TR\ U.S. DEPARTMENT OF PNNL-23879

YJENERGY

Prepared for the U.S. Department of Energy

under Contract DE-AC05-76RL01830

VOLTTRON 2.0: User Guide

RG Lutes JN Haack

S Katipamula KE Monson
BA Akyol BJ Carpenter
ND Tenney

November 2014

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Batlelle Since 1965

DISCLAIMER

United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial
Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information,
P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401, fax: (865)576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847, fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

@ This document was printed on recycled paper.
(8/00)

VOLTTRON: User Guide

RG Lutes

JN Haack

S Katipamula
KE Monson
BA Akyol

BJ Carpenter
ND Tenney

November 2014

Prepared for
U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352

PNNL-23879

Summary

The Department of Energy’s (DOE’s) Building Technologies Office (BTQ) is supporting the
development of the concept of “transactional network” that supports energy, operational, and financial
transactions between building systems (e.g., rooftop units -- RTUs), between building systems and the
electric power grid using applications, or ‘agents' that reside either on the equipment, on local building
controllers or in the Cloud.

As part of this Transactional Network initiative, Building Technologies Office BTO has funded Pacific
Northwest National Laboratory (PNNL) to develop an open source, open architecture platform that
enables a variety of site/equipment specific applications to transact in a cost effective and scalable way.
The goal of this initiative is to lower the cost of entry for both existing and/or new service providers
because the data transport or information exchange typically required for operational and energy-related
products and services will be ubiquitous and interoperable.

The transactional network platform consists of VOLTTRON™ agent execution software, a number of
agents that perform a specific function (fault detection, demand response, weather service, logging
service, etc.). The platform is intended to support energy, operational, and financial transactions between
networked entities (equipment, organizations, buildings, grid, etc.).

This document is a user guide for the deployment of the transactional network platform and
agent/application development within VOLTTRON. The intent of this user guide is to provide a
description of the functionality of the transactional network platform. This document describes how to
deploy the platform, including installation, use, guidance, and limitations. It also describes how
additional features can be added to enhance its current functionality.

Table of Contents

ST 0 - T ST iii
R 11 (oo [0 o] o ISP 1
1.1 BACKGIOUNG ...ttt 1
1.2 Transactional Network Platform OVEIVIEWcccooiiiiiiiiieic e 1
1.3 VOLTTRON OVEIVIBW.ciiiiiiieiiiiisiisiesiesie ettt sttt sttt sb et 3
G T R V@ 1 I = (] SRS 3
1.3.2 VOLTTRON SEIVICES.....cuiuiiiiitiiiiiteiieitesie ettt sttt 3

2 Deployment of VOLTTRON.......ocoiiii ettt sttt sttt sre e te e nnas 6
2.1 Installing Linux Virtual Machine............ccooeiiiiiiiiiiceee e 6
2.2 Running and Configuring Virtual Maching............cccccovoviieiiiiiciise e 7
2.3 Installing Required SOTIWATE...........cooviiiiiiiisie e 13
2.4 Installing the SMAP Server (Optional).........ccviiiiiieieiccs e 15
2.5 Checking Out Transactional Network from RepOoSItory.........cccccevvvvvveveiiviieie e 15
2.6 Building the VOLTTRON PIAtFOrmMccoiiiiiiiiiecec e 15
2.7 VOLTTRON Home Directory and Configurationcccccovvveiviiiiiieviiese e 17
2.8 Launching the LiSteNer AQENT..........ccceiiiieieiieiec ettt re e sreenes 17
2.9 Launching the Weather AQENT...........cooiiiiiiiie s 18
2.9.1 Obtaining a Developer Key from WeatherUndergroundccccccevevviiveviennnnne 18
2.9.2 Configuring WeatherAgent with Developer Key and Location............cc.cccceeuuee.. 20
2.9.3 Launching the Weather AQENL...........ccoiiiiiiiiiieeeese e 21

2.10 Configuring and Launching SMAP DIIVEFcccciiiiiiieee e 22
2.10.1 Configuring SIMAP AIVEL.......cceeeiieiere et 23
2.10.2 LauNChiNg the DIIVEL ..ottt 25

2.11 Configuring and Launching the ACtUator AQENt...........ccoviviiieieiieie e 27
2.11.1 Configuring the ACtUALOr AQENT........ccveiriieiiiiiriesere s 27
2.11.2 SChedUlING @ TASK ...vvcvveiiicieeie sttt st 28
2.11.3 CaNCElING @ TASK ...c.vvivveiiecieeie sttt ettt ettt sre et sbesre e 29
2.11.4 Actuator Error REPIYoov i 29
2.11.5 Task Preemption and Schedule Failure...........cccccoove i 30
2.11.6 Actuator AQeNnt INTEraCtioN..........cceoveieiiiie i 31
2.11.7 Device Schedule State ANNOUNCEMENTSeeiviiiiierereee e 32
2.11.8 Launching the ACLUALOr AGENTcveiiiieiiie et 32
2.11.9 Tips for Working with the ACtUALOr AGENTcoveveiiiiiiiee e 33

2.12 Multi-Building (Multi-Node) CoOmMMUNICALIONccoevveiieeierieiecese e 35
2.12.1 Configuration for Multi-Node Communicationcccccevvvvvevenecieese e 35

2.12.2 Using Data Published From Another VOLTTRON.........ccccceviiieve v 38

3 Sample APPLICALIONSIAGENTScveiriie ettt e et e sre e e sresne e e e 40
3.1 Automated Fault Detection and DiagnostiC AQeNt..........ccovviieiieiiere s 40
3.1.1 Configuring the AFDD AGENL.......coiiiiiieiiee et 40
3.1.2 Launching the AFDD AQENTcciiiiiiiiiiiesee e 43

3.2 The Demand ReSpoNnSe (DR) AGENT.......ciiiiiiieieieisese st 46
3.2.1 Configuring DR AQENT.......ooiiiiccce sttt 47
3.2.2 OpenADR (Open Automated Demand RESPONSE)ccvevevriririierieireieeeeniee 49
3.2.3 DR Agent QUIPUL TO SIMAPooiieie ettt 50
3.2.4 Launching the Demand ReSpONSE AQENTccveveiiiieiise et 50

3.3 Other VOLTTRON APPHCALIONS........cviiiiiiiiiiiiieiieireie st 52
3.3.1 Autonomous Control of ROOTtOp UNItS.........ccceviiiiiiiicc e, 52
3.3.2 Supermarket Refrigeration APPlCationccceieiiiiiiiiiieseeee e 54
3.3.3 Renewable Energy Integration AppliCationcccooviiiininiieiecceesee e 55
3.3.4 Lighting Diagnostic AppliCatioNccccevviiieii i 55
3.3.5 Baseline Load Shape APPlICAtIONcooiiiiiiiieicesee e 57
3.3.6 Measurement and Verification Applicationccccvvvvveveiiiie v, 58
3.3.7 Smart Monitoring and Diagnostic System Application............cccocveveieieieeniennenn, 59
3.3.8 Analytical Hierarchy Process for Load Curtailment Applicationc.cc.cc...... 61

4 Agent Development in VOLTTRONccoiiiiiiiiiiccce ettt 63
4.1 Example Agent WalKtNroUgN..........cooiiiiiie et 63
4.2 Explanation Of LIStENEr AQENTccoiiiiiiiiieci e 63
4.3 Agent Development in ECHPSE......ccviieiiieee et 64
4.3.1 INStAlliNg ECHPSEc.ecuviiieiiiiees e 64
4.3.2 Installing Pydev and EGit EClipse PIUG-INScccoeiiieiiiiiiiiincceeeeeee 65
4.3.3 Checkout VOLTTRON PrOJECL.......c.cciiiieiiiieiieicse ettt 68
4.3.4 Configuring ECHIPSE.coiiiiiiieee e 76
4.3.5 Running the VOLTTRON Platform and Agents........cccocvvveveieiieieve e 78
4.3.6 Agent Creation WalKthroughcccocveiiiiiic i 82
4.3.7 Adding Additional Features to the TESLAGENL........ccccovviiiiiriiece e 86

5 New VOLTTRON Features (AKA VOLTTRON Restricted)........cccocevvvveieiisieeiene e, 90
5.1 Installation of VOLTTRON RESIICEd.cc.eiiiieiieiee e 90
5.2 Enabling and Configuring VOLTTRON Restricted SOftwarecccocvvvriininincnennen. 90
5.2.1 Creating Required Security CertifiCatesS.........cccoevvviiieriiiiiiiececee s 92
5.2.2 Enabling Agent Mobility FEAtUIE...........cooiriiiiiiiiceee e 93
5.2.3 Enabling Resource MONITOIINGccocviveiieiiiiese et 93
5.2.4 Configuring Resource MONItOMINGcccvevveiieiieieie e 93

Figures

Figure 1: lllustration of the various components of the transactional network.............cc.ccoecevveiennne 2
Figure 2: VirtualBoX dOWNIOAA PAGE.......coueieeiieieeiesie sttt sttt st seeseesree e 6
Figure 3: LinuX Mint dOWNIOAA PAJEeeveiveiieiieieie sttt seesree e 7
Figure 4: Creating a Virtual MaChINgcociviiiiieii it 8
Figure 5: Selecting MEMOIY SIZE........ccoiiieiiice e 8
Figure 6: Selecting STOrage SIZEoiviiiiieieice e 9
Figure 7: Creating Virtual Hard DIIVEccccov et 9
Figure 8: Selection of type of hard driveccooiiiiiiii e 10
Figure 9: Creating Virtual Hard Drive (CONtINUE)..........cceiiiiieiiiiiie e 10
Figure 10: Selection of diSplay tYPEcoveviiiiie e e 11
Figure 11: Selection Of ProCeSSOr PArAMELEN.........ccuoiiireriirerieieee e 11
Figure 12: Enable bidirectional copy and paste (Shared Clipboard) and Drag’n’Drop................... 12
Figure 13: Loading LINUX IMAJEcoveivirrereieeeieiesiesie st 12
Figure 14: Installing Linux Mint Operating SYStemMcoceieiiieininiieseseeee e 13
Figure 15: Linux Mint Terminal WINOWc.cccviiiiiiicc e 14
Figure 16: Linux Mint Terminal Window After Successful Completion of the *bootstrap’ Script.16
Figure 17: Linux Mint Terminal After Successfully Activating and Starting the VOLTTRON

e =V 0] 0 0 SRR 16
Figure 18: Sample Output from the LiStener AQENL..........ccceviiiiiiiiiie e 18
Figure 19: WeatherUnderground WEDSITEccoriiiiiiiieieici s 19
Figure 20: Setting up @ DeVelOper ACCOUNT...........coiiiiiiieieeceses s 19
Figure 21: Creating a WeatherUnderground APT KEY.........ccoviiieiiii i 20
Figure 22: WeatherUnderground AP KEYcuiiiiiiiiiieesess s 20
Figure 23: Entering the WeatherUnderground Developer KeYccovieiiieiiiniiniininc e 21
Figure 24: Entering Zip Code for the LOCAtION..........ccceiiiiiii e 21
Figure 25: Example Output from the Weather AQENt..........ccovviiiiiiineiecee s 22
Figure 26: An Example Modbus RegIStrY Fileccocoeiiiiiiiiicccceee e 23
Figure 27: An Example BACNet ReQiStry Fileccooiiiiiiiiee e 23
Figure 28: An Example SMAP Configuration File ... 24
Figure 29: Setting Path to Message Bus and Environment Variables.............cccccovevviivcieneinennn, 26
Figure 30: Example Actuator Agent Configuration File............ccoooiiiiiiiiiiiiieeee 27
Figure 31: Configuration of VirtualBox VM for Multi-Node Communication..............cccccceeveunne. 36
Figure 32: Identifying IP Address on VirtUalBOX.........c.ccceiviieieiieie et 36
Figure 33: Example of MultiBuilding Agent Configuration File for “campusl/platforml” 37
Figure 34: Example of MultiBuilding Agent Configuration File for “campusl/platform2” 37
Figure 35: Example AFDD Agent Configuration File..........c.cccooviieiiiiciiie e 41
Figure 36: File Selection Dialog Box when Inputting Data in a csv Fileccccoovniiiiciiienn. 45
Figure 37: Sample of CSV Data for AFDD AQENTcov it 46

Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:

Example Configuration File for the DR AQENtccceveiieiiiiiiee e 48
Autonomous Control APPLCALIONcccvivviiiiieie e 52
Autonomous Control Applications Deployment Architectureccoccevoveveieiceeennne 53
Autonomous Control Application Software COmMPONENtS...........cccocvvvivieveneeresesieinens 53
Supermarket Refrigeration Application Deployment Architecture...........c.ccoeevevinnnnnn. 54
Renewable Integration Application Deployment Architectureccocoeveieiiinnnnn. 55
Lighting DiagnostiC OVEIVIEWcc.ccveiiiiiie ettt 56
Deployment Architecture for the Lighting Diagnostic Application...........c.cccceeeiiiinnne 57
Regression Model Developed by the Baseline Load Shape Application 58
Basic Methodology of the SMDS Application...........ccccocveveiiiie v 60
Deployment Architecture for the SMDS Applicationccooviiiiiicicicisise e 61
ECHiPSE DESKLOP FIlE......iivieieciece sttt 65
Installing EClipse EGIt PIUG-IN......coooviiiiiiiiieeees e 66
Installing Eclipse Egit Plug-in (CONtINUE)cooviiiiiiiiiiiirce e 66
Installing Eclipse Egit Plug-in (CONtinUEed)coveieiiiicii e 67
Installing EClipse PYDEV PIUG-iN......cc.coviiiiiiiiiiccces e 68
Checking VOLTTRON with Eclipse From Local SOUrCE..........cccccevvevieieivcieceee e 69
Checking VOLTTRON with Eclipse from Local Source (continued)cccccvevenenee. 69
Checking VOLTTRON with Eclipse from Local Source (continued)cc.ccoevrernennes 70
Checking VOLTTRON with Eclipse from Local Source (continued)........c..cccccvevvenene. 70
Checking Out VOLTTRON with Eclipse from Local Source (continued).................... 71
Checking Out VOLTTRON with Eclipse from Local Source (continued) 71
Checking Out VOLTTRON with Eclipse from Local Source (continued) 72
Checking Out VOLTTRON with Eclipse from GitHUD............cccoooeiiiiiiics 73
Checking Out VOLTTRON with Eclipse from GitHub (continued)c.ccooevviveiennne 73
Checking Out VOLTTRON with Eclipse GitHub (continued)cccooevveiveieivennenne. 74
Checking Out VOLTTRON with Eclipse from GitHub (continued)cccccovennee. 74
Checking Out VOLTTRON with Eclipse from GitHub (continued)cccccvevenen. 75
Checking Out VOLTTRON with Eclipse from GitHub (continued)ccccccevevennene 75
Checking Out VOLTTRON with Eclipse from GitHub (continued)cccccoveenee. 76
CONFIGUIING PYDEV ..ottt sttt sttt ne e 77
Configuring PyDev (CONtINUEA)ooveriieieieiiieiesiesee e 77
Setting 8S PYDEV PIOJECTc.vciiiiieieiteseeeee e 78
Setting PyDev Perspective in ECHPSE.....ccoveiiiiiiie e 78
Running VOLTTRON Platform, Setting Up a Run Configuration.............c.ccoceoeivnnnne. 79
Running VOLTTRON Platform, Setting Up a Run Configuration (Continued)............ 80
Running VOLTTRON Platform, Console View on Successful Runcccccecvveneeee. 80
Running the Listener Agent, Setting Up a Run Configuration.............ccocoeveniivinnnn. 81
Configuring the Listener Agent, Setting Up a Run Configuration (Continued)............. 82

vii

Figure 77: Listener Agent Output on EClipse CONSOIEccevveieiiiicicie e 82

Figure 78: Creating an Agent TSt FOIUENcc.ooveiiii e 82
Figure 79: TestAgent Output in “VOITION.10Q”cviiiiiei e 85
Figure 80: Console OULPUL FOr TESTAGENT.ccvi ittt 86
Figure 81: TestAgent Output when Subscribing to Weather TOPIC.........ccccveviiiiinineiceceee 86
Figure 82: Structure for the Agent Signing Security Feature in VOLTTRON Restricted................ 91

viii

1 Introduction

Pacific Northwest National Laboratory (PNNL), with funding from the Department of Energy’s (DOE’s)
Building Technologies Office (BTO), designed, prototyped and tested a transactional network platform.
The platform consists of VOLTTRONT™ agent execution software, a number of agents that perform a
specific function (fault detection, demand response, weather service, logging service, etc.). The platform
is intended to support energy, operational and financial transactions between networked entities
(equipment, organizations, buildings, grid, etc.).

To encourage development and growth of the transactional network platform all the software related to
VOLTTRON, platform services, and the agents within VOLTTRON are open source and employ a BSD
(Berkeley Software Distribution) style license, allowing the free distribution and development of the
transactional network platform.

Enhancements to the platform such as agent mobility, signing and verification of agents, and resource
management are available under a different license. Please, see section 5 for a discussion of these
features.

This guide is intended to give detailed instructions for the initial deployment of the transactional network
platform and VOLTTRON, launch of agents (applications) on the platform, and help with development of
new agents within the platform. This guide will also show how to communicate with devices (e.g.,
controllers, thermostats, etc.,) that utilize the Modbus or BACnet communication protocols.

1.1 Background

Today's building systems do not participate significantly in the energy market or provide services to
power system operators. However, new smart grid technologies are creating a significant potential for
building systems to participate in energy markets by providing ancillary services to power system
operators. Communication networks and advanced control systems are a necessary enabler of this new
potential. The transactional network platform will demonstrate the utilization of building systems (e.g.,
RTUs) for providing energy services to utilities using autonomous controllers. This platform will also
allow for development of the next-generation control strategies and validating the strategies by:

e Quantitative analysis of energy management opportunities within buildings

e Design, prototype, and analysis of the advanced controller strategies for building systems

e Design and analysis of communication network within building and external interfaces to utility
communication networks

e Economics of control strategies.

The rate and granularity of the control for the building systems determines the types of utility services
that can be provided.

1.2 Transactional Network Platform Overview

In the transactional network platform, VOLTTRON connects devices (RTUs, building systems, device
controllers, meters, etc.) to applications implemented in the platform and in the Cloud, a data historian,
and signals from the power grid. VOLTTRON is an agent execution platform providing services to its

agents that allow them to easily communicate with physical devices and other resources. VOLTTRON
also provides helper classes to ease development and deployment of agents into the environment.

Figure 1 shows the various components of the transactional network platform. The driver communicates
to the building system controllers using Modbus or BACnet. It periodically reads data off the controller
and both posts data to the SMAP historian and publishes data to the message bus on a topic for each
device; it also provides a means to send control commands from various agents to controllers. The
Actuator/Scheduler agent allows other applications on the platform to schedule times to interact with
devices. This Scheduler agent ensures that multiple agents are not actively controlling a device and allows
the user to set the relative priority of each application.

. > < \
% > SMAP <«—— M&V
% > \

OpenADR SMDS Weather 7- ée, d/ﬂ"ﬂd

Restful - JSON HTTP

VoLTTRON |

Archiver OpenADR SMDS Weather

1 111

|

’ :
: Message Bus :
111 1 ‘L 1 1
| :

AFDD sA:.tu:trr AFDDn Other
Al s Driver * Drivern

Controller: Controllera

s
TR

Figure 1: Illustration of the various components of the transactional network

The Archiver, in Figure 1, allows agents to request data from SMAP over the message bus. This isolates
agents from the historian and allows the platform the flexibility of using potentially different data storage
solutions. For example, because SMAP does not accept string data, a separate database could be used, and
the interface to the agents would remain unchanged.

Agents and platform services shown in Figure 1 communicate with each other via the message bus using
publish/subscribe over a variety of topics. For example, the weather agent would publish weather
information to a “weather” topic that interested agents would subscribe to. The platform itself publishes
platform related messages to the “platform” topic (such as “shutdown”). Topics are hierarchical following
the format “topic/subtopic/subtopic”, allowing agents to get as general or as specific as they want with
their subscriptions. For example, agents could subscribe to “weather/all” and get all weather data for a
location or “weather/temperature” for only temperature data.

1.3 VOLTTRON Overview

The transactional network platform is an open-source, open-architecture platform that enables a variety of
site/fequipment specific applications to be applied in a cost-effective and scalable way. Such an open-
source platform will lower the cost of entry for both existing and new service providers because the data
transport or information exchange typically required for operational and energy related products and
services would be ubiquitous and interoperable.

1.3.1 VOLTTRON

VOLTTRON serves as an integrating platform for the components of the transactional network. It
provides an environment for agent execution and serves as a single point of contact for interfacing with
devices (RTUs, building systems; meters, etc.), external resources, and platform services such as data
archival and retrieval. VOLTTRON provides a collection of utility and helper classes, which simplifies
agent development. VOLTTRON connects devices to applications implemented in the platform and in the
Cloud, a data historian, and signals from the power grid. VOLTTRON incorporates a number of open
source projects to build a flexible and powerful platform. The following is a summary of the various open
source tools (software) that VOLTTRON utilizes:

e SMAP: VOLTTRON utilizes SMAP* for data storage and retrieval. The VOLTTRON Modbus
driver publishes data from devices to the platform and also stores the data in the SMAP historian.
During development of this driver, the VOLTTRON team contributed error reports and resolved a
bug in the SMAP software.

e Drivers for SMAP are written using another open source product called twistd®. Twistd is an
event-based networking engine.

e OMQ: The VOLTTRON message bus, which allows agents and services to exchange data, uses
Zero MQ®. This free software is used by National Aeronautics and Space Administration
(NASA), Cisco, etc. to provide scalable, reliable, and fast communication. The VOLTTRON
team have been active members of this open source software community, reporting bugs as well
as developing code to fix these software bugs.

e PyModbus: The VOLTTRON Modbus* driver builds on PyModbus®, which enables Python code
to easily interact with Modbus devices.

e Other open source Python modules being used are:
o ‘avro', ‘configobj’, 'gevent, ‘flexible-jsonrpc’, ‘numpy’, ‘posix-clock’, ‘pyopenssl’,
'python-dateutil’, 'requests’, 'setuptools’, 'simplejson’, ‘zope.interface'
1.3.2 VOLTTRON Services
VOLTTRON’s services utilize the above mentioned open source tools in conjunction with other
applications developed by collaborators; these services/applications include:

! http://www.cs.berkeley.edu/~stevedh/smap2/index.html
2 http://twistedmatrix.com/trac/

3 http://zeromg.org/

4 http://www.modbus.org/

> http://code.google.com/p/pymodbus/

e Actuator Agent: This platform service is deployed in the form of an agent running on
VOLTTRON. The Actuator agent manages the control of external devices (e.g., RTUs) by agents
within VOLTTRON.

o0 Device control: The Actuator agent will accept commands from other agents and issue
the commands to the specified device. Currently MODBUS and BACnet compatible
device communication is supported.

o0 Device access scheduling: This service allows the scheduling of agents’ access to
devices to prevent multiple agents from controlling the same device at the same time.

o Message Bus: All agents and services can publish and subscribe to topics on the message bus.
This provides a single and uniform interface that abstracts the details of devices and agents from
each other. At the most basic level, agents and components running in the platform produce and
consume messages and/or events. The details of how agents produce events and how they process
received events are left up to the agents.

e Multi-Node Communication: The MultiBuilding agent allows agents to publish and subscribe to
the message bus of a remote VOLTTRON platform. This communication can be encrypted using
OMQ Curve.

e Weather Information: This platform service is deployed in the form of an agent running on
VOLTTRON. This agent periodically retrieves data from the Weather Underground site. It then
reformats the data and publishes it to the platform on a weather topic accessible to other agents.

e Logging Service: Agents can publish integer or double data to arbitrary paths to a logging topic
and this service will push them to the SMAP historian for later analysis. The primary use of the
logging service is to allow agents to record actions or results from the agent executing its
services.

e VOLTTRON licensed enhancements (discussed more in section 5)

0 Agent Signing and Verification: Agent code and configuration information is signed by
several entities to ensure that it has not been tampered with in transit or while on the
server.

