PNNL-23451 WTP-RPT-233, Rev. 0

Proudly Operated by Battelle Since 1965

Tests of a High Temperature Sample Conditioner for the Waste Treatment Plant LV-S2, LV-S3, HV-S3A and HV-S3B Exhaust Systems

JE Flaherty JA Glissmeyer

March 2015

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Tests of a High Temperature Sample Conditioner for the Waste Treatment Plant LV-S2, LV-S3, HV-S3A and HV-S3B Exhaust Systems

JE Flaherty JA Glissmeyer

March 2015

Test Specification: N/A

Work Authorization: WA# 009

Test Plan: TP-WTPSP-052, Rev 0.0

Test Exceptions: N/A
Test Scoping Statement(s): NA

QA Technology Level: Development Research

Pacific Northwest National Laboratory Richland, Washington 99352

Completeness of Testing

This report describes the results of work and testing specified by test plan TP-WTPSP-052. The work and any associated testing followed the quality assurance requirements outlined in the test specification/plan. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Test plan results are reported. Also reported are any unusual or anomalous occurrences that are different from expected results. The test results and this report have been reviewed and verified.

Approved:

Reid Peterson Program Manager 3/18/15

Date

Summary

Tests were performed to evaluate a sample conditioning unit for stack monitoring at Hanford Tank Waste Treatment and Immobilization Plant (WTP) exhaust stacks with elevated air temperatures. The LV-S2, LV-S3, HV-S3A and HV-S3B exhaust stacks are expected to have elevated air temperature and dew point. At these emission points, exhaust temperatures are too high to deliver the air sample directly to the required stack monitoring equipment. As a result, a sample conditioning system is considered to cool and dry the air prior to its delivery to the stack monitoring system. The method proposed for the sample conditioning is a dilution system that will introduce cooler, dry air to the air sample stream. This method of sample conditioning is meant to reduce the sample temperature while avoiding condensation of moisture in the sample stream. An additional constraint is that the ANSI/HPS N13.1-1999 standard states that at least 50% of the 10 µm aerodynamic diameter (AD) particles present in the stack free stream must be delivered to the sample collector. In other words, depositional loss of particles should be limited to 50% in the sampling, transport, and conditioning systems. Based on estimates of particle penetration through the LV-S3 sampling system, the diluter should perform with about 80% penetration or better to ensure that the total sampling system passes the 50% or greater penetration criterion.

The testing conducted for this project was part of the River Protection Project—Waste Treatment Plant Support Program under Contract No. DE-AC05-76RL01830 according to the statement of work issued by Bechtel National Inc. (BNI, 24590-QL-SRA-W000-00101, N13.1-1999 Stack Monitor Scale Model Testing and Qualification) and Work Authorization 09 of Memorandum of Agreement 24590-QL-HC9-WA49-00001. The internal Pacific Northwest National Laboratory (PNNL) project for this task is 53024, Work for Hanford Contractors Stack Monitoring. The testing described in this document was further guided by the Test Plan Tests of a High Temperature Sample Conditioning System for the Waste Treatment Plant LV-S3, HV-S3A and HV-S3B Exhaust Systems (TP-WTPSP-052).

The tests conducted by PNNL during 2013 for the high temperature stack conditioning system are described in this report. Two types of tests were performed to evaluate the sample conditioner.

- Temperature and Humidity Reduction Tests —Performed to evaluate the temperature and humidity reduction achieved by the sample conditioner at prescribed exhaust conditions and dilution rates. These tests serve to inform the sample conditioning process and provide insight for the implementation of the sample conditioner at the WTP facilities.
- 2. Temperature and Humidity Reduction and Aerosol Penetration Tests Performed to quantify the penetration of aerosol within the sample conditioner, so that full system penetration estimates can be computed. These tests were performed with several fixed dilution rates in both a vertical and horizontal sample conditioner orientation and at both elevated and room temperatures to evaluate the impacts of these factors on penetration.

The porous tube diluter used as the sample conditioner (Mott Corp, Farmington, CT) provided an effective way to mix cool, dry dilution air with the hot, moist sample air without condensation. Temperature and humidity tests with this diluter revealed that there is an opportunity for condensation formation on the upstream end of the diluter, but that heat tape successfully resolves this. The aerosol penetration tests with the porous tube diluter demonstrated that penetration values were always greater than or equal to 95%, with most values greater than or equal to 98%. The aerosol penetration was

independent of dilution rate, diluter orientation, sample air temperature and humidity conditions, and
aerosol size (within the tested range of 8.5 to 12.8 microns).

Acronyms and Abbreviations

acfm actual cubic feet per minute, an air volume flow unit at actual conditions

AD aerodynamic diameter

afpm actual feet per minute, duct velocity at actual conditions

ANSI American National Standards Institute

APS aerodynamic particle sizer

ASME American Society of Mechanical Engineers

BNI Bechtel National, Incorporated

CAM continuous air monitor

CCN correspondence control number
CCP Computational Computer Program

Cond Conditioned Air, the output of the sample conditioning system

CFR Code of Federal Regulations
DEPO DEPOSITION software code

Dil Dilution Air

DOE U.S. Department of Energy

DB dry bulb temperature
DP dew point temperature

FIO For Information Only (non-quality-affecting data)

HDI "How Do I...?"

HEPA High-Efficiency Particulate Air
HLW High-level waste processing facility

HPS Health Physics Society

HV-S3 Reference to both the HV-S3A and HV-S3B systems, which are expected to have

the same temperature and flow conditions

HV-S3A HLW melter #1 offgas emission unit HV-S3B HLW melter #2 offgas emission unit

ISA instrument service air

LAW Low-activity waste processing facility

LV-S2 LAW C5V ventilation system emission unit

LV-S3 LAW melter offgas emission unit

MFC mass flow controller

NQA Nuclear Quality Assurance
OPC optical particle counter

PD physical diameter of aerosol particles

PIC potential impact category

PNNL Pacific Northwest National Laboratory

ppb parts per billion QA quality assurance

R&D research and development
RFU raw fluorescence units
RH relative humidity

scfm standard cubic feet per minute, an air volume flow unit at standard air density

(standard conditions used here are 77°F [25°C] and 14.696 psia [101.3254 kPa])

VOAG vibrating orifice aerosol generator

WTP Hanford Tank Waste Treatment and Immobilization Plant

WTPSP Waste Treatment Plant Support Program

Acknowledgments

Preparing, executing, and post-processing these measurements involved a number of Pacific Northwest National Laboratory staff. We would like to particularly acknowledge the support of our quality engineer, Kirsten Meier, and the administrative support of Andrea Boehler, Chrissy Charron, and Mona Champion. We would also like to express our appreciation to scientific staff members Mikhail Pekour and Dan Nelson for their insights and assistance, Norman Anheier for the loan of the aerosol generator, and Brian Riley for microscopy assistance for this project. Additionally, Carmen Arimescu and Elizabeth Golovich provided technical reviews. Megan Peters provided editorial support for this report.

Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830.

Contents

Sun	ımary	·	iii
Acr	onym	s and Abbreviations	v
Ack	nowl	edgments	vii
1.0	Intro	oduction	1.1
	1.1	Testing Objectives	1.1
2.0	High	n Temperature Exhaust Systems	2.1
	2.1	Stack Conditions	2.1
	2.2	Sample Conditioning Strategy	2.2
		2.2.1 Sample Conditioners	2.3
3.0	Test	ing Methods	3.1
	3.1	Temperature and Humidity Testing	3.3
	3.2	Temperature, Humidity, and Aerosol Testing.	3.7
	3.3	Quality Assurance	3.11
4.0	Sam	ple Conditioner Testing Results	4.1
	4.1	LV-S3 Test Results	4.1
		4.1.1 LV-S3 Temperature and Humidity Tests	4.1
		4.1.2 LV-S3 Temperature, Humidity, and Aerosol Tests	4.5
	4.2	HV-S3A and HV-S3B Test Results	4.6
		4.2.1 HV-S3A and HV-S3B Temperature and Humidity Tests	4.7
		4.2.2 HV-S3A and HV-S3B Temperature, Humidity, and Aerosol Tests	4.8
	4.3	LV-S2 Test Results	4.12
5.0	Con	clusions	5.1
	5.1	Temperature and Humidity Test Results	5.1
	5.2	Temperature, Humidity, and Aerosol Test Results	5.1
	5.3	Operational Considerations	5.5
6.0	Refe	erences	6.1
App	endix	A LV-S3 Test Data Sheets	A.1
App	endix	B HV-S3 Test Data Sheets	B.1
App	endix	C LV-S2 Temperature and Humidity Data Sheets	C.1
App	endix	D Aerosol Aerodynamic Diameter	D.1
App	endix	E Mott Porous Tube Diluter Quote	E.1
App	endix	F Document List	F.1

