combinations for each class of 
problems addressed, furthermore it is anticipated that the system will need to instantiate and retire 
analysis models at runtime depending on user feedback and the events observed in the streaming data. To 
facilitate such additivity in workflow creation and change we need a light weight, easy to use, flexible and 
scalable workflow description and execution environment. At present we are not aware of a system that 
would satisfy all of these requirements. It is our intention of the coming years to investigate existing 
solutions and either build on them or develop our own high-throughput, highly flexible workflow 
implementation for AIM.  

6.4 Community Support  

Any discussion of future work on the AIM effort must emphasize the important role that the open 
source community and various projects play in influencing the design and evolution of AIM. On one 
hand, many technical components of the AIM infrastructure software trace their origin to an open source 
project, such as Java Spring and Spring Integration for simplifying web service implementation, Kafka as 
the key message-processing framework, or the OpenStack project that offers an integrated cloud-
management environment. Complementing the resources of the open source software community is the 
active research and development carried out by the HPC practitioners, who offer advanced algorithms and 
mathematical models needed to use the increasingly large amounts of data. By exploiting the best ideas 
and effectively applying lessons learned by both communities, the AIM Initiative plans to innovate and 
contribute to the state of the art in these fields. 

To illustrate the benefits of prudent concept reuse from both of these sources, it is helpful to consider 
the Dynamic Transmission Electron Microscope use case and its associated data volume. To produce such 
large amounts of data in a short period of time, a massively parallel hardware infrastructure must be 
present on the instrument side. Given the constraints of electronic system integration, plus the need for 
real-time response, the high-rate instrument is likely to use specialized hardware specially tuned for this 
one, specific application. The instrument firmware will not use “heavyweight” technologies such as web 
services, user authentication, or an embedded, real-time, streaming analytics engine. Because providing 
these advanced features is AIM software responsibility, both systems must define a common interface to 
facilitate data hand off.  

The distributed (or sharded) data store provided by a cloud computing infrastructure represents an 
enabling technology for supporting such data sharing. Because the data store is fully distributed, multiple 
external processes can write data to the cloud storage simultaneously without adversely affecting each 
other (assuming the network infrastructure can sustain the required data rate). OpenStack provides the 
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Swift file storage system that meets the design objectives for this data transfer. Once the source data is 
available in Swift, an Apache Spark (or Apache Spark Streaming) high-performance analytics system can 
be tasked with running processing, detection, and analysis algorithms in a horizontally scalable 
configuration (i.e., the more nodes, the better the performance, assuming the network can sustain the data 
transfer rates). 

Apache Spark also offers an in-memory processing option, which helps eliminate performance 
penalties for the network operations. Commercial vendors, such as GridGain, offer high-performance 
extensions to the in-memory cluster data repositories that AIM can use to accelerate processing by 
prestaging the required data in each virtualized node’s RAM. [11] Because the various players and 
stakeholders in this area are strongly motivated to support each other’s’ software, the overall community 
benefit is maximized. As a result, we are able to select the optimal mix of software technologies and 
products for maximum AIM performance. At the same time, because these different technologies still 
share a similar data interface, costs of maintaining the interoperability are minimal, at least in the short to 
medium timeframe that we expect these technologies to exist in their present form. In the long term, 
international standards bodies will formally govern evolution of the cloud architectures and data exchange 
mechanisms in a manner that is similar to today’s web technologies.
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Table A1. Licensing, Support, and Available Ecosystems 

Technology Licensing Support Available Ecosystem 

International Business 
Machine (IBM) 
InfoSphere Streams 

Commercial 
See Pricing 
List prices are 
1. IBM InfoSphere Streams Developer 

Edition Authorized Single User 
License + Software Subscription And 
Support for 12 months (D0H5BLL) 
$4000 

2. IBM InfoSphere Streams for Non-
Production Environment Resource 
Value Unit License + Software 
Subscription and Support for 12 
Months (D0V9ELL) $20,000  

IBM InfoSphere Streams Resource Value 
Unit License + Software Subscription and 
Support for 12 Months (D0V9GLL) 
$41,000 

Commercial 
Included in licensing costs 
Training available 
See SPL Training. Different courses are 
available covering several aspects of the 
programming language and model; prices 
range from $600 - $2000 per course per 
person. 

Comes with a number of built-in capabilities 
that are provided by IBM, including data 
mining, text analytics, predictive analytics, 
geospatial analytics, OpenCV, statistics, 
mathematical modeling, and acoustics. 
Where are graph analytics and processing? 
Unknown 
Technically, with Streams’ ability to execute 
operations via third-party C, C++, or Java 
applications, Streams should be able to 
leverage all existing software in these 
respective ecosystems. 
Streams has an Eclipse-based Integrated 
Development Environment to support both 
text and graphical editing of Streams 
Processing Language (SPL) and SPL mixed-
mode applications (SPL + Perl). 
See Mining Toolkit 
See Deployments and Use Cases 

Apache Storm Open source Open-source community, hosted by 
Apache Incubator, with active mailing 
lists. 
• user@storm.incubator.apache.org 
• dev@storm.incubator.apache.org 
• Freenode: #storm-user 
Some third-party companies involved in 
analytics offer training with a proprietary 
platform: 
http://hortonworks.com/hadoop/storm/ 

Apache Storm does not come with built-in 
analytics. Storm is a lower level message-
passing/event-propagation "push" framework 
that is intended to provide real-time analytic 
capabilities by executing external third-party 
code on messages. 

https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
http://www-304.ibm.com/services/learning/ites.wss/us/en?pageType=course_description&courseCode=DW723
https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
mailto:user@storm.incubator.apache.org
mailto:dev@storm.incubator.apache.org
http://hortonworks.com/hadoop/storm/
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Technology Licensing Support Available Ecosystem 

Apache Kafka Open source Open-source community, hosted by 
Apache Incubator. 

