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Abstract 

This Final Report presents work carried out at Pacific Northwest National Laboratory (PNNL) under 
the project entitled “Validated Models for Radiation Response and Signal Generation in Scintillators” 
(Project number: PL10-Scin-theor-PD2Jf) and led by Drs. Fei Gao and Sebastien N. Kerisit. 

This project was divided into four tasks: 

1) Electronic response functions (ab initio data model) 

2) Electron-hole yield, variance, and spatial distribution 

3) Ab initio calculations of information carrier properties 

4) Transport of electron-hole pairs and scintillation efficiency 

Detailed information on the results obtained in each of the four tasks is provided in this Final Report. 
Furthermore, published peer-reviewed articles based on the work carried under this project are included in 
Appendix. 

This work was supported by the National Nuclear Security Administration, Office of Nuclear 
Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy 
(DOE). 
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Acronyms and Abbreviations 

DOE Department of Energy 
ERSP Electronic ReSPonse 
FY  Fiscal Year 
GGA Generalized Gradient Approximation 
KMC Kinetc Monte Carlo 
LDA Local-Density Approximation 
LLNL Lawrence Livermore National Laboratory 
LO Longitudinal Optical 
NWEGRIM NorthWest Electron and Gamma-Ray Interaction with Matter 
PNNL Pacific Northwest National Laboratory 
STE Self-Trapped Exciton 
STH  Self-Trapped Hole 
WFU Wake Forest University 
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1.0 Objective, Strategy, and Findings Summary 

1.1 Objective 

This project aims to develop multiphysics simulation models, validated by innovative experiments, 
which predict radiation response and signal generation in inorganic scintillators. The models will enable 
identifying the physical limits of detection response in scintillators and provie a theoretical basis to 
improve performance and accelerate discovery of new scintillators.  

1.2 Computational strategy 

We have developed and applied a suite of physics models at multiple scales to simulate the three main 
stages of the scintillation process in γ-ray detectors: initial energy cascade to produce energetic particles; 
thermalization of particles into low-energy excitations, and relaxation of excitations to produce 
scintillation light. Simulations of these individual stages are combined to produce a unified approach that 
can predict scintillator performance from knowledge of a few material parameters (Fig. 1).  

 

Fig. 1. Flow chart of computational modeling process (with names of the codes developed in this project shown in the upper left-
hand corners of each box). 

1.3 Summary of findings and achievements 

We have developed a suite of computational physics models to simulate the γ-ray and electron 
response of inorganic scintillators over a wide range of length and time scales in order to provide a 
fundamental understanding of materials performance and the origins of nonproportionality. The 
methodological and scientific developments achieved in this lifecycle were greatly facilitated by 
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collaborations with experimentalists and theoreticians who are also involved in this program’s effort to 
enhance our knowledge of scintillator physics. 

Extensive developments of our in-house code of electronic response (ERSP) allowed us to compute 
the complex dielectric function and plasmon decay spectra of alkali and alkaline-earth halides, and good 
agreement was found with experimental data when available. These data, together with our ab initio data 
model for determining interaction cross sections, enabled us to determine the stopping power, mean 
energy per electron-hole pair, maximum theoretical light yield and spatial distribution of individual 
electron-hole pairs of a number of scintillator materials (NaI, CsI, BaF2, CaF2, LaBr3, and SrI2) using 
NWEGRIM. 

Outputs of the NWEGRIM calculations served as input for the simulations of electron thermalization 
in alkali and alkaline-earth halides using a semi-classical phenomenological model implemented in a 
Monte Carlo code. This work provided, for the first time, a theoretical prediction of the spatial and 
temporal length scales involved in the thermalization stage of γ-ray irradiated inorganic scintillators. 

Additionally, simulations of the transport of thermalized carriers were performed with our lattice 
kinetic Monte Carlo (KMC) code, in particular for CsI. These simulations were informed, in part, by 
electronic structure calculations of carriers and defects in scintillator lattices performed in this project. 
Notably, we developed and applied a cluster-based embedded ab initio approach, which, in combination 
with solid-state density functional theory calculations, was used to calculate the migration barriers of self-
trapped holes and excitons and the driving force for capture at dopant sites. Through a collaboration with 
Prof. Williams at Wake Forest University, the KMC model was used to model the z-scan experiments 
carried out at WFU and enabled us to shed light on the mechanisms of nonlinear quenching. 

The combination of these physics models has allowed us to develop an improved understanding of the 
elementary mechanisms that underlie the nonproporational behavior of inorganic scintillators. Namely, 
three mechanisms have been identified, confirmed, and/or quantified using our computational strategy: 

1. Because of the rapid self trapping of holes and the low values of the LO phonon energies in alkali 
halides, electrons that escape the electric field of the holes during thermalization can travel long 
distances, resulting in significant charge separation. Large separation distances favor deep trapping of 
electrons over electron-hole recombination, thus reducing the scintillation efficiency. Because of the 
diminishing stopping power with increasing incident energy, this process becomes increasingly 
dominant at high incident energies and can explain the observed decreasing relative light yield of 
alkali halides at these incident energies. 

2. At the end of the energy cascade and before thermalization, the ionization track terminates with a 
radius on the order of a few nanometers. In this volume, the carrier densities are high enough to 
prevent a significant fraction of the electrons from escaping the electric field of the holes in that 
region of the track during thermalization. The resulting rapid electron-hole pair recombination leads 
to the formation of closely located STEs that can participate in second-order nonlinear quenching. 

3. At low incident energies, the increase in stopping power with decreasing incident energy leads to an 
increase in electron-hole pair density, which, following the mechanism described in 2, gives rise to 
increasing extents of nonlinear quenching through STE-STE annihilation.This phenomenon explains 
the decreasing relative light yield with decreasing incident energy observed for almost all inorganic 
scintillators.  
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2.0 Task 1: Electronic response functions (ab initio data 
model) 

2.1 Summary of progress 

A computer code (ERSP) was developed to determine the electronic loss rates of conduction electrons 
and holes from the ground state electronic structure of a given scintillator. Applications to four 
scintillators (CsI, NaI, CaF2, BaF2) are presented. 

2.2 Peer-reviewed publications 

L.W. Campbell and F. Gao Journal of Luminescence 137 (2013) 121-123 

2.3 Progress during project 

In this task, an in-house computer code (Electronic ReSPonse, ERSP) was developed to calculate the 
electronic response of scintillator materials and provide inputs to the simulations of the energy cascade. 
The approach developed under this task consists in first calculating the ground state electronic structure of 
scintillator materials using density functional theory with either the local density approximation or the 
generalized gradient approximation. The calculated ground state electronic structure is then used as input 
in ERSP to compute the complex dielectric function, which, in turn, is used to determine the rate of 
electronic losses of a conduction electron or hole in the energy range up to about 10-20 eV from the band 
edges. From these calculations, the mean free path of electrons and holes as well as the spectrum of 
secondary electrons and holes for a given energy and momentum transfer can be determined and used as 
input for NWEGRIM simulations of electron-hole yield and spatial distribution. This approach allows for 
modeling the interactions of low-energy particles within scintillator lattices and thus lower the energy 
cutoff with respect to that used in traditional radiation response codes, thereby enabling us to determine 
the microscopic structure of ionization tracks.  

This approach was applied to four halide scintillators during the course of this project, namely CsI, 
NaI, BaF2, and CaF2. For example, dielectric functions and energy loss functions of CaF2 and BaF2 are 
shown in Fig. 2. The results for CaF2 show a strong valence plasmon at 17 eV, while for BaF2 a narrow 
valence plasmon-like feature at 19.0 eV and a broad plasmon-like resonance between 26 eV and 30 eV 
are evident. The use of these data to parameterize the distributions of secondary particles in NWEGRIM 
for plasmon excitations represents an important step to eliminate possible errors caused by the empirical 
model of plasmon decay typically used. 
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Fig. 2. Dielectric function (a and c) and energy loss function (b and d) of electrons in CaF2 (top) and BaF2 (bottom). 

For CsI, the predicted electron energy loss reproduces all the peaks observed experimentally at the 
correct intensities, although our calculations are blue-shifted by about 2 eV compared to experiment. In 
addition, we predict a high-frequency index of refraction (n∞) of 1.64 compared to the measured value of 
1.74; our predicted bandgap is 5.5 eV compared to experimental measurements of 6.0 to 6.4 eV. The 
reasonably close agreement of the bandgap is particularly encouraging given that CsI is notorious for 
having a difficult to compute bandgap. Similar calculations on NaI had similar agreement with n∞ 
predicted to be 1.69 compared to a measured 1.73, and a bandgap of 6.1 eV compared to a measured 5.8 
to 5.9 eV. Collectively, these results indicate that our approach is validated against experimental data, 
when available, and thus provides a reliable set of input functions for NWEGRIM calculations. 

  

Fig. 3. Calculated and experimental electron energy loss spectra of CsI (left) and NaI (right). 
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3.0 Task 2: Electron-hole yield, variance and spatial 
distribution 

3.1 Summary of progress 

Significant improvements of our computer code for simulating energy cascades (NWEGRIM) were 
achieved under this project, including the implementation of multiple elastic scattering theory for 
calculating the spatial distribution of electron-hole pairs and the development of a new approach for 
determining the stopping power of scintillator materials. Applications to a number of halide scintillators 
are presented. 

3.2 Peer-reviewed publications 

F. Gao, Y.L. Xie, S.N. Kerisit, L.W. Campbell, and W.J. Weber Nuclear Instruments and Methods in 
Physics Research A 652 (2011) 564-567 

3.3 Progress during project 

Multiple elastic scattering theory was implemented in NWEGRIM to allow for simulating the spatial 
distribution of electron-hole pairs, in addition to the electron-hole pair yield. Cross sections for interband 
transition, plasmon excitation, and inner-shell ionization at high energies were combined with the low-
energy cross sections determined in Task 1 to provide input data sets for NWEGRIM calculations. The 
yields and spatial distributions of electron-hole pairs were calculated for a range of halide scintillators: 
CsI, NaI, CaF2, BaF2, SrI2, and LaBr3. Simulations were carried out for incident photon energies ranging 
from 50 eV to 1 MeV. Up to 105 photon events were simulated at each energy to ensure convergence of 
the results. The primary and secondary electrons were followed until their energies were less than twice 
the bandgap energy. 

 

Fig. 4. Mean energy per electron-hole pair, W, and Fano factor, F, as a function of incident photon energy for NaI (left) and CsI 
(right). 

From these simulations, the mean energy per electron-hole pair, W, and the Fano factor (variance of 
the number of electron-hole pairs produced), F, can be calculated and examples of the variation of these 
two intrinsic properties with incident photon energy are shown in Fig. 4 for NaI and CsI. Electron-hole 
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pairs are produced almost exclusively by interband transitions and plasmon excitation in NaI, whereas 
inner shell ionization, and the corresponding atomic relaxation, also produces a significant number of 
electron-hole pairs in CsI. The additional channel for electron-hole pair creation gives rise to a larger 
calculated Fano factor for CsI. Examples of the spatial distributions obtained from these simulations are 
shown in Fig. 5, again for NaI and CsI. Analysis of electron-hole pair spatial distributions revealed that 
the track radius near the track end is approximately a few nanometers for CsI and NaI, in good agreement 
with the values predicted by WFU based on the results of z-scan and K-dip experiments. 

 

Fig. 5. Calculated spatial distributions of electron-hole pairs for 10-keV photon events in NaI (left) and CsI (right), where 
electrons and holes are distinguished by size and color, as indicated in the legend. 

Other developments included the implementation of an algorithm for calculating the stopping power 
(dE/dx) and its fluctuations. The approach consists in allowing electrons of a given energy to collide once 
or twice in a thin film of the material of interest. Calculations were carried out for the halide scintillators 
listed above. Examples of variations in stopping power as a function of incident electron energy are 
shown in Fig. 6. The results can be compared to the Bethe-Bloch theory and good agreement is obtained 
in the energy range 100 eV to 100,000 eV. At higher energies, our calculations agree with the stopping 
powers calculated with the ESTAR program, provided by NIST, which uses the Bethe-Bloch equation 
with the density-effect correction of Sternheimer. Our calculations provide values of the stopping power 
at low energies, where the Bethe-Bloch theory is known to break down. This approach can provide input 
for the phenomenological and rate-theory-based models of scintillations used by other NA-22-funded 
researchers, which rely on linear energy deposition (i.e. conceptually linear ionization tracks). 

 

Fig. 6. Stopping power as a function of electron energy in BaF2 (left) and CaF2 (right). Also shown are results from the Bethe-
Bloch equation and the ESTAR program. 
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4.0 Task 3: Ab initio calculations of information carrier 
properties 

4.1 Summary of progress 

An embedded ab inito cluster approach was developed to simulate the formation and mobility of self-
trapped excitations in scintillators and applied to NaI. Periodic DFT calculations of intrinsic defects and 
dopants in CsI were also performed. 

4.2 Peer-reviewed publications 

M.P. Prange, R.M. Van Ginhoven, N. Govind, and F. Gao Physical Review B 87 (2013) 115101 

R.M. Van Ginhoven and P.A. Schultz Journal of Physics: Condensed Matter 25 (2013) 495504 

J. Bang, Z.G. Wang, F. Gao, S. Meng, and S.B. Zhang Physical Review B 87 (2013) 205206 

4.3 Progress during project 

Calculations under this task involved both conventional solid-state (periodic) DFT and embedded ab 
initio cluster (non-periodic) calculations. The latter approach was developed in this project and employs 
an array of classical charges to simulate the interior of an ionic solid in which the electronic structure of a 
smaller quantum-mechanical cluster is computed including nonlocal exchange effects. The solid-state 
DFT approach was employed to characterize the electronic and structural properties of intrinsic defects 
and Tl and Na dopant centers in CsI, while the embedded cluster approach was used to determine the 
formation, stability, and mobility of self-trapped excitations in pure and Tl-doped NaI. 

4.3.1 Intrinsic defects and Tl and 
Na dopants in CsI. 

A spectrum of intrinsic and dopant defect 
levels is shown in Fig. 7. These results are 
useful in determining the properties of defects, 
and identifying defects that may be involved 
in carrier and charge trapping in CsI. We find 
that the Tl and Na centers can accept one or 
two electrons and couple to long-range 
relaxations in the surrounding crystal lattice to 
distort strongly off-center to multiple distinct 
minima, even without a triplet excitation. The 
long-range distortions are a mechanism to 
couple to phonon modes in the crystal, and are 
expected to play an important role in the 
phonon-assisted transport of polarons in 
activated CsI and subsequent light emission in this scintillator. 

 

Fig. 7. Defects levels in CsI. LDA and GGA (PBE) are both shown, 
results are the same within errors of the techniques. 
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4.3.2 Self-trapped excitations in pure and Tl-doped NaI 

We found that on-center self-trapped holes and excitons are stable in NaI compared to delocalized 
states, but electrons do not self-trapped in our calculations even for pure HF. The calculated emission 
energy of 4.27 eV for the STE is in good agreement with the experimental value of 4.21 eV. Assuming 
the conventional picture in which self-trapped excitations migrate via the transfer of lattice distortion and 
spin density between adjacent sites, we calculated the energy barriers for hopping of the STE and STH for 
each of the four possible hop angles between iodine neighbor pairs, as shown in Fig. 8. 

 

Fig. 8. The four near-neighbor hops available to the STE or STH in NaI. 

We show the spin density for the relaxed STH and for the transition state of the 120° hop in Fig. 9. 
Calculated migrations barriers varied between 0.20 and 0.28 eV and were essentially identical for both 
STE and STH. Therefore, in contrast to what was previously assumed, our calculations show that STEs 
and STHs are equally mobile in NaI . These migration barriers can be used directly in kinetic Monte 
Carlo models of scintillation. 

 

Fig. 9. Spin density isosurfaces drawn at 0.001 electron/bohr3 around an STE (left) and the transition state for a 120° STH jump 
(right). 

Calculations of self-trapped excitations in Tl-doped NaI found two neutral triplet excitons trapped at 
Tl sites. Both triplet states were calculated to be stable compared to a (bulk) STE near a singlet Tl by 
~0.25 eV and hence diffusing STEs are expected to easily trapped when encountering Tl impurities. 
Again, this result can inform KMC models of scintillation.  
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5.0 Task 4: Transport of electron-hole pairs and scintillation 
efficiency 

5.1 Summary of progress 

A Monte Carlo model of electron thermalization was developed and applied to CsI, NaI, CaF2, and 
BaF2. Our KMC model of scintillation was also extended to allow for simulations of nonlinear quenching 
processes at high excitation densities similar to those at the track end of ionization tracks. 

5.2 Peer-reviewed publications 

Z.G. Wang, Y.L. Xie, B.D. Cannon, L.W. Campbell, F. Gao, and S.N. Kerisit Journal of Applied 
Physics 110 (2011) 064903 

Z.G. Wang, Y.L. Xie, L.W. Campbell, F. Gao, and S.N. Kerisit Journal of Applied Physics 112 
(2012) 014906 

Z.G. Wang, R.T. Williams, J.Q. Grim, F. Gao, and S.N. Kerisit Physica Status Solidi B 250 (2013) 
1532-1540 

5.3 Progress during project 

Two activities were pursued under this task: (1) the development and application of a model of 
electron thermalization in halide scintillators; and (2) the extension of our KMC model of scintillation to 
include nonlinear quenching of electron-hole pairs through dipole-dipole Förster transfer. 

5.3.1 Electron thermalization in halide scintillators 

A Monte Carlo model of electron thermalization in inorganic scintillators was developed under this 
task and was applied to pure and Tl-doped alkali iodides (CsI and NaI) and pure alkaline-earth halides 
(CaF2 and BaF2). This model is based on semi-classical phenomenological models of electron scattering 
with both optical and acoustic phonons. The electron scattering rates obtained with these models for the 
four materials of interest are shown in Fig. 10. In addition, the model includes explicit treatement of the 
effects of internal electric fields on electron trajectories. 

For all four pure materials, a large fraction of the electrons rapidly recombine with self-trapped holes. 
The distances the electrons that avoid recombination (stopped electrons) travel during thermalization 
show a distribution that peaks between approximately 25 and 50 nm and that can extend to a few 
hundreds of nanometers, as shown in Fig. 11. The time required for all the electrons to reach thermal 
energy varies from approximately 0.5 ps for CaF2 to 7 ps for CsI, as shown in Fig. 12. The LO phonon 
energy was found to be the major parameter determining the differences in thermalization time and 
distance between the four pure materials.  
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Fig. 10. Electron-phonon scattering rates as a function of electron energy. 

  

Fig. 11. Distance distributions of the (a) recombined and (b) 
stopped electrons for a 2-keV incident γ-ray.  

Fig. 12. Time distributions of the (a) recombined and (b) 
stopped electrons for a 2-keV incident γ-ray. 

The effect of doping CsI and NaI with Tl was also investigated whereby electrons can trap at Tl sites 
as they thermalize. The fraction of Tl-trapped electrons increases with increasing Tl concentration mostly 
to the detriment of stopped electrons. In addition, the fraction of Tl-trapped electrons shows an 
asymptotic behavior that refects the experimentally observed scintillation light output versus Tl 
concentration. The fraction of Tl-trapped electrons increases with increasing incident energy to the 
detriment of the fraction of recombined electrons, which is consistent with experimental observation of 
the decrease of the light component corresponding to prompt exciton capture at Tl sites. 

  

Fig. 13. Fraction of Tl-trapped electrons and recombined 
electron-hole pairs as a function of Tl concentration for an 
incident γ-ray energy of 2 keV 

Fig. 14. Fraction of Tl-trapped, stopped and recombined 
electrons as a function of incident γ-ray energy for a Tl 
concentration of 0.1 mol%. 
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5.3.2 Nonlinear quenching of electron-hole pairs (STE-STE annihilation) 

A KMC model of scintillation mechanisms developed for simulating the kinetics and efficiency of 
scintillation of γ-ray irradiated CsI was modified to extend its applicability to high excitation densities. A 
schematic of the processes considered in the model is shown in Fig. 15. Specifically, a distance-dependent 
dipole-dipole Förster transfer process (STE-STE annihilation) was added to the KMC model. This 
process is active in high-density regions of ionization tracks and is believed to be responsible for the 
nonproporationl response of scintillators at low incident energies. Recent experimental data on the 
excitation density dependence of scintillation light yields obtained under UV excitation by our 
collaborators at WFU offered an unprecedented opportunity to parameterize this process for CsI. 
Excellent agreement with the experimentally-derived second-order component was obtained within the 
framework of the existing KMC scintillation model (Fig. 16). 

  

Fig. 15. Schematic of the elementary species (black), 
elementary processes (blue), and possible final outcomes (red) 
considered in the KMC model of scintillation 

Fig. 16. Calculated light yield as a function of z-position and 
excitation density and comparison with the z-scan data and 
second-order component determined by WFU. 

Using the same set of parameters, good agreement was also obtained with the kinetics of scintillation 
of Tl-doped CsI (Fig. 17) and pure CsI (Fig. 18). In particular, good agreement was obtained for the rising 
time of the (Tl+)* emission Fig. 17 once STHs and STEs were set to be equally mobile based on the 
information obtained in Task 3. Such microscopic models of scintillation mechanisms can be used in 
combination with γ-ray induced ionization tracks calculated by NWEGRIM to investigate the 
nonproportional response of CsI and other scintillators. 

  

Fig. 17. Decay curves of the (Tl+)* emission of CsI:0.3%Tl 
calculated at two excitation densities and comparison with the 
WFU experimental results. 

Fig. 18. Decay curves of the STE emission of pure CsI 
calculated at two excitation densities and comparison with the 
WFU experimental data.  
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1. Introduction

Predicting the response of a material to the passage of charged
particle radiation is a challenging computational problem, parti-
cularly at low energies where the electronic structure cannot be
treated as an electron gas. At a basic level, the physics is well
known. We start with a high energy electron present in the
material; perhaps one liberated from a core or valence state by an
x-ray or gamma photon through photoelectric absorption or
Compton scattering, perhaps created by radioactive decay or
gamma ray induced pair production, or perhaps introduced by a
beam or external high energy physics event. As the electron
traverses the material, the Coulomb field of the charged projectile
excites further electronic excitations. This will result in a partial
transfer of the primary electron’s energy and momentum to the
excitation, resulting in the excitation of a core or valence electron
to a conduction band. The resulting conduction electron may also
be highly energetic, capable of creating additional electronic
excitations. The hole may be produced in a highly excited state,
whose atomic relaxation creates further electron–hole pairs
through the Auger process. For electrons in the lower conduction
band and valence holes, energy losses to phonons compete with
electronic processes and become dominant close to the threshold
for electronic excitation. The electronic cascade stops when no
individual electron or hole has enough energy to excite a valence
electron across the bandgap, thus preventing further electronic

processes in the cascade. The end result is that the original energy
of the initial charged particle has become distributed among a
number of hot conduction electrons and valence holes. In semi-
conductor detectors, these charge carriers are the measured
signal, creating a current pulse which is picked up with attached
electronic instrumentation. In scintillator materials, the process
leading to the signal continues—charge carriers will continue to
lose energy to phonons until they become thermalized, and then
either recombine to produce optical photons that are picked up
with photodetectors, or are trapped or recombine non-radiatively
and do not contribute to the measured signal. An accurate
understanding of the electronic cascade process will be useful
for the design of radiation detectors, the search for new detector
materials, and the interpretation of the signals of such detectors.

Available codes dealing with this subject typically look at
tracks rather than microscopic response [1,2]. While high energy
knock-off electrons are tracked, those secondary particles whose
energy is below a cutoff threshold are not explicitly followed and
their effects accounted for in an average way. In this approxima-
tion, the low energy excitations simply provide a ‘‘stopping
power’’ or continuous energy loss per unit distance by which
the primary electron travels. This involves knowing the para-
meters that give rise to the stopping power in each material, and
does not allow computational studies of such issues as the
average signal or its variance from first principles. While a
number of attempts have been made to extend the scope of the
simulation to consider each electronic excitation, such simula-
tions to date rely on electron-gas like approximations [3–5] or
free atom approximations [6,7] that lead to questionable values
when the electron energy falls low enough for band structure
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effects to significantly affect its dispersion. Since it is just this low
energy response that determines when the electron cascade will
end, it is important to include a more realistic model of the low
energy electronic behavior.

The response to a charged particle is ultimately a problem
involving the basic methods of predicting electronic excited states
and response functions, where the particle of radiation is treated
as a quasiparticle excitation in the medium. Calculations of the
electronic response have long been used to predict such quan-
tities as the dielectric function, optical absorption spectrum, and
electron energy loss spectrum (EELS) [8–12]. The rate of excita-
tions produced by a perturbing field (such as the Coulomb field of
the radiation particle) is found using the imaginary part of the
dielectric screening of the material. Summing up all such excita-
tions that are allowed by relevant conservation laws gives the
total rate at which the perturbation produces excitations, corre-
sponding to the rate at which the radiation particle scatters out of
its current state to a state of lower energy. Experimentally
measured optical absorption or electron energy loss spectra, with
assumed free-electron energy dispersion relations and plane
wave electrons propagating in the solid, have been used to
calculate inelastic mean free paths and stopping powers of
electrons in alkali halides using summations of this type [13].
When the dielectric function is calculated in the random phase
approximation (RPA) and corrected by the distribution of the
electron wave function in the material, these summations are
equivalent to finding the imaginary part of the self-energy in
Hedin’s GW approximation [14] (not an acronym, the G stands for
Green’s function operator, and W is the screened Coulomb
interaction operator). This GW approximation is widely used to
reproduce excited state quasiparticle properties, and has been
employed to calculate the electronic lifetime of hot electrons in
the metals Cu and Al [15], the imaginary self-energy [16] and
electronic response including electronic lifetime [17] of hot
electrons and holes in the semiconductor silicon, and the inelastic
mean free path and stopping power of electrons up to 10 MeV in
Au, Ag, and Cu [18]. Carrying out electron lifetime calculations in
the GW approximation with a full RPA dielectric function allows
to avoid extrapolating the zero wave vector loss function, and
thus avoid simplistic approximations of the loss function disper-
sion. In this way, realistic behavior for the prominent plasmon-
like excitations can be included while simultaneously allowing for
correct limiting behavior at high and low wave vectors.

In order to understand the scintillation process from first
principles, we chose to start with two common scintillating
radiation detector materials, sodium iodide and cesium iodide,
and investigate the screening, average lifetime of excited electron
states, and the spectrum of secondary particles produced by
plasmon excitations within the RPA and GW approximations.
The lifetime is closely related to such quantities of interest as
the mean free path, stopping power, and valence excitation cross
sections. These quantities, and the secondary particle spectra of
plasmon decay, served as input into the Monte Carlo code
NorthWest Electron and Gamma Ray Interaction in Matter (NWE-
GRIM) in order to predict the signals from beta and gamma
radiation and associated track nanostructure [4,5]. Because core-
level excitations and atomic relaxation depend almost entirely on
the element of the atom involved in the excitation [19], and
because the core level excitations and decay modes are well
tabulated [20], these processes can already be handled accurately
by standard Monte Carlo radiation transport techniques. We thus
concentrate on excitations of the valence electrons, which are
difficult to handle in a simple fashion since they are strongly
affected by the electronic structure of the material under con-
sideration. While the NWEGRIM results on NaI and CsI have
previously been reported [21,22], this is the first description of

the ab initio electronic structure calculations used in those
studies. NWEGRIM outputs a spatial distribution of conduction
electrons and holes whose energies have fallen below the thresh-
old for exciting further valence to conduction band transitions.
This distribution is passed as input to further simulations that
investigate the diffusion of the hot charge carriers until therma-
lization and trapping [22], which in turn is input into a kinetic
Monte Carlo simulation for the diffusion and ultimate recombina-
tion of the charge carriers to produce the final signal in the form
of light [23,24].

2. Theory

In this section, and elsewhere in this paper, we work exclu-
sively in atomic units (e¼ _¼me ¼ 1) unless otherwise noted. We
will cover the basic theory of electronic screening, the rate at
which electrons suffer losses while traversing the material, and
the spectrum of secondary particles produced during these losses.

2.1. Screening

In semiconductors and insulators the longitudinal dielectric
function in the limit of the Random Phase Approximation (RPA)
takes the form [25,26]

z:epsi;K,K0 ðq,oÞ

¼ dK,K0�
4p

9qþK99qþK09

Xunocc

c

Xocc

v

Z
B:Z:

d3k

ð2pÞ3

�
rcvðk,qþKÞrn

cvðk,qþK0Þ

o�z:epsiv;cðkÞþz:epsiv;vðk�qÞþ iZ

�
�

rvcðk,qþKÞrn
vcðk,qþK0Þ

oþz:epsiv;cðkÞ�z:epsiv;vðk�qÞþ iZ

�
,

ð1Þ

where the notation unocc restricts the sum to unoccupied bands
and occ to occupied bands, B.Z. indicates the integral is to be
taken over the first Brillouin zone, the wave vector q is restricted
to the first Brillouin zone, K and K0 are reciprocal lattice vectors,
and the notation for the density matrix elements reflects the fact
that a density operator of wave vector q can only connect Bloch
waves cn,kðrÞ with wave vectors differing by q

rnn0 ðk,qþKÞ ¼
Z

d3r cn,kðrÞc
n

n0 ,k�qðrÞe
�iðqþKÞ�r: ð2Þ

This is a form which can be conveniently calculated using modern
electronic structure codes. Once sufficient matrix elements in the
reciprocal lattice vector space have been found to adequately
express the response, the inverse longitudinal dielectric function
z:epsi;�1

K,K0 ðq,oÞ is found as a matrix inverse.
The RPA does not include interactions between the conduction

electrons and holes, and thus cannot reproduce excitons. Excitons
are fundamental to the process of scintillation, they are vital to
the process of transport of the thermalized charge carriers in a
scintillator, and the decay of excitons can produce scintillation
light (although in NaI and CsI, most of the light yield comes from
thallium activator dopants). However, experimentally the oscilla-
tor strength of excitons is small, so that although they produce
well-defined peaks they are expected to be a relatively minor
perturbation to the overall process of the creation of charge
carriers in the crystal and the decay of multi-eV collective
excitations. The fine structure from effects beyond the RPA is
likely to be washed out during the integration process leading to
the total quasiparticle lifetime and thus effects on the lifetime are
likely to be small. Conduction electron–hole interactions are
known to shift the location of plasmon resonances by a couple
of eV in semiconductors [27], although their effect in alkali
halide collective excitations is unknown. This could potentially
change the plasmon decay spectrum by creating the bulk of the
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excitations at a different energy than what is calculated. This
effect is a subject for future research.