Figures

	Schematic and Photo of Axial Diluter	2
2.2	Photos of Condensation Formed Within the Axial Diluter	2
2.3	Schematic and Photo of Porous Tube Diluter	2
3.1	Drawing of the Environmental Chamber, Adapted from Thermotron	3
3.2	Dilution Equipment Set-Up for the Temperature and Humidity Testing	3
3.3	Thermocouples and Water Indicator Dots Used in the Diluter for the Temperature and Humidity Testing	3
3.4	Equipment Used for the Temperature and Humidity Tests	3
3.5	Probes Used for the Particle Injection and Sampling, Enclosed within Flexible Duct during Particle Injection and Sampling	3
3.6	Equipment Used for the Aerosol Penetration Tests	3
3.7	Sample Conditioner with 28-inch Overall Length and 32-inch Overall Length Installed in a Vertical Orientation	3.1
3.8	Fittings and Filter Holder from Vertical Diluter Test Disassembled for Washing and Fluorescence Measurements	3.1
4.1	Water Indicator Dots on the Upstream End and Downstream End of the Diluter	4
4.2	Heat Tape Wrapped around Inlet Tube and Upstream End of Housing	4
4.3	Light Microscope Image of Oleic Acid Droplets Collected on a Glass Slide with	4.1
	Oleophobic Coating During AP-7.	4.
	Tables	4.
2.1		
2.1 2.2	Tables	2
	Tables WTP High Temperature/Humidity Conditions and Flow Rates	2 2
2.2	Tables WTP High Temperature/Humidity Conditions and Flow Rates Summary of Instrument Service Air Conditions.	2 2
2.23.1	Tables WTP High Temperature/Humidity Conditions and Flow Rates Summary of Instrument Service Air Conditions. Summary of Example Dilutions for High T/RH Systems. Estimated Dilution Rates for LV-S3.	2 2 3 4
2.23.14.1	Tables WTP High Temperature/Humidity Conditions and Flow Rates Summary of Instrument Service Air Conditions. Summary of Example Dilutions for High T/RH Systems. Estimated Dilution Rates for LV-S3.	2 3 4
2.23.14.14.2	Tables WTP High Temperature/Humidity Conditions and Flow Rates	2 3 4 4
2.2 3.1 4.1 4.2 4.3	Tables WTP High Temperature/Humidity Conditions and Flow Rates. Summary of Instrument Service Air Conditions. Summary of Example Dilutions for High T/RH Systems. Estimated Dilution Rates for LV-S3. Summary of Temperature and Humidity Reduction Tests for LV-S3 Conditions. Summary of Aerosol Penetration Tests for the LV-S3 Conditions.	2 3 4 4 4
2.2 3.1 4.1 4.2 4.3 4.4	Tables WTP High Temperature/Humidity Conditions and Flow Rates. Summary of Instrument Service Air Conditions. Summary of Example Dilutions for High T/RH Systems. Estimated Dilution Rates for LV-S3. Summary of Temperature and Humidity Reduction Tests for LV-S3 Conditions. Summary of Aerosol Penetration Tests for the LV-S3 Conditions. Estimated Dilution Rates for HV-S3A and HV-S3B. Summary of Temperature and Humidity Reduction Tests for the HV-S3 Conditions.	2 3 4 4 4 4
2.2 3.1 4.1 4.2 4.3 4.4 4.5	Tables WTP High Temperature/Humidity Conditions and Flow Rates. Summary of Instrument Service Air Conditions. Summary of Example Dilutions for High T/RH Systems. Estimated Dilution Rates for LV-S3. Summary of Temperature and Humidity Reduction Tests for LV-S3 Conditions. Summary of Aerosol Penetration Tests for the LV-S3 Conditions. Estimated Dilution Rates for HV-S3A and HV-S3B. Summary of Temperature and Humidity Reduction Tests for the HV-S3 Conditions.	2 3 4 4 4 4 4
2.2 3.1 4.1 4.2 4.3 4.4 4.5 4.6	Tables WTP High Temperature/Humidity Conditions and Flow Rates	2 3 4 4 4 4 4
2.2 3.1 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Tables WTP High Temperature/Humidity Conditions and Flow Rates	2 3 4 4 4 4 4 4.
2.2 3.1 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Tables WTP High Temperature/Humidity Conditions and Flow Rates	2 3 4 4 4 4 4 4 4.

1.0 Introduction

According to current Bechtel National, Inc. (BNI) designs (CCN244088, CCN 244647, CCN 179069, and CCN 228831), the exhaust streams from the LV-S2, LV-S3, HV-S3A and HV-S3B exhaust systems at the Hanford Waste Treatment and Remediation Plant (WTP) will have elevated air temperature and dew point. At these emission points, exhaust temperatures are too high to deliver the air sample directly to the required radioactivity monitoring equipment. As a result, a sample conditioning system is considered to cool and dry the air prior to its delivery to the aerosol analysis system. The method proposed for sample conditioning is a dilution system that will introduce cooler, dry air to the exhaust air sample. This method of sample conditioning is meant to reduce the sample temperature while avoiding condensation of moisture in the sample stream. Tests were conducted to measure and document the temperature and humidity reduction, as well as the aerosol penetration through the sample conditioning system. These data will be used by BNI to support the air emissions permit for the WTP.

This work was performed by Pacific Northwest National Laboratory (PNNL) as part of the River Protection Project – Waste Treatment Plant Support Program under Contract No. DE-AC05-76RL01830 according to the statement of work issued by Bechtel National, Inc., (BNI 24590-QL-SRA-W000-00101, N13.1-1999 Stack Monitor Scale Model Testing and Qualification) and Work Authorization 09 of Memorandum of Agreement 24590-QL-HC9-WA49-00001. The internal PNNL project number for this task is 53024, which is entitled Work for Hanford Contractors Stack Monitoring.

1.1 Testing Objectives

The primary objectives of the testing described within this report were to perform tests that demonstrate the effectiveness of the sample conditioner, document the dry bulb (DB) and dew point (DP) temperature of the incoming sample and outgoing conditioned sample for several representative test cases, and experimentally determine the penetration of aerosol through the sample conditioner as a function of stack condition (which directly impacts dilution rate) and conditioner physical orientation. The target temperature for the sample conditioning was 120°F (50°C) or less, which is the rated temperature limit of the continuous air monitor (CAM) for these stacks. The record sampler has a temperature limitation of 150°F (65°C), so the more conservative 120°F was used for these tests.

Implicit in this test objective is that an appropriate sample conditioner type would be identified to perform the tests, and insights into dilution system operational considerations would be gained. Test cases were performed to represent particular stack temperature and humidity conditions, along with the necessary dilution flow rates. Temperature and dew point conditions for the dilution air were not controlled for these tests.

The ANSI/HPS N13.1-1999 standard states that at least 50% of the 10 µm aerodynamic diameter (AD) particles present in the stack free stream must be delivered to the sample collector. In other words, depositional loss of particles should be limited to 50% in the sampling, transport, and conditioning systems. The total particle penetration, starting with the shrouded probe in the stack and ending with the CAM or record sampler, is often calculated using software tools such as DEPOSITION 2001a (DEPO; McFarland et al, 2000). This software allows users to identify common elements within the transport system, such as bends, contractions, expansions, and splitters, and calculates deposition estimates that are based on experimental results. The DEPO 2001a code does not consider a dilution system. Therefore,

the tests described in this report will be used to fill in the gap in the deposition analysis. Based on estimates of deposition using the DEPO 2001a code for the LV-S3 sampling system, the diluter should perform with about 80% penetration or better to ensure that the total sampling system passes the 50% or greater penetration criterion.

2.0 High Temperature Exhaust Systems

2.1 Stack Conditions

The four stacks with elevated exhaust temperatures are located in the low-activity waste (LAW) and high-level waste (HLW) processing facilities. The elevated temperature and humidity in the melter offgas exhaust (LV-S3, HV-S3A, and HV-S3B) is caused by the pressure blowers and the wet scrubbers. Other types of abatement equipment in the off gas stream have a lesser influence on the airstream temperature and humidity. The C5V ventilation zone (LV-S2) includes the "caves" where the vitrified waste is poured into canisters, which causes heating of that ventilation stream.

The expected temperature, humidity, and flow conditions for these four stacks, the LV-S2, LV-S3, HV-S3A, and HV-S3B, are presented in Table 2.1 (CCN244088, CCN 244647, CCN 179069 and CCN 228831). The minimum, normal, and maximum stack conditions refer to the expected range of stack temperatures. The HV-S3A and HV-S3B stacks are expected to have the same temperature and flow conditions, so where HV-S3 is used in this document, we refer to both the HV-S3A and HV-S3B systems. Note that, although the relative humidity values do not appear to be particularly high, the LV-S3 and HV-S3 dew point temperatures are between 95 and 139°F. The temperature and humidity was supplied from client-provided documentation, while the DP was calculated. Also note that the flow conditions are independent of the temperature and humidity conditions. The highest temperature condition is not necessarily going to have the highest flow condition; Table 2.1 simply lists the range of expected values for each variable. Due to stack conditions that differ significantly from standard conditions, flow and velocity values are presented in actual cubic feet per minute (acfm) and actual feet per minute (afpm).