Apache Kafka does not come with built-in 
analytics. Kafka is a lower level message-
passing/event-propagation "push" or "pull" 
framework, designed as a distributed commit 
log that is intended to provide real-time 
analytic capabilities by supporting 
publish/subscribe semantics from external 
third-party code. 

GridGain 
In-Memory Streaming 

Commercially supported open source 
As of February 2014, GridGain now 
comes in two flavors: Enterprise and 
Open-Source. 
Enterprise Version 
• $5000 for 4 CPU cores or 16 GB 

RAM, whichever is greater 
• Annual subscription-based licensing 

model 
• Perpetual license also available at ~2.5 

times the cost of annual license 
• Discounts on volume/multi-year 

contracts 
• Grace period for functionality after 

license expires 
Open-Source Version 
• Open-source version is new as of the 

end of February 
• See http://gridgain.com and 

http://www.gridgain.org respectively 

Open-Source version 
Support forum: 
http://stackoverflow.com/questions/ 
tagged/gridgain 
• Commercial enterprise version 

http://www.gridgain.com/ 
• Training: 

http://www.gridgain.com/purchase/ 
training/ 

• Quote: 
http://www.gridgain.com/purchase/ 
get-a-quote/  

GridGain Systems, makers of widely adopted 
open-source software used to build smarter 
and faster data processing systems within 
finance, retail, healthcare, 
telecommunications, government, and other 
markets, has an ecosystem to natively support 
customers and services written for Amazon's 
EC2, Rackspace's OpenStack, and 
Microsoft’s Azure cloud hosting platform. 
GridGain Systems’ Java and Scala based 
open-source middleware platform allows 
companies to perform real-time processing 
and analytics on live big data. 

LIFT Open source PNNL Internal and open-source 
community. 

LIFT is based on standard enterprise 
integration technologies and design patterns. 
The primary purpose is to provide integration 
with and execution orchestration of any 
technology written in any language, as long 
as it is reachable via code or network. Since 
LIFT uses Java technologies, the ecosystem 

http://gridgain.com/
http://www.gridgain.org/
http://stackoverflow.com/questions/tagged/gridgain
http://stackoverflow.com/questions/tagged/gridgain
http://www.gridgain.com/
http://www.gridgain.com/purchase/training/
http://www.gridgain.com/purchase/training/
http://www.gridgain.com/purchase/get-a-quote/
http://www.gridgain.com/purchase/get-a-quote/
http://www.gridgain.com/?utm_source=pr&utm_medium=press-release&utm_campaign=4.0.2-release


 

A.3 

Technology Licensing Support Available Ecosystem 
of available software and libraries is 
extensive and well-supported including 
instrumentation. LIFT does not come with a 
suite of analytics, only capabilities to 
integrate analytics as needed. 

Yahoo Big Data 
 
Uses: 
Apache Storm 
Apache Spark 
Apache Hadoop 
 
Optional: 
Apache Mesos 
LIFT 

Commercially supported open source 
Apache Spark is included as a core 
component of Cloudera Hadoop 5.0 
Enterprise 
Licensing information is available here. 
Premium support comes with 24/7 
availability with 15-minute guaranteed 
response time for critical issues. 
Costs unknown. NEED TO CONTACT 
VENDOR 

Commercial support available, otherwise 
open-source self-support 
Training available 
Consulting available 
See Cloudera Training 

The Apache Storm, Apache Hadoop, and 
Apache Spark ecosystem basically covers the 
entire spectrum of today's state-of-the-art 
big-data analytics. 
Storm and Spark are the premier open-source 
solutions for streaming analytics. They 
approach the problem in different ways and 
therefore apply to different types of 
streaming analytic problems. 
The one major feature of this technology 
stack is that every component can run on top 
of Hadoop/Hadoop Distributed File System 
(HDFS) and specifically use YARN and 
ZooKeeper (or Mesos). This means that all of 
AIM's data and infrastructure can exist in a 
single, distributed, multi-tiered ecosystem of 
tightly integrated yet loosely coupled 
technologies. 

NPMs: 
MPI, OpenMP, and 
others 

Open source 
Used in a wide variety of supercomputers 
up to 128K node count. 

Excellent support available from vendors 
essentially included as a component of 
package management on most 
deployments. 