0 Resource Management: Agents present an execution contract with a resource
requirements estimate. The platform only allows agents to run if it can support their
requirements

o0 Agent Mobility: Agent can be sent to other platforms via an administrator command or
they can request the move themselves. The receiving platform performs verification of
the agent package and resource requirements before allowing it to execute.

Agents deployed on VOLTTRON can perform one or more roles, which can be broadly classified into the
following groups:

e Platform Agents: These agents provide services to other agents running on the platform such as
weather information, device scheduling, etc.

e Proxy Agents: These agents act as a bridge to remote applications that need access to the
messages and data on the platform. A Proxy agent subscribes to topics of interest and forwards

4

messages to the remote (or Cloud) application. These cloud applications can then publish data to
the platform via the Proxy agent.

Control Agents: Using data from buildings and other agents, these agents make decisions and
interact with devices and other resources to achieve a goal

Passive Agent: These agents subscribe to certain data from the building systems and perform
certain actions to create knowledge (faulty operation). The information and knowledge that these
agents create is posted to the historian or in a local file.

2 Deployment of VOLTTRON

VOLTTRON has been developed for deployment on Linux operating systems. To use VOLTTRON on a
Mac or Windows system, VOLTTRON must be deployed on a virtual machine (VM). A VM is a software
implementation of a machine (i.e., a computer) that executes programs like a physical machine. A system
VM provides a complete system platform, which supports the execution of a complete operating system
(OS). These usually emulate an existing architecture, and are built with the purpose of providing a
platform to run programs where the real hardware is not available for use. This document will describe
the steps necessary to install VOLTTRON on a Windows system using Oracle VirtualBox software
(Figure 2).

VirtualBox

Download VirtualBox

—— Here, you will find links to VirtualBox binaries and its source code.
ou

Screenshots VirtualBox binaries

D load . . _—
SR By downloading, you agree to the terms and conditions of the respective license.

Documentation - ;
* VirtualBox pla ackage e gries gre released ynder the terms of the GPL version 2.

End-user docs

Technical docs

] o VirtualBox 4.3.18 for Linux hosts
Contribute o VirtualBox 4.3.18 for Solaris hosts =*amds4

Figure 2: VirtualBox download page

2.1 Installing Linux Virtual Machine

VirtualBox is free and can be downloaded from https://www.virtualbox.org/wiki/Downloads. Figure 2
shows the VirtualBox download page. The Windows and Mac host OS is shown boxed in red in the
figure.

To install on Windows choose: VirtualBox for Windows hosts x86/amd64
To install on Mac choose: VirtualBox for OS X hosts x86/amd64

The latest version of VirtualBox, when this guide was constructed, was VirtualBox 4.3.18. VOLTTRON
should be compatible with future releases of VirtualBox. After the installation file is downloaded, run and
install the VirtualBox software. It will also be necessary to download a Linux operating system image for
use on the VM. Ubuntu 14.04 LTS or Linux Mint 17 or later is the recommended Linux operating system
for use with VOLTTRON. Any Debian based distribution of Linux should work with VOLTTRON
(Debian, Ubuntu, Linux Mint, etc.) but this document will describe the development of agents within
VOLTTRON where Linux Mint 17 with the Xfce desktop is used. The other desktops associated with
Linux Mint are compatible with VOLTTRON and should provide similar functionality to the Xfce
desktop (Figure 3). Linux Mint can be downloaded from the following

http://en.wikipedia.org/wiki/System_platform
http://en.wikipedia.org/wiki/Operating_system
https://www.virtualbox.org/wiki/Downloads
http://download.virtualbox.org/virtualbox/4.3.6/VirtualBox-4.3.6-91406-Win.exe
http://download.virtualbox.org/virtualbox/4.3.6/VirtualBox-4.3.6-91406-OSX.dmg

URL http://www.linuxmint.com/download.php. Set up of the platform in Ubuntu is identical to the setup
in Linux Mint® except for changes in the appearance of the desktop. If running VOLTTRON on a system
with limited hardware (less than 2 GB of RAM), a 32-bit version of Linux should be used.

Download links

Cinnamon % % An edition featuring the Cinnamon desktop Yes

A version without multimedia support. For magazines,
companies and distributors in the USA, Japan and countries
where the legislation allows patents to apply to software No
and distribution of restricted technologies may require the
acquisition of 3rd party licenses®.

Cinnamon 32- 64-
No codecs bit bit

Cinnamon An installation image for manufacturers to pre-install Linux

OEM ft-hike Mint. No
32- 64- s .
MATE bit bit An edition featuring the MATE desktop Yes

A version without multimedia support. For magazines,
companies and distributors in the USA, Japan and countries
where the legislation allovss patents to apply to softviare No
and distribution of restricted technologies may require the
acquisition of 3rd party licenses®.

MATE No 232- 64
codecs bit bit

An installation image for manufacturers to pre-install Linux

MATE OEM 64-bit Mint. No
32- 64- . :

KDE bit bit An edition featuring the KDE desktop Yes
32- 64 g :

Xfce bt bit An edition featuring the Xfce desktop Yes

* Missing codecs and extra applications can be installed vrith a simple click of the mouse.

Figure 3: Linux Mint download page

2.2 Running and Configuring Virtual Machine

After the VirtualBox software is installed and the Linux Mint image has been downloaded, the virtual
machine can be run and configured. The following steps describe how to configure the VM for
deployment of VOLTTRON:

1. Start VirtualBox and click “New” icon in the top left corner of Oracle VM VirtualBox Manager
Window.

2. A selection box will appear; configure the selection as shown in Figure 4. Choose Next.

® Note that Linux Mint version could be different from the shown here. Also, on the download screen, you could
pick any site, but preferably the site that is close to you.

http://www.linuxmint.com/download.php

'._/J Create Virtual Machine

Name and operating system

Please choose a descriptive name for the new virtual machine and select the
type of operating system you intend to install on it. The name you choose will
be used throughout VirtualBox to identify this machine.

MName: VOLTTROM

Type: [Linu : }

version: |Ubuntu (54 bit)

[Hide Descripﬁon] [MNext] ’ Cancel

b

Figure 4: Creating a Virtual Machine

3. Choose the amount of memory to allot the VM, as shown in Figure 5. Note that this memory will
be unavailable to the host while running the VM (i.e., a computer with 4 GB of memory, could
probably spare 1 GB for the VM). Choose Next.

? o) |

@ Create Virtual Machine

Memaory size

Select the amount of memory (RAM) in megabytes to be allocated to the
virtual machine.

The recommended memory size is 256 MB,

—

2048 [+ B

4MB 6141 MB

MNext i l Cancel

\

Figure 5: Selecting Memory Size

4. Create hard drive for VM. Choose Create as shown in Figure 6.

@ Create Virtual Machine

Hard drive

If you wish you can add a virtual hard drive to the new machine. You can
either create a new hard drive file or select one from the list or from
another location using the folder icon,

If you need a maore complex storage set-up you can skip this step and
make the changes to the machine settings once the machine is created.

The recommended size of the hard drive is B.00 GB.

) Do notadd a virtual hard drive

@ Create a virtual hard drive now

() Use an existing virtual hard drive file

| [test.vmek (Normal, 8.00 GB) -] @&

E Create ” Cancel l

e v,

Figure 6: Selecting Storage Size

5. Choose disk type. As shown in the Figure 7, select VMDK and then select Next.
3|t |

'_«:j' Create Virtual Hard Drive

Hard drive file type

Please choose the type of file that you would like to use for the new virtual hard drive. If
you do not need to use it with other virtualization software you can leave this setting
unchanged.

(&) wDI (WirtualBox Disk Image)
@ WMDK (Virtual Machine Disk)
(&) WHD (virtual Hard Disk)

(&) HOD (Parallzls Hard Disk)
) QED {QEMU enhanced disk)

) Qrow (QEMU Copy-On-irite)

Hide Description] [Mext] ’ Cancel

Figure 7: Creating Virtual Hard Drive

6. Choose Dynamically Allocated for the VM hard drive (Figure 8). This will allow the VM hard
drive to only take storage space as is needed up to the size limit chosen in the previous step.
Choose Continue.

@ Create Virtual Hard Drive

Storage on physical hard drive

Please choose whether the new virtual hard drive file should grow as it is used (dynamically
allocated) or if it should be created at its maximum size (fixed size).

A dynamically allocated hard drive file will only use space on your physical hard drive as
it fills up (up to @ maximum fixed size), although it will not shrink again automatically when
space on itis freed.

A ficed size hard drive file may take longer to create on some systems but is often faster
to use.

You can also choose to split the hard drive file into several files of up to two gigabytes
each. This is mainly useful if you wish to store the virtual machine on removable USE devices
or old systems, some of which cannot handle very large files.

@ Dynamically allocated

() Fixed size

[split into files of less than 2GB

Next i ’ Cancel

Figure 8: Selection of type of hard drive

7. Choose the file size for the VM virtual hard drive. Keep in mind that Linux Mint 17 is close to 4
4 GB just for the operating system (Figure 9). Choose Create.

@&1

@ Create Virtual Hard Drive

File location and size

Please type the name of the new virtual hard drive filz into the box below or dick on the
folder icon to select a different folder to create the file in.

VOLTTRON [k

Select the size of the virtual hard drive in megabytes. This size is the limit on the amount of
file data that a virtual machine will be able to store on the hard drive,

U 10.00 GB
] 1 1 1 1 1 1
4,00 MB 2,00 TE

[Create H Cancel

|8

Figure 9: Creating Virtual Hard Drive (continued)

8. With the newly created VM selected, choose Machine from the VirtualBox menu in the top left
corner of the VirtualBox window; from the drop down menu choose Settings. In the Display
menu check Enable 3D Acceleration (Figure 10). Choose OK.

10

€53 VOLTTRON - Settings (?| = |

.@, General | Display ‘
System
vid i
Display idea | Remote Display Video Capture
Storage Video Memary: D’ 128 [2] mB
I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
w Audio 1MB - 1258 MB
BF Network R ! v ! 1 I ! ' 1 2 E
1]
@ Serial Ports
Extended Features: Enable 30 Acceleration
UsB
& [Enable 20 video Acceleration
= Shared Folders

[0K] [Cancel] [Help

Figure 10: Selection of display type

9. With the newly created VM selected choose Machine from the VirtualBox menu in the top left
corner of the VirtualBox window; from the drop down menu choose Settings. In the system menu
go to the Processor tab and Enable PAE/NX (Figure 11). Choose OK.

€53 VOLTTRON - Settings (2] =]
.@, General ‘System ‘
E System
Display Processar Acceleration
o p . [}
Storage rocessor(s) ¢] . . , | '] \:\
ﬂi Audio 1CPU 8 CPUs
EP Metwork Bl | ! I ! ! I I ! ! ! Q w0 2]
1% 100%:
@ Serial Ports
Extended Features: Enable PAEMX
& Use
=

Shared Folders

[O] [Cancel] [Help

.

Figure 11: Selection of processor parameter

10. To enable bidirectional copy and paste select the General tab in the VirtualBox Settings. Enable
Shared Clipboard and Drag’n’Drop as Bidirectional as shown in Figure 12.

11

' R’
VOLTTRON - Settings |2 S
3] g

= General General

m System

Display Advanced Description

Storage Snapshot Folder: Ci\Usersiute 362 \WirtualBox VMs\WOLTTRON\Snapshots
Ei LAudio Shared Clipboard:

@ Network Drag'n'Drop:

@ Serial Ports Removable Media: Remember Runtime Changes

ﬁ UsSE Mini ToolBar: Show in Fullscreen/Seamless

[0 Shared Folders [7] show at Top of Screen

I QK i’ Cancel][Help

h

Figure 12: Enable bidirectional copy and paste (Shared Clipboard) and Drag’n’Drop

11. With the newly created VM selected click start (or right click the VM and choose start). To load
the Linux image, select the Linux Mint image file (iso file) you downloaded, and then choose
Start as shown in Figure 13.

r ? g ,"

& Select start-up disk

Please select a virtual optical disk file or a physical optical drive
containing a disk to start your new virtual machine from.

The disk should be suitable for starting a computer from and should
contain the operating system you wish to install on the virtual machine
if you want to do that now. The disk will be ejected from the virtual
drive automatically next time you switch the virtual machine off, but
you can also do this yourself if needed using the Devices menu.

linuxmint-17-xfce-dvd-64bit.iso (1.29 GB) | @

(st][concel |
R ——

Figure 13: Loading Linux image

12. Choose Install Linux Mint (the install icon looks like a DVD media, as shown in Figure 14),
proceed to configure installation (language, etc.). The VM will now have Linux Mint installed.

12

rlurmne

Install Linus
fdinte

Figure 14: Installing Linux Mint Operating System

2.3 Installing Required Software

VOLTTRON requires the following Linux modules. To install them, open a terminal window and enter
the following commands (terminal commands are bold). Figure 15 shows the terminal command to install
VOLTTRON software dependencies.

13

| Terminal = e
volttron@volttron-VirtualBox ~ $ sudo apt-get update && sudo apt-get install build-essential openssl
git python-dev g++ libevent-dev libssl-dev python-tk

[sudo] password for wvolttron:

Figure 15: Linux Mint Terminal Window

e Ensures the installer is up to date:
sudo apt-get update

e This installs Git. The transactional network source code including VOLTTRON and other agent
code is stored in a Git repository:
sudo apt-get install git

e This installs Python DevTools. This is a Python software development tool necessary for running
VOLTTRON:
sudo apt-get install python-dev

e g++ isa C++ compatible runtime library:
sudo apt-get install g++

e Dbuild-essential is used to build and install Debian packages:
sudo apt-get install build-essential

e Required development library:
sudo apt-get install libevent-dev
sudo apt-get install libssl-dev
sudo apt-get install openssl

e Optional Python module that allows developers to utilize Python interface library:
sudo apt-get install python-tk

¢ One line command to grab all dependencies (copy and paste to avoid typos):

14

sudo apt-get update && sudo apt-get install build-essential openssl git python-dev g++
libevent-dev libssl-dev python-tk

2.4 Installing the sMAP Server (Optional)

VOLTTRON uses SMAP as its data repository for storing data from devices and log messages from

agents. If you have access to an existing SMAP server, you can configure your VOLTTRON instance to
work with that as in 2.10.1.

To install your own sSMAP instance, follow the installation instructions from the following
URL: http://pythonhosted.org/Smap/en/2.0/install.html

We recommend skipping “Installing from Source” and installing it on the recommended OS.

2.5 Checking Out Transactional Network from Repository

Ensure you have installed the required packages before proceeding. We recommend creating a directory,
~/volttron, the instructions in this guide are written assuming this file structure. Enter the following
commands (terminal commands are bold).

1. Creates the volttron directory, downloads the VOLTTRON source code and creates a local copy
on your machine:

git clone https://github.com/\VVOLTTRON/volttron volttron
2.6 Building the VOLTTRON Platform

In the volttron directory, enter the following commands (terminal commands are bold and explanation of
the commands are in normal font):

2. Go to volttron directory:
cd volttron

3. VOLTTRON includes scripts that automatically pull down dependencies and build the necessary
libraries. The “bootstrap” script has to be run only once. Some of the packages (especially
Numpy) can be very verbose when they install. Wait for the wall of text to end. To run the
bootstrap script, from the volttron directory, enter the following command:

python bootstrap.py

e Upon completion of the bootstrap process, the terminal window should appear similar to
Figure 16:

15

http://pythonhosted.org/Smap/en/2.0/install.html
https://svn.pnl.gov/RTUNetwork/wiki/DevelopmentPrerequisites
https://github.com/VOLTTRON/volttron

Terminal =

Running setup.py install for Smap
package init file 'twisted/plugins/_init_ .py' not found (or not a regular
file)

Running setup.py install for Twisted

Running setup.py install for zope.interface

warning: no previously-included files matching '*.dll' found anywhere in dis
tribution

warning: no previously-included files matching '#*.pyc' found anywhere in dis
tribution

warning: no previously-included files matching '*.pyo* found anywhere in dis
tribution

warning: no previously-included files matching '*.so’ found anywhere in dist
ribution

Skipping installation of /home/volttron/volttron/env/lib/python2.7/site-pack
ages/zope/ init .py (namespace package)

Running setup.py develop for volttron

Running setup.py install for configobj

Successfully installed greenlet pyserial six flexible-jsonrpc posix-clock avro g
event nose numpy pymodbus pyOpenSsSL python-dateutil pyzmg requests simplejson Sm
ap Twisted zope.interface wheel volttron configobj

Cleaning up...

volttron@volttron-VirtualBox

Figure 16: Linux Mint Terminal Window After Successful Completion of the ‘bootstrap’ Script

4. Totest that the installation worked, activate the VOLTTRON platform by running the following
command:
. env/bin/activate
Note there is a space between the “.” and “env.”

5. Start the platform by running the following command:

volttron -vv -1 volttron.log&

e This command not only starts the VOLTTRON platform but it creates a log file (-
option) called volttron.log in the volttron directory and tells the platform to be very
verbose (-vv option) when logging platform activity. After execution of these commands,
the terminal window should appear similar to Figure 17:

Terminal =
warning: no previously-included files matching '#*.so' found anywhere in dist
ribution
Skipping installation of /home/volttron/volttron/env/lib/python2.7/site-pack
ages/zope/ init .py (namespace package)
Running setup.py develop for volttron

Running setup.py install for configobj

Successfully installed greenlet pyserial six flexible-jsonrpc posix-clock avro g
event nose numpy pymodbus pyOpenSSL python-dateutil pyzmg requests simplejson Sm
ap Twisted zope.interface wheel volttron configobj

Cleaning up...

volttron@volttron-VirtualBox . env/bin/activate

(volttron) volttron@volttron-VirtualBox volttron -vv -1 volttron.log&
[1] 4932

(volttron) velttron@volttron-VirtualBox

Figure 17: Linux Mint Terminal After Successfully Activating and Starting the VOLTTRON Platform

At this point, all required software has been installed and basic configuration has been completed. Next,
the installation has to be tested.

16

2.7 VOLTTRON Home Directory and Configuration
By default, the VOLTTRON projects bases its files out of VOLTTRON_HOME, which defaults to
"~[.volttron".

e $VOLTTRON_HOME/ - agents contains the agents installed on the platform

e $VOLTTRON_HOME/ - certificates contains the certificates for use with the Licensed
VOLTTRON code.

e $VOLTTRON_HOME/ - run contains files create by the platform during execution. The main
ones are the OMQ files created for publish and subscribe.

e $VOLTTRON_HOME/ - ssh keys used by agent mobility in the licensed VOLTTRON code

e $VOLTTRON_HOME/config - Default location to place a config file to override any platform
settings.

o /tmp/volttron_wheels - is where agent packages created with “volttron-pkg package are created

2.8 Launching the Listener Agent

To test the VOLTTRON installation, build and deploy the Listener agent. If one plans on utilizing an
integrated development environment (IDE) for agent development, please refer to Section 4.3 for
information on installing and running agents in the Eclipse IDE. The Listener agent isa VOLTTRON
platform agent. The Listener agent logs all activity on the message bus for a particular instance of
VOLTTRON. This agent can be helpful when debugging an application or for monitoring what is being
published on the message bus by other agents.

From the volttron directory, enter the following commands in a terminal window:

1. Package the agent:
volttron-pkg package Agents/ListenerAgent

2. Set the configuration file:
volttron-pkg configure /tmp/volttron_wheels/listeneragent-0.1-py2-none-any.whl
Agents/ListenerAgent/config

3. Install agent into platform (with the platform running):

volttron-ctl install /tmp/volttron_wheels/listeneragent-0.1-py2-none-any.whl

e Upon successful completion of this command, the terminal output will inform one on the
install directory, the agent uuid (unique identifier for an agent; the uuid shown in red is
only an example and each instance of an agent will have a different uuid) and the agent
name (blue text):

o Installed /tmp/volttron_wheels/weatheragent-0.1-py2-none-any.whl as
416b532a-1e36-4e87-887f-04b6feealf70 listeneragent-0.1

4. Start the agent:
volttron-ctl start --name listeneragent-0.1

e Agent commands can also use the uuid as an identifier (i.e., volttron-ctl start --uuid
416b532a-1e36-4e87-887f-04b6feeal3f70). This is helpful when managing multiple
instances of the same agent.

5. Verify that agent is running:

volttron-ctl status
tail volttron.log

17

If changes are made to the Listener agent’s configuration file after the agent is launched, it is necessary to
stop and reload the agent. In a terminal, enter the following commands:

volttron-ctl stop --name listeneragent-0.1

volttron-ctl remove --name listeneragent-0.1
Figure 18 shows an example of the output produced by the Listener Agent.

Terminal

WARNING: WARNING: renaming passed config file: Agents/ListenerAgent/config to config
(volttron) volttron@volttron-VirtualBox ~/volttron § volttron-ctl install /tmp/volttron wheels/listeneragent-@.1-py2-none-any.wh

Unpacking to: /home/volttron/.volttron/agents/416b532a-1e36-4e87-887f-04b6feca3f70/1isteneragent-0.1
Installed /tmp/volttron wheels/listeneragent-8.1-py2-none-any.whl as 416b532a-1e36-4e87-887f-084b6feea3f70 listeneragent-6.1
(volttron) volttron@volttron-VirtualBox ~/volt $ volttron-ctl start --name listeneragent-0.1
Starting 416b532a-1e36-4e87-887f-04b6feeca3f7e eneragent-0.1
(volttron) volttron@volttron-VirtualBox ~/volttron $ volttron-ctl status

AGENT TAG STATUS
4 listeneragent-0.1 running [16869]
(volttron) volttron@volttron-virtualBox ~/volttron $ tail volttron.log
2014-10-27 12:27:44,251 (listeneragent-6.1 16869) listener.agent DEBUG: Topic: subscriptions/add/platform/shutdown, Headers: Hea
ders({}), Message: []
2014-10-27 12:27:49,254 () volttron.platform.main DEBUG: incoming message: ['heartbeat/listeneragent’, '{"Date":"2814-198-27 19:2
}7:49.2537112", "AgentID": "listenerl”, "Content-Type": "text/plain"}', '20814-18-27 19:27:49.2537112']
12614-18-27 12:27:49,255 (listeneragent-8.1 16869) listener.agent DEBUG: Topic: heartbeat/listeneragent, Headers: Headers({u'Date
': u'2014-10-27 19:27:49.253711Z', u'AgentID': u'listenerl’, u'Content-Type': u'text/plain'}), Message: ['2014-10-27 19:27:49.25
37112']
2014-10-27 12:27:54,255 () volttron.platform.main DEBUG: incoming message: ['heartbeat/listeneragent', '{"Date":"2014-10-27 19:2

"AgentID":"listenerl”, "Content-Type":"text/plain"}', '2014-108-27 19:27:54.254449Z']
:27:54,256 (listeneragent-8.1 16869) listener.agent DEBUG: Topic: heartbeat/listeneragent, Headers: Headers({u'Date

: u'2014-10-27 19:27:54.254449Z', u'AgentID': u'listenerl’', u'Content-Type': u'text/plain'}), Message: ['2014-10-27 19:27:54.25
144492"]
2014-109-27 12:27:59,254 () volttron.platform.main DEBUG: incoming message: ['heartbeat/listeneragent’', '{"Date”:"2814-18-27 19:2

Figure 18: Sample Output from the Listener Agent

2.9 Launching the Weather Agent

The Weather agent, another VOLTTRON service agent, retrieves weather information from the
WeatherUnderground site and shares it with agents running on the platform. The first step to launching
the Weather agent is to obtain a developer key from WeatherUnderground.