The LV-S2 system requires only a record sampler, which is expected to have a temperature limitation of 150°F. Since normal conditions do not require sample conditioning, and high temperatures are expected to occur infrequently, it is our understanding that the sampling system will be shut off when the temperature exceeds 150°F. As BNI's facility design progresses, this approach may be re-considered, so limited tests that represent the LV-S2 have been performed. The LV-S3 and HV-S3 stacks will have both a record sampler and a CAM, which has a temperature limitation of 120°F.

Table 2.1. WTP High Temperature/Humidity Conditions and Flow Rates

Stack	Stack dia. (inches)	Temp. (°F)	%RH	Dew point (°F)	Flow (acfm)	Velocity (afpm)
LV-S2 ^a normal	60	130	10	56	57,424	2,925
LV-S2 ^a maximum	60	210	6	96	91,364	4,653
LV-S3 minimum	18	185	16.9	114	2,642	1,495
LV-S3 normal	18	243	9.6	135	5,652	3,198
LV-S3 maximum	18	282	5.6	139	6,282	3,555
HV-S3 minimum	12	261	2.3	95	1,910	2,432
HV-S3 normal	12	313	1.7	113	2,559	3,258
HV-S3 maximum	12	365	1.5	133	3,140	3,998

2.2 Sample Conditioning Strategy

To address the problem of sampling stack exhaust with elevated temperatures, several sampling approaches or mitigation steps were considered. First, the high temperature exhaust flow could be mixed with a lower temperature exhaust flow within the same facility to produce a lower temperature exhaust flow. This option was eliminated by BNI in early discussions. Since the exhausters (fans) are large contributors to the high temperatures within the stack, sampling directly upstream of the fans was also considered. Although the temperature is relatively low this location, the absolute humidity level is still as high as the downstream condition, and the relative humidity is nearly 100%, so sample conditioning would still be needed because of humidity rather than temperature, and sample conditioning would be more challenging due to the high relative humidity, which would readily condense. Furthermore, the duct upstream of the fans is under vacuum, which adds a challenge to sampling. Other locations upstream of the fans were also considered, such as directly downstream of the high-efficiency particulate air (HEPA) filters, after the carbon bed adsorbers, and after the thermal catalytic oxidizer. However, these locations have the added complications of 1) sampling upstream of other abatement equipment, 2) requirements for approval due to deviation from the ANSI/HPS N13.1 standard (which applies to any location upstream of the fans), and 3) triggers additional scale model testing to qualify the sampling location. Therefore, sampling within the stack, which requires a sample conditioner, was deemed to be the necessary approach to deliver the exhaust sample to the required measurement equipment.

Once the need for sample conditioning was established, the method of sample conditioning, as well as the physical equipment used in the sample conditioning, was explored. If the primary objective was to simply reduce elevated temperature, high thermal conductivity piping with water jackets or heat fins could be utilized to reduce the sample gas temperature. However, direct cooling would result in condensation, which not only scrubs some aerosol from the sample stream, but also produces a liquid waste stream that must be drained and disposed to avoid damage to the air sampling equipment. Instead, both a reduction of the dry bulb and dew point temperatures is required. As a result, conditioning through dilution with a low temperature and low DP air stream was selected.

Instrument Service Air (ISA) is produced centrally and distributed to the different buildings at the waste treatment plant, so it is the most readily-available source of dilution air at the plant. Table 2.2 lists the expected range of DB and DP conditions of the delivered ISA (CCN 216991) and is categorized by temperature as Minimum, Normal and Maximum. The ISA conditions influence the amount of dilution air that is necessary to add to the sampled air to meet the target temperature and humidity for the conditioned stack sample. The tests described in this report assume that ISA is available in the plant at the required flow rates to support sample conditioning.

Table 2.2. Summary of Instrument Service Air (Dilution Air) Conditions

Parameter	Minimum	Normal	Maximum
Dry Bulb Temperature	50°F	60°F	80°F
Pressure	90 psig	100 psig	150 psig
Pressure Dew Point (@100 psig)	-60°F	-40°F	-20°F

2.2.1 Sample Conditioners

2.2.1.1 Axial Diluter

Two basic methods to introduce the dilution air to the sample stream were considered. The first was an axial diluter, which comprises an inner tube of stainless steel for the sample stream and an outer stainless steel tube for the dilution stream. The dilution air was introduced into the larger tube through a large tee fitting with the smaller inner tube centered within the tee. Downstream of the terminus of the inner tube, the two air streams would mix longitudinally to produce a conditioned air stream. Figure 2.1 shows a schematic of this diluter (Dekati, Ltd., Kangasala, Finland), along with a photo of the diluter used for testing. Several tests were performed with this axial diluter; however, this diluter type is flawed for this particular application. The dilution air flowed over the inner tube and cooled the inner tube to below the DP of the sample stream, so that moisture in the sample stream condensed along the inner walls of the inner tube. Figure 2.2 shows some photos of condensed water standing within the outer tube of the axial diluter. These photos are looking from the outlet of the outer tube, upstream toward the outlet of the inner tube. Condensation formed within the inner tube, and was transported into the outer tube by the air flow in the tube.

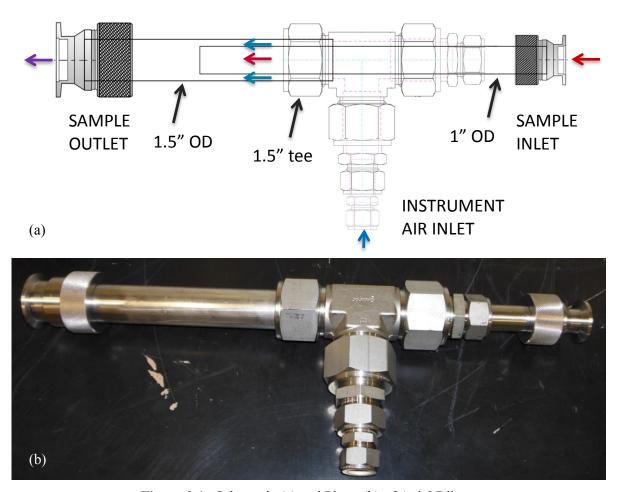


Figure 2.1. Schematic (a) and Photo (b) of Axial Diluter

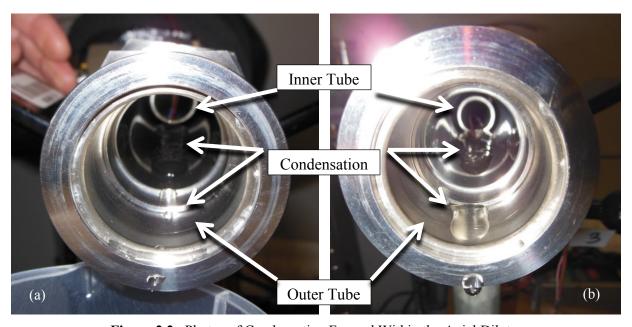
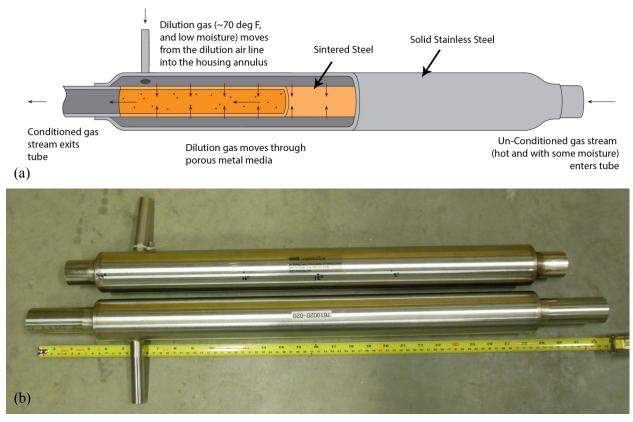



Figure 2.2. Photos of Condensation Formed Within the Axial Diluter

This axial diluter could be implemented in one of two configurations to be compatible with these stack conditions. First, two-stage dilution could be utilized. In this configuration, two axial diluters are installed successively. The first uses hot air with low humidity as the dilution air so the sample is conditioned primarily for moisture. The second diluter can then use colder air to reduce the sample temperature without risk of condensation. This approach has several disadvantages, which include additional space requirements to accommodate two diluters, additional equipment (such as mass flow controllers and air heaters) to supply the air for two diluters, and significant overall dilution (which impacts the detection limit). An alternative configuration for the axial diluter is the use of either a low thermal conductivity material for the inner tube or insulation of the stainless steel inner tube so that one diluter can be used to condition the sample stream. An acceptable material for the inner tube could not be identified, so the latter approach was considered and tested, but insulation proved to be insufficient to prevent condensation. The difficulty in insulating the inner tube is that the insulation cannot occupy the entirety of the space between the inner and outer tube, so a relatively thin insulation material is preferred, although the outer tube diameter is most likely increased to accommodate the insulation. Additionally, the insulation should tolerate high temperatures without damage to the material. Testing with several layers of ceramic insulation weave over the stainless steel tube still resulted in cooling of the tube below the sample DP, and condensation formation. As a result, the use of the axial diluter was discontinued for these tests.