2.2. Rate of loss

We take the initial state of our system 9CIS as the ground
state 9C0S of an N electron system except for a single additional
electron in a conduction band n with wave vector k that
represents the radiation particle traversing the crystal,

9CIS¼ ayn,k9C0S ð3Þ

and the final state 9CaS as a series of particle–hole excitations of
the N particle system 9CphS of total energy oph with an additional
electron in conduction band n0 and wave vector k0 representing
the scattered radiation particle,

9CaS¼ ay
n0 ,k0

9CphS: ð4Þ

The rate at which the radiation particle transfers energy to
electronic excitations of the initial state I of the material is given
by Fermi’s golden rule [28]

GI ¼ 2p
X
a
9/Ca9Hint9CIS92dðoaIÞ, ð5Þ

where oaI is the energy difference between the state a and state I.
The interaction Hamiltonian can be taken as the Coulomb inter-
action between the charge density of the radiation electron and
the material

Hint ¼
X

K

Z
B:Z:

d3q

ð2pÞ3
4p
q2 ˇ

r
r
ð�q�KÞ

ˇ
rðqþKÞ, ð6Þ

where
ˇ
rðqÞ is the charge density operator for the electrons of the

material and
ˇ
r

r
ðqÞ is the charge density operator for the radiation

electron

ˇ
r

r
ðqÞ ¼

X
n,n0

Z
B:Z:

d3k

ð2pÞ3
ayn0 ,k�qan,krnn0 ðk,qÞ: ð7Þ

Neglecting exchange terms between these two density operators
and generalizing to also allow the case where the radiation
particle is a hole, we obtain

GnðkÞ ¼ 2p
X

n0

X
KK0

Z
B:Z:

d3q

ð2pÞ3
4p

9qþK92

4p
9qþK092

�rnn0 ðk,qþKÞrn

nn0 ðk,qþK0Þ

�
X
ph

/Cph9
ˇ
rðqþKÞ9C0S/C09

ˇ
ryðqþK0Þ9CphS

�dðoð1�2f n0 Þ�z:epsiv;nðkÞþz:epsiv;n0 ðk�qÞÞ, ð8Þ

where fn is the occupation function for band n (for metals, or finite
temperatures, we would need to consider occupation as a func-
tion of wave number as well. In the case of materials with a
bandgap, where the bandgap energy is much larger than the
temperature, this functional dependence on k can be suppressed).

The inverse dielectric function can be expressed in terms of
density matrix elements of the exact many particle states [29,30]

z:epsi;�1
K,K0 ðq,oÞ�dK,K0 ¼

4p
9qþK99qþK09

�
X

n

/C09
ˇ
rðqþKÞ9CnS/Cn9

ˇ
ryðqþK0Þ9C0S

o�ðEn�E0Þþ iZ

"

�
/C09

ˇ
ryðqþK0Þ9CnS/Cn9

ˇ
rðqþKÞ9C0S

oþðEn�E0Þþ iZ

#
: ð9Þ

If we define W as the screened Coulomb interaction

WK,K0 ðq,oÞ ¼ 4p
9qþK99qþK09

z:epsi;�1
K,K0 ðq,oÞ, ð10Þ

then using Eq. (9) the rate of loss for an electron in a crystal
becomes

GnðkÞ ¼ 2i
X

n0

Z 1
0

do
Z

B:Z:

d3q

ð2pÞ3
X
K,K0

�rnn0 ðk,qþKÞrn

nn0 ðk,qþK0ÞW ðAÞ
K,K0
ðq,oÞ

�dðoð1�2f n0 Þ�z:epsiv;nðkÞþz:epsiv;n0 ðk�qÞÞ, ð11Þ

where W ðAÞ
K,K0
¼ ðWK,K0�Wy

K,K0
Þ=2 is the anti-Hermitian part of W.

With a few simple transformations, this result can be related
to other well known quantities. The one electron Green’s function
in energy space can be written as [30]

Gðr,r0,EÞ ¼
X

n

Z
B:Z:

d3k

ð2pÞ3
cn,kðrÞc

n

n,kðr
0Þ

E�z:epsiv;nðkÞþ iZð1�2f nÞ
: ð12Þ

With this expression, the popular GW expression for the self-
energy [14]

Sðr,r0,EÞ ¼ i

Z
do
2p Gðr,r0,E�oÞWðr,r0,oÞ ð13Þ

has diagonal orbital matrix elements given by

/n,k9SðEÞ9n,kS¼ i

Z
do
2p
X

n0

Z
B:Z:

d3q

ð2pÞ3
X
K,K0

WK,K0 ðq,oÞ

�
rnn0 ðk,qþKÞrn

nn0 ðk,qþK0Þ

E�o�z:epsiv;n0 ðk�qÞþ iZð1�2f n0 Þ
: ð14Þ

The screened interaction can be expressed in spectral form

WK,K0 ðq,oÞ ¼ 4p
9qþK92

dK,K0

þ
i

p

Z 1
0

do0 1

o�ðo0�iZÞ�
1

oþðo0�iZÞ

� �
W ðAÞ

K,K0
ðq,o0Þ:

ð15Þ

Inserting this spectral representation in Eq. (14), we see that

GnðkÞ ¼ 29Im/n,k9Sðz:epsiv;nðkÞÞ9n,kS9: ð16Þ

A significant body of work exists on calculating the self-energy in
the GW approximation [31]. Reducing our expression to this
method thus allows us to take advantage of this published
experience in this study.

2.3. Secondary particle spectra

Eq. (11) shows that the energy loss of charged particles is due
to a suitably weighted sum over electronic excitations of all
energy transfers o and momentum transfers q from the particle
to the medium. The function inside the integrand is thus the (un-
normalized) excitation spectrum. The inverse dielectric function
is seen to have a central importance in determining the weights of
the excitations, and Eq. (1) shows how this function is composed
of individual particle–hole excitations from valence bands v and
wave vectors k�q to conduction bands c and wave vectors k.
Thus, we can similarly expect to decompose any electronic
excitation into a spectrum of secondary conduction electrons
and holes that result from the decay of the excitation with the
specified energy and momentum transfer.

A primary motivation for this decomposition comes from collec-
tive resonances where the dielectric screening nearly vanishes, thus
amplifying the perturbing field over large distances and providing a
strong channel for losses. These resonances, called plasmons, are
common in condensed media and are a major player in electronic
losses. The mechanisms described in the previous subsections are
well known and describe the influence of the plasmons (among other
excitations) on losses, but the subsequent decay of the plasmon
excitations has not been well studied. Chung and Everhart [32] have
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previously developed a theory for plasmon decay in nearly free
electron metals. Here, we extend the theory to crystalline semicon-
ductors and insulators and apply it not just to plasmons but to any
electronic excitation.

A rigorous derivation of the form of the secondary particle
spectra is provided in Appendix A. We find that the un-
normalized spectrum for the promotion of a valence electron
from band v and wave vector k�q to a conduction band c with
wave vector k by an excitation with energy transfer o and
momentum transfer q for reciprocal lattice vector contributions
K,K0 is given by the partial loss function Lcv;KK0 ðk;q,oÞ, as defined
in Eq. (A.12). Secondary particle spectra are taken by forming
suitable sums and integrals over Lcv,KK0 ðk;q,oÞ. The un-
normalized energy spectrum of the secondary conduction elec-
trons, for example, is given by

LKK0 ðE;q,oÞ ¼
Xunocc

c

Xocc:

v

Z
B:Z:

d3k

ð2pÞ3
dðE�z:epsiv;cðkÞÞLcv;KK0 ðk;q,oÞ:

ð17Þ

If local fields are neglected, the inverse dielectric functions
become diagonal and, up to a normalization constant,

Lcvðk;q,oÞp9rcvðk,qÞ92dðo�z:epsiv;cðkÞþz:epsiv;vðk�qÞÞ, ð18Þ

where q is now allowed to extend beyond the first Brillouin zone.
This approximation has the advantage that the inverse dielectric
function does not need to be pre-computed prior to evaluation of
the normalized secondary particle spectrum.

3. Methods

To obtain the initial orbitals for our calculation, we used the
ABINIT electronic structure code [33–35]. ABINIT uses a plane wave
basis set to perform density functional theory (DFT) [36] compu-
tations on periodic crystals. A lattice parameter of 4.57 Å was
chosen for CsI [37–39] and 6.46 Å for NaI [37]. The wave function
was found in the local density approximation (LDA) on two
separate primary and secondary k-point grids, each a 10� 10�
10 grid in the first Brillouin zone. The primary k-point grid is a
G point centered grid, while the secondary grid is shifted by
0:001 b1þ0:0005 b2 from the primary grid where b1, b2, and b3

are the primitive reciprocal lattice vectors of the crystal. This shift
was chosen so that the offset between grids gives a wave vector q
adequate to reproduce the limit q-0 for which later calculations
of the electronic response are sufficiently converged while still
large enough to avoid numerical errors due to finding a small
difference in close quantities. A converged electronic structure
was obtained with a plane wave cutoff energy of 20 hartree.
Troullier Martins pseudopotentials [40] were used. Cs was repre-
sented by the 6s valence and 5p semi-core electrons, Na by the 3s
valence electron, and I by the 5s and 5p valence electrons. All
more tightly bound electrons were considered non-interacting
core electrons and handled through their effects on the pseudo-
potentials.

No electronic excitations are possible for quasiparticles with
energies less than the bandgap from the band edge—the quasi-
particle must give up at least one bandgap’s worth of energy to
promote a valence electron to the conduction band, and it must
itself have an unoccupied orbital of the required energy into
which it can decay. DFT methods are notorious for underestimat-
ing the bandgap. Using the Kohn–Sham energy eigenvalues [36]
directly in Eq. (1) would have led to quasiparticles exciting losses
at energies lower than what is physically possible. Our LDA
ground state electronic structure results give bandgaps which
are too small by a factor of around two, as indicated in Table 1. To

correct for this, we adjust the band energies with a GW calcula-
tion, using the native ABINIT capabilities. A plasmon pole screening
matrix found with 30 bands, a wave function cutoff of 4 hartree,
and a dielectric matrix cutoff of 3.6 hartree, plus a self-energy
calculation with 50 bands, a cutoff energy of 10 hartree, and an
exchange cutoff energy of 6 hartree was sufficient to converge the
calculation to within 0.004 eV. For the purpose of simulating
ionization losses of radiation particles, an accurate estimate of the
bandgap is crucial since the amount of ionization per incident
energy is strongly bandgap dependent. Because of a significant
discrepancy remaining between the GW-calculated bandgap and
the range of experimental bandgaps, we further increased the
bandgap using a scissors operator [41,42] to bring our estimates
of ionization more closely in line with what would be expected of
the actual material. Conduction band energies of CsI were
increased uniformly by 1.5 eV, those of NaI by 0.75 eV. This
enforces an optical bandgap of 6.28 eV for CsI and 5.89 eV for NaI.

The density matrix elements rnn0 ðk,qþKÞ are evaluated using
the Kohn–Sham orbitals. The self-energy operator has been
shown to be very nearly diagonal in this basis set [43], implying
that the orbitals with many body effects included are very similar
to those found in DFT calculations.

The anti-Hermitian part of the dielectric matrix of Eq. (1) is
given in Eq. (A.10). This is evaluated on the primary k point grid
for finite q via the tetrahedron method [44], which finds the
contribution from the constant energy surfaces of the delta
function over the entire integration volume. The Hermitian
components can then be obtained through

z:epsi;ðHÞK,K0 ðq,oÞ ¼ dK,K0 þ
2

p
P
Z 1

0
do0 z:epsi;ðAÞK,K0 ðq,o0Þ o0

o02�o2
,

where P indicates the principal part of the integral. This method
has the attractive feature that electronic losses become strictly
zero for energy transfers o below the lowest possible transition
energy, preventing the bleed-over into the bandgap which occur
when using broadened sums over the calculated k-points. How-
ever, it should be remembered that our calculations were carried
out at the RPA level of theory, and thus will miss the excitonic
losses that occur at less than the bandgap energy.

At q¼ 0 the Coulomb potential has a singularity when one or
both of the reciprocal lattice vectors K, K0 equal to zero. However,
in the limit q-0 the quantity

4p
9qþK99qþK092

rnn0 ðk,qþKÞrn

nn0 ðk,qþK0Þ ð19Þ

is well defined in cubic materials for non-degenerate (and non-
equal) bands n and n0 for all K, K0 because of the orthogonality of
the bands. As such, the actual function integrated in the dielectric
function expression is well behaved. We determine
z:epsi;ðAÞK,K0 ðq-0,oÞ by calculating the low wave vector density
matrix elements for the small but finite q between the primary
and secondary k point grids.

Table 1
Energies of selected transitions between the highest valence band and lowest

conduction band. Column GW(1) lists ABINIT calculated GW bandgaps which were

used for orbital energies in our calculations, GW(2) lists self-energies calculated

using methods described in this work. Experimental values for NaI taken from

[47–49]; values for CsI from [47,48,50,51].

Material Transition Bandgap (eV)

LDA GW (1) GW (2) Experiment

NaI G-G 3.41 5.14 6.07 5.9, 5.8, 5.75

CsI G-G 3.15 4.78 5.49 6.1, 6.3, 6.37, 6.0

CsI M-G 3.08 4.74 5.44
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The loss is found using Eq. (16), and the imaginary part of the
self-energy is evaluated using Eq. (A.5). In this case, the density
matrix elements will occur between the same bands, so the
singularity at q¼ 0 must be dealt with. This singularity is
integrable. For tetrahedral integration cells containing the singu-
lar point, the loss is split into singular and non-singular parts

Im/n,k9SðEÞ9n,kS¼/n,k9SnsðEÞ9n,kSþ/n,k9SsðEÞ9n,kS, ð20Þ

Im/n,k9SnsðEÞ9n,kS¼
1

p
X
K,K0

X
n0

Z 1
0

do
Z

B:Z:

d3q

ð2pÞ3
½W ðAÞ

K,K0
ðq,oÞ

�rnn0 ðk,qþKÞrn

nn0 ðk,qþK0Þ�Ann0 ðoÞ=q2�

�dðE�z:epsiv;n0 ðk�qÞþoð2f n0�1ÞÞ, ð21Þ

Im/n,k9SsðEÞ9n,kS¼
1

p
X

n0

Z 1
0

do
Z

B:Z:

d3q

ð2pÞ3
Ann0 ðoÞ=q2

�dðE�z:epsiv;n0 ðk�qÞþoð2f n0�1ÞÞ, ð22Þ

where

Ann0 ðoÞ ¼ 4p½z:epsi;�1
0,0ðq-0,oÞ�ðAÞ9rnn0 ðk,q-0Þ92

:

The non-singular term Im/n,k9SnsðEÞ9n,kS is integrated nor-
mally. The singular Im/n,k9SsðEÞ9n,kS is integrated numerically
over the constant-energy plane of the tetrahedron. While the
singular evaluation is more time intensive, it is only needed for a
small number of integration cells and is thus feasible.

The real part of the correlation self-energy can be found by
determining Im/n,k9SðEÞ9n,kS over the full range of E where
losses exist, and taking a Hilbert transform. The total self-energy
is then found by adding the exchange self-energy. The quasipar-
ticle energies can be recovered by adding the self-energy to the
DFT Kohn–Sham eigenvalues and subtracting off the DFT
exchange–correlation energy. While quasiparticle energies are
not the primary focus of this work, we did take the opportunity
to use the machinery developed here to calculate the bandgap of
the materials under study since it essentially came at no addi-
tional cost and could be used to help validate our calculations.

We follow the usual practice of using the Kohn–Sham eigen-
values for the band energies when evaluating SðEÞ. If we denote
the Kohn–Sham eigenvalues as z:epsiv;KS

n ðkÞ, then

z:epsiv;nðkÞ ¼ z:epsiv;KS
n ðkÞþ/n,k9Sðz:epsiv;nðkÞÞ9n,kS:

This leads to /n,k9Sðz:epsiv;KS
n ðkÞÞ9n,kS being evaluated away

from the true quasiparticle energy. This is handled in the typical
fashion by computing the renormalization constant [31]

ZnðkÞ ¼ 1�
@/n,k9SðEÞ9n,kS

@E

����
E ¼ z:epsiv;KS

n ðkÞ

" #�1

ð23Þ

such that

/n,k9Sðz:epsiv;nðkÞÞ9n,kS¼ ZnðkÞ/n,k9Sðz:epsiv;KS
n ðkÞÞ9n,kS:

The rate of interaction of quasiparticles are thus given by

GnðkÞ ¼ 29Im½ZnðkÞ/n,k9Sðz:epsiv;KS
n ðkÞÞ9n,kS�9,

which we approximate as

GnðkÞ ¼ 29½Re ZnðkÞ�½Im/n,k9Sðz:epsiv;KS
n ðkÞÞ9n,kS�9: ð24Þ

The lifetime of a quasiparticle is

tnðkÞ ¼
1

GnðkÞ
:

The evaluation of the decay spectra was carried out in the limit
of neglecting local fields, using Eq. (18). The decay particles are
resolved by an energy DE, so that the quantity generated is the

energy integral of Eq. (17) between E�DE=2 and EþDE=2. Inte-
grals of this form are discussed in Lehmann and Taut [44].

3.1. Application to Monte Carlo radiation transport simulations

In Monte Carlo radiation transport codes, electrons are propa-
gated as free classical particles that can interact with materials
through various physical processes, such as exciting bremsstrah-
lung radiation or ionizing core or valence electrons. Below a set
energy cutoff, the particle track will be short compared to the
macroscopic sizes of objects typically under consideration. No
discrete excitations of lesser energy are allowed. Instead, the
electron energy loss due to multiple low energy electronic
excitations is handled in an average fashion. As the electron
traverses matter, energy is continuously deposited at a rate that
depends both on the material properties and the electron energy.

To extend this classical approach to lower energies and include
all energy losses as discrete events, the chance of interaction of
the electron must be known for every type of excitation, including
the continuum of transitions involving valence to conduction
band excitations. Typically, the chance of excitation is handled
through the cross sections siðz:epsiv;Þ or inverse mean free paths
l�1

i ðz:epsiv;Þ for each type of event i, which are related through
the density of atoms N/V

l�1
i ðz:epsiv;Þ ¼ siðz:epsiv;ÞN=V : ð25Þ

The rate at which a particle of velocity v creates excitations of
type i is related to l�1

i ðz:epsiv;Þ by

Giðz:epsiv;Þ ¼ l�1
i ðz:epsiv;Þ9v9: ð26Þ

In this work, we have calculated the total rate at which the
electron produces transitions from valence to conduction bands.
This can be directly compared to the rate of other energy loss and
scattering processes to directly include excitations from the
valence band (core electron excitations, with their discrete energy
levels and less complicated excitation probabilities, are already
considered in these transport codes). Since the quantities worked
within the codes are siðz:epsiv;Þ or l�1

i ðz:epsiv;Þ, the valence
excitation rate will be converted to an effective cross section
per atom or mean free path. This allows the relative probabilities
of creating a valence excitation to other kinds of excitations to be
correctly determined. However, care must be taken not to confuse
this with actual spatial path lengths, since comparisons are done
for free classical particles with energy dispersion z:epsiv;ðvÞ ¼ v�
v=ð2meÞ rather than the band dependent energy dispersion of
actual electrons in matter. True mean free paths for particles in a
band can be extracted from the lifetimes through the relation [37]
vnðkÞ ¼rkz:epsiv;nðkÞ if spatial information on the track micro-
structure or nanostructure is needed.

A classical description of track producing particles can still be a
useful approximation [4,5] when dealing with individual valence
excitations. In this case, the quantities found in this work can be
used to parametrize the curves for interband transitions and
plasmon losses, which approximate the full set of valence to
conduction transitions. With a proper parametrization, such
simulations can reproduce detector response to ionizing radia-
tion, including a full accounting of each charge carrier produced.

4. Results

The calculated LDA and the initial ABINIT GW band structure
predicts that CsI has an indirect bandgap, with the minimum
energy valence to conduction transition from the M point in the
valence band to the G point in the conduction band. This
predicted indirect gap is very close to the minimum optical gap
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(at the G point). Reported measurements of the CsI bandgap are
from ultraviolet absorption experiments, and consequently we
only have the optical bandgap to compare. Our calculations of NaI
lack this complication, with a minimum bandgap for the G to G
point transition.

The experimentally accessible dielectric constant can be
shown to be z:epsi;¼ 1=z:epsi;�1

0,0ðq-0,o-0Þ [26]. However, our
calculations are carried out on a static lattice. In a real ionic solid,
the application of a macroscopic longitudinal electric field at
accessible frequencies would cause the ions to move in response,
thus screening the field to a greater extent than is found from the
electronic response alone. Fortunately, we can still make mean-
ingful comparisons to measured values. At q-0 and at frequen-
cies far below the energy of the lowest transition, the perturbing
field is essentially static as far as the electrons are concerned.
In this limit, it makes no difference if the perturbing field is
longitudinal or transverse—the electrons of the material are just
reacting to a constant field within its volume. If we choose
frequencies well below the lowest electronic transition we can
use optical measurements to determine the electronic response. If
this frequency also happens to be well above that of the highest
phonon mode in the material, the lattice will be unable to keep up
with the rapidly changing field. Under the approximation that the
magnetic susceptibility of the medium is very close to the
vacuum susceptibility, the index of refraction of the medium is
given by [45] nðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z:epsi;ðq-0,oÞ

p
. We therefore can compute

the index of refraction in the low frequency limit and compare it
to measured values in the wide gap between the highest phonon
mode and lowest electronic transition (a value referred to as n1,
to distinguish it from the static value n0). This is shown in Table 2.

Fig. 1 shows the dielectric function 1=z:epsi;�1
0,0ðq-0,oÞ, while

Fig. 2 shows the diagonal loss function z:epsi;�1
KKðq,oÞ for several

momentum transfers. Several interesting features are evident in
these plots. Plasmons result from anomalous dispersion causing
the real part of the dielectric function to dip below zero within
the region of transitions and then rise again past the localized
region of high imaginary part resulting from the transitions.
When the real part is near zero in this crossing and there are
only weak transitions to populate the imaginary part, the dielec-
tric function is much less than one indicating that the internal
field is increased compared to the applied external field. This
amplification of the internal field is a collective resonance of the
material and corresponds to the plasmon. At plasmon resonances,
the inverse dielectric function exhibits prominent peaks indicat-
ing regions of strong losses.

In CsI, an incipient plasmon in the 12–13 eV region resulting
from the valence to conduction transitions is seen to be pre-
empted by the rise of Cs 5p to conduction transitions in the
15–20 eV region of the spectrum, resulting in only a weak
plasmon-like peak in the loss spectrum with a maximum at
12.7 eV (peak A in Fig. 3). A second broad plasmon is evident in
the 18–29 eV region, due to the combined effect of the valence and
semi-core electrons. This second plasmon has prominent peaks at
20.1 and 22.9 eV (peaks B and C, respectively, in Fig. 3). Plasmons

in the free electron gas are well understood due to their analytical
solution, and exist only at low momentum transfers. We see a
similar behavior here, with the plasmon resonances dying away at
higher q values. The structure between 13 and 21 eV that gives the
double plasmon structure is found to be mostly due to transitions
from orbitals with Cs 5p character. There is a small contribution
from valence to conduction transitions, but contributions from
orbitals with I 5s character, while not strictly zero, are found to be
negligible with contributions of less than 1 part in 100 compared to
valence and Cs 5p orbitals in this energy region. The binding energy
of the Cs 5s shell is 22.7 eV [52]. If these orbitals were included in
the calculations we would expect to see contributions in the
screening functions between about 23 and 31 eV, which could
have an effect on the second double plasmon peak. However,
comparison with the I 5s orbitals suggests that the effect of this
shell is negligible. Investigating the magnitude of this effect will be
the subject of future work. It is encouraging, however, that the loss
function at low momentum transfer is similar to that observed by
Creuzberg [46], with a prominent peak at 10.3 eV (peak A0 in Fig. 3)
and pair of higher amplitude peaks at 17.9 and 21.3 eV, as shown
in Fig. 3 (peaks B0 and C0, respectively, in Fig. 3). In fact, our
calculations reproduce many of the minor peaks seen in this
reference as well, at a consistent 2–3 eV greater energy than
observed in the experiment. The overestimation of the energies
of the plasmon peaks is similar to what is observed in silicon.
When the bandgap is corrected with GW calculations but the
response function is computed with RPA, the Si plasmon peak is
overestimated by approximately 2–3 eV [27]. Bethe–Salpeter cor-
rections in Si, which introduce the conduction electron–hole
interactions, correct this overestimation. In our calculations, the
scissors operator introduces a uniform blue-shift of 1.5 eV while
the complete set of bandgap corrections (including the scissors
operator) from the DFT eigenvalues would be expected to result in
a blue-shift on the order of 3 eV because a major effect of the GW

correction is an overall energy increase of the conduction levels
[42]. This indicates that, as was the case with silicon, the plasmon
peaks are well reproduced in the RPA when using the bare DFT
eigenvalues as the particle energies. We thus suspect that, as with
silicon, Bethe–Salpeter calculations of the screening will allow a
good representation of the plasmon structure while preserving the
correct bandgap.

In NaI, the screening lacks strong core to conduction transi-
tions and is thus simpler. A region of strong transitions emerges
in the imaginary part of the dielectric function between 6 and
10 eV, and the recovery of the real part from below zero gives rise
to a collective plasmon-like structure at around 18 eV. The
presence of continued valence to conduction transitions in the
10–18 eV region delays the onset of the plasmon from its free-
electron value of 9.05 eV. Again, the plasmon energy is over-
estimated compared to measured electron energy loss spectra
[46], this time by about 5 eV. Much as with CsI, the plasmon is
seen to be a phenomenon which occurs at low momentum
transfer. At higher momentum transfers, the peak decreases in
amplitude. In addition, it can be seen that, unlike CsI, the plasmon
increases in energy with increasing momentum transfer before
broadening sufficiently that it is no longer recognizable as a well
defined excitation.

The electronic scattering rate of conduction electrons in NaI is
shown in Fig. 4, and the same quantity for conduction electrons
and Cs 5p character holes in CsI is shown in Fig. 5. The valence
bands are shallow enough that their holes cannot excite any
further electronic losses. The NaI bands with I 5s character show
little dispersion, with energies ranging from 9.35 to 9.65 eV below
the valence band maximum and a narrow range of loss rates
between 1:85� 1014 Hz and 2:0� 1014 Hz. The six bands in CsI
with strong Cs 5p character are nearly non-dispersive, with

Table 2
Indices of refraction from calculation and experiment [47]. For comparison, the

value obtained from the full RPA screening calculations we performed are given

and the value corresponding to that calculated by the ABINIT code for the screening

matrix used in the initial GW calculations.

Material Calculation (o-0) Experiment (n1)

This work ABINIT

NaI 1.69 1.81 1.73

CsI 1.64 1.84 1.743
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energies close to 6.2 eV below the valence band maximum.
Because these semi-core states are so close to one bandgap
energy from the band edge, their lifetimes are strongly influenced
by minor shifts in their energies. This sensitivity to the bandgap,
neglect of excitons which allow excitation channels below the
bandgap and self-trapping behavior which can lower the hole
energy, suggests that the lifetimes of the shallowest Cs 5p states
in the real material may vary by several orders of magnitude from
our calculations. Because the calculated loss rate saturates at
around 107 Hz for the deepest Cs 5p holes, we expect that states
in the actual material with energies below the valence band
maximum by a value significantly greater than one bandgap will
tend to have loss rates in this range. The two CsI bands with I 5s

character are also nearly non-dispersive, with energies ranging
from 8.98 to 9.08 eV below the valence band maximum. The
losses from these iodine 5s bands are much less affected by minor
shifts in band structure, with loss rates near 1:3� 1015 Hz. The I
5s holes in CsI are not plotted due to the narrow range of their
properties and relatively flat dependence of loss on energy.

These figures illustrate how as quasiparticle energies decrease
toward the excitation threshold, the rate of excitation drops
dramatically and vanishes at the threshold. This is due to an
increasingly restricted phase space available to the scattered and
excited particles in the excitation rate and loss function integrals,
to the point that at the threshold there is no available energy-
allowed momentum states to scatter into. Similar behavior has
long been known for the Fermi liquid, where quasiparticles at the
fermi surface are lossless and the rate of loss increases with
increasing energy for the same reason we see here [30]. However,
in real materials quasiparticles at the threshold for electronic

Fig. 1. The zero wave vector dielectric function of NaI (left) and CsI (right).

Fig. 2. The diagonal part of the loss function of NaI (left) and CsI (right) at various wave vectors in the direction of a primitive reciprocal lattice vector. Here, we use the

convention that z:epsi;�1
ðq,oÞ ¼ z:epsi;�1

K,Kðq
0 ,oÞ for q¼ q0 þK with q0 confined to the first Brillouin zone. The reciprocal lattice vectors have magnitude 9b9¼ 1:50 Å

�1
for

NaI and 9b9¼ 1:37 Å
�1

in CsI.

Fig. 3. The zero wave vector loss function of CsI (Solid) compared to the

experimental electron energy loss spectrum of Creuzberg [46] (dashed). All major

peaks are reproduced, but the calculated results are blue shifted by approximately

2–3 eV compared to the experiment. Major peaks are labeled, with corresponding

calculated and measured peaks denoted by the same letter, but with a prime given

to the label of the measured peaks.

Fig. 4. Scattering rate of NaI conduction electron quasiparticles plotted against

their energy.
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excitations do experience losses by scattering off the lattice to
produce photons, an effect not considered in this work.

We note that the electronic losses follow a well defined curve
as a function of quasiparticle energy. This feature is necessary to
allow the classical Monte Carlo radiation transport to work at all.
If quantum effects were to spread the loss rates for similar
energies but different wave vectors out over many orders of
magnitude, methods treating the radiation particles as ballistic
objects would fail at low energies. Instead, while there is some
variance in the loss rates, we see that the particles can be
reasonably well approximated as having a rate of scattering that
largely depends on energy with some added fluctuation. The
relative fluctuations become largest near the threshold for elec-
tronic excitations. In practice, this is not expected to be a problem
because near the threshold vibrational losses dominate. The
effective mean free paths of conduction electrons in CsI are
shown in Fig. 6.

The spectrum of energies of secondary electrons and holes at
zero momentum transfer for selected energy transfers corre-
sponding to plasmon-like excitations are shown in Fig. 7 for NaI
and Fig. 8 for CsI. The single plasmon peak of NaI is seen to be
composed of a majority of valence to conduction transitions, but
excitations from the I 5s band to conduction bands have a
noticeable minority contribution. The lower energy peak at
12.4 eV in CsI is seen to be made up of entirely valence to
conduction transitions, which should be expected based on

energy conservation alone. The pair of peaks at 21.1 and 21.9 eV
in CsI are almost entirely the result of transitions from Cs 5p-like
orbitals to conduction states, with a small contribution from
valence to conduction transitions and an almost negligible con-
tribution from I 5s orbitals to conduction orbitals. These peaks
could nearly be considered as typical core-level excitations
superimposed on valence to conduction interband transitions,
except that the collective screening brings these transitions into
resonance and enhances the rate of these transitions.