2.9.1 Obtaining a Developer Key from WeatherUnderground
Follow these steps to create a WeatherUnderground account and obtain a developer key.

o Go to WeatherUnderground site (Figure 19) the following
URL http://www.wunderground.com/weather/api/

e Select, Sign Up for FREE

18

http://www.wunderground.com/weather/api/

A WEATHER API DESIGNED FOR DEVELOPERS]

A |

APIHome Pricing ~ Featured Applications ~ Documentation ~ Forums

Reliable data, accurate forecast, & global coverage in 80 languages. sbout cur A7l

Key Features

b JSON or XML formatted @

b Easy key management

b Error-logging tools

b Rate-monitoring tools

b Complete geo location service

b Autocomplete APl to power geo-search

b Worldwide weather stations network @

Weather ~ Maps &Radar ~ Severe Weather ~ Photos & Video ~ Community ~ News ~ Climate ~

Explore My Options })

Sign Up for FREE! »

‘Weather for Business Intelligence Weather Data for Your Business

Sales Tracker Free Widgets

Case Studies Interactive Maps

Temperature Maps Custom Webpages
Newspapers

Printable Flyers

* P

WunderMap Layers @

S
- 3 elphia

; j:\New-Jer;‘ey

Attanic ¢
&

‘Weather for Advertising

WeatherTargeting

Advertise With Us

Dynamic Creatives
Media Kit

APl

Figure 19: WeatherUnderground Website

e The window should now look similar to Figure 20. Enter your information to create an account.

‘m Weather ~ Maps&Radar = Severe Weather ~ Photos & Vidd
START NOW — DEVELOP FOR FREE!
A1
APIHome Pricing Featured Applications Documentation Forums

Create Your Free Account!

*All fields are reguired
email
password
confirm password

handle

\What's a Handle?

| agree to the Terms of Service.

Figure 20: Setting up a Developer Account

e Select a plan that meets your needs. Login to with your username and password and click on
“Explore my options button.” For most applications, the free plan will be adequate. The window
should appear similar to Figure 21:

19

Weather = Maps &Radar =~ SevereWeather = Prictos &Video = Community ~ News = Climate -

* P Segn Gt

GET YOUR APIKEY.

=

APlHome Pricing Featured Applications Documentation Forums

Customize a plan that suits your needs: TOTAL: 50 USD per month

© STRATUS PLAN

Geoloohup
Auiocomplete

Cument condons
J-day forecast summary
Astronomy

Almanac fof today

| ® CUMULUS PLAN

Geolookup
Autocomplete

Cunent condtions
3-0ay Torecas! summary
Asvonomy

Almanac for tladay

10-day forecas! summary
Houry 1-day farecast
Batenas Mumenad
Drmamic Radar image
Sevore alorts
Tides and Currents
Tides and Currents Raw
Severe alerts

® ANVIL PLAN

Geoloakup
Autncomplete

Cusrent conditions
3-day torecast summarny
Astronomy
Amanac fof leday

0-gay forecast summary
Hourly 1-gay forocast
Sanelite Fumbnall
Dymamic Radae image
Severe alers

Tides and Curtents
Tides and Currents Raw
Severe alerts

Hourly 10-day farecast
Yeslerday's weather simmary
Travel Flanner

Webeams thumbnalls

Dynamic animsted Radsr image
Cynamic animated Satelite iImage.
Currend Tropical Steems

History Add-Gn?

& Yes give me access fo the daily weather archives £ tio, don't include the history acd-on

How MUCh will You USe our service?

Monithity Pricing Calls Per Day Calls Per Minute + History
50 S00 10 +50

520 5000 100 + 5500

5200 100,000 1000 + $2.500

$600 1,000,000 10,000 +55.000

[Yol Selected Plan: Siratus Developer # History
Figure 21: Creating a WeatherUnderground APl Key

e You now have access to you WeatherUnderground API key. An example API key is shown in the
red box of Figure 22:

Weather ~ Maps &Radar ~ Severe Weather ~ Photos & Video ~ Community ~ MNews ~ Climate +

GET YOUR API KEY J

-

Analytics Key Settings ~ Featured Applications Documentation Forums

Select a Key to Customize |28d |TN Network E[

[A Success! You have successfully subscribed to billing plan: Stratus Developer with history

Figure 22: WeatherUnderground API Key

2.9.2 Configuring WeatherAgent with Developer Key and Location

The following steps will show how to configure the Weather agent with the developer key from
WeatherUnderground and how to enter a zip code to get weather data from that zip code.

Edit Agents/WeatherAgent/weather/settings.py with your WeatherUnderground key. From the volttron
directory, enter the following terminal commands:

1. Go to WeatherAgent directory:

20

cd Agents/WeatherAgent/weather

2. Open settings.py with a text editor or nano:
nano settings.py

3. Enter the key, as shown in Figure 23:

settings.py
File Edit View Search Tools Documents Help

_;_jij-l];@:~-~ Y o Bl aQ @

| settings.py 3 ‘

| [key = "28d |
|

Figure 23: Entering the WeatherUnderground Developer Key

4. Open the Weather agent’s configuration file, Agents/WeatherAgent/config, and edit “zip” field,
as shown in Figure 24:
nano config

Filte Edit View Search Tools Documents Help

J o O | & |~ « | ¥ 0O B | Q@ 2

-

New Open Save Print | Undo Redo | GUD Copy Adsie Find Replace

|=| *weather-deploy.service =

"agentid": "Weatherl®,
"poll time": 660,
"minute threshold" : 5

"daily threshold" : 200,

}

Figure 24: Entering Zip Code for the Location

2.9.3 Launching the Weather Agent
To launch the Weather agent, enter the following commands from the volttron directory:

1. Package the agent:
volttron-pkg package Agents/\WeatherAgent

2. Set the configuration file:

21

volttron-pkg configure /tmp/volttron_wheels/weatheragent-0.1-py2-none-any.whl
Agents/Weather Agent/weather-deploy.service

3. Install agent into platform (with the platform running):
volttron-ctl install /tmp/volttron_wheels/weatheragent-0.1-py2-none-any.whl

e Upon successful completion of this command, the terminal output will inform one of the
install directories, the agent UUID (unique identifier for an agent; the UUID shown in red
is only an example and each instance of an agent will have a different UUID) and the
agent name (blue text):

o Installed /tmp/volttron_wheels/weatheragent-0.1-py2-none-any.whl as
a84c91a7-9b0d-491f-aal2-c6abc676a55b weatheragent-0.1

4. Start the agent:
volttron-ctl start --name weatheragent-0.1
e Agent commands can also use the uuid as an identifier (i.e., volttron-ctl start --uuid
a84c91a7-9b0d-491f-aal2-c6abc676a55b). This is helpful when managing multiple
instances of the same agent.

5. Verify that agent is running:
volttron-ctl status
tail volttron.log

If changes are made to the Weather agent’s configuration file after the agent is launched, it is necessary to
stop and reload the agent. In a terminal, enter the following commands:

volttron-ctl stop --name weatheragent-0.1

volttron-ctl remove --name weatheragent-0.1
Figure 25 shows example output from the Weather Agent.

Terminal

File: volttron.log

: incoming message:
G i i message: - :
: incoming message: e / g ee ring’ ri e 'S7.8 F {13.8 C)']
G: incoming message: eather/tempe empe e stri e ype": }', '57.8 F (13.9 ©)']
: incoming message: eathe : {" e a ¥ : "Weathe '"{\.\."visibilityimi\.\.": W\
: incoming message: ['we e s.lblhry mi' e ent-Type":" i Sl [1A tJ]

2 message: ['we / sulanadlatlun g e H -

: incoming message: ['we / ather®, '{" F:om":” e iy -Type":" in"}', I105tly Cloudy i |

: incoming message: ['we g 51b111ty l\m : g e : ent- plain”}', '16.1']

G: incoming message: ['we Hcloud cover/uv', '{"From" 2

: incoming message: e r/location/all’ { Content- Ty i i ,"From":"Weatherl"}', '"{\\"display locatiom\\": {\\
G: incoming message: h»rflocatlonfdlsplay location/all’ ent- application/json rom" ther1"}', ""{\\"city\\"
: incoming message: [' er/ g isplay location/city’, g ent-Ty| '‘Richland’]

: incoming message: [’ weathrrflocatmnfdlsplay location/full’ " e ent- ‘Richland, WA']

G: incoming message: ['weather/location/display locatlunfmaglc ' 4

Figure 25: Example Output from the Weather Agent

2.10 Configuring and Launching sMAP Driver

The sSMAP driver allows a user to store time series data in the SMAP historian and to communicate with
Modbus and BACnet compliant devices. Configuring the driver consists of creating a Modbus and/or a
BACnet registry files and creating a SMAP driver configuration file. The Modbus and BACnet registry
files tell the driver what the Modbus address is for each register, what data type it can hold, and if the
register is writeable or read-only. The SMAP driver configuration file tells the SMAP driver where to find
the Modbus and BACnet registry files, the location (url) of the SMAP historian to write data to, and
information related to the device you are monitoring or controlling.

22

2.10.1 Configuring sMAP driver

The basic Modbus commands can instruct a device to change a value in one of its registers, control or
read an 1/O port, as well as command the device to send back one or more values contained in its
registers. To utilize Modbus communications for a device, a key of the registers must be constructed. This
key is a file, in comma separated value format, that contains the point name that is published on the
message bus, the 1/0 type (Modbus or BACnet register), and the point/register address on the device
(point address). An example of a Modbus registry file is shown in Figure 26, and an example BACnet
registry file is shown in Figure 27.

1. Create the Modbus registry file and/or the BACnet registry file.

PNNL Point Name Units Units Details Modbus Register Writable Point Address Notes

ReturnAirCO2 PPM 0.00-2000.00 >f FALSE 1001 €02 Reading 0.00-2000.0 ppm
SupplyFanSpeed % 0.00 to 100.00 »f FALSE 1003 Fan speed from drive
CoolSupplyFanSpeedl % 0.00 to 100.00 (75 default) | >f TRUE 1005 Fan speed on cool 1 call
CoolSupplyFanSpeed2 % 0.00 to 100.00 (90 default) | >f TRUE 1007 Fan speed on Cool2 Call
DischargeAirTemperature F (-)39.99 to 248.00 >f FALSE 1009 Discharge air reading
ReturnAirCO25tpt P 1000.00 (default) f TRUE 1011 Setpoint to enable demand control ventilation
DamperSignal % 0.00 - 100.00 >f FALSE 1023 Output to the economizer damper
MixedAirTemperature F {-)39.99 to 248.00 >f FALSE 1025 Mixed Air Temperature from Probe
OutsideAirTemperature F (-)39.99 to 248.00 >f FALSE 1029 Outside Air Temperature
Oudoecrairvolume % 0.00 to 100.00 »f FALSE 1031j Outside air volume claculated by multiplying damper and fan speed
ReturnAirTemperature F {-)39.99 to 248.00 »f FALSE 1037 Return air temperatuer reading
DamperCommand % 0-100 of TRUE 1059 Damper position from Voltron to CATALYST
MinimumbDamperPosition5tPt % 0-100 »f TRUE 1063 Damper Minimum Postion Set to CATALYST from Voltron
HeatingTemperature5tPt F 0-100 >f TRUE 1065 Heating setpoint sent to the CATALYST from Voltron
CoolingTemperature5tPt F 0-100 >f TRUE 1067 Cooling setpoint sent to the CATALYST from Voltron

Figure 26: An Example Modbus Registry File

PNNL Point Name Units. Unit Details BACnet Object Type Property Writable Index MNotes

DischargeAirStaticPressure inchesOfWater -0.20 to 5.00 analoginput presentValue FALSE 3000108 Resolution: 0.001
DischargeAirTemperature degreesFahrenheit -50.00 to 250.00 analoginput presentValue FALSE 3000109 Resolution: 0.1
MixedAirTemperature degreesFahrenheit -50.00 to 250.00 analoginput presentValue FALSE 3000116 Resolution: 0.1
OutdoorAirHumidity percentRelativeHumidity 0.00 to 100.00 analoginput presentValue FALSE 3000117 Resolution: 0.1
PreheatTemperature degreesFahrenheit -50.00 to 250.00 analoginput presentvalue FALSE 3000119 Resolution: 0.1
ReturnAirTemperature degreesFahrenheit -50.00 to 250.00 analoginput presentValue FALSE 3000120 Resolution: 0.1
ReturnAirdHumidity percentRelativeHumidity 0.00 to 100.00 analoginput presentValue FALSE 3000124 Resolution: 0.1
CoolingValveOutputCommand percent 0.00 to 100.00 (default 0.0) analogOutput presentValue TRUE 3000107 Resolution: 0.1
MixedAirDamperOutputCommand percent 0.00 to 100.00 {default 0.0) analogOutput presentValue TRUE 3000110 Resolution: 0.1
PreheatValveOQutputCommand percent 0.00 to 100.00 {default 0.0) analogQutput presentValue TRUE 3000111 Resolution: 0.1
ReheatValveOutputCommand percent 0.00 to 100.00 (default 0.0) analogOutput presentValue TRUE 3000112 Resolution: 0.1
SupplyFanspeedOutputCommand percent 0.00 to 100.00 (default 0.0) analogOutput presentValue TRUE 3000113 Resolution: 0.1
ReturnFanSpeedOutputCommand percent 0.00 to 100.00 (default 0.0) analogOutput presentValue TRUE 3000122 Resolution: 0.1

Figure 27: An Example BACnet Registry File

The data fields boxed in red in Figure 26 and Figure 27 are important for communication with the
device(s) and/or control of the device(s). The fields boxed in blue are for informational purposes and are
not required but are often helpful, especially when using a registry key constructed by a third party. Save
this file inside the workspace (i.e., ~/volttron/drivers/modbus.csv or ~/volttron/drivers/bacnet.csv).

For more details on the Modbus registry file or BACnet registry file visit the Transactional Network
Wiki:

Modbus - https://github.com/VVOLTTRON/volttron/wiki/ModbusDriver
BACnet - https://qgithub.com/VVOLTTRON/volttron/wiki/BacnetDriver

For information on auto-generating a BACnet registry file, visit the Transactional Network Wiki:

https://github.com/VOLTTRON/volttron/wiki/AutoBacnetConfigGeneration

2. Configure the SMAP configuration file, as shown in Figure 28. If configuring the SMAP driver
for device communication using only one of the supported protocols (BACnet or Modbus), then
comment out (add # to the beginning of each line) the section for the unused communication

23

https://github.com/VOLTTRON/volttron/wiki/ModbusDriver
https://github.com/VOLTTRON/volttron/wiki/BacnetDriver
https://github.com/VOLTTRON/volttron/wiki/AutoBacnetConfigGeneration

protocol. For example, if Modbus is not used for device communication, comment out lines in the
configuration file that correspond to the yellow boxed parameter in Figure 28.
[report 0]

#Insert your SMAP key after add
ReportDeliveryLocation = http://smap.lbl.gov/backend/add/<INSERT YOUR KEY HERE>

[/datalogger]
type = volttron.drivers.data_logger.DataLogger
interval = 1

(/1

type = Collection

Metadata/SourceName = <PUT YOUR NAME HERE>
uuid = <PUT YOUR UUID HERE>

[/campusl]
type = Collection

Metadata/Location/Campus = Campus Number 1

[/campusl/buildingl]

type = Collection
Metadata/Location/Building = Building Number 1

[/campusl/buildingl/modbus_devicel]

type = volttron.drivers.modbus.Modbus

ip_address = <PUT YOUR MODBUS DEVICE IP HERE>

Metadata/Instrument/Manufacturer = <PUT INSTRUMENT MANUFACTURER HERE>
Metadata/Instrument/ModelName = <PUT INSTRUMENT MCDEL HERE>

slave_id = <device slave id>

¥see volttron/drivers/example.csv for an example of a modbus register config file
register_config = <PUT YQOUR REGISTER CONFIG HERE>

[/campusl/buildingl/bacnet_devicel]

type = volttron.drivers.bacnet.BACnet

target_ip_address = <PUT YOUR BACNET DEVICE IP HERE>

target_port = <PUT YOUR BACNET DEVICE PORT HERE: DEFAULT 47808>

self_ip_address = <PUT IP OF INTERFACE USED TC COMMUNICATE WITH DEVICE (THIS COMPUTER IP)>
self_port = <PUT PORT TO USE TO COMMUNICATE WITH DEVICE: DEFAULT 47808>
Metadata/Instrument/Manufacturer = <PUT INSTRUMENT MANUFACTURER HERE>
Metadata/Instrument/ModelName = <PUT INSTRUMENT MODEL HERE>

#see volttron/drivers/bacnet_example config.csv for example of BACnet registry file
register_config = <PUT YOUR REGISTER CONFIG HERE>

[/campusl/buildingl/logger]

#write to the file specified.

type = volttron.drivers.smap logging.Logger
file

"test.log"
Figure 28: An Example sMAP Configuration File

The required information is shown below:

o | The SMAP URL (location) and SMAP key

24

e | sMAP metadata information

o | /campus/building - path for publishing and subscribing to device data on the
VOLTTRON message bus

e Modbus configurable parameters:
o Device IP address and slave identification (if applicable)
o Location of Modbus registry file

o Desired device metadata

o | BACnet configurable parameters:
o Device IP address
o Location of BACnet registry file

o Desired device metadata

e The path to the data logger scripts. This information shows the SMAP driver where to
find the logging code. The logging code allows an agent to publish information to the
logging topic, where that information will then be pushed to SMAP.

3. Save the file within the transactional network workspace. Subsequent examples from this
document will assume the file is saved as (~/volttron/sMAP.ini).

2.10.2 Launching the Driver

After configuring the Modbus/BACnet registry file(s) and the SMAP configuration file, the driver can
now be launched. The driver can be run as a VOLTTRON agent or by directly calling Twisted. Running
the device driver as an agent is the same process as the building and launching the Listener agent or the
Weather agent.

From the volttron directory enter the following commands in a terminal window:

4. Package the agent:
volttron-pkg package Agents/TwistdLauncher

5. Set the configuration file:
volttron-pkg configure /tmp/volttron_wheels/launcheragent-0.1-py2-none-any.whi
Agents/TwistdLauncher/twistd.launcher

6. Install agent into platform (with the platform running):
volttron-ctl install /tmp/volttron_wheels/launcheragent-0.1-py2-none-any.whl

e Upon successful completion of this command, the terminal output will inform one on the
install directory, the agent uuid (unique identifier for an agent; the uuid shown in red is
only an example and each instance of an agent will have a different uuid) and the agent
name (blue text):

o Installed /tmp/volttron_wheels/launcheragent-0.1-py2-none-any.whl as
4d12141c-8aa8-4e88-9772-d3792710a313 launcheragent-0.1

25

7. Start the agent:
volttron-ctl start --name launcheragent-0.1

e Agent commands can also use the uuid as an identifier (i.e., volttron-ctl start --uuid

416b532a-1e36-4e87-887f-04b6feeal3f70). This is helpful when managing multiple
instances of the same agent.

8. Verify that agent is running:
volttron-ctl status
tail volttron.log
The device driver can also be launched as a separate service:

1. Permanently add AGENT_PUB_ADDR and AGENT_SUB_ADDR (environment variable
describing the path to the VOLTTRON message bus where “home/volttron/” is the path to the
project directory). From a terminal in the volttron directory, complete the following steps (step 1
and step 2 are only required the first time the driver is launched):

e Open the file containing the paths to set environment variables and edit as shown in
Figure 29:

sudo nano /etc/environment

2. Append the following lines to the file with quotation marks:
AGENT_PUB_ADDR="ipc:///home/volttron/.volttron/run/publish"
AGENT_SUB_ADDR="ipc://[/home/volttron/.volttron/run/subscribe"

Terminal
File: /fetc/environment

GNU nano 2.2.6

PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin: /usr/bin:/sbin:/bin: /usr/games: /usr/local/games"
AGENT_PUB_ADDR="1ipc:///home/volttron/.volttron/run/publish"”
AGENT SUB ADDR="ipc:///home/volttron/.volttron/run/subscribe"

a¢ Get Help WY WriteOut il Read File Wi Prev Page a Cut Text WY Cur Pos
W Exit W Justify Where Is Wl Next Page W' UnCut Text @i To Spell

Figure 29: Setting Path to Message Bus and Environment Variables

3. Activate the project:
. env/bin/activate (note the space after the period)

4. Launch the SMAP driver:
twistd -n smap SMAP.ini

Keep this terminal window open. The driver will continue to run and allow you to interact with the device
through the Actuator agent.

26

If changes are made to the TwistdLauncher agent’s configuration file after the agent is launched, it is
necessary to stop and reload the agent. In a terminal, enter the following commands:

volttron-ctl stop --name launcheragent-0.1

volttron-ctl remove --name launcheragent-0.1

2.11 Configuring and Launching the Actuator Agent

The value contained in the registers on your Modbus or BACnet device will be published to the message
bus at a regular interval (the read interval set in the SMAP configuration file). For on demand data or
active control of the device, the Actuator agent must be configured and launched. The Actuator agent
performs the following platform services:

e Device control: The Actuator agent will accept commands from other agents and issue the
commands to the specified device. Currently, communication with Modbus and BACnet
compatible devices is supported.

e Device access scheduling: This service allows the scheduling of agents’ access to devices to
prevent multiple agents from controlling the same device at the same time.

2.11.1 Configuring the Actuator Agent

Before launching the Actuator agent, we must create or modify the Actuator agent’s configuration file
(Figure 30). Preemptible, as used in the context of describing device interaction scheduling with the
Actuator agent means that one agent, the preempted agent, will give up access to a device to allow
another agent of higher priority to interact with the device.

actuator-deploy.service (~/volttron/Agents/ActuatorAgent) - gedit - + X
File Edit View Search Tools Documents Help

+1 0 ;| & -~ - (0 B | & K

b2
MNew Open Save | Print Indz Redo ! Cut Cepy Paste | Find Replace

|=| actuator-deploy.service x

K

“url": "http://localhost:8880/data",

"lock timeout®: 3608,

"schedule publish interval®: 38,

"heartbeat interval": 38,
"schedule state file": "actuator state.pickle”,
"connection-timeout": 10,

"preempt grace time": 68,

"points”:
1
"campusl/buildingl/rtul®:

"heartbeat point": "PlatformHeartBeat"

PlainText TabWidth: 8 Lnl,Coll INS

Figure 30: Example Actuator Agent Configuration File

27

The configuration parameters shown in Figure 30 are defined as follows:

e schedule_publish_interval — The interval in seconds between schedule announcements for
devices being managed by the Actuator agent. These are the devices configured within the SMAP
driver and the published schedule shows agent access information including which agent has
scheduled access to the device.

e preempt_grace_time — The amount of time given to an application of “low” and “preemptible”
priority when a higher priority application requests access to the device.

e schedule_state_file — Saved schedule information for each device being managed by the
Actuator agent.

e The parameters shown in the red box (in Figure 30) are related to a device heartbeat. This is a
register on the control device that the Actuator agent toggles to indicate proper communication
with the platform has been established. The fields in red should be left blank unless your device
has this register setup.

The Actuator agent will be able to facilitate communication and control of devices that are configured
within the SMAP driver.

2.11.2 Scheduling a Task

To have active control of a device, an agent can request a block of time be scheduled on the device. An
agent can request a task be scheduled by publishing to the “RTU/actuators/schedule/request” with the
following header:

{
"type": "NEW_SCHEDULE",
"requesteriID": <Agent ID>, #The name of the requesting agent.
"taskID": <unique task ID>, #unique 1D for scheduled task.

"priority": <task priority>, #The desired task priority, must be "HIGH",
"LOW®", or "LOW_PREEMPT"
}

The schedule request message should be formatted as follows (before converting to json):

L
[‘campus/building/devicel™, #First time slot.

"'2013-12-06 16:00:00", #Start of time slot.
"'2013-12-06 16:20:00"], #End of time slot.
[*campus/bui lding/devicel™, #Second time slot.
''2013-12-06 18:00:00", #Start of time slot.
''2013-12-06 18:20:00""], #End of time slot.
[*campus/building/device2", #Third time slot.

"2013-12-06 16:00:00", #Start of time slot.
"'2013-12-06 16:20:00"], #End of time slot.
#Hetc. ..

1

When constructing a schedule request for a device, the following should be noted:

e Everything in the header is required.

28

o A task schedule must have at least one time slot.

e The start and end times are parsed with dateutil's date/time parser. The default string
representation of a python datetime object will parse without issue.

e Two tasks are considered conflicted if at least one time slot on a device from one task overlaps
the time slot of the other on the same device.

e The start or end (or both) of a requested time slot on a device may touch other time slots without
overlapping and will not be considered in conflict.

e A request must not conflict with itself.
A schedule block of time and the associated task can have three possible priorities, as noted below:

HIGH - This task cannot be preempted under any circumstance. This task may preempt other
conflicting preemptible tasks.