MPI and NPMs are bare bones, but provide 
all functionality by use of models such as 
Hadoop MapReduce, spark, and others. 
The ecosystem comes with everything 
needed for scheduling large jobs. For 
example, all systems are equipped with 
SLURM (Simple Linux Utility for Resource 
Management), which is an excellent job 
manager. The Lustre file system will provide 
fastest access to data with caching 
mechanisms for temporal and spatial reuse. 

http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cloudera-enterprise.html
http://www.cloudera.com/content/cloudera/en/products-and-services/product-comparison.html
http://cloudera.com/content/cloudera/en/training.html
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Table A2. Programming Models, Programming Language, and Third-Party Integration Capability 

Technology Programming Models Programming Language Third-Party Integration Capability 

IBM InfoSphere 
Streams 

Custom SPADE Programming Model 
Main components of SPADE applications 
are tuples, data streams, operators, 
processing elements, and jobs 
Applications written in SPL are designed 
around workflows, called topologies, 
which operate very similar to how 
topologies operate in Apache Storm (see 
Storm topologies and tuples). Events are 
ingested at a “source,” processed through 
a workflow, and emitted to a “sink” or 
destination. Stream events can be 
propagated in a single stream or sent 
across streams depending on the 
topology. 
SPL is supported with many built-in 
operators in the standard toolkit and 
special toolkits such as data-mining, 
geospatial, and database toolkits. The 
standard toolkit operators are grouped in 
categories as shown below: 
• Adapter operators 
• Relational operators 
• Utility operators 
• XML operators 
• Compat operators 
See SPADE Programming Model 

Primary: IBM SPL 
Secondary: C, C++, Java 
The InfoSphere framework needs to be 
programmed in SPL. 
SPL is a special streaming domain 
specific language that supports executing 
non-SPL languages via "operations" such 
as JavaOp. 
InfoSphere Streams requires the IBM 
Java SE Version 6 SDK. 

It is currently how easily existing third-
party toolkits can be plugged into 
Streams. 
There are some examples of integrating 
OpenCV, so it clearly must be possible. 
See Description and Background 
Example from user exchange: You can 
link in C++ code in dynamic or shared 
libraries as well as code that is contained 
solely within .h files. If you can link it 
into a C++ program, you can call it from 
SPL. Java code can also be handled using 
a Java operator. 
Virtually any device, sensor, or 
application system can be defined using 
SPL, but there are also predefined source 
and output adapters that can further 
simplify application development. As 
examples, IBM delivers the following 
adapters: 
• Transmission Control Protocol/Internet 

Protocol (TCP/IP), User Datagram 
Protocol/Internet Protocol, and files 

• IBM WebSphere Front Office, which 
delivers stock feeds from major 
exchanges worldwide 

• IBM solidDB® includes an in-memory 
persistent database using the Solid 
Accelerator application program 
interface (API) 

• Relational databases that are supported 
using industry standard Open Database 
Connectivity (or ODBC) 

Some of the source and sink adapters 

https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
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Technology Programming Models Programming Language Third-Party Integration Capability 
included within the Streams product 
allow the developer to define custom 
adapters, including custom analytics or 
operators written in C++ or Java. Existing 
analytics can also be called from Streams 
applications. 

Apache Storm Storm uses a one-way parallel execution 
model where execution is determined by 
topologies that process streams of tuples 
(data). Each topology is a graph 
consisting of spouts (that produce tuples) 
and bolts (that transform tuples). This 
supports both "pipeline" analytics as well 
as "map/reduce" style analytics. Input can 
be of any type where a spout exists (or 
can be written) and output can be 
exported anywhere accessible to Storm. 

Primary: Java 
Secondary: C/C++, Python 

Any code that is available via Java Native 
Access/Java Native Interface (JNI/JNA), 
stdin/stdout, or web services can be 
integrated into these systems. 

Apache Kafka Kafka is a distributed commit log 
architecture supporting a robust message-
passing and propagation framework that 
underlies a number of large-scale real-
time analytics frameworks such as 
LinkedIn's Apache Samza. The 
programming model is based on a 
publish/subscribe queue/topic design, 
where individual clients subscribe to 
queues or topics and are notified when 
messages they are interested in are 
propagating through the system. Kafka 
also supports additional advanced 
functionality such as guaranteed message 
ordering, message replay and more. 
Output from Kafka is generally consumed 
by other frameworks such as Apache 
Storm or Apache Hadoop. 

Primary: Java 
Secondary: C/C++, Python 

The list of supported clients, in addition 
to Java, is available here 
• Python 
• Go (AKA golang) 
• C 
• C++ 
• Clojure 
• Ruby 
• Node.js 
• Storm 
• Scala DSL  
• HTTP REST  
• Jruby 

GridGain 
In-Memory Streaming 

Combines distributed stream processing 
with CEP, advanced workflow 

Primary: Java, Groovy, and Scala GridGain White Paper: 
"GridGain also provides many general 

https://confluence.pnnl.gov/confluence/display/AIMATB/Apache+Samza
https://confluence.pnnl.gov/confluence/display/AIMATB/Apache+Storm
https://confluence.pnnl.gov/confluence/display/AIMATB/Apache+Storm
https://confluence.pnnl.gov/confluence/display/AIMATB/Apache+Hadoop+YARN
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
https://cwiki.apache.org/confluence/display/KAFKA/Clients
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Technology Programming Models Programming Language Third-Party Integration Capability 
management, windowing, user-defined 
indexes and more.  
Current key technologies include: 
• Programmatic Querying 
• Customizable Event Workflow 
• At-Least-Once Guarantee 
• Management 
• Sliding Windows 
• Data Indexing 
• Distributed Streamer Queries 
• Co-location With In-Memory Database  

Secondary: C, C++, R 
Other: Python, others 

features that make development of 
distributed applications easier and 
productive such as zero provisioning and 
zero deployment model, support for 
aspect-oriented and functional 
programming, streaming MapReduce 
processing, and integration with a wide 
variety of third-party projects." 

