
Prepared for the U.S. Department of State
under Contract DE-AC05-76 RL01830

A New Approach to Space
Situational Awareness using Small
Ground-Based Telescopes

Final Report

December 2014

NC Anheier
C Chen

PNNL-23994

PNNL-23994

A New Approach to Space
Situational Awareness using Small
Ground-Based Telescopes

NC Anheier
C Chen

December 2014

Prepared for
the U.S. Department of State
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

Executive Summary

In 1957, the United States became pressed to develop a space situational awareness (SSA) program
after the launch of the Russian satellite, Sputnik. Today there are over 900 operational satellites and over
14,000 cataloged man-made debris objects greater than 5 centimeters (cm) in orbit. A U.S. National
Research Council (1995) report portrays a grim future regarding the expanding space debris and collision
risk to spacecraft and future space missions. A vast number of debris and natural (meteoroid) objects
remain undetected between low earth orbit (LEO) and geosynchronous orbit (GEO). The SSA tracking
burden increased by 60% after just two events: the 2007 Chinese anti-satellite test (FengYun 1C weather
satellite) and the Cosmos 2251 and Iridium 33 satellite collision in 2009 created 100,000s of debris
particles larger than 1 cm. The new fleet of micro-satellites (~10–30 cm) planned for LEO deployment
further increases the SSA burden.

The United States’ objectives to promote long-term sustainability of outer space activities are outlined
in the National Space Policy and formalized through ratified treaties and other international agreements.
National Space Policy describes the nation’s commitment to promote safe and responsible operations in
space, improve information collection and sharing for space object collision avoidance, protect critical
space systems and supporting infrastructures, and strengthen measures to mitigate orbital debris. The
United States has also ratified four space law treaties, including the Outer Space Treaty that bans nuclear
weapons or any other weapons of mass destruction in outer space. The United States is also working with
the European Union to develop the international “Code of Conduct for Outer Space Activities”
agreement, which seeks to enhance the safety, security, and sustainability of outer space activities. These
objectives will require new SSA technologies and techniques that protect satellite assets, detect and
monitor orbiting debris fields, and provide treaty verification.

The fundamental requirement of SSA is to acquire full knowledge of all resident space objects
(RSOs) in earth orbit. This is currently accomplished by two distinct activities, including new object
detection and tracking known objects to periodically characterize their physical properties. RSO
acquisition, tracking, and imagery data collection can be extremely challenging. Initial RSO acquisition
is dependent on the orbital data and telescope pointing accuracy and the effectiveness of error correction
(e.g., pointing, atmospheric correction). Once acquired, sustained tracking of RSO targets can also be
difficult. Telescope tracking systems are typically designed to provide optimum tracking performance at
sidereal rates (~15 arcsec/sec). However, LEO objects have extremely large angular velocities that can
exceed sidereal rates by a factor of 10. Many telescopes can slew at much higher angular velocities, but
they do not have the tracking accuracy or large field of view (FOV) needed to keep a fast moving LEO
target within the FOV of the imaging camera. Many RSOs also have low radar cross sections that result
in low apparent brightness. These factors make small LEO and distant GEO targets very difficult to
acquire and detect against the background photon flux.

The United States Space Surveillance Network and NASA operate a worldwide SAA network of
radar telescope systems and optical telescopes. Many of these efforts focus on new object detection using
large, wide-field optical telescope systems that track large areas of the sky and automatically locate new
RSOs by detecting the characteristic light streak against the fixed star-field. Other systems are designed
to precisely track known RSOs and acquire photometry data. The Starfire Optical Range at Kirkland Air
Force Base is equipped with state-of-the-art SSA optical telescopes, including a 3.5-m telescope featuring
deformable optics and a laser guide star to help minimize atmospheric turbulence effects that distort the

iii

image and shift the apparent brightness and position. The Starfire telescope, with atmospheric correction,
can distinguish basketball-sized objects at an orbital distance of 1600 km. Large observatories, equipped
with guide stars and deformable optics systems, are effective at detecting and resolving small objects;
however, they are resource-intensive and difficult to extend broadly at other global observation sites.

This report discusses a new SSA approach evaluated by Pacific Northwest National Laboratory
(PNNL) that may lead to highly scalable, small telescope observing stations designed to help manage the
growing space surveillance burden. Using the methods and observing tools described in this report, the
team was able to acquire and track very faint satellites (near Pluto’s apparent brightness).
Photometric data was collected and used to correlate object orbital position as a function of atomic
clock-derived time. Object apparent brightness was estimated by image analysis and nearby star
calibration. The measurement performance was only limited by weather conditions, object
brightness, and the sky glow at the observation site. In the future, these new SSA technologies and
techniques may be utilized to protect satellite assets, detect and monitor orbiting debris fields, and
support Outer Space Treaty monitoring and transparency.

PNNL’s approach capitalized on high-fidelity, commercial-off-the-shelf (COTS) products that were
developed for advanced astronomical and science studies, including state-of-the-art electron multiplying
charged coupled device (EMCCD) imaging cameras, small (<1 m) optical telescopes, servomotor
telescope drive systems, and high-performance telescope control software. These tools were used along
with extensive Internet resources (e.g., astronomical databases, orbital propagation tools, observational
planning tools), and custom-developed software. The feasibility of this approach was demonstrated
through a unique collaborative effort between PNNL and several regional academic institutions and
observatory facilities.

Future work has been identified to further demonstrate and extend the techniques developed by this
research team, including a need for the following tasks:

• Conduct further and more extensive satellite and space debris observational studies at collaborating
regional observatories

• Demonstrate and develop further methods to acquire SSA data from very small targets moving at high
angular velocities and faint near-earth objects

• Complete and demonstrate high-speed, arcsecond-precision telescope tracking system on the Hoch
telescope

• Complete orbital propagation software code needed to generate target orbital data and collaborate
with commercial vendors to improve the accuracy of the satellite tracking software

• Develop architecture design concepts for a fully automated SSA observation station

• Evaluate other imaging camera and other commercial technologies for SSA applications

• Explore options for technical exchanges between the U.S. and Russian SSA communities to discuss
results of this project and similar efforts by Russia.

iv

Acknowledgments

The U.S. Department of State, Office of Verification and Transparency Technologies Key
Verification Assets Fund (V Fund) sponsored the work described in this report. The authors gratefully
acknowledge the collaboration and support from the following consortium members who participated in
this R&D project: Dr. Andrea Dobson, Martin Scott, Emma Dahl, and Larry North (Whitman College),
Michael Brady (Moore Observatory Director), Karl Olson, Michael Durst, Tony George (Retired), Levi
Yencopal, Curtis Crawford, John Cole (Moore Observatory/CBC), and Roy Gephart, Richard Hoch, and
Rob Parchen (AASTA). The authors also thank Steven Bisque (Software Bisque) and Dan Gray
(Sidereal Technology) for their invaluable technical assistance on their observatory hardware and
software products. Pacific Northwest National Laboratory is a multi-program national laboratory
operated by Battelle for the U.S. Department of Energy. Last but certainly not least, the authors thank
the Department of State/Bureau of Arms Control, Verification and Compliance V Fund for its support of
our research. The views expressed herein do not represent the official positions or policies of the
Department of State or any other entity of the United States Government.

v

Acronyms and Abbreviations

AASTA Alliance for the Advancement of Science Through Astronomy
ALE Arid Lands Ecology Reserve
ASCOM Astronomy Common Object Model
CBC Columbia Basin College
CCD charged-coupled device
COTS commercial-of-the-shelf
DEC declination
EMCCD electron multiplying charged coupled device
FOV field of view
GEO geosynchronous orbit
LEO low earth orbit
NELM naked eye limiting magnitude
PNNL Pacific Northwest National Laboratory
PNRO Pacific Northwest Regional Observatory
RA right ascension
RSO resident space object
SNR signal-to-noise ratio
SSA space situational awareness
TLE two-line element
UTC coordinated universal time

vii

Contents

Executive Summary ... iii
Acknowledgments ... v
Acronyms and Abbreviations ... vii
1.0 Introduction .. 1
2.0 Approach .. 1

2.1 Pacific Northwest Regional Observatory and Moore Observatory .. 1
2.2 SSA Control Hardware and Software Architecture ... 3
2.3 EMCCD Camera Optimization and Signal-to-Noise (SNR) Model .. 7

2.3.1 Background Noise Considerations .. 8
2.3.2 Camera Measurement Noise ... 9
2.3.3 Signal to Noise Calculation ... 9

3.0 Observation Results .. 10
4.0 Summary ... 13
5.0 References .. 14
Appendix A – SkyX Bump.exe Program .. A.1
Appendix B – Hamamatsu C9100-23b ImagEM X2 Camera Specifications ..B.1
Appendix C – ORCA Technologies Synchronized Time Code Generator Model GS-101C.1
Appendix D – TSCapture.exe Program .. D.1
Appendix E – SatSearch.exe Program ... E.1
Appendix F – EMCCD Noise Characterization ... F.1

ix

Figures

1 The 0.8-m Hoch Classical Cassegrain Telescope, shown Equipped with the EMCCD Camera
Used for the SSA Study .. 2

2 The 16-in. Moore Schmidt-Cassegrain Telescope, shown Equipped with the EMCCD
Camera Used for the SSA Study ... 3

3 Telescope Control and Image Acquisition Architectures Developed for RSO Tracking 4
4 Kollmorgen Brushless DC Servomotors (AKM43L) Installed on the Hoch Telescope 5
5 Telescope Control and Image Acquisition Architectures Developed for RSO Tracking 7
6 Sequential Image Frames Showing GEO Satellite, Galaxy 14, Near the Center of the Frame,

with the Star Field Drifting Diagonally Left to Right ... 11
7 Sequential Image Frames Showing the Galaxy 14 Apparent Orbital Path (dotted line), with

the Star Field Moving Left to Right .. 12
8 Galaxy 14 Apparent Brightest Estimated by a Reference Star and a Nearby Binary 13

x

1.0 Introduction

The goal of this space situational awareness (SSA) study was to evaluate the feasibility of using small
(<1-m) optical telescopes to collect useful resident space object (RSO) data in support of future Outer
Space Treaty and other SSA missions. Key to this goal was developing methods to collect time-resolved
photometry measurements of RSO targets, without the overhead associated with large astronomical
observatories. The electron multiplying charged coupled device (EMCCD) camera used in this study is
an enabling technology, designed to operate at fast frame rates, while effectively eliminating a dominant
noise source. The study was organized around evaluation of commercial hardware and software
developed for the advanced amateur astronomy community, which has made significant contributions to
professional astronomical research.

This SSA project also provided a unique opportunity for Pacific Northwest National Laboratory
(PNNL) to collaborate with a regional consortium of public and private academic institutions and
observatories, including the Alliance for the Advancement of Science Through Astronomy (AASTA), the
Pacific Northwest Regional Observatory (PNRO), Whitman College, Columbia Basin College (CBC),
and the Moore Observatory. This consortium utilizes their resources and expertise in support of
community outreach, academic STEM programs, scientific research, and to foster the future generation of
scientists, engineers, and policy makers now enrolled in school.

AASTA is a non-profit scientific and educational organization based in southeastern Washington
State. AASTA operates PNRO, which includes a recently constructed observatory with a 7.3-meter Ash
dome and the newly refurbished Hoch telescope. Whitman College, Department of Astronomy and CBC
facilitated access to the Pacific Northwest Region and Moore Observatories, respectively. Whitman
College is a private four-year, liberal arts and sciences college with enrollment of about 1600 students.
Whitman College owns the Braden Ranch property where the PNRO is located. A memorandum of
understanding exists between Whitman College and AASTA for the perpetual use of this property.
Whitman’s Department of Astronomy manages the PNRO and oversees ongoing operational expenses
(e.g., power, internet, minor maintenance) using external funding. CBC is a public community college
located in Pasco, Washington, that offers a wide range of workforce-related, 2-year associates degrees.
The CBC campus is also home to the Moore Observatory. An astronomy program is offered that is
tightly integrated with the Moore Observatory to provide science students hands-on experience in
applying math and science skills in their learning process. The observatory is also used for elementary,
middle, and high school programs, as well as for student research and community outreach. The
observatory was developed through the generous donation of the late Robert Moore and his late wife,
Elisabeth.

2.0 Approach

2.1 Pacific Northwest Regional Observatory and Moore Observatory

PNNL developed and evaluated SSA techniques at the Pacific Northwest Regional and the Moore
observatories. The PNRO Hoch telescope is a custom research-grade 0.8-meter, f/11.9, classical
Cassegrain reflecting telescope, mounted on a massive altitude-azimuth fork arm mount, as shown in

1

Figure 1. PNRO is located under dark skies within the expansive Braden Ranch, near 46° north latitude,
119° west longitude, at 490 m altitude. In early FY2014, the PNRO observatory and telescope were in
the final commissioning stages, following its removal in 2009 from its original location on Rattlesnake
Mountain on the U.S. Department of Energy, Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE) in
South Central Washington State.

Figure 1. The 0.8-m Hoch Classical Cassegrain Telescope, shown Equipped with the EMCCD Camera
Used for the SSA Study

The Moore Observatory is equipped with a Meade LX200 0.4-meter (16-in.) f/10 commercial-grade
Schmidt-Cassegrain telescope, mounted on a German-equatorial mount (Paramount ME), as shown in
Figure 2. The observatory is located on the campus of CBC at 46° 15' 8.4" north latitude and 119° 07'
36.5" west longitude, at an altitude of 124 m.

2

Figure 2. The 16-in. Moore Schmidt-Cassegrain Telescope, shown Equipped with the EMCCD
Camera Used for the SSA Study

2.2 SSA Control Hardware and Software Architecture

The PNNL SSA study developed telescope and camera hardware and software architectures to
provide accurate telescope pointing and tracking and effective RSO image data collection, as shown in
Figure 3. To achieve these objectives, PNNL developed and evaluated designs based on commercial-off-
the-shelf (COTS) hardware and software technologies, which were then combined with custom software
solutions. The specific telescope control systems differ between PNRO and the Moore Observatory, but
the fundamental control architectures share similar design features. The same camera control architecture
was used at both observatories.

Because the PNRO was in the initial stages of commissioning, significant hardware and software
upgrades and modifications were required to provide the target acquisition and tracking performance
needed for the SSA study. Telescope control was provided by the RSO tracking and data collection
architecture shown in Figure 3 (left). A Sidereal Technologies Servo Controller II hardware module and
SiTechExe software was installed to control the telescope motion (http://siderealtechnology.com). The
Hoch telescope drive system uses a dual-loop position-velocity servo feedback design. The servomotors
are equipped with 10,000 pulses/rev incremental optical encoders that generate about 11 pulses for each
arcsecond of telescope movement. The telescope is also equipped with incremental encoders on the final
drive wheel that produce about 227 pulses per full axis rotation. The servomotor encoders provide

3

feedback in the velocity PID servo loop, while the telescope encoders provide fine pointing error
correction. A joystick is provided with the controller that allows manual control of the right ascension
(RA) and declination (DEC) axes. The SiTechExe software provides a user interface that shows the
current telescope pointing position overlaid onto the sky view. The application includes traditional
features, such as GO TO, celestial object databases, Internet database queries, and a RSO database, with
built-in satellite tracking support. A calibration routine, called TPoint, is included that quantifies and
automatically compensates for systematic telescope pointing errors and telescope mount polar
misalignment. This software modeling and compensation tool is a critical component needed to provide
high-fidelity target acquisition and tracking performance. SiTechExe is an Astronomy Common Object
Model (ASCOM)-compliant application that enables plug-and-play support between astronomy software
and hardware (e.g., dome controllers, focusers, imaging cameras). The servo controller can also interface
direct with SkyX (Software Bisque), which is a full-featured software tool for observatory and telescope
control.

Figure 3. Telescope Control and Image Acquisition Architectures Developed for RSO Tracking

The Hoch telescope was equipped with Kollmorgen brushless DC servomotors (AKM43L) to drive
the RA and DEC axes, as shown in Figure 4. These servomotors are capable of slewing the greater than
3,000 kg telescope at several degrees per second. The fork arm mount design features a 1440-to-1
gearless reduction drive, based on a roller/disk arrangement, which overcomes backlash and periodic
error inaccuracies commonly associated with mesh and worm gear reducers (Knight 1979).