LOW - This task cannot be preempted once it has started. A task is considered started once the
earliest time slot on any device has been reached. This task may not preempt other tasks.

LOW_PREEMPT - This task may be preempted at any time. If the task is preempted once it has
begun running, any current time slots will be given a grace period (configurable in the Actuator
agent configuration file, defaults to 60 seconds) before being revoked. This task may not preempt
other tasks.

2.11.3 Canceling a Task
A task may be canceled by publishing to the "RTU/actuators/schedule/request” topic with the following
header:

{
"type": "CANCEL_SCHEDULE",
"requesterlID": <Agent ID>, #The name of the requesting agent.
"taskID": <unique task ID>, #ID of task being canceled

}

When canceling a task, the following should be noted:
e The requesterID and tasklD must match the original values from the original request header.

o After atask’s time has passed, there is no need to cancel it. Doing so will result in a
"TASK_ID_DOES_NOT_EXIST" error.

2.11.4 Actuator Error Reply
If something goes wrong, the Actuator agent will reply to both get and set on the error topic for an
actuator:

"RTU/actuators/error/<full device path>/<actuation point>-
With this header:

{
29

http://labix.org/python-dateutil#head-c0e81a473b647dfa787dc11e8c69557ec2c3ecd2
https://svn.pnl.gov/RTUNetwork/wiki/ActuatorAgent
https://svn.pnl.gov/RTUNetwork/wiki/ActuatorAgent
https://svn.pnl.gov/RTUNetwork/wiki/ActuatorAgent

"requesteriID": <Agent ID>

}

The message will be in the following form:

{
"type": <Error Type or name of the exception raised by the request>
"value®: <Specific info about the error>

}

2.11.5 Task Preemption and Schedule Failure
In response to a task schedule request, the Actuator agent will respond on the topic

"RTU/actuators/schedule/response™ with the following header:

{
"type": <"NEW_SCHEDULE®", “CANCEL_SCHEDULE®">
"requesterlID”: <Agent ID from the request>,
"taskID": <Task ID from the request>

}

And , the following message (after parsing the json):

{

"result”: <"SUCCESS", "FAILURE", "PREEMPTED">,

"info": <Failure reason, if any>,

"data®: <Data about the failure or cancellation, if any>
}

2.11.5.1 Preemption Message
If a higher priority task preempts another scheduled task, the Actuator agent will publish the following
message (the field type within the header will be contain CANCEL_SCHEDULE):

{
"agentlD": <Agent ID of preempting task>,
"taskID": <Task ID of preempting task>
}
2.11.5.2 Failure Reasons
In most cases the Actuator agent will try to give good feedback as to why a request failed.

2.11.5.3 Failure Responses from Actuator Agent
The following list contains possible errors messages an agent may receive from the Actuator agent. This
field corresponds to the info within the Actuator agent response message:

INVALID_REQUEST_TYPE - Request type was not "NEW_SCHEDULE" or
"CANCEL_SCHEDULE".

MISSING_TASK ID - Failed to supply a taskID.

MISSING_AGENT _ID - AgentID not supplied.

TASK_ID_ALREADY_EXISTS - The supplied taskID already belongs to an existing task.
MISSING_PRIORITY - Failed to supply a priority for a task schedule request.
INVALID_PRIORITY - Priority not one of "HIGH", "LOW", or "LOW_PREEMPT".

30

https://svn.pnl.gov/RTUNetwork/wiki/ActuatorScheduleRequest
https://svn.pnl.gov/RTUNetwork/wiki/ActuatorAgent

MALFORMED_REQUEST_EMPTY - Request list is missing or empty.
REQUEST_CONFLICTS WITH_SELF - Requested time slots on the same device overlap.

MALFORMED_REQUEST - Reported when the request parser raises an unhandled exception. The
exception name and info are appended to this information string.

CONFLICTS WITH_EXISTING_SCHEDULES - Schedule conflicts with an existing schedule that it
cannot preempt. The data item for the results will contain info about the conflicts in this form (after
parsing JSON):

{
"<agentlD1>":
{
"<taskID1>":
L
[*campus/building/devicel™,
'"'2013-12-06 16:00:00",
"'2013-12-06 16:20:00"],
[*campus/building/devicel™,
"'2013-12-06 18:00:00",
'"'2013-12-06 18:20:00"]
1
"<taskID2>":[...]
¥
"<agentiD2>": {...}
}

TASK_ID_DOES_NOT_EXIST - Trying to cancel a task that does not exist. This error can also occur
when trying to cancel a finished task.

AGENT_ID _TASK_ID_MISMATCH - A different agent ID is being used when trying to cancel a task

2.11.6 Actuator Agent Interaction

Once a task has been scheduled and the time slot for one or more of the devices has started, an agent may
interact with the device using the get and set topics. Both get and set receive the same response from the
Actuator agent.

2.11.6.1 Getting Values

While the SMAP driver will periodically broadcast the state of a device, you may want an up-to-the-
moment value for an actuation point on a device. To request a value, publish a message to the following
topic:

"RTU/actuators/get/<full device path>/<actuation point>"

With this header:

{

}
2.11.6.2 Setting Values
Values are set in a similar manner. To set a value, publish a message to the following topic:

"requesteriID": <Agent ID>

"RTU/actuators/set/<full device path>/<actuation point>"

With this header:

31

{
}

"requesteriID": <Agent ID>

The content of the message is the new, desired value for the actuation point.

2.11.6.3 Actuator Reply
The Actuator agent will reply to both get and set on the value topic for an actuator point:

"RTU/actuators/value/<full device path>/<actuation point>"
With this header:

{
}

The message contains the value of the actuation point in JSON. The message can be parsed using
jsonapi.loads method to parse to Python dictionary (from zmg.utils import jsonapi).
2.11.6.4 Common Error Types

The following list contains possible error messages an agent may receive from the Actuator agent. This
field corresponds to the info within the Actuator agent response message:

"requesterlID": <Agent ID>

LockError - Returned when a request is made when we do not have permission to use a device. (Forgot
to schedule, preempted and we did not handle the preemption message correctly, ran out of time in time
slot, etc...)

ValueError - Message missing or could not be parsed as JSON.

Other error types involve problem with communication between the Actuator agent and SMAP.

2.11.7 Device Schedule State Announcements
Periodically the Actuator agent will publish the state of all currently used devices. For each device,
the Actuator agent will publish to an associated topic:

"RTU/actuators/schedule/announce/<full device path>"

With the following header:

{
"requesterlID": <Agent with access>,
"taskID": <Task associated with the time slot>
*window" : <Seconds remaining in the time slot>
}

The frequency of the updates is configurable with the "schedule_publish_interval™ setting.

2.11.8 Launching the Actuator Agent
After the Actuator agent has been configured, the agent can be launched. To launch the Actuator agent
from the volttron directory, enter the following commands in a terminal window:

1. Package the agent:
volttron-pkg package Agents/ActuatorAgent

2. Set the configuration file:

32

https://svn.pnl.gov/RTUNetwork/wiki/ActuatorAgent
https://svn.pnl.gov/RTUNetwork/wiki/ActuatorAgent
https://svn.pnl.gov/RTUNetwork/wiki/ActuatorAgent

volttron-pkg configure /tmp/volttron_wheels/actuatoragent-0.1-py2-none-any.whi
Agents/Actuator Agent/actuator-deploy.service

3. Install agent into platform (with the platform running):
volttron-ctl install /tmp/volttron_wheels/actuatoragent-0.1-py2-none-any.whl

e Upon successful completion of this command, the terminal output will inform one of the
install directory, the agent UUID (unique identifier for an agent; the UUID shown in red
is only an example and each instance of an agent will have a different UUID) and the
agent name (blue text):

o0 Installed /tmp/volttron_wheels/actuatoragent-0.1-py2-none-any.whl as
9b45b2ad-d51d-402f-89f1-d4b21613de9d actuatoragent-0.1

4. Start the agent:
volttron-ctl start --name actuatoragent-0.1
e Agent commands can also use the uuid as an identifier (i.e., volttron-ctl start --uuid
9b45b2ad-d51d-402f-89f1-d4b21613de9d). This is helpful when managing multiple
instances of the same agent.

5. Verify that agent is running:
volttron-ctl status
tail volttron.log

If changes are made to the Actuator agent’s configuration file after the agent is launched, it is necessary to
stop and reload the agent. In a terminal, enter the following commands:

volttron-ctl stop --name actuatoragent-0.1

volttron-ctl remove --name actuatoragent-0.1

The Actuator agent can now be used to interact with Modbus or BACnet devices or simulated
devices. Any device, existing or not, can be scheduled. This can be a beneficial debugging tool, especially
when testing the functionality of an agent under development.

2.11.9 Tips for Working with the Actuator Agent
The following is a list of tips for working with the Actuator agent:

e An agent can watch the window value from device state announcements to perform scheduled
actions within a time slot.
o Ifanagent's task is LOW_PREEMPT priority, it can watch for device state
announcements, where the window is less than or equal to the grace period (default 60
seconds).

e When considering whether to schedule long or multiple short time slots on a single device:
o Do we need to ensure the device state for the duration between slots?
= Yes. Schedule one long time slot instead.
= No. Isit all part of the same task or can we break it up in case there is a conflict
with one of our time slots?

e When considering time slots on multiple devices for a single task:
o Isthe task really dependent on all devices or is it actually multiple tasks?

e When considering priority:

33

https://svn.pnl.gov/RTUNetwork/wiki/ActuatorScheduleState
https://svn.pnl.gov/RTUNetwork/wiki/ActuatorScheduleState

o Does the task have to happen on an exact day?
= No. Consider LOW and reschedule if preempted.
= Yes. Use HIGH.
o Isit problematic to prematurely stop a task once started?
= No. Consider LOW_PREEMPT and watch the device state announcements for a
small window value.
* Yes. Consider LOW or HIGH.

e If an agent is only observing but needs to assure that no other task is going on while taking

readings, it can schedule the time to prevent other agents from “messing” with a devices’ state.
The device state announcements can be used as a reminder as to when to start watching.

34

https://svn.pnl.gov/RTUNetwork/wiki/ActuatorScheduleState
https://svn.pnl.gov/RTUNetwork/wiki/ActuatorScheduleState

2.12 Multi-Building (Multi-Node) Communication

Multi-building (or multi-node) messaging is implemented as a service-style agent. Its use is optional and
it can be enabled/disabled by simply enabling/disabling the MultiBuilding service agent. It is easily
configured using the service configuration file and provides several new topics for use in the local agent

exchange bus.

2.12.1 Configuration for Multi-Node Communication
The service configuration file may contain the declarations below:
e building-publish-address: A @MQ address on which to listen for messages published by other
nodes. Defaults to 'tcp://0.0.0.0:9161".
e building-subscribe-address: A @MQ address on which to listen for messages subscribed to by
other nodes. Defaults to 'tcp://0.0.0.0:9160'".
e public-key, secret-key: Curve keypair (create with zmq.curve_keypair()) to use for
authentication and encryption. If not provided, all communications will be unauthenticated and

unencrypted.
o hosts: A mapping (dictionary) of building names to publish/subscribe addresses. Each entry is of
the form:
o "CAMPUS/BUILDING": {"pub™: "PUB_ADDRESS", 'sub™":

O O 00O

"SUB_ADDRESS', "public-key™: "PUBKEY™, ™"allow'":
"PUB_OR_SUB"}

CAMPUS/BUILDING: building for which the given parameters apply
PUB_ADDRESS: @MQ address used to connect to the building for publishing
SUB_ADDRESS: @MQ address used to connect to the building subscriptions
PUBKEY: curve public key of the host used to authenticate incoming connections
PUB_OR_SUB: the string "pub" to allow publishing only or "sub" to allow both publish
and subscribe

e cleanup-period: Frequency, in seconds, to check for and close stale connections. Defaults to 600
seconds (10 minutes).
e uuid: A UUID to use in the Cookie header. If not given, one will be automatically generated.

When using a VM to run Linux and VOLTTRON the VM must be configured to use a bridged adapter.
This will allow the VM to receive a unique network IP. From the VirtualBox Settings window on the
Network tab configure the VM as follows (Figure 31):

(0}
(0}

(0}
(0}

For Attached to use: Bridged Adapter
For Name use: default value (VirtualBox will typically auto-detect your network
controller)
For Promiscuous Mode use: Allow VMs
To obtain a new IP open a terminal and enter the following commands (if using Wi-Fi,
ethO below should be replaced by wlan0):

sudo ifconfig ethO down

sudo ifconfig ethO up
To view the IP enter the following command (the IP will be listed under ethO or wlan0,
depending on whether the network connection is wireless or wired as shown in Figure 32
boxed in red):

ifconfig

35

=l General Network
| [E System)
@ Disitiy Adapter 1 | Adapter 2
E Storage o . ‘
B Audio Attached to: [Bridged Adapter ~ |
|&F Network Name: |Broadcom NetXtreme 57xx Gigabit Controlier
{9 Serial Ports ¥ Advanced

& use

[Shared Folders Promiscuous Mode: |

/| Cable Connected

Figure 31: Configuration of VirtualBox VM for Multi-Node Communication

Terminal ol e K

volttron@volttron-VirtualBox ~ $ sudo ifconfig eth® down
volttron@volttron-VirtualBox ~ $ sudo ifconfig ethe up
volttron@volttron-VirtualBox ~ $ ifconfig
ethoe Link encap:Ethernet Hwaddr 08:00:27:69:05:24
inet addr:130.2 Bcast:130.20.116.255 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:fe69:524/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:2640433 errors:0 dropped:0 overruns:0 frame:@
TX packets:677543 errors:0 dropped:® overruns:0 carrier:@
collisions:® txqueuelen:1000
RX bytes:3469881323 (3.4 GB) TX bytes:58273475 (58.2 MB)

Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:19441 errors:0 dropped:® overruns:0 frame:@
TX packets:19441 errors:0 dropped:0 overruns:0 carrier:0
collisions:® txqueuelen:®@

RX bytes:2762842 (2.7 MB) TX bytes:2762842 (2.7 MB)

volttron@volttron-VirtualBox ~ $

Figure 32: Identifying IP Address on VirtualBox

Figure 33 and Figure 34 shows the configuration file for two instances of the MultiBuilding Agent, each
running on a separate instance of VOLTTRON on different campus and different buildings (the agents
could run on the same campus and building and only run on separate instances of VOLTTRON). The top

36

red boxes in Figure 33 and Figure 34 give information about the agents native message bus, IP, and
preferred port. The bottom red box in Figure 33 and Figure 34 provides identifying information for the
companion VOLTTRON instance to allow the agent to publish on its message bus. The blue box gives
the MultiBuilding agent information about any other platforms that it will allow publishing on its message
bus. The oval boxed in selections in Figure 33 and Figure 34 show the complimentary nature of the
configuration files. These configurations will enable two-way communication between the two

VOLTTRON instances.

"building-publish-address":
"building-subscribe-address":

"tep: /1w xx.xx . 1xx:12201",

"top: S ww . wx o XxX. Ik 12202",

"auid":

"MultiBuildingService",

"hosts"™: {

"campusl/platformi™: {
Tlpub mn :

"tep: /S lvy.wy.yv. lyy:r 12201,

"sub":

"tep: /vy vy.vy.lyy:12202"

Figure 33: Example of MultiBuilding Agent Configuration File for “campus1/platform1”

"building-publish-address™:

"tep://lyvy.yy.yy.lyy:12201",
"puilding-subscribe-address™:

"tep: A lyv.yy. vy lyy:12202",

"nuid™: "MultiBuildingService",__]

"hosts": {

"campusl/platform2": {
Tlpub" :

"tep: /S o wx . Ixx 122017,

"sub":

"top:r A S1HK L HR L XK. Ixx 12202

}

Figure 34: Example of MultiBuilding Agent Configuration File for “campus1/platform2”

37

2.12.2 Using Data Published From Another VOLTTRON

The MultiBuilding agent enables the communication between separate VOLTTRON instances but does
not actually facilitate that communication. The following section will illustrate a simple agent that will
publish read data from its message bus and publish that data to any number of other platform message bus
(the appropriate configuration of the MultiBuilding agent is required, as detailed in the previous section).

@matching.match_exact(topics.DEVICES VALUE(point="all", **device_ path))
def publish_signal(self, topic, headers, message, match):

Publish Data on other Bus

print "publishing self data to other platform"
msg = jsonapi.-loads(message[0])
for receiver in self.receiving platforms:
print ("Sending data to: " + receiver)
self_publish_json(topics.BUILDING_SEND(
campus=config.get(“campus”),
building=receiver,
topic=self.topic),
{COOKIE: self.uuid}, msg)

The above block of code collects all the data for a configured device and publishes the data to its
companion VOLTTRON platform message bus on the BUILDING_SEND topic. The following shows
the configuration file for this agent (data for “campusl/platform1/devicel” must be published to the
message bus for platform1 via the SMAP driver or some other mechanism in order for this example to
work):

{
"agentid': "MultiNodePublisher™,
"receiving_platforms"™: ["platform2'"],
“"campus'': "campusl',
“"building”: "platforml™,
"device': "devicel",

}

The receiving platform(s) must match the platform(s) configured in the MultiBuilding agent configuration
file in the “hosts” section (e.g., “platform1” will publish to “platform2” in this example using the
MultiNodePublisher). The following is a complete example agent that publishes to another VOLTTRON
message bus:

import logging

import sys

from zmqg.utils import jsonapi

from volttron.platform.agent import BaseAgent, PublishMixin, periodic
from volttron.platform.agent import utils, matching

from volttron.platform.messaging import headers as headers_mod

from volttron.platform.messaging import topics

from volttron.platform.messaging.-headers import COOKIE

def cookie_ headers(request, **headers):
if request:
try:

38

def

headers[COOKIE] = request[COOKIE]
except KeyError:
pass
return headers

MultiNodePublisher(config path, **kwargs):
Publish Device Information from Multi-Node
communication
config = utils.load config(config path)
device path = rtu_path = dict((key, config[key])
for key in [“campus”®,
"building”,
“unit"])

class Agent(PublishMixin, BaseAgent):
def __init__(self,**kwargs):
super(Agent, self).__init__ (**kwargs)
self._topic = config.get("topic”, 0)

self.receiving _platforms = config.get(“receiving platforms~,0)

self.uuid = config.get(“agentid®)
def setup(self):
super(Agent, self).setupQ

@matching.match_exact(topics.DEVICES VALUE(point="all”, \
**device_path))
def publish_signal(self, topic, headers, message, match):

Publish Data on other Bus
print "publishing platforml data to platform2*
msg = jsonapi.loads(message[0])
for receiver in self.receiving platforms:
print ("Sending data to: " + receiver)
self._publish_json(topics.BUILDING_SEND(
campus=config.get(“campus”), building=receiver,
topic=self.topic), {COOKIE: self._uuid}, msg)

Agent._name__ = “MultiNodePublisher~
return Agent(**kwargs)

def main(argv=sys.argv):

if npname == " main_ ":

"""Main method called by the eggsecutable.

utils.default_main(MultiNodePublisher,
description="Multi-Node Example Publisher”,
argv=argv)

Entry point for script
try:
sys.exit(main())
except KeyboardInterrupt:
pass

39

3 Sample Applications/Agents
This section summarizes the use of the sample applications that are pre-packaged with VOLTTRON. For

detailed information on these applications, refer to the report Transactional Network Platform:
Applications.’

3.1 Automated Fault Detection and Diagnostic Agent

The automated fault detection and diagnostic (AFDD) agent is used to identify problems in the operation
and performance of air-handling units (AHUS) or packaged rooftop units (RTUS). Air-side economizers
modulate controllable dampers to use outside air to cool instead of (or to supplement) mechanical cooling,
when outdoor-air conditions are more favorable than the return-air conditions. Unfortunately,
economizers often do not work properly, leading to increased energy use rather than saving energy.
Common problems include incorrect control strategies, diverse types of damper linkage and actuator
failures, and out-of-calibration sensors. These problems can be detected using sensor data that is normally
used to control the system.

The AFDD requires the following data fields to perform the fault detection and diagnostics: outside-air
temperature, return-air temperature, mixed-air temperature, outside-air damper position/signal, supply fan
status, mechanical cooling status, heating status. The AFDD supports both real-time data via a Modbus or
BACnet device, or input of data from a csv style text document.

The following section will detail how to configure the AFDD agent, methods for data input (real-time
data from a device or historical data in a comma separated value formatted text file), and launching the
AFDD agent.

3.1.1 Configuring the AFDD Agent

Before launching the AFDD agent, several parameters require configuration. The AFDD utilizes the same
JSON style configuration file that the Actuator, Listener, and Weather agents use, which is documented in
the previous sections of this document. The threshold parameters used for the fault detection algorithms
are pre-configured and will work well for most RTUs or AHUSs. Figure 35 shows an example
configuration file for the AFDD agent.

The parameters boxed in black (in Figure 35) are the pre-configured fault detection thresholds; these do
not require any modification to run the AFDD agent. The parameters in the example configuration that
are boxed in red will require user input. The following list describes each user configurable parameter and
their possible values:

! http://www.pnl.gov/main/publications/external/technical_reports/PNNL-22941.pdf

40

"agentid":
"campus":

"building™:
"unit”:

"afddl"”,
“campusl"™,
"buildingl®™,
"devicel”,
"smap_path": "datalogger/log/afddl/campusl/buildingl/devicel” ,
#[Contreoller point names]

"oat_point_name": "OutsideAirTemp",

"mat_point_name”: "MixedAirTemp”, #"DischargeAirTemp"
"dat_point_name”: "DischargeAirTemperature"”,
"rat_point_name": "ReturnRirTemp”,

"damper point_name": "Damper",
"cool_calll_point_name”: "CoolCall”,
"cool_cmdl_point_name": "CompressorStatus”,
"fan_status_point_name": "FanStatus",
"heat_commandl_point_name"”: "Heating”,

¢ [Inputr Variables]
"aggregate_data": 1,
"esv_input": 1,
“EER": 10,

"tonnage": 10
"high_limit": 70,
"econcmizer_type": 0,
"matemp missing™: 0,

#[oaf]

"oaf_temp_ thresheld": 4.0,
£ [ORE1]

"mat_low": S50,

"mat_high": 90,

"rat_low": S50,

"rat_high": 90,

"oat_low™: 30,

"oat_high": 120,

£ (OAEZ
"oae2_damper_threshold”: 30.0,
"oae2_oaf_threshold”: 0.25,

#[OAE3])
"damper minimum"™: 20,

§#[0OA=E4)
"minimum ca": 0.1,
"oae4_oaf_threshold™: 0.25,

£ [OAES)
"caeS5_caf_ threshold™:

0.0,

£ [OREE]

"Sunday": [0,23],
"Monday": (0,23],
"Tuesday":(0,23],
"Wednesday": [0,23],
"Thursday”: [0,23],
[0, 231,
"Saturday”": [0,23],

#this schedule is 24 hours

"Friday":

Figure 35: Example AFDD Agent Configuration File

41

$/datalogger/log/your sMAP path here

agentid — This is the ID used when making schedule, set, or get requests to the Actuator agent; usually a
string data type.

campus — Campus name as configured in the SMAP driver. This parameter builds the device path that
allows the Actuator agent to set and get values on the device; usually a string data type.

building — Building name as configured in the SMAP driver. This parameter builds the device path that
allows the Actuator agent to set and get values on the device; usually a string data type.
unit — Device name as configured in the SMAP driver. This parameter builds the device path that allows
the Actuator agent to set and get values on the device; usually a string data type.
Note: The campus, building, and unit parameters are used to build the device path
(campus/building/unit). The device path is used for communication on the message bus.

