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Abstract 

Voltage stability (VS) is an important problem in power system planning, operations and control. 
Historically, multiple system blackouts worldwide have been caused by voltage instability and resulted in 
economical detriments amounting to billions of dollars. Usually, during simulations the VS boundary is 
explored by gradual change of system generation and system load in certain stress direction. This process 
requires multiple iterations to solve power flow equations. The stressing process is repeated for multiple 
contingencies. Consequently, traditional methods to calculate the voltage stability boundary are 
computationally intensive and are not suitable for real-time applications. To date, faster methods (for 
instance, near-real-time methods to estimate the voltage stability margin (distance to instability) are 
usually based on simplifications of the voltage stability problem, not self-evident transformations of 
power flow equations, or they can explore only few stress directions within the limited time available for 
real-time applications. This project proposes an efficient combination of computational methods, 
including a new method proposed in this work, to calculate static voltage stability boundaries (VSBs) 
using accurate system models and multiple stress directions considered simultaneously. Essentially, the 
objective is to explore multi-dimensional voltage stability nomograms in coordinates of meaningful 
power system parameters in near real-time. Such nomograms can be used as security constraints in 
various real-time applications, for instance in security constrained economic dispatch. The method locates 
static voltage stability conditions (saddle-node bifurcations), which are often associated with singularities 
of the power flow Jacobian matrix. The non-iterative method explores the VSB for a large scale power 
system using the direct (or non-iterative) orbiting method and a new method exploiting the quadric 
properties of power flow equations in Cartesian coordinates. The singularity problem is formulated as a 
single nonlinear equation with respect to the scalar stress parameter. The proposed method allows quick 
exploration of VSBs in coordinates of critical power system parameters such as power flows on critical 
interfaces, which is essential for real-time system security assessment both locally and in a wide-area. 
Using the proposed method, several case studies were performed for a Western Interconnection planning 
model, a California and a Central America model. Significant peculiarities of the boundary configuration 
were identified, including its non-convexity, discontinuity, branching, and internal singularities (“holes”) 
that were not known before and cannot be found by traditional methods. This report demonstrates 
promising performance characteristics of the proposed method using several power systems models. The 
new method will help to develop a new generation of highly efficient tools suitable for real-time parallel 
implementation. The ultimate benefit obtained will be early detection of system instability and prevention 
of system blackouts in real time.  

The work described in this report was performed at Pacific Northwest National Laboratory (PNNL) 
and funded by the Department of Energy Office of Electricity Delivery and Energy Reliability – DOE 
OE.
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Summary 

The work described in this report was performed at Pacific Northwest National Laboratory (PNNL) 
and funded by the Department of Energy Office of Electricity Delivery and Energy Reliability (DOE 
OE).  

A system enters a state of voltage instability when a disturbance, increase in load demand, or change 
in system conditions causes a progressive and uncontrollable decline in voltage. The main factor causing 
voltage instability is the inability of the power system to meet the demand for reactive power. Voltage 
stability is the ability of a power system to maintain acceptable voltages at all buses in the system under 
normal operating conditions and after being subjected to a disturbance. Voltage stability margin is the 
distance to instability determined for a selected loading or stress direction in parameter space. It is known 
that voltage magnitudes alone are poor indicators of voltage stability or security. Voltages can be near 
normal with generators, synchronous condensers, and static volt-ampere reactive (VAR) compensators 
near current limiting levels, thus resulting in a possible voltage collapse. Therefore, it is prudent to 
specify a mega VAR (MVAR) margin or megawatt (MW) margin [Adjjarapu 1992]. 

Usually, during simulations the VS boundary is explored by gradual change of system generation and 
system load in certain stress direction. This process requires multiple iterations to solve power flow 
equations. The stressing process is repeated for multiple contingencies. Consequently, traditional methods 
to calculate voltage stability boundary are computationally intensive and are not suitable for real-time 
applications. To date, faster methods (for instance, near-real-time methods) to estimate the voltage 
stability margin (distance to instability) are usually based on simplifications of the voltage stability 
problem, not self-evident transformations of power flow equations, or they can explore only few stress 
directions within the limited time available for real-time applications. This project proposes an efficient 
combination of computational methods, including a new method proposed in this work, to calculate static 
voltage stability boundaries (VSBs) using accurate system models and multiple stress directions 
considered simultaneously. Essentially, the objective is to explore multi-dimensional voltage stability 
nomograms in coordinates of meaningful power system parameters in near real-time. Such nomograms 
can be used as security constraints in various real-time applications, for instance in security constrained 
economic dispatch. The method locates static voltage stability conditions (saddle-node bifurcations), 
which are often associated with singularities of the power flow Jacobian matrix.  

The project work reported in this report pursued the following specific objectives: 

• Develop a new efficient non-iterative method to determine the voltage stability boundary;  

• Contribute to the voltage stability theory associated with the non-iterative method;  

• Develop prototype MATLAB® code to implement the non-iterative method;  

• Examine and demonstrate the non-iterative method using several power system models. 

This work is based on some previous projects funded by National Science Foundation (NSF), 
California Energy Commission (CEC) Public Interest Energy Research (PIER) program, PNNL 
Laboratory Directed Research & Development (LDRD) program, DOE OE Office, Consortium for 
Electricity Technology Reliability Solutions (CERTS), and Bonneville Power Administration (BPA). 
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This project is based on a solid foundation created by PNNL for the CEC-funded project conducted by 
CERTS, Electric Power Group (EPG), PNNL, and University of Wisconsin – Madison project “Real-
Time Voltage Security Assessment (RTVSA)” [Parashar 2007a], [Parashar 2007b], [Parashar 2007a], 
[Parashar 2008b].The connection between various projects in this area is shown in Appendix A.  

The selected platform for implementing the procedure includes the Power System Engineering 
Research Center (PSERC) Continuation Power Flow program implemented  using the  MATLAB® 
programming language [Greene 1997], [Dobson 2001],  [Alvarado 2001].   

The non-iterative method developed in this project explores the VSB for a large scale power system 
using a direct or non-iterative orbiting method and a new method exploiting the quadric properties of 
power flow equations in Cartesian coordinates. The singularity problem is formulated as a single 
nonlinear equation with respect to the scalar stress parameter. The proposed method allows quick 
exploration of VSBs in coordinates of critical power system parameters such as power flows on critical 
interfaces, which is essential for real-time system security assessment locally and in a wide-area.  

The idea behind our approach is shown in Figure 1. 

 
Figure 1. The idea of non-iterative voltage stability analysis. 

In Figure 1, a slice of the VSB is shown spanned by power transfers in two transmission paths. The 
initial VSB point, labeled “1” in Figure 1, can be found using a traditional method such as the 
continuation power flow (CPF) method. The CPF requires multiple steps to locate the first VSB point. 
The additional points along the boundary (points 2, 3, etc.) are produced by the direct orbiting method, 
which produces a new point after each iteration, making it a non-iterative method. Our new method (the 
modified XR method) is used to restart the process when needed. 

The following milestones were achieved in this phase of the research work: 
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• Upgrade the non-iterative method to the level suitable for testing on industry examples. 
Develop MATLAB ® code capable of reading PowerWorld ® formats (simplified models) 
and run the VSA computation in real system models. 

• Explore opportunities of quadratic approximation of the voltage stability boundary. 
Implement and test critical elements of non-iterative VS analysis algorithms on high-
performance computers. Complete non-iterative voltage stability analysis software capable of 
running on PNNL Institutional Computing (PIC) or equivalent high-performance computing 
(HPC). 

• Technology outreach effort. Through various forums obtain the commitment of at least one 
organization to participate. 

 

The following main conclusions have been drawn: 

• The proposed non-iterative method can find static stability boundary point precisely for real 
large size power system models; 

• The proposed non-iterative method is much faster than the traditional step-by-step stressing 
methods, e.g. the repeated application of the continuation power flow method to define a 
single VSB point. 

• The piecewise nonlinear quadratic approximation of VSB meets significant difficulties with 
finding where the approximating quadrics intersect; this makes practically impossible to 
quantify the actual voltage stability margin. This approach cannot be recommended for a 
practical implementation. 

• At the same time, the non-linear approximation used in the form of high-order numerical 
method used to solve VSB equations could be useful for tracing the VSB. It can be 
implemented in the next phase of the project. 

 

Using the proposed method, several case studies were performed for a Western Interconnection 
planning model, a California model and a Central America model. Significant peculiarities of the 
boundary configuration were identified, including its non-convexity, discontinuity, branching, and 
internal singularities (“holes”) that were not known before and cannot be found by traditional methods. 
This report demonstrates promising outcomes and performance characteristics of the proposed method 
using several power systems models. This new method will help to develop a new generation of highly 
efficient tools suitable for real-time parallel implementation. The ultimate benefit obtained will be early 
detection of system instability and prevention of system blackouts in real time. 

This project builds towards the following benefits for system operations: 
• Enhanced situational awareness, early detection of potential system instability and improved 

reliability achieved by providing to power system dispatchers: (1) real-time dynamically 
adjusted information, and (2) VSB visibility for multiple stress directions and contingencies. 
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• Actionable information and prevention of system blackouts achieved by providing advisory 
information using the wide area security region approach [Makarov 2009]. 

• Better utilization of transmission assets due to near-real-time adjustment of the voltage 
stability limits and accounting for mutual dependences of power flows on critical 
transmission paths. 

• Developing real-time and HPC applications. 
• Potential for predictive/preventive control. 
• Potential for closed-loop automatic emergency control systems. 

The following recommendations for the next phase of this project are: 
 
(1) Algorithm enhancement: Increase the robustness of the tool for a variety of system models and 

conditions and demonstrate its trustworthiness for solving real industry cases. 

(2) Tool and user interface refinement: Further improve tool performance and improve UI to make it 
attractive for adoption by vendors. 

(3) Vendor engagement: Collaborate with a selected vendor or vendors to transfer the technology. 
This will include presentations at industry forums and conferences.  To date, PNNL has received 
expression of interest from several vendors. 

(4) Non-iterative small signal stability method development:  This task will develop methods and 
prototypes for non-iterative small signal analysis. The method will enable plotting of the small-signal 
stability boundary in coordinates of critical system parameters in near real-time. 
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1.0 Introduction 

Voltage stability (VS) is an important problem in power system planning, operations and control. 
Historically, multiple system blackouts worldwide have been caused by voltage instability and resulted in 
economical detriments amounting to billions of dollars – see Appendix A.  

As electrical demand increases, modern power systems are being operated under increasingly stressed 
conditions, leading power systems closer to their stability limits. Voltage stability is an important problem 
in power system planning, operation and control. Voltage instability occurs when a power system is 
unable to maintain stable voltage levels at some buses. Under that condition, voltages can decline 
progressively throughout the system and may cause a large-scale blackout. Voltage instability has been 
identified to be responsible for the collapse of several major power worldwide [Makarov 2007]. 
Identification of the voltage stability boundary (VSB) plays a vital role in the reliable and economic 
operation of a power system. Although the voltage stability margin depends on numerous possible system 
stresses in practical real-time applications, only several selected stress directions are actually computed 
and checked in practical applications, especially, real-time applications. However, with the increasing 
variability and uncertainty in today’s power systems, it is becoming increasingly clear that the stability 
margin definitions should be based on multiple stresses covering various sources and ranges of 
uncertainty and variability. Therefore, an accurate and fast estimation of the available voltage stability 
margin is of paramount importance for the secure and economic operation and control of modern electric 
power systems. 

The voltage stability boundary surrounds the region of feasible and stable operating points in power 
system parameter space. These operating points cannot cross the VSB without losing their stability 
[Venkatasubramanian  1995a]. The voltage stability region (VSR) is a safe region for guaranteeing local 
stability at the equilibrium under slow parametric variations [Venkatasubramanian  1995b]. Voltage 
stability conditions are usually considered as power flow feasibility conditions; and the VSB is associated 
with singularity conditions of the power flow Jacobian matrix and saddle-node bifurcation (SNB). 
References [Venkatasubramanian  1995a] and [Venkatasubramanian  1995b] provide a comprehensive 
discussion on feasibility boundaries and regions in state and parameter space in the power system domain, 
and summarize some recent development on the stability analysis of large-scale systems. More recent 
publications that address the voltage stability problems include [Zhang 2011], [Dong 2012], [Nguyen 
2012], [Perninge 2013]. 

        The traditional methods for calculating SNBs traditionally employ iterative procedures, unlike 
the direct method in this project. An extensive review of these methods is provided in [Parashar 2007a]. 
The continuation power flow (CPF) and direct methods are two commonly used iterative methods [Eto 
2008]. The purpose of CPF is to find a series of load-flow solutions for a given load/generation change 
scenario [Ibsais 1996]. The CPF method provides reliable convergence due to its predictor-corrector 
approach, but is computationally intensive. Direct methods were proposed for assessing the VSB, in 
which augmented power flow equations are solved [Dobson 1992], [Dobson 1993], [Kwatny 1995], 
[Makarov 2000a]. These methods provide the left or right eigenvectors corresponding to the zero 
Jacobian matrix eigenvalue at the point of voltage collapse. Direct methods are sensitive to the initial 
guess, i.e., the initial guess affects the speed of convergence and may even cause divergence of the 
iterative process [Makarov 2000a]. This iterative process requires a considerable number of calculations 
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to find a single VSB point. To obtain the full VSB, the computational effort becomes prohibitively 
significant for large-scale power systems. Computational time becomes critically important for real-time 
analyses, massive contingency screenings, simulations of blackouts and cascading processes, probabilistic 
methods, and synchrophasor-based applications. 

One of the most discussed recent works in the area of power flow calculations is the holomorphic 
embedding load flow method HELMTM [Trias 2012]. This method can be potentially applied for voltage 
stability analysis. HELM is based on the following three ideas: 

• Holomorphic embedding and analytical continuation (the idea is close to a parameter 
continuation approach, but with a complex continuation parameter); 

• Hypercomplex reformulation (the idea is similar to a relaxation approach), and 

• Nonlinear approximation of the solution function (unlike its linear approximation in the 
Newton-Raphson method). 

      Our analysis of reference [Trias 2012] shows, that despite the claim that HELM is a non-iterative 
algorithm, this method is actually an iterative procedure. Because HELM doubles the number of 
unknowns, it should be compared with iterative methods in term of its speed and accuracy. 

     One of the methods used in this project, the orbiting method, is motivated by [Hiskens 2001], and is 
further developed and implemented in this project for large-size power system models. In [Hiskens 2001], 
a combination of direct VSB equations and a predictor-corrector method was first proposed to explore the 
voltage stability boundary. 

The main objective of this project is to develop non-iterative methods for accurate multi-dimensional 
voltage stability assessment in real time using full system models without simplifications. The analysis is 
limited to the static voltage stability problem. The efficiency of this method is demonstrated by revealing 
thin structures of the WECC system planning model in a multi-dimensional space, as well as performing 
the same analysis for some other real system models.
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2.0 Some Characteristics of the Voltage Stability Boundary 

and Stress Directions  

In this section we explore some important characteristics of the voltage stability boundary (VSB) and 
system stress trajectories used to locate a VSB point. We also analyze several criteria to quickly locate a 
VSB point on the stress trajectory without a need for time-consuming eigenvalue calculations and search 
procedures. This analysis helped to develop a new methodology reported in this document. 

2.1 Stresses and the VSB in the Parameter and State Space 
The study team conducted experiments to learn more about the relationship between the stress 

trajectories in coordinates of state (nodal voltages represented in Cartesian coordinates) and trajectories in 
coordinates of nodal injections. Stress trajectories are mapped into the state space of the system, which is 
defined in coordinates of nodal voltages. The same stress trajectories are also mapped into a parameter 
space, which is defined in coordinates of nodal active and reactive power injections. The transformation 
between these two spaces results in a mathematical approach for simplifying calculation of points on the 
VSB boundary.  

2.1.1 Mapping of Stresses in the Parameter and State Space 

The IEEE standard nine-bus test system model as provided in [Anderson 2003] was used in these 
experiments. 

For a current operating point in parameter space (the space of nodal injections) Y0, we can find its 
corresponding boundary point Y*, as shown in Figure 2. We divide the interval between Y0 and Y* into 
certain incremental steps. At each step, α increases to obtain a new operating point, i.e., Yi = Y0 + αiΔY, 
(i=1,2,…,n). For each point Yi, we can find the corresponding point Xi in the state space, as shown in 
Figure 3. The curve formed by points X1,…,X5,…,X* in Figure 3 represents a mapping of the straight 
stress trajectory Yi = Y0 + αiΔY into the state space. 

Next, we divide the straight stress line between X0 and X* into certain incremental steps – see Figure 
3. For each incremental step on this line, we calculate the corresponding points in the parameter space. By 
connecting these points with the base point Y0, we can form a family of nonlinear curves in parameter 
space (Figure 2). One expectation is that the straight lines in state space will be located on a plane, and 
the curves in parameter space will be located on a plane. These stress traversals in state space and 
parameter space demonstrate the quadratic properties of the power flow in rectangular coordinates.  
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Figure 2. Stresses in parameter space, defined in coordinates of nodal active and reactive power 

injections. 
 