5. Discussion

We have developed a technique for computing the electronic
losses of quasiparticles in semiconductors and insulators. This
procedure will give quasiparticle lifetimes and rates of scattering
as well as the spectra of secondary particles produced by the
scattering. We envision this information as aiding efforts to use
low energy radiation transport Monte Carlo codes to simulate the
measured signal of novel radiation detector materials. This
method has been applied to sodium iodide and cesium iodide,
materials commonly used in radiation scintillation detectors.
Several aspects of the calculated electronic structure are in
reasonably good agreement with experimentally measured
values, such as the bandgap, index of refraction, and electron
energy loss functions, although our novel predictions such as rate
of loss or secondary spectra do not yet have experimental
support.

The simulation of secondary particle spectra is still fairly
primitive. These early results are calculated neglecting local fields
and have been found only at selected energy and momentum
transfers corresponding to peaks in the energy loss spectrum,
where they can be interpreted as the decay of plasmons. We
envision calculation of these spectra and associated cross sections
for a grid of energy and momentum transfers that allow replace-
ment of the parametrized free electron gas like models currently
used in the Monte Carlo radiation transport simulations with the
ab initio quantities at low energy and momentum transfers where
band structure is expected to have a significant effect on the
electronic scattering process.

There are several areas where additional progress would be
useful in simulating electronic stopping of charged particles. The
inclusion of Bethe–Salpeter effects in the screening will allow the
consideration of exciton states, will improve the low energy
structure of the dielectric function, and will refine the location
of the plasmon resonance. An extension of the method to cover
non-cubic materials, whose dielectric response as q-0 is a tensor
rather than a scalar, would be useful. In addition, we have only
considered electronic losses of the charge carriers. For an accurate
end-of-track simulation, the phonon losses will also be needed.

With vacuum levels close to the conduction band minimum,
CsI in particular [53] is attractive as a photocathode and offers the

Fig. 5. Scattering rate of hole quasiparticles in the Cs 5p bands (left) of CsI and CsI conduction electron quasiarticles (right) plotted against their energy.

Fig. 6. Effective mean free path lðz:epsiv;Þ and effective cross section sðz:epsiv;Þ of

CsI valence quasiparticles plotted against their energy as measured from the

valence band maximum, the zero of energy used in the NWEGRIM Monte Carlo

radiation transport code. In this figure, the magnitude of the classical particle

velocity is determined by 9v9¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z:epsiv;=me

p
. The very long mean free paths near

the excitation threshold are the result of considering electronic excitations

alone—in a real material the mean free path would be significantly reduced for

lower energy quasiparticles due to phonon excitations.
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possibility of combining electron energy loss with energy mea-
surements of the emitted secondary electrons to directly resolve
the secondary particle spectra for various energy and momentum
transfers. Further refinement of coupling between these ab initio

calculations and Monte Carlo radiation transport codes could lead
to comparisons of calculated values of electron escape depth and
quantum efficiency of alkali halide photocathodes with measured
values.
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Appendix A. Derivation of the secondary particle spectrum

In this appendix we will put the assumption that the electronic
excitations can be decomposed into individual particle–hole like
excitations on firmer theoretical footing.

The spectral representation of W from Eq. (15) allows us to
separate the self-energy into an exchange part Sx and correlation
part Sc

/n,k9SxðEÞ9n,kS¼ 4p
Xocc

n0

Z
B:Z:

d3q

ð2pÞ3
X

K

9rnn0 ðk,qþKÞ92

9qþK92
, ðA:1Þ

/n,k9ScðEÞ9n,kS¼
i

p

Z 1
0

do
X

n0

Z
B:Z:

d3q

ð2pÞ3
X
K,K0

W ðAÞ
K,K0
ðq,oÞ

rnn0 ðk,qþKÞrn
nn0 ðk,qþK0Þ

E�z:epsiv;n0 ðk�qÞ�ðo�iZÞð1�2f n0 Þ
, ðA:2Þ

where occ means that the sum is taken only over occupied bands.
The exchange self-energy is purely real, only the correlation
contribution leads to losses. Define a matrix in the space of
reciprocal lattice vectors

MK0 ,Kðk,q,E,oÞ ¼ i
rnn0 ðk,qþKÞrn

nn0 ðk,qþK0Þ

E�z:epsiv;n0 ðk�qÞ�ðo�iZÞð1�2f n0 Þ
: ðA:3Þ

Split this matrix into a Hermitian and an anti-Hermitian part,
MðHÞ

K0 ,K
ðk,q,E,oÞ and MðAÞ

K0 ,K
ðk,q,E,oÞ, respectively. We now have

/n,k9ScðEÞ9n,kS¼
1

p

Z 1
0

do
X

n0

Z
B:Z:

d3q

ð2pÞ3

�Tr½Mðk,q,E,oÞW ðAÞ
ðq,oÞ�: ðA:4Þ

Fig. 7. Secondary spectrum of holes (left) and conduction electrons (right) in NaI for the peak of the 18.1 eV plasmon-like excitation at zero momentum transfer. Note that

since the energy of the excitation is fixed, both hole and conduction electron spectra have the same shape and differ only by an overall shift of their energy.

Fig. 8. Secondary spectrum of holes (left) and conduction electrons (right) in CsI for peaks of plasmon-like excitations at zero momentum transfer.
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Tr½MðHÞðk,q,E,oÞWðAÞ
ðq,oÞ� is pure imaginary while

Tr½MðAÞðk,q,E,oÞWðAÞ
ðq,oÞ� is entirely real. Therefore,

Im/n,k9SðEÞ9n,kS¼
1

p

Z 1
0

do
X

n0

Z
B:Z:

d3q

ð2pÞ3

�Tr½MðHÞðk,q,E,oÞW ðAÞ
ðq,oÞ�

and

GnðkÞ ¼
2

p

Z 1
0

do
X

n0

Z
B:Z:

d3q

ð2pÞ3
X
K,K0

irnn0 ðk,qþKÞrn

nn0 ðk,qþK0Þ

�����
�W ðAÞ

K,K0
ðq,oÞdðz:epsiv;nðkÞ�z:epsiv;n0 ðk�qÞ�oð1�2f n0 ÞÞ

���:
ðA:5Þ

The rate of creation of excitations with energy o, wave vector
q, and reciprocal lattice vectors K and K0 thus becomes

gn;K,K0 ðk;q,oÞ ¼ 2

p
X

n0
iW ðAÞ

K,K0 ðq,oÞrnn0 ðk,qþKÞrn

nn0 ðk,qþK0Þ

�dðz:epsiv;nðkÞ�z:epsiv;n0 ðk�qÞ�oð1�2f n0 ÞÞ

ðA:6Þ

such that

GnðkÞ ¼
Z

do
Z

B:Z:

d3q

ð2pÞ3
X
K,K0

gn;K,K0 ðk;q,oÞ

�����
�����: ðA:7Þ

This rate gn;K,K0 ðk;q,oÞ can then be considered an un-normalized
spectrum of electronic excitations produced by an electron in
band n with momentum k.

We consider these electronic excitations to act as intermediate
particles, and find the decay spectra of the excitations themselves.
We can determine the secondary particles produced by a given
conduction electron via a two-step process—first, find the elec-
tronic excitation quasiparticles; and second, resolve the decay of
these quasiparticles.

We note that

WK,K0 ðq,oÞ ¼ 4p
9qþK99qþK09

�
X

K1 ,K2

½z:epsi;K,K1
ðq,oÞ��1z:epsi;yK1 ,K2

ðq,oÞ½z:epsi;yK2 ,K0 ðq,oÞ��1

ðA:8Þ

from which it is easy to show that

W ðAÞ
K,K0
ðq,oÞ ¼ �4p

9qþK99qþK09

�
X

K1 ,K2

½z:epsi;K,K1
ðq,oÞ��1z:epsi;ðAÞK1 ,K2

ðq,oÞ½z:epsi;yK2 ,K0 ðq,oÞ��1:

ðA:9Þ

From Eq. (1) we have for positive frequencies

z:epsi;ðAÞK,K0 ðq,o40Þ ¼ ip 4p
9qþK99qþK09

Xunocc

c

Xocc:

v

Z
B:Z:

d3k

ð2pÞ3

�rcvðk,qþKÞrn

cvðk,qþK0Þdðo�z:epsiv;cðkÞþz:epsiv;vðk�qÞÞ

ðA:10Þ

This has the interpretation of the applied field causing transitions
of electrons from occupied valence orbitals v with momentum
k�q and energy z:epsiv;vðk�qÞ to unoccupied conduction orbitals
c with momentum k and energy z:epsiv;cðkÞ. These are the decay
particles we are interested in. We then arrive at

W ðAÞ
K,K0
ðq,oÞ ¼ �16p3i

9qþK99qþK09

Xunocc

c

Xocc:

v

Z
B:Z:

d3k

ð2pÞ3

�
X

K1 ,K2

½z:epsi;K,K1
ðq,oÞ��1½z:epsi;yK2 ,K0 ðq,oÞ��1

9qþK199qþK29

�rcvðk,qþK1Þrn

cvðk,qþK2Þdðo�z:epsiv;cðkÞþz:epsiv;vðk�qÞÞ:

ðA:11Þ

We can immediately see that, up to a normalization factor, the
loss function is composed of excitations from c to v and a final
momentum of k with an un-normalized joint distribution func-
tion of

Lcv;KK0 ðk;q,oÞ ¼ �4p2i
X

K1 ,K2

½z:epsi;K,K1
ðq,oÞ��1½z:epsi;yK2 ,K0 ðq,oÞ��1

9qþK199qþK29

�rcvðk,qþK1Þrn

cvðk,qþK2Þdðo�z:epsiv;cðkÞþz:epsiv;vðk�qÞÞ

ðA:12Þ

such that

W ðAÞ
K,K0
ðq,oÞ ¼ 4p

9qþK99qþK09

Xunocc

c

Xocc:

v

Z
B:Z:

d3k

ð2pÞ3
Lcv;KK0 ðk;q,oÞ:

ðA:13Þ

We may identify the function L as the partial contribution to the
loss function due to the given excitation.
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A Monte Carlo (MC) method previously developed has been applied to simulate the interaction of

photons, with energies ranging from 50 eV to �1 MeV, with CsI and the subsequent electron cascades.

The MC model has been employed to compute nano-scale spatial distributions of electron–hole pairs

and important intrinsic properties, including W, the mean energy per electron–hole pair, and the Fano

factor, F. W exhibits discontinuities at the shell edges that follow the photoionization cross-sections and

decreases with increase in photon energy (from �19 to 15 eV), with an asymptotic value of 15.2 eV at

high energy. This decrease may contribute to the initial rise in relative light yield with incident energy

observed experimentally for CsI, thus suggesting that nonlinearity may be associated with intrinsic

properties of the material at low energies. F is calculated to increase with increase in energy and has an

asymptotic value of 0.28. A significant number of electron–hole pairs is produced through the different

ionization channels of core shells and the corresponding relaxation processes, which may explain why F

is larger for CsI than for Si or Ge. Finally, the calculated spatial distributions show that the electron–hole

pairs are primarily distributed along fast electron tracks. These spatial distributions constitute

important input for large-scale simulations of electron–hole pair transport.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

The development of new inorganic scintillators is driven by the
wide range of interests associated with medical imaging, radia-
tion detector physics and security inspection. Many scintillation
materials exhibit a nonlinear behavior of their scintillation
response, which degrades the energy resolution achievable with
these materials [1]. Although nonlinearity has been investigated
for a range of scintillators over the last fifty years [2,3], its
physical origin is not yet clearly understood.

Several approaches have been taken to model the light yield
nonlinearity of inorganic scintillators. In early works by Dorenbos
and co-workers [4,5], the nonlinearity of NaI (Tl) was modeled by
combining electron–hole pair tracks calculated with a radiation
transport code with a function that described the luminescence
efficiency as a function of electron–hole pair density. More
recently, Payne et al. [6] presented a model in which the light
yield was described as a product of the efficiencies of two
competing processes, namely, the recombination of electron–hole
pairs and exciton–exciton annihilation. The former was deter-
mined based on the Onsager theory, whereas the latter was
described using the Birks equation. Payne et al. showed that the

nonlinearity response curves of a wide range of inorganic
scintillators could be fitted using this model, based on linear
densities obtained with the Bethe–Bloch equation. Finally, a
family of phenomenological models was developed by Bizarri
et al. [7–9]. These models combined electron–hole pair densities
obtained from the Bethe–Bloch equation or energy loss functions
with a series of analytical rate equations that described different
energy transfer processes. Both radiative and non-radiative
processes were considered and these adopted a linear, quadratic
or cubic dependence on the electron–hole pair density. The light
yield response curves of several model compounds, chosen to
represent the spectrum of nonlinear behaviors observed experi-
mentally, were successfully modeled using this approach. In all
the models discussed in the above, an important factor that
guides the modeling strategy is the hypothesis that nonlinearity is
ultimately related to the energy dependence of the density of
electron–hole pairs along the ionization track. Therefore, a
comprehensive understanding of track structures resulting from
the interaction of high-energy particles with inorganic scintilla-
tors is crucial to our success in modeling the nonlinear response of
these materials.

A Monte Carlo code, Northwest Electron and Gamma Ray
Interaction in Matter (NWEGRIM) [10], has been developed to
simulate energy cascades resulting from the interaction of
electrons and gamma rays with semiconductor and scintillator
materials. As described in this paper, important features of this
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program include its ability to follow the energy cascade down to
energies on the order of the band gap and to compute the spatial
distribution of electron–hole pairs (i.e., microscopic track struc-
ture). This allows for the use of a new approach in which the fate
of individual electron–hole pairs is followed using an atomistic
kinetic Monte Carlo model. This model was used to evaluate the
contribution of an annihilation mechanism between self-trapped
excitons (STE) to the scintillation response of pure CsI and
LaBr3(Ce) [11]. This study indicated that STE–STE annihilation
could account for the initial rise in relative light yield with
increase in incident energy for both materials. However, more
remains to be done to fully understand the origins of nonlinearity
and account for all experimental observations. For example,
experimental findings on the dependence of nonlinearity on the
activator concentration [2] and nature [12] have not been fully
explained theoretically. It is certain, however, that the success of
our modeling approach will be highly dependent upon our ability
to compute accurately electron–hole pair spatial distributions.

Therefore, in the present study, NWEGRIM has been extended
to simulate electron cascades and the fundamental mechanisms
that govern the creation and spatial distribution of electron–hole
pairs in CsI for energies ranging from a few eV to MeV. The mean
energy to create an electron–hole pair, W, and its intrinsic
variance are determined as a function of photon energy.
Furthermore, the nano-scale features of the spatial distribution
of electron–hole pairs induced by photons and electrons in CsI are
also explored.

2. Monte Carlo simulation

The interactions of photons with atoms result in the creation of
fast electrons that can directly interact with materials to create
electron–hole pairs. The NWEGRIM code follows the collision of
each individual particle generated during the energy cascade. The
general approach is to calculate the total cross-section at an
energy E from the cross-sections of individual processes, from
which the mean free path is determined. Then, the particle is
advanced by this distance. The individual cross-sections are
sampled to determine what interaction has occurred. This
procedure is repeated until the particle energy falls below a
cut-off energy (�band gap of material).

The interaction of a photon with atoms occurs through inner-
shell photoionization, the Compton scattering and electron–positron
pair production. The cross-sections for these processes were
obtained by the LLNL Evaluated Photon Data Library [13], relativistic
impulse approximation [14] and the XCOM program [15].
In photoionization and Compton scattering processes, an electron
is emitted and the residual excited ion decays through the emission
of Auger/Coster–Kronig and fluorescence photons as well as shake-
off emission. The possible relative relaxation pathways through
these non-radiative and radiative transitions are extracted from the
LLNL Evaluated Atomic Data Library [13], while the probabilities of
electron shake-off after the creation of an inner-shell vacancy in Cs
and I are approximated by averaging probabilities for the rare
gases [16].

All the primary and secondary electrons created will further
interact with CsI through a number of possible mechanisms,
including interband transitions, plasmon excitation, core shell
ionizations from K to O shells and electron–phonon interactions,
as well as Bremsstrahlung emission. To determine which atomic
shell is ionized, the cross-sections of individual inner shells are
calculated using an optical-data model of the generalized
oscillator strength (GOS) [17]. The generation of each core level
vacancy in the simulation is followed by an Auger/Coster–Kronig
and shake-off electron cascade. The cross-sections of the

electron–optical phonon interactions are calculated using the
theory of Llacer and Garwin [18], while those of the electron–
acoustical phonon interactions are evaluated from the model
developed by Bradford and Woolf [19]. Based on the GOS method,
we have developed a new model to evaluate the electron mean
free paths of interband transition and plasmon excitation over a
wide energy range (from several eV to a few hundred MeV) in a
relativistic kinematics framework, which will be described
elsewhere. In this mode, the cross-sections at low energy
range (o1 0 0 eV) can be fitted to ab initio calculations. The
mean energy loss involved in plasmon excitation by a fast
electron is calculated by

Sp ¼�ðdE=dxÞlp ð1Þ

where dE/dx is the electron stopping power for plasmon formation
and lp is the mean free path. Energy loss due to plasmon creation
is defined as Eloss, and the kinetic energy of the incident electron,
E0e, can be calculated by

Eue ¼ Ee�Eloss ð2Þ

where Ee is the initial kinetic energy of an incident electron.
A random sampling algorithm is employed to obtain the energy
loss of an incident electron due to an interband transition, as
detailed in Ref. [10]. The cross-sections of the Bremsstrahlung
process developed by Salvat and Fernández-Varea [20] are
employed, and a random sampling approach is used to evaluate
the electron energy loss. The angular differential cross-sections
for elastic collisions are obtained from partial wave calculations,
as described in Ref. [21], which are accurate for kinetic energies
less than 2 MeV. We have further developed the NWEGRIM code
to include the multiple elastic scattering theory [22], which can be
applied to simulate elastic scattering events at high energies.
Calculations were carried out for 44 photon energies ranging from
50 eV to 1 MeV, and the number of photon events simulated, Np,
was equal to 105 to ensure convergence of both the Fano factor
and W value. The primary electrons were followed until their
energies were less than the cut-off energy (twice the band gap),
and a great number of electron histories were stored for further
analysis.

3. Results and discussions

The number of electron–hole pairs and their distribution can be
directly determined from the MC simulations. Fig. 1 shows the
electron number distributions produced by 200 and 662 keV
photons. It can be seen that the electron number distribution is

Fig. 1. Electron number distributions for photon energies of 200 and 662 keV.
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approximately a Gaussian distribution at these energies, while it
appears asymmetric at low energies, particularly for energies less
than 1 keV (not shown in Fig.1). The mean electron number is
14,485 and 48,152 for 200 and 662 keV, respectively. Using the
electron number distributions, the parameters W and F can be
calculated, and the results are shown in Fig. 2, where the shell
edges are indicated. At energies lower than 10 keV, W generally
decreases with increase in photon energy (from 19 to 15.2 eV), and
exhibits a sawtooth variation, as observed previously in Si [10]. The
discontinuities at all the shell edges follow the photoionization
cross-sections. However, W tends to an asymptotic value of about
15.2 eV at higher energies, in good agreement with experimental
values (12–20 eV) in CsI [23].

According to the model proposed by Lempicki and Wojtowicz
[24], the measured light yield, Ly, the average number of scintillation
photons generated by gamma-ray, can be expressed by

Ly ¼
Ne�h

E
SQ ð3Þ

where Ne�h is the number of electron–hole pairs created using MC
simulations (including energy loss to optical phonons). S stands for
transfer efficiency and Q luminescence quantum efficiency, which is
often taken to be one. It is reasonable to write Eq. (4) as

Ly ¼ SQ=W ð4Þ

The calculated value of W is about 15.2 eV per electron–hole
pair, for incident energies larger than 10 keV; therefore, taking
both S and Q as one, the maximum light yield, which corresponds
to every electron–hole pair recombining to emit a photon, can be
estimated to be 65,800 ph/MeV. This value is in reasonable
agreement with the experimental range of values between
48,000 and 76,000 ph/MeV ([11] and references therein). It is of
interest to note that W decreases with increase in energy up to
10 keV, leading to an increase in light yield. This may be
correlated to the nonlinearity observed experimentally in CsI,
i.e., initial rise in relative light yield with increase in incident
energy [11]. Based on Eq. (4), the light yield can be estimated to
be 52,600 ph/MeV at low energies and increases to 65,800 ph/
MeV at higher energies. The present simulations suggest that the
nonlinearity at low energies in CsI may be affected by some
intrinsic properties of materials. Considering that exciton–exciton
annihilation is an important mechanism, Moses et al. [25]
suggested that the Birks equation could be used to describe the

rising part at low incident energies of the nonlinearity curve of
inorganic scintillators. Recent computer simulations [11] con-
firmed that STE–STE annihilation can account for the rising part of
the relative light yield curve at low incident energies for both pure
CsI and cerium-doped LaBr3. Therefore, it is likely that both the
electron cascade and energy transport stages contribute to the
nonlinearity of scintillator materials, but it is not clear to what
extent. More work remains to be done to determine the possible
contribution of different mechanisms to the nonlinearity of
scintillation response.

The Fano factor, F(Ep), increases with increase in photon energy
to a value of 0.28 around 10 keV and remains constant at higher
energies, as shown in Fig. 2. The initial increase of F with increase
in incident energy may also affect the energy resolution of CsI,
and represents an important intrinsic property. Similar to the
behavior of W, discontinuities also appear at the shell edges. The
Fano factor in CsI is generally higher than that in Si and Ge. It is
well known that the creation of electron–hole pairs and their
distributions at low energy are sensitive to the cross-sections of
photoelectric absorption, and thus affect W and the Fano factor. In
the present study, a large number of core shell ionization
processes has been considered in CsI, which ranges from K to O
shells. In Si or Ge, only K, L and M core shells are included. It is
likely that the incident photon with an energy larger than a few
hundreds of eV is able to create a fast electron and a vacancy at
one of the core shells, which leaves the atom in an excited state.
The atomic relaxation leads to the Auger electron/fluorescence
photon emissions and shake-off electrons. It is possible that these
secondary electrons can further result in core shell ionization. The
mean number of electron–hole pairs created by photons and their
distributions are sensitive to the number of energy loss channels.
An increase in the number of energy loss channels could broaden
the electron number distributions, leading to an increase in F.

As described in Section 1, the final scintillator yield strongly
depends on the density of electronic excitations initially created
in the track region. The understanding of nano-scale spatial
distribution of electron–hole pairs will provide important
information for large-scale simulations of electron–hole pair
transport, electron–hole annihilation, and recombination
of excited carriers, allowing us to explore the possible origins of
nonlinearity. Fig. 3 shows a typical spatial distribution of
electron–hole pairs created by a 10 keV incident photon in CsI.
The incident photon interacts with a Cs atom by photoelectric
absorption, which creates a L shell vacancy and a fast electron
with a kinetic energy of 6 keV. This process leads the Cs atom to
be in an excited state, and the atomic relaxation process that

Fig. 2. Variation of the mean value of the electron–hole pair creation energy, W,

and Fano factor, F, as a function of photon energy, E.

Fig. 3. Simulated spatial distribution of electron–hole pairs for a 10 keV photon

event in CsI, where electrons and holes are distinguished by size and color, as

indicated in legend.
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follows results in the emission of another fast electron with a
kinetic energy of about 3.45 keV, together with several low energy
electrons. These two fast electrons further interact with the
material to generate two tracks, as shown in Fig. 3. It can be seen
that most electron–hole pairs are produced by core shell
ionization and corresponding atomic relaxation processes. It is
of great interest to note that all electron–hole pairs are distributed
along the tracks of fast electrons. These electrons are incapable of
generating further electron-hole pairs and their kinetic energies
are generally less than the cut-off energy for terminating the
simulation. However, these electrons are very mobile and can
move away from the primary track without significant loss of
their energies. Further simulations of thermalization effects on
electron–hole pair diffusion are likely to lead to spatial distribu-
tions that are more diffuse as a result of electron–phonon
scattering.

4. Conclusion

A Monte Carlo method has been extended to simulate various
quantum mechanical processes for energy loss of photons and fast
electrons and the spatial distribution of electron–hole pairs in CsI
over the energy range from 50 eV to �1 MeV. The intrinsic
properties calculated are in good agreement with the limited
experimental data. The decrease of W with increase in incident
photon energy up to 10 keV may affect the initial rise in relative
light yield that is experimentally observed for CsI. Also, the initial
decrease in F for energies up to 10 keV may affect the energy
resolution of CsI at low energies. The increase in the number of
ionization channels for energy loss may explain the large Fano
factor calculated for CsI, as compared with that in Si and Ge. The
nano-scale spatial distributions demonstrate that electron–hole
pairs are primarily distributed along fast electron tracks in CsI.
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We study the formation, mobility, and stability of self-trapped excitons (STE) and self-trapped holes and
electrons in NaI and NaI(Tl) using embedded cluster hybrid density functional theory calculations. This method
employs an array of classical charges to provide an environment simulating the interior of an ionic solid in
which the electronic structure of a modestly sized quantum-mechanical cluster is computed including nonlocal
exchange effects which are necessary to describe localized excitations in NaI. In contrast with previous models,
we find that both carriers in pure NaI have similar mobilities, with an activation energy of ∼0.2 eV. We propose
an alternate interpretation including a new migration mechanism for the STE. In Tl-doped material excitons
preferentially trap at dopants, inducing off-center distortions that have a structure unlike an STE and provide a
mechanism for light emission at multiple wavelengths.
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I. INTRODUCTION

Recent progress in multiscale modeling of scintillating ra-
diation detectors shows great promise.1 Such efforts, however,
require a quantitative understanding of all relevant micro-
scopic processes which can then be correctly parametrized
in meso- or macroscale models. While some quantities are
accessible by measurement, the picture is often incomplete
and sometimes qualitatively incorrect. This paper presents re-
sults using first-principles calculations that capture important
details of the microscopic physics of NaI that are crucial to
understanding and modeling of detector performance.

Thallium-doped NaI is of particular interest because it is
widely used and the standard material against which new
scintillators are compared.2 In scintillation radiation detection,
highly energetic radiation causes a cascade of secondary
excitations in the crystal. Some of these excitations ultimately
relax by the emission of visible light which is measured as
a proxy for the energy of the incident radiation. The energy
resolution of scintillators is limited by the nonproportionality
of light yield to incident energy.3

Despite decades of experimental4–8 and theoretical5,9–12

study, microscopic understanding of the competing modes of
energy transport and conversion in alkali halides is incomplete,
and the interaction of energy carriers with dopants is only
partially understood. Experimental and theoretical studies
show that the luminescence efficiency depends on the spatial
distribution of the secondary excitations, with higher densities
of excitations producing fewer luminescence photons per
unit deposited energy for low excitation energies.3,13–15 This
falloff of luminescence efficiency at low energies and high
excitation densities is common in scintillators but especially
pronounced in NaI(Tl). It is attributed to quenching of the
secondary excitations by nonradiative processes that leave the
energy carried by a pair (or more, for higher order processes)
of secondary excitations in the vibrational modes of the
scintillator and hence unavailable for luminescence.

We address the formation and diffusion of holes and
excitons in pure and Tl-doped NaI, which are the important

secondary excitations for luminescence. Self-trapped holes
(STHs) (V k centers) consist of a missing electron in a valence
band and an accompanying strong lattice distortion, and a self-
trapped exciton (STE) can be thought of as an STH surrounded
by a bound electron. In both cases the lattice relaxation in the
pure material resembles the formation of an I2

− ion within the
bulk crystal16 with two I atoms moving markedly together.
Such self-trapped excitations were qualitatively explained
theoretically by the 1970s,17,18 but improvement of theoretical
understanding is ongoing, and a fully detailed description has
not yet been achieved.19,20

During a scintillation event in NaI or NaI(Tl), these self-
trapped excitations are initially created in a track, the structure
of which depends on the particular exciting radiation. After
creation, the self-trapped excitations execute diffusive motion
until their decay. In the Tl-doped material, the dominant
mechanism for light emission is STE capture by a Tl dopant
(activator) followed by photon emission by the Tl. In the
absence of such activator sites, the dominant process for light
emission is direct radiative decay of STEs. The dominant
quenching mechanism is STE-STE annihilation, in which
two excitons collide and are destroyed. In both cases, light
emission involves a single STE and hence depends linearly
on the STE density while the quenching mechanism, which
requires (at least) a binary collision, depends on higher powers
of the excitation density leading to decreased luminescence
efficiency at high excitation densities. Meanwhile, STHs and
free carriers are also produced in the track. They can combine
to form excitons (including STEs) or luminescence photons.
Thus, a detailed understanding of scintillator performance in
these systems requires understanding of the motion of STEs,
free electrons, and STHs in order to predict the time evolution
of the populations of each type of excitation and their ultimate
fates. Various attempts have been made to describe scintillation
efficiency by modeling the time and spatial dependence of
secondary excitations using Monte-Carlo approaches, models
based on rate equations, or ones based on diffusion equations.
These are reviewed in Ref. 13. All these approaches are
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limited by the paucity of knowledge regarding the microscopic
dynamics of low-energy excitations.

Previously proposed models,15,21 based on optical
experiments,22,23 assumed a highly mobile STE and a slower
STH, while we find that in pure NaI both carriers have similar
mobilities, with an activation energy of ∼0.2 eV. We propose
an alternate interpretation, in which an electron hops from
an STE to an STH at a different site, effectively exchanging
the STE and STH. Our calculations suggest this migration
mechanism should have a much lower barrier, consistent
with measurements. Excitons migrating via this mechanism
are likely to exhibit dynamics with different dependencies
on temperature and local excitation density than excitons
migrating by the conventional hopping mechanism. Impor-
tantly for theories of scintillation efficiency, STEs hopping
by this mechanism can-not participate directly in STE-STE
annihilation, since the destination site for this mechanism must
contain an STH. Hence the existence of two different hopping
barriers has implications for detector nonproportionality.

As is well known, accurate calculations of localized states
in alkali halides are challenging because density functional
theory (DFT) using semilocal exchange-correlation potentials
often provides a qualitatively incorrect picture [e.g., neither
STEs nor STHs are stable compared to undistorted structures
in NaI (Ref. 24)]. To circumvent this problem we employ
hybrid DFT with nonlocal exchange.