2.2.1.2 Porous Tube Diluter

The second diluter was a porous tube diluter, which avoids the problem of condensation observed with the axial diluter by preventing contact between the hot, moist sample stream and the colder walls and by allowing both temperature and moisture dilution to occur simultaneously along the length of the diluter. Figure 2.3 shows both a schematic and a photo of the porous tube diluters (Mott Corporation, Farmington, CT) used in these tests. The light grey portions of the schematic represents solid stainless steel components, while the orange portions represent the sintered steel inner tube. The sample stream enters through a small length of solid stainless steel tube that is welded to a long (24-inch) section of porous (sintered) stainless steel with two-micron pores. This porous tube is enclosed within a solid stainless steel tube, which has an inlet that allows dilution air injection within the annulus between the solid and sintered steel tubes. Dilution air is supplied at a higher pressure than the sample air, which forces dilution air through the porous tubes. The sample air remains within the center region of the porous tube, and does not come into direct contact with the porous tube walls. This diluter is a type that is commercially available, although the size was customized for this application. The diluter used in these tests had a 1.5 inch outside diameter inlet and outlet tube and a ¾ inch inlet tube for the dilution air. Although there were instances in which condensation could be formed with this diluter, strategicallyplaced heat tape readily corrected this problem. As a result, tests described within this report utilize this type of diluter. The 32-inch diluter shown in Figure 2.3 was selected specifically to allow sufficient space for a fitting and good heat tape contact, which was more difficult to achieve with the smaller inlet length of the 28-inch diluter. To purchase a diluter identical to the one used in testing with 32-inch overall length, reference Mott Quote number QU0200669-2, part number 7610S-1.375-24-2-AB. The full description of the item listed in the quote will be necessary to uniquely identify the equipment used in these tests (See Appendix E).

Figure 2.3. Schematic and Photo of Porous Tube Diluter. (a) is adapted from a vendor brochure (Mott Corporation, 2008), and shows the interior structure of the diluter. (b) shows the 28-inch and 32-inch porous tube diluters used for testing.

3.0 Testing Methods

The sample conditioner testing methods were based on the requirements of ANSI/HPS N13.1-1999. A test plan, TP-WTPSP-052, *Tests of a High Temperature Sample Conditions System for the Waste Treatment Plant LV-S2, LV-S3, HV-S3A and HV-S3B Exhaust Systems*, which outlines the testing approach and provides a test matrix of proposed test runs, was prepared by PNNL and approved by BNI. These types of tests had not been performed under this project in the past, so procedures and test instructions did not exist and were not created for the tests. Instead, check-lists to guide the testing steps, and data sheets retained as test data packages were utilized. In addition, a lab record book was used to document exploratory testing or other relevant information that did not fit within the test data package framework. In general, the check-lists were guided by previous studies such as those performed at Texas A&M (Gupta and McFarland, 2001) and at the U.S. Army Edgewood Chemical Biological Center (Kesavan and Doherty, 2000), as well as from aerosol sampler testing procedures outlined in 40 CFR 53, Subpart F.

Two types of tests were performed for the high temperature exhaust sample conditioner. These were the:

- 1. Temperature and Humidity tests, where the reduction of DB and DP temperature was documented, and the
- 2. Temperature, Humidity, and Aerosol tests, where the penetration of aerosol for selected temperature and humidity conditions was quantified.

The test plan described the minimum number of tests that were planned for each stack temperature and humidity condition. Additional test runs were performed to improve results, verify results, and bound expected conditions. For each test, an environmental chamber (see Figure 3.1; Thermotron, Holland, MI) was used to supply the sample air at a prescribed temperature and humidity condition, while sample conditioning, aerosol injection, and other equipment were located outside of the chamber. The footprint for this chamber is 5 by 8 feet (~1.5 by 2.4 meters), and it is equipped with flanged ports that allow equipment to be mounted through the chamber walls.

The example dilution rates needed to produce a sufficiently-conditioned air stream were estimated using a psychrometric calculator (PsyCalc, Farmington, CT) and the effluent air and ISA conditions from Table 2.1 and Table 2.2. Both the normal and maximum ISA conditions were used to provide the expected normal and maximum dilution values. Although the temperature limitation of the stack monitoring equipment is 120°F (50°C), the DP is also a practical limitation for the conditioned sample stream. The normal room air temperature for the space where these stack monitors are expected to be housed is 60°F. Therefore, the DP for the sample stream should be less than 60°F to ensure that condensation does not form along the walls of the transport tubing. In many cases, the dilution value was driven by the DP constraint rather than the DB temperature constraint.

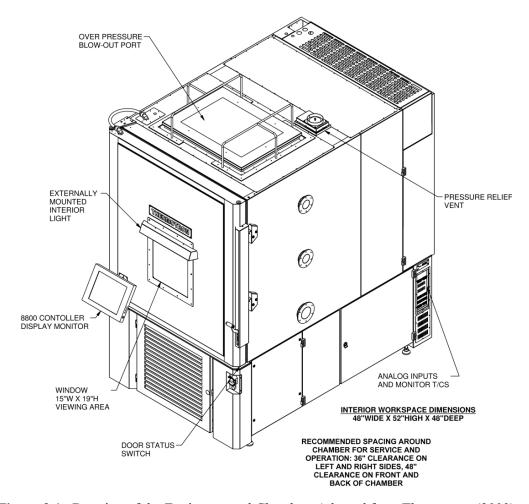


Figure 3.1. Drawing of the Environmental Chamber, Adapted from Thermotron (2009).

Table 3.1 summarizes estimated dilution values for each stack condition. These values should be treated as approximations. The flow rate from the stack was always assumed to be 1.3 acfm, which is the flow rating of the shrouded probe (Model RF37-007) anticipated for use with the CAM. This shrouded probe was selected based on discussions with BNI, which pointed to the use of the Lab Impex Systems SmartCAM, which is typically operated at 1.3 acfm (Lab Impex, Datasheet L236D). The target condition was either a DP temperature less than 60°F or a DB temperature less than 120°F. "Dil" represents the dilution air, while "Cond" represents the conditioned air. The difference between the conditioned air and dilution air rate is the flow rate from the chamber or stack, which should equate to 1.3 acfm, converted to scfm units (standard conditions are 77°F [25°C] and 14.696 psia [101.3254 kPa]).

The two sample conditioner test methods are described below in Sections 3.1 and 3.2. The QA program that is implemented for this project is described in Section 3.3.

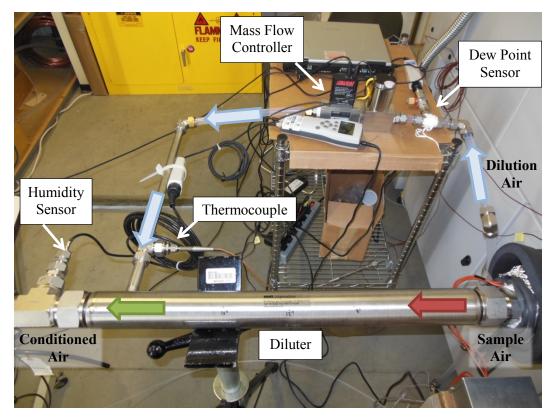
Table 3.1. Summary of Example Dilutions for High T/RH Systems

			Norm ISA (60°F DB/-40°F DB)				Max ISA (80°F DB/-20°F DP)			
Stack	Temp °F	Dew Pt °F	Dil (scfm)	Cond (scfm)	Cond DB (°F)	Cond DP (°F)	Dil (scfm)	Cond (scfm)	Cond DB (°F)	Cond DP (°F)
LV-S2 ^a norm	130	56	0.48	1.65	109.9	47.5	0.79	1.96	110.0	43.4
LV-S2 ^a max	210	96	2.48	3.46	104.9	59.9	5.08	6.09	110.0	53.3
LV-S3 min	185	114	5.09	6.06	85.3	59.9	5.19	6.16	98.4	59.9
LV-S3 norm	243	135	9.05	9.87	78.7	59.9	9.26	10.07	96.3	59.8
LV-S3 max	282	139	9.76	10.52	80.2	59.9	9.97	10.72	98.1	59.8
HV-S3 min	261	95	2.39	3.31	118.8	58.6	3.61	4.53	118.9	50.7
HV-S3 norm	313	113	4.07	4.88	107.1	59.9	4.63	5.44	119.0	57.4
HV-S3 max	365	133	7.42	8.13	92.4	59.9	7.63	8.34	109.8	59.9

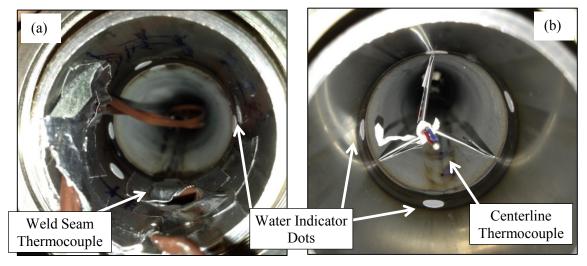
a. Only a record sampler (no CAM) will be installed on the LV-S2 stack

3.1 Temperature and Humidity Testing

The temperature and humidity tests were performed to evaluate the sample conditioner performance at different stack conditions and dilution rates. Acceptable performance is that the sample stream temperature and DP is reduced so that the sample may be delivered to the necessary monitoring equipment. Aerosol in the sample stream may be "scrubbed" by condensed water, and an excess of water may damage monitoring equipment components, so condensation should be avoided.