 

 
Figure 3. Stresses in the state space, defined in coordinates of nodal voltages..  

A three-machine nine-bus power system test system1  is used to plot the boundary point mapping in 
state and parameter space – see Figure 4. To determine the boundary point, the initial specified power 
flow values are changed linearly (here powers at buses 5, 6 and 8 respectively) and the power flow is run 
until the boundary point is reached in that direction and the corresponding voltage and specified power 
values are noted. Now, with this boundary point and the initial point, the straight-line distance between 
the two points is divided into various intermediate points (i.e., intermediate specified powers), and at each 
point the power flow equations are solved to get the corresponding voltages at those points. 
 

1 Parameters of the nine-bus standard test system model of the Institute of Electrical and Electronics Engineers 
(IEEE) can be found in [Anderson 2003]. 
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Figure 4. IEEE 9-bus test system. 

 

Again, a straight line distance between the initial voltage point and each of the newly obtained 
intermediate voltage points is found, and is divided into various intermediate voltage points. Power flow 
equations are solved to get the corresponding calculated power at each of these intermediate voltage 
points and the paths traced by the calculated power in the parameter space and voltages in state-space are 
obtained.  

The following figures (Figure 5 through Figure 10) show various views of stress trajectories in the 
parameter space. It is to be noted that in the simulations, the specified power at buses 5, 6 and 8 are 
changed and the power at other buses is kept constant.  
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Figure 5. Stress trajectories of active powers at bus 5, 6 and 8 (view 1). 

 

 
Figure 6. Stress trajectories of active powers at bus 5, 6 and 8 (view 2). 
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Figure 7. Stress trajectories of active powers at bus 5, 6 and 8 (view 3). 

 

 
Figure 8. Stress trajectories of nodal voltages at bus 5, 6 and 8 (view 4). 
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Figure 9. Stress trajectories of nodal voltages at bus 5, 6 and 8 (view 5). 

 
 

 
Figure 10. Stress trajectories of nodal voltages at bus 5, 6 and 8 (view 6). 

 

It can be seen that starting from the initial specified power flow point, the path traced to any 
intermediate point in the parameter space is curved, in accordance with the quadratic nature of the 
equations. It is also worth noting that all the curves obtained in this parameter-space are co-planar i.e., the 
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surface of all the curves lies in a plane. Also, the path traced by the voltage points in the state-space is as 
expected. 

2.2 Search for Indicators to Identify a VSB Point along a Stress 
Direction in the State Space 

This section reports results of the effort to find a simple easy-to-compute criterion to detect VSB 
points along a straight line in coordinates of real and imaginary components of nodal voltages (a.k.a. as 
rectangular or Cartesian coordinates). Because the purpose is to dramatically speed up VSB calculations, 
more time-consuming criteria such as eigenvalues or singular values of the power flow Jacobian matrix 
are not considered. 

The rationale behind this search is the following. In Cartesian coordinates, with some simple 
adjustments, the power flow mismatch functions become quadratic functions of state variables. Any 
straight line in the state space can be described parametrically as follows:  

𝑥𝑥(𝛼𝛼) = 𝑥𝑥1 + 𝛼𝛼(𝑥𝑥2− 𝑥𝑥1)                                                          (2.1) 

Where x1 and x2 are any two fixed distinct points in the state space and αis a scalar parameter. Any scalar 
quadratic function of x, g(x), along the line in Equation (2.1) becomes a quadratic function of α, of the 
form 

𝑔𝑔�𝑥𝑥(𝛼𝛼)� = 𝑔𝑔(𝛼𝛼) = 𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛼𝛼 + 𝑐𝑐                                                (2.2) 

If we find a function g that becomes zero at VSB points, we can easily locate VSB points by solving this 
quadratic equation: 

𝑎𝑎𝛼𝛼2 + 𝑏𝑏𝛼𝛼 + 𝑐𝑐 = 0 → 𝛼𝛼1,2                                                      (2.3) 

Another question that we attempt to answer in this section is the correspondence between the stress in the 
state space given by Equation  (2.1) and a realistic stress direction defined in coordinates of nodal active 
and reactive power injections y = [P,Q] , that is the correspondence between 

𝑦𝑦(𝛼𝛼) = 𝑦𝑦(𝑥𝑥(𝛼𝛼))                                                               (2.4) 

and 

𝑦𝑦(𝛽𝛽) = 𝑦𝑦0 + 𝛽𝛽∆𝑦𝑦 = 𝐹𝐹(𝑥𝑥)                                                        (2.5) 

where y0 is the base case power injection vector, Δy is the stress direction in coordinates of nodal powers, 
β is the stress parameter, and F(x) is the power flow mismatch function. 

The purpose of this analysis is that Equation (2.4) can deviate from Equation (2.5) and correspond to 
unfeasible power system states. We need to know to what extent and in which cases we can rely on the 
non-iterative VSB search using Equation (2.3). 
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During our effort to answer those two questions (i.e. finding function Equation (2.2) and finding the 
correspondence between Equation (2.4) and Equation (2.5)), we have found several interesting facts about 
the characteristics of VSB and stress processes in coordinates of state variables and power injections. We 
also tested several ideas including the ones that were previously proposed in the literature for locating 
VSB points.  

2.3 Power Losses in the Vicinity of the VSB 
This section examines the power losses in the vicinity of the VSB voltage stability boundary. It has 

been noticed that power losses rapidly increase when the system approaches voltage collapse. This fact 
was used to detect VSB points. In this section, we attempt to use power losses as function g in Equation 
(2.2). 

Numerical experiments were performed for the 3-bus system shown in Figure 11. In this example, 
bus 1 is a PV bus with |V1| = 1.05, bus 2 is a PQ bus, and bus 3 is the slack bus. The line impedance in 
per unit is Z12 = 0.01+j0.1, Z13 = 0.02 + j0.2, and Z23 = 0.02 + j0.2. Losses were calculated and plotted for 
different feasible operating points in parameter space. 

 

 
Figure 11. A 3-generator 3-bus system. 

 

To select different feasible operating points, the voltage stability boundary must first be found. In this 
study, a direct method [Lu 1995] was used to obtain the static stability boundary as shown in Figure 12 
and Figure 13. 
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Figure 12. Static voltage stability boundary of 3-bus system in parameter space (p.u.). 

 
Figure 13. Losses at different operating points within the boundary (p.u.). 

 

By fixing Q2 = 0.5, the system losses are plotted for different P1 and P2 within the voltage stability 
boundary, as shown in Figure 14. The blue points are obtained by evenly interpolating nine points 
between the “center” operating point (P1 = 0, P2 = 0, and Q2 = 0.5) and each boundary point. As an 
operating point moves a straight line from the “center” point to a boundary point, the following 
observation can be made: 

• The system losses increase, and the boundary point corresponds to the maximum losses. 

• The rate of change of losses also increase (as indicated by the density of contour lines), which 
becomes more clear in Figure 14. 

It should be noted that the losses or the rate of change of losses is not necessarily larger at a boundary 
point than at any internal points. For example, the losses and rate of change of losses at point B is smaller 
than point A, although B is a boundary point and A is an internal point. In addition, when an operating 
point moves from A to B in a straight, the total system losses first decrease and then increase. 
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Figure 14. Contour plot of system losses with Q2 = 0.5. 

Conclusion:  

The increase in power losses and the rate of this increase cannot be considered as a robust and 
accurate indicator of the VSB proximity. Based on the losses, we cannot confidently and accurately 
evaluate the current “distance to voltage collapse”. 
 

2.4 Voltage Reduction in the Vicinity of VSB 
Another hypothesis tested in this research was the use of nodal voltage magnitudes Vi as indicators of 

voltage collapse proximity. This idea is similar to P-V curve approach widely use in practical voltage 
stability studies. The g-function to be used in this case can be constructed as follows: 
 

𝑔𝑔(𝛼𝛼) = �∑ 𝑉𝑉𝑖𝑖2(𝛼𝛼)𝑖𝑖                                                           (2.6) 

In the 3-bus system, the l2-norm of state variables is '2 "2 '2 "2 1/2
1 1 2 2( )V V V V+ + + . Similarly as the 

calculation of losses in previous subsection, l2-norm of state variables is obtained, as plotted in Figure 15 
and Figure 16. As an operating point moves in a straight line from the “center” point to a boundary point, 
one can observe:  

• The norm of state variables decreases, and the boundary point is corresponding to the minimum 
norm of state variables. At the same time, it is not clear a priori what level of reduction of (2.9) 
signifies the voltage collapse point. 

• The rate of change of norm (2.6) increases. 
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• Nevertheless, the rate of g(α) change in the vicinity of VSB depends upon the angle between the 
stress trajectory and VSB. If the trajectory is almost tangent to VSB, this influences the rate of 
change of (2.9).  

 
Figure 15. Norm of state variables at different operating points within the boundary. 

 
 

 
Figure 16. Contour of norm of state variables. 

 
 

Conclusions:  

The norm (2.9) cannot be used as an indicator of voltage collapse. Its rate of change can actually 
serve as such indicator, except for the case when the trajectory used to approach VSB is tangent to VSB. 
Unfortunately, in the XR method explained in Section 3.1, the trajectory used to approach the VSB is 
tangent to the VSB. 
 
 

2.11 



 

2.5 Mapping Stresses in the Parameter and State Spaces 
    Because of the quadratic properties of the power flow in rectangular coordinates, the mapping 

between the parameter space (nodal active and reactive power injections represented in Cartesian 
coordinates) of and state space (nodal voltages represented in Cartesian coordinates) is nonlinear. This 
section illustrates the mapping property using a two-bus system, as shown in Figure 17. In this example 
system, bus 1 is a PQ bus and bus 2 is the slack bus. 

 

 
Figure 17. A 2-generator 2-bus system. 

 

    One can find the boundary in parameter space. Part of the boundary is shown in Figure 18, together 
with several example paths. The mapping of the boundary points and paths in Figure 18 to state space are 
shown in Figure 19. Generally, when a point moves along a straight line to the boundary point in 
parameter space (e.g., path 1 and 2), the corresponding trajectory in state space is a non-linear curve, 
which converges to the right eigenvector of the Jacobian matrix at the boundary point. When a point 
moves along a straight line to the boundary point and crosses the boundary in state space (e.g., path 3), 
the corresponding points in parameter space first moves toward the boundary, touches the boundary point, 
and then turns away from boundary to the feasible parameter region. In particular, when a point 
approaches the boundary a straight line along the right eigenvector of the Jacobian matrix at the boundary 
point in state space, the corresponding point in parameter space also moves along a straight line. 
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Figure 18. Part of the boundary and some paths in parameter space. (The mapping of Figure 19 to 

parameter space.) 

 
Figure 19. Part of the boundary and some paths in state space. (The mapping of Figure 18 to state space.) 
 

As shown in the previous Section, the rate of change of the norm ( x g∆ ∆ ) increases as an 
operating point approaches the boundary and reaches the maximum at the boundary. Does this mean the 
boundary point is corresponding to the minimum norm of parameter change rate? If so, one can easily 
identify the boundary point by examining the x g∆ ∆  once the direction in state space is given. 
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    Let ' "
1 1[ ]Tx V V= , which denotes any point in state space. Furthermore, let *

2( ) /100x x x∆ = − , 
where *x  and 2x  are shown in Figure 19. Any point that moves from 2x  to *x  along path 4 can be 
expressed as 2x x xα= + ∆ . Let g(x) = [P1(x) Q1(x)]T. Since 2x  and x∆  are fixed, g is a function ofα . It 
should be noted that α  = 100 is corresponding to the boundary point. Let ( ) ( 1) ( )g g gα α α∆ = + − , with 
norms evaluated for different α , as plotted in Figure 20. For this particular path, where the operating 
point moves a straight line along the right eigenvector of Jacobian matrix at the boundary point, g∆
reaches the minimum value at the boundary point (α = 100). However, this property does not hold in 
general. For example, when an operating point moves along path 3 in state space, the minimum g∆ does 
not occur at the boundary point, as shown in Figure 21.  

 
Figure 20.  vs. along path 4. 

 
g∆ α
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Figure 21.  vs. along path 3. 

 

    Contours of x  are shown in Figure 22, which explains what happens in Figure 20 and Figure 21. 

As explained in the previous section, x g∆ ∆  at a boundary point is not necessarily bigger than any 

internal points. One can observe that x g∆ ∆  monotonically decreases as an operating point approaches 
the boundary only when the point moves a straight line in parameter space. Because of the quadratic 
property, when a point moves a straight line in state space, its trajectory in parameter space becomes 
nonlinear, as shown in Figure 22, path 3. For path 3, x g∆ ∆  reaches the minimum before arriving at 
the boundary. 

Conclusion: 

Criterion  x g∆ ∆  can serve as an indicator of VSB only if it is calculated along a trajectory in the 
parameter space, which intersects VSB. For a tangent trajectory, this criterion does not work. 

g∆ α
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Figure 22. Contour of  in parameter space. 

2.6 Exploring Voltage Stability Boundary Points Using Stresses 
Defined in Parameter and State Spaces 

    Usually, it is desirable to find the boundary point along a specified stress direction in parameter 
space. However, the boundary point can be identified along any given direction in state space, as shown 
in (2.1), rather than in parameter space. Our question is about the opportunity to detect VSB points along 
the straight line in the state space, using x g∆ ∆ , as described in the previous section. It has been 
found, above, this criterion works for the paths that intersect the boundary, such as paths 1 and 2 in Figure 
22. It does not work for trajectories that are tangent to VSB (path 3 in Figure 22). A relation is needed to 
map the straight trajectory in the state space to the trajectory in the parameter space. 

         Part of the stability boundary and some paths in parameter and state space are shown in Figure 23 
and Figure 24, respectively, where the black circle represents the true boundary along the stress direction 
in the parameter space. As it is seen from the figures, straight stresses in state space correspond to 
nonlinear trajectories touching VSB in parameter space. 

x
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Figure 23. Stability boundary and stress trajectory in parameter space. 

 

 
Figure 24. Stability boundary and stress trajectory in state space. 
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Conclusion: 

 Criterion x g∆ ∆  cannot be used to detect VSB points along straight trajectories in the state space. 
 

2.18 



 

3.0 New Methodology for Exploring the Voltage Stability 
Boundary 

In the previous section, we have examined several approaches to detect VSB points along a straight 
trajectory in coordinates of nodal voltages (in rectangular coordinates). Although our effort was not 
completely successful, it gave some very interesting and not very widely known insights on the 
characteristic of VSB, its vicinity and stress patterns used to reach it. In particular, in terms of potential 
practical applications, it is important to realize that the analyzed criteria are not providing good results. 

This chapter discusses two innovative methods to explore the static voltage stability boundary in 
Cartesian coordinates for the bus voltages. The characteristics of the proposed non-iterative method make 
it novel and important both from theoretical and application point of views. The proposed methods are 
capable of exploring the steady state stability boundary much faster than current traditional methods. 
Thus, the proposed methods are promising for real-time application. The ultimate benefit obtained will be 
early detection of system instability trends and prevention of system blackouts. Based on these 
perspectives, the proposed methods are not only novel but important for power system stability analysis 
both theoretically and practically. 

3.1 XR Methodology 
     
    The proposed XR method is based on the quadratic properties of power flow equations in Cartesian 
coordinates, i.e. so called x-ray theorem formulated in [Makarov 2000b]. The initial implementation and 
testing of the method was done in [Makarov 2000a].  In this project, we further developed and improved 
the method 

3.1.1 Power Flow Equations in Cartesian Coordinates 

    Consider a power system with r PV buses indexed from 1 to r, ( n r− ) PQ buses indexed from r+1 
to n, and one slack bus indexed (n+1). In Cartesian coordinates, the voltage at bus i can be expressed as 
  

1

ˆ ,  for 1,
ˆ 1n

i i ij i n

+

′ ′′= + =

=

V V V

V
                                                  (3.1) 

where i′V and i′′V are real and imaginary parts of the complex number îV . Let Y denote the bus 
admittance matrix, with ikth element 

     îk ik ikj= +Y G B                                         (3.2) 

Therefore, the injection current at node i=1,…,n is 
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The injection power at node i is calculated as  
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*ˆ ˆ ˆ

i i i i ij= + =S P Q V I                                                 (3.4) 

where * designates the complex conjugate. The power flow equations—active power P for both PV and 
PQ buses and reactive power Q only for P-Q buses—can be found by replacing îV and îI in (3.4) by (3.7) 
and (3.3), respectively, and separating the real and imaginary parts: 
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and 
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The square of the voltage magnitude can be expressed as 

 
2 2 2| | ( ) (  ) ,  for 1, , .i i i i r′ ′′= + = V V V                                       (3.7) 

3.1.2 Jacobian Matrix in Cartesian Coordinates 

For state variables [ ]1 1, , , ,n nV V V V′ ′ ′′ ′′=  x , for bus 1, 2, …, n, let ( )P x denote the vector of active 
power as function of x as expressed in (3.5), Q(x) denote the vector of reactive power as function of x as 
expressed in (3.6), V(x) denote the vector of the voltage magnitude square as a function of x as expressed 
in (3.7). We define the function F: n n→R R  
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Q                                                   (3.8) 

where sP is the vector of specified active power for PV and PQ buses, sQ is the vector of specified 

reactive power for PQ buses, sV is the vector of the square of specified voltage magnitude at PV buses. 
The Jacobian matrix of (3.8) is: 
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which, because of the linearity of J in x, can be written in the form  

 
2

1
( ) i i

n

i=
= +∑J x A x B                                                        (3.10) 

where Ai and B denote constant matrices, xi denotes the ith element in x.  