Most previously reported calculations on alkali halide
systems (e.g., Refs. 25, 10, and 11) have been performed
using some form of pure Hartree Fock (HF) theory. Notable
exceptions are Derenzo and Weber26 and Rivas-Silva et al.27

who used MP2 and QCISD levels of theory, respectively, to
calculate emission energies. These previous works relied on
small or symmetry constrained models to improve calculation
tractability or to explore a specific proposed geometry. Since
confinement effects limit the deformations available, small
clusters discourage localized states which involve such distor-
tion or lattice polarization. On the other hand, the use of pure
HF, which completely neglects the correlation energy, favors
localized states. Hence there is the possibility that these two
errors partially cancel leading to qualitatively correct results.
This work (with as many as 136 ab initio atoms and no
constraints on the symmetry of the deformation) is a substantial
improvement over previous efforts in this area.10,11,25–27

II. COMPUTATIONAL METHODS

As in past work,11,17,18,28,29 we use an embedded cluster
method to facilitate tractable calculations. Our calculations
include a large (∼10 000) array of fixed point charges, located
at lattice positions of the undistorted crystal. This array
provides an electrostatic potential which closely reproduces
the classical Ewald potential of the perfect crystal throughout
a central region in the interior of the array. The atoms on
surface of the cluster are fixed throughout the calculation, and
the interior atoms are allowed to relax. A schematic diagram
of a cluster model is shown in Fig. 1.

Within the quantum-mechanical region, the electronic
structure was computed by means of hybrid DFT using
CRENBL ECP (Ref. 31) basis sets for Na and I and
Stuttgart RLC basis sets32 for Tl. Unless otherwise stated,

FIG. 1. (Color online) Cutaway view of embedded cluster model
of NaI. Classical charges are shown in gray, Na atoms in gold, and I
atoms in purple. In this model there are 16 248 charges and 136 atoms.
Atoms within the inner circle are allowed to relax during geometry
optimization, while those atoms between the circles are held fixed.
This image and all images in this paper depicting structures were
created using VESTA (Ref. 30).

the cluster models contained 136 quantum-mechanical atoms.
The positions of 51 of these were varied in the optimizations.
For each Na atom in the cluster two electrons were treated
by means of an effective core potential. For each I, 46
electrons were so treated. The calculations presented here are
scalar ones that do not include the spin-orbit interaction. The
Becke half-and-half33 (BHH) exchange-correlation potential
was used. Unless otherwise stated, calculations were carried
out using the NWCHEM code.34

III. RESULTS

A. Pure NaI

To characterize localized excitations we constrained the
number of spin-up and spin-down electrons and searched for
the nuclear coordinates that minimized the total energy of the
cluster model subject to these constraints. The results of such
a procedure are the geometry and energy of the lowest energy
state of each type: a doublet of charge +1 in the case of the STH
and a neutral triplet in the STE case. We find that on-center
self-trapped holes and excitons are stable in NaI compared to
delocalized states, but electrons do not self-trap in pure NaI
clusters in our calculations even for pure HF which is known
to favor self-trapped states.20

In our models, the two I atoms participating in the STE
are separated by 3.36 Å, close to the measured (3.23 Å)35 and
theoretical (3.31 Å) isolated I2

− bond length and far from
the I-I separation in the undistorted NaI crystal (4.58 Å).
Our isolated I2

− bond length is in good agreement with
other calculations,36 and the actual STE I-I separation is
also in agreement with other theoretical results.37 The energy
of the STE is calculated to be 5.68 eV above the (singlet)
ground state of the undistorted crystal and 0.7 eV below
the lowest energy triplet state of the undistorted crystal. The
measured excitation energy is 5.61 eV.38 In addition, we
calculated an emission energy of 4.27 eV for the STE, in
good agreement with the experimentally measured value of
4.207 eV.39 We also find an on-center STH which resembles
the STE (3.38 Å I-I separation) with the electron removed.
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FIG. 2. (Color online) The four near-neighbor hops available to the STE or STH in NaI.

Our calculations estimate the energy of this STH to be 0.50 eV
lower than a delocalized hole in the undistorted crystal.

Assuming the conventional picture in which self-trapped
excitations migrate via the transfer of lattice distortion and
spin density between adjacent lattice sites, we calculated the
energy barrier for hopping of the STE and STH in NaI for each
of the four possible hop angles between iodine neighbor pairs
in the rocksalt structure which are depicted in Fig. 2.

For each hop and type of self-trapped excitation, cluster
models were relaxed with the excitation positioned at either
end of the jump. The transition state was estimated by relaxing
the interior atoms of the cluster except the two I atoms
directly participating in the self-trapped excitation (the active
halogens) from a starting geometry calculated as the average
of the geometries before and after the jump. We have reported
this energy difference as the migration barrier in Table I.
For all STH jumps, the hole orbital at the transition state is
shared among the three halogens involved in the jump. Most
of the orbital resides on the central I that participates in the
STH before and after the jump, with smaller but significant
contributions from the other two iodines involved. Previous
work in other alkali halide systems has found similar transition
states.40 Shluger and co-workers40 postulated the existence of
a “one-center” self-trapped hole state near the transition state
for the 60◦ STH jump. They found this state to be unstable;
we find the same conclusion for our system in the present
work. The energy difference between a one-center trapped
hole and the STH provides an upper bound for the transition
barrier and provides an explanation for the nearly identical

TABLE I. Calculated migration barriers for STH and STE in pure
NaI.

Hop angle (deg) STH barrier (eV) STE barrier (eV)

60 0.225 0.199
90 0.285 0.267
120 0.241 0.274
180 0.223 0.258

barriers since any of the hops could be accomplished by
first transitioning to the one-center state which appears to be
adiabatically connected to all the STH states in which the
single center participates.

We show the spin density for the relaxed STH and for the
transition state of the 120◦ hop in Fig. 3. In our simulations,
the behavior of the hole in the STE hops is very similar to that
of the hole in the corresponding STH hops. The STE electron
becomes delocalized in the transition state for all hop angles
in our clusters.

Popp and Murray8 estimated a barrier of 0.18 eV for the
60◦ STH jump, in reasonable agreement with our value of
0.225 eV. On the other hand, experimental estimates of the
STE hopping barrier are much lower. For example, Nagata
and co-workers22,23 reported 0.07 eV for Tl-doped NaI. The
magnitude of this barrier is directly related to the thermally
activated mobility of the STE, and our results suggest that
the conventional picture of the low-energy kinetics of STEs
should be reexamined. In particular, we expect, based on
our calculations, the STE and STH to have nearly identical
mobilities. The lower barrier ascribed to the STE can be
attributed to the migration of electrons hopping from an STE
to a nearby STH. Since the geometries of the STH and STE
are similar, we expect the barrier for such a hop to be low.
In fact the energy gained by relaxing the neutral triplet state
starting in the STH geometry (so that the final configuration is
an STE) is 0.02 eV. The hopping barrier can be expected to be
of the same order of magnitude.

B. Tl impurities

NaI is commonly doped with Tl, which substitutes for Na
at a lattice site to create a light-emitting center. The transfer
of energy from diffusing self-trapped excitations to these
luminescence centers, while believed to play a significant
role in scintillator performance, is not well understood. To
investigate this process, we simulated Tl impurities in our mod-
els. The lowest energy singlet state for our clusters involves
only modest displacements around the Tl to accommodate the
larger size of the dopant compared to the Na atom it replaces.
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FIG. 3. (Color online) Spin density isosurfaces drawn at 0.001 electrons/bohr3 around an STH (left panel) and the transition state for a
120◦ STH jump (right panel).

By optimizing the geometry from various starting points and
spin populations, we find a rich collection of stable trapped
excitations from this state including two distinct neutral triplet
excitons as well as a single trapped hole and a trapped electron.

The two nearly degenerate (the energy of the edge configu-
ration is higher by 0.04 eV in our model) triplet excitations are
depicted in Fig. 4. We note that, unlike the bulk self-trapped
excitations, the Tl-trapped excitons are stable in LDA and

FIG. 4. (Color online) The left column shows schematic diagrams of the displacements relative to a perfect NaI crystal lattice of a Tl
impurity participating in two different exciton states. The right column shows the optimized coordinates of the coordinating octahedron that
holds the Tl impurity along with a spin density isosurface drawn at 0.001 electrons/bohr3.
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PBE theories, although PBE reverses the relative energies of
the two excitons. In bulk NaI, each Na cation is octahedrally
coordinated by I anions. The Tl in the singlet ground state sits
similarly in the center of a nearly regular octahedron with I at
each vertex. The relaxations accompanying the trapping of the
triplet states involve the movement of the Tl towards either an
edge or face of the octahedron which expands to accommodate
the Tl. In both cases the spin density associated with the
triplet exciton is localized on the Tl and the accommodating
I atoms (cf. Fig. 4). The orbitals involved in the excitons
have s character around the Tl and p character around the I
atoms. Calculations of the barrier between the two Tl-trapped
excitons were done using cluster models. Additionally, we
used the nudged elastic band method as implemented in the
SEQQUEST code41,42 to estimate the barrier. Both LDA43 and
PBE44 functionals were used. These calculations all indicate
that the barrier is very low and that the Tl can rattle around
nearly freely in the octahedron formed by the nearest iodines.

We found these Tl-trapped triplet states to be stable
compared to a (bulk) STE near a singlet Tl by ∼0.25 eV
and hence expect diffusing STEs to be trapped when they
encounter Tl impurities. Even though the excited states are
essentially degenerate, the excitation depicted in Fig. 4(a)
has a luminescence energy of 3.46 eV, while the excitation
depicted in (b) has a luminescence energy of 2.85 eV due to the
slope of the ground-state potential energy surface between the
excited state geometries. These calculated transition energies
compare well with low-temperature experiments on NaI(Tl)39

finding bands centered at at 3.76 and 2.95 eV. In other doped
alkali halide systems these AT and AX emissions have similar
structure.45,46

The off-site displacement of the Tl center is due to broken
symmetry on the excited state potential energy surface induced
by the presence of an electron with p orbital character. We
expect the same type of distortion to occur for the triplet
exciton, the trapped electron (Tl0), and the singlet excited state
(Tl*).

We propose that the localized triplet states depicted in Fig. 4
play a role in the transfer of energy from free, diffusing STEs
to fixed luminescence centers by capturing the spin density
associated with the STE and thereby destroying the STE. The
distortion around the Tl, which cannot migrate, replaces the

FIG. 5. (Color online) Spin density isosurface drawn at 0.0005
electrons/bohr3 in a 136-atom cluster containing a Tl0.

TABLE II. Bond lengths and relaxation energies (energy differ-
ence between positively charged clusters in undistorted and fully
relaxed geometries) for the STH in pure NaI for several cluster models
of different sizes. BHH xc was used for these calculations, so the first
line of this table and Table IV are identical. The bond lengths are in
Å and the energies in eV.

Cluster size Bond length Relaxation energy

48 3.383 0.50
80 3.371 0.69
136 3.357 0.72

STE. We have succeeded in relaxing a lattice STE in a layer
adjacent to a Tl impurity’s surrounding octahedron, hence we
estimate the radius for capture of a diffusing STE by a Tl
impurity to be of the order of the lattice constant.

Finally, we have found a shallow but stable minimum in
which an electron is localized on a Tl impurity (i.e., a Tl0). The
relaxation around this state resembles the exciton in which the
octahedron edge lengthens to accommodate the displacement
of the Tl (the top row of Fig. 4). This Tl0 state is only 0.1 eV
lower in energy than a delocalized electron in the relaxed
singlet (Tl+) geometry. The spin density of the Tl0 state is
depicted in Fig. 5.

IV. DISCUSSION

To explore the dependence of the physics of self-trapped
excitations on cluster size and exchange-correlation treatment,
we varied each approximation in baseline calculations of the
STH. Table II shows the bond length of the I2

− in the STH
and the relaxation energy (energy gained by allowing the I2

−
to form in a positively charged cluster) for three cluster sizes.
In Table III we show various energy differences in neutral
cluster models of the same size as those used in Table II.
We list the energy difference between the lowest unoccupied
orbital (LUMO) and the highest occupied orbital (HOMO) of
the singlet configuration at the relaxed singlet (i.e., bulklike
ground state) geometry. We also list the excitation energy
which is computed as the difference between the total energy of
the relaxed triplet (i.e., STE) geometry and the total energy of
the relaxed singlet (ground state). Finally we list luminescence
energies which were calculated as the difference between the
triplet and singlet potential energy surfaces at the relaxed triplet
(STE) geometry. From these convergence studies, we estimate
the errors due to finite cluster size in energies are ∼0.1 eV and
in bond lengths are ∼0.05 Å.

TABLE III. Calculated energy differences (in eV) for neutral
cluster models of different sizes. We show singlet HOMO-LUMO
gaps and excitation and luminescence energies for the STE.

Cluster size HOMO-LUMO Excitation Luminescence

48 7.39 5.74 4.49
80 7.23 5.57 4.17
136 7.16 5.68 4.27
Experiment 5.61 (Ref. 38) 4.207 (Ref. 39)
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TABLE IV. Bond length, 60◦ migration barriers, and relaxation
energies (energy difference between positively charged clusters in
undistorted and fully relaxed geometries) for the STH in pure NaI
for several xc functionals which are described further in the text. All
calculations in this table used identical 48-atom models. The bond
lengths are in Å and the energies in eV.

Functional 60◦ barrier Bond length Relaxation energy

BHH 0.225 3.383 0.50
HF 0.193 3.370 1.55
B3LYP 0.150 3.383 −0.04
Becke 0.325 and 0.625 0.140 3.423 0.18

In Table IV we present the 60◦ migration barrier, bond
length, and relaxation energy for the STH computed with
several exchange-correlation (xc) functionals but otherwise
identical cluster models. In addition to BHH (Ref. 33) (used for
all other results in this paper), results obtained using B3LYP,47

HF, and a modified BHH in which the fraction of of HF
exchange is reduced from 1/2 to 0.325 are tabulated. The bond
length is rather insensitive to xc treatment, but, surprisingly,
the migration barrier is smaller in the HF theory than in the
BHH one. The relaxation energy, however, is monotonic in the
fraction of HF exchange included in the otherwise semilocal
functional. In fact, the STH, while locally stable, is higher
in energy than the undistorted structure in the B3LYP theory.
Based on these calculations it is our opinion that in the case
of ionic solids such as the alkali halides, the uncertainty in the
calculated energies due to the exchange-correlation treatment
is larger than that due to finite cluster size effects.

V. CONCLUSION

We have studied trapped excitations in NaI with ab initio
hybrid DFT using large systems. We find an on-center STE and
STH in the pure material and excitons trapped on Tl impurities
in NaI(Tl). Our calculations are in very good agreement with
available experimental data and largely consistent with the
conventional picture of scintillation in NaI except for the
STE hopping mobility, for which we find a much higher
barrier (close to that for the STH) in our calculations. We
suggest further work to validate the barriers and energy levels
published here as well as a theoretical description of other
microscopic properties outside the scope of this paper, such
as STE-STE annihilation, and STE radiative and nonradiative
decay lifetimes. It is also our hope that models of scintillation
efficiency, parametrized with ab initio results such as the ones
presented here and including both STE migration mechanisms
be constructed and tested.
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Abstract
We use density functional theory calculations to characterize the electronic and structural
properties of the Tl and Na dopant centers in CsI. We find that the Tl and Na centers can
accept one or two electrons and couple to long-range relaxations in the surrounding crystal
lattice to distort strongly off-center to multiple distinct minima, even without a triplet
excitation. The long-range distortions are a mechanism to couple to phonon modes in the
crystal, and are expected to play an important role in the phonon-assisted transport of polarons
in activated CsI and subsequent light emission in this scintillator.

(Some figures may appear in colour only in the online journal)

1. Introduction

There has been considerable interest in recent years in the
development of new materials and optimization of current
materials for use as scintillating radiation detectors. Signal
production in scintillating detectors involves conversion of
cascade energy into optical emission. This is a relatively
slow process involving transport of carriers to luminescent
centers, in competition with other processes that dissipate a
portion of the initial energy. Prediction of the performance
of new or improved materials requires an understanding
of these transport processes. Cesium iodide doped with
thallium or sodium (CsI:Tl, CsI:Na), is widely used as an
effective scintillating material. Despite many careful studies
over several decades [1], the mechanisms for energy transport
and light emission, and the role of the dopant atoms in
this material are not well understood. Previous cluster-based
ab initio calculations of Tl in CsI and NaI clusters have
demonstrated the need for relatively large systems to
adequately describe the surrounding lattice response, but only
examined symmetric lattice distortions [2].

We use density functional theory (DFT) to investigate
the electronic and structural properties of Na and Tl dopants
in CsI, along with related intrinsic defects, to elucidate the
behavior of these dopants. It is well established that standard
DFT using semilocal exchange–correlation potentials does
not correctly describe the expected energy carriers in the pure

alkali halides, either self-trapped holes, also known as Vk
centers, or self-trapped excitons (STE) [3, 4]. However, we
are not attempting to model the STE or Vk center. For defects
with well-localized electronic states, such as the vacancy and
dopant impurity point defects we investigate here, we expect a
semilocal description to provide a fully adequate and decisive
description of the defect structure and behavior.

In addition to having a stable neutral state and a localized
triplet excitation, a defect-trapped exciton (DTE), we find
that each dopant center can accept one or two electrons.
All of the charge states of substitutional Tl and Na distort
off-center, and couple to surprisingly long-range distortions
in the surrounding crystal lattice. Three symmetry-distinct
distortions are found, into the 001-face, into the 110-edge, and
along the 111-bond directions, and are stable even without
having trapped a local triplet excitation (exciton). These
distortions involve long-range lattice deformations that would
naturally couple to phonon modes, and include local structural
deformations that would facilitate capture and transport of
excitons. This provides a novel mechanism to explain the
emission behavior activated by the dopants.

2. Computational methods

The density functional supercell calculations for CsI:Tl were
performed with the periodic pseudopotential SEQQUEST

code [5]. The spin-polarized local-density approximation
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(LDA) calculations used the form parameterized by Perdew
and Zunger [6] and the generalized gradient functional used
was formulated by Perdew et al [7]. Carefully optimized [8]
norm-conserving pseudopotentials [9] (PP) were used for all
atoms: the cesium PP included its semicore 5p6 electrons
among the valence electrons along with a non-linear core
correction [10] (Rnlc = 2.5 bohr), and the [core] 5p66s0.1 atom
used a hardened d-potential (Rl = 1.4) for its local potential;
an otherwise standard s2p5 iodine PP used a hardened l = 3
(Rl = 1.2) potential for the local potential as the optimal l = 2
potential (Rl = 1.57) proved too soft for good transferability;
and the 5d10 shell of thallium was placed in the valence
and used as the local potential, while its p-potential was
tuned (Rl = 1.57) for better transferability. The double-zeta
plus polarization basis sets were constructed of contracted
Gaussian functions.

We used the local moment countercharge method to
solve the Poisson equation for charged supercells [11] and
extrapolated to bulk asymptotic limits using the finite defect
supercell model [12]. Bulk screening energy outside the
supercell [12] was evaluated using the experimental static
dielectric constant [13], 5.65, and an internal screening depth
of 1.8 bohr (∼0.9 Å). The numerical results are not highly
sensitive to these values, and the convergence of results
extrapolated from different sized supercells confirms the
accuracy of this approach.

The defect calculations were performed with the
supercell fixed at the theoretical equilibrium lattice parameter:
4.417 Å for LDA and 4.680 Å for PBE, the experimental
lattice constant is 4.567 Å [13]. The measured bulk modulus
for B2 structure CsI is 12.6 GPa [14]. Our computed LDA
bulk modulus is 16.6 GPa, slightly stiffer than experiment, and
the PBE value is 9.7 GPa, slightly softer than experiment, like
the lattice constant, bracketing the experimental value as LDA
and PBE usually do. Supercells ranged from 3×3×3 (54-site)
to 6× 6× 6 (432-site) scaled versions of the primitive 2-atom
cell of the CsI B2 structure, and used 33 grids for sampling
the Brillouin zone in the 54-site cell and 23 k-grids for the
larger cells. The atomic configurations were energy-relaxed
to within 1 meV of a local minimum, with forces on atoms
less than 0.01 eV Å

−1
. Supercell size tests (with LDA)

indicated that 54-site and 128-site failed to adequately contain
the extensive strain fields around the defects, while 250-site
results were well-converged compared to 432-site results.
Results reported in this paper are extrapolated from 250-site
supercell calculations. Formation energies are quoted in the
Cs-rich limit, i.e., the bulk bcc Cs and CsI define the atomic
reference chemical potentials. In this context, the computed
formation energy of the neutral Cs vacancy is 3.74 (4.22) eV
and of the I vacancy, 0.50 (0.54) eV using PBE (LDA).
The heat of formation of B2 structure CsI, from bulk bcc
Cs and the I2 molecule elemental references are computed
to be 3.71 eV in LDA and 3.42 eV in PBE. These heats
of formation, using the conventions outlined by Zhang and
Northrup [15] to compute defect formation energies, can be
used to convert the defect formation energies from one limit
(Cs-rich) to another (I-rich).

Figure 1. Defect levels in CsI. LDA and GGA (PBE) are both
shown, results are the same within error of the techniques. Results
are converged at 250 atoms.

3. Results

Calculations were performed for a purposefully selected set
of defects, two intrinsic defects, the Cs vacancy VCs and
the I vacancy VI, and then for the dopant atoms Tl and
Na, both known to substitute on the Cs site: TlCs and
NaCs. In Tl-doped CsI, the Tl dimer substitutional, (Tl2)Cs,
is a common defect, and was also included in this series
of calculations. Furthermore, this dimer proves especially
important to set a useful limit on the position of the valence
band edge. An extensive search was undertaken to find all the
stable charge states and determine their optimum structure.
The resulting defect level diagram, summarizing the positions
of the ground state charge transitions within the CsI band gap,
is presented in figure 1.

The doubly ionized Tl dimer center state is only barely
in the band gap in the DFT calculations, both LDA and PBE,
and, in the absence of a more definitive marker to locate the
band edge on this diagram, its (+/++) transition is adopted
as the valence band edge (VBE). The VBE cannot be directly
computed in the same total energy calculations used to obtain
the defect level energies, but we can use this defect, cleanly
identified as a local defect state, and therefore in the band gap,
as the upper bound of the position of the VBE. As we shall see
later, this choice is likely overly conservative.

The VCs has charge transitions only slightly above the
(Tl2)Cs (+/ + +) transition, near the VBE, and the VI has
levels high in the gap. The near-perfect agreement between
the levels extrapolated from the 250-site cells and from the
432-site cells, depicted in figure 1 for the vacancies, confirms
the convergence of these defect level calculations to the
infinitely dilute bulk limit. The LDA and PBE calculations
agree closely with each other, finding the same charge states
and similar ground state structures for all the defects. The
computed levels for all defects are, reassuringly, not sensitive
to the choice of density functional, lending greater confidence
to the analysis of the results [8].

The measured band gap is reported to be 6.1–6.4 eV
[16–18]. Our computed defect levels span a range of almost
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5 eV, exceeding the Kohn–Sham (eigenvalue) gap for CsI for
LDA and PBE in these calculations, which is 3.80 and 3.58 eV,
respectively.

The calculation of localized defect levels can be used to
identify possible dopants, and defects that may compete with
desired emitters for hole or electron trapping. For example,
from figure 1 we can deduce that the iodine vacancy or the
negatively charged (Tl2)Cs may compete with the luminescent
Tl or Na dopants, while the cesium vacancy certainly will not.

3.1. Intrinsic defects

The VI is a commonly occurring defect that plays an important
role in energy losses [19], and interferes with light output. We
find that this defect can trap either a hole or an electron, with
0, 1 or 2 electrons in the vacancy for the VI(+), VI(0) and
VI(−) charge states of the defect (see figure 1). The neutral
VI, commonly known as the F-center, takes a symmetric Oh
structure in spin-polarized calculations, as do both the ionized
VI(+) and the VI(−), the latter commonly known as the
F′-center. Our calculations predict the ionization level for
the F-center, the (0/+) transition in figure 1, to be 3.5 eV
above the Tl dimer (+/ + +) transition, our assumed VBE.
The ionization level of the F′-center, the (−/0) transition,
is predicted to be 0.8 eV above the F-center ionization,
in excellent agreement with the experimental separation of
0.8 eV [20]. This close agreement lends confidence to the
calculations, but should be considered in light of large quoted
uncertainties in the experimental analysis of ∼0.5 eV.

Locating the experimental levels relative to a band
edge is less definitive, as this defect level position in
the gap is not measured directly. The position of the
F-center level is deduced through a combination of different
experimental analyses, that starts with the photoexcitation of
the F-center electron into vacuum, then derives the distance
of the conduction band edge (CBE) from the vacuum via
measurements of the electron affinity of bulk CsI, and then
also includes the size of the band gap. The F-center electron
and F′-center electron have vacuum ionization energies
quoted as 2.2 and 1.4 eV, respectively, with large uncertainty
in the latter [20]. The vacuum to CBE distance is quoted to
be 0.3 eV [20, 18] to as large as 0.7 eV [21]. The band gap
also adds about 0.2 eV uncertainty. The experimental analyses
suggest an ionization level for the F-center of roughly or
a little less than 4 eV above the VBE [21, 20, 22]. Our
calculation predicts this level is 3.5 eV, or greater, above
the VBE, in rather good agreement with this experimental
analysis, considering the uncertainties in the experimental
analysis. Given that the band gap is explicitly contained within
the experimental assessment of this level, this implies that the
effective band gap seen by the semilocal DFT calculations is
within ∼0.5 eV of experiment.

The low defect formation energy of the VI is consistent
with the easy formation of F-centers [19, 23]. The formation
energy of VI(+) is reduced linearly with the distance of the
Fermi level below the F-center transition, where the VI(+)

formation energy exactly matches the formation energy of
VI(0). Taken together, the splitting of the VI donor states,

Figure 2. Local minimum with a Vk-like distortion adjacent to a Cs
vacancy (VCs). Iodine is shown in dark gray (violet), Cs is light gray
(silver). The iodine–iodine distance indicated by the arrow is
decreased from the bulk crystal distance of 4.68–3.45 Å.

the implicit agreement with experimental band gap, and
the correct physical description of the formation of iodine
vacancies, these results indicate that the semilocal LDA and
PBE functionals are performing accurately for the ground
state defects in CsI.

The VCs may also trap either a hole or an electron. In
LDA, the defect remains in a symmetric structure for each
charge level. The relatively high formation energy, near 4 eV,
is consistent with this not being a common defect in CsI.
However, the VCs exhibits another interesting feature in the
calculations. Using spin-polarized PBE we found a second
minimum for the neutral doublet state in which a pair of
iodine atoms adjacent to the vacancy dimerize, resembling a
Vk center geometry [3]. This minima is a shallow metastable
state 0.18 eV higher than the symmetric configuration. That
a Vk-like center is found at all without the use of hybrid
functionals implies that this defect is a significant trap with the
ability to strongly localize holes at sites in the iodine sublattice
adjacent to the vacancy. This Vk+VCs configuration is shown
in figure 2.

3.2. Dopants

Both the Tl and Na dopant centers, in addition to having a
stable neutral state, can trap one or two electrons. In addition
to these ground state structures, both the LDA and the PBE
find a neutral triplet DTE to be stable for the Tl and Na
dopants. These trap levels are high in the gap, roughly at
or above the VI defect levels. While each charge state has
a metastable symmetric on-site configuration, they all have
lower-energy off-site distortions, with minima in three distinct
directions: toward the 001-face, toward the 110-edge and
a shallower minimum directly toward the nearest-neighbor
iodine in the 111-direction. These distortions had been
predicted for Tl-trapped excited states in CsCl:Tl, CsBr:Tl,
and CsI:Tl [24–26]. Our calculations confirm the presence of
these distortions in the triplet DTE, but we find that these
distortions already exist in the ground state, including for the
neutral defect.

The magnitudes of these displacements are summarized
in table 1. The distortion is small in the neutral defect (e.g. the
Tl+), reminiscent of a soft-mode ferroelectric phase transition
seen in dilated TlI crystals [27]. This state has no localized
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Figure 3. The three off-center structures for the Tl0 center and nearest-neighbor shell of iodine. Tl is shown as light gray (green), I is dark
gray (violet). For visual clarity, the arrows are exaggerated by a factor of 2 for the Tl displacement, and by a factor of 10 for the I
displacement. The Tl0 is displaced along (a) 100, (b) 110 or 111 directions. The displacements are with respect to the symmetric Tl0

structure.

Table 1. Displacement parameters in lattice units for Tl in CsI(Tl)
for LDA and PBE in the neutral (Tl+) state, with 1 (Tl0) and 2 (Tl−)
trapped electrons, and in the neutral triplet state.

Direction Tl+ Tl0 Tl− Triplet

100 LDA 0.01 0.19 0.21 0.31
PBE 0.11 0.23 0.23 0.36

110 LDA 0.01 0.11 0.13 0.10
PBE 0.10 0.15 0.14 0.16

111 LDA 0.01 0.03 0.07 0.02
PBE 0.09 0.08 0.07 0.08

electrons in the gap, yet already exhibits a distinct distortion.
The distortion is larger in PBE, perhaps because of larger
lattice constant and softer bulk modulus in PBE, relative to the
LDA, are more accommodating to an off-site distortion. The
distortion becomes larger in magnitude as localized electrons
are trapped at the center. The displacement for the Tl0 (single
trapped electron) center is significant, about 1 Å, about
halfway to the face of the cube formed by the nearest-neighbor
iodine ions. The localization exhibited here demonstrates that
the semilocal functionals, unlike for the STE and Vk center,
are not afflicted with a localization problem for these ground
state defects.

The structures of the off-center dopants are only found
if the surrounding lattice is allowed to relax; distorting the
dopant off-site from a symmetric structure causes the dopant
to return to the central site. The displacement is accompanied
by significant long-range distortions in the lattice, involving
the coordinated movement of over 100 atoms. The nature of
the distortions for the dopant and nearby atoms is depicted
in figure 3. The displacement field around the distorted
dopant has pairing distortion reminiscent of incipient Vk
centers. This dimerizing distortion is strongest and most
apparent in the neighbors of the 110-distorted dopant center
shown in figure 3(b), but this tendency extends deep into the
surrounding lattice.

In the neutral singlet ground state, the distorted
configurations have energies within 0.02 eV of each other. For
dopants with trapped electrons or in the triplet state results for

Table 2. Calculated and measured triplet luminescence energy
(Elum) for the Tl center in CsI, eV (nm).