4

Figure 4. Kollmorgen Brushless DC Servomotors (AKM43L) Installed on the Hoch Telescope

The Moore Observatory architecture is very similar to PNRO’s, except all the hardware and software
components were procured as COTS products. The Paramount ME German equatorial mount is a
proprietary design, but likely based on a closed-loop servomotor system. Large worm gears that provide
less than 7 arcseconds peak-to-peak periodic error are used to provide the necessary gear-reduction on
both axes. Software periodic error correction algorithms reduce this error even further. SkyX
Professional, version 6, is used for observatory and telescope control. SkyX also provides an optional
TPoint software add-on to model and compensate for telescope pointing errors. An ASCOM interface
provides automatic dome rotation during telescope tracking to keep the dome opening aligned with the
telescope aperture. SkyX has a basic satellite-tracking feature (only available when interfaced to the
Paramount ME drive) that can automatically slew to satellites or other RSOs, and then continuously
update the tracking rates for each axis so that the object remains centered on the camera.

An advanced satellite tracking add-on is under development at Software Bisque that has enhanced
satellite orbital propagator code and telescope pointing and tracking accuracy. The add-on also includes a
software-based joystick that can be used to center the RSO target within the telescope or camera field of
view (FOV). Bisque Software provided this add-on to the Moore Observatory for evaluation purposes
during the PNNL SSA study. Initially, this software-based joystick was cumbersome to use. Typically,
an observer was at the wide-field finder scope during initial RSO target acquisition. If the target was not
centered or within the finder FOV, the observer had to call out error correction commands to another staff
member (at the desktop computer) to click on the joystick command buttons (e.g., up, down, right, left).
Fortunately, SkyX can receive commands through a TCP/IP socket connection protocol. A Python
program, called SkyX Bump.exe, was developed by PNNL to read keys 8, 5, 4, and 6 on a USB numeric
keypad, and then send up, down, right, and left commands to the SkyX software joystick (Appendix A).
The solution allowed the observer to conveniently correct pointing errors using the handheld keypad,
while looking through the finder scope.

The image acquisition architecture is shown in Figure 3 (right). A Hamamatsu/Nikon EMCCD
camera (ImagEM X2, C9100-23B) is used to collect RSO image data. The ImagEM X2 delivers

5

70 frames/sec at full frame (512 × 512 pixels) and provides exceptional quantitative ultralow light
imaging at high speed. The unique charge multiplication capability allows signal amplification while still
in the charge domain, before the charge is converted to voltage. This effectively eliminates a dominant
noise source association with voltage amplifiers. The extremely low readout noise and user-selectable
charge multiplication allows optimization of noise budget so that shot noise (theoretical limit) dominates
a given measurement. The EMCCD camera can perform real-time image processing and has software for
basic image post-processing. Further EMCCD performance specifications can be found in Appendix B.

Coordinated universal time (UTC) is acquired using a synchronized time code generator (ORCA,
GS-101) with ±100 ns absolute time accuracy. This time code generator is equipped with a number of
useful features, including serial communication and flexible input/output triggering. Further
specifications can be found in Appendix C. Time synchronization was implemented by configuring the
EMCCD camera frame output trigger (issued at the beginning of each image frame acquisition) to initiate
a timestamp reading by the time code generator, which is then transmitted to the camera control computer
for storage. The camera control computer also receives the image frame, as high-resolution TIFF data,
using a high-speed IEEE 1394 serial bus. In subsequent software upgrades, the instantaneous telescope
RA and DEC coordinates will be queried from SkyX (or SiTechExe) and saved with the timestamp and
image frame.

A Windows-executable Python program (TSCapture.exe) was developed to configure and
synchronize the image acquisition, time code generation, and data record generation software. This code
is part of a larger suit of satellite tracking software, as shown in Figure 5. While the EMCCD control
software (HCImage Live) captures and saves the image data to a folder on the camera control computer,
TSCapture monitors the USB serial port for timestamp data which is also saved to a folder. After the
image capture session is completed, TSCapture then overlays the timestamp data for each frame at the
top, left-hand side of each image and also inserts the time stamp data into the image properties
information. Finally, the processed images are combined into a video with the codec and frame rate
specified by the user. A detailed description of this software, operation instructions, and the Python code
is provided in Appendix D.

A preliminary observational planning Python program, called SatSearch.exe (Appendix E), was also
developed to support PNNL SSA studies. Initial target studies required bright objects with relatively low
angular velocities to gain experience with target acquisition and tracking and photometry measurements.
Many Internet resources are available that feature extensive satellite databases and observing planners.
The Python program collects data from the Internet satellite databases using scripted HTML commands.
The program will search the satellite database maintained by the U.S. Strategic Command Joint Space
Operations Center (space-track.org). Queries are currently based on object type and orbital angular
velocity, but other search criteria can be easily added if required. The query data is saved to an Excel
spreadsheet, while the two-line element (TLE) data for each object is saved as its own text file. The
program then consults calsky.com to retrieve the visual magnitude estimates for the RSO list. The daily
predictions for the 100 brightest satellites are also retrieved from heavens-above.com. The Space Track
and 100 brightest satellites datasets are then cross-referenced to identify favorable RSO targets for a given
night’s observation. The NORAD Simplified General Propagator source code (SGP4) was acquired from
Python’s package index website (pypi.python.org), which provides a Python implementation of David
Vallado’s C++ SGP4 code. This is perhaps the most accepted codification of the SGP4 theory that is
used to generate ephemeris data from TLEs (Vallado et al. 2006). Once the code has been modified to
suit the study needs, the cross-referencing task will not be required.

6

Figure 5. Telescope Control and Image Acquisition Architectures Developed for RSO Tracking

2.3 EMCCD Camera Optimization and Signal-to-Noise (SNR) Model

A goal of this SSA study was to evaluate EMCCD camera technology for RSO astronomical
photometry measurements. The ultimate noise limit of a conventional charged-coupled device (CCD)
imager is determined by the readout noise and dark current noise. Cooling the imaging array can
minimize dark current noise; however, readout noise continues to increase as a function of pixel readout
speed. Unlike CCD cameras, the EMCCD design provides user-selectable internal gain before the charge
reaches the output amplifier. Gain from this low-noise charge amplifier can boost weak signals well
above the readout noise floor to maintain EMCCD imaging performance (i.e., SNR), even at high frame
rates. This unique feature is ideally suited for many RSO photometry measurements. Images can be
collected at fast frame rates, and then post-processed to remove image frames taken during unsteady
atmospheric conditions. A subset of the remaining frames can be summed to improve the photometry
SNR. Image processing software is readily available to automate these steps.

7

PNNL also developed an EMCCD camera SNR model to evaluate the impact that local observing
conditions and camera configurations have on the image acquisition noise budget. The radiometric
calculations used to develop this modeling tool are summarized in this section and based on prior work
(Ferrero et al. 2010; Shell 2010). Astronomical objects are specified in terms of their relative brightness
on a visual magnitude scale. The object’s visual magnitude, 𝑀𝑀𝑠𝑠, is first converted to irradiance using

 𝐼𝐼 = (1.78 ∗ 10−8) ∗ 10−.4𝑀𝑀𝑠𝑠 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑠𝑠
𝑚𝑚2 , (1)

where the irradiance of zero-magnitude source is assumed to be 1.78 ∗ 10−8 Watts/m. The photon flux
(photons/sec) on the telescope aperture is given by

 𝑃𝑃ℎ = 𝐼𝐼∗𝐴𝐴∗𝑇𝑇𝑎𝑎
𝐸𝐸𝑝𝑝

 photons/sec, (2)

Here 𝐸𝐸𝑝𝑝 is the energy per photon (at 625 nm), 𝐴𝐴 is the area of the telescope aperture, and 𝑇𝑇𝑊𝑊 is the
atmospheric transmittance. The number of photoelectrons produced by the camera, due to the object’s
photon, is given by

 𝑃𝑃𝑒𝑒 = 𝑃𝑃ℎ ∗ 𝑄𝑄𝑒𝑒 ∗ 𝑇𝑇𝑊𝑊 ∗ 𝜏𝜏 photoelectrons, (3)

where 𝑄𝑄𝑒𝑒 is the camera quantum efficiency, 𝑇𝑇𝑊𝑊 is the optical transmittance of the telescope, and 𝜏𝜏 is the
exposure time in seconds. The total number of signal electrons produced by the charge-integrating
amplifier is given by

 𝑆𝑆𝑒𝑒 = 𝑃𝑃𝑒𝑒 ∗ 𝐺𝐺 electrons, (4)

where 𝐺𝐺 gain given in units of signal electrons/photoelectrons.

The signal’s shot noise is calculated as follows:

 𝜎𝜎𝑠𝑠 = 𝐺𝐺 ∗ �𝐹𝐹 ∗ 𝑃𝑃𝑒𝑒 electrons, (5)

where 𝐹𝐹 is the noise factor due to the EMCCD gain process. The noise factor ranges from 1 to 2. This
calculation assumes a background signal subtraction, by collecting a second background image, to assure
that electrons from each object pixel represent only the object signal. Noise added by the background
subtraction is not included in this analysis.

2.3.1 Background Noise Considerations

The ability to see faint objects is limited by the local sky brightness due to light pollution and
atmospheric conditions. Background light can produce the largest source of imaging signal noise.
Observation sites are generally ranked by the empirically determined naked eye limiting magnitude
(NELM), which refers to the faintest stars that can be observed by the unaided, dark-adapted eye. NELM
limitations, due to light pollution, airglow, indirect sunlight scattering, and starlight scattering, varies
greatly depending on the observing site location and time. The magnitude scale is logarithmic, with
apparent brightness of an object decreasing by a factor of approximately 2.512 with increasing magnitude

8

integer values (Pogson 1856). For example, the bright star Sirius has an apparent magnitude of −1.47,
while the faint planet Neptune has an apparent magnitude of about 8.

A light polluted inter-city location (i.e., NELM = 2) may have only about 50 stars visible, while a
rural location (i.e., NELM = 6) may have more than 3000 stars visible. Typical PNRO site NELM is
about magnitude 6.25. The Moore Observatory is situated on the campus of CBC in Pasco, Washington.
Light pollution from the surrounding campus and city degrades the NELM to about magnitude 4.
Background radiance conditions are often specified in terms of sky brightness (also known as apparent
background surface brightness), with units of visual magnitude per arcsecond squared. Sky brightness
can be estimating knowing NELM (Schaefer 1990). Neither NELM nor sky brightness units are useful
radiometric terms; however, sky brightness can be converted into irradiance/steradian using

 𝐼𝐼𝑏𝑏 = (5.6 ∗ 1010) ∗ 10−.4𝑀𝑀𝑏𝑏 ∗ �180
𝜋𝜋
�
2
∗ 36002 𝑝𝑝ℎ𝑜𝑜𝑊𝑊𝑜𝑜𝑜𝑜𝑠𝑠

𝑠𝑠𝑒𝑒𝑠𝑠∗𝑚𝑚2∗𝑠𝑠𝑠𝑠
. (6)

The number of background photoelectrons produced by each camera pixel is

 𝑃𝑃𝑏𝑏 = 𝐼𝐼𝑏𝑏 ∗ Ω ∗ 𝑥𝑥2 ∗ 𝑇𝑇𝑊𝑊 ∗ 𝜏𝜏 ∗ 𝑄𝑄𝑒𝑒 photoelectrons/pixel, (7)

where the telescope solid angle is Ω = 𝜋𝜋/(1 + 4 �𝑓𝑓
2

𝑑𝑑2
�) steradians, d is the telescope diameter, 𝑓𝑓 is the

telescope focal length, and 𝑥𝑥 is the pixel length (assuming square pixels).

The background noise in terms of signal electrons is given as

 𝜎𝜎𝑏𝑏 = 𝐺𝐺 ∗ 𝐹𝐹 ∗ �𝑃𝑃𝑏𝑏 ∗ 𝑁𝑁 electrons, (8)

where 𝑁𝑁 is the total number of pixels encompassing the object.

2.3.2 Camera Measurement Noise

The process of shifting charge carrier to the camera’s analog-to-digital converter produces readout
noise, 𝜎𝜎𝑠𝑠. Readout noise was experimentally determined to have a maximum value of 20, as discussed in
Appendix F. The total readout noise is given by

 𝜎𝜎𝑇𝑇 = �𝑁𝑁 ∗ 𝜎𝜎𝑠𝑠2 electrons. (9)

The camera measurement includes other sources of noise, including dark current and clock-induced-
charge noise. However, these noise sources are generally negligible compared to the background and
shot noise.

2.3.3 Signal to Noise Calculation

The final SNR value is given as the total number of signal electrons divided by the quadrature
addition of all relevant noises,

9

 𝑆𝑆𝑁𝑁𝑆𝑆 = 𝑆𝑆𝑒𝑒

�𝜎𝜎𝑠𝑠2+𝜎𝜎𝑏𝑏
2+𝜎𝜎𝑇𝑇

2
. (10)

3.0 Observation Results

The GEO satellite, Galaxy 14 (USSPACECOM # 28790), was selected as a test case to study
acquisition, tracking, and image collection at the Moore Observatory. Galaxy 14 is a C-band satellite
built for PanAmSat Corporation to distribute entertainment and information to cable television systems.
This satellite was launched in 2005 and placed in orbit at about 125° west longitude, at ~35,780 km
orbital height. The satellite has a 20 m2 radar cross section that provides an apparent visual magnitude
typically ranged between 11 and 14 magnitude. In comparison, Pluto has an average apparent magnitude
of about 15.

Observations were conducted on Galaxy 14 on October, 8, 2014, starting at about 8 PM PDT. Images
were collected using the EMCCD camera, while synchronous UTC timestamps were being recorded from
the time code generator. SkyX was used to select this satellite and then slew the telescope to this object
to begin image collection. The satellite was not initially in the camera FOV, but was seen using the wide-
field finder scope. It was possible that this was due to TPoint pointing error model limitations or the
camera’s massive weight (3.5 kg), which unbalanced the load on the Paramount ME mount. The SkyX
software joystick was then used to center the satellite on the camera array. After centering, the satellite
remained within the camera FOV during the 20-minute observation time. Future observing sessions will
require careful camera/telescope load balance and an updated TPoint error model.

Figure 6 shows a sequential image mosaic of Galaxy 14, collected over a period of 38 seconds. These
images were hand-selected out of a much larger collection (~2600) taken that night. The first image was
collected at 8:31:09 PM local time and the following images are shown at about 2-second intervals. The
last frame was taken at 8:31:23 PM. The first frame on the left shows the fixed location of Galaxy 14 and
the red arrow shows the path of the star field as it drifts through the subsequent frames. Image post-
processing was conducted by selecting a region-of-interest around Galaxy 14, then extracting an average
signal value for a series of frames. Light curves were then generated, but no discernable light variations
were detectable. Glint peaks have been detected from Galaxy 12 and 15, but the glints occurred
infrequently and the peak widths were greater than 10 minutes (Hall and Kervin 2013).

A small subset of the 2600 image frames collected were selected and manually aligned to show the
apparent track of Galaxy 14, as shown in Figure 7. The image sequence encompasses about 38 seconds
elapsed time. The gray scale on each image was inverted using a color negative variant to improve the
clarity of the faint objects (now black objects in the image). Next, all the images were aligned into a
panoramic image by registering the local star-fields. The position of Galaxy 14 is highlighted in each
frame by a dark blue dot and a track line (shown in cyan) applied by connecting the first and last satellite
position. As can be seen from the image, the intermediate satellite locations appear above and below the
track line. It is likely that registration error account for some of these offsets, but additional factors may
be responsible, such as atmospheric turbulence.

10

Figure 6. Sequential Image Frames Showing GEO Satellite, Galaxy 14, Near the Center of the Frame,
with the Star Field Drifting Diagonally Left to Right

11

Figure 7. Sequential Image Frames Showing the Galaxy 14 Apparent Orbital Path (dotted line), with
the Star Field Moving Left to Right. The satellite positions are shown as dark blue dots to
improve the clarity.

Photometry measurements can be used to estimate RSO apparent brightness. The apparent brightness
of Galaxy 14 was estimated by comparing the brightness of a nearby star. Star number GSC 5189:2425
appeared to have slightly lower relative image brightness on the same processed image frame. Published
average brightness for this star is 12th magnitude. Calsky estimated Galaxy 14’s apparent brightness
during this observation time at 13.8 magnitude. Two unresolved stars (UCAC3 169.291215 and
169.291196) are shown to the left of Galaxy 14 in Figure 8. These stars have published 11.5 and 10.9
magnitude values. The combined apparent brightness is 10.4 magnitude, suggesting that these binaries
were about 4 times brighter than GSC 5189:2425 and 23 times brighter than Galaxy 14.