3.1.3 Solving Singularity Equations 

The key idea of the proposed non-iterative method is to find the stability boundary point in state 
space by solving a linear system problem. Let x0 denote the current operation point and 1 0∆ −=x x x
denote the incremental change in the state space, where x1 is a point close to x0. The Jacobian matrices at 
the two points described by two voltage vectors are 
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( ) ( )

n

i
n

i i

i
i

i

=
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J x A x B

J x A x B
                                                       (3.11) 

Any point along the direction from x0 to x1 can be described as 

0 1 0

0 1

( )
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α
α α

−
=
= +

+−
x x x x

x x
                                          .12) 

and its Jacobian matrix is 
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i.e., the Jacobian matrix at any point in space can be constructed as a linear combination of two known 
matrices. The possible boundary point corresponds to the real smallest α that make J(α ) singular. 

3.1.3.1 Eigenvalue-based detection of singularity  

Let v be a vector in the null space of J(α ), i.e. J(α )v=0. Then (1-α )J0v+α J1v= 0, or with 
/ ( 1)λ α α= − , the boundary point can be found by solving a generalized eigenvalue problem 

10 λ=J v J v                            ) 

where v denotes the generalized eigenvector. When the interested boundary point is on the direction from 
x0 to x1 and beyond x1, we have α >1. Therefore, the smallest α is corresponding to the largest positive 
λ . For eigenvalue lambda, the boundary can be calculated as 

0 1 0( )
1

L

L

λ
λ

+
−

= −x x x x                                                  ) 

3.1.3.2 New method for detecting the singularity (Improved XR method) 

 
    The new method expands the ideas first reported in [Makarov 2000a]. Let Y=[PT QT VT]T denotes 
vector of parameters, which can be expressed as a function of α . Using a Taylor expansion and 
recognizing the quadratic form of P, Q, V in the voltage, we have the expansion 

 
2

0 0) ) ( ) ( ) (
2

( ( )αα α= = ∆ + ∆+Y x Y Y x J x x w x  (3.16) 

The difference between Y(x) and Y(x0) is 

 
2

0( ) ( ) ( )
2
αα α∆ ∆ + ∆=Y J x x w x                                               (3.17) 

It can be shown that  
 1 0( ) [ ( ) ( )]∆ = − ∆w x J x J x x                                                  (3.18) 

 
Replacing ( )∆w x  by (3.17) in (3.18) yields, after manipulations, 

 
2

0 1( ) ( ) ( )[ (1 ) ]
2 2
α αα α∆ += ∆−Y J x J x x  (3.19) 

    Define 1(( ) ( ))α α α− ∆R J Y , which converges to the right eigenvector as a point approaches the 
boundary [Makarov 2000b]. Of course, ( )αR is well-defined only as long as we are only near the 
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boundary, not exactly on it, since an exact coalescing on the boundary will imply that J-1(α ) is not 
defined. Approaching the boundary, the conditioning of this Jacobian approaches infinity. This property 
is what we use to detect the singularity. As we approach the boundary, ( )αR  will be strong in the null-
space vector, and will have a large norm. In fact, defining ( )αR  for any ∆Y  should be sufficient just as 
long as the projection of it to the null-vector is large. Furthermore, let 

  

 

( )( )
|| ( ) ||

αα
α

=
RR
R

                               (3.20) 

 

It is expected that ( )|| ) ||(α αJ R achieves its minimum value at the boundary point. 
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4.0 Exploring Abnormal Singularities within the WECC 
System Stability Region  

To demonstrate the effectiveness of our new method, we applied it to search for potential singular 
holes within a VSR of a real system. The importance of these holes is hard to underestimate. If they are 
real, a system with apparently sufficient stability margin may become suddenly unstable. 

In this research, significant peculiarities of the boundary configuration were identified, including its 
non-convexity, discontinuity, branching and internal singularities (“holes”) that were not known before 
and could not be found by traditional methods. Upon discovery of the “holes” (discontinuity in the 
feasible solution region), we have given our attention on this unanticipated problem. “Holes” are unstable 
operation points within a stability boundary. Operating a system close to a “hole” will cause an 
unexpected voltage collapse. The analyses showed that the multi-singularity behaviors were real in the 
state space. We proposed a new fast approach to explore the voltage stability boundary (VSB) and 
revealed its detailed multidimensional structure. Several interesting cases were found: 

• Internal “holes” inside of the voltage stability (VS) region. The singularities were verified with 
the help of eigenvalue analysis  

• Branching of the VSB 

• Open parts of VSB  

• Non-convexity of power flow feasibility boundary 

We proposed new methods to explore static voltage stability conditions in Cartesian coordinates 
instead of polar coordinates, where the singularity problem is formulated as a scalar equation with respect 
to the stress parameter. The methodology for transformation from polar to rectangular coordinates is 
presented in Appendix C. The proposed methods allow quick exploration of static stability conditions in 
the state space. 

4.1 Details of the Approach to Explore the Voltage Stability Boundary  
 

In order to reveal more VSB details, one typical and one atypical case were selected to investigate the 
boundary configuration. The selected typical case corresponds to increased generation in Northwest and 
Sierra zones, and decreased generation in Fortis BC and El Paso zones. The selected atypical case was 
obtained by increasing generation in Northwest and Sierra zones, and decreasing generation in Fortis BC 
and Colorado zones. The VSB is then explored on a two-dimensional plane formulated by 1) the base 
operating point ( 0x ), 2) the boundary point in the typical case ( A

bx ), and 3) the boundary point in the 
atypical case ( B

bx ), as illustrated in Figure 25. Multiple stress directions are repeated between the selected 
two stress directions. Herein, the linear property of Jacobian matrix is utilized again following the 
procedure below: 
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Figure 25. Exploration of voltage stability boundary on a two-dimensional plane.  

 
 
The proposed methodology is based on the properties of quadratic algebraic equations in Cartesian 
coordinates and it is detailed in the following steps: 
 
Step 1:  

 Power flow and Jacobian matrix are derived in Cartesian coordinates. The Jacobian matrix can be 
represented as a linear function of real and imaginary components of voltage vectors. Let A

bX be the 
voltage vector at a boundary point at normal case and B

bX be the voltage vector at a boundary point at 
exceptional case, both of which are different from the current operating point. 0X  refers to the voltage 
vector of the current operating point. 1

AX is any voltage vector along the direction of 0X  and A
bX . 1

BX is 
any voltage vector along the direction of 0X  and B

bX . B∆X refers to the distance between B
bX  and 0X . 

Any voltage vector ( 1
AX ) along the direction of 0X  and A

bX  can be described as 
 

 ( )1 01A A
b α α = + − X X X  (4.1) 

and distance between 0X  and A
bX  is 

 
 ( )0

A A
b b α∆ = −X X X  (4.2) 

Hereα is a factor referring to the proportion of the distance from current operating point ( 0X ) to any 
point X with respect to the distance from current operating point to the given operating point. Similarly, 
any voltage vector ( 1

BX ) along the direction of 0X  and B
bX  can be described as 

 
 ( )1 01B B

b α α = + − X X X  (4.3) 
and 

 ( )0
B B
b b α∆ = −X X X  (4.4) 

The Jacobian matrix at voltage 1
AX and 1

BX can be given as 
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 ( )1 01A A
b α α = + − J J J  (4.5) 

 ( )1 01B B
b α α = + − J J J  (4.6) 

 
where A

bJ , B
bJ , and 0J  are Jacobian matrices at voltage A

bX , B
bX , and 0X , respectively. 1

AJ and  1
BJ  are 

any Jacobian matrices along the direction of 0J and A
bJ , 0J and B

bJ , respectively. 
In this numerical simulations, 0X , A

bX  , B
bX , and corresponding Jacobian matrices are obtained from 

PowerWorld® ( PW) simulations. Any voltage vector between 1
AX  and 1

BX  can be estimated as 
 

 ( ) 1 11new A B
i k k= − +X X X  (4.7) 

 
Similarly, the Jacobian matrix at voltage new

iX is 
 

 ( ) 1 11new A B
i k k= − +J J J  (4.8) 

 
and Jacobian matrix at any α can be calculated as 
 

 0(1 )new
new iα α= + −J J J  (4.9) 

 
where k  is a factor that varies from 0 to 1 with a step of 0.01. 
 

 ( )1new A B
i b bk k∆ = − ∆ + ∆X X X  (4.10) 

 
and angle between new

i∆X and A
b∆X is estimated as 

 
new A
i b
new A
i b

θ
 ∆ ∆ =
 ∆ ∆ 

X X
X X

                                                        (4.11) 

 
Step 2:  

 Stability limits are estimated by examining the singularity of the matrix in state space. For any x 
expressed in Equation (4.1) or (4.3), the corresponding Y=[PT QT VT]T (vector of parameters) can be 
expressed as a function of α : 

 
2

0 0( () ) ( ) ( )
2
αα α+= = ∆ + ∆x JY Y Y x x w x  (4.12) 

 
where 0.5 ( )∆w x is the quadratic term of the Taylor series expansion. The difference between Y(x) and 

0( )Y x is 

 
2

0( ) ( )
2

new
i

αα α=∆ ∆ + ∆Y J X w x  (4.13) 

It can also be shown that 
 0( ) [ ]new new

i i∆ = − ∆w x J J X  (4.14) 
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2 2

(1 ) new new
i i

α αα α
 

= − ∆


+ ∆


Y J J X  (4.15) 

 
Define  1( (() ))newα α α− ∆R J Y  which converges to the right eigenvector as a point approaches to 
boundary. Furthermore, let 

 

( )( )
|| ( ) ||

αα
α

=
RR
R

                                                             (4.16) 

 
It is expected that  )|| |( |new αJ R achieves its minimum value at the boundary point. The following steps are 
involved in margin boundary tracing for WECC 2020 system model: 

• Boundary tracing program starts at current operating point for the first boundary point. It is 
assumed that α =100; 

• Determine new
iJ using Equation (4.18)  at each k, which varies from 0 to 1 with a step size of 0.01; 

• Compute  )|| |( |new αJ R using equations (4.9) and (4.16) for all values of α  at each k  and record 
α value(s) at which  )|| |( |new αJ R  achieves its minimum value 

• Calculate θ  using Equation (4.11) and compute x and y components using α obtained from step 
3 and θ , and plot in two dimensional plane 
 

 
Figure 26. Stability boundary for Western Interconnection system. 

 

With the new method, several unusual cases were found: Internal “holes” inside of the VS region (B-
C line in Figure 26. They seem to be layers of closely located multiple internal singularities of the power 
flow problem. The singularities were verified with the help of eigenvalue analysis. Experiments were 
conducted with the accuracy of Jacobian matrix to eliminate the impact of inaccuracies on results.  

• Branching of the VSB (point C). 
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• Open parts of VSB (between points D-E). 

• Non-convexity of power flow VSB (between points E-F).  

Further work in this research includes an enhancement of the method allowing remaining within 
feasible manifolds located in the state space.
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5.0 Overall Implementation of Non-iterative Method 

This section explains the implementation of the proposed non-iterative method. This project is based 
on a solid foundation previously created by PNNL for the CEC -funded project conducted by CERTS, 
EPG , PNNL, and University of Wisconsin – Madison project “Real-Time Voltage Security Assessment 
(RTVSA)”  [Parashar 2007a], [Parashar 2007b], [Parashar 2007a], [Parashar 2008b]. In this project, we 
successfully combined the orbiting method with the XR method, modified the XR method to speed up the 
entire procedure, and perfected the code to handle large real system models. We propose a combination of 
several effective numerical algorithms to explore the voltage stability boundary in a fast and accurate 
way. We apply the following methods – Figure 27: 

1. Continuation power flow (CPF). This algorithm is used to find an initial point(s) of VSB in 
certain specified stress direction (approximately). The CPF also produces an approximation of the 
right eigenvector nullifying the power flow Jacobian matrix on VSB. The right eigenvector is 
needed to start the direct VSB method in the next step. 

2. Direct method to refine the position of VSB point along the stress direction. 

3. Inverse iteration method to find the left eigenvector nullifying the power flow Jacobian matrix on 
the VSB. This vector is used later for finding hyperplanes approximating the VSB. 

4. Direct orbiting method (OM) to follow VSB along a specified 2-D slice, starting from the initial 
stress point. Each step of OM produces a new VSB point. 

5. Our new method based on the x-ray theorem [Makarov 2000b] initially implemented in [Makarov 
2000a]. The XR method is used to refine the bus type changes during orbiting, and also to restart 
the orbiting  process if the OM diverges due to peculiarities of the VSB shape. The XR method 
description can be found in section 3.1.3.2. 

6. Methods to obtain linear approximations of the boundary (a.k.a. hyperplanes or linear 
inequalities) – (HPA). 

7. High-order numerical methods (HO) for the future implementation. 
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Figure 27. Illustration of the combined method of exploring the VSB. 

A flowchart summarizing the key elements of the overall algorithm is provided in Figure 28. 

 
Figure 28. Basic flowchart for the combined method of exploring the VSB. 
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5.1 Details of Implementation 
In this section, we provide a summary of implementation details and stress their importance for the 

overall performance of our new approach. The material provided in this section can be also partly found 
in [Parashar 2007a], [Parashar 2007b], [Parashar 2007a], [Parashar 2008b]. It is described here for 
completeness. The new elements of the methodology developed in this project are also provided below. 

5.1.1 Continuation Power Flow (CPF) 

CPF is a well-known iterative method with reliable convergence. In our implementation, the CPF 
algorithm is used to find an initial point(s) of VSB in certain specified stress direction (approximately). 
This is a multi-step stressing procedure; each step consists of predictor and corrector algorithms – see 
Figure 29, which will be briefly described below. The CPF is also used in this work to produce an 
approximation of the right eigenvector nullifying the power flow Jacobian matrix in a VSB point. The 
right eigenvector is needed to start direct VSB method in the next step. 

 

X(α)

z-z0

Predictor

Corrector

z0
sΔz

(z-z0)tΔz=s(ΔztΔz)

z
 

Figure 29. Continuation power flow step: predictor and corrector. 
 

5.1.1.1 Theoretical background of the parameter continuation methods 

Suppose that we have two different problems with the same state variables and the same number of 
equations: ( )1 0xΦ =  and ( )2 0xΦ = 1. Suppose that we know a solution of the first problem

( )1 1 1: 0x x x= Φ = . Based on this known solution, we will be looking for a solution of the second 
problem by solving the following parametric equation: 
 

1 2( , ) (1 ) ( ) ( ) 0x x xα α αΦ = − Φ + Φ ≡                                   (5.1) 

1 Here ( )xΦ is considered as a “generic” function. Depending on the application, it can be the power flow 
mismatch function ( )F x , or some other functions described in the sequel. 
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At 0α = , this problem is solved by substituting 1x x= . At 1α = , this problem coincides with the 

second problem under consideration, which solution 2x  is unknown. We want to trace a smooth transition 
from problem 1 to problem 2 by changingα . In this case, the full differential of (5.1) must be equal to 
zero: 
 

( ) [ ]1 2
2 1

0

( ) ( )1 ( ) ( ) 0

dd dx d
x d

x xdx d dx x x
x d d x x d

α
α

α α
α α α

∂Φ Φ
Φ = + = →

∂
∂Φ ∂Φ∂Φ Φ  + = − + + Φ −Φ = ∂ ∂ ∂ 

                     (5.2) 

 

From (5.2), if matrix ( ) 1 2( ) ( )1 x x
x x

α α∂Φ ∂Φ − + ∂ ∂ 
 is not singular,  

( ) [ ]
1

1 2
2 1

( ) ( )1 ( ) ( )x xdx x x
d x x

α α
α

−∂Φ ∂Φ = − − + Φ −Φ ∂ ∂ 
                  (5.3) 

 
Differential Equation (5.3) describes how a solution of (5.1) moves while parameter α is changing – see 
Figure 30. 
 

α

x

0 1

x1

x2

Δz

 
Figure 30. Solution of parametric differential equation for a scalar case. 