In these tests, a simulated sample stream, supplied by the environmental chamber, was sampled with a shrouded probe within the chamber, transported through the wall of the chamber, and diluted with a dry airstream at approximately room temperature through the porous tube diluter. This diluter was selected for the advantage that temperature and humidity reductions occur simultaneously along the length of the diluter without any substantial "cold spots" where condensation might occur. During testing, however, condensation formation was observed at the upstream end of the diluter, presumably due to the colder air within the solid, outer stainless steel tube cooling the solid portion of the diluter inlet tube, where the sample is in contact with the solid tube wall. As a result, heat tape was applied over the upstream fitting, inlet, and first few inches of the diluter housing to prevent condensation.

An overview of the testing apparatus used in the temperature and humidity reduction test is shown in Figure 3.2. The dilution air stream (indicated with light blue arrows in Figure 3.2) was delivered from an air compressor and was dried using a desiccant drying system. This was a simple system, utilized for these tests primarily due to its low cost. The object of this drying system was not to simulate the conditions of the ISA at the WTP, but to simply supply a sufficiently dry and cool dilution stream to test the operation of the diluter. The dried air conditions were measured to document the test conditions. A Vaisala (Woburn, MA) DP sensor (labeled in Figure 3.2 and Figure 3.4) was used to measure the DP, while a thermocouple (labeled in Figure 3.2) was used to measure the temperature. The dilution air flow rate was controlled with an Alicat (Tucson, AZ) mass flow controller (MFC).


During these tests, the estimated target dilution rates (see Table 3.1) were used, and the temperature and humidity of the sample air, dilution air, and conditioned air was measured and recorded. In addition, a profile of the temperature reduction along the length of the diluter was obtained with the installation of thermocouples within the diluter itself. Typically, four thermocouples were installed, each within or just upstream of the diluter. This included a centerline air temperature measurement near to the outlet of the diluter, a centerline measurement near the longitudinal center of the diluter, and a wall temperature near the weld seam between the solid and porous tubes on the upstream end of the diluter. Some tests also included a centerline measurement in the fitting just upstream of the diluter. Figure 3.3 shows the thermocouples installed in the upstream end of the diluter as well as the centerline thermocouple at the downstream end of the diluter.

Tests also often included water indicator dots (3M, Saint Paul, MN), which change color irreversibly from white to red when water contacts them. At sufficiently high temperatures, the dye in these dots becomes fixed, and the dots are no longer effective for detecting condensation. Therefore, an additional measure, marking the solid portion of tubing with water soluble marker, was utilized to determine whether water was in contact with the walls of the diluter. Each temperature and humidity reduction test was approximately 1 hour in duration to allow potential condensation droplets to accumulate so they may be detected by one of the methods described above.

The conditioned air (downstream of the diluter) temperature and humidity was measured using a Vaisala relative humidity sensor (labeled in Figure 3.2 and Figure 3.4). The total conditioned air stream was controlled with an Alicat mass flow controller as shown in Figure 3.4 with a vacuum supplied by two 10 acfm rotary vane vacuum pumps (Gast Manufacturing, Benton Harbor, MI). The sample flow rate from the chamber is calculated as the difference between the conditioned air flow and the dilution air flow. The downstream MFC was typically protected from spurious condensation or particulates with a glass fiber filter and a $40 \mu m$ sintered metal filter.

Figure 3.2. Dilution Equipment Set-Up for the Temperature and Humidity Testing. Light blue arrows represent the dilution air flow, the red arrow represents the hot sample air, and the green arrow represents the conditioned air.

Figure 3.3. Thermocouples and Water Indicator Dots Used in the Diluter for the Temperature and Humidity Testing

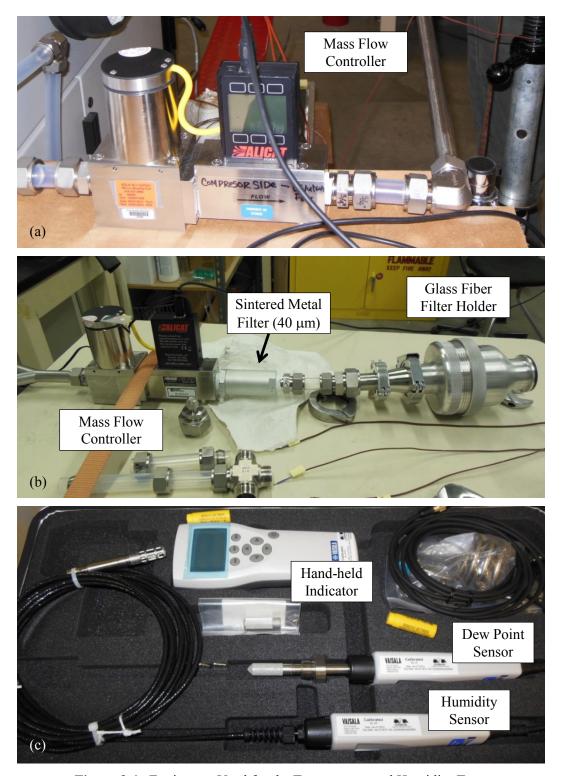
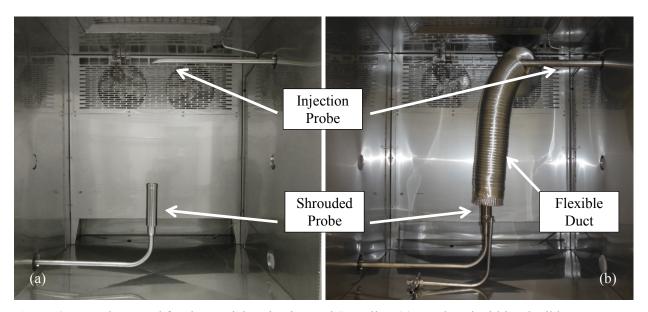



Figure 3.4. Equipment Used for the Temperature and Humidity Tests

3.2 Temperature, Humidity, and Aerosol Testing

The second type of sample conditioner test evaluated the aerosol penetration through the diluter. Typically, in these tests, aerosol in the range of 9 to 11 micrometer aerodynamic diameter (AD) were generated with a TSI Inc. (Shoreview, MN) vibrating orifice aerosol generator (VOAG), injected into the environmental chamber, and sampled by a shrouded probe equipped with the sample conditioning system downstream of the sample transport line. Figure 3.5 shows the aerosol injection probe and shrouded probe installed within the chamber. When tests were performed, a flexible duct was installed with one end near the chamber fan, the other end over the shrouded probe, and the aerosol injection probe installed through the wall of the flexible duct. This arrangement ensured that the aerosol was not diluted within the full volume of the chamber, and instead, directed the aerosol into the shrouded probe. Temperature measurements at the shrouded probe tip indicated that the air entering the shrouded probe under this configuration was consistent with the overall chamber air conditions.

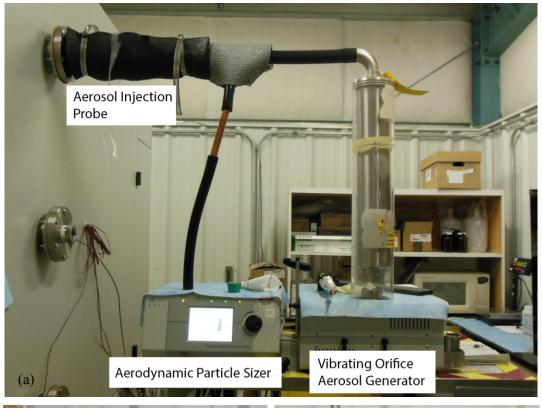


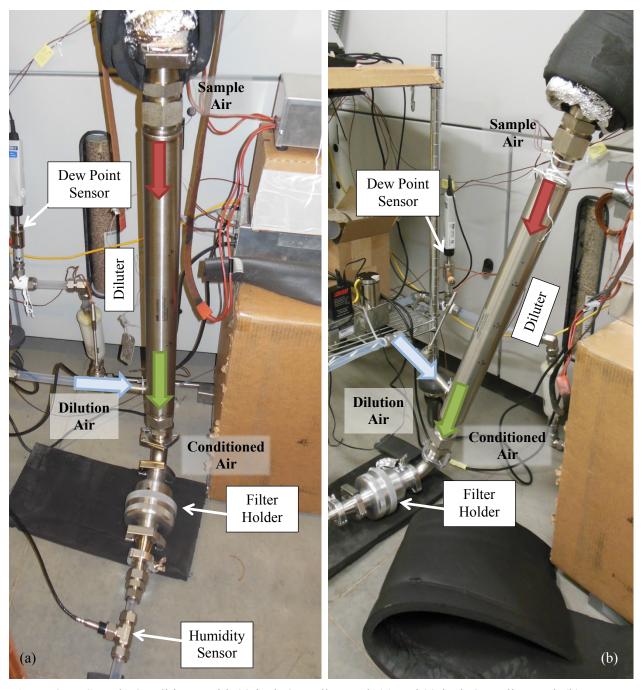
Figure 3.5. Probes Used for the Particle Injection and Sampling (a), Enclosed within Flexible Duct during Particle Injection and Sampling (b)

The aerosol produced for these tests was nominally monodisperse (single size, rather than a size distribution) oil droplets (oleic acid) tagged with a fluorescent tracer (fluorescein) to quantify the aerosol deposition. The particle size coming out of the VOAG was measured using either a TSI Inc. (Shoreview, MN) aerodynamic particle sizer (APS) or a Hach (Elgin, IL) optical particle counter (OPC) during the test to ensure that particles were produced throughout the duration of the test, and to ensure that particle sizes remained within the expected size range¹. Figure 3.6 shows a typical aerosol production/ measurement/ injection set-up during an aerosol penetration test. The VOAG, with its aerosol drying column equipped with a 20 mCi Kr-85 particle charge neutralizer (instrument on the right in Figure 3.6 (a)), is connected to the stainless steel injection probe (covered in insulation in Figure 3.6 (a)). A tee on the injection probe allows the APS (instrument on the left in Figure 3.6 (a)) to sample for particle sizing and concentration.