LDA (this work) Experiment [30]

Geometry Elum Peak assignment Elum

100 2.90 (427) A′X 2.25 (560)
110 3.38 (367) A′T 2.55 (490)
111 3.49 (355) AT 3.09 (400)
Oh 3.55 (349) AX 3.31 (370)

LDA show that the off-center minima are 0.02–0.06 eV lower
than central position, all within 0.04 eV, in the order 111 >

110 > 100 (100 is lowest-energy position). For PBE, these
energy differences are slightly enhanced. Despite requiring
the concerted motion of over 100 atoms, barriers between
these states are also low, ∼0.01 eV, close to the resolution
of the current methods, for hops directly between off-center
positions. The low barriers between the local minima are
consistent with previous predictions from both theory end
experimental work [24, 28] for energy transfer between the
different excited state emissions assigned directly to the Tl.
This result means that dopant atoms may vibrate nearly freely
about the cage, except at very low temperatures, as was found
for Tl in NaI:Tl [29]. It also implies that the position of the
dopant is very strongly affected by local phonon modes or any
local distortions.

3.2.1. Off-center Tl and calculated emission energies.
The current results yield four possible Tl-related emission
energies, based on the four possible positions of the Tl
center in the triplet state. These energies, which we calculated
as the difference between the triplet and singlet potential
energy surfaces at the relaxed triplet (DTE) geometry, are
listed in table 2, along with measured emission energies
and suggested assignment based on polarization data [30].
The current results suggest emission from an interconnected
potential energy surface of the several configurations of the
Tl center. The calculated energies correspond roughly to the
observed peaks, but this picture is not complete.
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Figure 4. Possible Vk center placements adjacent to 110 (a) and 100 (b) off-center Tl centers. Tl is shown as light gray (green), I is dark
gray (violet), Cs is silver.

Interpretation of experimental measurements has led
to the assignment of the UV peaks to relaxed excited
states of the Tl center, and the visible emission peaks to
tunneling recombination between the Tl atom and a nearby Vk
center [31, 32]. The two visible peaks, (A′X and A′T ) are also
postulated to be due to the interaction of a Tl and a perturbed
STE either adjacent to the Tl, or offset by one unit cell [33].

Through examination of the distortions in the iodine
sublattice in our results, we are able to identify several likely
locations for a perturbed Vk center. We note that especially
for the 110 distorted Tl, we see nearby distortions of the I
lattice that resemble incipient Vk centers even in the ground
state. Proposed adjacent perturbed Vk centers for the 110 and
100 Tl displacements are shown in figure 4. There was no
obvious candidate for the 111 distortion. Localization of an
STE or Vk on one of these iodine pairs should lower the
energy of the 100 and 110 states, resulting in lower calculated
emission energy, more in line with the experimental values.
Quantitative investigation of the localized Vk center and
STE, beyond the scope of this work, will require simulation
methods with more explicit treatment of exchange, such as
hybrid functionals [29, 3].

Finally, we note that the distortion field of the iodine
sublattice resembles an array of incipient Vk centers, and
therefore may be expected to interact with the transport of
energy carriers near Tl or Na dopants. This indicates that
transport and emission characteristics related to the off-center
distortion of the dopant center will be strongly tied to phonon
modes of the crystal.
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In semiconductors, defects often assist nonradiative relaxation. However, Tl doping can significantly suppress
the nonradiative relaxation in alkali halides to increase scintillation efficiency. Without the Tl, it is known that the
creation of Frenkel pairs at self-trapped excitons, assisted by excited electron and hole relaxations, is the reason
for the nonradiative relaxation. Here we show by first-principles calculation that Tl doping introduces Tl p states
inside the band gap to trap the excited electrons. The trapping is highly effective to within several picoseconds,
as revealed by time-dependent density functional theory calculations. It alters the nonradiative relaxation process
to result in a noticeable increase in the relaxation barrier from 0.3 to 0.63 eV, which reduces the nonradiative
relaxation by roughly a factor of 105 at room temperature.
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I. INTRODUCTION

Nonradiative recombination (NRR) of excited carriers is
one of the most fundamental phenomena in semiconductors
and insulators. NRR can quench luminescence and limit
photovoltaic device efficiency. Therefore, understanding NRR
also has practical importance.1–3 However, NRR is often
complex involving excited carriers. This leads to difficulties in
theoretical analysis and identification of its microscopic origin.
As such, key knowledge on NRR is often lacking.

In semiconductors, defects are viewed as the cause for
NRR.4,5 However, in alkali halides counterexamples exist.
For example, in scintillation material CsI, which is widely
used as a high-energy particle detector,6,7 a minute amount of
Tl doping can significantly suppress NRR and increase light
emission efficiency.8,9 This hints that certain types of defects
may improve the efficiency of an optoelectric device. Although
there have been considerable efforts to understand the role of
Tl,10–16 the underlying mechanism for the NRR suppression
is still unclear. Physical processes in which a dopant reduces
rather than increases the NRR is critically important to material
research, as it offers clues not only for improved scintillation
but also for better LED, laser, photovoltaic, and spintronic
devices.

In this work, we present a state-of-the-art treatment of the
problem, which includes both hybrid functional calculations
for the self-trapped hole (STH) and the self-trapped exciton
(STE) and, separately, time-dependent density functional
theory (TDDFT) calculations for explicit electron relaxation
dynamics. Our study reveals two effects of the Tl: First, there
exists a large binding between substitutional Tl and STE of
0.88 eV, therefore an STE is bound to Tl until it undergoes
a radiative relaxation or NRR. Second, Tl increases the NRR
barrier of the trapped STE significantly to prevent the NRR
from happening. It is believed that NRR is caused by the
creation and migration of Frenkel pairs. Without the Tl, excited
electrons at the conduction band minimum (CBM) and holes
at the valence band maximum (VBM) assist the creation of
the Frenkel pairs through a strong electron-phonon coupling.
With the Tl, however, the excited electron is transferred

to the Tl p states within several picoseconds. As a result,
the carrier-assisted Frenkel-pair formation paths are blocked,
leading to significantly enhanced scintillation efficiency.

II. METHODS

Our structural optimization is based on the spin-polarized
density functional theory (DFT) with the hybrid PBE0
functional,17 as implemented in the VASP code.18 Projected
augmented wave potentials19 are used for ionic pseudopoten-
tials. Wave functions are expended in a plane-wave basis with
an energy cutoff of 290 eV. We use a 5 × 3 × 3 supercell
that contains 90 atoms with the [100] direction as the long
axis to facilitate the study of interstitial diffusion. � point is
used for the Brillouin zone integration. Tests with different
cell size and k-point sampling suggest that the total energy is
converged to within 0.01 eV. The ionic coordinates are fully
relaxed until the residual forces are <0.03 eV/Å. To mimic
electronic excitation, for pure CsI, we perform constrained
DFT calculations in which we remove one electron from the
VBM and place it at the CBM. For Tl-doped CsI, we place
the excited electron at the Tl level. This is a valid approach
because our calculation shows that the electron at the CBM
instantaneously transfers to the Tl level. To calculate the
energy barrier with nudged elastic band along with hybrid
functional is currently difficult. Instead, we generated nine
atomic configurations between the initial and final states and
then relaxed all the atoms in each configuration except for the
two diffusing iodine atoms.

A key to the determination of enhanced scintillation is
the time required for electron trapping. The recent develop-
ment of ab initio molecular dynamics (MD) coupled with
TDDFT20 makes this possible. Here, we use the TDDFT
formalism implemented in the SIESTA code,21,22 with norm-
conserving Troullier-Martins pseudopotentials,23 the Perdew-
Burke-Ernzerhof (PBE) exchange-correlation functional,24

and a double-ζ polarized local basis set. The real-space grid is
equivalent to a plane-wave cutoff energy of 200 Ry. The time
step is 24 attoseconds. We use the Ehrenfest approximation
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for ion motion. The supercell for defect contains 54 atoms. To
prepare for TDDFT input, we perform electron-ground-state
MD simulation at room temperature (RT = 300 K) and then
constrained DFT with one electron in the CBM.

III. RESULTS: NONRADIATIVE RECOMBINATION
PATHS IN UNDOPED CsI

Scintillation is a fundamental physical phenomenon for
energetic particle interaction with solids. When a high-energy
particle enters a scintillator material, the energy of the particle
is transferred to the surroundings by generating electron and
hole pairs. In most alkali halide scintillators, the hole can
be localized by lattice distortion, leading to the formation
of STH. In CsI, the distortion is the bonding between two
adjacent iodine atoms [see Fig. 1(a)], to lower the system
energy by 0.31 eV relative to undistorted CsI with delocalized
hole. The charge contour plot in Fig. 1(a) reveals that the STH
state inside the band gap [see Fig. 2(a)] is an antibonding
state. An excited electron in the conduction band can bind to
the STH to form an STE. The trapped electron is, on the other
hand, delocalized over the supercell. Accordingly, the energy
lowering of 0.32 eV due to the STE formation is only 0.01 eV
larger than that of the STH [see Table I and Fig. 3(a)]. Not only
does the STE itself emit light by radiative recombination, but
the diffusion of the STH and STE can also lead to the transfer
of their energy to other luminescence centers.25–29

The STE can also undergo NRR through Frenkel-pair
defect formation and diffusion.30–32 Figures 1(b)–1(d) show
the evolution of the atomic structure during the NRR. First, two
adjacent I atoms move along the [100] direction in such a way
that the two share one anion lattice site, forming a dumbbell
(DB) structure (IiDB). This leaves behind an I vacancy (VI).
We denote this vacancy-interstitial pair as (VI-IiDB)first. As the
Ii diffuses further away along the [100] direction, it can form
additional metastable Frenkel pairs such as the one in Fig. 1(c):
(VI-IiTR)first with one triple-I-atom chain (TR), as well as the

FIG. 1. (Color online) Atomic structures during the Ii diffusion:
(a) STE, (b) (VI-IiDB)first, (c) (VI-IiTR)first, and (d) (VI-IiDB)second, where
first and second denote the Ii position relative to the VI. Blue dashed
circles denote the VI’s; brown dotted ellipses denote the Ii’s. For
Tl-doped CsI, the Tl atom replaces the pink Cs atom. In (a), the
real-space charge of the STH state [see Fig. 2(a)] is shown by the
yellow contours. DB and TR are defined in the text.

h e 

h 

e 

FIG. 2. (Color online) Density of states (DOS) of (a) STE,
(b) (VI-IiDB)first, (c) (VI-IiTR)first, and (d) Tl-doped CsI. The occupied
states are shaded. Red, blue, and green lines denote the projected
DOS onto the p states of the I interstitial, the s states of the Cs
nearest neighbors to VI, and the p states of the Tl. All the projected
DOS are scaled by a factor of 20 with respect to the total DOS.

one in Fig. 1(d): (VI-IiDB)second with an I DB structure. As
the process goes on, the Ii eventually encounters a VI and
recombines, leaving their energy to the lattice as heat.

Figure 3(a) shows the energy landscape along the NRR path
in Fig. 1: From STE to (VI-IiDB)first, the energy is increased
to 0.19 eV; from (VI-IiDB)first to (VI-IiTR)first, the energy is
further increased to 0.29 eV. After that, the total energy is
nearly flat. The total diffusion barrier for this NRR path [from
1(a) to 1(d) in Fig. 3(a)] is Eb = 0.30 eV. The fact that Eb

is slightly smaller than the delocalization barrier, 0.37 eV, of
the STE [from 1(a) to No STE in Fig. 3(a)] suggests that it
prefers NRR over delocalization. By using the rate equation
r = f exp(−Eb/kT ) and the optical vibration frequency f =
2 × 1012 s−1 for CsI,33 we estimate the NRR relaxation time
at RT to be 50 ns. This value is on the same order of magnitude
with the radiation decay time in CsI.8,34

IV. RESULTS: THE EFFECTS OF Tl DOPING

Because of the large binding of 0.88 eV between Tl and
STE, Tl doping can significantly affect the formation of STE.
A previous study26 suggested that STE is mobile at RT with a
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TABLE I. Energy change at different atomic configurations along the NRR path. Results for CsI with one hole are calculated at the same
atomic structures of CsI with one e–h pair to show the effects of the excited electron. The energy is given in unit of eV.

No self-trapping Self-trapping (VI-IiDB)first (VI-IiTR)first (VI-IiDB)second

One e–h pair 0.32 STE: 0.0 0.19 0.29 0.29
One hole 0.31 STH: 0.0 0.68 1.15 1.27

barrier as little as 0.15 eV. Thus, STE can be easily trapped at
Tl sites, in agreement with experiment.13,16 Figure 3(b) further
shows that Tl doping reduces the STE formation barrier [from
No STE to 1(a) in Fig. 3(b)] to <0.01 eV. Hence, most STE
exist as Tl-STE pairs.

Tl doping slows down the NRR by increasing the formation
energy of Frenkel pairs. We can understand this by examining
the evolution of the density of states in Fig. 2 in accordance
with that of atomic structures in Fig. 1. Here, we focus on the
hole (h) and electron (e) levels marked in Fig. 2, which belong
to Ii and VI, respectively. Going from Fig. 2(a) to Fig. 2(c),
the hole level increases; the electron level decreases to enter
the band gap. The reason for the change can be attributed to
wave-function overlap between e and h, giving rise to level
repulsion. As the Ii diffuses away from the VI, however, the
repulsion vanishes. Note that the higher the hole level, the
more stable the hole. Thus, throughout the diffusion process
in Fig. 1 both the excited electron and hole lower their energies,
driving the diffusion forward.

If we remove the excited electron from the system, however,
the energy of the Frenkel pairs increases significantly (see
Table I). This is precisely what Tl does to slow down and deter
NRR. Figure 2(d) shows that the unoccupied p levels of the Tl
are below CBM, so the electron in the CBM can be transferred
to Tl. Whether such a process is important or not, however,
depends on the time required for the transfer. If the time is
longer than 50 ns, which is the NRR relaxation time in CsI,
then excited carriers will decay nonradiatively. To estimate
the electron transfer rate, we performed TDDFT calculations
within the PBE functional. Strictly speaking, one may not
use PBE here because semilocal functional may not describe
charge transfer correctly. Currently, it is still not possible
to carry out TDDFT-MD beyond the PBE, such as using a

FIG. 3. Total energy landscape along the NRR path for (a)
undoped CsI and (b) Tl-doped CsI. The labels in the horizontal axes
indicate atomic structures for STE diffusion given in Fig. 1.

nonlocal hybrid functional. This issue should be considered in
future studies.

Figure 4(a) shows the time evolution of the energy levels
for the excited electron in the CBM and the three empty Tl p

states.35 The electron level decreases rapidly towards the Tl p

levels, which indicates that electron transfer from the CBM to
the Tl p levels has taken place. Accompanied with this electron
transfer, ion kinetic energy increases [see Fig. 4(b)]. This is
a strong indication that the transfer is mediated by electron-
phonon coupling. As a measure of the transfer, Fig. 4(c) shows
the change of the amount of electrons in the Tl p levels, defined
as �ρTl(t) = ∑3

i=1 [ρ(e)
Tl,i(t) − ρ

(g)
Tl,i] where ρ

(e)
Tl,i and ρ

(g)
Tl,i are

the amount of electrons in the Tl pi states, |Tl,pi〉, for the
excited and ground states, respectively. �ρTl(t = 0) should
be zero if the supercell size is sufficiently large; due to the
relatively small cell size and the fact that |CBM〉 and |Tl,pi〉
are coupled states, however, �ρTl(t = 0) = 0.3 electrons in our
simulation. Despite this, the qualitative result, e.g., �ρTl(t)
increases with time, is not affected. In only 150 fs, �ρTl is
increased to 0.43 electrons.

Upon excitation, the excited electron stays in the CBM
for ∼20 fs before significant transfer is noticed in Fig 4(c).
This initial waiting is also observed in other materials such as
TiO2.36 Beyond the initial waiting time ti , the time evolution
of the electron transfer can be modeled by36 �ρTl(t) = A(1 −
exp[−(t/τ )]), where τ is the decay time. As mentioned earlier,

ti 

FIG. 4. (Color online) Time evolutions of (a) energy levels,
(b) ion kinetic energy, and (c) electron transfer to Tl p levels, �ρTl.
In (a), red and blue lines are the excited electron level and the empty
Tl p levels, respectively. In (c), the solid line is the TDDFT result,
whereas the dashed line is a fitted result using Eq. (1). ti is the initial
waiting time. The dashed line in the inset in (b) is the same fitting but
plotted at a longer time scale. It converges to 0.77 electrons within
2 ps.
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�ρTl(t = 0) is not zero due to finite cell size; here we modify
the above equation to

�ρTl(t) = A

(
1 − exp

[
− t

τ

])
+ 0.3. (1)

Figure 4(c) shows that Eq. (1) with A = 0.47, ti = 20 fs, and
τ = 413 fs fits the TDDFT results reasonably well. The inset
in Fig. 4(c) shows that within 2 ps, about 0.77 electrons are
transferred to Tl. We can qualitatively understand the amount
of electron transfer as follows: In the Ehrenfest dynamics, the
excited electron state evolves into a superposed state between
|CBM〉 and |Tl,pi〉,
|ϕ〉 = a|CBM〉 + b1|Tl,p1〉 + b2|Tl,p2〉 + b3|Tl,p3〉 (2)

with approximately the same energy. If we assume |a|2 =
|b1|2 = |b2|2 = |b3|2 = 1/4, we get �ρTl = 3/4 = 0.75 elec-
trons. Note that this discussion considers only a single Tl.
If we take into account the coupling of the delocalized
|CB〉 with multiple (n) Tl atoms nearby, the amount of the
electron transfer in the first 2 ps will increase to �ρTl =
1 − 1/(3n + 1), which approaches 1 in the limit n → ∞. This
suggests that the excited electron transfer from CBM to Tl is
considerably faster than the NRR in CsI by at least several
orders of magnitude.

To calculate the NRR barrier for Tl-doped CsI, we use
PBE0 but with an excited electron in the Tl p state as shown
in Fig. 3(b). The energy difference between STE and (VI-
IiDB)second increases to ∼0.54 eV, which is 0.25 eV higher
than that for undoped CsI. One can estimate the reduction in
the NRR rate by R = exp(�Eb/kT ). Using �Eb = 0.63 −
0.30 = 0.33 eV and kT = 0.026 eV, we obtain R = 3 × 105

at RT. The corresponding NRR time is roughly 1 ms, which is
enough to significantly increase light output.

V. IMPLICATION TO SEMICONDUCTORS

Note that the mechanism to deter NRR (discussed above)
is not limited to only alkali halides or to ionic insulators. For

example, carrier trapping by BO2 complexes in Si has been
proposed as the main reason for NRR in B-doped Czochralski
Si (Cz-Si) solar cell materials.37 What is intriguing for this
system is the lack of deep levels similar to CsI; electrons and
holes that are temporarily trapped at near band-edge BO2 states
assist the NRR.38 It is thus conceivable that one may reduce
carrier trapping in Cz-Si by introducing impurities that are
capable of taking the carriers away from BO2.

VI. SUMMARY

Hybrid functional study, coupled with TDDFT, reveals
the effect of impurity doping on excited carrier relaxation
in ionic insulators. Application to Tl-doped CsI explains the
experimentally observed significant increase of scintillation
efficiency. The role of the impurity in suppressing NRR is
unveiled in terms of the efficient transfer of excited electrons to
impurity gap states. Our results suggest that defects/impurities
not only can accelerate NRR as often observed,4,5,38 but can
also be used to suppress certain NRRs, provided that the NRR
does not involve deep levels as in the Shockley-Read-Hall
regime.4,5 In other words, our understanding of the physics
to deter NRR goes beyond just the improvement of current
scintillator technology, but for educated defect engineering to
suppress NRR in other optoelectronic materials.
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A Monte Carlo (MC) model was developed and implemented to simulate the thermalization of

electrons in inorganic scintillator materials. The model incorporates electron scattering with both

longitudinal optical and acoustic phonons. In this paper, the MC model was applied to simulate

electron thermalization in CsI, both pure and doped with a range of thallium concentrations. The

inclusion of internal electric fields was shown to increase the fraction of recombined electron-hole

pairs and to broaden the thermalization distance and thermalization time distributions. The MC

simulations indicate that electron thermalization, following c-ray excitation, takes place within

approximately 10 ps in CsI and that electrons can travel distances up to several hundreds of nano-

meters. Electron thermalization was studied for a range of incident c-ray energies using electron-

hole pair spatial distributions generated by the MC code NWEGRIM (NorthWest Electron and

Gamma Ray Interaction in Matter). These simulations revealed that the partition of thermalized

electrons between different species (e.g., recombined with self-trapped holes or trapped at thallium

sites) vary with the incident energy. Implications for the phenomenon of nonlinearity in scintillator

light yield are discussed. VC 2011 American Institute of Physics. [doi:10.1063/1.3632969]

I. INTRODUCTION

Inorganic scintillators offer numerous advantages as radi-

ation detection materials, and in particular for c-ray spectros-

copy, including high light yields, fast response, large active

areas, and room-temperature operation.1 Consequently, inor-

ganic scintillators are widely used in nuclear and high-energy

physics, nuclear medicine and medical imaging, geological

exploration and many other fields. An ideal scintillator would

produce a number of scintillation photons that is a linear func-

tion of the energy of the incident radiation. However, many

inorganic scintillators display some degree of light yield non-

linearity (also often referred to as “nonproportionality”) fol-

lowing c-ray excitation.2 Nonlinearity is one of the main

sources that degrade the intrinsic energy resolution of inor-

ganic scintillators.3,4 Therefore, nonlinearity has received

much attention from research groups that work to improve

existing, and develop new, radiation detection materials.

However, in spite of substantial efforts by several groups to

elucidate the physical processes that give rise to nonlinearity,

this phenomenon is not completely understood.

The chain of processes that begins with the interaction

of an incident c-quantum with a scintillator material and ter-

minates with the emission of low-energy photons will be

referred to as the scintillation process hereafter. The scintil-

lation process can be divided into three stages. In the first

stage, which will be referred to as the electron cascade, a

track of electron-hole pairs is produced following the absorp-

tion of an incident c-ray. In the second stage, the hot elec-

trons and holes undergo thermalization to the edges of the

band gap. In the third and last stage, light is emitted either

via the recombination of electron-hole pairs at lattice sites or

through energy transfer to luminescence centers, which then

relax radiatively. It has been proposed that nonlinearity orig-

inates from the last stage of the scintillation process and is

due to (1) nonradiative processes that depend nonlinearly on

the ionization density and (2) the fact that the ionization den-

sity is energy dependent.2,5–11 An accurate description of the

electron-hole pair density along the ionization track is there-

fore crucial to successfully evaluating how hypothesized

processes may contribute to nonlinearity.

Several theoretical models have been developed to gain

insight into the nonlinear response of inorganic scintillators.

Early work focused on explaining the variations in scintilla-

tion efficiency as a function of stopping power, or specific

energy loss, in an attempt to put the response of inorganic

scintillators to different exciting particles on a common foot-

ing. For example, the model of Murray and Meyer8 described

the behavior of the scintillation efficiency of NaI(Tl) as a

result of increasing electron-hole pair recombination with

increasing stopping power followed by saturation of activator

sites at high stopping powers. Hill and Collinson12,13 later

noted that the model of Murray and Meyer failed for low elec-

tron energies and found improved agreement with experimen-

tal scintillation efficiencies when including an additional

process, namely, exciton emission followed by Tl absorption.

More recently, theoretical models of nonlinearity have

focused on the response to c-ray excitation. Payne et al.14

developed a model that describes the light yield of a range of
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inorganic scintillators as a product of the efficiencies of

electron-hole pair recombination and exciton-exciton annihi-

lation. Bizarri et al.15–17 developed a series of phenomeno-

logical models to calculate the light yield response curves of

several model compounds on the basis of electron-hole pair

densities obtained from the Bethe-Bloch equation or energy

loss functions and radiative and nonradiative processes with

linear, quadratic, or cubic dependence on the electron-hole

pair density. However, it is difficult to experimentally mea-

sure the rate constants for these processes. Williams

et al.10,11 investigated the role of carrier diffusion on carrier

quenching and consequently on nonlinearity. They used a

finite-element model that included diffusion, drift, Auger

quenching, and dipole-dipole quenching processes and repre-

sented the electron-hole pair track as a cylinder with a Gaus-

sian radial profile. Their modeling results indicate that the

large difference between the band mobilities of electrons and

holes in activated alkali halides can lead to an increase in the

fraction of independent carriers at low stopping powers,

which translates into a diminished relative light yield at high

incident energies. All the models above have highlighted the

importance of the electron-hole pair density along the ioniza-

tion track and its variations with incident c-ray energy. How-

ever, most models developed to date make use of idealized

geometries and density profiles for representing ionization

tracks. In this work, we employ electron-hole pair spatial dis-

tributions produced by the Monte Carlo (MC) code NWE-

GRIM (Northwest Electron and Gamma Ray Interaction in

Matter), which determines the fate of individual electron-

hole pairs down to energies on the order of the band gap and

can compute the microscopic track structure.

Electron-hole pair spatial distributions generated by

NWEGRIM were used in a previous publication5 to study

the scintillation mechanisms in two major scintillators (CsI

and LaBr3) using a kinetic Monte Carlo model.5,18 The simu-

lations showed that the annihilation between self-trapped

excitons (STE) can account for the initial rise in relative light

yield with increasing incident energy for both scintillators.

However, the effect of the thermalization stage on the spatial

distribution of electron-hole pairs was omitted in that study.

The thermalization process is likely to make the spatial dis-

tributions more diffuse through electron-phonon interactions

and could thus affect the light output. In this work, we de-

velop a MC program to simulate the thermalization process

and to determine how it affects the spatial distribution of

electron-hole pairs.

We concentrate on pure and thallium-doped CsI for sev-

eral reasons: CsI is one of the most widely used scintillators

because of its high light yield (�65 000 ph/MeV); its nonlin-

ear response has been well determined experimentally;19–22

and we used CsI as a model system in previous work.5,18

II. COMPUTATIONAL METHODS

A. Thermalization process

A Monte Carlo algorithm was implemented in a com-

puter program to calculate the trajectories of low-energy

electrons due to interactions with longitudinal optical (LO)

and acoustic (A) phonons and thus simulate the thermaliza-

tion of electrons generated following c-ray excitation in al-

kali halides. As mentioned above, we initially focus our

work on pure and thallium-doped CsI. The approach used to

model electron-phonon interactions is described in Sec. II C.

In addition, we hypothesize that, as the electrons thermalize

via interaction with lattice phonons, they are also influenced

by the electric field due to all the other electrons and holes

generated during the energy cascade. Therefore, a treatment

of the internal electric fields (IEF) was included to account

for their effect on the electron trajectories. Simulations were

performed with and without IEF to evaluate this hypothesis

as described in Sec. III. The method employed to compute

the internal electric fields is reported in Sec. II D. Moreover,

the thermalization program requires a set of initial positions

for the electrons and holes as well as a set of initial kinetic

energies and directions of motion for the electrons. These

were calculated with NWEGRIM as described in Sec. II B.

The MC program is executed using the following algorithm.

(1) The holes are assumed to self trap instantaneously and to

be immobile and, therefore, were fixed at their initial

positions throughout the simulations.

(2) At each simulation step, one electron undergoes one of

four electron-phonon interactions, namely, LO phonon

emission, LO phonon absorption, A phonon emission, or

A phonon absorption. An electron-phonon interaction is

selected with a probability proportional to its scattering

rate,

Xi�1

j¼1

sj

C
< x1 �

Xi

j¼1

sj

C
(1)

where i is the electron-phonon interaction label, sj is the

scattering rate of the jth process, x1 is a random number

in the range 0< x1� 1 determined using a random num-

ber generator, and U is the sum of all the scattering rates

C ¼
X4N

j¼1

sj (2)

where N is the total number of electrons. The scattering

rates for phonon emission and absorption are calculated

using the approach described in Sec. II C. In addition, all

electrons undergo one electron-phonon interaction

before the simulation begins to determine their position

following the last electron-hole pair creation event calcu-

lated by NWEGRIM.

(3) The kinetic energy, Ei, of the selected electron is modi-

fied by the characteristic LO or A phonon energy. Addi-

tionally, the step length, di, and scattering angle, hi, of

the selected electron are used to determine its new posi-

tion. The step length is obtained from the scattering rates

as follows:23

di ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�=2Ei

p P4
j¼1 sj

ln x2 (3)

where x2 is a random number in the range 0< x2� 1

and the scattering rate sum is over all four possible
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electron-phonon interactions. The approach used to cal-

culate s and h is described in Sec. II C. In addition, time

is incremented using the following formula:

Dt ¼ � ln x3

C
(4)

where x3 is a random number in the range 0< x3� 1.

(4) The new position and energy of the selected electron are

used to evaluate whether it has recombined with a hole,

has trapped at a thallium site, or has stopped. Two condi-

tions are evaluated to determine if an electron has recom-

bined with a hole: (a) if the electrostatic interaction

energy between this electron and the nearest hole is

higher than the electron kinetic energy, the electron is

considered to have recombined with the nearest hole.

The electrostatic interaction energy, ES, is calculated as

follows,

ES ¼ qeqh

4pee0r
(5)

where qe and qh are the electric charges of the electron

and hole, respectively, e is the material’s dielectric con-

stant, e0 is the vacuum permittivity, and r is the electron-

hole distance; and (b) if the distance between this elec-

tron and the nearest hole is less than 3.685 Å, the elec-

tron is also considered to have recombined with the

nearest hole. The value of 3.685 Å is used to account for

the fact that a self-trapped hole has a finite spatial extent.

In CsI, a self-trapped hole is localized on two neighbor-

ing iodide ions, which thus form an I�2 molecular ion.

Plane-wave-pseudopotential density functional theory

calculations of Van Ginhoven et al.24 predicted the dis-

tance between two I ions of the I�2 molecular ion to be

3.25 Å. Using an ionic radius of I- of 2.06 Å, the molecu-

lar radius of I�2 was taken to be 3:25=2þ 2:06 ¼ 3:685

Å. The probability for an electron within the self-trapped

hole’s molecular radius to be captured is likely to be de-

pendent on the electron energy. However, as this proba-

bility is not known, we make the simplifying assumption

that it is 1 for the purpose of this work.

For the simulations of Tl-doped CsI, the electron is

trapped at a thallium site if

x4 � PtrapðEÞ (6)

where x4 is a random number in the range 0< x4� 1 and

the energy-dependent probability for electron capture is

that introduced by Ganachaud et al.25

PtrapðEÞ ¼ d
a� f ðTlÞe�cE (7)

where E is the electron energy, d is the step length deter-

mined in Eq. (3), a is the lattice constant of CsI (0.457

nm), f(Tl) is the fraction of unit cells occupied by a thal-

lium atom. The constant c limits the energy domain con-

cerned by this process. There is no direct method to

determine c and, therefore, c will be varied to determine

its effects on electron thermalization. Finally, if the

energy of the electron becomes less than the material’s

electron affinity (0.1 eV for CsI), the thermalization pro-

cess for this electron is considered to be stopped. The

four possible states of an electron, i.e., free, recombined,

stopped, and trapped, will be referred to as electron

populations.