 

In some cases, there is no need to add an artificial parameter, as it is done in (5.1), because such a 
parameter is already a part of the original equation. For instance, if the original system has the following 
form: 
 

 ( ) 0x DβΦ + =       (5.4) 
 

where D is a fixed vector and β  plays the same role as α in (5.1), differential parametric equation 
becomes 
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1( )dx x D
d xβ

−∂Φ = −  ∂ 
                                                          (5.5) 

 
By considering (5.4), it is easy to see that solutions of (5.5), ( ) : ( ) 0x x Dβ βΦ + = , move along the 
straight line Dβ  in the space of mismatches ( )xΦ  - see Figure 31.  
  

Φ(x)

0

β = 0

β > 0
D

 
Figure 31. Parametric motion in the space of mismatches. 

 
In finite increments, Equation (5.5) can be rewritten as: 
 

 ( ) 0x x D
x

β∂Φ  ∆ + ⋅∆ = ∂ 
      (5.6) 

 
and  
 

1( )xx D
x

β
−∂Φ ∆ = − ⋅∆ ∂ 

                                                (5.7) 

 

5.1.1.2 Parameter continuation method 
 

Equation (5.2) can be expressed in finite differences as follows: 
 

0dx
x d

α
α

∂Φ Φ
∆Φ = ∆ + ∆ =

∂
                                                 (5.8) 

 

Predictor step 

By combining x∆  and α∆  in one vector ,
ttz x a ∆ = ∆ ∆  , one can obtain the predictor equation 

used in parameter continuation algorithm: 
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0

0

1 1t t
i i

zz
zz

e z e

∂Φ 
   ∂Φ ∂∆ =    ⇔ −−− − − ∆ = − − −∂    

  ∆ =     
 

                                     (5.9) 

 

where t
ie  is a zero vector with only i-th element equal to 1. This is the expression which is used in the 

algorithm.  

Note that the generic Equation (5.9) holds also for the form (5.6). The only difference is that, for 

(5.6), the increment vector ,
ttz x β ∆ = ∆ ∆  . 

Solution z∆ of (5.9) is a vector tangent to the parametric line ( )x α  - see Figure 30. 

Corrector step 

Because of linearization used in (5.9), the parametric curve cannot be followed precisely, and there is 
a need to execute one more step at each iteration – a corrector step to eliminate the observed deviation – 
see Figure 29. 

 

The corrector step consists in solving the corrector equation: 
 

 
0

( ) 0
( ) ( )t t

z
z z z s z z
Φ =


− ∆ = ∆ ∆
   (5.10) 

 

where s is the predictor step, and z∆ is the solution of (5.9). 

System (5.10) helps to find an intersection of the parametric curve ( )x α  and a hyperplane that is 

orthogonal to the predictor vector z∆ and includes the predicted point 0z s z+ ∆ . 

  System (5.10) can be solved using the Newton-Raphson method. To provide its reliable 
convergence, an adequate step correction s must be applied at the predictor stage. By selecting the right 
value of s, one can make the predicted point 0z s z+ ∆ , which is used as an initial guess for solving (5.10), 
as close to the corrected point z as required for reliable convergence of the Newton-Raphson method. 
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5.1.2 Direct Method to Refine the Position of VSB Point along the Stress 
Direction 

The exact location of the VSB point can be calculated by solving the following system: 
 

 
( ) 0
( ) 0

1t

F x D
J x R
R R

β + =
 =
 =

                                                      (5.11) 

 

where ( )J x  is the power flow Jacobian matrix and R is the right eigenvector corresponding to the zero 
eigenvalue of ( )J x . The loading direction D is exactly the same as the one used in the predictor-
corrector procedure. 

To solve (5.11), it is important to select good initial guesses for unknown parameters x, β, and R. For 
x and β, the values produced by the predictor-corrector method near the VSB point are used. For R, a 
good initial guess would be the increment of state variables x∆ near the bifurcation point normalized with 
respect to the last condition in (5.11) (for example, the difference between two successive iterations close 
to the VSB point): 
 

 1
0

1

, VSB pointi i
i

i i

x xR x
x x

−

−

−
≈ →

−
 (5.12) 

 
 
This recommendation is based on the fact that the trajectory of the state variables tends toward the right 
eigenvector R in the vicinity of the VSB point. 

5.1.3 Inverse Iterations 

The inverse iteration method is applied to find the left eigenvector nullifying the power flow Jacobian 
matrix on the VSB. This vector is used later for finding hyperplanes approximating the VSB. 

Suppose J is the Jacobian matrix having an eigenvalue close to zero. Given the initial guess of the left 
eigenvector: 0L  and 0.000001λ = , the inverse iteration shown in (5.13) is used to calculate the left 

eigenvector of J ( iL  is normalized in each iteration).  

 

1

( )T
i

i

J I x L
xv
x

λ

+

− =

=
                                                         (5.13) 

 
Here x  represents the norm of x.  
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5.1.4 Direct Orbiting Method to Follow the VSB 

[Hiskens 2001] motivated the orbiting method further developed and implemented in this project for 
large-size power system models. The direct orbiting method (OM) follows the VSB along a specified 2-D 
slice, starting from the initial stress point – see Figure 27. Each step of OM produces a new VSB point. 

In this procedure, instead of the traditional stressed power flow equation, , we will 
use a modified equation  
 

  (5.14) 

  
In this equation, parameter  is fixed, and two additional unknown parameters γ and η are added. 

By varying γ and η, one can explore the entire plane . Set (5.14) has one unknown more than the 
number of equations. Unknown variables z are x, L, γ and η. 

System (5.14) can be used to organize the prediction-correction process. For example, 
The predictor equation becomes: 
 

  (5.15) 

 

where rE is the extended unit vector. 

The corrector equation is given as: 

 
0

( ) 0
( ) ( )t t

z
z z z s z z
Φ =


− ∆ = ∆ ∆
 (5.16) 

The initial guesses of the unknowns and parameters when the first slice is explored should be taken as 
follows: 

D – fixed and equal to the initial loading direction; 

β – fixed and equal to the value achieved during the initial predictor-corrector procedure; 

( ) 0F x Dβ+ =

*( ) 0

( ) ( ) 0
1

i j

t

t

F x D e e

z J x L
L L

β γ η+ + ⋅ + ⋅ =


Φ = =
 =

*β β=
( , )i jp p



( ) 0
0

( ) ( ) 0 0
0

0 0 0 0
1

t
r

i j

t t

t

t zr

z

E

J x e e
x

J x L J x
Lx

L

E

γ
η
∆

∂Φ 
 ∂ 
−−−−−−−−− 
 
 
  

 
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5.8 



 

x, L – variable, initially set equal to the values achieved during the initial predictor-corrector 
procedure; 

γ, η – variable, initially zeros. 

Note that after each predictor-corrector step, we get a point of the power flow feasibility boundary 
and the left eigenvector, which is all that is needed for the hyperplane approximation and the “sliced 
bread” procedure. 

5.1.5 Implementation of XR Method 

The XR method theory can be found in section 3.1.3.2. In this section, we provide a numerical 
procedure for solving the XR method equation; additionally, we consider an XR-based procedure to 
restart the direct orbiting method in case of its divergence. 

5.1.5.1 Arnoldi algorithm 

The generalized eigenvalue problem 10 λ=J v J v  (see section 3.1.1.1) can be solved for the largest 
real eigenvalue using a shift-and-invert implicit restarted Arnoldi method. In particular, the generalized 
eigenvalue problem requires the action ( ) 1

0 1 1σ −−J J J , where σ  is a shift which should be close to the 
searched eigenvalues of interest. A repeated application of this action requires an LU decomposition of 
the sparse matrix ( )0 1σ−J J once and then a linear solve for each application of the action. This is the 
inner computation of the outer implicit restart Arnoldi iteration, which determines the approximate 
generalized eigenvalues close to the shift over a sufficiently large Krylov subspace (a subspace of size 20 
was found to be sufficient in the experiments). Since we can assume 1J  is close to 0J , we take a shift 
close to 1. In our work, we have implemented and tested this procedure. At the same time, we have 
discovered a different approach to solving the XR problem, which does not require solving the eigenvalue 
problem. Consequently, this procedure is faster than Arnoldi algorithm. 

5.1.5.2 New search procedures for solving XR problem 

In section 3.1.1.2, we proposed an expression helping to locate a closest singularity point in a straight 

line in coordinates of nodal voltages (in rectangular coordinates): ( )|| ) ||(α αJ R  min. By solving this 
problem and finding its minimum solution, we can locate the desired point. 

Figure 32 shows that ( )|| ) ||(α αJ R  achieves its minimum value at the boundary point. Therefore, the 
problem of finding the closest points where the Jacobian matrix becomes singular becomes finding the 
smallest α  that minimizes the “distance” function ( )z α ( ) ( )α α= J R . Three methods can be used to 
search the smallest α : 1) the steepest descent approach, 2) the simplex algorithm, and 3) a sampling 
approach.   
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Figure 32. Exploration of distance function (100% denoted a VSB point). 

The steepest descent approach 

In the steepest descent method (also called the gradient descent method), we start at a point and, as 
many times as needed, move to the next point by minimizing along the line extending the direction of 

( )z α−∆ , the local downhill gradient. This searching algorithm has adaptive step sizes and provides one 
single solution of alpha. A smaller tolerance can be used for higher accuracy.  
 

Algorithm: 
1) 0k =  
2) 1 1( ) ( ) / ( )k k k k kd z z zα α α+ += −∇ = − − − , the k th step gradient 
3) Do while ( )1 / and and not convergek k k k mα α α e+ − 〉 ≤  

1. Use a step size procedure to compute the step size kλ  
2. 1k k k kdα α λ+ = + ∗  
3. If kd and 1kd − have the same sign, speed up k kλ λ= ∗scale 
4. If kd changes sign (turning point), refine step size / scalek kλ λ=  

5. If kd increases significantly, reduce step size / 2k kλ λ=  
6. If 1 then 1else 1k k k kα α e α α∗

+ − ≤ = + = +  

7. ( )k kd z α= −∇  
4) Return. 

The step size procedure could be continuous step size reduction, e.g., 1 / scalek kλ λ+ = . The scale can be 
a constant or gradually increasing with the iteration number for stability, or based on the derivatives

( )and z ( )k kz α α′ ′′ . 
 1 ( ) / ( )k k k kz zλ λ α α+ ′ ′′= −                                                                        (5.17) 

 [ ]
[ ] 2

( ) ( ) ( ) / ( )

( ) ( ) ( ) 2 ( ) / ( )
k k k k k k k

k k k k k k k k k k

z z d z d

z z d z d z d

α α λ α λ

α α λ α λ α λ

′ = + ∗ − ∗

′′ = + ∗ + − ∗ − ∗
  (5.18) 
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The simplex algorithm  

The Nelder–Mead technique is a technique for minimizing an objective function in a multi-
dimensional space. Nelder–Mead generates a new test position by extrapolating the behavior of the 
objective function measured at each test point arranged as a simplex (e.g., a line segment on a line, a 
triangle on a plane, a tetrahedron in three-dimensional space and so forth). The algorithm then chooses to 
replace one of these test points with the new test point and so the technique progresses. The simplest step 
is to replace the worst point with a point reflected through the centroid of the remaining N  points. In this 
study, we tested two simplex approaches: one with absolute error e  (Simplex), and the other with relative 
error e  (Jsimplex). 

Sampling approach 

The above approaches involve iterations. Alternatively, we can use a slice sampling (grid search) 
method. The samples will be generated initially from a uniform distribution of α, but after a series of 
calibrations of α, we might be able to update the prior pdf of α, e.g., to a normal distribution, and save a 
number of samples and runs. This approach will have the advantage of being running parallelized, but is 
much slower if running on a single central processing unit (CPU).  

5.1.6 Hyperplane Approximation 

Methods to obtain linear approximations of the boundary (a.k.a. hyperplanes or linear inequalities) – 
(HPA) are explained in this section. 

    In the parameter space, the boundary surfaces consist of hyper-curved surfaces, which need high 
computation cost to be determined. In order to avoid the high computation cost, we approximate the 
curved surfaces through numerous hyper-planes as shown in Figure 33. These hyper-planes can be used 
to monitor the distance between the current operating point and the boundary surfaces.  
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Figure 33. Illustration of an approximating hyperplane in the parameter space.  

5.1.6.1 Hyper-plane building procedure 

This section demonstrates the procedure proposed in [Parashar 2007a] in the two dimensional 
parameter space (P space), in which the boundary is represented by a curve shown in Figure 34.  

(1) Suppose we determined the first point of collapse PoC1, the normalized left eigenvector L1, 1L
=1, and the corresponding tangent hyperplane 1 1( ) 0t p PoC⋅ − =L . 

(2) The approximating hyperplane is obtained by parallel shifting the tangent hyperplane along 
vector L1 by the distance (d+m), there d and m are the user specified distances. Distance d 
regulates the accuracy of approximation and the number of required hyperplanes, distance m 
introduces an additional security margin. The approximating hyperplane equation becomes 

mdPoCpLt +=−⋅ )( 11                                                         (5.19) 

(3) Now we start moving along the intersection boundary and the cut set plane (Pi, Pj). As it will be 
described below, this motion can be implemented as another type of the parameter continuation 
procedure, where the intermediate points of collapse are available. 

(4) For each intermediate PoC, we will check the distance r to the tangent hyperplane determined at 
PoC1. We are looking for a point PoC2 where this distance is slightly less or equal to the user 
specified distance d: 

( )1 2 1

1

,
t

t

PoC PoC
r d d r

⋅ −
= ≤ ≈

L
L

                                           (5.20) 

(5) Continue moving in the same direction checking the distance r from the tangent hyperplane to the 
PoC2. We are looking for the PoC3 where 
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( )3 3 2

3

,
t

t

PoC PoC
r d d r

⋅ −
= ≤ ≈

L
L                                       (5.21) 

(6) Calculate the new approximating hyperplane 3 3( )t p PoC d m⋅ − = +L . 

(7) Repeat the procedure by continuing the motion along the slice and measuring the distance of the 
hyperplane from the PoC3, and so on. 

 

 
Figure 34: Tangent and approximating hyperplanes. 

5.1.7 High-order Numerical Methods (HO) 
 

The high order method description can be found in [Makarov 1995]. A nonlinear predictor can help to 
minimize or even eliminate corrector steps in the CPF and orbiting method. This section focuses on the 
CPF method. 

The nonlinear predictor may be implemented using high-order numerical methods.   

5.1.7.1 Solution motion and its Taylor series expansion  
 

Let us consider a general set of smooth nonlinear power flow equations 
 

 ( , ) ( ) 0F x F x Dβ β= + =                                                  (5.22) 
 

where x  is a vector of dependent variables, β  is a scalar parameter, and D  is a vector of increments.  

If ( )F x∂ /∂  is nonsingular, then the function ( )F x β,  can be considered as an implicit function 
which defines the dependence ( )x β . Differentiation of (5.22) yields  
 

( ( )( ) ( ) ( )( ) 0F x dx d dF d F x dx d Dβ β β∂ /∂ / + / = ∂ /∂ / + =                       (5.23) 
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If the Jacobian matrix ( )F x∂ /∂  is nonsingular,  
 

1( / ) ( )dx d F x Dβ −= − ∂ /∂                                                   (5.24) 
 

Equation (5.24) defines motion of a solution of (5.22) as parameter β  varies. A solution of (5.24) 
can be represented as the Taylor series expansion  
 

0 1 0
1

( ) ( ) ( )( )k k k
k

x x k d x dβ β β β∞ −
=

= + ! / −∑                           (5.25) 
 

0β β= , 0z z=  is a solution of (5.22). Substituting 0( )α β β= −  gives equation  
 

0
1

( ) ( )k
kk

x x k xα α∞

=
= + / ! ∆∑                                            (5.26) 

 

where kx∆  is ( )k kd x dα/  calculated at the point 00 x xα = , = . Expansion of  Equation (5.26) represents 
the solution function ( )x α  as a polynomial of scalar parameter α .  

If 0 1β = , and D  is thought of as a mismatch vector of (5.22) at the point 0x x= , then if the series 
expansion (5.26) converges for 1α = , it will give a solution of the problem ( ) 0F x = .  

Due to the impracticality of computing a large number of kx∆ , the summation (5.26) must be 
restricted to a finite number of terms K . Accordingly, (5.26) becomes an iterative procedure 
 

1 1
( )K k

i i i k ik
x x k xα+ ,=

= + / ! ∆∑                                           (5.27) 
 

where i  is the iteration number and k ix ,∆  is the k th correction vector. The iα  has sense of a correction 
coefficient which influences convergence reliability. It can be easily shown that for 1K = , (5.27) 
corresponds to the Newton-Raphson method with a step correction. If 1K > , then (5.27) becomes a 
generalization of the Newton-Raphson method which takes into account nonlinear terms of the Taylor 
series expansion. The linear approximation of ( )F x  that is used in the Newton-Raphson method is 
replaced by an approximation that is nonlinear.  
 