_

¹ The APS measures the mean and standard deviation of the AD directly. The OPC measures an optical size equivalent to the diameter of a polystyrene latex sphere, used for calibration. The OPC data has to be reduced to estimate the mean and standard deviation AD.

Figure 3.6. Equipment Used for the Aerosol Penetration Tests. (a) Aerosol generation, measurement, and injection set-up, (b) platform scale used to measure solvent mass, and (c) fluorometer.


During some tests, glass slides coated with Novec 1720 oleophobic electronic grade coating from 3M (Saint Paul, MN) were placed within the environmental chamber to collect particles. The particles are not completely flattened on the slide with oleophobic coating, and instead, only flatten slightly. Olan-Figueroa et al (1982) describe the flattening coefficient for oleic acid droplets on a similar (but not identical) coating material. For comparison with the APS and OPC data, the droplets deposited on the glass slides were examined microscopically, and the original, spherical particle diameter was estimated based on the previously-reported flattening coefficient.

The aerosol penetration through the diluter itself was quantified by comparing the deposition on a 4-inch (10.2 cm) diameter glass fiber filter paper installed downstream of the diluter and the deposition on fittings between the diluter and the filter paper against the total aerosol entering the diluter, which is the sum of the filter paper, fittings, and diluter deposition. The method for quantifying aerosol penetration with fluorescent tag is well established. See Kesavan and Doherty (2000) for an overview of the use of fluorescein, and Gupta and McFarland (2001) as an example of a similar aerosol penetration study. Note that the thermocouples that were installed within the diluter during the temperature and humidity tests were not utilized during the aerosol penetration tests, since these become deposition surfaces that are not expected in the actual diluter installation, and may cause a bias in the aerosol penetration results.

With the environmental chamber operating at the prescribed temperature and humidity condition, aerosol injection and sampling occurred for about 30 minutes; sufficient time to collect an adequate sample of aerosol on the filter and fittings. After each test, the test components for which the deposition would be quantified (diluter, filter, tubing) were washed with a pH-adjusted solvent (water and isopropyl alcohol) of known mass to remove and retain in solution the deposited aerosol and fluorescent dye. The mass of the solvent used to wash each component was measured using a platform scale, shown in Figure 3.6 (b). The fluorescence of aliquots (approximately 2ml) was measured with a Turner Trilogy (Sunnyvale, CA) fluorometer (Figure 3.6 (c)) in triplicate to quantify the deposited aerosol. The deposition on the test components was measured in units of raw fluorescence units per gram of wash solution.

Prior to the chamber tests, a set of preliminary tests were performed to establish the impact of temperature on fluorescence. For these tests, a 10 parts per billion (ppb) solution of fluorescein in water was subjected to elevated temperatures (170°F and 325°F) for 1 hour, and the fluorescence of that solution was compared with the fluorescence of a 10 ppb solution that was not subjected to elevated temperature. These tests demonstrated that the fluorescence of fluorescein is not degraded by this range of elevated temperatures. However, exposure to light causes some reduction in fluorescence. A cuvette of 10 ppb fluorescein solution, left near a window for two days, lost about 7% of its fluorescence as a result of light exposure. For any given test, the fluorescein exposure to light will be uniform for all test components, and will not result in any bias in the test results. However, to maintain a high fluorescence value for instrument detection, fluorescein solutions used in aerosol production were protected from light by storing it in amber bottles or covering transparent syringes in aluminum foil.

Due to the uncertainty regarding the actual installation of the sample conditioning equipment at the waste treatment plant, tests were performed with the diluter in both a horizontal and vertical orientation. Figure 3.7 shows the diluter mounted in a vertical orientation (the horizontal orientation was shown in Figure 3.2). The diluter with 28-inch overall length was installed vertically, while the 32-inch overall length diluter was too long to fit vertically, and was approximately 20° from vertical. As described above, at the conclusion of the aerosol sampling phase, the diluter, downstream fittings, and filter paper were washed to quantify the deposition. In the vertical orientation, the filter holder was still oriented horizontally, so the downstream fittings included a compression fitting on the diluter, an elbow, and the upstream portion of the filter holder. Figure 3.8 shows the filter paper and fittings, disassembled in preparation for washing. Whenever possible, fittings were assembled and washed as a single component to minimize the number of samples. For the horizontal orientation, the elbow is removed and the upstream end of the filter holder was connected directly to the compression fitting.

Figure 3.7. Sample Conditioner with 28-inch Overall Length (a) and 32-inch Overall Length (b) Installed in a Vertical Orientation. Light blue arrows represent the dilution air flow, the red arrow represents the hot sample air, and the green arrow represents the conditioned air.

Figure 3.8. Fittings and Filter Holder from Vertical Diluter Test Disassembled for Washing and Fluorescence Measurements

3.3 Quality Assurance

The PNNL QA program is based on the requirements defined in the U.S. Department of Energy Order 414.1D, *Quality Assurance*, and 10 CFR 830, *Energy/Nuclear Safety Management*, and Subpart A—*Quality Assurance Requirements* (a.k.a., the Quality Rule). PNNL has chosen to implement the following consensus standards in a graded approach:

- ASME NQA-1-2000, *Quality Assurance Requirements for Nuclear Facility Applications*, Part I, "Requirements for Quality Assurance Programs for Nuclear Facilities".
- ASME NQA-1-2000, Part II, Subpart 2.7, Quality Assurance Requirements for Computer Software for Nuclear Facility Applications.
- ASME NQA-1-2000, Part IV, Subpart 4.2, Graded Approach Application of Quality Assurance Requirements for Research and Development.

The procedures necessary to implement the requirements are documented through PNNL's "How Do I...?" (HDI), which is a system for managing the delivery of laboratory-level policies, requirements, and procedures.

The Waste Treatment Plant Support Program (WTPSP) implements an NQA-1-2000 QA program, using a graded approach presented in NQA-1-2000, Part IV, Subpart 4.2. The WTPSP Quality Assurance manual (QA-WTPSP-002) describes the technology life cycle stages under the WTPSP QA plan (QA-WTPSP-0001). The technology life cycle includes the progression of technology development, commercialization, and retirement in process phases of basic and applied research and development (R&D), engineering and production, and operation until process completion. The life cycle is characterized by flexible and informal QA activities in basic research, which becomes more structured and formalized through the applied R&D stages. The work described in this report has been completed under the QA Technology level of Development Work as the data will be used to apply for air discharge permits.

• DEVELOPMENTAL WORK—Development work consists of research tasks moving toward technology commercialization. These tasks still require a degree of flexibility, and there is still a degree of uncertainty that exists in many cases. The role of quality on development work is to make sure that adequate controls exist to support movement into commercialization.

WTPSP addresses internal verification and validation activities by conducting an Independent Technical Review of the final data report in accordance with WTPSP's procedure QA-WTPSP-601, "Document Preparation and Change." This review verifies that the reported results are traceable, that inferences and conclusions are soundly based, and the reported work satisfies the Test Plan objectives. Appendix F lists the reviewed test plan, test instructions, and calculation packages created to document and quality-assure the tests.

4.0 Sample Conditioner Testing Results

This section summarizes the results of the sample conditioner tests using the Mott porous tube diluter for the four Hanford Waste Treatment Plant stacks with elevated temperature and humidity condtions: LV-S2, LV-S3, HV-S3A, and HV-S3B. The primary, reportable results are the data and data calculations to document the temperature and humidity reduction and the aerosol penetration. For data sheets that include calculations, independent reviews were performed to verify the accuracy of the data transcription and calculations. Calculations were only necessary for the aerosol penetration data sheets. These calculations were performed using Microsoft Excel (Redmond, WA, 2010) and documented in Computational Computer Program (CCP) packages (see Appendix F) in accordance with WTPSP procedures. The final data sheets are included in Appendices A through C, and provide the detailed information about the test conditions and results. Tables summarizing the results of tests performed are presented in the subsections below. Additional data, which are designated as "For Information Only," have not been produced under the full QA program, but provide valuable information about test conditions. These include time series data from the temperature and humidity sensors, MFC, and APS, along with any plots created with these data. Although these instruments have been calibrated, only the read-out on the screen has been quality-assured, and data collected in the internal memory or through external software has not been rigorously quality-assured under the Quality Program. Data that are for information only (FIO) are clearly indicated as such in both the data sheets and the summary tables included in this section.