(5) Every 10�16 s, the positions and kinetic energies of all the

electrons are modified due to the effect of internal electric

fields, as described in Sec. II D. A test is performed as in

(4) for determining the fate of each electron.

B. Electron cascade: Electron-hole pair generation

The spatial distributions of electron-hole pairs generated

by c-ray excitation were computed with NWEGRIM. Details

of the methodology used by NWEGRIM can be found in pre-

vious publications.26–28 Starting with an incident c-ray

photon, a primary electron-hole pair is generated through

inner-shell photoionization or Compton scattering. Interband

transitions, plasmon excitations, core shell ionizations,

electron-phonon interactions, and Bremsstrahlung emissions

are then considered as mechanisms that lead to the energy

loss of a fast electron. After an ionization event, Auger/Cos-

ter-Kronig and shake-off electron cascades are followed until

the vacancy reaches the outermost shell. The primary and

secondary electrons are all followed until their energies are

less than a cutoff energy of twice the band-gap energy. All

the energies used in NWEGRIM are with respect to the va-

lence band maximum. When an electron-hole pair is created,

all the deposited energy is assigned to the emitted electron

and the hole is assumed to have an energy of zero. Fig. 1

shows the kinetic energy distribution of the hot electrons at

the end of the energy cascade. The electron kinetic energies

distribute within one band gap (6.1 eV). There are two main

peaks located at approximately 4.6 and 6.1 eV, which are

due to plasmon decay and electron-phonon interactions,

respectively. A single characteristic plasmon excitation

energy is used in NWEGRIM, which therefore leads to the

large spike in the energy distribution. Although electron-

phonon interactions do not create electron-hole pairs, energy

loss to phonons can bring the energy of some electrons

below the energy cutoff, which leads to the peak at high ki-

netic energies.

FIG. 1. (Color online) Kinetic energy distribution of the hot electrons at the

end of the energy cascade.
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We made one modification to NWEGRIM in the ver-

sion used in this work with respect to that used in a previous

publication,5 namely, if an energy loss mechanism selected

by the MC algorithm leads to either the emitted electron

energy or the scattered electron energy to fall below the

band gap energy, the process is ignored and a new process is

selected instead. Using the modified version of NWEGRIM,

updated electron-hole pair yields (number of electron-hole

pairs per MeV) and b parameters (mean energy per electron-

hole pair normalized to the band-gap energy) were calcu-

lated, as shown in Table I. The yields of approximately

83 000 electron-hole pairs per MeV predicted by the new

version of NWEGRIM are higher than those obtained previ-

ously5 (�65 000 electron-hole pair per MeV). As discussed

in detail in a previous publication,5 published light yields

for pure and Tl-doped CsI range between 48 000 and 76 000

ph/MeV,29–36 with the exception of the absolute light yields

reported by Moszyński et al.22,37 of 107 000 and 124 000

ph/MeV for nominally pure CsI samples. Because the

electron-hole pair yields will decrease due to nonradiative

processes, the fact that the calculated yields are higher than

the experimental light yields is consistent with experimental

measurements (not considering the two values of the light

yield obtained by Moszyński et al. for pure CsI at liquid

nitrogen temperature).

C. Thermalization of hot electrons: electron-phonon
interactions

The scattering rates, scattering angles, and inverse mean

free paths for emission and absorption of LO phonons are

calculated using the formulation of Llacer and Garwin.38 For

the interaction between electrons and acoustical phonons,

the description of Sparks et al.39 was used together with the

correction introduced by Bradford and Woolf.40 This correc-

tion is used to correct the unphysical increase of the acoustic

inverse mean free path (MFP) for energies higher than the

first Brillouin zone energy (i.e., approximately 2 eV for CsI).

A correction factor of f1=½1þ ðq2=a2Þ�g2
is added into the

integrand of the acoustic inverse MFP expression, where q is

the phonon momentum and a is the screening correction pa-

rameter. A value of a of 24.3 nm�1 was used in this work.

This value was determined by Boutboul et al.41 as the value

required to make the corrected acoustic MFP converge to

that of the elastic scattering at 20 eV. The formulae used for

calculating inverse mean free paths, scattering rates, and

scattering angles are shown in supporting information.42

This formulation uses a series of parameters; their values

and origins are shown in Table S1.42 Fig. 2 shows the scat-

tering rates thus obtained for CsI.

D. Internal electric fields

The influence of internal electric fields on the electron

trajectories was calculated using the classical equations of

dynamics

d

dt
m�vi½ � ¼ �eEF

i
(8)

where m* is the electron effective mass, vi the velocity of

electron i, and EF
i
, the electric field at the position of electron

i, is defined as

EF
i
¼
XNt

j¼1
j 6¼i

1

4pe0e
qj

r2
ij

r̂ij (9)

where Nt is the number of electrons and holes, qj the charge

of particle j, rij the distance between particles i and j, and r̂ij

the unit vector. For the purpose of this work, we make the

simplifying assumption that the electron effective mass is not

dependent on its energy. Equation (8) needs to be discretized

using a time step Dt. We evaluated the effect of Dt on the

electron populations obtained for a 2-keV incident c-ray con-

sidering solely the electron trajectories due to internal electric

field and using time steps of value 10�15, 10�16, and 10�17 s,

as shown in Fig. S1.42 The differences in electron populations

between 10�16 and 10�17s are small, indicating that

Dt¼ 10�16 s is short enough a time step to guarantee the con-

vergence of the results and, therefore, we used Dt¼ 10�16 s

in the present simulations. We note that Eq. (9) breaks down

for very short particle-particle interactions on the order of the

size of the ions. Therefore, electron-electron electrostatic

interactions between two electrons separated by a distance

shorter than the Cs-I distance (3.9577 Å) were omitted.

TABLE I. Number of electron-hole pairs per MeV generated using NWE-

GRIM code and the corresponding b parameters (mean energy per e-h pair

normalized to the band gap (6.1 eV)).

Incident

energy (keV)

Number of

simulations

Number of e-h

pairs per MeV b

2 400 83 906 1.936

5 200 83 903 1.936

10 100 83 001 1.957

20 50 82 885 1.960

100 10 83 309 1.950

400 5 82 857 1.961 FIG. 2. (Color online) Scattering rate of electron-phonon interactions as a

function of electron energy.
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III. RESULTS AND DISCUSSION

A. Pure CsI

We first investigated the effects of internal electric fields

on the thermalization of hot electrons by carrying out Monte

Carlo simulations with and without IEF. Fig. 3 shows the

calculated fractions of free, recombined, and stopped elec-

trons as a function of time for a 2-keV incident c-ray. This

figure indicates that there are three main differences between

the cases with and without IEF. First, the fraction of recom-

bined electrons is larger when IEF are included. Indeed,

when IEF are included, the attractive electrostatic interaction

between electrons and holes increases the likelihood for

recombination. Second, the fraction of stopped electrons

increases more quickly initially with IEF, which suggests

that, on average, the presence of IEF slows down the hot

electrons. However, because the fraction of recombined elec-

trons is greater with IEF, the fraction of stopped electrons is

eventually higher without IEF. Third, there is a bump in the

fraction of free and stopped electrons at �6 ps for the case

without IEF. As explained in more detail later, this is due to

the electrons created as a result of plasmon excitation. Inter-

estingly, the fraction of recombined electrons increases very

quickly and reaches a maximum within 2.0 ps. Approxi-

mately, 23% of the electrons recombined during the first

simulation step and this percentage increases, within 2.0 ps,

to 41% and 34% with and without IEF, respectively. The

time-scale for electron-hole pair recombination predicted in

these simulations is consistent with the self-trapped exciton

formation time obtained experimentally for other alkali hal-

ides.43,44 Qualitatively, the electron populations obtained for

the other c-ray incident energies considered in this work (5,

10, 20, 100, and 400 keV) show the same trends with time,

as shown in Fig. S2.42 Quantitatively, Fig. 4 shows that the

fraction of recombined electrons decreases with increasing

incident energy, with and without IEF. The increased stop-

ping power at low incident energies generates high electron-

hole pair densities at these energies, which leads to an

increased probability for electron-hole pair recombination.

Figs. 5(a) and 5(b) show the thermalization distance and

time distributions, respectively, for a 2-keV incident c-ray.

Each distribution is decomposed based upon the processes by

which the secondary electrons were created. As noted before,

electron-phonon interactions cannot create electron-hole pairs

but energy loss to phonons can bring the energy of some elec-

trons below the energy cutoff. Therefore, the trace labeled

“phonon” in Figs. 5(a) and 5(b) corresponds to electrons

whose last energy loss process was interaction with phonons.

The thermalization distance is defined as the distance

between the final and initial positions of an electron. Fig. 5(a)

shows two peaks in the thermalization distance distribution

located at 0 and 60 nm for the case without IEF. The first

peak indicates that the initial energy of some electrons is

smaller than the electron affinity and they are therefore

stopped instantaneously. The main peak shifts to a distance

of �10 nm, when IEF are included, but the distribution still

shows a long tail, which extends up to �1000 nm. The

decomposition of the thermalization distance distribution

shows that each contribution is broadened when IEF are

included. This effect is due to the fact that electrons can both

loose and gain energy due to interactions with the IEF and

therefore will span a wider range of kinetic energies than

when IEF are not included, which results in broader distance

distributions.

We note that a shorter thermalization length of 3 nm was

estimated by Bizarri et al.17 However, no explanation or ref-

erence was given in that paper to justify this estimate. This

value was then used by Williams et al.45 as the initial track

radius in their model of band diffusion in thermal equilib-

rium. The MC results obtained without internal electric fields

are consistent with an analytical calculation carried out by

Andrey Vasil’ev (personal communication). The analytical

calculation considered the interaction of an electron with LO

phonons and resulted in a diffusion length of 100 nm for an

electron with initial kinetic energy of 1 eV at room tempera-

ture in CsI (Andrey Vasil’ev-personal communication).

Akkerman and co-workers have published a series of theoret-

ical studies41,46,47 on the ultraviolet- and x-ray-induced elec-

tron emission from CsI and other alkali halides, in which the

same formulation as used in this work was employed to

FIG. 3. (Color online) Fractions of free, recombined, and stopped electrons

as a function of time for a 2-keV incident c-ray.

FIG. 4. (Color online) Changes of fraction of recombined electrons with

incident c-ray energy.
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describe electron-phonon interactions. Their calculated

results agreed well with several experimental measurements

such as the quantum efficiency of a CsI photocathode as a

function of its thickness46 and the ultraviolet-induced photo-

electron escape length from CsI films as a function of photon

wavelength.

As can be seen from Fig. 5(b), the thermalization time

distribution is more structured in the absence of IEF with four

peaks located at 0, 1.00, 6.75, and 9.5 ps. The peaks at 6.75

and 9.5 ps correspond to the electrons generated through plas-

mon excitation and those that reached the energy cutoff after

electron-phonon interactions, respectively. The peaks also

shift to the left and broaden when IEF were included. This

effect is due to the same reason described above in the discus-

sion of the thermalization distance distributions. Thermaliza-

tion times of approximately 10 ps or less are in accord with

the time scale reported in a review by Weber1 and a paper by

Williams et al.11 We did not find any significant energy de-

pendence on the thermalization time and thermalization dis-

tance distributions, as shown in Fig. S3.42

Figs. 6(a) and 6(b) show the spatial distributions of elec-

trons after thermalization, without and with IEF, respectively,

for a 20-keV incident c-ray. As can be seen from these fig-

ures, the spatial distributions appear more diffuse when IEF

are included. As discussed above, when IEF are considered,

attractive electron-hole interactions result in a greater fraction

of recombined electrons. In addition, repulsive electron-

electron interactions lead to longer thermalization distances.

These two observations make the spatial distributions appear

more diffuse in the presence of IEF. This is confirmed by the

distribution of nearest electron-hole distances shown in Fig.

7. The distribution obtained without IEF shows two peaks

centered at �5 and �60 nm. These two peaks also appear in

the case with IEF. However, the intensity of the two peaks

decreases and the distribution shows a long tail with distances

up to 1000 nm. Figs. 6(c) and 6(d) also show the spatial

tracks obtained after thermalization with IEF for 2- and 400-

keV incident c-ray energies, respectively. Additionally, two

final electron-hole pair distributions (obtained with IEF) are

given, in xyz format, in supplementary material42 for each of

the six incident c-ray energies considered in this work.

Current models of electron-hole pair transport generally

make use of cylinder-shaped tracks with homogeneous exci-

tation densities.11,17 However, an important finding of this

work, illustrated in Fig. 6, is that electron-hole pair spatial

distributions are highly complex. Indeed, the track formed

by the immobile holes is not linear and can also be branched

and the distribution of electrons, both along and away from

the track of immobile holes, is not homogeneous.

In conclusion, IEF affect the electron thermalization

process in several ways: (a) the fraction of recombined elec-

trons is increased when IEF are considered, (b) the IEF affect

the trajectory of the hot electrons, and (c) the thermalization

distance and thermalization time distributions are broadened

and shifted to the left. Therefore, we will only consider the

case where IEF are included for the remainder of this work.

Our simulations indicate that electron thermalization in c-

ray-irradiated CsI takes place within approximately 10 ps,
FIG. 5. (Color online) (a) Thermalization distance and (b) time distributions

for a 2-keV incident c-ray.

FIG. 6. (Color online) Spatial distributions of electrons and holes after ther-

malization (a) without and (b) with IEF for a 20-keV incident c-ray and spa-

tial distributions of electrons and holes after thermalization with IEF for (c)

2-keV (the insert shows a close-up of the holes only, the side length of the

cube is 200 nm), and (d) 400-keV incident c-ray energies.
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that the electrons can travel distances up to several hundreds

of nanometers, and that the fraction of recombined electron-

hole pairs is energy dependent.

B. Tl-doped CsI

For use as a radiation detection material, CsI is com-

monly doped with thallium with dopant concentrations gen-

erally in the vicinity of 0.1 mol %.48 Therefore, in this

section, we investigate the effects of doping CsI with thal-

lium on the electron thermalization process. Thallium ions

act as electron traps with trapping probability set by Eq. (7).

The variable c in Eq. (7) limits the energy domain concerned

by this process. There is currently no direct approach to

determine the value of c; therefore, we evaluate, initially, the

effect of c on the electron populations. We chose for the dif-

ferent values of c multiples of 0.56, whereby a value of 0.56

translates to a factor of 10�3 at the cutoff energy of two band

gaps (exp(�0.56� 2� 6.1)�10�3). The larger is the multi-

ple, the steeper the exponential factor and, therefore, the

more limited the energy domain.

Fig. 8 shows the effect of c on the proportion of each

electron population (free, stopped, Tl-trapped, and recom-

bined). The value of c has no effect on the fraction of recom-

bined electrons since the recombination process occurs

during the very early stages of thermalization (within 2.0

ps). The fraction of Tl-trapped electrons increases with

decreasing c since a lower value of c means that Tl sites are

more attractive over a wider electron energy range. How-

ever, a large change in c translates into a modest change in

the faction of Tl-trapped electrons. Indeed, the fraction of

trapped electrons increases from 0.33 to 0.50 as c decreases

from 0.56� 3.0 to 0.56� 0.5. Similarly, although the frac-

tion of stopped electrons drops significantly when introduc-

ing Tl compared to pure CsI, it does not vary significantly

with c. For example, the fraction of stopped electrons

decreases from 0.26 to 0.10 as c decreases from 0.56� 3.0 to

0.56� 0.5. Fig. 7 also shows that the difference between

0.56� 1.0 and 0.56� 0.5 is very small.

When a thallium ion traps an electron it becomes Tl0.

Given that our approach for determining whether an electron

has been trapped at a Tl site does not treat Tl sites explicitly,

we first investigated whether this approach led to local Tl0

concentrations that exceeded the Tl concentration, which

would indicate local saturation of the Tl sites. Fig. 9 shows

the distributions of Tl0 sites, obtained with different c values

and for a Tl concentration of 0.1 mol %, as a function of the

distance from the geometric center of the Tl0 sites. The geo-

metric center is defined as

FIG. 7. (Color online) Distribution of nearest electron-hole distances for a

20-keV incident c-ray.

FIG. 8. (Color online) Effect of c on the

proportion of each electron population

(free, stopped, Tl-trapped and recom-

bined) for a 2-keV incident c-ray.
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xc ¼
XN

i¼1

xi=N (10)

where xi is the x coordinate of site i and N is the number of

electrons trapped by Tl sites. yc and zc are defined in the

same way. The concentration of Tl0 sites between radii r1

and r2 can be calculated by

4Ni

3pðr3
2 � r3

1Þ
(11)

where Ni is the number of Tl0 sites between radii r1 and r2.

The dashed line in Fig. 9 denotes the Tl concentration. Any

density above the Tl concentration line would indicate that

the Tl sites are saturated in that region. Fig. 9 shows that no

saturation occurs except for a narrow range of distances for

c¼ 0.56� 0.5. Therefore, based on Figs. 8 and 9, a c value

of 0.56 was selected to carry out the following simulations

of electron thermalization in Tl-doped CsI.

We then investigated the effects of the Tl concentration

on the thermalization process. Fig. 10 shows the electron pop-

ulations as a function of time for Tl concentrations ranging

from 0.001 to 0.1 mol % and a c-ray incident energy of 2

keV. Again, as recombination occurs very early, the Tl con-

centration has no effect on the fraction of recombined elec-

trons. As expected, the fraction of Tl-trapped electrons

increases with increasing Tl concentration. Additional calcu-

lations were performed to determine the fraction of Tl-

trapped electrons for Tl concentrations up to 1.0 mol %, as

shown in Fig. 11. The fraction of Tl-trapped electrons shows

an asymptotic behavior as a function of Tl concentration and

this trend is not incident energy dependent as indicated by the

comparing simulations performed for c-ray incident energies

of 2 keV and 20 keV. Since Tl is the primary radiative center

in Tl-doped CsI, the fraction of Tl-trapped electrons is related

to the intensity of photon emission. Therefore, our results are

consistent with experimental observations,49–51 which indi-

cate that the light yield initially increases with increasing Tl

concentration and eventually saturates at high concentrations.

Fig. 12 shows the effects of the Tl concentration on the

thermalization time and distance distributions. Low Tl con-

centrations of 0.001 or 0.01 mol % show thermalization

time and distance distributions that differ only slightly from

the pure case, whereas, for Tl concentrations of 0.05 mol %

and above, the thermalization time and distance distribu-

tions decay much more sharply. For example, the thermal-

ization distance and time distributions extend to

approximately 1200 nm and 15 ps, respectively, for a Tl

FIG. 9. (Color online) Spatial distributions of Tl0 sites obtained with differ-

ent c values for a Tl concentration of 0.1 mol % and a 2-keV incident c-ray

energy.

FIG. 10. (Color online) Effect of the Tl

concentration on the electron popula-

tions as a function of time for a 2-keV

incident c-ray.
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concentration of 0.001 mol % and these values decrease to

400 nm and 5 ps, respectively, when the Tl concentration

increases to 0.1 mol %.

Fig. 13 shows the changes in the fractions of stopped,

recombined, and Tl-trapped electrons as a function of c-ray

incident energy for a Tl concentration of 0.1 mol %. The

fraction of Tl-trapped electrons increases with increasing

incident energy to the detriment of the fraction of recom-

bined electrons, while the fraction of stopped electrons

remains practically constant. Syntfeld-Każuch et al.52 fitted

scintillation decay curves of Tl-doped CsI excited with inci-

dent c-ray energies ranging from 6 to 662 keV with a three-

exponential function with time constants s1, s2, and s3,

referred to as the fast, slow, and tail components, respec-

tively. Syntfeld-Każuch et al. found that the intensity of the

fast component decreased with increasing incident energy,

whereas those of the slow and tail components increased,

albeit only slightly for the slow component. The fast compo-

nent, with an average time constant of 730 6 30 ns is gener-

ally assigned to the prompt creation of a thallium excited

state, either via nonthermal capture of an electron and a hole

at the same Tl site or via exciton capture.50,53 Therefore, our

model prediction of the decrease of the fraction of recom-

bined electron-hole pairs (i.e., decrease in the relative num-

ber of excitons created) is consistent with the intensities of

the fast component derived experimentally by Syntfeld-

Każuch et al. as a function of incident energy. The slow and

tail components correspond to binary processes, which

therefore involve the formation of a Tl0 species. Again, our

model prediction of the increase of the fraction of Tl-trapped

electrons is consistent with the increasing intensities of the

slow and tail components obtained by Syntfeld-Każuch et
al. with increasing incident energy.

IV. CONCLUSIONS

In conclusion, we have investigated the thermalization

process of electrons in CsI and CsI(Tl) using Monte Carlo

simulations. We found that internal electric fields can affect

the electron thermalization process by increasing the likeli-

hood for electron-hole pair recombination and by broadening

the thermalization time and distance distributions. Impor-

tantly, the MC simulations indicate that electron thermaliza-

tion in c-ray-irradiated CsI takes place within approximately

10 ps and that, although a sizeable fraction of final electron-

hole distances are within 10 nm, electrons can travel distan-

ces up to several hundreds of nanometers.

Doping CsI with thallium can affect the thermalization

process as electrons can be trapped at Tlþ sites to form Tl0

species. Our results show that the thermalization time and

distances diminish as the thallium concentration increases.

The MC calculations show that the fraction of Tl0 sites dis-

plays an asymptotic behavior with increasing thallium con-

centration, in agreement with experimental observations of

the Tl concentration dependence of the light yield of CsI(Tl).

Finally, making use of the ionization tracks computed

with NWEGRIM allowed us to determine the effects of the

FIG. 11. (Color online) Fractions of Tl-trapped electrons as a function of Tl

concentration.

FIG. 12. (Color online) Effect of the Tl concentration on the thermalization

time and distance distributions for a 2-keV incident c-ray.

FIG. 13. (Color online) Changes in the fractions of stopped, recombined,

and Tl-trapped electrons as a function of c-ray incident energy for a Tl con-

centration of 0.1 mol %.
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c-ray incident energy on the thermalization process. Such

effects are important as they can point towards possible root

causes for the phenomenon of nonlinearity observed for CsI

and other inorganic scintillator materials. The MC calcula-

tions indicate that, for both pure and Tl-doped CsI, the frac-

tion of recombined electron-hole pairs diminishes with

increasing incident energies. This result suggests that the

number of STE decreases with increasing incident energy

and that, therefore, the effect of STE-STE annihilation

should diminish at high incident energies, in agreement with

the conclusion reached in previous work.5

ACKNOWLEDGMENTS

The authors would like to acknowledge Professors A.

Akkerman and A.N. Vasil’ev for insightful discussions. This

research was supported by the National Nuclear Security

Administration, Office of Nuclear Nonproliferation Research

and Engineering (NA-22), of the U.S. Department of Energy

(DOE).

1M. J. Weber, J. Lumin. 100, 35 (2002).
2J. E. Jaffe, D. V. Jordan, and A. J. Peurrung, Nucl. Instrum. Methods A

570, 72 (2007).
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A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed

and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is

extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-

earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal

optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure

materials, a significant fraction of the electrons recombine with self-trapped holes and the

thermalization distance distributions of the electrons that do not recombine peak between

approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization

time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps,

respectively. The simulations show that the LO phonon energy is a key factor that affects the

electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the

thermalization time and distance are. The thermalization time and distance distributions show no

dependence on the incident c-ray energy. The four materials also show different extents of

electron-hole pair recombination due mostly to differences in their electron mean free paths

(MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants.

The effect of thallium doping is also investigated for CsI and NaI as these materials are often

doped with activators. Comparison between CsI and NaI shows that both the larger size of Csþ

relative to Naþ, i.e., the greater atomic density of NaI, and the longer electron mean free path in

NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI

versus CsI. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736088]

I. INTRODUCTION

Inorganic scintillators are widely used as radiation

detection materials for nuclear non-proliferation, medical

imaging, geological exploration, and many other applica-

tions. For c-ray spectroscopy, the achievable energy resolu-

tion is one of the most important characteristics of a

scintillator material. There is, therefore, a continuous interest

in the development of new scintillator materials with

improved energy resolution. The energy resolution achieva-

ble with a given scintillator material is principally dependent

on the efficiency of conversion of electron-hole pairs into

scintillation light. However, for most scintillator materials, it

has been observed that the efficiency of this process, and

therefore ultimately the material’s light yield per unit of inci-

dent energy, depends on the energy of the incident radiation.

As a result, many inorganic scintillators display some degree

of light yield nonlinearity (also often referred to as

“nonproportionality”) following c-ray excitation,1 which

degrades their achievable energy resolution.

Scintillation in inorganic scintillators is commonly di-

vided into the following three steps: (1) the electron cascade,

that is, the production of electron-hole pairs, (2) thermaliza-

tion, whereby the electrons and holes thermalize to the bot-

tom of the conduction band and the top of the valence band,

respectively, and (3) radiative emission either via the recom-

bination of electron-hole pairs at lattice sites or through

energy transfer to luminescence centers. Nonlinearity is

believed to stem from the fact that the density of electron-

hole pairs is energy dependent and that nonradiative proc-

esses depend nonlinearly on the density of electron-hole

pairs.1–10 However, the physical processes that give rise to

nonlinearity and how each of the three steps described above

contribute to nonlinearity are not fully understood. Conse-

quently, a realistic description of the electron-hole pair den-

sity along the ionization track as a function of incident

energy is required to accurately determine the processes that

contribute to nonlinearity.

A Monte Carlo (MC) code developed at the Pacific North-

west National Laboratory (PNNL), NWEGRIM (northwest

electron and gamma ray interaction in matter),11–14 has been

designed to calculate the fate of individual electron-hole pairs

down to energies on the order of the band gap and can, there-

fore, compute the microscopic structure of ionization tracks.

Electron-hole pair spatial distributions calculated by NWE-

GRIM were used previously to study a hypothesized process

that may give rise to nonlinearity, namely, annihilation between

a)Authors to whom correspondence should be addressed. Electronic

addresses: sebastien.kerisit@pnnl.gov and zhiguo.wang@pnnl.gov.
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self-trapped excitons (STEs), in two scintillator materials (CsI

and LaBr3) using a kinetic Monte Carlo (KMC) model.2,15

Comparison of experimental and calculated relative light yields

as a function of incident energy indicated that this process

could indeed account for the initial rise in relative light yield

with increasing incident energy for both materials. However,

the thermalization step mentioned above was not included in

that study. Therefore, a MC program that simulates electron-

phonon interactions and uses the electron-hole pair spatial dis-

tributions generated by NWEGRIM was implemented and

applied to pure and Tl-doped CsI.16 These simulations pre-

dicted that, in CsI, electron thermalization takes place within

approximately 10 ps following c-ray excitation and that the

electron thermalization distance distributions peak at a few tens

of nanometers and can extend up to several hundreds of

nanometers.

Since the discovery of NaI(Tl) as a scintillation crystal

in 1948,17 many compounds have been developed as scintil-

lator materials. In addition, there are large variations in the

properties of these materials thus allowing one to choose a

material that is optimum for a particular application. As a

result, several scintillator materials from different scintillator

classes (e.g., alkali halides, alkaline-earth halides, oxides,

silicates) are currently in use. It is, therefore, important to

evaluate to what extent the thermalization process varies

among materials of a same class and among different classes

of scintillators. In the present work, we further develop the

MC model of electron thermalization and apply it to another

material of the alkali halide class, NaI, and to two materials

from the alkaline-earth halide class, CaF2 and BaF2. The

results obtained with these three materials will be compared

with those obtained with CsI. It should be noted that the ther-

malization calculations in CsI were repeated in this work as

a few parameters were modified from previously reported

calculations;16 however, these modifications only caused

minor quantitative changes and, therefore, did not affect the

conclusions of the previous findings.

NaI(Tl) and CsI(Tl) are important and common scintilla-

tion materials due to their high detection efficiency and spec-

tral resolution. The light yields of CaF2 and BaF2 are rather

low compared to those of NaI(Tl) and CsI(Tl); however,

BaF2 is a fast scintillator, which can be used in situations

where fast scintillating is required18 and CaF2, which is com-

monly doped with Eu, has many attractive properties as it is

non-toxic, non-hydroscopic, and relatively inert.19 Finally, it

should be noted that one important common character of

these materials is that they all show light yield nonlinearity.

II. COMPUTATIONAL METHODS

A. Thermalization process

In this section, we give a brief description of the MC

algorithm used to model the thermalization process; a

detailed discussion of the thermalization model is given in

our previous publication.16 Spatial distributions of electron-

hole pairs generated by c-ray excitation, as computed by

NWEGRIM, were used as input to the simulations. The

reader is referred to previous publications11–14 for details of

the methodology used by NWEGRIM. Six incident c-ray

energies were considered in this work: 2, 5, 10, 20, 100, and

400 keV, and the numbers of simulations, for each incident

energy, were 400, 200, 100, 50, 10, and 5, respectively.

The kinetic energies of the electrons at the end of the

electron cascade, as calculated by NWEGRIM, were used as

input to the simulations. The holes are assumed to self trap

instantaneously and to be immobile after the electron cas-

cade. Fig. 1 shows the kinetic energy distributions of the elec-

trons at the end of the electron cascade for 2-keV incident

c-rays and for the four materials of interest. The kinetic ener-

gies were measured from the conduction band minimum. The

kinetic energy distributions for the other c-ray incident ener-

gies considered in this work are essentially identical to that

obtained at 2 keV (data not shown), as observed in our previ-

ous study.16 There are two noticeable features. The high and

FIG. 1. Kinetic energy distributions of the

electrons at the end of the electron cascade

for an incident c-ray energy of 2 keV.
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narrow peak at the upper range of non-ionizing kinetic ener-

gies is due to electron interactions with phonons. We note

that electron-phonon interactions cannot create electron-hole

pairs but that energy loss to phonons can bring the electron

energy below the energy cutoff. The fine kinetic energy struc-

ture is due to electron-hole pairs created via plasmon decay.

In our previous publication,16 a single characteristic plasmon

excitation energy was used in NWEGRIM, leading to a large

spike in the kinetic energy distribution. In this work, NWE-

GRIM was modified to include an improved algorithm for

simulating plasmon decay.