5.1.7.2 Computation of the correction vectors kx∆   
 

Expressions for correction vectors kx∆  can be obtained by successive differentiation of (5.23) with 

respect to β . We set 0( ) 1α β β= − =  in (5.22) and express ( )F x  as a Taylor series, so giving equation: 
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 0 0 0
2

1(1 ) ( ) ( ) ( ) ( )ll
l

D F x F x J x x W x x
l

β ∞

=
− = = + ∆ + ∆ ,⋅⋅,∆

!∑


               (5.28) 

 

where ( )J ⋅  is the Jacobian matrix, and ( )lW ⋅  is the l -th order term of the Taylor series. It can be shown 

that by substituting
1
( )K

kk
x x k

=
∆ = ∆ / !∑  (5.28), the following expressions can be obtained: 
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The high order terms ( )lW ⋅  in (5.29) can be expressed through the values of the function ( )F x . For 
example, if (5.22) was a set of quadratic equations, then for 5K =  we obtain the following recurrent 
equalities: 
 

 

1 0 0 0
1

1 0
2 2 1 1

1 0
3 2 1 2

1 0
4 2 2 2 2 1 3

1 0
5 2 1 4 2 2 3

( )[( 1) ( )]

( )[ ( )]

( )[3 ( )]

( )[3 ( ) 4 ( )]

( )[5 ( ) 10 ( )]

x J x D F x
x J x W x x
x J x W x x
x J x W x x W x x
x J x W x x W x x

β−

−

−

−

−

∆ = − − + ;

∆ = − ∆ ,∆ ;

∆ = − ∆ ,∆ ;

∆ = − ∆ ,∆ + ∆ ,∆ ;

∆ = − ∆ ,∆ + ∆ ,∆

                        (5.30) 

 
where 

2 ( ) ( ) ( ) ( ) (0)i j i j i jW x x F x x F x F x F∆ ,∆ = ∆ + ∆ − ∆ − ∆ +                  (5.31) 
 
Expressions (5.30) and (5.31) are used at each iteration (5.27) of the method.  

5.1.7.3 Correction coefficients  
 

To provide reliable convergence of the method, it is necessary to use appropriate values of the 
correction coefficients  in (5.27). The correct choice of  gives direct motion in the space of iα iα
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mismatches ( )F x . It was shown that the deviation of the method from the direct line 0( )Dβ β−  can be 
evaluated by the following Euclid norm 
 

 0 0
1

( ) ( )K k
k Fk

D F x k xβ α α e
=

− + + !∆ ≤∑                                     (5.32) 

 

It is clear that for 0α =  the norm (5.32) is equal to zero. Increasing α  results in the method taking 
larger steps, but the deviation (5.32) can also increase. However, having calculated the correction vectors 

k ix ,  at the i -th iteration, and knowing the specified maximum deviation Fe , it is not difficult to obtain 

the corresponding value of iα  which keeps the deviation (5.32) within the desired accuracy Fe . If the 

value of Fe  is small enough, the method will converge up to a singular point of the original problem 
(5.32).  

Because of the consideration of the high-order Taylor expansion terms, this modification does not 
require the corrector steps, and theoretically allows to reach the boundary with a fewer number of 
iterations. At the same time, the computational effort at each iteration is more significant comparing with 
the predictor-corrector method. Besides, the high order method is more difficult for implementation. 
 

5.1.7.4 Nonlinear approximation of the VSB 

In this project, we explored the opportunities for substituting the hyperplane approximation approach 
by a nonlinear VSB approximation approach. Similar efforts are reflected in references [Perninge 2011] 
and [Perninge 2013]. The methodology for a quadratic VSB approximation can be found in Appendix D. 
We have found that the piecewise nonlinear quadratic approximation of VSB meets significant difficulties 
with finding where the approximating quadrics intersect; this makes practically impossible to quantify the 
actual voltage stability margin. This approach cannot be recommended for a practical implementation. 

5.1.7.5 High-order numerical methods (HO) for the future implementation 

At the same time, the non-linear approximation used in the form of a high-order numerical method 
used to solve VSB equations could be useful for tracing the VSB. It can be implemented in the next phase 
of the project.  

5.2 Algorithm Implementation and Software Code 
The PSERC continuation power flow program and MATLAB® programming language were selected 

as a primary power flow engine. The algorithm is based on methods that were originally used in the NSF-
PSERC CPF algorithm1 [Greene 1997],   [Dobson 2001],     [Alvarado 2001]. Significant  modifications 
have been made to the PSERC program to meet the objectives of this project.  

1 http://www.pserc.cornell.edu/tcc/ 
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5.3 Connectivity with PowerWorld® 
SimAuto code is developed to extract field information from PowerWorld and to prepare input file to 

run the developed MATLAB® code, which generates voltage stability boundary of a given system. This 
input file is to run the code that consists of powerful methods to explore the voltage stability boundary.  

Appendix F contains: 

(1) SimAuto code, and 

(2) MATLAB® code used to calculate several input parameters (needed to generate voltage 
stability boundary) using the input file generated by SimAuto code. 
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6.0 Experimental Results and Improvements 

The MATLAB® code implementing the non-iterative voltage stability analysis (VSA) has been 
comprehensively tested using large-scale real system models. 

6.1 Test Cases 
To test the performance of the developed MATLAB® codes, we used the following three real system 

models. 

6.1.1 Central America System 

This model includes an interconnection of the power grids of Panama, Costa Rica, Honduras, 
Nicaragua, El Salvador, and Guatemala. The model contains 1,985 buses and 2,298 branches. 

6.1.2 California ISO Model 

California ISO is a balancing authority serving most of California and a small section of Nevada. The 
model used in this project includes 3,535 buses and 4,402 branches. 

6.1.3 Western Electricity Coordinating Council (WECC) Model 

The WECC system is an interconnection of the power grids of Canadian provinces of Alberta and 
British Columbia, the northern portion of Baja California, Mexico, and  14 U.S. states. It includes 19,331 
buses and 22,946 branches. 

6.2 Transformation from Polar Coordinates to Rectangular 
Coordinates 

To implement the XR method, Jacobian matrices and voltages must be transformed from polar 
coordinates into rectangular coordinate. We developed a procedure for the Jacobian matrix transformation 
from polar to rectangular coordinates and it is presented in Appendix E. 

6.3 Improvements and Tests: Discrete Events 
In this section, we discuss a problem related to discrete events (such as transformations of bus types 

from P-V to P-Q and vice versa) in power flow calculations, their dependence on the stressing trajectory 
and potential non-uniqueness of power flow solutions, and a possible remedy to this problem based on the 
XR method. We also test the performance of XR method when reactive power constraints are added to 
the problem. 
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6.3.1 Comparing Bus Types at Boundary Points Obtained From CPF and OM 

First, we wanted to compare the bus types (P-V and P-Q) obtained along the voltage stability 
boundary by using the CPF method and the bus types produced by the orbiting method (OM). Figure 35 
below shows the boundary points (A, B and C) that were obtained from the CPF and OM. It was observed 
that generators’ bus types that obtained from these methods are not matching. 

 
Figure 35. Comparing bus types obtained by different methods in California system model. 

 

An explanation of this fact can be found in the next section. 
 

6.3.2 Sensitivity of Bus Types to Changes in Stress Trajectory 

To investigate the sensitivity of bus types to changes in stress trajectory, we stressed the system in 
three different directions as shown in Figure 36: 
 

• Direction 1: D1 from 1 to 2 
• Direction 2: D2 from 1 to 3 
• Direction 3: D3 from 2 to 3 

The boundary points obtained by stress D1 and  D2 - D3 are almost the same (near point 2). 
However, bus types in these two cases are not matching.  

 A B C 
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Figure 36. Boundary points from different stressing direction (California system model). 

 
Table 1 below shows the number of PV buses at the point 2 obtained along two different stress directions. 
This number is significantly different. This means that the number and sequence of discrete events such 
as P-V  Q-V and P-Q  P-V changes is a function of stress trajectory. This happens because discrete 
events change system characteristic and system parameters (e.g., nodal voltage) are sensitive to these 
changes. This is a common problem in power flow calculations. 

Table 1. Number of PV buses in each direction 

Trajectory No. of PV buses at point 2 
D1 423 
D2 - D3 413 
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6.3.3 Proposed Approach to Directly Detect Discrete Events and Generation 
Bus Types in the XR Method 

In this section, we analyze approaches to directly detect events such as voltage violations, power 
transfer violations and P-V  P-Q / P-Q – P-V changes on XR trajectory. 

The proposed procedure uses power flow equations in rectangular coordinates, where the voltage 
phasors are represented as { }' "i iX V jV= + . In these coordinates, the power flow mismatch can be 

represented as a quadratic vector-function { }( ) ,i iF X Y P Q Y− = − for P-Q buses or 

{ }2( ) ,i iF X Y P V Y− = − for P-V buses, where Y is a vector of nodal power injections or function of 

fixed voltage magnitudes 2
*iV . 

Assume that X0 is the operating point, and X* is any other power flow point along the stress trajectory 
in the state space, 0 0( ) 0F X Y− = , * *( ) 0F X Y− = . Let us connect these two points with a 
parametrically-defined line: 

 

0 * 0( ) ( )X X X Xα α= + −                                                         (6.1) 
 

where α is a scalar parameter positioning point X along this line. Under these assumptions, functions 

( ) [ ( )], ( ) [ ( )]P P X Q Q Xα α α α= =  and 2 ( )V α  become quadratic functions of α. 

It is important to stress the following difference between the stress trajectory in injection space 

0( )Y Y Yβ β= + ⋅∆  and trajectory ( ) [ ( )]Y F Xα α= . As shown in Figure 37, in the Y-space, trajectory
( )Y β  is a straight line, whilst ( )Y α is a quadratic curve connecting two points of ( )Y β . 
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Figure 37. The difference between trajectories Y(α) and Y(β). 

6.3.3.1 Finding voltage violations along Y(α) 

Assume that the point * * * *( ) ( ) [ ( )]Y Y Y F Xα β α= = = ,  we have several voltage violations, for 

instance, * min ,V Vυ υ υ< ∈ϒ , where ϒ  are buses with violations.  Normally this task is solved by a multi-
step procedure, such as step-by-step stressing or binary search, with multiple power flow calculations 
involved. Our task is to locate these violations along the trajectory ( )Y α directly. 

Here we propose a better approach. To locate voltage violations, the following scalar quadratic 
equations can be solved with respect to υα : 

2 22 2 ' ' ' " " " 2
0 * 0 0 * 0( ) ( ) ( ) 0 ,fixed fixedV V V V V V V V Vυ υ υ υ υ υ υ υ υ υ υ υ υα α α α υ   − = + − + + − − = → ∈ϒ       (6.2) 

If Equation (6.2) has real solutions for certain bus numbers υ∈ϒ , they help to directly locate 
violations along the trajectory (6.1). If these violations are related to discrete events such as capacitor 
switching or under-voltage generation protection operation, we can assume that the sequence of these 
events is repeating the sequence of events along the trajectory (6.1). This assumption provides uniqueness 
of a discrete events sequence during a power flow solution process, because this sequence does not 
depend anymore on the trajectory shape in the Y-space. 

6.3.3.2 Finding thermal violations along Y(α) 

The approach is similar to the one proposed for voltage violations.   

A power transfer ijT  can be expresses as a function of state variables X: 

Yi 

Yj 

Yk 

ΔY 

 
Operating point  

Y0 

Y* 

Y(α) 

Y(β) 
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0 * 0( ) [ ( )],ij ij ijT T T X X X ij IJα α= = + − ∈                                         (6.3) 

where IJ is the set of critical power transfers.  Assume that at the point * *( )X X α=  we observe 

violations on several critical paths *ij IJ IJ∈ ⊂ : 

* * max *( ) ( ) ,ij ij ijT T T ij IJα β= > ∈                                                      (6.4) 

The sequence of power transfer violations can be evaluated by the sequence of these violations along
( )Y α .  To find this sequence, the following scalar quadratic equations can be solved with respect to α : 

max *( ) ,ij ij ijT T T ij IJα α= = → ∈                                                  (6.5) 
 

 If Equation (6.5) has real solutions for certain branches *ij IJ∈ , they help to directly locate 
violations along the trajectory (6.1). If these violations are related to discrete events such as transmission 
line tripping, we can assume that the sequence of these events is repeating the sequence of events along 
the trajectory (6.1). This assumption provides uniqueness of a discrete events sequence during a power 
flow solution process, because this sequence does not depend anymore on the trajectory shape in the Y-
space. 

6.3.3.3 Finding generation bus type changes along Y(α) 

To locate generation bus type changes, the following scalar quadratic equations can be solved with 
respect to υα  for each bus υ with voltage control from a generator: 

max(min)( ) 0 ,Q Qυ υ υ υα α υ− = → ∈Ψ                                             (6.6) 

If Equation (6.6) has real solutions for certain bus numbersυ∈Ψ , they help to directly locate points, 
where the generators’ types change along the trajectory (6.1). This approach provides uniqueness of bus 
types for any power flow point, because this sequence does not depend anymore on the trajectory shape in 
the Y-space. 

6.3.4 Incorporating Constraints and Discrete Events into the XR Method 

  In this project, we incorporated discrete events into the XR method (such as changes of 
generators’ types from PV to PQ type and vice versa). Here we report on experimental results helping to 
evaluate the performance of XR method when the reactive power constraints are added to the problem. 
These experiments are to check if our methodology obtains the same boundary points as found in step-by-
step method using CPF or not. Figure 38 shows exploration of ( )αR and distance function  ( ) ( )α αJ R  

with without reactive power constraints. The point “100” indicates the voltage stability boundary point 
(100% loading), obtained by CPF method. It can be seen that the XR finds the same VSB point. 
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Figure 38. Exploration of ( )R α and distance function ( ( ) ( )α αJ R ) without reactive power constraints. 
 

Figure 39 shows exploration of R( )α and distance function ( ( ) ( )α αJ R ) with reactive power 

constraints α . From the results, it is observed that distance function achieves its minimum value at α = 
100, which matches the boundary point found by CPF method.  
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Figure 39. Exploration of ( )R α and distance function ( ( ) ( )α αJ R ) without fixed reactive power 
constraints. 
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6.4 Hyperplane Method Test 
In this section, we will take California system model as an example to illustrate how to build its VSB 

approximation by hyperplanes.  

    In this case, 1 2[ , ]p p p= , where 1p  is the real power load at bus 1 (SANTIAGO) and 2p  is the real 
power load at bus 2 (MISSION).  The VSB plot is shown as dotted blue line in Figure 40. By applying 
our approximation approach described above, we get the following equation for the approximating line 
(the tangent set shown as solid pink line), which approximates VSB (in p.u.; 1 p.u. is 100 MW): 
 

1 20.0004( 8.1825) 0.0955( 14.8293) 0p p− − − − =                                   (6.7) 
 

Similarly, we can get another line (in p.u.):  
 

1 20.6023( 15.4932) 0.0014( 12.4785) 0p p− − − =                               (6.8) 
 
 

 
 
Figure 40 also shows two lines plotted at certain distance from the tangent set. This distance reflects a 
specially added voltage stability margin (100 MW). 
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Figure 40. Approximating lines for the California test case (pink lines). 

 

6.5 Examples of VSB Plots for Test Systems 
For the WECC, California and Central America systems, we tested the robustness, computational 

time, and the accuracy of our algorithm against the conventional CPF method and PowerWorld simulator 
widely used in the industry. VSB plots shown below are produced using our VSA tool and verified using 
CPF simulations. 

6.5.1 Central America System 

A VSB plot for the Central America System is shown in Figure 41. Two loads were selected in this 
system to plot a slice of VSB. The boundary was plotted using the proposed method. The initial stress has 
been done by applying the CPF method and step reduction to reach the vicinity of VSB (the sequence of 
red “×” symbols in the center of Figure 41). The CPF process has been repeated two more times due to 
divergence of the orbiting method (sequences of green “×” symbols in the center of Figure 41). The 
divergence was caused by singularities of VSB around these points. The rest of boundary points were 
obtained using the orbiting method. Each iteration of this method produced a new VSB point. 
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Figure 41. Central America System VSB. 

6.5.2 California System 

Similarly to the Central America case, two loads were selected to produce a slice of VSB - Figure 42. 
Three CPF stresses were needed to obtain an initial VSB point and restart the orbiting process in cases of 
divergence. The rest of VSB points were calculated using the orbiting method. It is interesting that VSB 
has rectangular shape, which indicates that the selected loads were independent in terms of their impact 
on voltage stability. 

 
Figure 42.  California system VSB. 
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6.5.3 WECC System  

Only one CPF run was needed to initiate orbiting method in the WECC case. The rest of the points 
were obtained using non-iterative method - Figure 43. 

 

 
Figure 43. WECC system VSB. 