Controller point names — When using real-time communication, the Actuator agent identifies what
registers or values to set or get by the point name you specify. This name must match the “Point Name”
Given in the Modbus registry file, as specified in Section 2.10 Configuring SMAP driver.

aggregate_data — When using real-time data sampled at an interval of less than 1 hour or when inputting
data via a csv file sampled at less than 1 hour intervals, set this flag to “1.” Value should be an integer or
floating point number (i.e., 1 or 1.0)

csv_input — Flag to indicate if inputting data from a csv text file. Set to “0” for use with real-time data
from a device or “1” if data is input from a csv text file. It should be an integer or floating point number
(i.e.,10r1.0)

EER - Energy efficiency ratio for the AHU or RTU. It should be an integer or floating point number (i.e.,
10 or 10.0)

tonnage — Cooling capacity of the AHU or RTU in tons of cooling. It should be an integer or floating
point number (i.e., 10 or 10.0)

economizer_type — This field indicates what type of economizer control is used. Set to “0” for
differential dry-bulb control or to “1” for high limit dry-bulb control. It should be an integer or floating
point number.

high_limit — If the economizer is using high limit dry-bulb control, then this value will indicates what the
outside-air temperature high limit should be. The input should be floating point number (i.e., 60.0)

matemp_missing — Flag used to indicate if the mixed-air temperature is missing for this system. If
utilizing csv data input, simply set this flag to “1” and replace the mixed-air temperature column with
discharge-air temperature data. If using real-time data input change the field “mat_point_name” under
Point names section to the point name indicating the discharge-air temperature. It should be an integer or
floating point number (i.e., 1 or 1.0)

OAES® — This section contains the schedule information for the AHU or RTU. The default is to indicate a
24-hour schedule for each day of the week. To modify this, change the numbers in the bracketed list next
to the corresponding day with which you are making operation schedule modifications. For example:

“Saturday”: [0,0] (This indicates the system is off on Saturdays)

42

3.1.2 Launching the AFDD Agent

The AFDD agent performs passive diagnostics on AHUs or RTUs, monitors and utilizes sensor data but
does not actively control the devices. Therefore, the agent does not require interaction with the Actuator
agent. Steps for launching the agent are as follows:

In a terminal window, enter the following commands:

1.

Package the agent:
volttron-pkg package Agents/PassiveAFDD

Set the configuration file:
volttron-pkg configure /tmp/volttron_wheels/passiveafdd-0.1-py2-none-any.whli
Agents/PassiveAFDD/passiveafdd.launch.json

Install agent into platform (with the platform running):
volttron-ctl install /tmp/volttron_wheels/passiveafdd-0.1-py2-none-any.whl

e Upon successful completion of this command, the terminal output will inform one of the
install directory, the agent UUID (unique identifier for an agent; the UUID shown in red
is only an example and each instance of an agent will have a different UUID) and the
agent name (blue text):

o Installed /tmp/volttron_wheels/passiveafdd-0.1-py2-none-any.whl as
5df00517-6a4e-4283-8¢70-5f0759713c64 passiveafdd-0.1

Start the agent:
volttron-ctl start --name passiveafdd-0.1
e Agent commands can also use the UUID as an identifier (i.e., volttron-ctl start --uuid
5df00517-6a4e-4283-8¢70-5f0759713c64). This is helpful when managing multiple
instances of the same agent.

Verify that agent is running:
volttron-ctl status
tail volttron.log

If changes are made to the Weather agent’s configuration file after the agent is launched, it is necessary to
stop and reload the agent. In a terminal, enter the following commands:

volttron-ctl stop --name passiveafdd-0.1

volttron-ctl remove --name passiveafdd-0.1

When the AFDD agent is monitoring a device via the message bus, the agent relies on the periodic data
published from the SMAP driver. The AFDD agent then aggregates this data each hour and performs the
diagnostics on the average hourly data. The result is written to a csv text file, which is appended if the file
already exists. This file is in a folder titled “Results” under the “PassiveAFDD/passiveafdd/” directory.
Below is a key that describes how to interpret the diagnostic results:

Diagnostic Code Message
code AFDD-1 (Temperature Sensor Fault)
20 No faults detected
21 Temperature sensor fault

43

22
23
24
25
27
29

30
31
32
33
36
37
38
39

40
41
42
43
47
49

50
51
52
53
56
57
58
59

60
61
62
63
66
67
68

Conditions not favorable for diagnostic

Mixed-air temperature outside of expected range
Return-air temperature outside of expected range
Outside-air temperature outside of expected range
Missing data necessary for fault detection

Unit is off (No Fault)

AFDD-2 (RTU Economizing When it Should)

No faults detected

Unit is not currently cooling or conditions are not favorable for economizing (No Fault)
Insufficient outdoor air when economizing (Fault)

Outdoor-air damper is not fully open when the unit should be economizing (Fault)

OAD is open but conditions were not favorable for OAF calculation (No Fault)

Missing data necessary for fault detection (No Fault)

OAD is open when economizing but OAF calculation led to an unexpected value (No Fault)
Unit is off (No Fault)

AFDD-3 (Unit Economizing When it Should)

No faults detected

Damper should be at minimum position but is not (Fault)
Damper is at minimum for ventilation (No Fault)
Conditions favorable for economizing (No Fault)

Missing data necessary for fault detection (No Fault)
Unit is off (No Fault)

AFDD-4 (Excess Outdoor-air Intake)

No faults detected

Excessive outdoor-air intake

Damper is at minimum but conditions are not favorable for OAF calculation (No Fault)
Damper is not at minimum (Fault)

Unit should be economizing (No Fault)

Missing data necessary for fault detection (No Fault)

Damper is at minimum but OAF calculation led to an unexpected value (No Fault)
Unit is off (No Fault)

AFDD-5 (Insufficient Outdoor-air Ventilation)

No faults detected

Insufficient outdoor-air intake (Fault)

Damper is at minimum but conditions are not favorable for OAF calculation (No Fault)
Damper is not at minimum when is should not be (Fault)

Unit should be economizing (No Fault)

Missing data necessary for fault detection (No Fault)

Damper is at minimum but conditions are not favorable for OAF calculation (No Fault)

44

69 Unit is off (No Fault)

AFDD-6 (Schedule)

70 Unit is operating correctly based on input on/off time (No Fault)
71 Unit is operating at a time designated in schedule as "off" time
77 Missing data

3.1.2.1 Launching the AFDD for CSV Data Input
When utilizing the AFDD agent and inputting data via a csv text file, set the csv_input parameter,
contained in the AFDD configuration file, to “1.”

e Launch the agent normally, as described in Section 3.1.2.

o A small file input box will appear. Navigate to the csv data file and select the csv file to input for
the diagnostic.

e The result will be created for this RTU or AHU in the results folder described

Figure 36 shows the dialog box that is used to input the csv data file.

choose csv file for AFDD + X

Directory: /home/volttrondev/workspacefrtunetwork _1‘ |

|27 .hg El AFDDtest.log

|7 .settings El basic_mercurial_instructions.txt

|E7 Agents El bootstrap

|E3 bin El bootstrap.py

|21 contrib El bootstrap.pyc

|1 develop-eggs El buildout.cfg

|27 eggs El COPYING

|27 lib El dev-config.ini

|27 parts El driver.ini

{E3 wvolttron El example-hgrc

|1 volttronlite.egg-info El example-pylintre

|El .AFDDtest.txt El logger_driver.ini

|El .hgignore Bl modbus.ini

|El .hgtags El modbus2.ini

|E] .installed.cfg El README

|E] .project El RELEASE_NOTES.txt

|El .pydevproject El setup.py

|El 9dc72c72-259f-49a31-359d-66642b0f1490 E| setup.pyc

|E1 activate.in El twistd.pid

|El actuator state.pickle El volttron.log

4 M

File name: | Open

_|‘ Cancel |

Figure 36: File Selection Dialog Box when Inputting Data in a csv File

If “Cancel” is pushed on the file input dialog box, the AFDD will acknowledge that no file was selected.
The AFDD must be restarted to run the diagnostics. If a non-csv file is selected, the AFDD will
acknowledge the file selected was not a csv file. The AFDD must be restarted to run the diagnostics.

Figure 37 shows a sample input data in a csv format.

45

Timestamp, CutsidelirTemp, ReturnAirTemp, MixedhirTemp, CompressorStatus, HeatingStatus, FanStatus, Danper
5/159/2012 6:00,48.902,56.43727273,58.68472222,0,0,0,0

5/1%/2012 7:00,51.12316667,55.475933333,55.58%16667,0,0,0,0

5/1%/2012 8:00,54.70866667,61.1625,64.34266667,0,0,0,0

Figure 37: Sample of CSV Data for AFDD Agent

The header, or name for each column from the data input csv file used for analysis, should match the
name given in the configuration file as shown in Figure 35, boxed in red.

3.2 The Demand Response (DR) Agent

Many utilities around the country have or are considering implementing dynamic electrical pricing
programs that use time-of-use (TOU) electrical rates. TOU electrical rates vary based on the demand for
electricity. Critical peak pricing (CPP), also referred to as critical peak days or event days, is an electrical
rate where utilities charge an increased price above normal pricing for peak hours on the CPP day. CPP
times coincide with peak demand on the utility; these CPP events are generally called between 5 to 15
times per year and occur when the electrical demand is high and the supply is low. Customers on a flat
standard rate who enroll in a peak time rebate program receive rebates for using less electricity when a
utility calls for a peak time event. Most CPP events occur during the summer season on very hot days.
The initial implementation of the DR agent addresses CPP events where the RTU would normally be
cooling. This implementation can be extended to handle CPP events for heating during the winter season
as well. This implementation of the DR agent is specific to the CPP, but it can easily be modified to work
with other incentive signals (real-time pricing, day head, etc.).

The main goal of the building owner/operator is to minimize the electricity consumption during peak
summer periods on a CPP day. To accomplish that goal, the DR agent performs three distinct functions:

Step 1 — Pre-Cooling: Prior to the CPP event period, the cooling and heating (to ensure the RTU is not
driven into a heating mode) set points are reset lower to allow for pre-cooling. This step allows the RTU
to cool the building below its normal cooling set point while the electrical rates are still low (compared to
CPP events). The cooling set point is typically lowered between 3 and 5°F below the normal. Rather than
change the set point to a value that is 3 to 5°F below the normal all at once, the set point is gradually
lowered over a period of time.

Step 2 — Event: During the CPP event, the cooling set point is raised to a value that is 4 to 5°F above the
normal, the damper is commanded to a position that is slightly below the normal minimum (half the of the
normal minimum), the fan speed is slightly reduced (by 10% to 20% of the normal speed, if the unit has a
variable-frequency drive (VFD)), and the second stage cooling differential (time delay between stage one
and stage two cooling) is increased (by few degrees, if the unit has multiple stages). The modifications to
the normal set points during the CPP event for the fan speed, minimum damper position, cooling set
point, and second stage cooling differential are user adjustable. These steps will reduce the electrical
consumption during the CPP event. The pre-cooling actions taken in step 1 will allow the temperature to
slowly float up to the CPP cooling temperature set point and reduce occupant discomfort during the
attempt to shed load.

Step 3 — Post-Event. The DR agent will begin to return the RTU to normal operations by changing the
cooling and heating set points to their normal values. Again, rather than changing the set point in one
step, the set point is changed gradually over a period of time to avoid the “rebound” effect (a spike in
energy consumption after the CPP event when RTU operations are returning to normal).

The following section will detail how to configure and launch the DR agent.

46

3.2.1 Configuring DR Agent

Before launching the DR agent, several parameters require configuration. The DR utilizes the same JSON
style configuration file that the Actuator, Listener, and Weather agent use. A notable limitation of the DR
agent is that the DR agent requires active control of an RTU/AHU. The DR agent modifies set points on
the controller or thermostat to reduce electrical consumption during a CPP event. The DR agent must be
able to set certain values on the RTU/AHU controller or thermostat via the Actuator agent (Section 2.11).

Figure 38 shows a sample configuration file for the DR agent:

#Agent Parameters

"agentid": "DRAGENT1", #Agent ID used by actuator agent for control of RTU

"campus": "campus", #campus name as known by Volttron

"building": "building", #Building name as known by Volttron

"unit": "device", #RTU/Controller name as known by Volttron

"smap_path": "datalogger/log/testing/campus/device" , #/datalogger/log/your path here

#Catalyst Controller point names

"cooling_stpt™: "CoolingTemperatureStPt", # second value in quotes in name from your controller
"heating_stpt": "HeatingTemperatureStPt",

"min_damper_ stpt": "MinimumDamperPositionStPt",

"cooling stage_diff": "CoolingStageDifferential”,

"cooling_fan_spl™: "CoolSupplyFanSpeedl",

"cooling_fan_sp2": "CoolSupplyFanSpeed2",

“override_command": "VoltronPBStatus",

"occupied_status™: "Occupied",

"space_temp": "SpaceTemp”,

"volttron_ flag": "VoltronFlag",

47

#DR cooling Set Points
"csp_pre": 65.0, #Pre-cooling zone temperature set point

"csp_cpp": 80.0, #CPP event zone temperature set point

#Normal set points
"normal_firststage_fanspeed": 90.0,

"normal_secondstage_fanspeed": 90.0,
"normal_ damper_stpt": 5.0,
"normal_coolingstpt": 74.0,
"normal_heatingstpt": 67.0,

#DR Parameters

"fan_reduction": 0.1, $§fractional reduction 10% = 0.1
"damper_cpp": 0, #minimum damper command during CPP event
"timestep_length": 900, #number of seconds between CSP modifications|in Pre and After event (default 900 sec. = 15 min.)
"max_precool_hours": 5, #maximum pre-cooling window in hours
"building thermal constant™: 4.0, #Building thermal constant F/hr
"cooling_stage_differential": 1.0,

"Schedule™: [1,1,1,1,1,1,1] #[Mon, Tue, Wed, Thu, Fri, Sat, Sun]

}
Figure 38: Example Configuration File for the DR Agent

The parameters boxed in black (Figure 38) are the demand response parameters; these may require
modification to ensure the DR agent and corresponding CPP event are executed as one desires. The
parameters in the example configuration that are boxed in red are the controller or thermostat points, as
specified in the Modbus or BACnet (depending on what communication protocol your device uses)
registry file, that the DR agent will set via the Actuator agent. These device points must be writeable, and
configured as such, in the registry (Modbus or BACnet) file. The following list describes each user
configurable parameter:

agentid — This is the ID used when making schedule, set, or get requests to the Actuator agent; usually a
string data type.

campus — Campus name as configured in the SMAP driver. This parameter builds the device path that
allows the Actuator agent to set and get values on the device; usually a string data type.

building — Building name as configured in the SMAP driver. This parameter builds the device path that
allows the Actuator agent to set and get values on the device; usually a string data type.

unit — Device name as configured in the SMAP driver. This parameter builds the device path that allows
the Actuator agent to set and get values on the device; usually a string data type.

Note: The campus, building, and unit parameters are used to build the device path
(campus/building/unit). The device path is used for communication on the message bus.

csp_pre — Pre-cooling space cooling temperature set point.

csp_cpp — CPP event space cooling temperature set point.

48

normal_firststage fanspeed — Normal operations, first stage fan speed set point.
normal_secondstage_fanspeed — Normal operations, second stage fan speed set point.
normal_damper_stpt — Normal operations, minimum outdoor-air damper set point.
normal_coolingstpt — Normal operations, space cooling temperature set point.
normal_heatingstpt — Normal operations, space heating temperature set point.
fan_reduction — Fractional reduction in fan speeds during CPP event (default: 0.1-10%).
damper_cpp — CPP event, minimum outdoor-air damper set point.

max_precool_hours — Maximum allotted time for pre-cooling, in hours.

cooling_stage_differential — Difference in actual space temperature and set-point temperature before
second stage cooling is activated.

Schedule — Day of week occupancy schedule “0” indicate unoccupied day and “1” indicate occupied day
(e.9.,[1,1,1,1,1,1,1] = [Mon, Tue, Wed, Thu, Fri, Sat, Sun]).

3.2.2 OpenADR (Open Automated Demand Response)

Open Automated Demand Response (OpenADR) is an open and standardized way for electricity
providers and system operators to communicate DR signals with each other and with their customers
using a common language over any existing IP-based communications network, such as the

Internet. Lawrence Berkeley National Laboratory created an agent to receive DR signals from an external
source, e.g., OpenADR server, and publish this information on the message bus. The demand response
agent subscribes to the OpenADR topic and utilizes the contents of this message to coordinate the CPP
event.

The format of the OpenADR signal is formatted as follows:

‘openadr/event’ {'Content-Type": ['application/json’], 'requesterID": ‘openadragent}, '{"'status": "near",
"start_at": "2013-6-15 14:00:00", "end_at™":"2013-10-15 18:00:00","mod_num":0,"id":"18455630-a5c4-
4e4a-9d53-b3cf989ccflb”,"signals™:null}’

The red text in the signal is the topic associated with CPP events that are published on the message bus.
The text in dark blue is the message; this contains the relevant information on the CPP event for use by
the DR agent.

If one desires to test the behavior of a device when responding to a DR event, one may simulate such an
event by manually publishing a DR signal on the message bus. From the volttron directory, in a terminal
window, enter the following commands:

e Activate project:
. env/bin/activate (not the space after the period)

e Start Python interpreter:
python (this activates the Python interpreter)

49

e Import PublishMixin module:
from volttron.platform.agent.base import PublishMixin

o Create PublishMixin object:
p=PublishMixin(*ipc:///tmp/volttron-lite-agent-publish’)

e Publish simulated OpenADR message:
p.publish_json(‘openadr/event’,{},{'id": 'event_id",'status": 'active’, 'start_at': '06-10-14
14:00', 'end_at": '06-10-14 18:00'})
To cancel this event, enter the following command:

p.publish_json(‘openadr/event',{},{'id": 'event_id","status': ‘cancelled’, 'start_at': '06-10-14
14:00', ‘end_at': '06-10-14 18:00'})

The DR agent will use the most current signal for a given day. This allows utilities/OpenADR to modify
the signal up to the time prescribed for pre-cooling.

3.2.3 DR Agent Output to sMAP

The Demand Response agent will output to the SMAP location prescribed in your SMAP configuration
file. The specific “branch” within this SMAP database is specified in the DR agent’s configuration file.
The DR agent will output the start time for the CPP event and the end time for the CPP event. These will
be specified by a value of “1” for the start time and “2” for the end time. If the CPP event is cancelled or a
user override is initiated, the DR agent will push a value of “3” to SMAP.

3.2.4 Launching the Demand Response Agent

After the DR agent has been configured, the agent can be launched. To launch the DR agent from the
volttron directory, enter the following commands in a terminal window:

1. Package the agent:
volttron-pkg package Agents/DemandResponseAgent

2. Set the configuration file:

volttron-pkg configure /tmp/volttron_wheels/DemandResponseagent-0.1-py2-none-
any.whl Agents/DemandResponseAgent/demandresponseagent.launch.agent

3. Install agent into platform (with the platform running):
volttron-ctl install /tmp/volttron_wheels/DemandResponseagent-0.1-py2-none-any.whl

e Upon successful completion of this command the terminal output will inform one of the
install directory, the agent UUID (unique identifier for an agent; the UUID shown in red
is only an example and each instance of an agent will have a different UUID) and the
agent name (blue text):

o Installed /tmp/volttron_wheels/passiveafdd-0.1-py2-none-any.whl as
a7efd6f5-a0d9-4e4b-9ded-b13edd5adace5f0759713c64
DemandResponseagent-0.1

4. Start the agent:
volttron-ctl start --name passiveafdd-0.1
e Agent commands can also use the UUID as an identifier (i.e., volttron-ctl start --uuid
5df00517-6a4e-4283-8c70-5f0759713c64). This is helpful when managing multiple
instances of the same agent.

50

5. Verify that agent is running:
volttron-ctl status
tail volttron.log

If changes are made to the DR agent’s configuration file after the agent is launched, it is necessary to stop
and reload the agent. In a terminal, enter the following commands:

volttron-ctl stop --name passiveafdd-0.1

volttron-ctl remove --name passiveafdd-0.1

51

3.3 Other VOLTTRON Applications
The following section will provide a brief description of the other applications available for deployment
within VOLTTRON.

3.3.1 Autonomous Control of Rooftop Units

The Autonomous Control application will facilitate sensor data aggregation from various components of
the building equipment and building environment. The primary objective of this application is to develop
and demonstrate an optimal controller that evaluates sensor data, performs short-term prediction and
optimizes the operation of multiple RTUs. The controller framework will facilitate optimization against
two sets of parameters simultaneously - grid signals (load reduction, voltage regulation, renewable
integration) and building-level energy-efficiency applications (occupancy, weather forecast). Within this
framework, three different control strategies are investigated. The first strategy is a rule-based control that
considers only the interior temperature of the building and the setting of the thermostat. The second
strategy extends the first by adding rules for considering the availability of power from a photovoltaic
generator. The third strategy is a model predicative control that accounts for inside- and outside-air
temperatures, the thermostat set point, and the availability of energy from a photovoltaic power generator.

This application is based on a network of rooftop unit (RTU) thermostats and a centralized controller that
coordinates their operation to achieve substantive reductions in peak energy use. A prototype of this new
control system was built and deployed in a large gymnasium to coordinate four RTUs. Based on real-time
data collected, it is estimated that the cost savings achieved by reducing peak power consumption was
sufficient to repay the cost of the prototype within 1 year. This remarkably short payoff period suggests a
significant commercial potential for the proposed control technology. Figure 39 shows a high-level
overview of the Autonomous Control application:

weather
Comfort (T,RH, _| o
co2) Sense N Supervisory Controller—
Model-predictive Control
Occupancy - i . L
! . - J - - u
HVAC | | If _'- Respond
b m& ration 4 f -
[| ' I
Ventilation ~ Air Flow Zoos HVAC
. N - | B mm -

Figure 39: Autonomous Control Application
The following describes the process used by the Autonomous Control application:

Initialize application instance and load configurable VOLTTRON parameters.

Create Python classes that wrap the C++ code for control logic used by Modbus thermostats.
Subscribe to sensor data (from the Weather agent).

Execute the control logic every 10 minutes. This polls the thermostat temperature and determines
which RTUs should run (based on priority and control logic).

e Thermostat sends the control signals to the RTUs.

Figure 40 shows the deployment architecture for the Autonomous Control application.

52

RTU RTU RTU RTU

HVAC #1 HVAC #2 HVAC #3 HVAC #4
A A A A
Updated Updated Updated Updated
Thermostat Thermostat Thermostat Thermostat
e o o ¢
T3 Al P PR avg’
RJ-485 | I | [
Conectors
ModBus 24vdc power
Communications

PC
Modbus Control &
g"gg" Network PC Interface
Gateway
IREE - Volttron Lite
* Agents

Figure 40: Autonomous Control Applications Deployment Architecture

Figure 41 shows the software components of the Autonomous Control application.
Software components

I:l Python

WeatherAgent - C+

Push (VOLTTRON message bus)

Pull (libmodbus)

Thermostat /O

v

sMap

Figure 41: Autonomous Control Application Software Components

53

3.3.2 Supermarket Refrigeration Application

Supermarkets are an energy intensive operation and stores with floor areas between 3700 — 5600 m2
consume between 2 and 3 million kwWh annually per store. Refrigeration systems in these stores consume
around 50% of the total store energy use. Often the peak energy consumption of the refrigeration systems
coincides with the peak demand for electricity, as seen by utilities (mid to late afternoon). These systems
can participate in demand response strategies using advanced controller formulations that can respond to
utility signals by 1) reducing the number of compressor cycles, 2) shifting peak load time to offset utility
peak loads by scheduling and inherent thermal storage, and 3) robust control of the refrigeration systems
for efficiency and reduction in faults. Apart from advanced controls to optimize the refrigeration systems,
fault detection and diagnosis to improve the refrigeration process can be very beneficial. For example,
adjusting the suction pressure based on the ambient temperature for multistage refrigeration systems can
improve the energy efficiency by between 8 and 15%. Adaptive fine-grained synchronization of the
refrigeration loads provides opportunities for building-to-grid integration potentially beneficial to building
owners and local energy markets.

The Supermarket Refrigeration application (developed in collaboration with Emerson) utilizes
refrigeration systems to provide energy services to grid and improve the energy efficiency of these
systems. Figure 42 shows the deployment architecture for this application:

Weather PC w/ VOLTTRON
Information
* Supermarket
Refrigeration App

TCP/IP, BACnet
P

E2 RX30C
Controller

Refrigeration
Equipment and Cases

Figure 42: Supermarket Refrigeration Application Deployment Architecture
The Supermarket Refrigeration application has the following features (capabilities):

1. Smart defrost cycle:
e Demand response and control based on utility signal

o Intelligent defrost (sensing, algorithms, etc.)