Because pixel count is linearly related to stellar brightness, the known magnitude and signal count of
a reference star can be used to estimate the magnitudes of Galaxy 14 and GSC 5189:2425. Image
processing software was used to select a region of interest around each object to extract total signal count.
Within the same image frame, a similar region of interest without stars was selected to determine the
background signal count. The background was subtracted from the object count to provide a background-
corrected signal count for each object. The relative photometric values indicated that Galaxy 14 produced
1.5 times greater signal compared to GSC 5189:2425. The binaries were found to have 34 and 52 times
greater signal compared to Galaxy 14 and GSC 5189:2425, respectively. This suggests that Galaxy 14
and GSC 5189:2425 had apparent magnitudes 14.3 and 14.7, respectively. While this analysis
underestimated the reported magnitudes (likely because of low measurement SNR and poor atmospheric
conditions), these photometry measurements could be optimized and automated to provide accurate and
precise RSO apparent magnitude estimates.

12

Figure 8. Galaxy 14 Apparent Brightest Estimated using a Reference Star and a Nearby Binary Star

4.0 Summary

This SSA study demonstrated the feasibility of using small (<1 m) optical telescopes to collect
time-resolved RSO measurements that could be used in the future to protect satellite assets, detect
and monitor orbiting debris fields, and support Outer Space Treaty monitoring and transparency.
The EMCCD camera used in this study offers the potential to collect high frame rate images of RSOs,
while effectively eliminating a dominant noise source that plagues conventional CCD technology. The
study also capitalized on commercial hardware and software used by the advanced amateur astronomy
community. A telescope and camera hardware and software architecture was developed to provide
accurate telescope pointing and tracking and RSO image data collection. This SSA study also developed
extensive custom software to plan RSO observations, model the measurement noise budget, and support
photometry data collection and processing. A very faint satellite (Galaxy 14) was successfully acquired
and tracked using the 16-in. telescope at the Moore Observatory. Photometric data was collected and
used to correlate object orbital position as a function of atomic clock-derived time. Object apparent
brightness was estimated by image analysis and nearby star calibration. The measurement performance
was only limited by weather conditions, object brightness, and the sky glow at the observation site. These
observations were enabled through a unique collaborative effort between PNNL and several regional
academic institutions and observatory facilities.

Future work has been identified to further demonstrate and extend the techniques developed by this
research team, including a need for the following tasks:

13

• Conduct further and more extensive satellite and space debris observational studies at collaborating
regional observatories

• Demonstrate and develop further methods to acquire SSA data from very small targets moving at high
angular velocities

• Complete and demonstrate high-speed, arcsecond-precision telescope tracking system on the Hoch
telescope

• Complete orbital propagation software code needed to generate target orbital data and plan
observation studies

• Develop architecture design concepts for a fully automated SSA observation station

• Collaborate with commercial vendors to improve the accuracy of the satellite tracking software

• Evaluate other imaging camera and other commercial technologies for SSA applications

• Explore options for technical exchange between the U.S. and Russian SSA communities to discuss
results of this project and similar efforts by Russia.

5.0 References

Ferrero A, R Felletti, L Hanlon, J Campos and A Pons. 2010. "Electron-multiplying CCD Astronomical
Photometry." In Proceedings of SPIE 7536, Sensors, Cameras, and Systems for Industrial/Scientific
Applications XI, pp. 75360Q-75360Q-11. January 17, 2010, San Jose, California. The International
Society for Optical Engineering, Bellingham, Washington.

Hall D and P Kervin. 2013. "Analysis of Faint Glints from Stabilized GEO Satellites." In 2013
Advanced Maui Optical and Space Surveillance (AMOS) Technical Conference. September 10-13, 2013,
Kihei, Maui, Hawaii. The Maui Economic Development Board, Maui, Hawaii. Boeing report number
#377ABW-2013-0638, OPS-13-5157. Available at
www.amostech.com/TechnicalPapers/2013/NROC/HALL.pdf.

Knight B. 1979. "An Efficient Gearless Telescope Drive." Journal of the British Astronomical
Association 90:45.

National Research Council. 1995. Orbital Debris: A Technical Assessment. National Academy Press,
Washington, D.C.

Pogson N. 1856. "Magnitudes of Thirty-six of the Minor Planets for the First Day of Each Month of the
Year 1857." Monthly Notices of the Royal Astronomical Society 17:12-15.

Schaefer BE. 1990. "Telescopic Limiting Magnitudes." Publications of the Astronomical Society of the
Pacific 102(648):212-229.

Shell J. 2010. "Optimizing Orbital Debris Monitoring with Optical Telescopes." In 2010 Advanced
Maui Optical and Space Surveillance (AMOS) Technical Conference, p. E42. September 14-17, 2010,
Wailea, Maui, Hawaii. The Maui Economic Development Board, Maui, Hawaii.

14

http://www.amostech.com/TechnicalPapers/2013/NROC/HALL.pdf

Vallado DA, P Crawford, R Hujsak and TS Kelso. 2006. "Revisiting Spacetrack Report #3." In
AIAA/AAS Astrodynamics Specialist Conference, pp. 1984-2071. August 21-August 24, 2006, Keystone,
Colorado. American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia.

15

Appendix A

SkyX Bump.exe Program

Appendix A

SkyX Bump.exe Program

A.1 Description

An advanced SkyX satellite tracking add-on is under development at Software Bisque that has
enhanced satellite orbital propagator code and telescope pointing and tracking accuracy. The add-on also
includes a software-based joystick that can be used to center the RSO target within the telescope or
camera field of view (FOV). PNNL developed a hardware joystick solution using a USB numerical
keypad and a Python program to send SkyX bump commands through a TCP/IP socket connection
protocol. The SkyX Bump.exe Python GUI reads keys 8, 5, 4, and 6 on a USB numeric keypad, then
sends Javascript to SkyX for the up, down, right, and left bump commands using a TCP/IP socket
connection protocol. One advantage of this approach is that this program does not need to run on the
same SkyX computer, because it uses a TCP socket connection.

A.2 How to Use
1. First turn on SkyX’s TCP server by going to Tools>TCP Server. A new dialog window should open

up and make sure to click on the checkbox labeled, “Listening for connections”; you can close the
dialog window once the checkbox has been marked.

2. Next run the BumpControls.exe program located in the BumpControls/dist folder. This will initiate
SkyX Bump.exe. Once this GUI is open, type in the port number used to connect to SkyX’s TCP
server. The port number is shown in SkyX’s TCP server dialog window. Once connected, the
indicator should change to green and the textbox should indicate a positive connection status as well
as the version number of the Raven3 object. Raven3 is the software object used to control the bump
offsets. The TCP server dialog window should also indicate the connection as well. A
“ReferenceError. Cannot find variable: Raven3” message indicates that the advance satellite tracking
add-on is not installed with SkyX.

3. SkyX Bump.exe is now ready to receive key commands from the USB keypad. The SkyX bump up,
down, left, and right commands are bound to the 8, 5, 4, and 6 keys, respectively, on the numeric
keypad. Pressing any of these keys during satellite tracking will command SkyX to bump the
telescope in the appropriate direction by a given amount. The size of the bump offset can be set in
either the SkyX Track Satellite window or by adjusting the slider in the client GUI.

4. To disconnect, press the disconnect button and the client should disconnect from the server. Once
disconnected, the USB keypad controls will be unbound from the SkyX application.

NOTE: When SkyX and SkyX Bump.exe run on the same computer, make sure that the SkyX client
window is the active window when using the bump controls. If the client window is not the active
window, the GUI will no longer associate the key presses with appropriate commands. Also SkyX
Bump.exe is unable to differentiate key presses between the computer keyboard and the USB keypad.

A.1

'''---
BumpControls.py
Written by Cliff Chen, PNNL

This program creates a simple TCP client to talk to the TCP server in SkyX and send Javascript
commands to control the bump controls during satellite tracking. The commands are bound to keys on a
numeric keypad and are activated only when the client is connected.
---'''

import socket, os
from Tkinter import *

class ClientWindow(Frame):
 def __init__(self,parent=None):
 self.root = parent
 self.connected = False

 Frame.__init__(self,parent)
 self.createWidgets()
 self.pack()

 def createWidgets(self):
 #create connection indicator
 self.connection_indicator = Canvas(self,bg='red',height=50,width=50)
 self.connection_indicator.grid(row=0,column=0,rowspan=2,sticky=E)

 #create the entry boxes for the server IP and port number
 self.iplabel = Label(self,text='Server IP:')
 self.iplabel.grid(row=0,column=1,sticky=E,pady=5)
 self.ipentry = Entry(self)
 self.ipentry.insert(0,socket.gethostbyname(socket.gethostname()))
 self.ipentry.grid(row=0,column=2,sticky=W,pady=5)
 self.portlabel = Label(self,text='Port:')
 self.portlabel.grid(row=1,column=1,sticky=E,pady=5)
 self.portentry = Entry(self)
 self.portentry.grid(row=1,column=2,sticky=W,pady=5)
 self.portentry.focus()

 #create the scale for specifying the size of the bump
 self.scalelabel = Label(self,text='Bump Size in Arcseconds')
 self.scalelabel.grid(row=3,column=0,columnspan=2,sticky=E+S,pady=5)
 self.scale = Scale(self,orient=HORIZONTAL,length=300,to=360)
 self.scale.grid(row=3,column=2,columnspan=2,sticky=W,pady=5)

 #create text box to receives outputs from the TCP server
 self.outputlabel = Label(self,text='Server Response:')
 self.outputlabel.grid(row=4,column=0,sticky=W)
 self.outputentry = Text(self)
 self.outputentry.config(height=5,width=55)
 self.outputentry.grid(row=5,column=0,columnspan=5,sticky=W+E)

A.2

 #create connect and disconnect buttons
 self.connectbutton = Button(self,text='Connect',command=self.connect2TCPServer)
 self.connectbutton.grid(row=0,column=3,sticky=W+E)
 self.disconnectbutton = Button(self,text='Disconnect',command=self.disconnectFromTCPServer)
 self.disconnectbutton.grid(row=1,column=3,sticky=W+E)

 #the key bindings are set up on the numeric keypad and organized to mimic the regular
up,down,left,right
 #arrow keys on a keyboard
 def bindControls(self):
 self.bind_all('<8>',self.moveUp)
 self.bind_all('5',self.moveDown)
 self.bind_all('4',self.moveLeft)
 self.bind_all('<6>',self.moveRight)
 self.scale.bind('<ButtonRelease-1>',self.readScale)

 def unbindControls(self):
 self.unbind_all('<8>')
 self.unbind_all('5')
 self.unbind_all('<6>')
 self.unbind_all('4')
 self.scale.unbind('<ButtonRelease-1>')

 #wrapper function to check connection status
 def checkConnection(func,*args,**kwargs):
 def check(self,*args,**kwargs):
 if self.connected:
 func(self,*args,**kwargs)
 else:
 self.printResponse('Not connected to SkyX TCP server.')
 return check

 #wrapper function to check for socket errors
 def check4SocketError(func,*args,**kwargs):
 def check (self,*args,**kwargs):
 try:
 func(self,*args,**kwargs)
 except socket.error as e:
 self.printResponse(os.strerror(e.errno))
 self.changeIndicator('red')
 return check

 def changeIndicator(self,color):
 self.connection_indicator.config(bg=color)

 #callback function to read the scale and update the bump size in skyx
 def readScale(self,event):
 bump_step = self.scale.get()
 self.sock.sendall("/* Java Script */ Raven3.bumpSizeArcSecs=%d; Out='Bump
size='+String(Raven3.bumpSizeArcSecs);"%(bump_step))
 self.recvCommandResponse()

A.3

 def clearOutputEntry(self):
 self.outputentry.delete("%d.%d" % (1, 0),END)

 def printResponse(self,message):
 self.clearOutputEntry()
 self.outputentry.insert("%d.%d" % (1,0),message)

 def connect2TCPServer(self):
 try:
 port = int(self.portentry.get())
 hostname = self.ipentry.get()
 self.sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 self.sock.settimeout(5)
 self.sock.connect((hostname,port))
 self.sock.sendall("/* Java Script */ var Out; Out = 'Connected. Raven3 Version:
'+String(Raven3.trackLEOVersion);")
 self.printResponse(self.sock.recv(2048))
 except ValueError:
 self.printResponse('Not a valid port number.')
 except socket.error as e:
 self.printResponse(os.strerror(e.errno))
 except socket.timeout:
 self.printResponse('Socket has timed out.')
 else:
 self.connected = True
 #bind controls once the client is connected
 self.bindControls()
 self.changeIndicator('green')
 self.focus()

 @checkConnection
 def disconnectFromTCPServer(self):
 try:
 self.sock.close()
 except socket.error as e:
 self.printResponse(os.strerror(e.errno))
 else:
 self.printResponse('Disconnected from SkyX TCP server.')
 self.connected = False
 #unbind the controls when the client disconnects
 self.unbindControls()
 self.changeIndicator('red')

 @check4SocketError
 def recvCommandResponse(self):
 chunks = []
 delimiter_detected = False
 while not delimiter_detected:
 chunk = self.sock.recv(2048)
 if chunk == b'':

A.4

 #if the socket receives no more bytes, then connection has been terminated so indicate
that it has
 self.printResponse('Disconnected from SkyX TCP server.')
 self.changeIndicator('red')
 return
 #using the | character as the delimiter in the messages received from the SkyX's TCP server
 elif '|' in chunk:
 chunks.append(chunk)
 if not chunk.endswith('.'):
 chunks.append(self.sock.recv(2048))
 delimiter_detected = True
 else:
 chunks.append(chunk)

 self.printResponse(b''.join(chunks))

 #list of commands to be bound
 @check4SocketError
 def moveUp(self,event):
 if event.keycode == 104:
 self.sock.sendall("/* Java Script */ Raven3.trackLEOBumpUp();")
 self.recvCommandResponse()

 @check4SocketError
 def moveDown(self,event):
 if event.keycode == 101:
 self.sock.sendall("/* Java Script */ Raven3.trackLEOBumpDown();")
 self.recvCommandResponse()

 @check4SocketError
 def moveRight(self,event):
 if event.keycode == 102:
 self.sock.sendall("/* Java Script */ Raven3.trackLEOBumpRight();")
 self.recvCommandResponse()

 @check4SocketError
 def moveLeft(self,event):
 if event.keycode == 100:
 self.sock.sendall("/* Java Script */ Raven3.trackLEOBumpLeft();")
 self.recvCommandResponse()

#script to run and create the client window
if __name__ == '__main__':
 root = Tk()
 root.title('Bump Controls')
 front = ClientWindow(root)
 front.mainloop()

A.5

'''--

BumpControlssetup.py

py2exe setup file for building the BumpControls GUI

---'''

from distutils.core import setup
import py2exe

setup(windows=['BumpControls.py'])

A.6

Appendix B

Hamamatsu C9100-23b ImagEM X2 Camera Specifications

Appendix B

Hamamatsu C9100-23b ImagEM X2 Camera Specifications
Type number C9100-23B(ImagEM X2)

Window Anti-reflection (AR) coatings on both sides, single window
Imaging device Electron Multiplying Back-Thinned Frame Transfer CCD
Effective number of pixels 512 (H) x 512 (V)
Cell size 16um (H) x 16um (V)
Effective Area 8.19mm (H) x 8.19mm (V)
Pixel Clock rate EM-CCD Readout 22MHz, 11MHz, 0.6875 MHz

Normal-CCD Readout 0.6875MHz
EM gain (typ) 4x to 1200x
Ultra-low light detection Photon Imaging Mode 1,2,3
Fastest readout speed 70.4 frame/s to 1076 frame/s
Readout noise (rms) (typ) EM-CCD Readout EM gain 4x 36 electrons at 22MHz

25 electrons at 11MHz
8 electrons at 0.6875MHz

EM gain
1200x

1 electron max at 22MHz
1 electron max at 11MHz

1 electron max at 0.6875MHz
Normal-CCD Readout 8 electrons at 0.6875MHz

Full well capacity (typ) EM-CCD mode 370000 electrons (CIC serious consideration)
Normal-CCD mode 140000 electrons (CIC serious consideration)

Analog gain EM-CCD
Readout

22MHz 1x
11MHz/0.6875 MHz 0.5x, 1x

Normal-CCD Readout 1x, 2x, 3x, 4x, 5x
Cooling
method/temperature

Forced- air
cooled

at temperature control -65C stabilized (0C to +30C)
at slow scan -75C (Room temperature: Stable at +20C, No binning)
at maximum cooling typ. -80C stabilized (Water temperature +20C)

Water
cooled

at temperature control -80C stabilized (Water temperature +20C)
at maximum cooling typ. -100C stabilized (Water temperature lower than +10C)

Temperature stability (typ) +/- 0.01C
Dark current (typ) Forced- air cooled (-65C) 0.005 electron/pixel/s

Water cooled (-80C) 0.0005 electron/pixel/s
Clock induced charge (typ) 0.0015 events/pixel/frame
Exposure time Internal synchronous mode 13.9ms to 1s (22 MHz)