Plasmons are collective excitations of the electron-ion

interaction that we simulated using a screening model in

the random phase approximation appropriate to crystals as

derived by Adler20 and Wiser.21 The ground state electronic

structure of the medium was computed using the ABINIT

code22 and the band energies adjusted with GW calcula-

tions.23 Any given electronic excitation of a specified

energy and momentum transfer arises from a sum over indi-

vidual particle-hole transitions; these transitions are the

decay products of that excitation and their relative weights

in the sum thus directly give their un-normalized decay

spectrum. After computing the screening, the peak of the

zero momentum transfer plasmon excitation was identified

and the energy spectrum of decay conduction electrons at

this energy was calculated by summing over all directions

of the secondary particles in the limit of no local fields

(local fields were included in the screening calculations). In

BaF2, a weak but sharp valence-only plasmon was identi-

fied along with a separate but much stronger and broader

plasmon arising from the combined screening of the va-

lence and semi-core orbitals. For this material, we approxi-

mated the plasmon interaction as arising only from the

second, stronger peak. This work will be described in more

detail in a later publication.

Four electron-phonon interactions were considered,

namely, longitudinal optical (LO) phonon emission, LO pho-

non absorption, acoustic (A) phonon emission, and A phonon

absorption. At each simulation step, an electron-phonon

interaction is selected with a probability proportional to its

scattering rate. In addition, every 10�16 s, all the electrons

are moved under the influence of the internal electric field.

Details of the approach used to model the internal electric

field are given in our previous publication.16 Every time an

electron is moved, its new position and energy are used to

evaluate whether it has stopped, recombined with a hole, or

trapped at a thallium site. An electron is stopped when its

energy becomes lower than a cutoff energy. In our previous

publication,16 the material’s electron affinity was used as the

cutoff energy as was done in the simulations of Akkerman

and co-workers.24,25 However, the thermal energy is now

used as the energy cutoff, as it was deemed more appropriate

for our simulations. An electron recombines with a hole if its

kinetic energy is lower than the electrostatic energy between

this electron and the nearest hole or if the distance to the

nearest hole is less than the self-trapped hole radius. An elec-

tron is trapped at a thallium site if a randomly drawn number

is less than the energy-dependent probability for electron

capture, Ptrap(E)26

PtrapðEÞ ¼
d
a
� f ðTlÞe�cE; (1)

where E is the electron energy, d is the electron step length,

a is the material’s lattice constant, f(Tl) is the fraction of unit

cells occupied by a thallium atom, and c is a constant that

limits the energy domain concerned by this process.

The scattering rates, scattering angles, and inverse mean

free paths (MFPs) for emission and absorption of LO and A

phonons were calculated using the formulations of Llacer

and Garwin27 and Sparks et al.,28 respectively. The formula-

tion for the electron-A phonon interactions also included the

correction of Bradford and Woolf.29 The formulations used

in this work are summarized in supporting information

(SI).30 The scattering rates thus obtained for all four materi-

als are shown in Fig. 2. To calculate the energy of the emit-

ted or absorbed acoustic phonon, �hxA, the approach

described by Fischetti et al.31 was employed to determine

the acoustic phonon wave vector, q, knowing the energy E of

the electron that is creating or annihilating the acoustic pho-

non. This approach involves inverting the probability func-

tion P(q) using the rejection technique whereby

PðqÞ ¼

ðq
0

dq0pðq0Þ

ðq6
max

0

dq0pðq0Þ

; (2)

FIG. 2. Electron-phonon scattering rates

as a function of electron energy.
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where pðq0Þis the content of the integral in Eq. (4) or (5) of

the SI.30 We note that plots of P(q) as a function of q/qmax

are very similar for all values of E (E determines qmax as

shown in Eq. (7) of the SI30). Therefore, to save computa-

tional time, a single representative value of E was used to

calculate the values of P(q) over the interval 0 to 1 only once

prior to the start of the simulation. Because the initial elec-

tron kinetic energies are distributed between 0 and Eg from

the conduction band minimum, Eg/2 was used as the repre-

sentative energy. For emitted or absorbed LO phonons, the

dispersion was ignored and a single characteristic energy

was used.

B. Origin of the model parameters

The approach used in this work and described in Sec.

II A makes use of a series of parameters, which can be di-

vided into two classes (Table I). The first class of parameters

consists of those taken from experimental data or quantum

mechanical calculations and will be referred to as primary

parameters. The second class of parameters, referred to as

secondary parameters, consists of the parameters for which

no experimental or quantum mechanical data is available

and that have to be determined from the primary parameters.

The sources of the values of the primary parameters and the

formulations used to determine the secondary parameters are

very important aspects of the thermalization model. There-

fore, both sets of parameters as well as the sources for the

primary parameters are given in Table I and the formulations

used to obtain the secondary parameters are discussed

below.

In our previous publication,16 the free electron mass, m0,

was used as an approximation for the electron effective

mass, m*. In the present work, m* is determined using

Fröhlich’s theory

m�
m0

¼ 1þ b
6
; (3)

where b is given by

b ¼ e2 1

4pe
1

e1
� 1

e0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0

2�h2ð�hxLOÞ

r
; (4)

where e is the vacuum permittivity, e is the elementary

charge, �h is the Planck constant, xLO is LO phonon fre-

quency, and e1 and e0 are the optical and static dielectric

constants, respectively. This method was applied to several

alkali halides (CsI, KI, RbI, NaI, and CsBr) by Akkerman

and co-workers in their study of the escape length of photo-

induced electrons from thin films.24

The electron–acoustic phonon interaction matrix ele-

ment is assumed to be independent of the momentum trans-

fer and was determined by Eq. (5), as applied to SiO2 by

Fischetti32

TABLE I. Primary and secondary model parameters.

Parameters Definition NaI CsI CaF2 BaF2

Primary parameters

a0 (nm) Lattice constant 0.646 0.457 0.546 0.62

e1 Optical dielectric constant 2.9a 3.0a 2.02b 2.12b

e0 Static dielectric constant 7.3a 5.65a 6.80c 7.36c

C11 (GPa) Elastic constant 29.3d 24.3e 164.0f 89.2g

C12 (GPa) Elastic constant 7.8d 6.4e 50.0f 40.0g

C44 (GPa) Elastic constant 7.4d 6.3e 34.7f 25.4g

�hxLO (eV) LO phonon energy 0.023a 0.01a 0.0565h 0.0396h

r (10�19 m2) Integrated cross section at exciton energy 2.91 6.76 4.13 4.56

E (eV) Exciton energy 5.61i 5.3i 11.0j 9.8j

dh-h (nm) Distance between two halide ions in the h�2 molecular ion 0.345 0.325 0.19 0.19

Secondary parameters

EBZ (eV) Electron kinetic energy of electron (Brillouin zone) 3.495 2.772 4.893 3.794

kBZ (109 m�1) Equivalent radius of first Brillouin zone 9.58 8.53 11.33 9.98

Cm (10�20 m2) Primitive cell mass correction factor 0.197 1.31 0.74 0.28

m*/m Electron effective mass 1.8 1.9 1.9 2.0

S (eV) Matrix element for A phonon-electron interaction 0.60 0.61 1.32 0.87

CS (m�s�1) Effective speed of sound in material 1627 1390 3947 2701

a (nm�1) Screening correction parameter 77.0 128.1 41.1 69.8

aReference 34
bReference 42
cReference 43
dReference 44
eReference 45
fReference 46
gReference 47
hReference 48
iReference 49
jReference 50.
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j~SðqÞj2 ffi ðp�h4N2=m�2Þr; (5)

where r is the integrated cross section for electron scattering

at the exciton energy following Sparks et al.28 and N is the

atomic density. The integrated cross sections of CsI, NaI,

CaF2, and BaF2 were determined using the electron-ion scat-

tering cross sections calculated by the FEFF8 code.33 As for

the electron effective mass, the same method was applied to

a series of alkali halides by Akkerman and co-workers.24,34

Although the formulation introduced by Sparks et al.28

for the interaction between electrons and acoustic phonons is

appropriate for low electron energies, the calculated scatter-

ing rates become unphysical as the electron energy increases

beyond the energy of the first Brillouin zone. Therefore, as

introduced by Bradford and Woolf,29 the correction factor

f1=½1þ ðq2=a2Þ�g2
was added into the integrand of the

electron-acoustic phonon scattering rate, as shown in Eqs.

(3) and (4) of the SI,30 where q is the phonon momentum

and a is the screening correction parameter. We used the

same approach used by Bradford and Woolf29 to determine

the value of a, i.e., by requiring that

limq!0

4p
Vc

1

4pe0

Z1Z2e2

� �
1

a2 þ q2

� �
¼ S; (6)

where Vc is the unit cell volume, Z1¼ 1, Z2 is atomic number

of the dominant scattering atom (the anion for the alkali

iodides and the cation for the alkaline-earth fluorides), and S
is the electron–acoustic phonon interaction matrix element.

The effective speed of sound Cs was calculated using

the elastic theory31,35

3

Cs
¼ 2

Ct
þ 1

Cl
; (7)

where Ct and Cl are the transverse and longitudinal sound

velocities, respectively, which are calculated by35

Cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
ðC11 þ 2C12 þ 4C44Þ

q

vuut
;

Ct ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
ðC11 � C12 þ C44Þ

q

vuut
;

(8)

where C11, C12, and C44 are the elastic constants. Experimen-

tal data for the effective speed of sound in CaF2 and BaF2

are available36 (3730–3800 and 2430–2450 m�s�1, respec-

tively) and are in good agreement with those calculated here

(3947 and 2701 m�s�1, respectively).

As was done by Fischetti et al.31 and Ashley et al.37 for

SiO2 and by Sparks et al.28 for NaCl, the electron energy at

the boundary of the first Brillouin zone, EBZ, was calculated

using the equivalent spherical radius, kBZ

EBZ ¼ �h2k2
BZ=m�; (9)

where

kBZ ¼ ð6p2=VpÞ1=3; (10)

and where Vp is the volume of the primitive cell.

Finally, the primitive cell mass correction factor, f(q),

which describes the variation of the mass M from the mass

of the primitive cell, Mp, for small q, to the mass of the heav-

iest constituent (MH) for q � kBZ, was calculated as proposed

by Ashley et al.37 to extrapolate between the small q and

q � kBZ limits described by Sparks et al.28

f ðqÞ ¼
1þ Cmq2;

1þ Cmk2
BZ;

q < kBZ

q � kBZ

;

(
(11)

where

Cm ¼
Mp

MH
� 1

� �.
k2

BZ: (12)

III. RESULTS AND DISCUSSION

A. Pure materials: CsI, NaI, CaF2, and BaF2

For pure systems, the scintillation light is due mostly

to the radiative decay of an excited state resulting from the

recombination of an electron with a self-trapped hole.

Therefore, the magnitude of the fraction of recombined

electrons and its variation among different materials is of

great interest. The fraction of recombined electrons as a

function of the incident c-ray energy is shown in Fig. 3(a)

for all four materials. The error bars were calculated as the

standard deviation of the mean when the electron-hole pair

tracks were divided into five groups. The fraction of

recombined electrons generally decreases with increasing

incident energy. This is due to the fact that the stopping

power increases at low incident energies thus generating

high electron-hole pair densities at these energies, which,

in turn, leads to an increased probability for electron-hole

FIG. 3. (a) Fraction of recombined electron-hole pairs as a function of inci-

dent c-ray energy. (b) Distributions of the fractions of recombined electrons

(FREs). (c) Initial electron-hole pair distribution functions. (b) and (c) are

for an incident c-ray energy of 2 keV. (d) Electron mean free paths as a func-

tion of electron energy.
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pair recombination. The fraction of recombined electrons

for CsI increases by about 10%, at all energies, relative to

the values reported in our previous work.16 This change is

due to the modifications made to the values of some of the

simulation parameters, namely, the electron effective mass,

the screening correction parameter, and the energy cutoff.

An important observation is that the distribution of the

fraction of recombined electrons at a given incident energy

shows a somewhat wide distribution for all materials, as

shown in Fig. 3(b) for 2-keV incident c-rays. The distribu-

tions are fairly symmetrical as the averaged value is close

to the peak position. For pure CsI, the distributions of the

fraction of recombined electrons at incident energies of 2,

5, and 10 keV were fitted to a Gaussian distribution, as

shown in Fig. S1.30 The values of the fitting parameters are

shown in Table S1.30 The full width at half maximum is

seen to decrease with increasing incident energy, which is

consistent with the experimental observation that the

intrinsic energy resolution of pure CsI decreases (i.e., the

energy resolution improves) with increasing incident

energy.38

Fig. 3(a) also shows that the fraction of recombined

electrons is different for the four materials. These differences

are due to several factors.

(1) MFP. The mean free path was calculated as follows:

MFP ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�=2Ei

p X4

j¼1

sj

; (13)

where sj is the electron-phonon scattering rate of process j,
and j is one of the four electron-phonon interactions listed in

Sec. II. Fig. 3(d) shows the MFP for each material. A longer

MFP means that electrons scatter over longer distances after

an electron-phonon interaction, which translates into a

decreased likelihood for recombination as the electrons

travel further away from the initial track of immobile self-

trapped holes.

(2) LO phonon energy. A large LO phonon energy

means that electrons are slowed down quickly and thus are

more likely to reside near the self-trapped hole track, which

increases the probability for recombination.

(3) The initial electron-hole pair density. To describe

the initial electron-hole pair density, we use the electron-

hole pair distribution function, g(r), which is calculated by

gðrÞ ¼ nðrÞ
NENHDr

; (14)

where n(r) represents the number of electron-hole distances

within the range r þ Dr, and NE and NH are the numbers of

electrons and holes in the track, respectively. Fig. 3(c) shows

the g(r) distributions obtained for all materials. A greater

proportion of short electron-hole distances will lead to an

increased probability for electron-hole pair recombination.

(4) Static dielectric constant. As described in Sec. II,

one of the conditions used to evaluate whether an electron

and a hole have recombined is to determine whether their

electrostatic interaction energy is higher than the electron

kinetic energy. As a result, higher static dielectric constants

means that the electron-hole electrostatic interactions are

better screened and thus the fraction of recombined electrons

is less.

Based on these factors, the fractions of recombined elec-

trons shown in Fig. 3(a) can be explained as follows. CaF2

has both the greatest proportion of short initial electron-hole

pair distances and the largest LO phonon energy of the four

materials, which explains why it has the largest fraction of

recombined electron-hole pairs. In contrast, NaI has the low-

est proportion of short initial electron-hole pair distances, the

longest MFP at energies lower than its highest initial electron

kinetic energy, and also one of the lowest LO phonon ener-

gies and, therefore, displays the lowest fraction of recom-

bined electrons. Although BaF2 has a greater MFP than CsI

for most energies lower than its highest initial electron ki-

netic energy, it has both a higher LO phonon energy than CsI

and a greater proportion of short initial electron-hole pair

distances; therefore, BaF2 shows a higher extent of electron-

hole pair recombination than CsI. Differences in static

dielectric constant between CsI (5.65) and NaI (7.3) and

between CaF2 (6.80) and BaF2 (7.36) are small but are con-

sistent with the fact that CsI shows a greater fraction of

recombined electron-hole pairs than NaI and that of CaF2 is

higher than that of BaF2. It should be noted that a direct cor-

relation between the calculated fractions of recombined

electron-hole pairs and the experimental light yields of these

pure materials cannot be done based on these results alone as

the light yield will be strongly influenced by several proc-

esses occurring during the energy transfer stage, which fol-

lows the thermalization stage, such as the diffusion, radiative

decay, and non-radiative decay of excitons, the ability of

separated electron-hole pairs to recombine after thermaliza-

tion, and the presence of activators and defects.

As discussed above, a significant fraction of the elec-

trons recombine with self-trapped holes during thermaliza-

tion (recombined electrons). The remaining electrons travel

through the lattice until they reach thermal energy (stopped

electrons). Figs. 4(a) and 4(b) show, respectively, the ther-

malization distance distributions of the recombined and

stopped electrons obtained from the interaction of 2-keV

incident c-rays with all four pure materials considered. The

thermalization distance is defined as the distance between

the final and initial positions of an electron. The two sets of

distributions show very different behaviors. For the recom-

bined electrons, the distributions decay very rapidly, which

means that the electrons recombine with self-trapped holes

before they can travel long distances. For the stopped elec-

trons, the distributions show a rapid rise to a maximum fol-

lowed by a long tail. All four distributions peak between

approximately 25 and 50 nm, in the following increasing

order of peak position: CaF2, BaF2, NaI, and CsI. Fig. 4(b)

also shows that the shorter the peak position, the higher its

probability and the faster the distribution decays.

Figs. 5(a) and 5(b) show the thermalization time distri-

butions of the recombined and stopped electrons, respec-

tively, obtained from the same simulations. The

thermalization time is defined as the time it takes before an

electron either is stopped or recombines with a self-trapped
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hole. The thermalization time distributions display the same

behavior as the thermalization distance distributions, with an

increasing order of maximum extent as follows: CaF2 (	0.5

ps), BaF2 (	1 ps), NaI (	2 ps), and CsI (	7 ps) for the

stopped electrons. The time distribution of CsI was enlarged

in the inset of Fig. 5(b) to discern its fine structure. As can be

seen in Fig. 5(b), the time distributions of the four materials

are all composed of three peaks. The NaI time distribution

shows three peaks at 0.25, 0.75, and 1.5 ps, CsI at 1, 3, and

5 ps, CaF2 at 0.1, 0.25, and 0.35 ps, and BaF2 at 0.1, 0.55,

and 0.75 ps. The first peak corresponds to the electrons gen-

erated through interband transitions. As discussed in our pre-

vious work,16 the second and the third peaks correspond to

the electrons generated through plasmon decay and those

that reached the energy cutoff after electron-phonon interac-

tions, respectively.

The time and distance distributions for the stopped elec-

trons of CsI differ in two ways from those reported in our pre-

vious paper16 as a result of changes in a few parameters. First,

Figs. 4(b) and 5(b) do not show peaks at 0 nm and 0 ps in the

CsI thermalization distance and time distributions, respec-

tively, unlike what was predicted in our previous work (Fig. 5

of Ref. 16). This is due to the fact that the thermal energy is

used instead of the electron affinity as the energy cutoff in this

work. Because the thermal energy (	0.025 eV) is much lower

than the CsI electron affinity (	0.1 eV), the probability for an

electron to have an initial kinetic energy lower than the energy

cutoff is greatly reduced. This means that fewer electrons are

stopped before the start of the simulation and that electrons

with low initial kinetic energies can travel further. As a result,

the peaks previously found at 0 nm and 0 ps disappear and are

replaced by an initial rise. Second, in our previous work, the

distance distribution extended up to 	1000 nm whereas it

does not go beyond 	400 nm here. Similarly, the thermaliza-

tion time distribution is calculated to be narrower. This is

caused by the modification of the electron effective mass and

the screening correction parameter.

The ordering observed in both the distance and time dis-

tributions of the stopped electrons is due mostly to the LO

phonon scattering rates and the LO phonon energy. The

greater the ratio of the phonon creation rate to the phonon

annihilation rate (sþLO=s
�
LO), the more favored phonon crea-

tion is over phonon annihilation and, therefore, the faster the

electrons will lose energy to the lattice. As can be deduced

from Eqs. (1) and (2) of the SI,30 sþLO=s
�
LO becomes solely de-

pendent on the LO phonon energy as the electron energy

increases and becomes much larger than the LO phonon

energy (limE!1 sþLO=s
�
LO ¼ ðnq þ 1Þ=nq ¼ expð�hxLO=kBTÞ).

Therefore, this means that the greater the LO phonon energy,

the faster the rate of energy loss to the lattice. The inset of

Fig. 4(b) shows that the ratios of the creation to annihilation

scattering rates converge to 9.6, 4.9, 2.5, and 1.5 for CaF2,

BaF2, NaI, and CsI, respectively, since the LO phonon ener-

gies are 0.0565, 0.0396, 0.023, and 0.01 eV for CaF2, BaF2,

NaI, and CsI, respectively. In addition to a greater sþLO=s
�
LO

ratio, a higher LO phonon energy means that more energy is

lost to the lattice for each phonon creation event. Conse-

quently, the ordering of the four LO phonon energies

correlates with the peak positions and widths of the thermal-

ization time and distance distributions of the stopped elec-

trons. Finally, as observed in our previous work, the

thermalization time and distance distributions did not show

any incident-energy dependence, as shown in Fig. S2.30

The ability of electron-hole pairs to recombine during

the energy transfer stage will be dependent, in part, on the

extent of separation between the self-trapped holes and the

stopped electrons as a result of the thermalization process.

Therefore, we calculated the distributions of the nearest

electron-hole distances for the stopped electrons at the end

of the thermalization simulations obtained for the four mate-

rials and 2-keV incident c-rays (Fig. S3 (Ref. 30)). Although

the distributions show large fluctuations, they are all centered

around 20–40 nm. In addition, the distributions first rise at

7.8, 9.8, 8.3, and 7.5 nm for NaI, CsI, CaF2, and BaF2,

respectively, which means that there is no stopped electron

within this radius from each self-trapped hole after thermal-

ization. These values are essentially identical to the Onsager

radii of those materials, which are 7.6, 9.9, 8.2, and 7.6 nm at

300 K for NaI, CsI, CaF2, and BaF2, respectively. For CsI,

FIG. 4. Thermalization distance distributions for the (a) recombined and (b)

stopped electrons for a 2-keV incident c-ray. The inset in (b) shows the ratio

of LO phonon creation and LO phonon annihilation scattering rates.

FIG. 5. Thermalization time distributions for the (a) recombined and (b)

stopped electrons for a 2-keV incident c-ray. The inset in (b) shows an

enlarged view of the time distribution of CsI.
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the present results differ slightly from those presented in

Ref. 16, in which two distinct peaks were predicted rather

than one. As before, this is caused by the fact that the energy

cutoff was changed from the material’s electron affinity to

the thermal energy. As the energy cutoff is reduced, elec-

trons with a low initial kinetic energy can travel further than

before and, as a result, the peak previously found at 	5 nm is

shifted to longer distances and merges with the second peak.

B. Doped materials: CsI(Tl) and NaI (Tl)

Scintillators materials are commonly doped with activa-

tors, such as thallium for the alkali iodides, for use as radia-

tion detection materials. In our previous work,16 we studied

the effect of doping on the electron thermalization process in

Tl-doped CsI. Therefore, based on the results obtained in the

previous section, in this section, we extend our work to Tl-

doped NaI to investigate whether Tl doping can affect the

electron thermalization process differently between the two

materials. BaF2 was not considered as it is typically used as

a pure scintillator. CaF2 is commonly doped with europium;

however, there is at present no approach to determine the rel-

ative values of c for Tl and Eu in Eq. (1) and thus there is no

way to differentiate the two dopants. As a result, we chose to

study the difference between two materials doped with the

same dopant. A value of 0.56 was used for c as used in our

previous study,16 which also contained a discussion of the

dependence of the simulation results upon the value of c.

Fig. 6 shows the fraction of Tl-trapped electrons as a

function of Tl concentration for concentrations up to 1.0 mol.

%. A thallium ion becomes Tl0 when trapping an electron;

therefore, Tl0 is synonym to a Tl-trapped electron. As

expected, the fraction of Tl-trapped electrons increases and

those of the recombined and stopped electrons decrease with

increasing Tl concentration. In addition, the fraction of

Tl-trapped electrons shows an asymptotic behavior as a func-

tion of Tl concentration. At low Tl concentrations, both

materials show the same extent of trapping at Tl sites and a

difference between the fractions of recombined electrons

similar to that obtained with the pure materials. Interestingly,

the fraction of Tl-trapped electrons in NaI(Tl) is larger than

that in CsI(Tl) as the Tl concentration increases beyond

0.1 mol. %. This result can be attributed to two reasons. First,

the larger size of Csþ compared to Naþ means that the

atomic density of NaI is greater than that of CsI and that,

therefore, the trapping probability given by Eq. (1) is higher

for NaI than for CsI, for a given Tl mol. %. Second, as

shown in Fig. 3(d), the NaI MFP is greater than that of CsI,

which translates into an increased probability of capture

according to Eq. (1). Both facts lead to a greater extent of

trapping in NaI. Correspondingly, fewer electrons are avail-

able for recombination with self-trapped holes and the NaI

fraction decreases more.

The Tl concentration in commercially available NaI(Tl)

and CsI(Tl) scintillators is usually around 0.1 mol. %. There-

fore, this dopant concentration was employed to investigate

the incident energy dependence of the electron populations.

Fig. 7 shows the changes in the fractions of stopped, recom-

bined, and Tl-trapped electrons as a function of c-ray inci-

dent energy for CsI and NaI doped with a Tl concentration

of 0.1 mol. %. For both materials, the fraction of Tl-trapped

electrons increases with increasing incident energy to the

detriment of the fraction of recombined electrons, while the

fraction of stopped electrons remains practically constant.

The probability that a given electron will recombine with a

self-trapped hole rather than being captured at a Tlþ site is

an increasing function of the density of the self-trapped

holes, hence an increasing function of the ionization density.

As observed for the pure materials, because the stopping

power diminishes with increasing incident energy, the ioni-

zation density also decreases and thus the fraction of recom-

bined electrons diminishes. As discussed in our previous

work,16 this result agrees well with the experimental findings

of Syntfeld-Każuch et al.,39 who showed that the intensity of

the light component corresponding to the prompt creation of

a thallium excited state, either via nonthermal capture of an

electron and a hole at the same Tlþ site or via exciton cap-

ture40,41 decreased with increasing incident energy, and that

the intensity of the light component which is generally

FIG. 6. Fraction of Tl-trapped electrons and recombined electron-hole pairs

as a function of Tl concentration for an incident c-ray energy of 2 keV.

FIG. 7. Fraction of Tl-trapped, stopped and recombined electrons as a func-

tion of incident c-ray energy for a Tl concentration of 0.1 mol. %.
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assigned to binary processes involving the formation of Tl0

species increased with increasing incident energy.

Finally, the maximum value of the thermalization time

distribution and the position of the thermalization distance

distribution maximum of the stopped electrons were deter-

mined as a function of Tl concentration for 2-keV incident

c-rays in order to investigate the effect of Tl concentration

on the thermalization process in Tl-doped CsI and NaI

(Fig. 8). Because the thermalization time distributions show

multiple peaks (Fig. 5(b)), the maximum value was used

instead of the position of the distribution maximum. As

shown in Fig. 8(a), at concentrations lower than 0.1 mol. %,

the maximum value of the thermalization time shows little

dependence on the Tl concentration, whereas it decreases as

the concentration increases beyond 0.1 mol. %. This is

caused by the fact that most of the electrons are trapped at Tl

sites as the Tl concentration increases beyond 0.05 mol. %.

The change in the thermalization distance peak position with

Tl concentration is shown in Fig. 8(b). The trend is the same

as observed for the maximum thermalization time except for

the fact that the peak position begins to shift to lower values

for concentrations higher than 0.01 mol. %. Importantly, the

extents of change in the maximum thermalization time and

the position of the thermalization distance maximum are

similar for both alkali iodides. The results presented in Fig. 8

indicate that Tl doping can significantly reduce the time and

spatial scales of electron thermalization in alkali iodides.

IV. CONCLUSIONS

In this work, the electron thermalization process in pure

and Tl-doped alkali iodides (CsI and NaI) and pure alkaline-

earth halides (CaF2 and BaF2) was simulated using a Monte

Carlo model. For all four pure materials, a large fraction of

the electrons rapidly recombine with self-trapped holes. The

distances the electrons that avoid recombination travel dur-

ing thermalization show a distribution that peaks between

approximately 25 and 50 nm and that can extend to a few

hundreds of nanometers. The time required for all the elec-

trons to reach thermal energy varies from approximately 0.5

ps for CaF2 to 7 ps for CsI. The LO phonon energy was

found to be the major parameter determining the differences

in thermalization time and distance between the four pure

materials. The extent of electron-hole pair recombination

was also found to vary among the four pure materials and

the electron mean free path, LO phonon energy, initial

electron-hole pair density, and static dielectric constant were

identified as the principal factors responsible for these varia-

tions. For CsI, some quantitative changes were observed

compared to our previous publication16 due to changes in the

cutoff energy, the algorithm for simulating plasmon decay,

and the approach used to calculate the electron effective

mass and the screening correction parameter; however, the

conclusions reached in our previous publication were not

affected by these changes.

The effect of doping CsI and NaI with thallium was also

investigated. In our previous publication,16 it was shown that

the fraction of Tl-trapped electrons increases with increasing

incident c-ray energy to the detriment of the fraction of

recombined electron-hole pairs. This was found, in this

work, to also be true for Tl-doped NaI. However, the fraction

of Tl-trapped electrons was greater for NaI than for CsI. This

difference is due to the higher atomic density and the longer

electron mean free path of NaI compared to CsI.
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18M. Laval, M. Moszyński, R. Allemand, E. Cormoreche, P. Guinet, R.

Odru, and J. Vacher, Nucl. Instrum. Methods 206, 169 (1983).
19J. Menefee, C. F. Swinehart, and E. W. O’Dell, IEEE Trans. Nucl. Sci. 13,

720 (1966).
20S. L. Adler, Phys. Rev. 126, 413 (1962).
21N. Wiser, Phys. Rev. 129, 62 (1963).
22X. Gonze, J. M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. M. Rigna-

nese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M.

Mikami, P. Ghosez, J. Y. Raty, and D. C. Allan, Comput. Mater. Sci. 25,

478 (2002).
23L. Hedin, Phys. Rev. 139, A796 (1965).
24A. Akkerman, T. Boutboul, A. Breskin, R. Chechik, and A. Gibrekhter-

man, J. Appl. Phys. 76, 4656 (1994).
25T. Boutboul, A. Akkerman, A. Gibrekhterman, A. Breskin, and R. Che-

chik, J. Appl. Phys. 86, 5841 (1999).
26J. P. Ganachaud, C. Attard, and R. Renoud, Phys. Status Solidi B 199, 175

(1997).
27J. Llacer and E. L. Garwin, J. Appl. Phys. 40, 2766 (1969).
28M. Sparks, D. L. Mills, R. Warren, T. Holstein, A. A. Maradudin, L. J.

Sham, E. Loh, Jr., and D. F. King, Phys. Rev. B 24, 3519 (1981).
29J. N. Bradford and S. Woolf, J. Appl. Phys. 70, 490 (1991).
30See supplementary material at http://dx.doi.org/10.1063/1.4736088 for the

formulation employed to model electron thermalization, distributions of

the fractions of recombined electron-hole pairs for CsI for incident c-rays

of energies 2, 5, and 10 keV and values of the fitting parameters, thermal-

ization distance, and time distributions for the stopped electrons as

obtained for incident c-ray with different energies, and distributions of the

nearest electron-hole distances for the stopped electrons after thermaliza-

tion for a 2-keV incident c-ray.
31M. V. Fischetti, D. J. DiMaria, S. D. Brorson, T. N. Theis, and J. R. Kirt-

ley, Phys. Rev. B 31, 8124 (1985).