LIFT Focuses on two forms of programming 
model: 
• Traditional enterprise integration 

patterns and enterprise service bus 
• Asynchronous event driven 

architecture including event/message 
queuing and propagation 

LIFT also supports any programming 
model that is required by an underlying, 
integrated analytic capability. 

Primary: Java 
Secondary: Groovy, Scala 
Other: C, C++, R, Python, others 

LIFT was specifically designed to support 
integration of third-party tools and 
libraries. 
Any code that is available via JNI/JNA, 
stdin/stdio, or web services can be 
integrated into these systems. 

Yahoo Big Data 
 
Uses: 
Apache Storm 
Apache Spark 
Apache Hadoop 
 
Optional: 
Apache Mesos 
LIFT 

There is not a single programming model 
for these technologies; they each aim to 
solve a different problem using a different 
programming paradigm. 
Storm uses a one-way parallel execution 
model where execute is determined by 
topologies, which process streams of 
tuples (data). Each topology is a graph 
consisting of spouts (that produce tuples) 
and bolts (that transform tuples). This 
supports both "pipeline" analytics as well 
as "map/reduce" style analytics. Input can 
be of any type where a spout exists (or 

Primary: Java, Groovy, Scala 
Secondary: C, C++, R 
Other: Python, others 

Any code that is available via JNI/JNA, 
stdin/stdio, or web services can be 
integrated into these systems. 
The main caveat is how performant the 
resultant integration type is overall 
(native vs. shell vs. socket). 

http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
http://www.gridgain.com/products/in-memory-streaming/
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Technology Programming Models Programming Language Third-Party Integration Capability 
can be written) and output can be 
exported anywhere accessible to Storm. 
Hadoop and HDFS are the underlying 
backbone of this technology stack. 
Hadoop is a distributed batch processing 
framework that uses a MapReduce design 
pattern to perform analytics. For the 
purposes of this initiative, we are only 
interested in HDFS and possibly Hadoop 
YARN and ZooKeeper, which are 
technologies that Hadoop uses to manage 
clusters and job execution. 
A popular and growing alternative to 
YARN is Apache Mesos. While YARN is 
limited to Hadoop-only job execution, 
Mesos works across multiple different 
cluster applications including Hadoop. 
"Apache Mesos is a cluster manager that 
provides efficient resource isolation and 
sharing across distributed applications. 
Mesos can run Hadoop, Jenkins, Spark, 
Aurora, and other applications on a 
dynamically shared pool of nodes." 
Spark is an in-memory compute 
framework that provides a distributed, 
shared-memory programming paradigm. 
Its primary programming language 
exposes functional idioms but they are 
not enforced, for example imperative 
programming is also supported (through 
Java). A number of frameworks exist that 
support streaming, graph analytics, in-
memory database, and more via the 
Berkeley Data Analytics Stack (BDAS) 
LIFT could be used for instrumentation, 
reporting, data and user manipulation/ 
management. 

https://confluence.pnnl.gov/confluence/display/AIMATB/Apache+Spark
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Technology Programming Models Programming Language Third-Party Integration Capability 

NPMs: 
MPI, 
OpenMP and Others 

Message-passing programming model 
MPI is the basic model to be used. An 
abstraction of distributed shared-memory 
model can be used with Global Arrays 
(optional). Each of these programming 
models works on native hardware, with 
no virtualization of any other indirection. 
For performance analysis, there are 
several software stacks available. 
HPCToolkit can be used for performance 
analysis and source code attribution 
(which parts of the source code are slow). 
The very generic nature of MPI makes it 
an attractive and difficult solution at the 
same time. For example, the user still has 
to worry about communication and 
defining compute structure. At the same 
time, it provides maximum flexibility, 
which is fairly restricted in functional 
programming models. 

MPI Primary: C, C++ 
MPI Secondary: Java. While inter-JVM 
Remote Method Invocation (or RMI) is 
traditionally used in place of MPI, there 
do exist MPI solutions: 
• Reference implementations such as 

OpenMPI 
• Open-source libraries such as 

Message-Passing in Java (MPJ) 
• Commercial products such as FastMPJ 
Provides support for shared memory and 
InfiniBand systems. 

The premier flexibility provided by MPI 
would make it an attractive choice for 
designing the solutions. 