6.6 Computational Time 
We compared the computational time of our method against the traditional CPF method. 

6.6.1 Central America System 

Table 2 contains a comparison of computational time of our method against the CPF method. The 
total time to produce 8 boundary points was 24.8 sec (3.1 sec per point average). The CPF method was 
repeated 3 times and took 23.1 seconds (7.7 sec per run). The non-iterative method was repeated 7 times 
(including 2 divergent cases) with the average time of 0.17 sec. Therefore: 

• For the Central America System, one step of the orbiting method is 46 times faster than the 
CPF method. 

• To get 8 points of VSB using CPF method will take about 61.6 sec. The overall process of 
our method took 24.8 sec. The resulting speed-up ratio is 2.1 times. 
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Table 2. Computational time for the Central America system 

 

6.6.2 California System 

Table 3 contains a comparison of computational time of our method against the CPF method. The 
total time to produce 9 boundary points was 32.6 sec (3.6 sec per point average). The CPF method was 
repeated 3 times and took 28.9 seconds (9.6 sec per run). The non-iterative method was repeated 8 times 
(including 2 divergent cases) with the average time of 1.1 sec. Therefore: 

• For the California system, one step of the orbiting method is 8.76 times faster than the CPF 
method. 

• To get 8 points of VSB using CPF method will take about 260 sec. The overall process of our 
method took 38.6 sec. The resulting speed-up ratio is 6.74 times. 

 
Table 3. Computational time for the California system 

 

6.6.3 WECC System 

Table 4 contains a comparison of computational time of our method against the CPF method. The 
total time to produce 9 boundary points was 209.5 sec (29.9 sec per point average). The CPF method was 
repeated 1 time and took 152.5 seconds. The non-iterative method was repeated 6 times with the average 
time of  9.5 sec. Therefore: 

• For the WECC system, one step of the orbiting method is 16 times faster than the CPF 
method. 
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• To get 7 points of VSB using CPF method will take about 1068 sec. The overall process of 
our method took 206.5 sec. The resulting speed-up ratio is 5.17 times. 

 
 

Table 4. Computational time for the WECC system 

 

6.6.4 Comparison of Results and Conclusion 

Figure 44 shows a comparison of the traditional computational methods and the new method in terms 
of computational time needed to get one slice of the voltage stability boundary depending on the system 
size. Note that for the WECC system (19,331-bus system) the computational time of our method remains 
within 4 minutes.  

 
Figure 44. Computational time to get one slice of VSB depending on the system size. 

6.7 Accuracy 
We compared VSB points obtained using our method against the points calculated using 

PowerWorld. To run this experiment, we had to make some assumptions and adjustments in the models 
related to phase shifting transformers, switching capacitors, etc. They are listed in Appendix F. The 
reason for those changes is as follows. The MATLAB® code that has been developed is research 
software, which cannot simulate a detailed system model typical for the production-grade software tools. 
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Appendix G contains a SimAuto and MATLAB® codes developed by the project team to read 
information directly from PowerWorld formats. 

Table 5 shows results of comparison between the non-iterative methods and PowerWorld for several 
stress directions in Central America system. The developed method provides results within 1% from the 
PowerWorld results. 

 
Table 5. Comparison of the VSB points obtained by two methods 

 

6.15 





 

7.0 Project Benefits and Expected Impacts  

The project helps to achieve the following benefits for system operations: 
• Enhanced situational awareness, early detection of potential system instability, and improved 

reliability achieved by providing real-time dynamically adjusted information to power system 
dispatchers and VSB visibility for multiple stress directions and contingencies. 

• Actionable information and prevention of system blackouts achieved by providing advisory 
information using the wide area security region approach. 

• Better utilization of transmission assets due to near-real-time adjustment of voltage stability 
limits, reflecting mutual dependences of power flows on critical transmission paths. 

• Developing real-time and HPC applications. 
• Potential for predictive/preventive control. 
• Potential for close-loop automatic emergency control systems. 
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8.0 Conclusion 

Voltage stability is becoming an increasing source of concern in the secure operation of present-day 
power systems. It is important to address voltage stability problems effectively in the planning, design 
and operation of electric power systems. In this report, a new non-iterative method to determine the 
voltage stability boundary is proposed and examined. The stability theory in terms of the stability 
boundary in state space and parameter space and their relationship is examined. A few test power systems 
are used to evaluate the performance of the proposed non-iterative method. The non-iterative procedure 
associated with the quadratic approximation of power flow equations in rectangular coordinates allows 
the method to explore the static voltage stability boundary very quickly, without iteration steps. Thus the 
proposed method is extremely suitable for parallel processing. 
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9.0 Recommendations for Next Phase 

The proposed effort for FY15 will include the following major tasks: 

(1) Algorithm Enhancement: Increase the robustness of the VSA software tool for a variety of system 
models and conditions and demonstrate its trustworthiness for solving real industry cases. 

(2) Tool and UI Refinement: Further improve the performance of the VSA software tool and improve 
the GUI to make it attractive for adoption by vendors. 

(3) Vendor Engagement: We will collaborate with a selected vendor or vendors to transfer the 
technology. This will include presentations at industry forums and conferences. To date, PNNL has 
received expressions of interest from the following vendors: Powerworld, V&R Energy Systems 
Research, and PowerTech. 

(4) Non-iterative Small Signal Stability Method Development:  This task will develop methods and 
prototypes for non-iterative small signal analysis. The method will enable plotting of the small-signal 
stability boundary in coordinates of critical system parameters in near real-time.
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Appendix A: Voltage Stability Related Blackouts Worldwide 
Many system blackouts and “near misses” were related to voltage instability and voltage collapse 

problems. Among them, the following major events are of interest – See Appendix A.1 references for 
more details: 

1. 1965: Eastern US and Canada  

2. 1970: Japan and New York Power Pool 

3. 1977: New York City and Jacksonville, Florida 

4. 1978: France 

5. 1982: Belgium and Florida 

6. 1983: Sweden  

7. 1987: Tokyo, Japan, Western Tennessee, France 

8. 1989, 1993-1994: Italy 

9. 1996: US Western Interconnection (2 events) 

10. 1997: The Netherlands 

11. 1998: Atlanta, San Francisco Area, Upper Midwest U.S. 

12. 1999: Northeast U.S. (2 events) 

13. 2003: Croatia - Bosnia Herzegovina, Eastern U.S. - Canada, Denmark - Sweden, and Italy 

14. 2004: Western Norway and Southern Greece  

15. 2005: Moscow region, Russia 

A.1 References for Appendix A 
[A1] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994. 

[A2] S. Lindahl, “Case studies of recent blackouts”, CRIS International Workshop on Power System 
Blackouts ~ Causes, Analyses, and Countermeasures, Lund, Sweden, May 3, 2004.  

[A3] Final Report on the August 14, 2003 Blackout in the United States and Canada:  Causes and 
Recommendations, U.S. – Canada Power System Outage Task Force, April 5, 2004. Available 
online at http://www.nerc.com/~filez/blackout.html. 
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[A4] G. Doorman, G. Kjǿlle, K. Uhlen, E. S. Huse, and N. Flatabǿ, “Vulnerability of the Nordic Power 
System”, Report to the Nordic Council of Ministers, SINTEF Energy Research, May 2004. 
Available online at http://sparky.harvard.edu/hepg/Papers/Doorman.vul.nordic. system.0504.pdf 

[A5] A. Kurita and T. Sakurai, “The Power System Failure on July 23, 1987 in Tokyo”, in Proceedings of 
the 27th Conference on Decision and Control, December 1988. 

[A6] G.C. Bullock, “Cascading Voltage Collapse in West Tennessee, August 22, 1987”, Georgia Institute 
of Technology 44th Annual Protective Relaying Conference, May 2--4 1990. 

[A7] “The Electric Power Outages In The Western United States, July 2-3, 1996”, DOE Report to the 
President, August 2, 1996. Available online at 
ftp://www.nerc.com/pub/sys/all_updl/docs/pubs/doerept.pdf. 

[A8]“Western Systems Coordinating Council Disturbance Report for the Power System Outage that 
Occurred on the Western Interconnection on August 10, 1996”, October 18, 1996. Available online 
at ftp://www.nerc.com/pub/sys/all_updl/docs/pubs/AUG10FIN.pdf. 

[A9] “California ISO System Disturbance Report: December 8, 1998 - San Francisco Area”. Available 
online at http://www.caiso.com/docs/1999/03/31/1999033116341717931.pdf 

[A10] N. Dizdarevic, M. Majstrovic, S. Cudjic Coko, N. Mandic, and J. Bonovic, “Causes, Analyses and 
Countermeasures with Respect to Blackout in Croatia on January 12, 2003”, CRIS International 
Workshop on Power System Blackouts ~ Causes, Analyses, and Countermeasures, Lund, Sweden, 
May 3, 2004. 

[A11]“Technical Analysis of the August 14, 2003, Blackout: What Happened, Why, and What Did We 
Learn?”, Report to the NERC Board of Trustees by the NERC Steering Group, July 13, 2004. 
Available online at ftp://www.nerc.com/pub/sys/all_updl/docs/blackout/ 
NERC_Final_Blackout_Report_07_13_04.pdf 

[A13] “Power failure in Eastern Denmark and Southern Sweden on 23 September 2003”, Final report on 
the course of events, Ekraft System, November 4, 2003. Available online at http://www.elkraft-
system.dk 

[A14] “The Black-Out In Southern Sweden and Eastern Denmark”, 23 September, 2003, Preliminary 
Report, PM 2003-10-02, Svenska Kraftnät. Available at 
http://www.svk.se/upload/3195/Disturbance_Sweden_DenmarkSept23.pdf 

[A15]“Interim Report of The Investigation Committee on the 28 September 2003 Blackout in Italy”, 
Press Release, Union for the Coordination of Transmission of Electricity UCTE, Brussels, Belgium, 
October 3, 2003. Available online at http://www.energie-
schweiz.ch/imperia/md/content/medienmitteilungen/mm06-122003/82.pdf 

[A16]“Black-Out: The Events Of 28 September 2003”, Press Release, Gestore Rete Transmissione 
Nazionale, Italy, October 1, 2003. Available online at 
http://www.grtn.it/eng/documentinewsstatiche/blackout28set03.pdf 
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[A17] C. Vournas, “Technical Summary on the Athens and Southern Greece Blackout of July 12, 2004”. 
Available online at http://www.pserc.org/Greece_Outage_Summary.pdf. 

[A18] Отчет по расследованию аварии в ЕЭС России, происшедшей 25.05.2005. Председатель 
комиссии по расследованию аварии В.К.Паули, 18 июня 2005 г. [Report on failure inquiry in 
UES of Russia that took place at May 25,2005 – in Russian]. Available online at:     
http://www.mosenergo.ru/download/r410_account.zip. 
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Appendix B: Power Flow in Cartesian Coordinates 
 

    In Cartesian coordinates, the voltage at bus i can be expressed as 

     ˆ ' "i i ij= +V V V                                                                                        (B1)                                                                                                                                  

where îV  represents complex number, 'iV and "iV  are real and imaginary parts, respectively. Let Y 
denote the bus admittance matrix, its element at ith row and k th column can be expressed as 

îk ik ikj= +Y G B                                                                                        (B2) 

Therefore, the injection current at bus i can be expressed as 
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where N is the number of buses. The injection power at node i is calculated as 

*ˆ ˆ ˆ
i i i i ij= + =S P Q V I                                                                                   (B4) 

replacing îV  and îI  in (B4) by (B1) and (B3), respectively, and resolving it into real and imaginary part 
yields  
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and  
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    For a system with r PV buses, n-r PQ buses, and one slack bus whose index is set to be n + 1, the 
corresponding power balance and voltage equations are shown in Error! Reference source not found., 
where s

iP  is the specified value of active power for bus i (either PQ or PV bus), s
iQ  is the specified value 
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of reactive power for bus i (PQ bus), s
iV is the specified set-point voltage at the PV buses, and N = n+1. 

Therefore, we have 2n equations and 2n state variables. 
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Appendix C: Formulation of the Quadratic Approximation 
The objective of this task is to formulate the quadratic approximation for the non-iterative 

method. In this task, a quadratic surface has been determined around a boundary point, which is 
used to approximate voltage stability boundaries. Calculation of the shortest distance between 
current operating point and the quadratic surface has been formulated. 

Let’s take the following equation as an example to illustrate the first order and the second 
order approximation [C1]:  

( ) 0

( ) ( ) 0
1

i j

t

t

F x e e

z J x L
L L

γ η

φ

+ + =


= =
 =

                                                 (C1) 

where [ , , , ]z x L γ η= .  

C.1 First Order Approximation 
 

According to (C1a), we have 

( ) 0F FJ x x γ η
γ η
∂ ∂

∆ + ∆ + ∆ =
∂ ∂

,                                             (C2) 

where ( ) FJ x
x

∂
=
∂

. Multiplying tL  on both side of (C2), we have 

( ) 0t t tF FL J x x L Lγ η
γ η
∂ ∂

∆ + ∆ + ∆ =
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                                  (C3) 

According to (C1b), we have ( ) 0tL J x = , and Equation (C3) turns into 

0t tF FL Lγ η
γ η
∂ ∂

∆ + ∆ =
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                                                   (C4)   
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Let   *γ γ γ∆ = − , *η η η∆ = − , t tF Fn L L
γ η∑

 ∂ ∂
=  ∂ ∂ 

, then Equation (C4) can be written as 

follows: 

*

*

0n
γ γ
η η∑

− 
= − 

                                                          (C5) 

Equation (C5) is the tangent plane at the point ( *γ , *η ) where n∑  represent the normal 
vector.  

C.2 Quadratic Approximation 

Based on the normal vector and the tangent plane which we already obtained in previous 
section, the second-order Taylor expansion of a boundary surface  Σ  around a point ( *γ , *η ) can 
be expressed as the following: 

* *

*
( , ) * *
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2

L C nγ η
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γ γ γ η

η Σ
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                                      (C6) 

Here 1 1[ ]mC c c −= 
 is a basis for the tangent plane; in two dimensional space 1[ ]C c= , 

1

1
c

k
 

=  
 

 is the basis for this tangent set, k is the slop of the tangent line; C γ∆  is a displacement 

away from ( *γ , *η ) in the tangent hyperplane, and 
* *( , )γ η∏  is the second fundamental form of Σ  

at point ( *γ , *η ) as shown in Figure 45.  

* *( , )γ η

Σ

γ

η

•

•
* *( , ) * *

1 ( , )
2

nγ η γ ηΣ∏

•
C γ∆

 
Figure 45: Illustration for quadratic approximation. 
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For three dimensional space, Equation (C1) will turns into 

 
( ) 0

( ) ( ) 0
1

i j k

t

t

F x e e e

z J x L
L L

γ η k

φ

+ + + =


= =
 =

                                   (C7)                           

and the tangent set in (C5) is a plane shown in  

*

*

*

0n
γ γ
η η
k k

∑

− 
 − = 
 − 

                                                               (C8) 

Here 

t t tF F Fn L L L
γ η k∑

 ∂ ∂ ∂
=  ∂ ∂ ∂  .  

According to the plane equation, we can find a vector perpendicular to n∑  in the tangent 

plane, say 
11

1 21

31

c
c c

c

 
 =  
  

, and another vector 
12

2 22

32

c
c c

c

 
 =  
  

 which satisfies 2 1c c⊥ . Then 1c  and 2c  are 

two basis of the plane.  

    Let 1 2[ , ]C c c= ,  the quadratic approximation in the three dimensional space is shown in 

 

* * *

*

* ( , , ) * * *

*

1( , , ) ( , , )
2

L C nγ η k

γ
γ

γ η k η γ η k
η

k
Σ

 
∆  ∆ ∆ ∆ = + + ∏   ∆   

                          (C9) 

The above procedure can be extended to the space with more than three dimensions (Using 
Gram-Schmidt process to compute C [D2]).  

   Now let’s continue to demonstrate how to calculate Equation (C9). In (C9), according to 
[D2], we have 

* * * *( , ) ( , )( ) ( ),dNγ η γ ηγ γ γ∏ ∆ = −〈 ∆ ∆ 〉                                                  (C10) 

where 

p p p p p

t t T t T t
xx x xdN L F L F C C L Fλ λ λ λ λ λ λϕ ϕ ϕ ϕ ϕ= + +                                      (C11) 

and  
( )x ϕ µ=                                                                            (C12) 
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p

C
µ µ
∂ ∂

=
∂ ∂

                                                                         (C13) 

p

x
t t t t

xx x

FF
C

R L F R L F
µ

µ
µ

ϕ
  

= −   
    

                                                          (C14) 

Here xF  is the Jacobian matrix J , [ ],µ γ η= , L and R are the left and right eigenvectors, 
respectively. 

( )t
t x

xx
L FL F

x
∂

=
∂

                                                                (C15) 

Remember  

x
FF J
x

∂
= =
∂

                                                                 (C16) 

which is the Jacobian matrix.  