27.2ms to 2hours (11MHz)
421.5ms to 2hours (0.6875MHz)

Exposure time External trigger mode 10us to 1s (22MHz)
10us to 2hours (11MHz, 0.6875MHz)

A/D converter 16bit
Output Signal/ External control IEEE 1394b (Firewire)
Binning 2x2,4x4,8x8,16x16
External trigger mode Edge trigger, level trigger, start trigger synchronous trigger
Trigger output Exposure timing output, programmable timing output (delay

and pulse length are variable), trigger ready output
Imaging processing features (real-time) Background subtraction, shading correction, recursive filter,

frame averaging, spot noise reducer
EM gain protection EM warning mode, EM protection mode
Ambient Operating temperature 0C to +40C
Performance guaranteed temperature 0C to +30C

B.1

Appendix C

ORCA Technologies Synchronized Time Code Generator
Model GS-101

Appendix C

ORCA Technologies Synchronized Time Code Generator
Model GS-101

General Specs

Position Accuracy <10 to 20 meters SEP (SA off)
Timing Accuracy +/- 100 nanoseconds to UTC (GPS)
GPS Input 1.575 GHz L1 C/A Code
GPS Receiver 12 parallel channels
Internal Oscillator TCXO <5X10^-9 (disciplined to GPS)
Antenna L1 GPS with 5-meter SMA cable

Fixed Inputs

IRIG-B AM Serial Time Code Input Format IRIG-B 122
Amplitude 1 Vrms into 50 Ohms
Ratio factory set to 3:1
Connector SMA labeled CODE INPUT
Termination 50/10k Ohms, switch selectable

IRIG-B DC Level Shift (DCLS)
Serial Time Code Input

Specification IRIG-B 002
Amplitude TTL levels
Connector DB-15 multi-pin

Fixed Outputs

AM Serial Time Code Output Format IRIG-B 122, IRIGB 123 and IEEE-1344
Amplitude 1 Vrms into 50 Ohms
Ratio factory set to 3:1
Connector SMA labeled CODE OUTPUT

DLC Level Shift (DCLS) Serial
Time Code Output

Specification IRIG-B 002, IRIG-B 003, and IEE-1344
Amplitude TTL levels
Connector DB-15 multi-pin

1PPS Output Accuracy <100 nanoseconds
Logic level TTL into 50 Ohms
Timing Positive edge on time
Duty cycle 50%
Connector DB-15 multi-pin

Programmable Pulse Output Logic level TTL
Timing Positive edge on time
Duty cycle TBD
Connector DB-15 multi-pin

RS-232 I/O Port Baud Rate 9600-115200
Output Time, position, status and current settings
Input Operating mode and setup parameters
Connector DB-15 multi-pin

2nd RS-232 I/O Port Outputs NMEA 0183 messages containing navigation and
tracking information. Port will accept differential GPS real-time
pseudo-range correction data in RTCM SC-104 format

USB Port Output data: Time, position and status
Manual Control Setup functions for operating mode, time, local and daylight

savings time and programmable pulse
DC Power 50 to V0 VDC <500 mWatts (can be powered through USB)

C.1

Appendix D

TSCapture.exe Program

Appendix D

TSCapture.exe Program

D.1 Description

TSCapture.exe is a Windows-executable Python script that is used in conjunction with the
Hamamatsu C9100-23B EM CCD camera and Hamamatsu HCImage Live program to capture timestamps
from the ORCA GS-101 Timing Receiver module. The timestamps can be saved into a txt file and
overlay onto corresponding images acquired from the HCImage program as well as saved into the
images’ properties information. The original images will be archived and the images that contain the
timestamp overlay will be saved to a new directory. The program is capable of also compiling the images
into a video with the codec and frame rate specified by the user.

D.2 Installation

To install, copy the TSCapture directory into any location on the computer. Next, add the
'TSCapture/dist/ffmpeg' directory to system PATH variable. This defines the file path for the library of
codecs use when compiling a video. If directory is not added to the PATH variable, then the program will
not have video processing functionality and will only produce empty video files if executed. To run
TSCapture.exe, navigate to the TSCapture/dist directory and launch the program.

D.3 Capturing Timestamps

D.3.1 Before Capturing: Configuring the HCImage Software

Within the HCImage application, configure the following:

1. TRIGGERING: Configure the trigger settings on the camera appropriately before running to the
program.

2. IMAGE FORMAT: If overlaid timestamps are need, make sure that all the images are saved as
TIFF images and not CXD or MPTIFF.

3. FILENAME: Make sure that the filenames of the images follow the format:
(name)(delimiter)(image#)(extension) if processing overlaid timestamps. It is important that only the
image's number within the set is between the delimiter and the file extension. Furthermore, it is
important that only one instance of the delimiter appears in the filename; otherwise, the program will
not sort the images properly. The HCImage program will automatically name the image according to
this format with the delimiter being an underscore.

4. SAVE LOCATION: Make sure that all the appropriate images from one set are saved to their own
directory if you want to overlay timestamps. The program will automatically grab all images with the
indicated extension from the directory, so any extraneous images with the same extension will also be
grabbed also, which will result in timestamps becoming out of sequence this their respective images.

D.1

D.3.2 Capturing

To capture, first select the serial port from the Settings>Serial Ports menu.

Once the serial port has been set, press the 'Start capture' button on the right in the application
window to begin. The program will continuously read the serial port every 0.25 seconds to detect new
timestamps when they are transmitted from the time code generator. When a timestamp is detected, it
will be appended to an array to store the timestamps until saved by the user. The number of timestamps

D.2

currently captured will be displayed in the lower right hand corner. To stop the capture, press the 'Stop
capture' button to stop the capture loop and close the serial port.

NOTE: The program will almost always capture more timestamps than the number of images
recorded because the EMCCD camera continues to send frame trigger pulses after in imaging sequence is
completed, due to a timing delay in the HCImage application software.

D.3.3 Capture Settings

There is a list of options that the user can choose to control how the program captures and uses
timestamps in the Settings>Capture Settings menu:

D.3

1. CONVERT TIMESTAMPS: Selecting this option will open up a dialog box that will ask to choose
how to convert the timestamps. The conversion will only store the data in the units indicated and
ignore any data with units larger than the indicated units. For example, if the minutes option is
chosen, then only the minutes and seconds data will be retained (with the seconds data converted to
fractions of a minute) and the remaining hour and day data will be not be used. The converted
timestamps are stored separately from the raw data.

2. SAVE ALL TIMESTAMPS: Selecting this option will save all the collected including, any extra
ones (see note above).

D.4 Saving and Loading Timestamp Data

To save the original timestamp data, navigate to 'File>Save data' to open up a dialog box to select the
file storage path. The file will be saved a .txt file. The number of timestamps saved will equal the
number of image if, the user had previously overlaid timestamps on the images. Otherwise the program
will save all the timestamps from the last image capture session. There is also an option to always save
all the timestamps located in 'Settings>Capture Settings'. Selecting this option will always save all the
timestamps collected. Selecting the 'Save converted data' will save any timestamp data that has been
converted into the appropriate format of seconds, minutes or hours. Make sure to indicate the units in the
filename to save confusion later.

To load timestamps into program from a data file, navigate to 'File>Load data'. The program will
read in the all timestamps in the data file and provide the number read in. The program may not read in
the data correctly if the file data is not formatted the same way as it was originally created and you will
not be able to use the ‘Convert timestamps’ option located in the Settings>Capture Settings menu.

D.4

D.5 Overlaying Timestamps onto Images

After capturing or loading a set of timestamps into the application, TSCapture.exe can overlay the
timestamps onto a set of images. This can be done by pressing the Overlay button. The program will
then prompt the user to select the directory where the images are stored.

Once the user picks the directory, another dialog box will appear to ask the user which directory he or
she wants to save the timestamped images into. It is important that the user select or create a new
directory as the images will be saved with the original filename so any previous images may be
overwritten.

D.5

After the selections are made, the program will then go to the first directory to grab all the images
with the appropriate extension and sort them numerically based on the image number given in their
filenames. The program will then overlay the timestamp in the upper-left corner of the image before
saving the timestamped images in another directory specified by the user. The number of successfully
timestamped images will also be displayed to the user. The timestamp information will also be placed
into the image's TIFF field for description if possible. The program will also automatically use the
number of the images obtained to determine the number of timestamps to save when saving the timestamp
data as a text file. Any extra timestamps are then automatically removed.

NOTE: Due to the fact that the image writing process is opened up as a separate process apart from
the Tkinter GUI thread, the progress bar may not actually update at the same speed as the image writing.
In other words, the program may finish overlaying the timestamps before the progress bar fills up
completely. If this does occur, it should not have any effect on the rest of the program's usability, with
the exception that if another process is ran before the progress bar is finished, the progress bar may update
erratically and may generate an error.

D.6

D.5.1 Image Options

There is a list of options that the user can choose to control how the program overlays the timestamps
in the Settings>Image Settings menu:

1. OVERRIDE: This option allows the user to override the previous timestamp on an image by
covering it up with a black rectangle before placing the correct timestamp in its place. Use this option
if the timestamp placed on an image is incorrect. This setting is turned off by default.

D.7

2. DELIMITER: This option will pop open a small dialog box that will prompt the user to input a
delimiter to use when the program sorts the filenames numerically. The default value is an
underscore.

3. IMAGE FORMAT: This option allows the user to choose what extension to use when the program
grabs the images from the indicated save directory. The default value is .tif for TIFF images, which is
the format that the user will be saving the images in when capturing images using the HCImage
software.

D.6 Compiling Images into a Video

The program can combine a series of images into a video file. To compile a video, click the Make
Video button. The program will first ask the user for the images location. The options for delimiter and
file extension are set through the Settings>Image Settings menu. After the images are obtained and sorted
numerically, the program will then query the user for the save location of the video file. The video file
will automatically be saved using the .avi container, since this is a recognized Windows video format and
will pose less problems when saving the video on a Windows machine. The program will then proceed to
make the video and indicate the number of image successfully written to the video.

D.6.1 Video Options

There are also two options the user can specify to control how the video is made in the
Settings>Video Settings menu:

D.8

1. FRAMERATE: This option will pop open a dialog box that will ask the user the frames per second
to use for the video. The default value is set at 24 frames per second.

2. CODEC: This option will list out the available codecs to use for compression when making the
video. The codecs listed are the ones supported by the OpenCV VideoWriter class. Not all the codecs
the class supports are listed. The default value is the DIVX codec.

D.7 Error Handling

A terminal window will remain open while the program is running to display any traceback
information about errors that occur during the program's execution. The source code for the program can
be found in the TSCapture/source directory.

D.9

'''---
setup.py
Writtten by Cliff Chen, PNNL

This is the setup file for building the GUI application using py2exe. The setup file includes several image
files and the html file used for program's reference.
---'''

from distutils.core import setup
import py2exe, numpy

#images used in the reference manual
image_files =
['start_capture.png','convert_ts.png','finish_capture.png','debugging_window.png','hcimage.png','image_in
fo.png','image_settings.png',

 'savenload.png','savets.png','serial_ports.png','tiffdir.png','video.png','video_settings.png','exposure_ti
me.png',
 'capture_settings.png']

for i,file in enumerate(image_files):
 image_files[i] = 'ref_image/'+file

D.10

reference_files = [('reference',['TSCapture_reference.html']),
 ('reference/ref_image',image_files)]

setup(console=['TSCapture.py'], data_files=reference_files)

'''--

TSCapture.py

This is the driver module of the program. It starts the GUI and enters into the mainloop.

---'''
from Tkinter import *
from TS import *
#need to explicitly include import numpy in the script as well in the setup.py script
#py2exe seems to have trouble importing some of the dlls on its own.
import numpy

print 'This window is kept open for debugging purposes. If any error occurs during the program, the
traceback information will show up here\n'
if __name__ == '__main__':
 root = Tk()
 root.title('TSCapture')
 front = FrontPanel(parent=root)
 root.mainloop()

'''--

TS.py

This is the 'main' module that contains all the classes used the program.

PROGRAM NOTES:
- Need to use 'import PIL.Image' instead of 'from PIL import Image' to avoid name space issues.
Otherwise, the program will import only
Image class and not the entire module
- OpenCV has issues with loading the ffmpeg library if the computer is running without ffmpeg support.
 To fix, rename the opencv_ffmpeg.dll file to opencv_ffmpeg(current_version).dll in the directory:
opencv\sources\3rdparty\ffmpeg
 and add the directory to the path variable. In this case, the library has been renamed to
opencv_ffmpeg249.dll
---'''

import traceback, tkFileDialog, tkMessageBox, os, serial, glob, json, cv2, webbrowser, Queue, functools
from PIL import ImageFont, ImageDraw
import PIL.Image

D.11

from Tkinter import *
from ttk import *
from parse import *
from time import sleep
from multiprocessing.pool import ThreadPool

'''
Wrapper class that wraps another object's functions and checks if the output of a function is True, False or
None.
If the output is False or None, then prevent any more functions from executing until we reset the error
checker.
The class also accesses the wrapped object's list of messages to display to the textbox and posts which
function
failed to execute properly in a sequence of commands in the debugging window.

NOTE: This wrapper class requires all functions in the wrapped class, public and private, to return a value
when complete,
even if the function does not compute a value like a set function. If no value is returned, the wrapper class
will catch
the null return and prevent any further functions in the wrapped class from executing until the error
checker is reset.
'''
class TFNoneWrapper(object):
 def __init__(self,wrapped_class):
 self.wrapped_class = wrapped_class()
 #create the flag that prevents future functions from executing if a past one failed
 self.prevfunc_passed = True
 self.prevfunc_name = ''

 def __getattr__(self,attr):
 orig_attr = self.wrapped_class.__getattribute__(attr)
 if callable(orig_attr):
 name = orig_attr.__name__
 #wrapper function that checks if previous function passed
 def checker(*args,**kwargs):
 if self.prevfunc_passed:
 #if passed set previous function name to current function name
 self.prevfunc_name = name
 #now execute and set result
 result = orig_attr(*args,**kwargs)
 try:
 if result == False:
 self.prevfunc_passed = False
 return self.wrapped_class.messages[name]['false']
 elif result == None:
 self.prevfunc_passed = False
 return self.wrapped_class.messages[name]['none']
 elif result == True:
 return self.wrapped_class.messages[name]['true']
 else:

D.12

 return result
 except KeyError:
 #return an empty string if no statement is found in the messages
dictionary
 return ''
 else:
 #if previous function did not pass, indicate that it did not
 print 'The previous function, '+self.prevfunc_name+' ,from the class
'+self.wrapped_class.__name__+' did not execute properly.'
 return 'Error. Check debugging window'

 return checker
 else:
 return orig_attr

'''
Base class that is capable of opening communication with the ORCA and obtaining timestamps
and saving them as well as loading them.
'''
class TimeStamp(object):
 def __init__(self):
 self.__name__ = 'TimeStamp'
 self.timestamps = []
 self.converted_timestamps = []
 self.numbercaptured = 0
 #dictionary of messages depending if the function returned a true,false,or none
 self.messages = {'open':{'true':'Serial port opened.','false':'Error in opening serial port.','none':'No
serial port was selected.'}
 ,'close':{'true':'Serial port closed.','false':'Error in closing serial
port.','none':'Did not provide a serial port to close.'}
 ,'save':{'true':'Data file saved.','false':'Error in saving data file.','none':'No
savepath was specified.'}
 ,'load':{'true':'Data file loaded.','false':'Error in loading data
file.','none':'No file was specified.'}
 ,'parseTimestamps':{'true':'Timestamps parsed into selected
format.','false':'Error occured during parsing timestamps.'}
 ,'capture':{'false':'Error in reading serial port.'}
 ,'convertTimestamps':{'none':'No timestamps to convert.'}}

 '''
 function opens up serial port connection to the specified comport and sends the auto-output enable
commands for the ORCA
 '''
 def open(self,comport):
 #commands to enable auto-output on the ORCA
 cmd = 'AOEN,1'.encode(encoding='ascii')
 cmd2 = 'AOMD,1'.encode(encoding='ascii')
 if comport == None:
 return None
 else:
 try:

D.13

 self.ser = serial.Serial(port=comport,timeout=10)
 self.ser.write(cmd)
 self.ser.write(cmd2)
 except (OSError,serial.SerialException):
 print 'Error in opening serial port to ',comport
 print traceback.print_exc()
 return False
 else:
 sleep(.25)
 self.ser.read(self.ser.inWaiting())
 return True

 '''
 function closes serial port connection
 '''
 def close(self,comport):
 if comport == None:
 return None
 else:
 try:
 self.ser.close()
 except (OSError,serial.SerialException):
 print 'Error in closing serial port ',comport
 print traceback.print_exc()
 return False
 except AttributeError:
 print 'No serial port was previously opened.'
 return False
 else:
 return True