 

http://www.open-mpi.org/faq/?category=java
http://mpj-express.org/
http://torusware.com/product/fastmpj/
http://torusware.com/download-fastmpj-for-high-performance-shared-memory/
http://torusware.com/download-fastmpj-for-infiniband/
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Table A3. Performance Capability, Learning Curve, and Instrumentation 

Technology Performance Capability Learning Curve Instrumentation 

IBM InfoSphere 
Streams 

High 
Expected performance based on 
published use cases. 
See Deployments and Use Cases 
Example application 1600 streams, 3.5 
data objects/sec. 
What sets Streams apart is its processing 
speed. Applications in Streams aim to 
execute in microseconds instead of 
milliseconds over unbounded streams of 
events. 

High 
All development teams will have to 
implement their solutions using SPADE 
or provided IBM API. 

Medium/Low 
See Performance Monitoring Framework 
The current performance monitoring 
capabilities appear to directly relate to 
internal job/queue management within 
Streams itself exposed via web interface. 
The ability to instrument down to the 
algorithm level does not appear to be 
present, at least not exposed in the 
interface. It is currently unknown if this 
information is available in a separate API 
that we can tap into via custom code to 
develop an appropriate solution for AIM. 
"Once developed, the applications are 
deployed to Streams Runtime 
environment. Streams Live Graph then 
enables you to monitor performance of 
the runtime cluster, both from the 
perspective of individual machines and 
the communications between them.” 

Apache Storm High/Medium 
"Twitter's stream system, but also used in 
lots of other places, clocked at 1M tuples 
per second per node" - Unknown 
Storm has been integrated into online 
services widely considered to be some of 
the largest data streams currently 
available (e.g. Twitter). However, 
implementation benchmarks are 
dependent on the task, database intensive 
vs. CPU, and deployment hardware 
architecture. 
Note: It is known that Storm's default 

Medium 
Storm is based on Java as a high-level 
programming language but uses a mix of 
Java and C/C++ libraries for its 
underlying messaging system. Storm can 
interact with existing libraries directly via 
JNI/JNA or indirectly via traditional 
networking protocols or stdin/stdout. 

Medium 
Storm logs/nimbus server both run on 
default ports within the JVM. Hooks 
between Storm and secondary 
applications (SAMOA) are being created 
by independent actors as the project 
matures. Since Storm uses Java as its 
primary platform, Storm and Nimbus can 
both be instrumented with Java 
Management Extensions (JMX), allowing 
these technologies to provide very fine-
grained instrumentation information via a 
well-defined API. 

https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
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Technology Performance Capability Learning Curve Instrumentation 
message size is incredibly small, 140 
characters, so benchmarking on larger 
data sizes in less well known. 

Apache Kafka High/Medium 
Kafka performance has small numbers of 
published results and is used as a backing 
technology for Storm, so performance is 
expected to be on-par with Storm. 
One significant benefit of Kafka is that 
message sizes are only limited by the 
underlying hardware. The framework 
itself was not designed to be used only by 
Storm. 

Medium/Low 
Setting up a Kafka framework will need 
to be accomplished by the same team 
setting up the entire AIM infrastructure, 
so learning curve for that task is marked 
as Medium. 
Using Kafka from a client perspective is 
straightforward and well documented; 
client code already exists for multiple 
programming languages, so the learning 
curve for client integration is Low. 

Medium 
Kafka runs on the JVM. Since Kafka uses 
Java as its primary platform, Kafka can 
be instrumented with JMX, allowing this 
technology to provide very fine-grained 
instrumentation information via a well-
defined API. 

GridGain 
In-Memory Streaming 

High 
Tasks 
GridGain 
 341 2,705 33,700 
 372,279 338,310350,744 
Tasks / Milliseconds. 
http://java.dzone.com/articles/ 
comparison-gridcloud-computing 
"In 2008 GridGain was the first Java-
based grid computing middleware that 
was independently tested to scale 
linearly up to 2048 processing cores on 
Amazon EC2 cloud infrastructure." 
- GridGain White Paper 

Medium 
Learning curve is Medium due to the 
diversity of products offered by GridGain 
and the advanced concepts the software 
suite attempts to solve. While the pre-
configured packages available within the 
enterprise version of the software may be 
easy to configure and install, AIM will 
require specialized programming and 
training to enable GridGain. 

High 
GridGain comes with a prebuilt 
management and monitoring application 
called "Visor": 
http://www.gridgain.com/visor/ 
Visor provides a single unified console 
for operations, management, and 
monitoring across all GridGain products 
and for any applications and systems built 
with GridGain. 
Visor comes with GUI and command line 
interfaces delivering an advanced set of 
management and monitoring capabilities. 
The GUI version is based on a standalone 
application and the command line 
interface version is built on top of Scala 
REPL providing a fully scriptable and 
customizable environment. 

LIFT High 
Rating is dependent on the published 
performance metrics of the Java Message 

Medium/Low 
This project follows industry standard 
design patterns as closely as possible. 