54

2. Peak power reduction:
e Coordination of defrost and operation of all cases
e Capacity modulation for peak power reduction

3. Prognosis of faulty equipment or sensors

3.3.3 Renewable Energy Integration Application

This application is a system for forecasting the average output of a photovoltaic (PV) array one hour in
the future. A significant feature of this system is its use of publicly available data, which is obtained
through a transactional network, to generate forecasts that are accurate enough to guide control
applications. If the forecasting interval can be made more precise, there would be significant potential to
use this type of technology to coordinate the availability of building PV arrays with energy intensive
building functions; in particular, the autonomous Control of RTUs application could take advantage of
such forecasts to improve peak reductions and reduce overall energy usage.

Responsive load can provide benefits both to distribution and transmission systems depending on the
scale of implementation, control, and automation. In providing power system support, Oak Ridge
National Laboratory (ORNL) will deploy automated control systems on RTUSs to provide integration of
renewable resources. This will involve accessing sensor information within the RTU and utilizing local
renewable resources (photovoltaic solar cells) along with a forecasting application that optimally consume
energy when renewables peak in generation.

Figure 43 shows the deployment architecture for the Renewable Energy Integration application.

Disconnect J
| I Programmable Load

Figure 43: Renewable Integration Application Deployment Architecture

3.3.4 Lighting Diagnostic Application
The Lighting Diagnostic application, developed by Lawrence Berkeley National Laboratory, detects
faults in lighting control systems where manual or scheduled control is wasting energy (e.g., lights left on

55

when room is unoccupied). The application suggests improvements to schedules to better match lighting
to occupant needs. The fault detection models operate on usage data like relay state, override times,
programmed lighting schedule, and lighting power load.

Figure 44 shows an overview of the lighting diagnostic’s functionality including input and output
information.

—
Override Status |
(time series) e Bk
—
Optional: Relay statusorload | |
Occupancy — (time series) . .
\ (time series) Diagnostic
Optional: Override Agent
Expected load — S
change T . .
Implemented ID and diagnosis of
Optional: schedule faults (1—-4)
Expected occupancy [~ —
times
Optional:
Actual vs system —
time
ATy
Optional: | KEY
Intended schedule

Optional input Required input
(time series) (time series)

‘ Optional input]

Required input
(other format)

(other format)

Figure 44: Lighting Diagnostic Overview

Figure 45 shows the deployment architecture for the Lighting Diagnostic application.

56

Office Lighting Control System and Data Collection

Wattstopper

"9 =
via BACnet j

Calbay
Adapter

4
!

|

|

I

]

i

|

I

|

]

|

|

|

|

|

:

f /
! i polls
i , every
|
' I’ 5 minutes
:
I
|
|
I
]
|
|
|
|
|
|
I
]
|
|
I
|

¥
sMAP client

6 lights in each zone

Segment Manager

' SMAP server € = ~

Transactive Network Agent Platform

Supervisory -
Agent

Fault
Detection
Agent

[
l
o |
|
I

Agent

sMAP

Archiver
Agent

Figure 45: Deployment Architecture for the Lighting Diagnostic Application

The work-flow for the Lighting Diagnostic application is as follows:

e “Supervisory agent” is run - one of its tasks is to schedule device interaction (device interaction

via the Actuator agent)

e Supervisory agent requests data from sSMAP data archive

» Upon provision of data, the Supervisory agent calls the measurement and verification (M&V)
application and the Lighting Diagnostic application

» Data for the agents is delivered via the VOLTTRON message bus

» Applications send the results back to the Supervisory agent via the VOLLTRON message bus

» The Supervisory agent reads the results from the message bus and writes them to local files for

review.

3.3.5 Baseline Load Shape Application

The objective of the Baseline Load Shape application is to provide a baseline model that accounts for the
influence of the outside-air temperature and previous loads by time of day and day of week. Baseline
models provide a comparison for determining the energy savings arising from efficiency efforts or power
savings for demand response events, by predicting building electric loads based on recent information.
Measuring the response, in the form of energy use (kWh) or peak demand (kW), to a change in building
energy operations requires a reference case based on historical energy use. The Baseline Load Shape
application produces two baselines, one based on long term trends for energy efficiency measures, and
one based on the last 2 weeks of data for demand response events. The short-term model accounts for

recent changes in load shapes or schedules.

57

The following list describes the Baseline Load Shape application inputs:

e Historical whole building power (for at least 2 weeks), sampled in intervals of 1 hour or less

e Qutside-air temperature, sampled at least hourly

e Event period information

The following list describes the Baseline Load Shape application outputs:

e Long-term predicted whole-building baseline load as a function of time.

e Short-term predicted whole-building baseline load as a function of time.

e Goodness of fit statistics:

o Standard error of the residuals during the “training” period

o Correlation coefficient.

Figure 46 shows an example of a baseline model developed by the Baseline Load Shape application:

3501

Features

30071

250

/

Morning ramp-up

100t Morning start-up

50

Evening setback

Rise Time '

Evening shoulder

Near-Base|

Parameters

Higlh-load duration \

>

Load

y A

iFall Time
e

Near-Peak Load

0 6:00 12 18:00
Day 1

6:00 12
Day 2

18:00

Figure 46: Regression Model Developed by the Baseline Load Shape Application

3.3.6 Measurement and Verification Application

The Measurement and Verification (M&V) application provides a measurement tool that automates the
development of a standard baseline model to measure changes in whole-building energy use over a given
period before and after an intervention (energy efficiency improvement measure). Measuring the savings
in energy use (kWh) from a change in the building operation provides whole-building performance data
to help evaluate energy efficiency strategies. The total energy saved or the reduction in peak demand can
also be translated into financial savings to help evaluate the importance of the energy efficiency

improvement measure.

The following list describes the M&V application inputs:

¢ Interval load data (1-hour frequency or faster)

58

e Long-term baseline load shape predicted before an efficiency action (developed by the baseline
Load Shape application)

o Date at which the efficiency action was undertaken
e Tariff data — time of use costs. $/kWh by time of use period

The following list describes the M&V application outputs:

o Difference between actual load and baseline load for each time interval after the efficiency action

Cumulative savings from the efficiency action to the present

Energy savings expressed in KWh/ft?

Energy savings expressed as a percent of whole-building baseline load

Total electricity cost for each 15-minute time interval

e Total electricity cost for baseline operation, for each 15-minute time interval
e Extra cost or reduced cost ($) for each 15-minute time interval

e Cumulative savings ($) over a specified set of time intervals

e Cumulative savings for an entire efficiency action

3.3.7 Smart Monitoring and Diagnostic System Application

The objective of the Smart Monitoring and Diagnostic System (SMDS) application is to detect
degradation (or improvement) in the cooling performance of packaged air conditioners and heat pumps
entirely automatically and using a minimum number of sensed variables. The SMDS application resides
in the Cloud. Measured data are collected at 1-minute intervals for outside-air temperature, RTU total
power consumption, and supply-fan speed signal (for RTUs with variable-speed supply fans only) by the
VOLTTRON platform for each RTU connected to the network. The data are then stored in the network's
Data Historian from which the data are periodically retrieved by an agent in the platform and sent to the
application in the Cloud, where the data are stored in a local application database. The data are processed
once per day to provide updated results. The SMDS detects when changes occur in the performance of the
refrigerant side of RTUs. These changes can be degradations in performance from faults or improvements
in performance associated with servicing. When a change in performance is detected, the SMDS estimates
the energy and cost impacts of the change. In the case of improved performance, the SMDS can be used
to determine the impacts of servicing on energy use and costs. For degradations in performance, the
SMDS provides information that supports the building owner, manager or operator in deciding when to
schedule servicing based on the impacts of the performance degradation that occurred.

The following list describes the SMDS applications approach for detecting changes in heating, ventilation
and air conditioning (HVAC) equipment performance:

e Characterize the performance of the RTU cooling cycle with an empirically determined
relationship between electric power demand (P) and outside-air temperature (OAT) for times
when the unit is operating at steady state.

e This is possible because steady-state power consumption is not affected by changes in cooling
load (e.g., from changes in thermostat setting).

59

Define steady-state operation as times when the power demand does not change appreciably
between successive measurement times.

Detect changes in the P vs. OAT relationship over time, which correspond to changes in the
performance of the RTU cooling function (efficiency, capacity or both).

Determine the energy consumption impact of the detected change to establish whether
performance has degraded or improved.

The sign (positive or negative) of the detected average change in the P-OAT relationship does not
reveal whether performance degradation or improvement has occurred; the sign of the change in
energy use reveals this.

Monitor P vs. OAT characteristics over time to detect when changes occur and quantify energy
impacts when detected.

Figure 47 shows the basic methodology for the SMDS application:

No Significant
Change
P /

Initial (Baseline)

Relationship
OAT
_— Significant
Change

OAT P %

OAT

Figure 47: Basic Methodology of the SMDS Application

The SMDS also detects the following operational faults that usually can be corrected with simple changes
in control parameters:

Supply fan always on (24 hours per day)
Compressor always on (24 hours per day)
RTU always off

Supply fan cycles with the compressor only.

60

When any of these faults is detected, the SMDS provides an alert to users through the user interface. The
measured inputs for the SMDS are:

1. outside-air temperature
2. total RTU power use
3. supply-fan speed signal as a percentage of full speed, all measured at 1-minute time intervals.

The outputs from the SMDS include:

indicators that a performance change has occurred

the increase or decrease in energy use resulting from the performance change

indications that each of the operation faults has occurred or not occurred

supplemental information regarding the nature of each operation fault and the significance of its
impacts.

PoOdDE

No configuration or set-up data entry by the user is required. All information on the nature of each RTU is
measured or inferred. Figure 48 shows the deployment architecture for the SMDS application:

™ i Web Access

Ul Display
M Microsoft Azure Devices
Cloud

KZON it

VO

SMDS Database

Cervices

B
LB EJ

Readings S - Commands

Figure 48: Deployment Architecture for the SMDS Application

3.3.8 Analytical Hierarchy Process for Load Curtailment Application

The Analytical Hierarchy Process (AHP) application implements a load curtailment strategy as an energy
cost saving approach to control electric power usage when the peak electric usage is above a user-
specified maximum electric usage. This approach has been used to limit an electric demand load where a
demand electric charge is a significant percentage of the total energy cost in the building or when a

61

building has to maintain a certain level of maximum demand in response to changes in the price of
electricity over time. The AHP approach allows the HVAC system to provide the comfort space cooling
or heating while curtailing the electric usage during the expected peak hours. Duty-cycling control is a
typical approach to control the peak load curtailment by controlling the ratio of on-period to total cycle
time. This approach has long been used in rooftop units (RTUs) to save energy and extend the life of
system. There are two methods to provide the duty cycling. The first method is parallel duty cycling,
which cycles RTUs on and off at the same time. The second method is a stagger duty cycling. This
approach provides the duty cycling to stagger the on and off times while spreading the distribution time to
each RTU. For example, in case of the staggered duty cycling only some (e.g., 1/3 or 2/3) of the RTUs
operate at any given time. Although both duty cycling approaches provide electric demand relief, those
approaches do not dynamically prioritize the loads to be curtailed. This indiscriminate curtailment of
RTUs can lead to comfort issues in the zone.

The load curtailment algorithm utilized by the AHP application is the staggered duty cycling control with
dynamic prioritization of the loads. The prioritization is established via a priori list of curtailable RTUs.
The RTUs can be curtailed by the prioritization based on a number of parameters including human
comfort, cooling or heating load and system input power. The AHP approach is used to determine the
curtailment load priority.

The curtailment decision for RTU system can be implemented at a low cost within a supervisor controller
of RTUs without adding any extra physical sensors. The supervisor controller would only need to receive
utility signals corresponding to each RTU to generate the priority list of RTUs. Once the priority list of
load curtailment is created, the number of RTUs that need to be curtailed to meet the peak electric usage
can be determined. The AHP process can also be extended to some advanced control feature such as
precooling and preheating conditions that can alleviate uncomfortable conditions when the operation of
RTUs are limited during demand limiting periods.

62

4 Agent Development in VOLTTRON

VOLTTRON supports agents written in any language. The only requirement is that they can
communicate over the message bus. However, Python-based agents were the focus of the original work,
and an array of utilities has been created to speed development in that language. The
“volttron.platform.agent” package contains these utilities (~/volttron/volttron/platform/agent/). For the
details of using them, please see the Wiki or read the comments in the code. These comments contain
explanations and examples of usage.

The utility classes in this package, with a brief description, follow:

o base.py: BaseAgent class handles much of the low-level requirements for working in the
platform. An agent that extends the BaseAgent can focus on its own functionality and override
only the methods it needs.

e matching.py: Allows agents to easily subscribe to topics using decorators®
e cron.py: Allows agents to schedule their actions ahead of time

e green.py: Utilities for using greenlets® with the BaseAgent

o sched.py: Used for scheduling objects

o utilities.py: Utilities for loading config files, parsing command line arguments, formatting log
messages, etc.

The following sections will walkthrough an example agent and then give an overview of creating a simple
agent from scratch.

4.1 Example Agent Walkthrough

The Listener agent subscribes to all topics and is useful for testing that agents being developed are
publishing correctly. It also provides a template for building other agents because it utilizes publish and
subscribe mechanisms and contains the basic structure necessary to build a very simple agent.

4.2 Explanation of Listener Agent
The Listener agent utilizes the PublishMixin and BaseAgent classes for its base functionality. Please see
volttron/volttron/agent/base.py for the details of these classes.

The Listener agent publishes a heartbeat message using the PublishMixin. It also extends BaseAgent to
get default functionality such as responding to platform commands. When creating agents, Mixins™
should be first in the class definition.

class ListenerAgent(PublishMixin, BaseAgent):
"""Listens to everything and publishes a heartbeat according to the
heartbeat period specified in the settings module.

8 https://wiki.python.org/moin/PythonDecorators
’ https://pypi.python.org/pypi/greenlet
10 http://python.dzone.com/articles/mixins-python

63

The Listener agent subscribes to all topics by using volttron/volttron/agent/matching.py. This package
contains decorators for simplifying subscriptions. The Listener agent uses match_all to receive all
messages:

@matching.match_all
def on_match(self, topic, headers, message, match):
"""Use match_all to receive all messages and print them out.
_log.debug(“"Topic: {topic}, Headers: {headers}, "
"Message: {message}'.Format(
topic=topic, headers=headers, message=message))

The Listener agent uses the @periodic decorator to execute the pubheartbeat method every
HEARTBEAT_PERIOD seconds where HEARTBEAT_PERIOD is specified in the settings.py file. To
publish, it creates a Header object to set the ContentType of the message, the time the event was created,
and the ID of the agent sending it. This allows other agents to filter messages of a certain type or from a
certain agent. It also allows them to interpret the content appropriately. The message it then publishes on
the heartbeat topic.

#Demonstrate periodic decorator and settings access
@periodic(settings.HEARTBEAT_PERIOD)
def publish_heartbeat(self):

"""Send heartbeat message every HEARTBEAT PERIOD seconds.

HEARTBEAT PERIOD is set and can be adjusted in the settings module.

now = datetime.utcnow().isoformat(® ") + "Z°

headers = {
"AgentlD": self. _agent id,
headers _mod.CONTENT_TYPE: headers_mod.CONTENT TYPE.PLAIN_TEXT,
headers_mod.DATE: now,

self_publish("heartbeat/listeneragent”, headers, now)

To see the Listener agent in action, please see Section 2.7.

4.3 Agent Development in Eclipse
The Eclipse IDE (integrated development environment) is not required for agent development, but it can
be a powerful developmental tool. For those wishing to use it, download the IDE from

For 32-bit machines:
https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/luna/SR1/ecli
pse-java-luna-SR1-linux-gtk.tar.gz

For 64-bit machines:
https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/luna/SR1/ecli
pse-java-luna-SR1-linux-gtk-x86 64.tar.gz

This link will take you to the main Eclipse webpage:
http://www.eclipse.org/

4.3.1 Installing Eclipse
To install Eclipse, enter the following commands in a terminal:

64

https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/luna/SR1/eclipse-java-luna-SR1-linux-gtk.tar.gz
https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/luna/SR1/eclipse-java-luna-SR1-linux-gtk.tar.gz
https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/luna/SR1/eclipse-java-luna-SR1-linux-gtk-x86_64.tar.gz
https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/luna/SR1/eclipse-java-luna-SR1-linux-gtk-x86_64.tar.gz
http://www.eclipse.org/

1. Install Eclipse dependency:
sudo apt-get install openjdk-7-jdk

2. After downloading the eclipse archive file, move the package to the opt directory (enter this
command from a terminal in the directory where eclipse was downloaded):
tar -xvf eclipse-java-luna-SR1-linux-gtk-x86_64.tar.gz
sudo mv eclipse /opt/
e For 32-bit machines, remove “x86_64" from the previous command.

3. Create desktop shortcut:
sudo touch /usr/share/applications/eclipse.desktop
sudo nano /usr/share/applications/eclipse.desktop
o Enter the following text, as shown in Figure 49, and save the file.

[Terminal - + x|
GNU nano 2.2.6 File: /fusr/share/applications/eclipse.desktop Modified

[Desktop Entry]

Name=Eclipse

Type=Application

Exec=/opt/eclipse/eclipse

Terminal=false

Icon=/opt/eclipse/icon.xpm
Comment=Integrated Development Environment
NoDisplay=false
Categories=Development;IDE

Name[en]=eclipse

Figure 49: Eclipse Desktop File

4. Copy to shortcut to the desktop:
cp /usr/share/applications/eclipse.desktop ~/<USER>/Desktop/

Eclipse is now installed and ready to use.

4.3.2 Installing Pydev and EGit Eclipse Plug-ins
The transactional network code is stored in a Git repository. There is a plug-in available for Eclipse that
makes development more convenient (note: you must have Git installed on the system and have built the
project).
e Asshown in Figure 50:
0 Select: Help -> Install New Software

65

I Project Pydev Run ﬂindaw

s Welcome
|[svovar|e ®
- ' (% Help Contents
3 =0 27 search
Dynamic Help
| = = }
] i Key Assist... Shift+Ctrl+L
k-driver.ini i Tips and Tricks...
Cheat Sheets...
Check for Updates
Install New Software...
cefrtunetwork/b About Eclipse Platform
ultl

Figure 50: Installing Eclipse EGit Plug-in

e Click on the "Add" button as shown in Figure 51.

Install
Available Software

Select a site or enter the location of a site.

+ X

[]

o

Work with: Itype or select a site

| v |[_adu...

J

Find more software by working with the "Available Software Sites" preferences.

["] Show only software applicable te target environment

|E3| Contact all update sites during install to find required seftware

|E3| Group items by categery What is already installed?

|E3] Show only the latest versions of available software] Hide items that are already installed

ltype filter text ﬁ%]
Name IVEFS[On

)@ There is no site selected.

Select All_| | Deselect Al
Detalls

® [< Back I Next >

Figure 51: Installing Eclipse Egit Plug-in (continued)

e Asshown in Figure 52 enter the following:
o For name use: EGit

o0 For location: http://download.eclipse.org/egit/updates

66

Available Software

Select a site or enter the location of a site.

[]

(B

Work with: [type or select a site

[v]] Add..

Find more software by working with the "Available Software Sites” preferences.

[type filter text ﬁ%]
Name Version
[There is no site selected.
Add Repository + X

Name: |EGit || Local. |

Location: Ihttp:ﬂdcwnload.eclipse.org;‘egitfupdates] l Archive._. ‘
| Select Al | E -
| seectan J|L 3 cancel |[__ok__|
Details

|| Show only the latest versions of available software

|| Group items by category

[] Hide items that are already installed

What is already installed?

[show only software applicable to target environment

|| Contact all update sites during install to find required software

@ | <Back || mNext= || cancet || Fnish |

Figure 52: Installing Eclipse Egit Plug-in (continued)

e After hitting OK, check the Select All button
e Click through Next, Agree to Terms, then Finish
e Allow Eclipse to restart

After installing Eclipse, you must add the PyDev plug-in to the environment. In Eclipse:

e Help -> Install New Software
o Click on the "Add" button
e Asshown in Figure 53 enter the following:

0 For name use: PyDev

o For location: http://pydev.org/updates

67

http://pydev.org/updates

o Click OK

Available Software |
Select a site or enter the location of a site. .@:

Work with: [type or select a site | v] Add...

Find more software by working with the "Available Software Sites” preferences.

[type filter text ‘Q]
Name Version
D @ There is no site selected.
Add Repository + X
Name: [PyDev] l Local... ‘
Location: [http:ﬂpydev.orgfupdatesi I Archive... .
. Select All . :
@ l Cancel ‘ [OK l L
Details o B | -

[E3] Show only the latest versions of available software [Hide items that are already installed
3] Group items by category What is already installed?
["] Show only software applicable to target environment

|3 Contact all update sites during install to find required software

Ico

@ [= Back I Next = I Cancel | Finish |

Figure 53: Installing Eclipse PyDev Plug-in

e Check the box for PyDev
e Click through Next, Agree to Terms, Finish

e Allow Eclipse to restart

4.3.3 Checkout VOLTTRON Project

VOLTTRON can be imported into Eclipse from an existing VOLTTRON project (VOLTTRON was
previously checked out from GitHub) or a new download from GitHub.

4.3.3.1 Import VOLTTRON into Eclipse from an Existing Local Repository (Previously Downloaded
VOLTTRON Project)
To import an existing VOLTTRON project into Eclipse, the following steps should be followed:

1. Select File, then import as shown in Figure 54

68

e

Edit Source Refactoring Navigate Search Project Pyd

New Alt+Shift+N »
Open File...
Close Ctrl+W
Close All Ctrl+Shift+W
Save Ctrl+S
Save As...
Save All Ctrl+Shift+5S
Revert
Move...

¥ Rename.. F2

&7 Refresh F5
Convert Line Delimiters To »
Print... Ctrl+P
Switch Workspace »
Restart

g2y Import...

5 Export..
Properties Alt+Enter

Figure 54: Checking VOLTTRON with Eclipse From Local Source

2. Select Git -> Projects from Git, then click the Next button (Figure 55)

S tmpon o [EEs
Select
E\A]
Irnport one or more projects from a Git Repository.

Select an irmport source:

| type filter text |

I = General
I = CVS
4 (= Git
|E, Projects from Git |
= Install
= Plug-in Development
= Run/Debug
(= Tasks
[= Teamn

v v T v v

@ | < Back ” Mext =] | Finizh | ’ Cancel]

Figure 55: Checking VOLTTRON with Eclipse from Local Source (continued)

69

3. Asshown in Figure 56:
0 Select Existing local repository -> Next >

Import Projects from Git + x|
Select Repository Source = |
P GIT

Select a location of Git Repositories 4
llype filter text Q]

¥ Existing local repository

] Clone URI

@ | <Bak | Next> || Cancel || fnish

Figure 56: Checking VOLTTRON with Eclipse from Local Source (continued)

4. Select Add (Figure 57)

>

Select a Git Repository

GIT
You can also clone a repository or add local repositories to the list ‘;jE'J

{type filter text a| t&ddl

@ < Back Next > | cancel | Finish

Figure 57: Checking VOLTTRON with Eclipse from Local Source (continued)

70

5. Select Browse -> navigate to the top-level volttron directory and select OK (Figure 58)

+ X
Search and select Git repositories on your local file syst
£ y y Gl | 4 4 & volttron | Create Folder
Search for local Git repositories on the file system == 4 et B B - e
|Places || Name ¥ Size Modified I
Search sokeri Q_ search & a3cdbe... Yesterday at 11:52
Directory: | fhome/volttron/git | |Browse... | | Search Recently Used [Agents Monday
Look for nested repositories # volttron i contrib Monday
i env Monda
Search results Desktop H : y
a L__ File System i lib Monday
! i Documents /| @ volttron Monday
@ Music | [volttron... Monday
ii® Pictures i A3 Y }
i@ Videos =
i) Downloads L
‘I » Al N
@ | Cancel | Finish | Cancel || oK |

Figure 58: Checking Out VOLTTRON with Eclipse from Local Source (continued)

6. Select Finish (Figure 59)

Add Git Repositorles 490

Search and select Git repositories on your local fi GIT
Search for local Git repositories on the file system L""“_JJ
Search criteria

Directory: [fhome;‘volttron:‘volttron | | Browse... | | Search

| Look for nested repositories
Search results
[type filter text a o
& [/home/volttron/volttron/.git
® Cancel [| Finish J

Figure 59: Checking Out VOLTTRON with Eclipse from Local Source (continued)

7. Choose Import as general project and click Next -> Finish, the project will be imported into the
workspace (Figure 60)

71

Import Projects from Git + X

Select a wizard to use for importing projects

Lul T
Depending on the wizard, you may select a directory to determine -
the wizard's scope -

Wizard for project import
1 Import existing projects
) Use the New Project wizard

© Import as general project

& woringDirectory - homenvottronotrn
= .git I
= Agents
(= contrib

4

4

4

b L env
» = lib

» (= volttron

» (= volttron.egg-info

[7] .qgitignore

® | <Back | Next> | | Cancel | Finish

Figure 60: Checking Out VOLTTRON with Eclipse from Local Source (continued)

4.3.3.2 Import New VOLTTRON Project from GitHub
To import a new VOLTTRON project directly from GitHub into Eclipse, the following steps should be
followed.