 '''
 function captures timestamps output from the ORCA
 '''
 def capture(self,progress_queue,stop_queue):
 #clear the timestamp list for the new set of data
 self.timestamps = []
 self.numbercaptured = 0
 capturedThisLoop = 0
 timeStampTemp = []

 #the loop repeatedly reads the buffer to check if there is any new data.
 #if so, append the new data to a list. also, check the stop queue to see if
 #the user has indicated for the program to stop.
 while True:
 capturedThisLoop = 0
 try:
 timeStampTemp = self.ser.read(self.ser.inWaiting()).split()
 flag = stop_queue.get_nowait()
 if flag:
 break

D.14

 except serial.SerialException:
 print "Error in reading serial port."
 print traceback.print_exc()
 return False
 except Queue.Empty:
 pass

 capturedThisLoop = len(timeStampTemp)
 self.numbercaptured += capturedThisLoop
 if capturedThisLoop > 0:
 self.timestamps.extend(timeStampTemp)
 progress_queue.put(self.numbercaptured)

 #now wait .25 seconds until the next buffer read
 sleep(.25)

 progress_queue.put(None)
 return self.numbercaptured

 '''
 parse the timestamps into the proper format
 '''
 def parseTimestamps(self):
 success = 0

 for n,i in enumerate(self.timestamps):
 try:
 self.timestamps[n] = parse('\x01{UTC}',i)['UTC']
 except KeyError:
 print "Error in parsing timestamp. Program will keep timestamp as is"
 #pass the value back into itself just in case the error affected the data
 self.timestamps[n] = self.timestamps[n]
 except TypeError:
 return success
 else:
 success += 1

 return success
 '''
 convert the timestamps to a particular unit: second, minute or hour
 The remaining portion of the timestamp that is in units larger than the one indicated
 will not show up as part of the data. The converted data will be saved separately from the
 raw data
 '''
 def convertTimestamps(self,unit='second'):
 if len(self.timestamps) == 0:
 return None
 #clear the previous values
 self.converted_timestamps = []
 success = 0
 parse_func = self.convert_mode(mode=unit)

D.15

 for n,ts in enumerate(self.timestamps):
 try:
 self.converted_timestamps.append(parse_func(ts))
 except KeyError:
 print "Error in parsing timestamp. Program will keep timestamp as is"
 #pass the value back into itself just in case the error affected the data
 self.converted_timestamps[n] = self.timestamps[n]
 except TypeError:
 traceback.print_exc()
 return success
 else:
 success += 1

 return success

 '''
 returns one of three functions to use for conversion depending on the mode specified
 '''
 def convert_mode(self,mode='second'):
 if mode == 'second':
 def convert_second(timestamp):
 result = parse('{day}:{hour}:{minute}:{second},{TFOM}',timestamp)
 return float(result['second'])
 return convert_second
 elif mode == 'minute':
 def convert_minute(timestamp):
 result = parse('{day}:{hour}:{minute}:{second},{TFOM}',timestamp)
 return float(result['minute'])+(float(result['second']))/60
 return convert_minute
 elif mode == 'hour':
 def convert_hour(timestamp):
 result = parse('{day}:{hour}:{minute}:{second},{TFOM}',timestamp)
 return float(result['hour'])+(float(result['minute']))/60+(float(result['second']))/3600
 return convert_hour

 '''
 load a data file containing timestamps
 '''
 def load(self,loadpath):
 if loadpath == None:
 return None
 else:
 try:
 with open(loadpath,'r+') as file:
 self.timestamps = json.load(file)
 except IOError:
 print "Error with loading data"
 print traceback.print_exc()
 return False
 else:

D.16

 return True

 '''
 save the timestamp data into a text file. function returns None if no savepath was specified, false if an
error occurred
 and true if everything passed
 '''
 def save(self,savepath,length,mode='raw'):
 if savepath == None:
 return None
 else:
 try:
 with open(savepath,'w') as file:
 if length == 0:
 if mode == 'raw':
 json.dump(self.timestamps,file)
 else:
 json.dump(self.converted_timestamps,file)
 else:
 if mode == 'raw':
 json.dump(self.timestamps[:length],file)
 else:
 json.dump(self.converted_timestamps[:length],file)

 except IOError:
 print "Error with saving data"
 print traceback.print_exc()
 return False
 else:
 return True

'''
Class that inherits the TimeStamp class and adds on functionality to apply timestamps to images
'''
class TS2Image(TimeStamp):
 def __init__(self):
 TimeStamp.__init__(self)
 #image formats that PIL supports
 self.imformats = ('.bmp','.dib','.dcx','.eps','.ps','.gif','.im','.jpg','.jpeg','jpe','.pcd'

 ,'.pcx','.pdf','.png','.pbm','.pgm','.ppm','.psd','.tif','.tiff','.xbm','.xpm')

 self.imagelist = []
 self.override = False
 self.imformat = '.tif'
 self.delimiter = '_'
 self.__name__ = 'TS2Image'
 self.messages['grabAllFromDir'] = {'true':'Filenames obtained.','false':'Error in reading image
filenames.','none':'No directory was specified.'}
 self.messages['overlayTimestamps'] = {'none':'No save directory was specified.'}

D.17

 def setImFormat(self,format):
 self.imformat = format
 return True

 def setDelimiter(self,delimiter):
 self.delimiter = delimiter
 return True

 def setOverride(self,state):
 #explicitly state that we want a boolean value since the BooleanVar class in the Tkinter module
returns integers instead of boolean values
 self.override = bool(state)
 return True

 '''
 sort function to sort the filenames in numerical order.
 sort function only works if there is only one instance of the delimiter in the file name
 and if the only value between the delimiter and the file extension is an integer
 '''
 def sortImagelist(self,list):
 return sorted(list,key=lambda item:
int(item[item.index(self.delimiter)+1:item.index(self.imformat)]))

 '''
 function goes into a directory and grabs all the files with the corresponding extension
 and then sorts them
 '''
 def grabFromDir(self,dirpath,extension):
 if dirpath == None:
 return None
 current_dir = os.getcwd()
 try:
 #change to the indicated directory
 os.chdir(dirpath)
 self.imagelist = glob.glob('*'+extension)
 except OSError:
 print 'Error in grabbing images from directory'
 print traceback.print_exc()
 return False
 else:
 self.imagelist = self.sortImagelist(self.imagelist)
 #change the filenames to their absolute paths
 for i,file in enumerate(self.imagelist):
 self.imagelist[i] = os.path.abspath(file)
 finally:
 #go back to the original directory
 os.chdir(current_dir)
 return True

D.18

 '''
 function opens up an image, overlays the corresponding timestamp into the upper-left corner and save
the image
 with the same filename in a new directory specified by the user
 function also provides an argument for a queue to send updates to a progressbar
 '''
 def overlayTimestamps(self,newdir,queue):
 if newdir == None:
 return

 #if for some reason the number of timestamps is less than the number of images, only overlay
 #images up to the number of timestamps. otherwise use the number of images found as the
number to overlay
 if len(self.timestamps) < len(self.imagelist):
 length = len(self.timestamps)
 else:
 length = len(self.imagelist)

 #using this font type and size. Imagefont automatically checks the Windows font files if it can't
find the file in the indicated directory.
 f = ImageFont.truetype('arial.ttf',20)
 success = 0

 for m,file in enumerate(self.imagelist[:length]):
 currentTime = self.timestamps[m]
 try:
 #open up the image in the current directory
 #program uses PIL to verlay the timestamp onto the image
 with open(file,'r+b') as i:
 im = PIL.Image.open(i)

 #access the TIFF image's description using the corresponding numerical TIFF tag
value 270
 #hammatsu stores the camera settings and what not for the image into this field
 #to keep it, we need to read it out and manually re-save it back into the image
 #currently not used
 '''
 if 270 in im.tag:
 info = im.tag[270]
 else:
 info = ''
 '''

 #crop the region where the timestamp will be overlayed
 region = im.crop((0,0,250,20))
 draw = ImageDraw.Draw(region)

 #if the override mode is true, erase the previous timestamp by covering it with a
black rectangle
 if self.override:
 draw.rectangle([0,0,250,20],fill=0)

D.19

 else:
 pass

 #now overlay the text containing the timestamp into the upper left corner of the
crop
 draw.text((0,0),str(currentTime),fill=255,font=f)
 im.paste(region,(0,0,250,20))

 #save the image with the timestamp as the description
 #into the new directory the user created
 with open(os.path.join(newdir,os.path.basename(file)),'w+b') as newim:
 im.save(newim,mode="L",description=str(currentTime))

 im.close()
 del draw

 except IOError:
 print "Error with opening/saving ",k
 print traceback.print_exc()
 continue
 else:
 success += 1
 queue.put(success)

 queue.put(None)
 return success

'''
class that inherits the TS2Image class and adds on functionality to convert images to video
'''
class Image2Video(TS2Image):
 def __init__(self):

 TS2Image.__init__(self)
 self.__name__ = 'Image2Video'

 #list of available codecs supported by the OpenCV VideoWriter class. Not all the codecs the class
supports is listed here
 self.codeclist = ('divx','xvid','mp43','mp4s','fmp4','div1','mp4v','ump4','div5','mpg3','div6'

 ,'div1','h263','i263','h261','jpgl','ljpg','mjpg','flv1','i420','yuy2','y422'
 ,'yv12','uyvy','hdyc','iv32','y800')
 self.codec = 'divx'

 #list of available image formats that the OpenCV cv2 class supports for reading. Overwrites the
original imformats list in TS2Image
 self.imformats = ('.bmp','.dib','.jpg','.jpeg','.jpe','.png','.pbm','.pgm','.tiff','.tif')

 #add to the list of messages
 self.messages['writeVideo'] = {'none':'No save location was specified'}

D.20

 #create the video writer object
 self.videowriter = cv2.VideoWriter()

 def getAvailableCodecs(self):
 return self.codeclist

 def setCodec(self,codec):
 self.codec = codec
 return True

 '''
 writes a series of images to a video file. the only trusted option for video containers currently is .avi
 function also provides an option to include a queue to send updates to the progressbar
 '''
 def writeVideo(self,savepath,progress_queue,fps=24.0):
 if savepath == None:
 return None

 length = len(self.imagelist)

 fourcc = cv2.cv.CV_FOURCC(*self.codec)
 self.videowriter.open(savepath,fourcc,fps,(512,512),False)
 success = 0
 #try to write the images to the video file
 for image in self.imagelist:
 try:
 self.videowriter.write(cv2.imread(image,0))
 except (cv2.error, IOError):
 print 'Error in writing image to video file'
 traceback.print_exc()
 else:
 success += 1
 progress_queue.put(success)

 self.videowriter.release()
 cv2.destroyAllWindows()
 progress_queue.put(None)
 return success

'''
main class that handles the GUI and contains an instance of the Image2Video class
'''
class FrontPanel(Frame):
 def __init__(self,parent=None):
 self.root = parent

 #create and wrap the Image2Video object
 self.vid = TFNoneWrapper(Image2Video)

 #initialize all the values to empty values

D.21

 self.info = {'tstiffdir':None,'comport':None,'fps':24.0,'saveall':False,'delimiter': self.vid.delimiter,
 'imagesgrabbed':0}

 #create the tracking variables for the menu options
 self.vars =
{'port':StringVar(),'codec':StringVar(),'override':BooleanVar(),'saveall':BooleanVar(),'imformat':StringVa
r(),'progresslabel':StringVar()}
 self.vars['port'].set(self.info['comport'])
 self.vars['codec'].set(self.vid.codec)
 self.vars['override'].set(self.vid.override)
 self.vars['imformat'].set(self.vid.imformat)
 self.vars['saveall'].set(self.info['saveall'])
 self.vars['progresslabel'].set('')

 #create the queue object to hold values produced by another thread for the progressbar
 self.progress_queue = Queue.Queue()
 #create the queue that controls when the capture sequence stops
 self.stop_queue = Queue.Queue()

 #initialize the frame and the widgets
 Frame.__init__(self,parent)
 self.pack()
 self.createWidgets()

 '''
 this function creates all the widgets and GUI controls in the application
 '''
 def createWidgets(self):

 #create the file menu
 self.menubar = Menu(self)
 self.filemenu = Menu(self.menubar,tearoff=0)
 self.filemenu.add_command(label='Load data',command=self.loadTimestamps)
 self.filemenu.add_command(label='Save
data',command=lambda:self.saveTimestamps(mode='raw'))
 self.filemenu.add_command(label='Save converted
data',command=lambda:self.saveTimestamps(mode='converted'))
 self.filemenu.add_separator()
 self.filemenu.add_command(label='Exit',command=self.leaveApplication)

 #create the settings menu
 self.settingsmenu = Menu(self.menubar,tearoff=0)

 #create the capture settings menu
 self.capturemenu = Menu(self.settingsmenu,tearoff=0)
 self.capturemenu.add_command(label='Convert
timestamps',command=self.convertTimestampsDialog)
 self.capturemenu.add_checkbutton(label='Save all
timestamps?',variable=self.vars['saveall'],onvalue=True,offvalue=False,command=lambda:
self.setSaveall(self.vars['saveall'].get()))

D.22

 self.settingsmenu.add_cascade(label='Capture Settings',menu=self.capturemenu)

 #create the image settings menu
 self.imagemenu = Menu(self.settingsmenu,tearoff=0)
 self.imagemenu.add_checkbutton(label='Override previous
timestamp?',variable=self.vars['override'],onvalue=True,offvalue=False,command=lambda:
self.vid.setOverride(self.vars['override'].get()))
 self.imagemenu.add_command(label='Delimiter',command=self.setDelimiter)
 self.imformatmenu = Menu(self.imagemenu,tearoff=0)
 self.showImformats()
 self.imagemenu.add_cascade(label='Formats',menu=self.imformatmenu)
 self.settingsmenu.add_cascade(label='Image Settings',menu=self.imagemenu)

 #create the video settings menu
 self.videomenu = Menu(self.settingsmenu,tearoff=0)
 self.videomenu.add_command(label='Framerate',command=self.setFPS)
 self.codecmenu = Menu(self.videomenu,tearoff=0)
 self.showCodecs()
 self.videomenu.add_cascade(label='Codecs',menu=self.codecmenu)
 self.settingsmenu.add_cascade(label='Video Settings',menu=self.videomenu)

 #create the serial port menu
 self.portmenu = Menu(self.settingsmenu,tearoff=0)
 self.findCOMPorts()
 self.settingsmenu.add_cascade(label='Serial Ports',menu=self.portmenu)

 #create the help menu
 self.helpmenu = Menu(self.menubar,tearoff=0)
 self.helpmenu.add_command(label='Lookup satellite',command=lambda:
webbrowser.open_new_tab('https://www.calsky.com/cs.cgi/Satellites?obs=94196120633660'))
 self.helpmenu.add_command(label='Reference',command=lambda:
webbrowser.open_new_tab(os.path.join(os.path.relpath('reference'),'TSCapture_reference.html')))

 #add the menubar to the frame to display it
 self.menubar.add_cascade(label='File',menu=self.filemenu)
 self.menubar.add_cascade(label='Settings',menu=self.settingsmenu)
 self.menubar.add_cascade(label='Help',menu=self.helpmenu)
 self.root.config(menu=self.menubar)

 #create a message box and scrollbar
 self.scrollbar = Scrollbar(self)
 self.scrollbar.grid(row=0,column=4,sticky=N+S)
 self.status = Text(self)
 self.status.config(height=20,width=45,yscrollcommand=self.scrollbar.set)
 self.status.insert(END,'Application has started.\n')
 self.status.grid(row=0,column=0,columnspan=4)
 self.scrollbar.config(command=self.status.yview)

 #create the progressbar and label that runs when writing images
 self.progresslabel = Label(self,textvariable=self.vars['progresslabel'])
 self.progress = Progressbar(self,mode='determinate')

D.23

 self.progress.grid(row=1,column=0,columnspan=3,sticky=N+S+E+W)
 self.progresslabel.grid(row=1,column=3,sticky=N+S+E+W)

 #create the action buttons
 self.capture_start = Button(self,text="Start capture",command=self.start_capture)
 self.capture_start.grid(row=2,column=0,sticky=N+S+W+E)
 self.capture_stop = Button(self,text="Stop capture",command=self.stop_capture)
 self.capture_stop.grid(row=2,column=1,sticky=N+S+W+E)
 self.apply = Button(self,text='Overlay',command=self.applyTimestamps)
 self.apply.grid(row=2,column=2,sticky=N+S+W+E)
 self.video = Button(self,text='Make Video',command=self.writeImages2Video)
 self.video.grid(row=2,column=3,columnspan=2,sticky=N+S+W+E)