Medium 
Instrumentation is Medium because each 
framework is ultimately running on top of 

https://cwiki.apache.org/confluence/display/KAFKA/Performance+testing
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://java.dzone.com/articles/comparison-gridcloud-computing
http://java.dzone.com/articles/comparison-gridcloud-computing
http://www.gridgain.com/visor/
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Technology Performance Capability Learning Curve Instrumentation 
Service (JMS)/MQ framework used 
inside of LIFT. Currently LIFT uses 
ActiveMQ. 
The use of JMS inside of LIFT does not 
prevent LIFT from handling large 
numbers of messages (millions per 
second) or large messages (multi-GB). 

The difficulty of integration and 
performance falls squarely on the 
developers writing the tools to be 
integrated. 

the JVM, meaning AIM test and 
performance monitoring infrastructure 
will have access to JMX, allowing 
applications to provide very fine-grained 
instrumentation information via a well-
defined API. 
AIM could harvest and manage this 
information via LIFT, if desired. 
All individual analytics will have to write 
their own instrumentation code and find a 
way to provide it via JMX. If the 
algorithms are written in Java or Scala, 
integration with JMX is straightforward; 
if written in a third-party library or non-
JVM programming language, integration 
will not be as straightforward. 
A number of toolkits provide web-based 
(HTTP) management consoles, but these 
are specifically designed for system-level 
management. 
Commercial solutions are available for 
monitoring JMS/MQ such as 
http://www.hyperic.com. 

Yahoo Big Data 
 
uses 
Apache Storm 
Apache Spark 
Apache Hadoop 
 
Optional: 
Apache Mesos 
LIFT 

High 
The numbers from Yahoo published 9 
months ago speak for themselves: 
• 100 billion events (clicks, impressions, 

email content, metadata, etc.) are 
collected daily across all of the 
company’s systems. 

• A subset of collected events get passed 
to a stream processing engine over a 
Hadoop/YARN cluster: 133K 
events/second are processed, using 
Storm-on-Yarn across 320 nodes. This 
involves roughly 500 processors and 

Medium 
Each system has its own requirements 
and learning curve. 
Storm is based on Java as a high-level 
programming language but uses a mix of 
Java and C/C++ libraries for its 
underlying messaging system. Storm can 
interact with existing libraries directly via 
JNI/JNA or indirectly via traditional 
networking protocols or stdin/stdout. 
Hadoop is based on Java as a high-level 
programming language and uses Java as a 
primary language for development. 

Medium 
Instrumentation is Medium because each 
framework is ultimately running on top of 
the JVM, meaning AIM test and 
performance monitoring infrastructure 
will have access to JMX, allowing 
applications to provide very fine-grained 
instrumentation information via a well-
defined API. 
AIM could harvest and manage this 
information via LIFT, if desired. 
All individual analytics will have to write 
their own instrumentation code and find a 

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://confluence.pnnl.gov/confluence/pages/viewpage.action?pageId=35652855
http://www.hyperic.com/
http://developer.yahoo.com/blogs/ydn/storm-yarn-released-open-source-143745133.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://confluence.pnnl.gov/confluence/pages/viewpage.action?pageId=35652855
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Technology Performance Capability Learning Curve Instrumentation 
12,000 threads. 

• Iterative computations are performed 
with Spark-on-YARN across 40 nodes. 

• Sparse data store: 2 PB of data stored 
in HBase, across 1,900 nodes. This is 
one of the largest HBase deployments 
in production. 

• 365 PB of available raw storage on 
HDFS, spread across 30,000 nodes 
(about 150 PB is currently used). 

• About 400,000 jobs/day run on 
YARN, corresponding to about 10M 
hours of compute time per day. 

Hadoop can interact with existing 
libraries directly via JNI/JNA or 
indirectly via traditional networking 
protocols or stdin/stdout (Hadoop 
"Streaming" API). Note the "streaming" 
API is misnamed and is not a streaming 
API at all, but a way to interact with 
command-line-driven programming 
languages such as Python. 
Spark is based on Scala, a next-generation 
functional programming language written 
for the JVM. Spark also supports Java 
and C/C++ via JNI/JNA or indirectly via 
traditional networking protocols or 
stdin/stdout. 

way to provide it via JMX. If the 
algorithms are written in Java or Scala, 
integration with JMX is straightforward; 
if written in a third-party library or non-
JVM programming language, integration 
will not be as straightforward. 
A number of toolkits provide web-based 
(HTTP) management consoles, but these 
are specifically designed for system-level 
management. 

NPMs: 
MPI, 
OpenMP and Others 

High 
Since MPI uses native communication 
networks and combined with C++, it 
would result in minimal overhead in 
terms of indirection and performance 
loss. 
NOTE: This column should be defined in 
terms of what should be expected in 
execution time of an algorithm, if san "n" 
nodes were used. Of course using 2-3 
times the number of nodes to get similar 
result may be possible, but that would 
defeat the purpose. 
The rest of the rows in this table should 
determine the input, what algorithms 
were executed, and missed performance. 
In other cases, the interconnectivity is 
with Ethernet and using sockets (TCP/IP), 
which is not suitable for high-end systems 
like PIC, the primary computational 
target for AIM. 

Medium/Low 
While most of the teams have at least 
someone with a basic knowledge of MPI; 
most developers, unless they are familiar 
with C/C++ distributed programming are 
not going to be familiar with MPI on an 
expert level. 
PIC's Olympus cluster currently has 
installations of the MPI and OpenMP 
ecosystem. It is expected that many of the 
large-scale systems deployed on Olympus 
would leverage MPI for scalability. 