32M. V. Fischetti, Phys. Rev. Lett. 53, 1755 (1984).
33A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Phys. Rev. B

58, 7565 (1998).
34T. Boutboul, A. Akkerman, A. Breskin, and R. Chechik, J. Appl. Phys. 84,

2890 (1998).
35C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2005).
36C. J. Carlile and B. T. M. Willis, Acta Crystallogr. Sec. A 45, 708

(1989).
37J. C. Ashley, R. H. Ritchie, and O. H. Crawford, in Proceedings of the

10th Werner Brandt Conference (1988), p. 329.
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Nonlinear quenching of electron–hole pairs in the denser

regions of ionization tracks created by g-ray and high-energy

electrons is a likely cause of the light yield non-proportionality

of many inorganic scintillators. Therefore, kinetic Monte

Carlo (KMC) simulations were carried out to investigate the

scintillation properties of pure and thallium-doped CsI as a

function of electron–hole pair density. The availability of recent

experimental data on the excitation density dependence of the

light yield of CsI following ultraviolet excitation allowed for

an improved parameterization of the interactions between self-

trapped excitons (STE) in the KMC model via dipole–dipole

Förster transfer. The KMC simulations reveal that nonlinear

quenching occurs very rapidly (within a few picoseconds) in

the early stages of the scintillation process. In addition, the

simulations predict that the concentration of thallium activators

can affect the extent of nonlinear quenching as it has a direct

influence on the STE density through STE dissociation and

electron scavenging. This improved model will enable more

realistic simulations of the non-proportional g-ray and electron

response of inorganic scintillators.

� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction High-energy photons and electrons
that penetrate scintillator materials create tracks of electron–
hole pairs, also referred to as ionization tracks, with densities
that vary as the energetic particle slows down inside the
solid. Relaxation of ionization tracks eventually leads to
the emission of many lower-energy scintillation photons, a
phenomenon that is exploited, for example, in radiation
detection and g-ray spectroscopy. Key scintillation proper-
ties, such as emission spectra, decay times, and light
yields, strongly depend on the kinetics and efficiency of
the relaxation of ionization tracks. The variation of the
ionization track density as a function of the incident particle
energy can also lead to non-proportionality, a phenomenon
whereby the yield of scintillation photons normalized to
the incident energy is not constant with incident energy.
Although the non-proportionality of inorganic scintillators
has been studied quite intensively (see for example, reviews
[1–4] and references therein), its underlying mechanisms
remain incompletely identified.

From a solid state physics perspective, non-proportion-
ality challenges our understanding of (i) the dependence of

ionization tracks on incident particle energy, (ii) the
relaxation of small high-excitation-density regions, and
(iii) the competition among the processes that dictate the
light yields of scintillators. From an application perspective,
non-proportionality is the main source of degradation of
the energy resolution in radiation detection and g-ray
spectroscopy with inorganic scintillators [5, 6] and, there-
fore, there is great interest in understanding the root cause(s)
of non-proportionality in order to help guide the search for
new and improved scintillator materials.

Significant progress has been made towards developing
models of the elementary processes that take place in
ionization tracks and give rise to the electron or photon
response of inorganic scintillators. These elementary
processes include the creation of excited states, the transport
of excited carriers through the scintillator lattice, and the
quenching of excitations as they propagate. Approaches
employed to model these processes include minimalist
phenomenological models [7, 8], kinetic models [9–13],
diffusion models [14–16], and microscopic models that
explicitly deal with individual electron–hole pairs [17–20].
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Accurately describing the rate and extent of nonlinear
quenching in conditions relevant to ionization tracks has
amounted to one of the most challenging tasks faced by
scintillation models to date; mostly due to the considerable
difficulties in obtaining experimental data for parameteriza-
tion and validation of the models. For example, we
previously used kinetic Monte Carlo simulations (KMC) to
evaluate the contribution of an annihilation mechanism
between self-trapped excitons (STE) to the non-proportional
scintillation response of pure CsI at low temperature [18].
Although the KMC simulations suggested that STE–STE
annihilation could account for the non-proportional behavior
of CsI, this process could not be independently parameter-
ized and its probability was used as a variable.

Fortunately, experimental data on nonlinear quenching
is now beginning to become available [15, 16, 21–27]. For
example, Williams and co-workers recently investigated the
excitation density dependence of the light yield of pure and
thallium-doped CsI and NaI using ultraviolet (UV) exci-
tation [16, 27]. In these experiments (referred to hereafter as
z-scan experiments), 0.5-ps pulses of 5.9-eV light were used
to generate electron–hole pair densities estimated to be
consistent with the denser regions of ionization tracks
created by g-rays and energetic electrons. The excitation
density was controlled by varying the distance between the
sample and the UV-beam waist thus allowing for scintil-
lation decay curves and light yields to be determined as a
function of excitation density.

Therefore, in this work, we make use of a KMC model of
scintillation mechanisms in CsI and CsI(Tl), developed in a
previous study [17] and based on the kinetic model of
Dietrich and Murray [28], to model the excitation density
dependence of the kinetics and efficiency of scintillation in
the z-scan experiments. Our aim is to identify the relevant
elementary processes, determine and parameterize the extent
of nonlinear quenching due to STE–STE interactions, and
thus develop a more accurate model for simulating the
relaxation of ionization tracks. The KMC model makes
use of an explicit atomistic representation of the crystal
lattice, thallium sites and individual electron–hole pairs and
assigns probabilities for each individual elementary process
based on rate parameters (i.e., activation energies and pre-
exponential factors).

One of the advantages of the KMC model is that it can
use as input realistic ionization tracks produced by the Monte
Carlo code NWEGRIM (Northwest Electron and Gamma
Ray Interaction in Matter) [29–32]. NWEGRIM follows
the collisions of each individual particle generated during the
energy cascade and can generate a microscopic-level three-
dimensional description of ionization tracks. Therefore, in
combination with progress made recently in simulating
electron thermalization in alkali and alkaline-earth halides
[19, 20], these techniques and models provide a path toward
modeling the response of inorganic scintillators at the level
of individual electron–hole pairs. Such an approach is
attractive as it has the potential ultimately to account for any
heterogeneity of the ionization tracks, scintillator lattice, or

activator distribution, incorporate input from first-principles
calculations, and lead to the development of a predictive
simulation framework.

The focus of this study is on CsI, pure and thallium
doped, as it was studied in both our previous modeling work
[17] and the experimental work of Williams and co-workers
[16, 27]. It should be noted that CsI is also attractive
for its wide-spread use as a radiation detection material,
simple crystal structure, large deviation from proportionality
and frequent use as a model system for studying non-
proportionality.

2 Computational methods
2.1 Kinetic Monte Carlo model The KMC model

was developed and implemented in a previous study [17] and
was based on the model originally developed by Dietrich
and Murray [28] to describe the kinetics of scintillation
of thallium-doped alkali halides. In the KMC model, the
scintillator lattice and all the relevant species are represented
explicitly and the diffusion of self-trapped holes (STH) and
STE is treated using a random-walk approach. The model
considers a number of scintillation processes, as illustrated in
Fig. 1.

All electron–hole pairs begin the simulations as STE, for
reasons to be explained in Sections 2.3 and 3.1. STEs can
diffuse through the lattice and be trapped at Tlþ sites. STEs
can also decay radiatively or non-radiatively or interact via
dipole–dipole Förster transfer, a non-radiative transfer
whereby a first STE decays by emitting a virtual phonon,
which is absorbed by a second STE. In addition, STEs can
undergo dissociation. Indeed, recent picosecond time-
resolved measurements of optical absorption by Williams
and co-workers [33] showed that, in CsI doped with
0.3 mol% of Tl, the absorption band due to STEs decayed
on the time scale of picoseconds and was replaced by a band
that was assigned to Tl0. This experimental result indicates
that a STE electron, possibly in an excited bound state, may
be scavenged by tunneling transfer to a nearby Tlþ site to
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Figure 1 (online color at: www.pss-b.com) Schematic of the ele-
mentary species (black), elementary processes (blue), and possible
final outcomes (red) considered in the KMC model of scintillation.
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form Tl0. Therefore, the dissociation of a STE results in the
formation of a STH and a Tl0 site. A STH can diffuse through
the lattice and trap at Tlþ or Tl0 and Tl0 can release its
electron to be trapped at a Tlþþ site and thus form (Tlþ)�.

Overall, scintillation light can be emitted by radiative
decay of either STE or excited thallium ions, which can be
formed by three different mechanisms: (i) diffusion of a STE
and capture at a Tlþ site; (ii) diffusion of a STH and capture at
a Tl0 site; and (iii) diffusion of a STH and capture at a Tlþ site
to form Tlþþ, followed by thermal release of an electron
from a Tl0 site and capture at Tlþþ.

For each elementary process, the rate, k, is described by
an Arrhenius equation,

k ¼ Aexp
�W

kBT

� �
; (1)

where A is the pre-exponential factor, W the activation
energy, kB the Boltzmann constant, and T is the temperature.
In previous work [18], second-order quenching of STEs was
simulated by assigning a probability for annihilation when a
STE hopped to a site already occupied by another STE. This
is replaced in this work by dipole–dipole Förster transfer
between STEs. Förster transfer is an exception to Eq. (1) in
that the rate is dependent on the distance between STEs [34]:

kðrÞ ¼ B
Rdd

r

� �6

; (2)

where Rdd is the Förster transfer radius and B is set to the
STE radiative decay rate following the formulation of
Vasil’ev [34] used subsequently by Kirm et al. [21] and
Williams et al. [16]. The model parameters are given in
Table 1 and discussed in the next section.

The KMC algorithm is executed using the following
algorithm: (i) the rate of each process is calculated using Eqs. (1)
or (2); (ii) a process is selected with a probability proportional to
its rate using a random number; (iii) the selected process is
executed; (iv) time is increased by –ln x/G, where x is another
random number and G is the sum of all rates. Steps (i)–(iv) are
repeated until all electron–hole pairs have undergone radiative
or non-radiative decay or have been quenched.

2.2 Origin of the model parameters Eight pro-
cesses are considered in the KMC model. Six processes were
included in the derivation of the original KMC model [17]:
STH and STE diffusion, STE radiative and non-radiative
decay, (Tlþ)� radiative decay, and electron thermal release
from Tl0. Two processes were added for the purposes of this
work: STE dissociation and dipole–dipole Förster transfer.
All the parameters related to these eight processes are given
in Table 1.

STH diffusion occurs via thermally activated hopping to
nearest-neighbor sites following 90 or 1808 hops of the STH
[35]. Initial assignment of the two peaks of thermolumines-
cence below 100 K (at approximately 60 and 90 K) observed
by Sidler et al. [35] led to the conclusion that the 1808 hop
had a lower activation energy than the 908 one in CsI.
However, Barland et al. [36] showed that there was no
thermoconductivity peak associated with the 60 K thermo-
luminescence peak and that its isothermal decay exhibited a
1/t dependence, strongly suggesting that this peak was due to
recombination through tunneling and not diffusion via 1808
hops. Therefore, there is no experimental consensus on the
relative activation energies of the two possible hops.
Derenzo and Weber [37] computed an activation energy of
0.15 eV for the 1808 hop using MP2 level of theory but they
did not compute the activation energy for the 908 hop;
therefore, this value was used for both types of hops in the
KMC simulations. As before [17], the value derived by
Keller and Murray [38] from thermal-reorientation exper-
iments of STHs in KI was used for the pre-exponential factor.

At low temperatures, pure CsI shows two main STE
emission bands but as the temperature is increased to room
temperature only one wide band is observed [39]. Nishimura
et al. [39] suggested that the wide band at room temperature
originates from the on-center configuration of the STEs
(it should be noted that other researchers have shown
evidence for the interaction of multiple excitations as a
possible alternate origin of this emission [40, 41]). Because
the radiative lifetime of the singlet on-center STE is shorter
than that of the triplet, the rate of dipole–dipole Förster
transfer will be faster for the singlet state. In addition, the
experimental data of Williams et al. [16] used in this work for
comparison were subject to surface quenching that reduces
the observed radiative lifetime. This competing surface
quenching depletes the slower triplet light yield more than
the faster singlet light yield. Both effects suggest that the
experimental data are mainly representing the singlet
channel. Therefore, as was done in the original KMC model
[17], we make the simplifying assumption that the STE
emission in pure CsI originates from a single type of STE at
room temperature. However, there is no experimental data
available on the activation energy and pre-exponential factor
for STE hopping in CsI. Previously [17], the STE diffusion
parameters were estimated from a combination of the data
on STH and STE hopping in NaI and that on STH hopping in
CsI and resulted in STE diffusion being faster than STH
diffusion. However, recent electronic structure calculations
by two research groups have shown that STEs and STHs are
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Table 1 Parameters of the KMC model of scintillation.

process A (s�1) W (eV)

STH diffusion 5.1� 1012 0.1500
STE diffusion 5.1� 1012 0.1500
STE radiative decay 7.1� 108 0.0000
STE non-radiative decay 1.0� 1010 0.1160
STE dissociationa 1.7� 1011 0.0000
(Tlþ)� radiative decay 6.0� 107 0.0662
electron thermal release from Tl0 8.8� 106 0.0880

process Rdd (a0) B (s�1)

dipole–dipole Förster transfer 8 1.7� 108

aThis process can take place only if a Tlþ is available within a 3a0 radius.
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equally mobile in NaI [42, 43] and this finding is expected to
extend to CsI. Therefore, the energy barrier and pre-
exponential factors for STEs in CsI were set to be the same
as those used for STHs.

In the original KMC model [17], the parameters for STE
radiative and non-radiative decay were fitted to the
experimental light yield and decay time of pure CsI obtained
by Amsler et al. [44] as a function of temperature and under
excitation by 511 and 1275 keV g-rays. The fit initially
produced a very small value for the activation energy of the
STE radiative decay process (0.011 eV) and a second fit with
this activation energy fixed to zero yielded equivalent
temperature dependence of the light yield and decay time.
Therefore, W in Eq. (1) was set to zero in this work. The STE
lifetime derived by Williams et al. [16] from the decay of the
STE luminescence of UV-excited pure CsI was shorter than
that measured in the bulk by Nishimura et al. [39]. Williams
et al. suggested that this shortening of the lifetime for UV
excitation was due to quenching on surface defects, which
could provide an additional channel for STE decay. There-
fore, because this study focuses on modeling the experimen-
tal results of Williams et al., the pre-exponential factor of the
STE radiative decay process was changed to the inverse of
the lifetime derived by Williams et al. to implicitly account
for surface quenching.

The parameters for electron thermal release and (Tlþ)�

radiative decay were derived in the original model from the
temperature dependence of the scintillation light measured
by Valentine et al. [45] following excitation of CsI(Tl) with
511 keV g-rays. These parameters were kept in the current
model with the exception of the pre-exponential factor for
(Tlþ)� radiative decay, which was increased from 1.9� 107

to 6.0� 107 to improve the agreement with the kinetics of
(Tlþ)� luminescence reported by Williams et al. [16]. This
was a fairly small modification; although Williams et al. [16]
did not compare their observed (Tlþ)� lifetime to previous
work, it is possible that, again, differences in excitation
energy and densities slightly affected the rate of (Tlþ)�

radiative decay in their experiments.
Turning now to the two processes that were added in

the current version of the model, there is no available
experimental data to directly parameterize the STE dis-
sociation process; therefore, the rate assigned to this process
was based on the observation of Williams et al. [33], from
their time-resolved optical absorption data, that the band
assigned to STEs essentially disappeared within 6 ps
(i.e., the pre-exponential factor for this process was set to
1.67� 1011 s�1 while the activation energy was set to zero as
temperature dependent data would be needed to extract the
activation energy). For the dipole–dipole Förster transfer,
the parameter B was set to the STE radiative decay rate in
analogy with the formulation of Vasil’ev [34]. To exclude
the effect of surface quenching and for consistency with the
original KMC model [17], B was set to the inverse of the
lifetime measured by Amsler et al. [44] in the bulk and at
room temperature (6 ns). As one of the goals of this work is to
derive parameters for describing nonlinear quenching based

on the experimental data of Williams and co-workers
[16, 27], the value of Rdd was varied by increments of a0,
the CsI lattice parameter, while the other model parameters
were kept fixed, until agreement with the z-scan experiments
was obtained.

Finally, we note that, in the original KMC model, a prompt
capture radius of 1.4 nm was used to model non-thermal
capture of holes at Tlþ sites, as suggested by Hadley et al. [46]
and Kaufman et al. [47] in their experimental studies of KI(Tl)
and NaI(Tl). This process was not included in the current
model as all the electron–hole pairs begin the simulations as
STEs. The data compared here are for photon excitation at
5.9 eV, whereas the work of Hadley et al. and Kaufman et al.
used X-ray irradiation. In addition, as noted by Williams et al.
[16], the excitation energy used in their experiments does not
significantly overlap with the D band of Tlþ, which should
produce negligible direct excitation of Tlþ.

2.3 Simulation setup The KMC model uses a simple
cubic lattice whereby each lattice point represents one unit
cell (i.e., 1 Csþ ion and 1 I� ion). In alkali halides, a STH is
localized on two neighboring halide ions and forms an X�2
molecular ion or Vk center. A Vk center can capture an
electron to form a STE. Therefore, STHs and STEs are
represented in the KMC model as occupying two neighbor-
ing unit cells.

The KMC simulations were set to represent as closely as
possible the conditions of the z-scan experiments. Based on a
band gap energy of 6.05 eV for CsI at 20 K [48] and the
observation that the band gap decreases with increasing
temperature, the photon energy of the UV pulse in the z-scan
experiments (5.9 eV) was close to the band gap energy and
higher than the 1s exciton peak (5.6 eV) [49]. The
comparison of one-photon [50] and two-photon [48]
absorption spectra at low temperature give an experimental
exciton binding energy of about 250 meV. Therefore,
excitons are stable at room temperature and STEs are stable
also, as evidenced by their efficient radiative emission.
Therefore, the electron–hole pairs were all assumed to begin
the simulations as STE. The STEs were placed on the lattice
following an exponentially decaying distribution: N(z)¼
N0exp(�az), where z is the depth from the surface in lattice
layers, N(z) is the number of excitons at depth z, and a is the
absorption coefficient. The absorption coefficient used here
was set to approximately twice that derived experimentally
by Williams et al. [16] (i.e., 5.0� 105 vs. 2.7� 105 cm�1) to
give a characteristic length of 20 nm instead of 37 nm and
thus reduce the extent of the z direction needed in the
simulations to encompass the STE distributions. A test
simulation was run for a¼ 2.7� 105 cm�1, but no significant
change was observed.

The simulation cell was a three-dimensional lattice of
dimensions 32� 32� 256 sites. Given a lattice parameter of
0.457 nm for CsI, this corresponds to real dimensions of
14.6� 14.6� 117 nm3. The UV beam was assumed to be
incident along the z direction. Periodic boundary conditions
were applied in the directions perpendicular to the beam but
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not in the direction of the beam. The z¼ 0 boundary
represented the crystal surface. Given the length of the
simulation cell in the z direction relative to the absorption
coefficient, the STE population was extremely small at
the other z boundary. Tlþ sites were placed randomly on
the lattice to achieve the desired concentration. All the
simulations were carried out at room temperature.

Knowing the on-axis laser fluence, the absorption
coefficient, the excitation energy, and the position of the
beam waist relative to the sample surface, the excitation
density can be calculated and parameterized by its value N0

at the sample surface. The same range of values as used
experimentally was used here for N0.

3 Results
3.1 Light yield of CsI:0.3% Tl as a function of

excitation density A series of KMC simulations were
performed to calculate the light yield of CsI:0.3% Tl as a
function of excitation density. The excitation densities were
taken from the experimental estimates, as described in
Section 2.3. For each excitation density, the light yield was
determined using the average of 400 simulations. Although
not necessarily true in practice because of the increase in
background light for the positive side, the positive and
negative sides of the z-scan should be identical and therefore,
for the KMC simulations, the positive side was obtained by
simply taking the mirror image of the negative side.

Recent z-scan measurements by Grim et al. [27]
comparing Bi4Ge3O12, NaI:Tl, and CsI:Tl at 5.9-eV
excitation indicate that CsI:Tl does not follow purely
second-order quenching kinetics (Förster transfer) but shows
some contribution from a third-order quenching process
(e.g., Auger recombination). Because this work focuses on
second-order quenching, a fit to the experimental data with a
mixed 2nd/3rd order analytical model [27] was carried out
and only the second-order component is considered further
in our KMC simulations with Förster transfer. Future work
will investigate the effects of incorporating a third-order
quenching process in the KMC simulations applied to z-scan
experiments with UV excitation energies higher than 5.9 eV
and to ionization tracks of high-energy electrons.

The value of Rdd was changed in increments of a0 (i.e.,
0.457 nm) until the best possible agreement with the second-
order component of the experimental data was obtained.
Figure 2 shows the excitation density dependent light
yield obtained for Rdd¼ 8a0 along with the yield obtained
experimentally from the z-scan experiments and the second-
order component [27]. A value of 8a0 for Rdd corresponds to
3.66 nm, which is close to the value of 3.8 nm derived by
Grim et al. [27] from their analytical fit. Notably, Kirm et al.
[21] and Nagirnyi et al. [22] derived values of 2.1 and 3 nm,
respectively, for Förster transfer in CdWO4 using the
same analytical model as used subsequently by Williams
and co-workers [16, 27].

Figure 2 shows that excellent agreement with the
second-order component of the experimental data can be
obtained within the framework of the KMC simulations.

3.2 Scintillation kinetics of CsI:0.3% Tl as a
function of excitation density Although the KMC
model can reproduce the efficiency of the scintillation
process, there remains to determine whether the same model
parameters can yield an accurate description of the kinetics
of scintillation. Therefore, in Fig. 3, the scintillation decay
curves obtained at two excitation densities from 20 000
KMC simulations are compared to those reported by
Williams et al. [16]. Experimentally, no noticeable differ-
ences were found between the high and low excitation
densities and therefore a single curve is shown in Fig. 3 for
the experimental data.

As seen experimentally, the KMC model shows a rising
time of a few nanoseconds. Experimentally, the scintillation
maximum was found at approximately 6.2 ns. The KMC
simulations show a slightly delayed maximum; although the
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Figure 2 (online color at: www.pss-b.com) Calculated light yield
as a function of z-position and excitation density and comparison
with the z-scan data and second-order component of Grim et al. [27].

Figure 3 (online color at: www.pss-b.com) Decay curves of the
(Tlþ)� emission of CsI:0.3%Tl calculated at two excitation densities
and comparison with the results of Williams et al. [16].
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resolution of the streak camera on the 200 ns frame scale
is likely to be lower than the difference between the
simulations and measurements. In the KMC simulations,
the high excitation density curve shows a slight increase after
scintillation reaches its intensity maximum, relative to that
obtained at low excitation density, and a corresponding
slightly faster decrease at later times. Again, it is possible
that such differences are too subtle to be observed within
the uncertainties of the experimental apparatus employed by
Williams et al. [16]. Experimentally, no quenching of the
(Tlþ)� emission was observed with increasing excitation
density, which strongly suggests that nonlinear quenching
occurs before excitations are trapped at Tlþ sites and not
within the (Tlþ)� population. Therefore, this process was not
included in the KMC model and the results shown in Fig. 3
indicate that, indeed, such a process is not needed to give a
good account of the kinetics of the (Tlþ)� emission.

3.3 Scintillation kinetics of pure CsI as a
function of excitation density The same two excitation
densities were considered to determine the kinetics of
scintillation of pure CsI. As before, the scintillation decay
curves were obtained by averaging 20 000 simulations. The
agreement is good except in the first 0.3 ns. This can be
explained by the fact that there is a finite time required for
the formation of STEs from free electrons and holes that is
not taken into account in the KMC simulations since all
electron–hole pairs are assumed to begin the simulations as
STEs. We note that the data of Williams et al. [16] shown in
Fig. 4 does not correspond to their raw data but to their fits
before introducing the bimolecular growth function that
accounts for the rising time of the STE luminescence. The
calculated scintillation decay curves also show similar
features to the experimental curves reported by Kirm et al.
[21] for CdWO4, with fast initial decay followed by
exponential decay at later time and greater deviation from
exponential decay initially at high excitation densities.

4 Discussion The time evolution of the populations
of each species (STE, STH, Tlþþ, Tl0, and (Tlþ)�) are
shown in Fig. 5 for excitation densities 3.1� 1019 and
3.1� 1020 STEs/cm3. The general sequence of events is as
follows. Early on, on the time scale of picoseconds or even
sub-picoseconds, the STE population diminishes due to
dipole–dipole Förster transfer and electron scavenging by
Tlþ sites. The latter process appears to culminate at
approximately 10 ps, at which point the STH population
does not equal the Tl0 population anymore as the diffusing
STHs begin to trap at Tlþ sites to form Tlþþ or (Tlþ)�

species. By about 10 ns, all the STHs have been trapped at Tl
sites and the Tl0 and Tlþþ populations thus become equal in
size. Beyond this point, recombination only takes place
via thermal release of electrons from Tl0 to Tlþþ sites to
form (Tlþ)�.

There is no noticeable increase of the (Tlþ)� population
until the STE population has almost completely vanished,
suggesting that Tl excitation through STE capture is limited
in these conditions and occurs via binary electron–hole
recombination instead. This is consistent with the findings of
Dietrich et al. [51] for Tl-doped alkali halides excited with
high-energy electrons. Interestingly, the KMC simulations
indicate that there are two stages in which the population of
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Figure 4 (online color at: www.pss-b.com) Decay curves of the
STE emission of pure CsI calculated at two excitation densities and
comparison with the curve fits of Williams et al. [16].

Figure 5 (online color at: www.pss-b.com) Time evolution of the
populations of the species considered in the KMC model for
CsI:0.3% Tl at (a) low excitation density (3.1� 1019 STEs/cm3)
and (b) high excitation density (3.1� 1020 STEs/cm3).
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electron–hole pairs diminishes (thick black curves in Fig. 5):
the nonlinear quenching and photon emission stages; and
that these two stages are temporally well separated at both
low and high excitation densities. Consequently, results such
as those presented in Fig. 5 can help further experimental
investigations of scintillation processes by identifying the
relevant time scale needed to probe particular mechanisms.

As noted above, the STE population decays mostly via
dissociation to form STH and Tl0 sites on the scale of
picoseconds. This is consistent with the time-resolved
optical absorption data of Williams et al. [33]. In their study,
Williams et al. used a pump-probe laser setup to determine
the transient infrared absorption spectra of CsI induced by
sub-picosecond two-photon band-gap excitation at room
temperature. The absorption band assigned to STEs was seen
to disappear in 5–10 ps after excitation of the CsI sample
doped with 0.3 mol% Tl, whereas the band assigned to Tl0

rose within the same time scale. The experimental findings of
Williams et al. are consistent with the transient optical
absorption measurements of Yakovlev et al. [52], which
indicated the presence of only STH and Tl0 on the time scale
of nanoseconds after excitation of a Tl-doped CsI crystal at
80 K. Because the experimental data of Williams et al. [33]
guided the parameterization of the STE dissociation process,
it is not surprising to observe this agreement; however, the
KMC simulations do confirm that STE dissociation is a
viable process at this time scale given the other active
processes. For example, if STE dissociation happened at a
slower rate, the KMC model predicts that a greater extent of
Förster transfer and STE radiative and non-radiative decay
would be observed, which would be inconsistent with the
z-scan and kinetics data.

It is important to note that the STE dissociation process is
necessary for the model to account for all experimental
observations consistently. Indeed, although the STEs diffuse
at the same rate as the STHs in the KMC simulations and thus
could potentially explain the rising time observed in the
(Tlþ)� scintillation kinetics, the kinetics of STE emission
indicate that the STEs radiatively decay at a rate that is too
fast to allow them to survive long enough to diffuse to and be
captured at Tlþ sites. Figure 4 indicates that at least 99% of
the STEs have decayed or quenched by 5 ns, i.e., approxi-
mately the time it takes to reach the maximum of the (Tlþ)�

luminescence curve (Fig. 3). Therefore, the dissociation
mechanism prevents the STEs from decaying radiatively or
annihilating via dipole–dipole Förster transfer. This strongly
suggests that nonlinear quenching occurs in the very early
stages and over a very short amount of time relative to the
overall scintillation process.

Finally, given the ability of the KMC model to describe
accurately the kinetics and efficiency of scintillation in
CsI:0.3% Tl and the kinetics of scintillation in pure CsI, we
used this model to predict the effect of Tl concentration on
the extent of nonlinear quenching. Figure 6 shows the light
yield as a function of excitation density for pure CsI and CsI
doped with 0.1 and 0.3 mol% Tl, whereby each curve is
normalized to the light yield at �10 cm. It should be noted

that the KMC model may not include all the processes that
are affected by the Tl concentration. For example, it does
not explicitly account for surface quenching of STEs and
this process is likely to play an increasing role as the Tl
concentration decreases. However, Fig. 6 suggests that one
effect of decreasing the Tl concentration is to increase the
relative extent of quenching. This effect is due to a lower
extent of STE dissociation at lower Tl concentrations, which
allows the STEs to survive longer and thus increases the
amount of dipole–dipole Förster transfer, thereby leading to
a greater extent of nonlinear quenching. This is supported by
the time-resolved optical absorption study of Williams et al.
[33] discussed above, which also showed that the rate and
extent of conversion between the STE and Tl0 bands was
slower for the CsI sample doped with 0.01 mol% Tl versus
that doped with 0.3 mol% Tl. The simulations also predict a
slight increase in STE emission when decreasing the Tl
concentration from 0.3 to 0.1 mol% Tl, in agreement with
experimental luminescence spectra [16].

5 Conclusions A KMC model of scintillation mech-
anisms in CsI and CsI(Tl), previously developed for
simulating the kinetics and efficiency of scintillation of
g-ray irradiated CsI [17], was modified to extend its
applicability to high excitation densities. Specifically, a
distance-dependent dipole–dipole Förster transfer process
was added to the KMC model. Recent experimental data
on the excitation density dependence of scintillation light
yields offered an unprecedented opportunity to parameterize
this process for CsI. Within the framework of the KMC
model, good agreement was obtained with the kinetics and
efficiency of the scintillation of UV-excited CsI samples.
The simulations were then used to identify the general
sequence of events following UV excitation and the time
evolution of the populations of the principal species involved
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Figure 6 (online color at: www.pss-b.com) Calculated light yield
as a function of z-position and excitation density for pure CsI and
CsI doped with 0.1 or 0.3 mol% Tl.

� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com



in the scintillation process. This approach provides a unique
opportunity to calibrate STE–STE interaction parameters for
other scintillators. Such microscopic models of scintillation
mechanisms can be used in combination with g-ray-induced
ionization tracks calculated by NWEGRIM to investigate
the non-proportional response of CsI and other inorganic
scintillators.
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