 '''
 this function reads values from a queue and updates the progressbar every 50ms
 '''
 def update_progress(self,length):
 try:
 while True:
 status = self.progress_queue.get_nowait()
 #check if the task is finished. if so, stop updating
 if status == None:
 self.progress['value'] = 0
 self.vars['progresslabel'].set('')
 self.progress.update_idletasks()
 return
 self.progress['value'] = status
 self.vars['progresslabel'].set('%d/%d'%(status,length))
 self.progress.update_idletasks()
 except Queue.Empty:
 pass
 #after 50ms, recursively execute the function again
 self.after(50,lambda: self.update_progress(length))

 '''
 update only the label. this is used when capturing timestamps from the orca
 '''
 def update_label(self):
 try:
 status = self.progress_queue.get_nowait()
 #check if the task is finished. if so, stop updating
 if status == None:
 self.vars['progresslabel'].set('')
 #reset the progressbar
 self.progress.stop()
 self.progress.configure(mode='determinate')
 self.progress['value'] = 0
 return
 self.vars['progresslabel'].set('%d'%(status))
 except Queue.Empty:
 pass

D.24

 self.after(50,self.update_label)

 '''
 this function adds a phrase to a new line in the textbox
 '''
 def insertNewline(self,phrase):
 if phrase == None:
 return
 else:
 self.status.insert(END,phrase)
 self.status.insert(END,'\n')
 self.status.see(END)

 '''
 function used to exit the application
 '''
 def leaveApplication(self):
 self.quit()
 self.root.destroy()

 '''
 function used to set a value into the dictionary at the index
 '''
 def toggle(self,index,value):
 self.info[index]=value

 '''
 function populates the menu list with available image extensions to use when the program is looking
for image filenames
 '''
 def showImformats(self):
 for format in self.vid.imformats:

 self.imformatmenu.add_checkbutton(label=format,variable=self.vars['imformat'],onvalue=format,off
value=None,command=lambda: self.vid.setImFormat(self.vars['imformat'].get()))

 '''
 function populates menu with available codecs to use when creating the video
 '''
 def showCodecs(self):
 for codec in self.vid.getAvailableCodecs():

 self.codecmenu.add_checkbutton(label=codec.upper(),variable=self.vars['codec'],onvalue=codec,offv
alue=None,command=lambda: self.vid.setCodec(self.vars['codec'].get()))

 '''
 function opens a dialog box to ask for path information. the kind of box depends on the mode.
 if no selection is made, then the function returns a None for the path information
 '''
 def getPath(self,mode = 'savetext',startdir = None):
 while True:

D.25

 if mode == 'savetext':
 path =
tkFileDialog.asksaveasfilename(parent=self.root,initialdir=startdir,defaultextension='.txt', title="Save text
file as")
 elif mode == 'savevid':
 path =
tkFileDialog.asksaveasfilename(parent=self.root,initialdir=startdir,defaultextension='.avi', title="Save
video as")
 elif mode == 'open':
 path = tkFileDialog.askopenfilename(parent=self.root,initialdir=startdir,title="Select data
file to load")
 elif mode == 'opens':
 path = tkFileDialog.askopenfilenames(parent=self.root,initialdir=startdir,title="Select
images")
 elif mode == 'dir':
 path = tkFileDialog.askdirectory(parent=self.root,title="Select directory where the
images are located or create a new directory to save the timestamped images.")

 #check if the path is empty or not
 if len(path) == 0:
 if tkMessageBox.askretrycancel(title='No selection', message='No selection was made.
Retry?'):
 continue
 else:
 return None
 else:
 return os.path.abspath(path)

 '''
 function finds available serial ports depending on the computer platform and adds them to the menu
list
 '''
 def findCOMPorts(self):
 ports = []
 #windows
 if sys.platform.startswith('win'):
 ports = ['COM'+str(i+1) for i in range(20)]
 #mac
 elif sys.platform.startswith('darwin'):
 ports = glob.glob('/dev/tty.*')
 #linux or computer running cygwin
 elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'):
 # this is to exclude your current terminal "/dev/tty"
 ports = glob.glob('/dev/tty[A-Za-z]*')
 else:
 raise EnvironmentError('Cannot find serial ports. Unsupported platform.')

 #now test which ports are available, add to menu if it is
 for port in ports:
 try:
 s = serial.Serial(port)

D.26

 s.close()
 except (OSError, serial.SerialException):
 continue
 else:

 self.portmenu.add_checkbutton(label=port,variable=self.vars['port'],onvalue=port,offvalue=None,co
mmand=lambda: self.toggle('comport',self.vars['port'].get()))

 '''
 Dialog box wrapper for set functions that opens up a small window to ask for a value. returns an error
dialog if the input is invalid.
 '''
 def askValue(*args,**kwargs):
 def returnDialog(func):
 def openDialog(self):
 query_dialog = Toplevel(self)
 query_dialog.minsize(210,25)
 query_dialog.title(kwargs['title'])
 label = Label(query_dialog, text=kwargs['label'])
 label.pack(side='left')
 entry = Entry(query_dialog,width=10)
 entry.insert(0,str(self.info[kwargs['initvalue']]))
 entry.pack(side='left')

 def closeDialog():
 try:func(self,entry.get())
 except ValueError:
 tkMessageBox.showerror(title='Invalid Value', message='Invalid input.
Try again.')
 query_dialog.deiconify()
 else: query_dialog.destroy()

 accept = Button(query_dialog,text="OK",command=closeDialog)
 accept.pack(side='right')

 return openDialog
 return returnDialog

 '''
 asks the user for the fps to use when building the movie
 '''
 @askValue(title='Input FPS',label='Indicate FPS',initvalue='fps')
 def setFPS(self,value):
 self.info['fps'] = float(value)

 '''
 asks the user for the delimiter to use when looking for the image filenames
 '''
 @askValue(title='Input Delimiter',label='Input filename delimiter',initvalue='delimiter')
 def setDelimiter(self,value):
 self.info['delimiter'] = str(value)

D.27

 self.vid.setDelimiter(str(value))

 '''
 set the state on whether the application saves all timestamps it has
 '''
 def setSaveall(self,state):
 #coerce to boolean value since boolean is actually a subclass of integer in python
 #and BoolVar returns an integer and not actually a boolean
 self.info['saveall'] = bool(state)

 '''
 decorator function that resets the error checker in the TFNoneWrapper class after the wrapped
function finishes executing
 so that another independent function is not affected by the previous function call
 '''
 def resetErrorchecker(func,*args,**kwargs):
 def reset(self,*args,**kwargs):
 func(self,*args,**kwargs)
 self.vid.prevfunc_passed = True
 return reset

 '''
 command sequence used to capture timestamps from the ORCA
 '''
 def start_capture(self):
 #change the mode of the progressbar
 self.progress.configure(mode='indeterminate')
 #open up the serial port
 self.insertNewline(self.vid.open(self.info['comport']))
 #disable the buttons to avoid opening up any new threads or putting in any more tasks into the
tkinter main thread
 self.capture_start['state'] = 'disabled'
 self.apply['state'] = 'disabled'
 self.video['state'] = 'disabled'
 #open the capture loop in a separate process to avoid blocking the tkinter main thread
 pool = ThreadPool(processes=1)

 pool.apply_async(self.vid.capture,args=(self.progress_queue,self.stop_queue),callback=self.finish_ca
pture)
 #start the progressbar and label
 self.progress.start()
 self.update_label()

 '''
 function to stop the capture loop
 '''
 def stop_capture(self):
 self.stop_queue.put(True)

 '''

D.28

 callback function that finishes up the capture sequence
 '''
 @resetErrorchecker
 def finish_capture(self,captured):
 #print result
 if isinstance(captured,int):
 self.insertNewline('%d timestamps have been captured.'%(captured))
 else:
 self.insertNewline(captured)

 #stop the update_label method if a previous function did not pass
 if self.vid.prevfunc_passed == False:
 self.progress_queue.put(None)

 #re-enable the buttons
 self.capture_start['state'] = 'enabled'
 self.apply['state'] = 'enabled'
 self.video['state'] = 'enabled'

 #finish by parsing the timestamps and closing the serial port
 number_parsed = self.vid.parseTimestamps()
 if isinstance(number_parsed,int):
 self.insertNewline('%d timestamps have been parsed.'%(number_parsed))

 self.insertNewline(self.vid.close(self.info['comport']))

 '''
 command sequence used to overlay timestamps to a series of images
 '''
 @resetErrorchecker
 def applyTimestamps(self):
 if len(self.vid.timestamps) <= 0:
 self.insertNewline('No timestamps to overlay.')
 else:
 self.insertNewline(self.vid.grabFromDir(self.getPath(mode='dir'),self.vid.imformat))
 self.info['imagesgrabbed'] = len(self.vid.imagelist)
 self.insertNewline('%d images have been found.'%(self.info['imagesgrabbed']))

 #if the number of images grabbed is not zero proceed
 if self.info['imagesgrabbed'] > 0:
 self.progress.configure(maximum=self.info['imagesgrabbed'])
 newdir = self.getPath(mode='dir')

 #define temporary callback function to print number of images successfully written
 def print_result(written):
 if isinstance(written,int):
 self.insertNewline('%d images been timstamped.'%(written))
 else:
 self.insertNewline(written)

D.29

 #perform the image writing process in another process so as to avoid blocking the tkinter
main thread
 pool = ThreadPool(processes=1)

 pool.apply_async(self.vid.overlayTimestamps,args=(newdir,self.progress_queue),callback=print_resu
lt)
 #start the progress bar update
 self.update_progress(self.info['imagesgrabbed'])
 #set the starting directory to specified save directory
 self.info['tstiffdir'] = newdir

 '''
 command sequence used to write a series of images to a video file
 '''
 @resetErrorchecker
 def writeImages2Video(self):

 self.insertNewline(self.vid.grabFromDir(self.getPath(mode='dir',startdir=self.info['tstiffdir']),self.vid.i
mformat))
 imagesgrabbed = len(self.vid.imagelist)
 self.info['imagesgrabbed'] = imagesgrabbed
 self.insertNewline('%d images have been found.'%(self.info['imagesgrabbed']))
 if imagesgrabbed > 0:
 self.progress.configure(maximum=imagesgrabbed)
 newdir = self.getPath(mode='savevid',startdir=self.info['tstiffdir'])
 #define callback function to print result to screen
 def print_result(written):
 if isinstance(written,int):
 self.insertNewline('%d images have been compiled into a video.'%(written))
 else:
 self.insertNewline(written)

 #perform image writing to video procedure in another process to avoid blocking the tkinter
main thread
 pool = ThreadPool(processes=1)

 pool.apply_async(self.vid.writeVideo,args=(newdir,self.progress_queue),kwds=dict(fps=self.info['fps
']),callback=print_result)
 #start the progress bar update
 self.update_progress(imagesgrabbed)

 '''
 command sequence used to save the currently captured timestamps to a text file
 '''
 @resetErrorchecker
 def saveTimestamps(self,mode='raw'):
 if len(self.vid.timestamps) == 0:
 self.insertNewline('No timestamps to save.')
 return

 savepath = self.getPath(mode='savetext',startdir=self.info['tstiffdir'])

D.30

 if mode == 'raw':
 if self.info['saveall'] or (self.info['imagesgrabbed'] > len(self.vid.timestamps)):
 self.insertNewline(self.vid.save(savepath,0,mode))
 else:
 self.insertNewline(self.vid.save(savepath,self.info['imagesgrabbed'],mode))
 else:
 if self.info['saveall'] or (self.info['imagesgrabbed'] > len(self.vid.converted_timestamps)):
 self.insertNewline(self.vid.save(savepath,0,mode))
 else:
 self.insertNewline(self.vid.save(savepath,self.info['imagesgrabbed'],mode))

 '''
 command sequence used to load a data file containing timestamps into the program
 '''
 @resetErrorchecker
 def loadTimestamps(self):
 loadpath = self.getPath(mode='open')
 self.insertNewline(self.vid.load(loadpath))
 if loadpath != None:
 self.insertNewline('%d timestamps found.'%(len(self.vid.timestamps)))

 @resetErrorchecker
 def convertTimestampsDialog(self):
 dialog = Toplevel()
 dialog.title('Conversion format')
 #create message
 message = Label(dialog,text='Select a conversion mode. Only the indicated \nunits will be
included in the data.')
 message.grid(column=0,row=0,columnspan=2)
 #create radiobuttons
 radio_tracker = StringVar()
 radio_tracker.set('second')
 second_button = Radiobutton(dialog,text='Convert to
seconds',variable=radio_tracker,value='second')
 second_button.grid(column=0,row=1,columnspan=2)
 minute_button = Radiobutton(dialog,text='Convert to
minutes',variable=radio_tracker,value='minute')
 minute_button.grid(column=0,row=2,columnspan=2)
 hour_button = Radiobutton(dialog,text='Convert to hours',variable=radio_tracker,value='hour')
 hour_button.grid(column=0,row=3,columnspan=2)
 #create ok and cancel buttons
 def do_conversion():
 result = self.vid.convertTimestamps(unit=radio_tracker.get())
 if isinstance(result,int):
 self.insertNewline('%d timestamps have been converted.'%(result))
 dialog.destroy()
 else:
 tkMessageBox.showerror(title='Error', message=result)
 dialog.deiconify()

D.31

 #manually reset the error checker since the wrapper function cannot do so due to the fact
that
 #the Toplevel window does not block so the wrapper function will reset the error checker
as soon as the
 #dialog window is created
 self.vid.prevfunc_passed = True

 accept = Button(dialog,text="OK",command=do_conversion)
 accept.grid(column=0,row=4)
 cancel = Button(dialog,text='Cancel',command=dialog.destroy)
 cancel.grid(column=1,row=4)

D.32

Appendix E

SatSearch.exe Program

Appendix E

SatSearch.exe Program

E.1 Description

A preliminary observational planning Python program, called SatSearch.exe is described in this
section. The SatSearch.exe program is a Python GUI written to search the satellite database maintained
by the U.S. Strategic Command Joint Space Operations Center (space-track.org). Queries are currently
based on object type and orbital angular velocity, but other search criteria can be easily added if required.
The query data is saved to an Excel spreadsheet, while the TLE data for each object is saved as its own
text file. The program then consults calsky.com to retrieve the visual magnitude estimates for the RSO
list. The daily predictions for the 100 brightest satellites are also retrieved from heavens-above.com. The
Space Track and 100 brightest satellites datasets are then cross-referenced to identify favorable RSO
targets for a given night’s observation. Further functionality will be added in the future to obtain
estimates of the satellites’ ephemeris data.

E.2 How to Use
1. Click on the SatSearch.exe file in the dist folder to begin the program. Once the GUI is started up,

enter in your login and password to space-track.org in order to access their database.

2. Once logged-in, the search criteria can be selected. The only current criteria available are the satellite
databases, the object type, and the angular speed. The program automatically searches for the most
recent satellite catalog data, but older catalog data can be queried by unchecking the ‘Most current
record’ checkbox. Press the ‘Search for sat’ button to search.

3. The satellite TLE data will be saved as an Excel file, with one column listing the satellite NORAD id
number, satellite name, and its corresponding angular speed. After that come the brightness data,
rise, culmination, and set time estimates obtained from calsky.com.

4. The data returned from the space-track.org query can be cross-referenced with the satellite database at
heavens-above.com. If this choice is selected, then the program will create a second spreadsheet in
the same Excel file to save the heavens-above.com data and a third sheet to contain the cross-
referenced data. You can also indicate the observing location to use when accessing heavens-
above.com by indicating the longitude, latitude, altitude, city, and time zone.

5. To download the latest satellites TLEs that meet the search criteria as specified in the SatSearch
program, simply click on the Download TLEs button. The TLE search can also be configure to
search TLE that are accurate at a previous date. The program will prompt for a save location for the
TLEs. The TLEs will be saved as text files with the satellite name as the filename. TLEs for a single
object can be downloaded by specifying the NORAD ID number (more precise search parameter) or
its satellite name, then clicking on the ‘Download TLE for this sat’ button.

E.1

6. Note: If the satellite name is used in the SatSearch.exe, the program will query the space-track.org
database to search for any satellites that have a name that includes the name specify. So if ‘ISS’ is
specified for the query, the program will download the TLE for the ‘ISS’ as well as for the ‘AISSAT’
satellites. Also if no data is found, the program will save an empty Excel file, but no TLE file will be
created.