1. Select File, then Import (Figure 61)

72

e

Edit Source Refactoring Navigate Search Project Pyd

New Alt+Shift+N »
Open File...
Close Ctrl+W
Close All Ctrl+Shift+W
Save Ctrl+S
Save As...
Save All Ctrl+Shift+5S
Revert
Move...

¥ Rename.. F2

&7 Refresh F5
Convert Line Delimiters To »
Print... Ctrl+P
Switch Workspace »
Restart

g2y Import...

5 Export..
Properties Alt+Enter

Figure 61: Checking Out VOLTTRON with Eclipse from GitHub

2. Select Git -> Projects from Git, then click the Next button (Figure 61)
%Import EI@

Select
E\A]
Import one or more projects from a Git Repository.

Select an import source:

| type filter text |

I (= General
I = CVS
4 = Git
|&, Projects from Git |
= Install
= Plug-in Development
= Run/Debug
= Tasks
= Team

v T v T v

@ | <Bock | Net> || Ensh |[Camcel]

Figure 62: Checking Out VOLTTRON with Eclipse from GitHub (continued)

3. As shown in Figure 63 select Clone URI -> Next >

73

Import Projects from Git + X
Select Repository Source z
Gl
Select a location of Git Repositories Em;"‘
type filter text ﬂ.
¥ Existing local repository
] Clone URI [
@ | <Bak | Next> || Cancel Finish

Figure 63: Checking Out VOLTTRON with Eclipse GitHub (continued)

4. Fill in https://github.com/VOLTTRON/volttron.git for the URI, and use your GitHub account
login (GitHub account username and password in the User and Password, as shown in Figure 64)
Clone Git Repository + X

Source Git Repository GIT
Enter the location of the source repository.

-

Location

URI: *[nttps:/github.comVOLTTRONvolttron] | | Local Fie...

Host: [github.com

Repository path: [NOLTI'RONNOEttron]

Connection
Protocol: Https -
ot [

Authentication
User: []

Password: []

Store in Secure Store ||

@ | < Back “ Next > H Cancel ‘| Finish |

Figure 64: Checking Out VOLTTRON with Eclipse from GitHub (continued)

5. Select the 2.x branch (Figure 65)

74

https://github.com/VOLTTRON/volttron.git

Clone Git Repository + X
Branch Selection L
GIT k A
Select branches to clone from remote repository. Remote tracking -
branches will be created to track updates for these branches in the -
i Branches of https://github.com/VOLTTRON/volttron:
[type filter text C.l]
Ces 1x
"] &5 master
[&4 vtests
t
n
j | Select Al || Deselect Al &
I
-
® < Back “ Next > l I Cancel ‘ | Finish |

Figure 65: Checking Out VOLTTRON with Eclipse from GitHub (continued)

6. Select a location to save the local repository (Figure 66)

Import Projects from Git + X

Local Destination

: Gl
Configure the local storage location for volttron. ﬁ;EI‘

Destination

Directory: [momefvolttronr\rnlttmd || Browse

Initial branch: 2.x v |
["] Clone submodules

Configuration

Remote name: [origin

@ | < Back [Next > | Cancel Finish

Figure 66: Checking Out VOLTTRON with Eclipse from GitHub (continued)

7. Select Import as general project, select Next, then select Finish (Figure 67), the project will now
be imported into the workspace

75

Import Projects from Git + X

Select a wizard to use for importing projects

Depending on the wizard, you may select a directory to determine ‘m
the wizard's scope -

Wizard for project import
Import existing projects
Use the New Project wizard

© Import as general project

ir' & Working D

.git
> Agents

env

lib

&
»

»

» (= contrib
»

»

» (= volttron
»

> volttron.egg-info
|| .gitignore

"?, < Back Next > Cancel

Figure 67: Checking Out VOLTTRON with Eclipse from GitHub (continued)

The project must now be built outside Eclipse. Please follow the directions in Section 2.6. After changing
the file system outside Eclipse, right-click on the project name and select Refresh.

4.3.4 Configuring Eclipse
PyDev must now be configured to use the Python interpreter packaged with VOLTTRON:
o Select Window-> Preferences
e Expand PyDev
o Select Interpreter-Python
e Hit New

e Use Python as the Interpreter Name, and hit Browse. In the bin directory for the VOLTTRON
project, select the file named Python, Then hit OK (Figure 68)

76

Preferences + X
type filter text €| Python Interpreters G ow v ow
¥ Ganeral Python interpreters (e.g.: python.exe). Double-click to rename.

b Ant : —y
Name Location
} Code Recommender: " T || l New... i
b Help [Quick Auto-Config |
» Install/Update
b Java i [Advanced Auto-i:onﬁg|
» Maven ect |
¥ Mylyn Enter the name and executable of your interpreter
~ PyDev
Builders Interpreter Name: IFythun]
» Editor = - = ;
. Interpreter Executable: Iﬂwme.’voittron.fvolttron."enwbmfpython H Browse... |
» Interactive Consol i
* Interpreters
IronPython Inte(
Jython Interpret
el || ok
Logging
= —— fI7 "Remove [T
@ | Cancel || oK
Figure 68: Configuring PyDev
e Select All, then select OK (Figure 69)
f Selection needed + X |

Select the folders to be added to the SYSTEM pythonpath!
IMPORTANT: The folders for your PROJECTS should NOT be added here, but in your project configuration.

Check:http://fpydev.org/manual_101_interpreter.html for more details.

% % /home/volttron/volttronjenv/local lib/python2.7/site-packages/BACpypes-0.10.3-py2.7.egg
= /home/volttron/volttron/lib/jsonrpc

@ = /home/volttron/volttron/lib/clock

= /home/volttron/volttron

= /homejvolttron/volttronfenv/lib/python2.7/site-packages/BACpypes-0.10.3-py2.7.egg

= /home/volttron/volttron/env/lib/python2.7

= /home/volttron/volttronjenv/lib/python2.7/lib-dynload
= /usrflib/python2.7

= Jusr/lib/python2.7/plat-x86_64-linux-gnu

= Jusrflib/python2.7/lib-tk

iSelect All not in Workspace | Select All ‘ I Deselect All]

® | Cancel J [oK]

Figure 69: Configuring PyDev (Continued)

o In the Project/PackageExplorer view on the left, right-click on the project, PyDev-> Set as PyDev
Project (Figure 71)

77

Java - Eclipse
file Edit Source Refactor Navigate Search Project Run Window Help

Wil eQ Q2B G P

13 Package Explorer 12

576 volttron

fl il

“Ivolttron 2.3

New
Go frto
Open in Hew Window
Show In
Copy

(& Copy Qualified Name
Paste

X Delete

Build Path

Refacior

{ mpost...
L4 Expgrt
&' Refresh
Cloge Project
Assign Working Sets...
yalidate
Debug As
Run As
Team
Compgre With
Replace With
Restore from Local History.,
wolttron

&ava)

W Femove error markers

| Configure
Source

Properties

Figure 70: Setting as PyDev Project

Switch to the PyDev perspective (Figure 71).

e Window -> Open Perspective -> PyDev or Window -> Open Perspective -> Other -> PyDev

= <. Organize Imports ...
Source format python files
Remave * pyc, * pyo and *Spyclass Files
B Set as Source Folder (add to PYTHONPATH)
[E1 set as iango Project
— & Set as PyDev Project =

Open Perspective

Bz cvs Repository Exploring
% Debug

ai) GIt

?,Jjava

) Java Browsing

24 Java Type Hierarchy

@ Planning

<J= Plug-in Development

s

[Resource (default)

&Y Team Synchronizing

[Cancel H

QK

Figure 71: Setting PyDev Perspective in Eclipse

Eclipse should now be configured to use the project's environment.

4.3.5 Running the VOLTTRON Platform and Agents

Now VOLTTRON and agents within VOLTTRON can be run within Eclipse. This section will describe

the process to run VOLTTRON and an agent within Eclipse.

78

4.3.5.1 Setup a Run Configuration for the Platform
The following steps will describe the process for running VOLTTRON within Eclispe:

1. Inthe PyDev Package Explorer view, open expand the env/bin folder and right click the
VOLTTRON file -> select Run As -> Run Configurations...

2. Select the Main tab (Figure 72), in the Name field and enter a name (any name can be chosen, we
have chosen VOLTTRON). Also, ensure that the Main Module field contains the same text as

Figure 72.
Run Configurations + X
Create, manage, and run configurations g
e Name: [VOLTTRON]
q] @ Main b= Argumentﬂ @ Interpreter| . Refresh| [Environment| >3 T
1 Project
@’ IronPython Run :
& IronPython unittest [voEttron 1 | Browse... ‘
] Java Applet Main Module
3 Java Application - . 1
[IS{workspace_!oc‘volttron;‘enw‘bmfvolttron} J | Browse... ‘
Ju JUnit —
&7 Jython run PYTHONPATH that will be used in the run:
,sujython unittest .fopt.leclipse;‘plug‘ms.lorg.python.pydev_3.8.0.201409251235;‘pysrc.lpydev_siten|'
m2 Maven Build Jhomejvolttronfvaolttronfenv/local/libjpython2.7/site-packages/BACpypes-0.1C)
B pypev Django fhomepvolttronfvolttron/libfjsonrpc
43 PyDev Google App Run fhomejvolttron/volttron/lib/clock
+ & Python Run Jhomejvolttron/fvolttron L
& New_configuration fhomejvolttron/volttron/env/lib/python2.7/site-packages/BACpypes-0.10.3-py
tron volttron fhomejvalttronjvolttronfenv/lib/python2.7
& Python unittest fhomefvolttronfvolttron/envilib/python2.7/lib-dynload
Juy Task Context Test :
Appl Revert
Filter matched 15 of 15 items | PRy I I
@ ‘ Close | ‘ Run J

Figure 72: Running VOLTTRON Platform, Setting Up a Run Configuration

3. Select the Arguments tab (Figure 73), and select Default under the Working directory heading ->
select Run at the bottom right corner of the window (Figure 73)

79

Run Configurations + X

Create, manage, and run configurations P

X =%~ Name: | VOLTTRON

| €| | & Main|= Arguments . Interpreter .~ Refresh ™
@' IronPython Run Program arguments: .
&’ IronPython unittest
B Java Applet
71 Java Application

Ju Junit
& Jython run VM arguments (for python.exe or java.exe):

Variables...

& jython unittest

m2 Maven Build

€l pyDev Django Variables...
£3 PyDev Google App Run '

& Python R Working directory:
@ Python Run

4

© Default: oject_loc:/selected project na
@ New_configuration = ${proj€ct. Jocyselected projectrisme)
Q’ —— Other:
2 Python unittest
Juy Task Context Test
Filter matched 15 of 15 items
7 Close Run

Figure 73: Running VOLTTRON Platform, Setting Up a Run Configuration (Continued)

4. If the run is successful, the console should appear similar to Figure 74. If the run does not succeed
(red text describing why the run failed will populate the console), click the all stop icon (two red
boxes overlaid) on the console and then retry.

| 2 console 2 = sm| kBBl ze-0-00

L | /homejvolttronjvolttron/env/binjvolttron

Figure 74: Running VOLTTRON Platform, Console View on Successful Run

4.3.5.2 Configure a Run Configuration for the Listener Agent
The following steps will describe the process for configuring an agent within Eclispe:

1. Inthe PyDev Package Explorer view, open Agents -> ListenerAgent -> listener

2. Right-click on agent.py and select Run As -> Python Run (this will create a run configuration but
fail)

3. Right-click on agent.py and select Run As -> Run Configurations

4. Click on the Argument tab

80

5. Change Working directory to Default

6. Inthe Environment tab, select New -> add the following environment variables (bulleted list
below), as shown in Figure 75:

e AGENT_CONFIG = /home/<USER>/volttron/Agents/ListenerAgent/config
o AGENT_PUB_ADDR = ipc:///home/<USER>/.volttron/run/publish
e AGENT_SUB_ADDR = ipc:///home/<USER>/.volttron/run/subscribe

AGENT_CONFIG is the absolute path the agent’s configuration file. AGENT_PUB_ADDR and
AGENT_SUB_ADDR inform the platform where to publish and subscribe to messages. The
AGENT_CONFIG variable will be unique for each agent and/or desired configuration. The
AGENT_PUB_ADDR and AGENT_SUB_ADDR will be the same for all agents running within a single
instance of VOLTTRON.

I
Create, manage, and run configurations Git
| @ pet

ENEER H > Name: [vulttrur\ agent.py]

|| [@ Main fm= Arguments fP Interpreter (;5"» Refresh | @ Environment ™[] gommun]
Environment variables to set:

& Eclipse Application

@ IronPython Run Variable Value | New... |

@ IronPythen unittest New Environment Varlable + X Select...
[Java Applet

[T Java Application
Ju Junit Value: [J‘hcmeNo\ttrcanithgentsIListene | Variables...
Ji Junit Plug-in Test

a7 Jython run

& Jython unittest

% 05Gi Framework

m PyDev Django

43, PyDev Google App Run
a - ep Python Run

E B

Name: | AGENT_CONFIG

Cancel I OK |

| volttron: tpy |
f @ volttron volttron
| @’ Python unittest
1 Apply Revert
€ | Filter matched 16 of 16 item ! 1 J
if ® | Close || Run |

Figure 75: Running the Listener Agent, Setting Up a Run Configuration

7. Click Run, this launches the agent (Figure 76)

81

] Run Configurations + X
Create, manage, and run configurations
&= %08 3%~ || Name: [vo\ttrun agent.py]
| & Main rN: Arguments frg Interpreter r.;;% Refresh | B Environment . [gnmmnn]

= Eclipse Application Environment variables to set:
3 & IronPython Run Variable E\l’a\ue New...

& IronPython unittest @ AGENT_CONFIG /home/volttron/git/Agents/ListenerAge|| o
g 1 java Applet @ AGENT_PUB_ADDR ; ipc:fj/home/volttron/.volttron/run/publiq |)
v 51 java Application @ AGENT_SUB_ADDR ipc://fhomefvolttron/.volttron/run/subsc| E
g Ju Junit Remove
| Jii JUnit Plug-in Test
i &7 Jython run
f & Jython unittest
| % 05Gi Framework
8 ﬂ PyDev Django
i £5 PyDev Google App Run
5 w & Python Run
5 |\ pomErrnenn || © Append environment to native environment
it & volttron volttron _) Replace native environment with specified environment
| & Python unittest
El
€ | Filter matched 16 of 16 item 'Ap—wl 'ﬂ'
il @ Close || Run
I

Figure“fE: Configuring the Listener Agent, Setting Up a Run Configuration (am_tinued)
You should see the agent start to publish and receive its own heartbeat message (Figure 77).

L ;IR = B

eragent/listener/agent.py”, " lineno":93, "msg" : "hello", "levelname" : "INFO"}
:nerAgent/listener/agent.py"”, "lineno": 105, "msg":"Topic: heartbeat/listeneragent, Headers: Headers({'Date": "2014-02-1]
mnerAgent/Llistener/agent.py”, "lineno": 105, "msg":"Topic: heartbeat/example_agent, Headers: Headers({'Date’': '2014-82-1I

Figure 77: Listener Agent Output on Eclipse Console

The process for running other agents in Eclipse is identical to that of the Listener agent. There are many
useful development tools available within Eclipse and PyDev that make development, debugging, and
testing of agents much simpler.

4.3.6 Agent Creation Walkthrough

It is recommended that developers look at the Listener agent before developing their own agent. The
Listener agent illustrates the basic functionality of an agent. The following example will demonstrate the
steps for creating an agent.

4.3.6.1 Agent Folder Setup
Creating a folder within the workspace will help consolidate the code your agent will utilize.

1. Inthe Agents directory, create a new folder TestAgent
2. In TestAgent, create a new folder tester; this is the package where the Python code will be created
(Figure 78)

*| [SMD5PushAgent
- [= TestAgent

L=
+ [WeatherAgent

Figure 78: Creating an Agent Test Folder

82

4.3.6.2 Create Agent Code
The following steps describe the necessary agent files and modules.

o Intester, create a file called "__init__.py", which tells Python to treat this folder as a package
* In the tester package folder, create the file agent.py
e Create a class called TestAgent

e Import the packages and classes needed:

import sys

from volttron.platform.agent import BaseAgent, PublishMixin, periodic
from volttron.platform.agent import utils, matching

from volttron.platform.messaging import headers as headers_mod

This agent will inherit features from the BaseAgent extending the agent’s default functionality. To enable
an agent to publish on the message bus PublishMixin should be used as the first class definition. The class
definition for the TestAgent will be configured as shown below.

class TestAgent(PublishMixin, BaseAgent):

The BaseAgent has several methods that could be overwritten for application-specific actions (init, setup,
etc.). For purposes of this demonstration, use default behavior.

4.3.6.3 Setting up a Subscription

We will set our agent up to listen to heartbeat messages (published by Listener agent). Using the matching
package, we declare we want to match all topics that start with "heartbeat/listeneragent™. This will give us
all heartbeat messages from all Listener agents but no others.

@matching.match_start("heartbeat/listeneragent™)
def on_heartbeat topic(self, topic, headers, message, match):
print("TestAgent got\nTopic: {topic}, {headers}, *
“Message: {message}”).Fformat(topic=topic,
headers=headers,
message=message)

4.3.6.4 Argument Parsing and Main Method

The test agent will need to be able to parse arguments being passed on the command line by the agent
launcher. Use the utils.default_main method to handle argument parsing and other default behavior.

1. Create a main method that can be called by the launcher:

def main(argv=sys.argv):

try:
utils.default_main(TestAgent,
description="Test Agent”,
argv=argv)
except Exception as e:
print e
_log.exception(“unhandled exception®)

83

if _name__ == "_ main__ ":
Entry point for script
try:
sys.exit(main())
except KeyboardInterrupt:
pass

4.3.6.5 Create Support Files for Test Agent

VOLTTRON agents need configuration files for packaging, configuration, and launching. The “setup.py”
file details the naming and Python package information. The launch configuration file is a JSON
formatted text file used by the platform to launch instances of the agent.

4.3.6.6 Packaging Configuration

In the TestAgent folder, create a file called "setup.py"” (or copy the setup.py in Listener agent). This file
sets up the name, version, required packages, method to execute, etc. for the agent. The packaging process
will also use this information to name the resulting file.

from setuptools import setup, find_packages

#get environ for agent name/identifier
packages = find_packages(".")
package = packages|[O]

setup(
name = package + "agent”,
version = "0.1",

install_requires = [“volttron™],
packages = packages,
entry_points = {
"setuptools.installation®: [
"eggsecutable = * + package +
1

-agent:main-,

4.3.6.7 Launch Configuration
In TestAgent, create a file called "testagent.launch.json". This is the file the platform will use to launch
the agent. It can also contain configuration information for the agent.

{
"agentid": "Testl",
"message'': "hello"

}
4.3.6.8 Testing the Agent
From a terminal, enter the following commands

1. Package the agent:
volttron-pkg package Agents/TestAgent

2. Set the configuration file:

volttron-pkg configure /tmp/volttron_wheels/testeragent-0.1-py2-none-any.whl
Agents/TestAgent/config

84

3. Install agent into platform (with the platform running):
volttron-ctl install /tmp/volttron_wheels/testeragent-0.1-py2-none-any.whl

4. Start the agent:
volttron-ctl start --name testeragent-0.1

5. Verify that agent is running (Figure 79):
volttron-ctl status
tail volttron.log

2014-82-11 13:21:57,462 (testagent.launch.json 7832) <stdout> INFO: TestAgent go
t
2014-82-11 13:21:57,477 (testagent.launch.json 7832) <stdout> INFO: Topic: heart

beat/listeneragent, Headers({'Date': '2014-02-11 21:21:57.446651Z', 'AgentID': '
listenerl', 'Content-Type': 'text/plain'}), Message: ['2814-02-11 21:21:57.446685
1Z7']

Figure 79: TestAgent Output in “volttron.log”

4.3.6.9 Reloading the Agent
If changes are made to the agent’s code or configuration file after the agent is launched, it is necessary to
stop and reload the agent. In a terminal, enter the following commands:

1. Activate VOLTTRON if it is not already activated:
. env/bin/activate
Note there is a space between the “.” and “env.”

1. Stop the agent:
volttron-ctl stop --name testeragent-0.1

2. Remove the agent:
volttron-ctl remove --name testeragent-0.1

3. Package the agent:
volttron-pkg package Agents/TestAgent

4. Set the configuration file:
volttron-pkg configure /tmp/volttron_wheels/testeragent-0.1-py2-none-any.whl
Agents/TestAgent/config

5. Install agent into platform (with the platform running):
volttron-ctl install /tmp/volttron_wheels/testeragent-0.1-py2-none-any.whl

6. Start the agent:
volttron-ctl start --name testeragent-0.1

4.3.6.10 Running the TestAgent in Eclipse
If you are working in Eclipse, create a run configuration for the TestAgent based on the Listener agent
configuration in the Eclipse development environment (Section 4.3.5).

e Launch the platform (Section 4.3.5.1)

85

e Launch the TestAgent:
o (follow steps outlined in Section 4.3.5.2 for launching the Listener agent)
e Launch the Listener agent
e TestAgent should start receiving the heartbeats from Listener agent and the following should be
displayed in the console (Figure 80)

3 Search | Bl Console &8 [3) Mercurial Repositories =

ipc:/fitmp/volttron-ite-agent-subscribe
Topic: heartbeat/listeneragent, Headers({u'Date': u'2014-02-14 €0:22:00.067964Z', u'AgentID': u'listenerl’, u'Content-Type': u'text
TestAgent got

Topic: heartbeat/listeneragent, Headers({u'Date': u'2014-02-14 ©0:22:05.069664Z', u'AgentID': u'listenerl’, u'Content-Type': u'text
TestAgent got

Topic: heartbeat/listeneragent, Headers({u'Date': u'2014-02-14 €0:22:10.067992Z', u'AgentID': u'listenerl’, u'Content-Type': u'text
TestAgent got

Figure 80: Console Output for TestAgent

4.3.7 Adding Additional Features to the TestAgent
Additional code can be added to the TestAgent to utilize additional services in the platform. The
following sections will show how to use the weather and device scheduling service within the TestAgent.

4.3.7.1 Subscribing to Weather Data

This agent can be modified to listen to weather data from the Weather agent by adding the following
method. This will subscribe the agent to the temperature topic. For the full list of topics available, please
see: https://github.com/VVOLTTRON/volttron/wiki/\Weather AgentTopics

@matching.match_exact("weather/temperature/temp)
def on_weather(self, topic, headers, message, match):
print (('TestAgent got weather\nTopic: {topic}, {headers}, “
“Message: {message}').format(topic=topic,
headers=headers,
message=message))

The platform log file should appear similar to Figure 81.