High/Medium 
There are several tools that provide 
performance analysis at parallel scale, 
without requiring source code changes. 
For example, HPCToolkit, which 
automatically samples messages. 
Similarly PAPI provides low-level 
information on performance lost and 
wrappers to performance counters 
provided by hardware. It is widely used in 
HPC systems and can be used on 
desktops/clouds as well. 
An important aspect of using the MPI 
ecosystem is the abundance of debugging 
large-scale parallel programs. License-
based tools use similarity analysis and 
other measures to provide graphical 
interface for debugging large-scale 
programs. This functionality would be 
critical for the AIM teams since they 
would eventually write large-scale 
analysis algorithms. 
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Table A4. Visualization, Risk Opportunities, Expertise at PNNL, and Notes 

Technology Visualizations Risk Opportunities 
Expertise at 

PNNL Notes 

IBM InfoSphere 
Streams 

Low 
See Visualization and Dashboards 
Built-in visualizations appear to be 
limited, displaying basic analytic 
and data stream information via a 
web console. New visualizations 
would have to be developed. It is 
unclear if there is an API to develop 
custom visualizations, although the 
"Surveillance and Physical Security: 
TerraEchos" project shows 
advanced standalone visualizations. 

High/Medium 
Risks are related more to licensing 
costs and vendor lock-in rather than 
ability to process and analyze 
streams. For example, even if the 
licensing is not prohibitively 
expensive for government 
customers, will traditional academic 
or scientific communities support 
commercial licensing costs? 
There is also risk that project teams 
will have to ramp up on a new 
programming language, 
programming paradigm(s), and 
ultimately learn how to interact with 
and optimize execution of their 
algorithms within Streams. 
Opportunities lie in the ability to 
have a fully tested, reliable, and 
commercially supported platform to 
inject analytics/algorithms. 
Many of our National Security 
Directorate customers, including in 
the Intelligence Community, are 
already using Streams or would like 
to use Streams (NEED TO 
VERIFY) so a clear path to funding 
is available. 

No Streams is a CEP system and has a 
direct comparison table in the Red 
Book to other CEP frameworks. See 
Pages 38-41 in the IBM Streams 
Red Book. 

Complex Event 
Processing 
Analysis on 
discrete business 
events 
Rules-based 
processing using 
if/then/else) with 
correlation 
across event 
types 
Only structured 
data types are 
supported 
Modest data 
rates 

InfoSphere 
Streams 
Analytics on 
continuous data 
streams. 
Supports simple 
to extremely 
complex 
analytics and 
can scale for 
computational 
intensity. 
Supports an 
entire range of 
relational and 
non-relational 
data types. 
Extreme data 
rates (often an 
order of 
magnitude 
faster). 

Apache Storm Low 
There are no visualization 
capabilities directly related to 
Storm, but several companies are 
building analytics packages for 
integration with Storm. 

Medium 
Risks of implementing Storm 
coincide with the project being a 
community supported and open 
source. Depending on contributors, 
competing projects, and adoption by 

Yes  

https://confluence.pnnl.gov/confluence/display/AIMATB/IBM+InfoSphere+Streams
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Technology Visualizations Risk Opportunities 
Expertise at 

PNNL Notes 
An example of integrating analytics 
with Storm: 
• http://www.slideshare.net/ 

Hadoop_Summit/ realtime-
analytics-with-storm 

larger commercial interests projects 
can be enormously successful 
(Apache web server) or fall into 
obscurity. 

Apache Kafka Low 
Since Kafka is a supporting 
technology for higher-level 
processing and analytics, it does not 
provide any visualizations. 

Medium 
The risks of implementing Storm 
coincide with the project being 
community supported and open 
source. Depending on contributors, 
competing projects, and adoption by 
larger commercial interests projects 
can be enormously successful 
(Apache web server) or fall into 
obscurity. 

Yes/No There is expertise at PNNL for using 
Apache ActiveMQ and Code 
Connected ZeroMQ, which provide 
similar message queuing 
functionality as Kafka. There are 
also well-supported integration tools 
for the Java Spring Framework, so 
integration with Kafka is fairly 
straightforward. 
The risk and expertise ratings were 
given because Kafka is much more 
than simply a message queuing 
platform, as described here, so 
configuring and learning how to 
properly use Kafka with other 
technologies like Storm and Hadoop 
will require training. 

GridGain 
In-Memory Streaming 

Low 
Analytic visualizations are not 
included in GridGain but can be 
easily integrated through GridGain's 
client-facing APIs. 

Medium 
The risk for this product falls into 
two main categories: 
• High-value features of product 

may only be available via 
commercial licensing. 

• Supporting documentation 
suggests these features may not 
be of high value to AIM, such as 
HA in-memory databases and the 
Visor GUI. 
 