'''-------------------------------------
SatSearch.py
Written by Cliff Chen, PNNL

This program provides a simple GUI application to search the space-track.org database. Further work
needs to be made to optimize the code.
---'''
from distutils.core import setup
import py2exe

setup(windows=['SatSearch.py'],data_files=['cacert.pem'])

'''-------------------------------------

SatSearch.py

This program provides a simple GUI application to search the space-track.org database
Further work needs to be made to optimize the code and add on further functionality
'''

import requests, sys, os, xlsxwriter, tkFileDialog, re, traceback, Queue, multiprocessing, itertools
from Tkinter import *
from bs4 import BeautifulSoup
from time import sleep
from multiprocessing.managers import BaseManager

#create a manager to control sharing a requests Session object between processes
#the 'original' Session object is unpicklable so using a Manager to create a proxy object is necessary
#in order to use multiprocessing
class SessionManager(BaseManager):
 pass
#register the object with the manager
SessionManager.register('Session',requests.Session)

class SearchWindow(Frame):
 def __init__(self,parent=None):
 self.root = parent
 Frame.__init__(self,parent)
 self.pack()
 self.createWidgets()
 #hide the main window until the user logs in
 self.root.withdraw()

E.2

 self.tle_dir = ''
 self.excel_dir = ''

 #start the manager
 self.mgr = SessionManager()
 self.mgr.start()

 #display the log in window
 self.loginWindow()

 def createWidgets(self):

 #create frame to organize location fields
 self.loc_frame = Frame(self,borderwidth=10)
 self.loc_frame.config(highlightbackground='red')
 self.loc_frame.grid(row=0,column=0,rowspan=11,sticky=N)

 self.position_description = Label(self.loc_frame,text='Observation site coordinates')
 self.position_description.pack(anchor='w')

 #create input boxes for location
 self.long_label = Label(self.loc_frame,text='Longitude (deg)')
 self.long_label.pack(anchor='w')
 self.long_entry = Entry(self.loc_frame,width=10)
 self.long_entry.pack(anchor='w')
 self.long_entry.insert(0,'-119.1006')

 self.lat_label = Label(self.loc_frame,text='Latitude (deg)')
 self.lat_label.pack(anchor='w')
 self.lat_entry = Entry(self.loc_frame,width=10)
 self.lat_entry.pack(anchor='w')
 self.lat_entry.insert(0,'46.2396')

 self.alt_label = Label(self.loc_frame,text='Altitude (m)')
 self.alt_label.pack(anchor='w')
 self.alt_entry = Entry(self.loc_frame,width=10)
 self.alt_entry.pack(anchor='w')
 self.alt_entry.insert(0,'118')

 self.city_label = Label(self.loc_frame,text='City')
 self.city_label.pack(anchor='w')
 self.city_entry = Entry(self.loc_frame)
 self.city_entry.pack(anchor='w')
 self.city_entry.insert(0,'Pasco')

 self.timezone_label = Label(self.loc_frame,text='Timezone')
 self.timezone_label.pack(anchor='w')
 self.timezone_entry = Entry(self.loc_frame,width=10)
 self.timezone_entry.pack(anchor='w')
 self.timezone_entry.insert(0,'PST')

E.3

 #create space-track frame to organize fields
 self.st_frame = Frame(self,borderwidth=10)
 self.st_frame.grid(row=0,column=1,rowspan=15,sticky=N)

 self.login_description = Label(self.st_frame,text='Space-track.org search criteria')
 self.login_description.pack(anchor='w')

 #create controller list
 self.controller_label = Label(self.st_frame,text='Database')
 self.controller_label.pack(anchor='w')
 self.controller_list = Listbox(self.st_frame,selectmode='single',height=2,exportselection=0)
 self.controller_list.insert(1,'basicspacedata')
 self.controller_list.insert(2,'expandedspacedata')
 self.controller_list.pack(anchor='w')
 self.controller_list.select_set(0)

 #create object type list
 self.object_label = Label(self.st_frame,text='Object type')
 self.object_label.pack(anchor='w')
 self.object_list = Listbox(self.st_frame,selectmode='single',height=3,exportselection=0)
 self.object_list.insert(1,'PAYLOAD')
 self.object_list.insert(2,'ROCKET_BODY')
 self.object_list.insert(3,'DEBRIS')
 self.object_list.pack(anchor='w')
 self.object_list.select_set(0)

 #create angular speed range entry boxes
 self.maxspeed_label = Label(self.st_frame,text='Max Arcsec/s')
 self.maxspeed_label.pack(anchor='w')
 self.maxspeed_box = Entry(self.st_frame,width=10)
 self.maxspeed_box.pack(anchor='w')
 self.minspeed_label = Label(self.st_frame,text='Min Arcsec/s')
 self.minspeed_label.pack(anchor='w')
 self.minspeed_box = Entry(self.st_frame,width=10)
 self.minspeed_box.pack(anchor='w')

 #create entry box for indicating how far into the past to search for TLEs
 self.days_label = Label(self.st_frame,text='Search TLEs in\nthe past x days')
 self.days_label.pack(anchor='w')
 self.days_box = Entry(self.st_frame,width=10)
 self.days_box.pack(anchor='w')
 self.days_box.insert(0,'7')

 #create the checkbox to sort by most current catalog record
 self.current_tracker = StringVar()
 self.current_checkbox = Checkbutton(self.st_frame,text='Most current
record',variable=self.current_tracker,onvalue='true',offvalue='false')
 self.current_checkbox.pack(anchor='w')
 self.current_checkbox.select()

 #create checkbox for cross-referencing with heavens-above

E.4

 self.cross_tracker = StringVar()
 self.cross_checkbox = Checkbutton(self.st_frame,text='Cross ref with heavens-
above.com',variable=self.cross_tracker,onvalue='true',offvalue='false')
 self.cross_checkbox.pack(anchor='w')
 self.cross_checkbox.select()

 #create entry box for satellite name
 self.sat_id_label = Label(self.st_frame,text='NORAD ID or\n satellite name')
 self.sat_id_label.pack(anchor='w')
 self.sat_id_box = Entry(self.st_frame,width=15)
 self.sat_id_box.pack(anchor='w')

 #create frame to organize buttons
 self.button_frame = Frame(self,borderwidth=10)
 self.button_frame.grid(row=0,column=2,sticky=N)

 #create submit buttons
 self.search = Button(self.button_frame,text='Search for Sat',command=self.startSearch)
 self.search.pack(side='left',padx=5)
 self.download = Button(self.button_frame,text='Download TLEs',command=lambda:
self.downloadTLEs('multiple'))
 self.download.pack(side='left',padx=5)
 self.download_single = Button(self.button_frame,text='Download single TLE',command=lambda:
self.downloadTLEs('single'))
 self.download_single.pack(side='left',padx=5)

 #create output box
 self.output_frame = Frame(self)
 self.output_frame.grid(row=1,column=2,rowspan=8,sticky=N)
 self.output_box_label = Label(self.output_frame,text='Status')
 self.output_box_label.pack(anchor='nw')
 self.output_box = Text(self.output_frame,height=10,width=40)
 self.output_box.pack(anchor='nw',pady=5)

 #create a login window at the start of the program
 def loginWindow(self):
 logged = False
 #create login entry boxes
 tl = Toplevel()
 f1 = Frame(tl,borderwidth=10)
 f1.pack()
 description = Label(f1,text='space-track.org login')
 description.pack(anchor='w')
 username_label = Label(f1,text='Username')
 username_label.pack(anchor='w')
 username = Entry(f1)
 username.pack(anchor='w')
 username.focus()
 password_label = Label(f1,text='Password')
 password_label.pack(anchor='w')
 password = Entry(f1,show='*')

E.5

 password.pack(anchor='w')

 #redefine the closing protocol on the pop-up window
 #so that it if the user presses the 'x' button the program
 #will completely exit instead of closing only the pop-up window
 #and leave the rest of the program running the background
 def closeWindow():
 self.root.destroy()
 tl.protocol('WM_DELETE_WINDOW',closeWindow)

 #define login process
 def login():
 self.login2SpaceTrack(username.get(),password.get())
 #show the main window
 self.root.deiconify()
 #destroy only the pop-up window
 tl.destroy()

 #function to bind login to an event
 def bind_login(event):
 login()

 #bind return key event with login process
 password.bind('<Return>',bind_login)

 f2 = Frame(tl,borderwidth=10)
 f2.pack()
 #create login/logout buttons
 login_button = Button(f2,text='Login',width=10,command=login)
 login_button.pack(side='left',anchor='w',padx=5)
 #end the application if the user chooses not to login
 cancel_button = Button(f2,text='Cancel',width=10,command=self.root.destroy)
 cancel_button.pack(side='left',anchor='w',padx=5)

 def outputResponse(self,message):
 self.output_box.delete("%d.%d" % (1, 0),END)
 self.output_box.insert('%d.%d'%(1,0),message)

 #wrapper function to check for connection or timeout problems
 def checkNetworkConnection(func,*args,**kwargs):
 def check(self,*args,**kwargs):
 try:
 return func(self,*args,**kwargs)
 except requests.exceptions.ConnectionError as e:
 self.outputResponse(e)
 except requests.exceptions.Timeout as e:
 self.outputResponse(e)
 return check

 @checkNetworkConnection
 def login2SpaceTrack(self,username,password):

E.6

 self.focus()
 #create the proxy session object using the manager
 self.session = self.mgr.Session()
 response = self.session.post('https://www.space-
track.org/ajaxauth/login',data={'identity':username,'password':password},timeout=30)
 if response.status_code == 200:
 if response.text[1:-1] == '':
 self.outputResponse('Logged onto space-track.org')
 else:
 self.outputResponse(response.text)
 else:
 self.outputResponse('Could not log onto space-track.org Error code =
%d'%response.status_code)

 #not currently being used
 @checkNetworkConnection
 def logout(self):
 try:
 response = self.session.get('https://www.space-track.org/ajaxauth/logout',timeout=30)
 except AttributeError:
 self.outputResponse('Not logged into space-track.org')
 else:
 if response.status_code == 200:
 self.outputResponse(response.text)
 self.session.close()
 del self.session
 else:
 self.outputResponse('Problem logging off space-track.org Error code =
%d'%response.status_code)

 #build the query url for space-track.org
 def buildURL(self,**kwargs):
 parameters = []
 controller_selection = self.controller_list.curselection()
 if len(controller_selection) == 0:
 self.outputResponse('No database was selected.')
 return None
 else:
 parameters.append(self.controller_list.get(controller_selection))

 #add parameter to indicate query
 parameters.append('query')
 #add parameter to designate class
 parameters.append('class')
 object_type = self.object = self.object_list.curselection()

 #depending on which database we are querying the program will build the url differently
 if kwargs['data_type'] == 'satcat':
 #append parameter to indicate the satellite catalog databaes
 parameters.append('satcat')
 #append parameter to indicate object type

E.7

 parameters.append('OBJECT_TYPE')
 parameters.append(self.object_list.get(object_type))

 #append parameter to indicate period
 parameters.append('PERIOD')
 try:
 min_speed = float(self.minspeed_box.get())
 max_speed = float(self.maxspeed_box.get())
 except ValueError:
 self.outputResponse('Min and max speeds are not valid.')
 return None
 #convert arcsec/s to its corresponding period
 max_period = str(2*180*3600/(60*min_speed))
 min_period = str(2*180*3600/(60*max_speed))
 parameters.append(min_period+'--'+max_period)

 #indicate if we want only the most current record
 if self.current_tracker.get() == 'true':
 parameters.append('CURRENT')
 parameters.append('Y')

 #order by descending period
 parameters.append('orderby')
 parameters.append('PERIOD%20desc')
 #remove any duplicate rows
 parameters.append('distinct')
 parameters.append('true')

 elif kwargs['data_type'] == 'multiple':
 #grab the most recent tles
 parameters.append('tle_latest')
 #show only the most recent tle
 parameters.append('ORDINAL')
 parameters.append('1')

 #indicate object type
 parameters.append('OBJECT_TYPE')
 parameters.append(self.object_list.get(object_type))

 #indicate how far into the past to look for the most recent tle
 parameters.append('EPOCH')
 try:
 days = int(self.days_box.get())
 except ValueError:
 days = 7

 parameters.append('>now-'+str(days))

 #specify the mean-motion based on the arcsec/s
 parameters.append('MEAN_MOTION')
 try:

E.8

 min_speed = float(self.minspeed_box.get())
 max_speed = float(self.maxspeed_box.get())
 except ValueError:
 self.outputResponse('Min and max speeds are not valid.')
 return None
 max_mean_motion = str(24*float(max_speed)/360)
 min_mean_motion = str(24*float(min_speed)/360)
 parameters.append(min_mean_motion+'--'+max_mean_motion)

 #remove duplicate rows
 parameters.append('distinct')
 parameters.append('true')

 else:
 parameters.append('tle_latest')
 #show only the most recent tle
 parameters.append('ORDINAL')
 parameters.append('1')

 #indicate how far into the past to look for the latest tle
 parameters.append('EPOCH')
 try:
 days = int(self.days_box.get())
 except ValueError:
 #if there is an error, just use a default number of 7 days
 days = 7

 #read in the input from entry box and determine if the person gave an id#
 #or a satellite name to search for
 parameters.append('>now-'+str(days))
 try:
 sat_id = int(self.sat_id_box.get())
 except ValueError:
 sat_name = self.sat_id_box.get()
 if len(sat_name) == 0:
 self.outputResponse('No NORAD ID# or satellite name was given.')
 return None
 else:
 parameters.append('OBJECT_NAME')
 parameters.append('~~'+sat_name)
 else:
 parameters.append('NORAD_CAT_ID')
 parameters.append(str(sat_id))

 #use the json format for easier computer processing
 parameters.append('format')
 parameters.append('json')

 return 'https://www.space-track.org/'+'/'.join(parameters)

 #return a dictionary containing the observing location information

E.9

 def buildLocation(self):
 return
{'lat':self.lat_entry.get(),'lng':self.long_entry.get(),'loc':self.city_entry.get(),'alt':self.alt_entry.get(),'tz':self.
timezone_entry.get()}

 #method to update the status text box while a search or action is being completed
 def loadingSequence(self,stop_queue):
 try:
 #use get_nowait to prevent blocking the tkinter thread
 status = stop_queue.get_nowait()
 except Queue.Empty:
 pass
 else:
 if status == 'stop':
 return
 self.outputResponse(status)

 #reschedule another queue check after a 100ms wait
 self.after(100,lambda: self.loadingSequence(stop_queue))

 #method to start a search
 def startSearch(self):
 url = self.buildURL(data_type='satcat')
 filename = tkFileDialog.asksaveasfilename(defaultextension='.xlsx',title='Save data
as',initialdir=self.excel_dir)
 if url is not None and len(filename) != 0:
 try:
 self.excel_dir = os.path.dirname(filename)
 #create communication queue between child process and main tkinter thread
 queue = multiprocessing.Queue()
 search_criteria =
{'session':self.session,'url':url,'filename':filename,'location':self.buildLocation(),'textbox_queue':queue,'cro
ss_ref':self.cross_tracker.get()}
 search = multiprocessing.Process(target=checkDatabases,kwargs=search_criteria)
 search.start()
 self.loadingSequence(queue)
 except AttributeError:
 self.outputResponse('Not logged into space-track.org')

 #method to start a tle download
 def downloadTLEs(self,type):
 self.focus()
 url = self.buildURL(data_type=type)
 directory = tkFileDialog.askdirectory(title='Indicate directory to save the
TLEs',initialdir=self.tle_dir)
 if url is not None and len(directory) != 0:
 try:
 self.tle_dir = directory
 queue = multiprocessing.Queue()
 queue.put('...')