1% JAA 1A2Z8
2014-082-13 17:85:29,686 (testagent.launch.json 28188) <stdout> INFO: TestAgent g
ot weather

2014-82-13 17:05:29,703 (testagent.launch.json 28188) <stdout> INFO: Topic: weat
her/temperature/temp f, Headers({u'Content-Type': u'text/plain’, u'From': u'Weat
herl'}), Message: ['53.2']

Figure 81: TestAgent Output when Subscribing to Weather Topic

4.3.7.2 Utilizing the Scheduler Agent

The TestAgent can be modified to publish a schedule to the Actuator agent by reserving time on fake
devices. Modify the following code to include current time ranges and include a call to the publish
schedule method in setup. The following example will post a simple schedule. For more detailed
information on device scheduling, please

see: https://github.com/VVOLTTRON/volttron/wiki/ActuatorAgent

Ensure the Actuator agent is running as per Section 2.11. Then, import the messaging package so the
TestAgent can use the topics for the scheduler:

from volttron.platform.messaging import topics
Then, create __init__ and setup methods so it can pull the agent id from its config file. These methods

will override the BaseAgent methods, so one should call them with “super” so the default actions still
happen. Then call the publish_schedule command, which is detailed later.

86

https://github.com/VOLTTRON/volttron/wiki/WeatherAgentTopics
https://github.com/VOLTTRON/volttron/wiki/ActuatorAgent

def __init_ (self, config_path, **kwargs):
super(TestAgent, self). init__(**kwargs)
self._config = utils.load_config(config_path)

def setup(self):
self. _agent_id = self.config[agentid”]
#Always call the base class setup()
super(TestAgent, self)._setup()
self._publish_schedule()

This calls the following method, which pushes a schedule request message to the Actuator agent (Update
the schedule with appropriate times):

def publish_schedule(self):
headers =
{

“AgentlD": self._agent id,
"type": "NEW_SCHEDULE",
"requesterlID”: self._agent_id, #Name of requesting agent
“tasklID": self._agent_id + "-TASK", #Unigue task ID
"priority”: "LOW", #Task Priority (high, low, low preempt

¥

msg = [

[‘campus/building/devicel™, #First time slot.
'"2014-1-31 12:27:00", #Start of time slot.
""2014-1-31 12:29:00"], #End of time slot.

[‘campus/building/devicel™, #Second time slot.
""2014-1-31 12:26:00", #Start of time slot.
""2014-1-31 12:30:00"], #End of time slot.
[‘campus/building/device2™, #Third time slot.
""2014-1-31 12:30:00", #Start of time slot.
"2014-1-31 12:32:00"], #End of time slot.

#Hetc. . .

1
self_publish_json(topics.ACTUATOR_SCHEDULE_ REQUEST,
headers,
msg)

The agent can listen to the results of its request and get schedule announcements on the following topic:

@matching.match_start(topics.ACTUATOR_SCHEDULE_RESULT)
def on_schedule_result(self, topic, headers, message, match):
print ((""TestAgent schedule result \nTopic: {topic}, "
"{headers}, Message: {message}'")
-format(topic=topic, headers=headers, message=message))

4.3.7.3 Full TestAgent Code
The following is the full TestAgent code built in the previous steps:

import sys

from volttron.platform.agent import BaseAgent, PublishMixin
from volttron.platform.agent import utils, matching

from volttron.platform.messaging import headers as headers_mod
from volttron.platform.messaging import topics

class TestAgent(PublishMixin, BaseAgent):

87

def __init_ (self, config_path, **kwargs):
super(TestAgent, self). init_ (**kwargs)
self._config = utils.load_config(config_path)

def setup(self):
self. _agent _id = self.config["agentid™]
Always call the base class setup()
super(TestAgent, self).setup()
self_publish_schedule()

@matching.match_start("heartbeat/listeneragent™)
def on_heartbeat topic(self, topic, headers, message, match):
print("TestAgent got\nTopic: {topic}, {headers}, *
“"Message: {message}”).Fformat(topic=topic,
headers=headers,
message=message)

@matching.match_exact(“weather/temperature/temp)
def on_weather(self, topic, headers, message, match):
print ((""TestAgent got weather\nTopic: {topic}, {headers}, “
“Message: {message}'").format(topic=topic,
headers=headers,
message=message))

@matching.match_start(topics.ACTUATOR_SCHEDULE_RESULT)
def on_schedule_result(self, topic, headers, message, match):
print (("TestAgent schedule result \nTopic: {topic}, "
"{headers}, Message: {message}'").format(topic=topic,
headers=headers,
message=message))

def publish_schedule(self):

headers =
{

"AgentlD": self. _agent id,

"type": "NEW_SCHEDULE",

"requesterlID”: self._agent_id, #Requesting agent
“tasklID": self._agent_id + "-TASK", #Unigue task ID
"priority”": "LOW", #Task priority

}

msg = [

[‘campus/building/devicel™, #First time slot.
"2014-2-11 16:27:00", #Start of time slot.
"2014-2-11 16:29:00"], #End of time slot.

[‘campus/building/devicel™, #Second time slot.
"2014-2-11 16:36:00", #Start of time slot.
"2014-2-11 16:39:00"], #End of time slot.

[‘campus/building/device2”™, #Third time slot.
"2014-2-11 16:30:00", #Start of time slot.
""2014-2-11 16:32:00"] #End of time slot.

#etc. ..

1
self._publish_json(topics.ACTUATOR_SCHEDULE_ REQUEST, headers,
msg)

def main(argv=sys.argv):

88

"""Main method called by the eggsecutable."""

utils.default_main(TestAgent,
description="Test Agent”,

argv=argv)

if npname_ == " main_ ":
Entry point for script
try:

sys.exit(main())
except KeyboardInterrupt:
pass

89

5 New VOLTTRON Features (AKA VOLTTRON Restricted)

VOLTTRON Restricted adds a broader security layer on top of the VOLTTRON platform. If you are
interested in this package, please contact the VOLTTRON team at volttron@pnnl.gov.

e NOTE: Once the package is installed, all aspects of the package will be enforced. To override
VOLTTRON Restricted and disable the package, see Section 5.2.4.

The VOLTTRON Restricted package contains the following security enhancements:

The creation and use of platform-specific Certificate Authority (CA) certificates.

Multi-level signing of agent packages.

Multi-level verification of signed packages during agent execution.

Command line and agent-based mobility.

Allows developer to customize an execution contract for required resources on the current and
move requested platform.

The following features are enabled by the OLTTRON Restricted package:

e Signing and verification of agent packages
e Resource monitor
e Example "Ping Pong" agent

5.1 Installation of VOLTTRON Restricted

The VOLTTRON Restricted software requires the installation of SWIG. SWIG is a software development
tool that connects programs written in C and C++ with a variety of high-level programming languages. To
install the VOLTTRON Restricted software, enter the following command from in a terminal from the
volttron directory:

o Install additional VOLTTRON Restricted dependency:
sudo apt-get install swig

e Activate VOLTTRON platform:
. env/bin/activate (note the space after the period)

e Install VOLTTRON Restricted:
pip install -e <path to volttron restricted>

5.2 Enabling and Configuring VOLTTRON Restricted Software

The creation of a signed agent package requires four certificates. The developer (creator) certificate is
used to sign the agent code and allows the platform to verify that the agent code has not been modified
since being distributed. The admin (soi) certificate is used for allowing the agent into a scope of
influence. The initiator certificate is used when the agent is ready to be deployed into a specific platform.
The platform certificate is used to sign the possibly modified data that an agent would like to carry with it
during moving from platform to platform. All of these certificates must be signed by a "known"
Certificate Authority (CA). Figure 82 shows the structure of the agent signing feature:

90

mailto:volttron@pnnl.gov
https://github.com/VOLTTRON/volttron/wiki/Agent-Signing
https://github.com/VOLTTRON/volttron/wiki/Resource%20Monitor
https://github.com/VOLTTRON/volttron/wiki/Ping-Pong-Agent

Creator-signed hash
Agent of code
code

Creator
Creator 1D

S01 Administrator-
signed hash of
Creator items

S0I Administrator 1D

S0l Administrator

Initiator-signed hash
Execution Immutable of all previous items
Contract Luggage

Initiator
Initiator 1D

Source-signed hash
Mutable of all previous items

Source Luggage

Source 1D

Figure 82: Structure for the Agent Signing Security Feature in VOLTTRON Restricted

To facilitate the development of agents, VOLTTRON Restricted includes packaging commands
for creating the platform CA as well as the CA signed certificates for use in the agent signing
process.

When the VOLTTRON Restricted package is installed on a platform, the volttron-pkg command
will be expanded to

usage: volttron-pkg [-h] [-] FILE] [-L FILE] [-q] [-V] [--verboseness LEVEL]
{package,repackage,configure,create_ca,create_cert,sign,verify}

The additional sub-commands:

e create_ca— Creates a platform specific root CA. When this command is executed, the
user will be required to respond to prompts in order to fill out the certificate's data.

o create_cert — Allows the creation of a CA signed certificate. A type of certificate must
be specified as (--creator | --soi | --initiator | --platform) and the name(--name) of the
certificate may be specified. The name will be used as the filename for the certificate on
the platform.

e sign — Signs the agent package at the specified level.

o Agent package to be signed (ALWAYS REQUIRED).

o Signing level must be specified as one of (--creator | --soi | --initiator | --platform)
and must be presented in the correct order. In other words, an soi cannot sign the
package until the creator has signed it (ALWAYS REQUIRED).

91

o --contract — (resource contract) a file containing the definition of the necessary
agent resources needed to execute properly. This option is only available to the
creator.

o --config-file — a file used to define custom configuration for the starting of agent
on the platform. This option is available to the initiator.

o --certs_dir — allows the specification of where the certificate store is located. If
this is not specified, the default certificate store will be used.

« verify —allows the user to verify a package is valid.
o package - The agent package to validate against.

5.2.1 Creating Required Security Certificates
The following steps describe how to create the required security certificates to run the VOITTRON
Restricted code. From a terminal, in the VOLTTON directory, enter the following commands:

1. Activate the VOLTTRON platform:
. env/bin/activate (note the space after the period)

2. Create the root security certificate:
volttron-pkg create_ca
o0 Enter information when prompted: Country (default=US), State (default=Washington),
Location (default=Richland), Organization (default=PNNL), Organizational Unit
(default=Volttron Team), Common Name (default=hostname volttron-ca)

3. Create creator security certificates:
volttron-pkg create_cert --creator
0 Enter information when prompted: Country (default=US), State (default=Washington),
Location (default=Richland), Organization (default=PNNL), Organizational Unit
(default=Volttron Team), Common Name (default=creator)

4. Create the initiator security certificates:
volttron-pkg create_cert --initiator
o Enter information when prompted: Country (default=US), State (default=Washington),
Location (default=Richland), Organization (default=PNNL), Organizational Unit
(default=Volttron Team), Common Name (default=initiator)

5. Create the soi security certificates:
volttron-pkg create_cert --soi
0 Enter information when prompted: Country (default=US), State (default=Washington),
Location (default=Richland), Organization (default=PNNL), Organizational Unit
(default=Volttron Team), Common Name (default=soi)

6. Create the platform security certificates:
volttron-pkg create_cert --platform
0 Enter information when prompted: Country (default=US), State (default=Washington),
Location (default=Richland), Organization (default=PNNL), Organizational Unit
(default=Volttron Team), Common Name (default=platform)

92

5.2.2 Enabling Agent Mobility Feature
To create the required keys to (minimum requirement to run VOLTTRON with Restricted module
installed) enter the following commands in a command terminal:
1. Create ssh directory in VOLTTRON_HOME (see Section 2.7 for platform configuration details):
mkdir -p ~/.volttron/ssh

2. Generate ssh key and add to id_rsa file:
ssh-keygen -t rsa -N ** -f ~/.volttron/ssh/id_rsa

3. Create empty file for authorized keys and know hosts:
touch ~/.volttron/ssh/{authorized_keys,known_hosts}
Then, for each host you wish to authorize, its public key must be added to the authorized_keys file on the
host to which it needs to connect. The public key has a .pub extension. The added hosts must have
VOLTTRON instances installed, with the Restricted code installed and enabled:

4. Copy host information securely:
scp otherhost.example.com:~/.volttron/ssh/id_rsa.pub ./otherhost.pub

5. Append host key(s) to authorized_keys file in $VOLTTRON_HOME/ssh:
cat otherhost.pub >> ~/.volttron/ssh/authorized_keys

5.2.3 Enabling Resource Monitoring
The following steps will enable resource monitoring feature within the VOLTTRON Restricted software.
From a terminal, in the volttron directory, enter the following commands:

1. Run cgroup setup script:
sudo volttron/scripts/cgroup_setup.sh

2. Create cgroups:
sudo env/bin/volttron-ctl create-cgroups -u $USER

5.2.4 Configuring Resource Monitoring

The VOLTTRON Restricted module provides additional protection against an agent consuming too many
resources to the point of the host system becoming unresponsive or unstable. The resource monitor uses
Linux control groups (or cgroups) to limit the CPU cycles and memory an individual agent may consume,
preventing its possible overconsumption from adversely affecting other agents and services on the system.
When a request is made to move an agent to a new platform, part of the validation of the agent includes
checking its execution requirements against resources currently available on the system. If the resources
are available and the agent has passed all other validation, the agent will be executed and retain those
resource guarantees throughout its lifetime on that platform. If the agent, however, requests memory or
CPU cycles that are not available, its move request is denied (move refers to the use of the agent mobility
feature, See section 5.2.2. For agent mobility use-case documentation and an example agent that utilizes
the mobility feature, visit the VOLTTRON Wiki at https://github.com/VOLTTRON/volttron/wiki/Ping-
Pong-Agent) and it will not execute on the requested platform.

Once an agent has been assigned resources, it is the responsibility of that agent to manage use of its
resources. While an agent may exceed its resource guarantees when system utilization is low, when
resources given to other agents are required, an agent exceeding the use in its contract may be terminated.

5.2.4.1 Execution Requirements

The execution requirements are specified as a JSON formatted document embedded in the agent during
initial provisioning and takes the following form:

{

93

https://github.com/VOLTTRON/volttron/wiki/Volttron-Restricted
https://github.com/VOLTTRON/volttron/wiki/Ping-Pong-Agent
https://github.com/VOLTTRON/volttron/wiki/Ping-Pong-Agent

"requirements': {
""cpu.bogomips': 100,
"memory.soft_limit_in_bytes": 2000000
}
}

The contract must contain the requirements object, specifying the soft requirements, and might
optionally specify a hard_requirements object.

5.2.4.1.1 Soft Requirements

Soft requirements are considered soft on the platform because they change depending on the number of
agents and other services that are running on the system. They may also be negotiated dynamically in a
future release. A list of the current resources that may be reserved are as follows:

e cpu.bogomips - The CPU requirements of an agent indicated as either an exact integer (N >=1)
in MIPS (millions of instructions per second) or a floating-point percentage (0.0 < N < 1.0) of the
total available bogo-MIPS on a system. Bogomips is a rough calculation performed at system
boot indicating the likely number of calculations a system may perform each second.

e memory.soft_limit_in_bytes - The maximum amount of random access memory (RAM) an agent
requires to perform its tasks, measured in bytes and given as an integer. Additional resources may
be added in a future release.

5.2.4.1.2 Hard Requirements

Hard requirements are based on system attributes that are very unlikely to change except after a system
reboot. It is rare that an agent would need to set hard requirements and is usually only necessary for
architecture-specific code. Each hard requirement is tested for a match.

kernel.name - Kernel name as given by uname.

kernel.release - Kernel release as given by uname.

kernel.version - Kernel version as given by uname.

architecture - Kernel architecture as given by uname.

0s - Always 'GNU/Linux'

platform.version - Version of VOLTTRON in use.

memory.total - Total amount of memory on the system in bytes.

bogomips.total - Total of all bogomips reported for all processors on the system.

5.2.4.1.3 Signing and Launching Agents with VOLTTRON Restricted Enabled
If VOLTTRON Restricted is installed and the security features are enabled (Section 5.2.4.1.4), all agents
must be signed prior to launching them. The following steps will describe how to sign an agent and will
use the Listener agent as an example (launching the Listener agent without VOLTTRON Restricted
enabled is documented in Section 2.8 of this document). From a terminal, in the volttron directory, enter
the following commands:

1. Package the agent:

volttron-pkg package Agents/ListenerAgent

2. Sign the agent as creator (resource_contract is a text file containing the hardware and software
requirements for the agent, see Section 5.2.4):
volttron-pkg sign --creator --contract resource_contract
/tmp/volttron_wheels/listeneragent-0.1-py2-none-any.whl

3. Sign the agent as soi:

94

volttron-pkg sign --soi /tmp/volttron_wheels/listeneragent-0.1-py2-none-any.whl

4. Sign the agent as initiator:
volttron-pkg sign --initiator --config-file Agents/ListenerAgent/config
/tmp/volttron_wheels/listeneragent-0.1-py2-none-any.whl

5. Set the configuration file:
volttron-pkg configure /tmp/volttron_wheels/listeneragent-0.1-py2-none-any.whl
Agents/ListenerAgent/config

6. Install agent into platform (with the platform running):

volttron-ctl install /tmp/volttron_wheels/listeneragent-0.1-py2-none-any.whl

e Upon successful completion of this command the terminal output will inform one on the
install directory, the agent UUID (unique identifier for an agent; the UUID shown in red
is only an example and each instance of an agent will have a different UUID) and the
agent name (blue text):

» Installed /tmp/volttron_wheels/weatheragent-0.1-py2-none-any.whl
as a9d67c55-7f58-4591-80af-3c1ff8a81740listeneragent-0.1

7. Start the agent:
volttron-ctl start --name listeneragent-0.1

e Agent commands can also use the uuid as an identifier (i.e., volttron-ctl start --uuid
a9d67c¢55-7f58-4591-80af-3c1ff8a81740). This is helpful when managing multiple
instances of the same agent.

8. Verify that agent is running:
volttron-ctl status
tail volttron.log

5.2.4.1.4 Disable VOLTTRON Restricted After Installation
If one wants to disable all or specific components within the Restricted module (security, resource
monitoring, and agent mobility), simply add the following lines (or create the text file and add the lines)
to the platform configuration file in the $VOLTTRON_HOME directory (Section 2.7):
o Create or edit *~/.volttron/config’ and add any or all of the following lines:
Disable the VOLTTRON agent verification feature.
no-verify
Disable the VOLTTRON resource monitoring features.
no-resource-monitor
Disable the VOLTTRON mobility features.
no-mobility
Disable all VOLTTRON restricted features.
no-restricted

This can be very useful when developing new applications or agents. In addition, managing of
VOLTTRON Restricted features is not recommended within the Eclipse IDE, so disabling Restricted
features while developing within Eclipse is recommended. To re-enable features, delete config file or add
“#” without quotes at the beginning of the line for the feature you want to re-enable. For example, to
disable resource monitoring but re-enabling security and mobility, the config file would contain the
following:

#no-verify

95

no-resource-monitor
#no-mobility

96

	Summary
	1 Introduction
	1.1 Background
	1.2 Transactional Network Platform Overview
	1.3 VOLTTRON Overview
	1.3.1 VOLTTRON
	1.3.2 VOLTTRON Services

	2 Deployment of VOLTTRON
	2.1 Installing Linux Virtual Machine
	2.2 Running and Configuring Virtual Machine
	2.3 Installing Required Software
	2.4 Installing the sMAP Server (Optional)
	2.5 Checking Out Transactional Network from Repository
	2.6 Building the VOLTTRON Platform
	2.7 VOLTTRON Home Directory and Configuration
	2.8 Launching the Listener Agent
	2.9 Launching the Weather Agent
	2.9.1 Obtaining a Developer Key from WeatherUnderground
	2.9.2 Configuring WeatherAgent with Developer Key and Location
	2.9.3 Launching the Weather Agent

	2.10 Configuring and Launching sMAP Driver
	2.10.1 Configuring sMAP driver
	2.10.2 Launching the Driver

	2.11 Configuring and Launching the Actuator Agent
	2.11.1 Configuring the Actuator Agent
	2.11.2 Scheduling a Task
	2.11.3 Canceling a Task
	2.11.4 Actuator Error Reply
	2.11.5 Task Preemption and Schedule Failure
	2.11.5.1 Preemption Message
	2.11.5.2 Failure Reasons
	2.11.5.3 Failure Responses from Actuator Agent

	2.11.6 Actuator Agent Interaction
	2.11.6.1 Getting Values
	2.11.6.2 Setting Values
	2.11.6.3 Actuator Reply
	2.11.6.4 Common Error Types

	2.11.7 Device Schedule State Announcements
	2.11.8 Launching the Actuator Agent
	2.11.9 Tips for Working with the Actuator Agent

	2.12 Multi-Building (Multi-Node) Communication
	2.12.1 Configuration for Multi-Node Communication
	2.12.2 Using Data Published From Another VOLTTRON

	3 Sample Applications/Agents
	3.1 Automated Fault Detection and Diagnostic Agent
	3.1.1 Configuring the AFDD Agent
	3.1.2 Launching the AFDD Agent
	3.1.2.1 Launching the AFDD for CSV Data Input

	3.2 The Demand Response (DR) Agent
	3.2.1 Configuring DR Agent
	3.2.2 OpenADR (Open Automated Demand Response)
	3.2.3 DR Agent Output to sMAP
	3.2.4 Launching the Demand Response Agent

	3.3 Other VOLTTRON Applications
	3.3.1 Autonomous Control of Rooftop Units
	3.3.2 Supermarket Refrigeration Application
	3.3.3 Renewable Energy Integration Application
	3.3.4 Lighting Diagnostic Application
	3.3.5 Baseline Load Shape Application
	3.3.6 Measurement and Verification Application
	3.3.7 Smart Monitoring and Diagnostic System Application
	3.3.8 Analytical Hierarchy Process for Load Curtailment Application

	4 Agent Development in VOLTTRON
	4.1 Example Agent Walkthrough
	4.2 Explanation of Listener Agent
	4.3 Agent Development in Eclipse
	4.3.1 Installing Eclipse
	4.3.2 Installing Pydev and EGit Eclipse Plug-ins
	4.3.3 Checkout VOLTTRON Project
	4.3.3.1 Import VOLTTRON into Eclipse from an Existing Local Repository (Previously Downloaded VOLTTRON Project)
	4.3.3.2 Import New VOLTTRON Project from GitHub

	4.3.4 Configuring Eclipse
	4.3.5 Running the VOLTTRON Platform and Agents
	4.3.5.1 Setup a Run Configuration for the Platform
	4.3.5.2 Configure a Run Configuration for the Listener Agent

	4.3.6 Agent Creation Walkthrough
	4.3.6.1 Agent Folder Setup
	4.3.6.2 Create Agent Code
	4.3.6.3 Setting up a Subscription
	4.3.6.4 Argument Parsing and Main Method
	4.3.6.5 Create Support Files for Test Agent
	4.3.6.6 Packaging Configuration
	4.3.6.7 Launch Configuration
	4.3.6.8 Testing the Agent
	4.3.6.9 Reloading the Agent
	4.3.6.10 Running the TestAgent in Eclipse

	4.3.7 Adding Additional Features to the TestAgent
	4.3.7.1 Subscribing to Weather Data
	4.3.7.2 Utilizing the Scheduler Agent
	4.3.7.3 Full TestAgent Code

	5 New VOLTTRON Features (AKA VOLTTRON Restricted)
	5.1 Installation of VOLTTRON Restricted
	5.2 Enabling and Configuring VOLTTRON Restricted Software
	5.2.1 Creating Required Security Certificates
	5.2.2 Enabling Agent Mobility Feature
	5.2.3 Enabling Resource Monitoring
	5.2.4 Configuring Resource Monitoring
	5.2.4.1 Execution Requirements
	5.2.4.1.1 Soft Requirements
	5.2.4.1.2 Hard Requirements
	5.2.4.1.3 Signing and Launching Agents with VOLTTRON Restricted Enabled
	5.2.4.1.4 Disable VOLTTRON Restricted After Installation