4.1 LV-S3 Test Results

Table 4.1 lists the estimated dilution rates for the combinations of stack and ISA conditions (excerpted from Table 3.1). The sample conditioner tests representing the LV-S3 stack conditions used four of these pre-defined dilution rates. The four flow rates used in these tests are presented in normal font in Table 4.1, while the flow rates that were not used are in parentheses. The Maximum ISA for the Maximum Stack Condition was tested for the conservative dilution rate, which would be used if a fixed flow rate is used at the waste treatment plant to simplify practical operations. The individual results for the two test types are presented in the sub-sections below. A summary of these results were also briefly reported to Bechtel in a letter from R. Peterson, dated July 24, 2013 (WTP/RPP-MOA-PNNL-00738).

Stack	Temp	RH	Norm ISA (60°	F DB/-40°F DB)	Max ISA (80°	F DB/-20°F DP)
Condition	(°F)	(%)	Dil (scfm)	Cond (scfm)	Dil (scfm)	Cond (scfm)
Min	185	16.9	5.09	6.06	(5.19)	(6.16)
Norm	243	9.6	9.05	9.87	(9.26)	(10.07)
Max	282	5.6	9.76	10.52	9.97	10.72

Table 4.1. Estimated Dilution Rates for LV-S3. Rates in parentheses were not used in tests.

4.1.1 LV-S3 Temperature and Humidity Tests

As described in Section 3, temperature and humidity tests were performed primarily to demonstrate the effectiveness of the sample conditioner and to document the temperature and humidity reduction with the sample conditioner. Appendix A.1 contains the data sheets from the LV-S3 temperature and humidity

reduction tests. These tests contained no calculations, so only the hand-written data sheets are necessary to document these tests. Note that, after these tests were already in progress, it was discovered that the thermocouples and thermocouple inputs for the environmental chamber had not been calibrated, as expected. Therefore, the dilution temperature on these data sheets is marked as collected using an uncalibrated thermocouple. However, after this testing was complete, the thermocouples were calibrated and found to be within tolerances. Additionally, prior to the completion of these tests, the environmental chamber was calibrated, which included calibration of the thermocouple input ports.

These tests were performed with a 28-inch overall length diluter. All tests were performed with the diluter in the horizontal orientation, with the longitudinal axis of the diluter nominally parallel to the ground. Table 4.2 summarizes the results of the LV-S3 temperature and humidity tests. Rows with data in parentheses had condensation formation during the test, while the remaining tests successfully conditioned the sample without condensation. The test results in parentheses are considered invalid, and are not included in the final summary table (Table 5.1). In Table 4.2 and in other results tables, the dilution cases simulated during each test are defined by combining an ISA Condition and a Stack Condition as listed in Table 4.1. Each combination of ISA and stack condition results in an estimated dilution air flow rate. The Stack Cond and ISA Cond columns of Table 4.2 describe the combined ISA condition (Norm or Max, as listed in Table 2.2) and the stack condition (Min, Norm, or Max, as listed in Table 2.1) that were used to determine the dilution air rate for the test run. For example, row 1 of Table 4.2 lists the Stack Cond as "Min," and the ISA Cond as "Norm," meaning that the dilution rate used for this test was for the combination of the minimum stack condition and the normal ISA condition. The dilution air and conditioned air flow rates presented in Table 4.2 can be cross-referenced to the flow rates presented in Table 4.1 for the Stack condition and ISA condition combination presented in Table 4.2.

Detecting condensation internal to the system components is a challenge in these tests, and some basic experiential knowledge about condensation was gained through the course of testing activities. When significant amounts of condensation are formed, such as when the axial diluter was utilized, condensation is transported downstream to the filter paper, and saturates the paper. This causes a pressure signal in the MFC that alerts a condensation concern. However, small amounts of condensation, such as what occurred during some of the porous tube diluter tests, are more difficult to detect. Observing the interior surface of the diluter at the end of a test is typically ineffective in determining whether condensation had occurred during the test because small amounts of liquid readily evaporate with additional mixing with dry air. Alternately, observing the conditions of the diluted sample air may, hypothetically, provide an indication of condensation, but that does not appear to be the case practically. For example, compare the results of TH-8 in Table 4.2, which had condensation, and TH-10, which did not. The dilution rate was identical for these two tests, and the dilution air DP was very similar (-14 compared with -15°F). However, the conditioned air DP was also very similar (28 compared with 27°F). One might expect that the DP after condensation would be lower than the DP without condensation because liquid water is removed from the air when condensation occurs. However, small differences in DP, within the tolerance of the measurement, are difficult to attribute to condensation. As a result, three approaches were implemented during the temperature and humidity tests to detect the presence of condensation, as described below.

_

¹ Note that there are no adjustments to a thermocouple. If they are verified after the fact, the data is considered acceptable.

Table 4.2. Summary of Temperature and Humidity Reduction Tests for LV-S3 Conditions

Dilution Case ^a		Run	Chai	nber	Ε	Dilution Air	r	Co	nditioned	Air
Stack Cond	ISA Cond	No.b,c	DB (°F)	RH (%)	Flow (scfm)	DB (°F) ^d	DP (°F)	Flow (scfm)	DB (°F)	DP (°F)
Min	Norm	TH-4	185	16.9	5.09	77	-26	6.06	84	52
Norm Norm	Name	TH-1			9.05	77	-15	9.87	83	46
	NOIIII	TH -12			9.03	79	-15		85	28
		(TH-3)				(85)	(29)		(85)	(43)
		(TH-6)		0.6	9.97	(80)	(10)	10.72	(83)	(40)
Max	Max	(TH-7)	243	9.6		(80)	(-13)		(82)	(34)
Iviax	IVIGA	(TH-8)				(80)	(-14)		(82)	(28)
		TH-9				75	-20		82	23
		TH-10				76	-15		81	27
	. Norm	(TH-5)			0.76	(85)	(11)	10.52	(89)	(47)
Max		TH-11	282	5.6	9.76	77	5	10.52	86	43
Max	Max	TH-2			9.97	82	-21	10.72	85	36

a. Dilution cases are defined by the combination of stack and ISA conditions from Table 4.1.

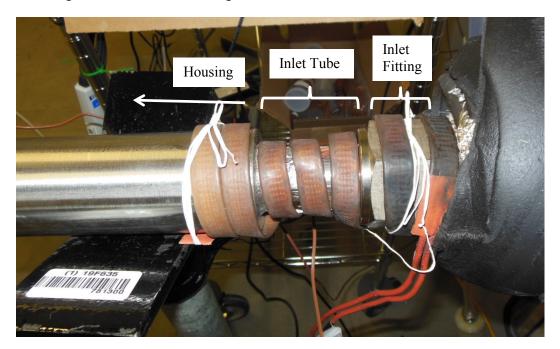
First, a thermocouple was placed on the interior surface of the solid wall of the diluter inlet, as close as possible to the weld seam between the solid and porous stainless steel. As described in Section 3, this is the most likely location for condensation to form. By observing whether the temperature near the weld seam is near the DP temperature of the chamber/stack sample, an indication of potential condensation is obtained. However, the placement of the thermocouple tip is difficult, and small changes in position can result in large differences in temperature. As a result, a high temperature does not preclude condensation formation due to position errors, while a low temperature is more likely to confirm condensation formation if the thermocouple is affixed upstream of the weld seam. Slight movement of the thermocouple toward the downstream end of the weld seam would result in measurements of the dilution air temperature, and condensation is not expected where the two air streams are mixing. The position of the thermocouple was observed at the conclusion of each test, but the act of dis-assembling equipment can also cause shifts in the thermocouple position. It was often difficult to have absolute confidence in the thermocouple position in each test.

b. TH-3, TH-5 through TH-8 (in parenthesis) had signs of condensation

c. Initial tests (TH-1 through TH-8) used just one heat tape, which covered only the fitting upstream of the diluter. TH-9 through TH-12 used two heat tapes; the second heat tape covered the upstream end of the diluter, along with a few inches of the upstream end of the diluter housing.

d. Dilution temperatures are FIO. Measured with an un-calibrated thermocouple that was later calibrated and found to be within tolerance.