E.10

 dl_process =
multiprocessing.Process(target=grabSpaceTrackTLE,args=(self.session,url,directory,queue))
 dl_process.start()
 self.loadingSequence(queue)
 except AttributeError:
 self.outputResponse('Not logged into space-track.org')

#slave class that continually reads a queue and performs the task received from the queue
#results are returned in another queue and the slave stops when it receives a None
class Slave(multiprocessing.Process):
 def __init__(self,task_queue,result_queue):
 multiprocessing.Process.__init__(self)
 self.task_queue = task_queue
 self.result_queue = result_queue

 def run(self):
 while True:
 #grab a task. this will block until something is available in the queue
 task = self.task_queue.get()
 #check if there are no more tasks to receive
 if task == None:
 self.task_queue.task_done()
 return
 result = task[0](task[1])
 self.task_queue.task_done()
 self.result_queue.put(result)

 return

#these functions are defined at the top level of the module, outside of any classes
#since the multiprocessing module has trouble pickling class methods
def checkDatabases(**kwargs):
 #create task queue and results queue
 #results are returned as a tuple in the format:
 #(task-name,task-data,task-error-info)
 tasks = multiprocessing.JoinableQueue()
 results = multiprocessing.Queue()

 #create search slaves
 num_slaves = [Slave(tasks,results) for i in xrange(multiprocessing.cpu_count())]

 #start the slaves
 for s in num_slaves:
 s.start()

 #build output message
 textbox_queue = kwargs['textbox_queue']
 message = 'Searching:\n'

 #enqueue the searches to perform
 tasks.put((wrapped_getSpaceTrackData,{'session':kwargs['session'],'url':kwargs['url']}))

E.11

 message = message + 'space-track.org\n'

 if kwargs['cross_ref'] == 'true':
 tasks.put((wrapped_getDataFromHeavensAbove,kwargs['location']))
 message = message + 'heavens-above.com\n'

 textbox_queue.put(message)

 #wait for all tasks to be completed before continuing

 tasks.join()

 #grab the search results from the results queue checking if there were any errors
 #load any errors into the error dictionary
 result_dict = {}
 error_dict = {}
 num_results = results.qsize()
 for i in xrange(num_results):
 result = results.get()
 if result[2] is None:
 result_dict[result[0]] = result[1]
 else:
 error_dict[result[0]] = result[1]+str(result[2])

 #check if the primary space-track search went through with no connection errors
 #does not necessarily mean that data was received
 if 'space-track' not in error_dict:
 textbox_queue.put('Getting brightness estimates from calsky.com')

 #extract the list of satellite ids
 id_list = []
 for sat in result_dict['space-track']:
 id_list.append(str(sat['NORAD_CAT_ID']))

 #for each id in the list, enqueue a new search task to find the satellite brightness
 for id in id_list:
 tasks.put((wrapped_getMagnitudeEstimates,id))

 #wait for the tasks to be completed before continuing
 tasks.join()

 #get the brightness estimate results
 num_results = results.qsize()
 mag_list = {}
 for k in xrange(num_results):
 result = results.get()
 if result[2] is None:
 mag_list[result[0]] = result[1]
 else:
 error_dict[result[0]] = result[1]+str(result[2])

E.12

 #open up the excel file for writing
 book = xlsxwriter.Workbook(kwargs['filename'])

 #write the data to the excel file
 textbox_queue.put('Writing data to spreadsheet.')
 for key in result_dict:
 if key == 'space-track':
 writeSpaceTrackData2Excel(book,result_dict['space-track'],mag_list)
 else:
 writeHeavensAboveData2Excel(book,result_dict[key])

 #cross reference if there were no errors
 if kwargs['cross_ref'] == 'true':
 if 'heavens-above' not in error_dict:
 compareSatellites(book,result_dict['space-track'],result_dict['heavens-above'])

 #close the excel file
 book.close()

 #enqueue a 'kill' indicator for each slave to end them
 for i in xrange(len(num_slaves)):
 tasks.put(None)

 #output the error message if there were any errors
 if len(error_dict) != 0 :
 err_message = 'Errors occured in the following searches:\n'
 for i in error_dict:
 err_message = err_message+'%s:%s\n'%(i,error_dict[i])
 textbox_queue.put(err_message)
 else:
 textbox_queue.put('Search finished with no errors.')

 textbox_queue.put('stop')

#cross reference the satellites obtained from space-track and heavens-above
def compareSatellites(book,space_track,heavens_above):
 worksheet = book.add_worksheet('st ha cross ref')
 createCrossRefHeaders(worksheet)
 k=1
 for n,row in enumerate(heavens_above):
 #match satellite names using regular expressions and produce a list of yes/no matches
 matches = ((re.match(row[0]+'\b',sat['SATNAME'],re.IGNORECASE),sat['PERIOD']) for sat in
space_track)

 #filter out the 'no' matches and replace with only the matched sat's period
 matches = (match[1] for match in matches if match[0] is not None)

 #for each match add the data to the spreadsheet
 for match in matches:
 for m,value in enumerate(row):
 worksheet.write(k,m,value)

E.13

 worksheet.write('L%d'%(k),2*180*3600/(60*float(match)))
 k+=1

#create the headers for cross-referencing
def createCrossRefHeaders(worksheet):
 worksheet.write('A1','SAT NAME')
 worksheet.write('B1','MAG')
 worksheet.write('C1','START TIME')
 worksheet.write('D1','START ALT')
 worksheet.write('E1','START AZI')
 worksheet.write('F1','HIGHEST TIME')
 worksheet.write('G1','HIGHEST ALT')
 worksheet.write('H1','HIGHEST AZI')
 worksheet.write('I1','END TIME')
 worksheet.write('J1','END ALT')
 worksheet.write('K1','END AZI')
 worksheet.write('L1','ARCSEC/S')

#a rehash of the wrapper function above
def checkConnection(name,func,*args,**kwargs):
 def check(*args,**kwargs):
 try:
 return func(*args,**kwargs)
 except requests.exceptions.ConnectionError as e:
 return (name,'Connection error.',e)
 except requests.exceptions.Timeout as e:
 return (name,'Page request timed out.',e)
 return check

#get the data from space-track.org. the function does not use true **kwargs arguments
def getSpaceTrackData(kwargs):
 session = kwargs['session']
 response = session.get(kwargs['url'])
 if response.status_code == 401:
 return ('space-track','Unauthorized access.',401)
 else:
 return ('space-track',response.json(),None)

#due to the fact that multiprocessing can only pickle top level functions, the decorator syntax no longer
works since it can't
#find the wrapped function so we need to wrap it manually
def wrapped_getSpaceTrackData(kwargs):
 wrapped = checkConnection('space-track',getSpaceTrackData)
 return wrapped(kwargs)

#write the space track data to an excel file
def writeSpaceTrackData2Excel(book,data,mag_list):
 worksheet = book.add_worksheet('space-track catalog')
 createSpaceTrackHeaders(worksheet)
 createCalSkyHeaders(worksheet)
 for n,sat in enumerate(data):

E.14

 id = sat['NORAD_CAT_ID']
 worksheet.write('A%d'%(n+2),id)
 worksheet.write('B%d'%(n+2),sat['SATNAME'])
 worksheet.write('C%d'%(n+2),6*3600/(float(sat['PERIOD'])))

 #check if the dictionary has the id as a key
 #the id may not be present if there were connection problems
 #when accessing calsky.com
 try:
 calsky_info = mag_list[id]
 except KeyError:
 pass
 else:
 for k,list in enumerate(calsky_info):
 for m,item in enumerate(list):
 worksheet.write(n+1,3+4*m+k,item)

def wrapped_getMagnitudeEstimates(id):
 wrapped = checkConnection(id,getCalSkyMagEstimates)
 return wrapped(id)

#this function accepts a satellite's NORAD id and accesses calsky.com to get the listed brightness data
#the function uses BeautifulSoup as the html scraper and regular expressions to parse out the data from
the
#text. the data is returned as a tuple containing the 4 lists with the information
def getCalSkyMagEstimates(id):
 keys = {'object':'Satellite','number':'3','sat':id}
 response = requests.get('http://www.calsky.com/csrender.cgi?',params=keys)
 soup = BeautifulSoup(response.text,'lxml')

 #return a list of all h3 tags that contain the text 'Topocentric:\n'
 all_h3 = soup('h3',text='Topocentric:\n')

 #create the data lists
 mag_list = []
 azi_list = []
 alt_list = []
 times_list = []

 #this for loop will only run at most once
 for h3 in all_h3:
 #get the next tag that is at the same level in the tag tree
 pre = h3.next_sibling

 #search the text within the tag for any strings that contain the word 'Magnitude:'
 mag_text = pre(text=re.compile('Magnitude:'))
 for item in itertools.islice(mag_text,4):
 #for each line grab the data between the words 'Magnitude:' and 'mag'
 m = re.search('(?<=Magnitude:).+(?=mag)',item)
 if m is not None:
 mag_list.append(float(m.group(0)))

E.15

 else:
 mag_list.append('')

 #search for strings that have 'Altazimuth:' in them
 altazi_text = pre(text=re.compile('Altazimuth:'))
 for i in itertools.islice(altazi_text,4):
 #get the string data that comes after 'Az' and 'Alt'
 n = re.search('(?<=Az =)\s*\d+(\.\d*)\xb0\s(.{1,3})',i,re.UNICODE)
 k = re.search('(?<=Alt =)\s*.\d+(\.\d*)\xb0',i,re.UNICODE)
 if n is not None:
 azi_list.append(n.group(0))
 else:
 azi_list.append('')
 if k is not None:
 alt_list.append(k.group(0))
 else:
 alt_list.append('')

 #search for strings that have the indicated time format
 times_text = pre(text=re.compile('\s*\d+h([0-5][0-9])m([0-5][0-9])s',re.UNICODE))
 for d in itertools.islice(times_text,4):
 t = re.search('\s*\d+h([0-5][0-9])m([0-5][0-9])s',d,re.UNICODE)
 if t is not None:
 times_list.append(t.group(0))
 else:
 times_list.append('')

 return (id,(mag_list,azi_list,alt_list,times_list),None)

def createSpaceTrackHeaders(worksheet):
 worksheet.write('A1','NORAD ID')
 worksheet.write('B1','SAT NAME')
 worksheet.write('C1','ARCSEC/S')

def createCalSkyHeaders(worksheet):
 worksheet.write('D1','TOPOCENTRIC MAG')
 worksheet.write('E1','TOPOCENTRIC AZI')
 worksheet.write('F1','TOPOCENTRIC ALT')
 worksheet.write('G1','TOPOCENTRIC RA')
 worksheet.write('H1','RISE MAG')
 worksheet.write('I1','RISE AZI')
 worksheet.write('J1','RISE ALT')
 worksheet.write('K1','RISE TIME')
 worksheet.write('L1','CULMINATE MAG')
 worksheet.write('M1','CULMINATE AZI')
 worksheet.write('N1','CULMINATE ALT')
 worksheet.write('O1','CULMINATE TIME')
 worksheet.write('P1','SET MAG')
 worksheet.write('Q1','SET AZI')
 worksheet.write('R1','SET ALT')
 worksheet.write('S1','SET TIME')

E.16

#grab the data from heavens-above, parse it through BeautifulSoup and spit out an easier to work with
data list
def getDataFromHeavensAbove(location):
 response = requests.get('http://www.heavens-above.com/AllSats.aspx',params=location)
 soup = BeautifulSoup(response.text)
 all_rows = soup.find_all('tr',class_='clickableRow')
 data = []
 for n,row in enumerate(all_rows):
 this_row = []
 this_row.append(str(row.td.contents[0]))

 for m,sibling in enumerate(row.td.find_next_siblings('td')):
 #if statement is necessary since one of the data elements is contained within a link tag
 if (m+1) == 5:
 this_row.append(sibling.a.contents[0].encode('ascii','ignore'))
 else:
 this_row.append(sibling.contents[0].encode('ascii','ignore'))

 data.append(this_row)

 return ('heavens-above',data,None)

#once again, we need to manually wrap the function
def wrapped_getDataFromHeavensAbove(location):
 wrapped = checkConnection('heavens-above',getDataFromHeavensAbove)
 return wrapped(location)

#write data from heavens-above to an excel file
def writeHeavensAboveData2Excel(book,data):
 worksheet = book.add_worksheet('heavens-above catalog')
 createHeavensAboveHeaders(worksheet)
 for r,row in enumerate(data):
 for c,item in enumerate(row):
 worksheet.write(r+1,c,item)

#create the headers for the heavens-above data
def createHeavensAboveHeaders(worksheet):
 worksheet.write('A1','SAT NAME')
 worksheet.write('B1','MAG')
 worksheet.write('C1','START TIME')
 worksheet.write('D1','START ALT')
 worksheet.write('E1','START AZI')
 worksheet.write('F1','HIGHEST TIME')
 worksheet.write('G1','HIGHEST ALT')
 worksheet.write('H1','HIGHEST AZI')
 worksheet.write('I1','END TIME')
 worksheet.write('J1','END ALT')
 worksheet.write('K1','END AZI')

#grab the tles from space-track

E.17

def grabSpaceTrackTLE(session,url,directory,stop_queue):
 stop_queue.put('Gathering TLEs...')
 response = session.get(url)

 if response.status_code == 401:
 stop_queue.put('Unauthorized access.')
 else:
 for sat in response.json():
 stop_queue.put('Writing TLE for:'+sat['OBJECT_NAME']+'...')
 path = os.path.join(directory,re.sub('[/]',' ',sat['OBJECT_NAME'])+'.txt')
 index = 1
 newpath = path
 #while loop to keep checking if a filename exists. if it does, append a number to the
 #end of the filename and recheck until the filename does not exist
 while os.path.isfile(newpath):
 newpath = path[:path.index('.txt')]+'(%d)'%index+'.txt'
 index += 1

 with open(newpath,'w') as f:
 f.write(sat['OBJECT_NAME']+'\n')
 f.write(sat['TLE_LINE1']+'\n')
 f.write(sat['TLE_LINE2'])
 f.close()

 stop_queue.put('Finished downloading TLEs.')

 stop_queue.put('stop')

if __name__ == '__main__':
 #point to the file containing list of trusted ssl certificates since the py2exe module
 #does not bundle the ca file with the rest of the program when building the executable
 os.environ['REQUESTS_CA_BUNDLE'] = os.path.join(os.getcwd(),'cacert.pem')
 root = Tk()
 root.title('Satellite Search')
 search = SearchWindow(root)
 root.mainloop()

E.18

Appendix F

EMCCD Noise Characterization

Appendix F

EMCCD Noise Characterization

F.1 Introduction

Readout noise is generated during the electronic process that converts pixel photoelectrons to
digitized count. During this process, charge accumulated by the pixels is shifted across the detector to the
output charge amplifier. Noise generated during this process increases significantly as a function of
readout speed or frame rate. Readout noise is independent of photon shot noise and can still be observed
under completely dark conditions. The readout noise for a camera is usually given in terms of its RMS
value in units of electrons.

F.2 Measurement Procedure

Readout noise was characterized as a function of EMCCD gain and exposure time, as described in
this appendix. Sets of 20 images were captured in a dark room with a lens cap placed over the camera
lens. Each image set was collected at different exposure time and gain. Fixed pattern noise was removed
by image subtraction using the last two frames of the set of 20. The readout noise in each image was
determined by the standard deviation of the pixel counts across the image, divided by √2 (because we are
considering the noise twice). The readout noise measurements also include dark noise and clock-induced
charge noise components. However, these noise components were not independently characterized,
because they are generally small relative to the readout noise.

The readout noise measurement results are shown in Figure F.1. The effective readout noise (i.e.,
readout noise/EM gain) is less than 20 electrons at a gain of 4 and decreases with increasing gain. Two of
the plots were collected using a field delay, which refers to the amount of time between subsequent
exposures. A 30-ms exposure with a 100-ms field delay implies a 130-ms period between each frame.
While Figure F.1 shows data at sub-electron noise levels, readout noise for gains ≥ 400 are actually at the
1 electron level.

Figure F.1. Effective Readout for Several Exposure Times and EM Gains

F.2

	Executive Summary
	Acknowledgments
	Acronyms and Abbreviations
	Contents
	Figures
	1.0 Introduction
	2.0 Approach
	2.1 Pacific Northwest Regional Observatory and Moore Observatory
	2.2 SSA Control Hardware and Software Architecture
	2.3 EMCCD Camera Optimization and Signal-to-Noise (SNR) Model
	2.3.1 Background Noise Considerations
	2.3.2 Camera Measurement Noise
	2.3.3 Signal to Noise Calculation

	3.0 Observation Results
	4.0 Summary
	5.0 References
	Appendix A SkyX Bump.exe Program

	Appendix A SkyX Bump.exe Program
	A.1 Description
	A.2 How to Use
	Appendix B Hamamatsu C9100-23b ImagEM X2 Camera Specifications

	Appendix B Hamamatsu C9100-23b ImagEM X2 Camera Specifications
	Appendix C ORCA Technologies Synchronized Time Code Generator Model GS-101

	Appendix C ORCA Technologies Synchronized Time Code Generator Model GS-101
	Appendix D TSCapture.exe Program

	Appendix D TSCapture.exe Program
	D.1 Description
	D.2 Installation
	D.3 Capturing Timestamps
	D.3.1 Before Capturing: Configuring the HCImage Software
	D.3.2 Capturing
	D.3.3 Capture Settings

	D.4 Saving and Loading Timestamp Data
	D.5 Overlaying Timestamps onto Images
	D.5.1 Image Options

	D.6 Compiling Images into a Video
	D.6.1 Video Options

	D.7 Error Handling
	Appendix E SatSearch.exe Program

	Appendix E SatSearch.exe Program
	E.1 Description
	E.2 How to Use
	Appendix F EMCCD Noise Characterization

	Appendix F EMCCD Noise Characterization
	F.1 Introduction
	F.2 Measurement Procedure