    Substituting (C16) into (C15), we have 

( ) ( ) ( )
tt t t t

t
xx

L J J L J LL F
x x x

 ∂ ∂ ∂
= = =  ∂ ∂ ∂ 

                                         (C17) 

which can be calculated through Hessian matrices (see[19]). Here L is the left eigenvector.  
( ) ( ) 0

t t
t x

x
L F L JL F µ µ µ

∂ ∂
= = =

∂ ∂
                                                     (C18)                        

( )
0

t
t

x

L F
L F

x
µ

µ

∂
= =

∂
                                                            (C19) 

Substituting (C17), (C18) and (C19) into (C14), we can obtain 
pµ

ϕ . And then substitute the 

obtained 
pµ

ϕ ,  (C17), (C18) and (C19) into (C11), dN  can be obtained. Finally, 

* *( , ) * *( ) ( , )nγ η γ γ ηΣ∏ ∆  can be obtained through solving (C12), and quadratic approximation gets 
achieved. 

C.3 The Shortest Distance between the Current Operating Point and 
the Surface from Quadratic Approximation 

 

    Suppose 0 0( , )γ η  represents current operation point, and ( , )a aγ η  represents the points on 
the approximated surface (the red curve in Figure 46), which can be expressed in  
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* *

*
( , ) * *

*

1 ( , )
2

a

a

C nγ η

γ γ
γ γ η

η η Σ

   
= + ∆ + ∏   
  

                                  (C20)                 

according to (C6). 

    The distance between the current operating point 0 0( , )γ η  and the point ( , )a aγ η  on the 
surface can be expressed as follows. 

2 2
0 0( ) ( )a ad γ γ η η= − + −                                             (C21) 

2 2 2
0 0( ) ( )a aD d γ γ η η= = − + −                                           (C22) 

Σ

•

•

•
C γ∆

•
0 0( , )OP γ η

•

η

γ

* *( , )γ η

* *( , ) * *
1 ( , )
2

nγ η γ ηΣ∏

 

Figure 46: Shortest distance between current operating point and the surface. 
 

Remember the location of point ( , )a aγ η  is a function of γ∆  (see Equation (C20)), the 
shortest distance can be obtained by solving the following equations. 

 

0a a

a a

d ddD D D
d d d

γ η
γ γ γ η γ

∂ ∂
= + =

∆ ∂ ∆ ∂ ∆
                                               (C23) 

According to (C22), we have  

 02( )a
a

D γ γ
γ
∂

= −
∂

                                                            (C24) 
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02( )a
a

D η η
η
∂

= −
∂

                                                           (C25)   

According to reference [D3], in (C20) we have 

* *

2
( , ) * *

1 1( , ) ( )
2 2

nγ η γ η ρ γΣ∏ = ∆                                                 (C26) 

Here ρ  is a constant which is calculated by (C11).  

According to (C20), we have  
2

* 11 11( )
2a c nργ γ γ γ∑= + ∆ + ∆                                                     (C27) 

2
* 21 21( )

2a c nρη η γ γ∑= + ∆ + ∆                                                      (C28) 

11 11
ad c n

d
γ ρ γ
γ ∑= + ∆

∆
                                                                   (C29) 

21 21
ad c n

d
η ρ γ
γ ∑= + ∆

∆
                                                                  (C30) 

By substituting (C27), (C28) into (C24) and (C25) respectively, we have  
2

* 11 11 02[ ( ) ]
2a

D c nργ γ γ γ
γ ∑

∂
= + ∆ + ∆ −

∂
                                        (C31) 

2
* 21 21 02[ ( ) ]

2a

D c nρη γ γ η
η ∑

∂
= + ∆ + ∆ −

∂
                                       (C32) 

Substitute (C29) ~ (C32) into (C23), γ∆  can be obtained, and then substitute the obtained 
γ∆  into (C30) and (C31), the shortest distance can be calculated. The above algorithm can be 

easily extended to multi-parameter space. 
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Appendix D: Development of Input File Using SimAuto  
This appendix details the method and code used to convert a PowerWorld system model to a format 

compatible with the MATLAB code used in this project. 
 
 
Step1: Connect PowerWorld SimAuto and open an input system that is saved as PowerWorld file. 

Commands used in the script: 

 
A = actxserver('pwrworld.SimulatorAuto'); 
pwFile = strcat(pwd,'\14HS_c4800_d3102_n8000_m-400_new_V4.PWB'); 
simOutput = A.OpenCase(pwFile); 

 

Step2: Find fields contained within a given object type for which the fields are requested. The fields 
contained within branch, bus, generator and line shunts are found by using the following functions: 

%% Object type to obtain BRANCH field list 
 objecttype = 'branch';  

  % Make the GetField call 
  Output_branch = A.GetFieldList(objecttype);  
  

%% Object type to obtain BUS field list  
objecttype = 'bus';  

  % Make the GetField call 
  Output_bus = A.GetFieldList(objecttype);  
  

%% Object type to obtain GEN field list  
objecttype = 'gen';  
 % Make the GetField call  
Output_gen = A.GetFieldList(objecttype); 
%% Object type to obtain GEN field list 

  
objecttype = 'lineshunt';  

  % Make the GetField call  
Output_ls = A.GetFieldList(objecttype);  
%% Object type to obtain GEN field list 

 

Step3: Extract specified parameters from “Bus” field array.   

Bus field list: 

D.1 



 

 
fieldarray = {'BusNum ', 'BusCat', 'BusLoadMW', 'BusLoadMVR', 'BusG', 'BusB', 
'AreaNum', 'BusPUVolt', 'BusAngle', 'BusNomVolt', 'ZoneNum', 
'BusVoltLimHigh', 'BusVoltLimLow', 'BusName', 'BusSS'}; 
 

The following adjustments were made after extracting the specified parameters from object type Bus: 
• Discard ‘Dead’ busses 
• Enumerate bus types 
• Replace ‘NaN’ with zero 
• Accumulate generator data having same bus number 
• Incorporate line shunt and switched shunt information 

Step4: Extract specified parameters from “Gen” field array.   

Generator field list: 

 
fieldarray = {'BusNum', 'GenMW', 'GenMVR', 'GenMVRMax', 'GenMVRMin', 
'GenVoltSet', 'GenID','GenStatus','GenMWMax', 'GenMWMin'}; 
 

All the inactive generators are excluded after extracting the specified parameters from the object type 
Gen. 
 

Step5: Extract specified parameters from “Branch” field array.   

Branch field list: 

 
fieldarray = {'BusNum', 'BusNum:1', 'LineR', 'LineX', 'LineC', 'LineAMVA', 
'LineAMVA:1', 'LineAMVA:2', 'LineTap', 'LinePhase', 
'LineStatus','LineCircuit'}; 
 

The following adjustments were made after extracting the specified parameters from object type 
Branch: 

• Exclude open branches 
• Update R, X values for those branches having phase shift with new values saved in “impedance 

correction table
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Appendix E: Jacobian Matrix Transformation from Polar to 
Rectangular Coordinates  

The following bus numbers are used: 
 

PVl - l-th PV bus number (nPV buses total); 
 
RB - Reference Bus, and 

 
PSERC Variables [2*nbus+1+nPV+1]: 
 

1

PV

2

- Voltage Phase Angles [nbus]
- Voltage Magnitudes [nbus]
- Source Factors (Distributed Slack Bus Factors) [1]
- PV Bus Reactive Power Injections [nPV]
- Sink Factors (Stress Factors) [1]

β

β

V

Q

θ

                                     (E1) 

 
These variables are described by a common notation x. 
 

1

( )
( , ) 0 - Active Power Balance [nbus]
( , ) 0 - Reactive Power Balance [nbus]

0 - Reference Bus Equation [1]
0 - PV Bus Equations [nPV]

D G

RB

PV

Q Q
β

=

− − =
 + =
∆ =
∆ =

F x
P V P P

V

V

θ
θ
θ

                                    (E2) 

 
where 1[ ; ; ; ]PVβ=x V Qθ . 
 
The Jacobian matrix J(x) of is the PSERC “full Jacobian” 
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where 
t

PV
PV

PV

∂∂  = =  ∂ ∂ 

VQI
Q V

 is a (nbus nPV)×  matrix which consists of 0s and 1s. The “100” 

multiplier is introduced to improve the Jacobian matrix condition. 
 
Let 1[ '; ''; ; ]PVβ=y V V Q ,   
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Appendix F: SimAuto and MATLAB® Scripts 
The scripts provided in this appendix automate reading of PowerWorld input files to make 

adjustments to the input parameters needed in the MATLAB code. 

F.1 SimAuto Script 
 
clc 
clear all 
   
%% Establish a connection with PowerWorld / SimAuto 
  
disp('>> Connecting to PowerWorld Simulator / SimAuto...') 
A = actxserver('pwrworld.SimulatorAuto'); 
disp('Connection established') 
  
  
%% Open case 
  
disp('>> Opening case'); 
pwFile = strcat(pwd,'\14HS_c4800_d3102_n8000_m-400_new_V4.PWB'); 
simOutput = A.OpenCase(pwFile); 
if ~(strcmp(simOutput{1},'')) 
    disp(simOutput{1}) 
else 
    disp('Case opened'); 
    validcase = true;  
end 
  
% This example loads all buses in the case, and then gets 
  
% some parameters of the last bus in the list 
%% Object type to obtain BRANCH field list 
  
objecttype = 'branch'; 
  
 % Make the GetField call 
  
Output_branch = A.GetFieldList(objecttype); 
  
  
%% Object type to obtain BUS field list 
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objecttype = 'bus'; 
  
 % Make the GetField call 
  
Output_bus = A.GetFieldList(objecttype); 
  
  
%% Object type to obtain GEN field list 
  
objecttype = 'gen'; 
  
 % Make the GetField call 
  
Output_gen = A.GetFieldList(objecttype); 
%% Object type to obtain GEN field list 
  
objecttype = 'lineshunt'; 
  
 % Make the GetField call 
  
Output_ls = A.GetFieldList(objecttype); 
  
  
%% Object type to obtain GEN field list 
  
  
% validcase is a global variable – check case is open 
  
if validcase  
  
% Gets all buses in the case  
  
 output = A.ListOfDevices('bus','');  
  
      if ~(strcmp(output{1},''))  
  
        disp(output{1}); 
  
        validbusarray = false;  
  
            else  
  
 % Puts the buses in row vector busarray  
  
            for i=size(output{2}{1},1):size(output{2}{1},2)  
  
                busarray(i,1) = output{2}{1}(i);   
  
            end  
        disp('Succesful ListOfDevices')  
%         disp(busarray);  
        validbusarray = true;  
     end  
end 
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% validbusarray is a global variable – check buses are loaded 
  
if validcase && validbusarray 
  
 % Gets parameters for last bus of busarray  
  
 fieldarray = {'BusNum ', 'BusCat', 'BusLoadMW', 'BusLoadMVR', 'BusG', 
'BusB', 'AreaNum', 'BusPUVolt', 'BusAngle', 'BusNomVolt', 'ZoneNum', 
'BusVoltLimHigh', 'BusVoltLimLow', 'BusName', 'BusSS'}; 
  
for bus_count=1:size(busarray,1); 
     
    valuearray = 
{busarray(bus_count),'0','0','0','0','0','0','0','0','0','0','0','0','0','0'}
; 
  
    output(:,bus_count) = 
A.GetParametersSingleElement('bus',fieldarray,valuearray);  
  
        if ~(strcmp(output{1},''))  
  
        disp(output{1}) ; 
  
        else  
  
        % Puts the buses in row vector busparam  
  
        paramlist = transpose(output{2});  
  
            for i=size(paramlist,1):size(paramlist,2)  
  
                busparam(i,1) = paramlist(i);   
  
            end  
  
        disp('Succesful GetParameters for Bus')  
  
%         disp(fieldarray);  
  
        disp(busparam) ; 
  
        end  
  
end 
end 
  
count=0; 
for ij=1:size(busarray,1) 
    buscon=strcmp(output{2,ij}{2,1},'Dead'); 
    if buscon==0 
        count=count+1; 
       bus_data (count,1:14)=[ output{2,ij}(1,1) output{2,ij}(2,1) 
output{2,ij}(3,1) output{2,ij}(4,1) output{2,ij}(5,1) output{2,ij}(6,1) 
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output{2,ij}(7,1) output{2,ij}(8,1) output{2,ij}(9,1) output{2,ij}(10,1) 
output{2,ij}(11,1) output{2,ij}(12,1) output{2,ij}(13,1) output{2,ij}(15,1)]; 
    end 
end 
  
count=0; 
for ij=1:size(bus_data,1) 
        busconshunt=strcmp(num2str(bus_data{ij,14}),'NaN'); 
        if busconshunt==0 
   
%             bus_data_shunt(ij,1)=bus_data(ij,14); 
           bus_data_shunt(ij)=num2cell(str2num(bus_data{ij,6})+ 
str2num(bus_data{ij,14})); 
        else 
%             bus_data_shunt(ij,1)=bus_data(ij,14); 
            bus_data_shunt(ij)=bus_data(ij,6);   
        end 
end 
bus_data(1:ij,6)=bus_data_shunt(1:ij)'; 
  
  
for i=1:size(bus_data,1) 
    PQcheck=strcmp(bus_data(i,2),'PQ'); 
    PQcheckRR=strcmp(bus_data(i,2),'PQ (Remote Reg Slave)'); 
    slackcheck=strcmp(bus_data(i,2),'Slack'); 
    PVcheck=strcmp(bus_data(i,2),'PV'); 
     
    PQcheckgen=strcmp(bus_data(i,2),'PQ (Gens at Var Limit)'); 
     
    PVcheckRR=strcmp(bus_data(i,2),'PV (Local/Remote Reg Master)'); 
     
    PQcheckRRV=strcmp(bus_data(i,2),'PQ (Remotely Regulated at Var Limit)'); 
     
    PQcheckCSV=strcmp(bus_data(i,2),'PQ (Continuous Shunts at Var Limit)'); 
     
     
%     PQcheck=strcmp(bus_data(1:ij,1),'PQ'); 
  
if (PQcheck==1 ||PQcheckRR==1||PQcheckRRV==1) 
    bus_data(i,2)=num2cell(1); 
elseif (PVcheck==1 || PVcheckRR==1 || PQcheckgen==1 || PQcheckCSV==1) 
    bus_data(i,2)=num2cell(2); 
elseif slackcheck==1 
            bus_data(i,2)=num2cell(3); 
     
end 
     
end 
  
for ik=1:size(bus_data,1) 
    nancheck=strcmp(str2num(bus_data{ik,1}),'Nan'); 
    bus_data_new(ik,1)=str2num(bus_data{ik,1}); 
    if nancheck==1 
        bus_data_new(ik,1)=0; 
    end 
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end 
  
for ik=1:size(bus_data,1) 
    bus_data_new(ik,2)=(bus_data{ik,2}); 
end 
  
for ik=1:size(bus_data,1) 
    nancheck=strcmp(num2str(bus_data{ik,3}),'NaN'); 
    if nancheck==1 
        bus_data_new(ik,3)=0; 
    else 
        bus_data_new(ik,3)=str2num(bus_data{ik,3}); 
    end 
end 
  
for ik=1:size(bus_data,1) 
    nancheck=strcmp(num2str(bus_data{ik,4}),'NaN'); 
    if nancheck==1 
        bus_data_new(ik,4)=0; 
    else 
        bus_data_new(ik,4)=str2num(bus_data{ik,4}); 
    end 
end 
  
for ik=1:size(bus_data,1) 
    for il=5:13 
         
             if il==6 
                    zerocheck=strcmp(num2str(bus_data{ik,6}),'  0.00000000'); 
             
                    if zerocheck==1 
                        bus_data_new(ik,6)=0; 
                    else 
                       if isstr(bus_data{ik,6})==1 
                                                   
                            bus_data_new(ik,6)=str2num(bus_data{ik,6}); 
                        else 
                            bus_data_new(ik,6)=(bus_data{ik,6}); 
                       end 
                    end 
             
             else 
                bus_data_new(ik,il)=str2num(bus_data{ik,il}); 
             end 
    end 
end 
  
% IF(B3="PQ",1,IF(B3="PV",2,IF(B3="Slack",3,IF(B3="PQ (Gens at Var 
Limit)",1,IF(B3="PQ (Remote Reg Slave)",1,IF(B3="PV (Local/Remote Reg 
Master)",2,IF(B3="Dead",4,"ERROR"))))))) 
count=0; 
  
for ij=1:size(busarray,1) 
    buscon=strcmp(output{2,ij}{2,1},'Dead'); 
    if buscon==0 
        count=count+1; 
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       bus_names (count,1)= output{2,ij}(14); 
    end 
end 
  
%%Branch information 
% validbusarray is a global variable – check buses are loaded 
  