Researchers will need to write all of 

Yes GridGain is an industry leader in the 
in-memory compute and data grid 
space, and one of the first to produce 
a viable commercial product based 
on its technology stack. 

http://www.slideshare.net/Hadoop_Summit/%20realtime-analytics-with-storm
http://www.slideshare.net/Hadoop_Summit/%20realtime-analytics-with-storm
http://www.slideshare.net/Hadoop_Summit/%20realtime-analytics-with-storm
http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
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Technology Visualizations Risk Opportunities 
Expertise at 

PNNL Notes 
their applications in a supported 
programming language/ 
programming paradigm. 

LIFT Low 
Analytic visualizations are not 
included in LIFT but can be easily 
integrated through LIFT's client-
facing APIs. 

High/Medium 
LIFT is a mature, yet growing 
framework. While support for high-
speed event/message processing is 
available and maturing, support for 
processing raw byte streams is less 
mature. In addition, each technology 
that intends to integrate into LIFT 
will need to be developed with 
either remote execution in mind or 
the ability to be wrapped by Java 
code for local execution. 

Yes The purpose of LIFT is not to 
provide a complete streaming 
analytics framework, but to integrate 
and orchestrate event/message 
processing through various remote 
and/or third-party tools. LIFT would 
also manage the instrumentation, 
user-facing API, and additional 
features required of a higher-level 
framework. 
A reasonable option is using LIFT 
on top of native project 
implementations, with individual 
projects scaled as required and 
integrated using a suite of common 
APIs such as the Advanced Message 
Queuing Protocol or a content 
management system. Ideally, 
projects would be designed in such a 
way as to support high-speed 
asynchronous two-way messaging. 
We could setup LIFT similarly to a 
traditional CEP framework, but 
appropriately decouple the 
architecture and underlying 
implementations as needed. 
LIFT can also support CEP through 
direct integration of technologies 
such as Drools Fusion. 
The Drools 5 Behavioural Modeling 
Platform moves away from any of 
the narrow modeling perspectives 
that see only rules, processes, or 
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Technology Visualizations Risk Opportunities 
Expertise at 

PNNL Notes 
events as their main modeling 
concept. To effectively achieve the 
flexibility and power of behavioral 
modeling, a platform must 
understand all of these as primary 
concepts and allow them to leverage 
on each other strengths. 
In this scenario, Drools Fusion is an 
independent module, but still 
completely integrated with the rest of 
the platform, that adds a set of 
features to enable it: 
• Understand and handle events as 

first class citizens of the platform 
• Select a set of interesting events 

in a cloud or stream of events 
• Detect the relevant relationships 

(patterns) among these events 
• Take appropriate actions based on 

the patterns detected 
Additionally, LIFT is currently 
undergoing proposal development to 
become available through PIC as an 
institutionally supported "cloud" 
resource. This could add significant 
value to AIM as additional non-AIM 
analytics could be integrated and 
leveraged through this capability. 

Yahoo Big Data 
 
uses 
Apache Storm 
Apache Spark 
Apache Hadoop 

Low 
There are no visualization 
capabilities inherent with the 
provided technologies. All 
information will need to be 
visualized with third-party tools. 

Medium 
Maturity is extremely dependent on 
the technology chosen. 
Hadoop is mature, the current de 
facto standard for large-scale batch 
processing on commodity hardware 
clusters. Open-source actively 

Yes This is the infrastructure most widely 
used in industry to solve both batch-
based and streaming "big data" 
analytics. These technologies were 
also designed to scale by simply 
adding more commodity hardware, 
possibly augmented with some 
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Technology Visualizations Risk Opportunities 
Expertise at 

PNNL Notes 
 
Optional: 
Apache Mesos 
LIFT 

supported by a number of 
commercial vendors 
Storm is maturing and used in 
production environments at Twitter, 
Yahoo, and others on mission-
critical data at high volume and 
velocity. The open-source project is 
still young, although third-party 
developer support is growing. 
Spark is young/maturing. It is the 
open-source equivalent of GridGain, 
although as of 02/2014 that may be 
a moot point. Spark is still pretty 
raw and just recently graduated from 
academia to an Apache Incubator 
project. Cloudera has recently 
picked up commercial support of 
Spark in CDH 5.x and third-party 
developer support is growing. 

specialty hardware such as graphics 
or accelerated processing units. The 
main question is whether this type of 
infrastructure will work for AIM's 
specific needs or if a more 
traditional, custom, low-level HPC 
style system is needed (see below). 

NPMs: 
MPI, 
OpenMP and Others 

Low 
This section is slightly unclear. 
Does it intend to provide 
visualization of the output, which 
should be dependent on the choice 
of application? If there is an existing 
visualization app that reads from 
files and does the job, it should be a 
requirement for parallel analysis 
algorithm to output the data in that 
format. 
The answer to a visualization app is 
dependent on the application. 

Risk - Low 
Low risk since most teams have 
someone who could write at least a 
basic MPI program. The scale to 
1000 nodes is standard for MPI, 
which may be the ultimate target for 
AIM. 
Maturity - High 
MPI has been around for 20 years. 
The high likelihood of very good 
performance and scalability on 
smallish node counts such as 1000 is 
not a problem. 

Yes Not all clients are happy about using 
MPI. It has a bare bones feel that is 
not appealing, but it will do the job. 
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