  
% validcase is a global variable – check case is open 
  
if validcase  
  
% Gets all buses in the case  
  
 output_gen = A.ListOfDevices('gen','');  
  
      if ~(strcmp(output_gen{1},''))  
  
        disp(output_gen{1}); 
  
        validbusarray = false;  
  
            else  
  
 % Puts the buses in row vector busarray  
  
            for i=size(output_gen{2}{1},1):size(output_gen{2}{1},2)  
  
                genarray(i,1) = output_gen{2}{1}(i);   
                genarrays(i) = output_gen{2}{2}(i);  
  
            end  
        disp('Succesful ListOfDevices')  
%         disp(genarray);  
        validgenarray = true;  
     end  
end 
  
  
% validbusarray is a global variable – check buses are loaded 
% genarrays = output_gen{2}{2}(1:939);  
if validcase && validbusarray 
  
 % Gets parameters for last bus of busarray  
  
 fieldarray = {'BusNum', 'GenMW', 'GenMVR', 'GenMVRMax', 'GenMVRMin', 
'GenVoltSet', 'GenID','GenStatus','GenMWMax', 'GenMWMin'}; 
  
for gen_count=1:size(genarray,1); 
     
    valuearray = 
{genarray(gen_count),'0','0','0','0','0',char(output_gen{2}{2}(gen_count)),'0
','0','0'}; 
  

F.6 



 

    output_gen_final(:,gen_count) = 
A.GetParametersSingleElement('gen',fieldarray,valuearray);  
  
        if ~(strcmp(output_gen_final{1},''))  
  
        disp(output_gen_final{1}) ; 
  
        else  
  
        % Puts the buses in row vector genparam  
  
        paramlist = transpose(output_gen_final{2});  
  
            for i=size(paramlist,1):size(paramlist,2)  
  
                genparam(i,1) = paramlist(i);   
  
            end  
  
        disp('Succesful GetParameters for Gen')  
  
%         disp(fieldarray);  
  
        disp(genparam) ; 
  
        end  
  
end 
end 
count=0; 
for ij=1:size(genarray,1) 
    gencon=strcmp(output_gen_final{2,ij}{8},'Open'); 
    
    if gencon==0 
        count=count+1; 
       gen_data (count,1:10)=[ output_gen_final{2,ij}(1,1) 
output_gen_final{2,ij}(2,1) output_gen_final{2,ij}(3,1) 
output_gen_final{2,ij}(4,1) output_gen_final{2,ij}(5,1) 
output_gen_final{2,ij}(6,1) 100 output_gen_final{2,ij}(8) 
output_gen_final{2,ij}(9,1) output_gen_final{2,ij}(10,1)]; 
    end 
end 
  
for ik=1:size(gen_data,1) 
    for il=1:size(gen_data,2) 
        if il==7 
            gen_data_new(ik,7)=cell2mat(gen_data(ik,7)); 
        elseif il==8 
            gencheck=strcmp(gen_data(ik,il),'Closed'); 
                if gencheck==1 
                    gen_data_new(ik,8)=1;%this should be 'closed' 
                else 
                    gen_data_new(ik,8)=0; 
                end 
        else 
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            gen_data_new(ik,il)=str2num(gen_data{ik,il}); 
        end 
  
    end 
end 
  
  
if validcase  
  
% Gets all buses in the case  
  
 output_br = A.ListOfDevices('branch','');  
  
      if ~(strcmp(output_br{1},''))  
  
        disp(output_br{1})  
  
        validbusarray = false;  
  
            else  
  
 % Puts the buses in row vector busarray  
  
            for i=size(output_br{2}{1},1):size(output_br{2}{1},2)  
  
                brancharray(i,1) = output_br{2}{1}(i);   
                brancharray(i,2) = output_br{2}{2}(i);   
  
            end  
        disp('Succesful ListOfDevices')  
%         disp(brancharray);  
        validbrancharray = true;  
     end  
end 
  
  
if validcase && validbrancharray 
  
 % Gets parameters for last bus of busarray  
  
 fieldarray = {'BusNum', 'BusNum:1', 'LineR', 'LineX', 'LineC', 'LineAMVA', 
'LineAMVA:1', 'LineAMVA:2', 'LineTap', 'LinePhase', 
'LineStatus','LineCircuit'}; 
  
for branch_count=1:size(brancharray,1); 
     
    valuearray = 
{output_br{2}{1}(branch_count),output_br{2}{2}(branch_count),'0','0','0','0',
'0','0','0','0','0',char(output_br{2}{3}(branch_count))}; 
     
    output_br_final(:,branch_count) = 
A.GetParametersSingleElement('branch',fieldarray,valuearray);  
  
        if ~(strcmp(output_br_final{1},''))  
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        disp(output_br_final{1})  
  
        else  
  
        % Puts the buses in row vector branchparam  
  
       paramlist_br = transpose(output_br_final{2});  
  
            for i=size(paramlist_br,1):size(paramlist_br,2)  
  
                branchparam(i,1) = paramlist_br(i);   
  
            end  
  
        disp('Succesful GetParameters for Branch')  
  
%         disp(fieldarray);  
  
        disp(branchparam) ; 
  
        end  
  
end 
end 
%end of branch data 
count=0; 
for ij=1:size(brancharray,1) 
    branchcon=strcmp(output_br_final{2,ij}{11},'Open'); 
    if branchcon==0 
        count=count+1; 
       branch_data (count,1:13)=[ output_br_final{2,ij}(1,1) 
output_br_final{2,ij}(2,1) output_br_final{2,ij}(3,1) 
output_br_final{2,ij}(4,1) output_br_final{2,ij}(5,1) 
output_br_final{2,ij}(6,1) output_br_final{2,ij}(7,1) 
output_br_final{2,ij}(8,1) output_br_final{2,ij}(9,1) 
output_br_final{2,ij}(10,1) output_br_final{2,ij}(11,1) -180 180]; 
       branch_data_ckt (count,1:3)=[ output_br_final{2,ij}(1,1) 
output_br_final{2,ij}(2,1) output_br_final{2,ij}(12,1)]; 
    end 
end 
for ik=1:size(branch_data,1) 
    for il=1:size(branch_data,2) 
        if il==11 
            brnachchk=strcmp(branch_data(ik,il),'Closed'); 
                if brnachchk==1; 
                    branch_data_new(ik,il)=1;%this should be 'closed' 
                else 
                    branch_data_new(ik,il)=0; 
                end 
        elseif il==12 
            branch_data_new(ik,il)=-180; 
        elseif il==13 
            branch_data_new(ik,il)=180; 
        else 
            branch_data_new(ik,il)=str2num(branch_data{ik,il}); 
        end 
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    end 
end 
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F.2 MATLAB® Script Used to Calculate Several Input Parameters 
% clear,clc 
mpc=Data_Input_WECC_2014_v2; 
  
Bus.NAME=mpc.busnames; 
Bus.NUMBER=mpc.bus(:,1); 
Bus.Spuload=(mpc.bus(:,3)+1i*mpc.bus(:,4))/mpc.baseMVA; 
% calculate pu values for YL 
  
mpc.bus(:,5)= mpc.bus(:,5)/mpc.baseMVA; 
mpc.bus(:,6) = mpc.bus(:,6)/mpc.baseMVA; 
  
% mpc.bus(:,6) = mpc.bus(:,6)./abs(mpc.Bus.V)^2 
  
Bus.YL=mpc.bus(:,5)+1i*mpc.bus(:,6); 
Bus.type=mpc.bus(:,2); 
Bus.slack_factor=zeros(length(mpc.bus(:,1)),1); 
Bus.slack_factor(Bus.type==3)=1; 
Bus.Vlow=mpc.bus(:,13); 
Bus.Vmax=mpc.bus(:,12); 
Bus.V=mpc.bus(:,8).*exp(1i*mpc.bus(:,9)/180*pi); 
Bus.KV=mpc.bus(:,10); 
Bus.AREA=mpc.bus(:,7); 
Bus.ZONE=mpc.bus(:,11); 
  
index=zeros(length(mpc.gen(:,1)),1); 
for i=1:length(mpc.gen(:,1)) 
    index(i)=find(Bus.NUMBER==mpc.gen(i,1)); 
    index_num(i)=mpc.gen(i,1); 
end 
number.count=unique(index); 
number.rep=histc(index,number.count); 
  
number.count_bus=unique(index_num); 
number.rep_bus=histc(index_num,number.count_bus); 
  
  
count_rep=[number.count number.rep]; 
[gen_f,gen_b,gen_r] = xlsread('Gendata.xlsx','Sheet2','A1:C2333'); 
  
Bus.Spugen=zeros(length(mpc.bus(:,1)),1); 
Bus.Qgmax=zeros(length(mpc.bus(:,1)),1); 
Bus.Qgmin=zeros(length(mpc.bus(:,1)),1); 
Bus.Pgmax=zeros(length(mpc.bus(:,1)),1); 
Bus.Pgmin=zeros(length(mpc.bus(:,1)),1); 
  
for gc=1:length(number.count) 
     
    if gc>1 
        Bus.Spugen(count_rep(gc,1))=(nansum(mpc.gen(gen_f(gc-
1,3)+1:gen_f(gc,3),2))+1i*nansum(mpc.gen(gen_f(gc-
1,3)+1:gen_f(gc,3),3)))/mpc.baseMVA; 
  
        Bus.Qgmax(count_rep(gc,1))=nansum(mpc.gen(gen_f(gc-
1,3)+1:gen_f(gc,3),4))/mpc.baseMVA; 
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        Bus.Qgmin(count_rep(gc,1))=nansum(mpc.gen(gen_f(gc-
1,3)+1:gen_f(gc,3),5))/mpc.baseMVA; 
  
        Bus.Pgmax(count_rep(gc,1))=nansum(mpc.gen(gen_f(gc-
1,3)+1:gen_f(gc,3),9))/mpc.baseMVA; 
  
        Bus.Pgmin(count_rep(gc,1))=nansum(mpc.gen(gen_f(gc-
1,3)+1:gen_f(gc,3),10))/mpc.baseMVA; 
    else 
        
Bus.Spugen(count_rep(gc,1))=(mpc.gen(gen_f(gc,3),2)+1i*mpc.gen(gen_f(gc,3),3)
)/mpc.baseMVA;    
         
        Bus.Qgmax(count_rep(gc,1))=mpc.gen(gen_f(gc,3),4)/mpc.baseMVA; 
  
        Bus.Qgmin(count_rep(gc,1))=mpc.gen(gen_f(gc,3),5)/mpc.baseMVA; 
  
        Bus.Pgmax(count_rep(gc,1))=mpc.gen(gen_f(gc,3),9)/mpc.baseMVA; 
  
        Bus.Pgmin(count_rep(gc,1))=mpc.gen(gen_f(gc,3),10)/mpc.baseMVA; 
    end 
  
  
end 
  
  
Bus.mismatch=zeros(length(mpc.bus(:,1)),1); 
%% 
Branch.I=mpc.branch(:,1);%by Di 
Branch.J=mpc.branch(:,2);% by Di 
  
  
for i=1:length(Branch.I) 
    index1=find(Bus.NUMBER==Branch.I(i)); 
    index2=find(Bus.NUMBER==Branch.J(i)); 
    Branch.NAME(i,:)=[mpc.busnames(index1,:) ' - ' mpc.busnames(index2,:)]; 
end 
Branch.Z=mpc.branch(:,3)+1i*mpc.branch(:,4); 
Branch.B=mpc.branch(:,5); 
Branch.YI=zeros(length(Branch.I),1); 
Branch.YJ=zeros(length(Branch.I),1); 
Branch.TAP=mpc.branch(:,9).*exp(1i*mpc.branch(:,10)/180*pi); %??? how about 
the angle in column 10 
Branch.STATUS=mpc.branch(:,11); 
Branch.RATES=mpc.branch(:,6:8)/mpc.baseMVA; % priviously it was 
Branch.RATES=mpc.branch(:,6:8);Modified by Bharat 
Branch.IpuAmps=zeros(length(Branch.I),1); 
Branch.JpuAmps=zeros(length(Branch.I),1); 
Branch.IMVA=zeros(length(Branch.I),1); 
Branch.JMVA=zeros(length(Branch.I),1); 
  
for i=1:length(mpc.branch)%Modified by Bharat 
    branchI(i,1)=find(mpc.bus==mpc.branch(i,1));%Modified by Bharat 
    branchJ(i,2)=find(mpc.bus==mpc.branch(i,2));%Modified by Bharat 
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end%Modified by Bharat 
  
Branch.I=branchI(:,1);%by Bharat 
Branch.J=branchJ(:,2);% by Bharat 
clear i index index1 index2 
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Appendix G: Additional Procedures and Results 
The experimental program for exploring the VSB was tested on the a modified version of the WECC 

2020 planning model, which contains 21 areas, 17,939 buses, 3,525 generators, and 8,596 loads. The 
original system was modified so that the proposed method could be applied, such as by removing constant 
impedance loads and disabling remotely regulated buses.  

G.1 Performance Comparison with PowerWorld 
The boundary points were found using: (1) a step-by-step approach using the PowerWorld software 

package , (2) eigenvalue-based detection of singularities, and (3) our new approach developed in this 
project to detect the singularities. 

A traditional step-by-step approach was implemented using PowerWorld in order to explore the VSB  
points. The following steps were used in generating boundary points for a total of 200 cases using the 
modified WECC planning model: 

• Step 1: Start from an initial operating point. Select two different areas from the model such that 
one area has more generation than the total load (Area 1) and the other area has less generation 
than the total load (Area 2). 

• Step 2: Increase the generation in Area 1 and decrease the generation in Area 2 with an initial 
step size. 

• Step 3: Run a power flow. Repeat Step 2 and Step 3 until the power flow diverges. If the power 
flow diverges, go to Step 4. 

• Step 4: Divide the step size by two and repeat Step 2 and Step 3 until the size becomes smaller 
than a specified precision. If the step size is smaller than the specified precision and the power 
flow diverges, then save: (1) the Jacobian and Y-bus matrices, (2) voltage magnitudes and angles 
of each bus of the system, and (3) simulation time to reach the boundary point. 

• Step 5: Repeat Steps 1 through, selecting different areas of the system. 

The total average simulation time was calculated using simulation times of these 200 cases, shown in 
Table 6. The information obtained using this method is used in the other two methods.  
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Table 6. Comparison of simulation time (in seconds) of different methods  
 

Method Step-by-step 
iterative 
method 

Eigenvalue-
based non-
iterative 
method 

PNNL 
method 

Time to 
solve a 
linear 
system 

Single 
processor 
machine 

Single point 133.57 11.39  2.61 0.1-0.12 

200 point 26714 2278 522 

200-processor 
machine 

Extrapolated 
time  

-- 2278 522 -- 

Actual time for 
200 point 

-- 27.4 3.5 -- 
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G.2 Impacts of Numerical Precision 
    In Phase I of this project, we performed some experiments to confirm whether the multi-singularity 

behaviors we found with the WECC 2020 planning model were due to numerical precision issues. We 
evaluated the impacts of numerical precision on the function (JRnorm) behavior for the two test cases 
with and without storing the Jacobian matrices from PowerWorld in scientific notation.  

    At our request, PowerWorld modified the source code and added extra features to save the 
Jacobian in scientific notation as opposed to fixed decimal notation. Previously, PowerWorld allowed us 
to save the Jacobian matrix with five digits to the right of decimal. The new feature allows scientific 
notation, but only to seven significant digits. This is because PowerWorld internally stores the values as 
single precision. That means that it can only show seven significant digits in scientific notation. If it 
shows more digits (for example, 2.1345679845), the extra digits will be a random value because it will be 
whatever value the computer decided to put after the 7th significant digit. For small numbers, the impact 
of the additional significant digits is proportionally significant; for example, with fixed decimal notation a 
number might be truncated to 0.0001223, while with 7 significant digits of scientific notation it is 
1.223546e-4.  

Figure 47, Figure 48, and Figure 49 show the same Jacobian data for the same computation, but with 
values stored to seven, six, and five significant digits respectively. Figure 49 looks substantially different, 
and shows “singularities” in the data not present in Figure 47 and Figure 48.  
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Figure 47: Original precision with seven significant digits. 
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Figure 48: Original precision with six significant digits. 
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Figure 49: Original Precision with five significant digits. 

 
Figure 50, Figure 51, and Figure 52 also show the same Jacobian data for the same computation, but with 
values stored to seven, six, and five significant digits respectively. Again Figure 52 shows different 
behavior from Figure 50 and Figure 51.  
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Figure 50: Original precision with seven significant digits. 
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Figure 51: Original precision with six significant digits. 

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2
x 10

5

α

jjR
( ,

)jj

J x5211 4064 testnew

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

α

jjJ
( ,

)"
e R

( ,
)jj

0 20 40 60 80 100 120 140 160
-10

-8

-6

-4

-2

0

α

jjJ
( ,

)"
e R

( ,
)jj

,l
og

G.8 
 



 

 
Figure 52: Original precision with five significant digits. 

 

While these test show that precision reduction can introduce additional ‘singularities’, the analysis 
does not prove that the multi-singularity behaviors that were found elsewhere in the project were due to 
precision issues alone.  
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