Secondly, water indicator dots manufactured by 3M (Saint Paul, MN) were affixed around the circumference of the solid inlet tube, again, near the weld seam between the solid and porous tubes. These dots remain white in the absence of water; however, when water is in contact with the dot, the dot turns red, and the color change is irreversible. The utility of these dots is that, if at any point doing the test, a small amount of condensation is formed, and then evaporated as the sample air is mixed with the dilution air, that presence of water is "recorded" by the water indicator dot. The drawbacks of these dots are that spurious condensation could form at other locations not covered by the dot, and that condensation would not be observed. This is mitigated by placing at least four dots around the circumference of the tube, with one of these dots at the bottom of the tube, where condensation is likely to pool. Another drawback is that these dots are recommended for temperatures up to 121°C (250°F) for time scales from minutes to hours. In our experience, at the highest test temperatures, the dye in the water indicator dot becomes fixed, and the dots do not change color when water contacts it. It is likely that this occurred at temperatures above 250°F, as the technical data sheet for this product suggests, but a rigorous test of the impact of temperature was not conducted.


Finally, water soluble markers were used to mark the inlet end of the diluter. We observed that these markings are readily removed by liquid water, and would allow greater coverage than the water indicator dots. Figure 4.1 shows the inlet and outlet of the diluter with the water indicator dots and water soluble markings. The left panel shows two water indicator dots that have been in contact with water, and are pink. Although difficult to discern, there is a small puddle of water visible in the photograph, and the lower water indicator dot is submerged in that small puddle. Water indicator dots located on the downstream end of the diluter always remained white, since this diluter does not result in condensed water being transported to the downstream end of the diluter.

Initially, testing was performed with heat tape and insulation applied only on the flange to the chamber, the transport line, and the fitting that was upstream of the diluter. Figure 3.2 and Figure 3.7 are examples that show the extent of the first heat tape coverage. The heat tape was set to match the chamber temperature, so that the air entering the diluter would be matched as closely as possible to the chamber conditions. As noted in Table 4.2, several of the tests performed with the LV-S3 conditions resulted in condensation. This condensation was mostly likely formed at the diluter inlet, through cooling of the inlet tube due to heat transfer from the cool dilution air in the diluter housing. As a result, a second heat tape was applied for subsequent tests to ensure that the inlet of the diluter remained above the DP of the chamber air. This heat tape was applied from the end of the first heat tape at the upstream fitting through the first few inches of the upstream end of the diluter housing as shown (without the insulation) in Figure 4.2. Tests with both heat tapes in place avoided condensation.

The conditioned air temperatures for LV-S3 tests summarized in Table 4.2 are comparable to the estimated temperatures listed in Table 3.1. Since the DP of the dilution air was not simulated in these tests, the DPs listed in Table 3.1 are not a relevant comparison for these results. However, the DPs for these tests are universally lower than 60°F, with values ranging from 23°F to 52°F. Overall, these tests demonstrated that, with the appropriate heat tape in place, the porous tube diluter is effective in conditioning the stack exhaust samples for the expected LV-S3 conditions.

Figure 4.1. Water Indicator Dots on the Upstream End (a) and Downstream End (b) of the Diluter. (a) shows a small water puddle and pink water indicator dots (top and bottom of tube) as well as the green water soluble markings.

Figure 4.2. Heat Tape Wrapped around Inlet Tube and Upstream End of Housing (diluter with 32-inch overall length). During tests, the heat tape was covered in insulation.

4.1.2 LV-S3 Temperature, Humidity, and Aerosol Tests

Aerosol penetration tests were performed at both near-ambient room conditions and normal LV-S3 stack conditions, in both a vertical and horizontal orientation. Table 4.3 lists the results for the aerosol penetration tests performed for LV-S3 dilution conditions. In general, the results for these tests show that there is high aerosol penetration with this diluter. The completed data sheets from these tests are available in Appendix A.2.

Table 4.3. Summary	of Aerosol Penetration	n Tests for the	LV-S3 Conditions
--------------------	------------------------	-----------------	------------------

Dilutio	n Case ^a	Run	Chai	mber	Dil	ution Ai	ir	Cond	litioned A	Air	Aerosol	AD	H /
Stack Cond	ISA Cond	No.	DB (°F)	RH (%)	Flow (scfm)	DB (°F)	DP (°F)	Flow (scfm)	DB (°F)	DP (°F)	Penetra -tion	AD (μm) ^c	V ^d
Norm	Norm	AP -1	75	22	9.05	92	38	9.87	87	25	99%	9.6-9.7	Н
Norm	Max	AP –2	75	40	9.76	84	22	10.34 ^b	80	13	98%	9.5-9.4	
Norm	Norm	AP -3	243	9.6	9.05	81	7	9.87	95	51	99%	9.6-9.4	Н
		AP -4				87	8		99	47	99%	9.5-9.3	Н
Norm	Max	AP -5	243	9.6	9.76	89	16	10.52	100	49	99%	10.0-9.7	V
		AP -6				87	-6		101	47	99%	9.3-9.1	V

- a. Dilution cases are defined by the combination of stack and ISA conditions from Table 4.1.
- b. AP-2 conditioned air flow was incorrectly set at 10.34 scfm instead of 10.52 scfm, so the sample from the chamber is low.
- c. Aerodynamic diameters from the un-calibrated APS are FIO.
- d. Diluter orientation: H=Horizontal, V=Vertical

Two room temperature tests (AP-1 and AP-2) were performed to evaluate whether there is a relationship between the aerosol penetration result and the chamber temperature. Recall that the test method involves injecting droplets of oleic acid and fluorescein into the chamber and sampling it through a shrouded probe with a transport line that passes through the wall of the chamber to the dilution system. Therefore, if there is temperature-related degradation or shrinking of the droplets, comparing room temperature tests with elevated temperature tests would, presumably, indicate these effects. The two room temperature tests (AP-1 and AP-2) had penetration values of 98 and 99%, which is the same as the penetration values for the four LV-S3 normal temperature condition tests (AP-3 through AP-6), which were all 99%. Therefore, it appears that there is no impact of temperature on the aerosol or aerosol penetration. Note that the differences in the relative humidity between the two room temperature tests was not strategic in any way, and is not expected to have impacted the small difference in aerosol penetration rates.

The four tests performed at the LV-S3 normal temperature condition were performed for two different dilution rates and for two different diluter orientations. Again, since all tests resulted in 99% aerosol penetration, it appears that there is no effect to the aerosol penetration based on diluter orientation or the relatively small difference in dilution rate.

4.2 HV-S3A and HV-S3B Test Results

Table 4.4 lists the HV-S3A & B dilution rates for the combinations of stack and ISA conditions (excerpted from Table 3.1.) The sample conditioner tests representing the HV-S3A & B stack conditions used five of these pre-defined dilution rates as well as one additional, conservatively high dilution rate. The flow rates used in these tests are presented in normal font in Table 4.4, while the flow rate that was not tested (Maximum ISA for Normal Stack Condition) is shown in parentheses. The Maximum ISA for the Maximum Stack Condition was tested for the conservative dilution rate, which would be used if a

fixed flow rate is implemented at the waste treatment plant to simplify practical operations. The individual results for the temperature and humidity tests and the temperature, humidity, and aerosol tests are presented in sub-sections below.

Table 4.4. Estimated Dilution Rates for HV-S3A and HV-S3B. Rates in parentheses were not used in tests.

Stack	Temp	RH	Norm ISA (60°	F DB/-40°F DB)	Max ISA (80°F DB/-20°F DP)		
Condition	(°F)	(%)	Dil (scfm)	Cond (scfm)	Dil (scfm)	Cond (scfm)	
Min	261	2.3	2.39	3.31	3.61	4.53	
Norm	313	1.7	4.07	4.88	(4.63)	(5.44)	
Max	365	1.5	7.42	8.13	7.63	8.34	

4.2.1 HV-S3A and HV-S3B Temperature and Humidity Tests

The HV-S3A and HV-S3B temperature and humidity tests were performed to demonstrate the effectiveness of the sample conditioner and to document the temperature and humidity reduction with the sample conditioner. Appendix B.1 contains the data sheets from the HV-S3 temperature and humidity reduction tests. These tests contained no calculations, so only the hand-written data sheets are necessary to document these tests. For these tests, both the thermocouples and thermocouple inputs were calibrated.

The HV-S3 temperature and humidity tests were performed with both the 28-and32-inch overall length diluters. During LV-S3 testing, we learned that applying heat tape to the inlet tube and the first few inches of the housing prevented condensation. However, the short length of the inlet tube made it difficult to get good contact between the heat tape and the tube at the point nearest to the diluter housing (see Figure 3.2). As a result, a similar diluter with identical porous tube length, but with a longer inlet and outlet tube was obtained. This allowed some space between the compression fitting and the filter housing to allow for improved heat tape contact (see Figure 4.2). Until the new 32-inch diluter was delivered, tests were performed with the previous 28-inch diluter. All tests were performed with the diluter in the horizontal orientation (with the longitudinal axis of the diluter nominally parallel to the ground). Table 4.5 summarizes the results of the HV-S3 temperature and humidity tests. Because of the improved heat tape configuration, none of the tests resulted in condensation.

Table 4.5. Summary of Temperature and Humidity Reduction Tests for the HV-S3 Conditions

Dilutio	n Case ^a		Cha	mber	Di	lution Air		Co	nditioned A	ir					
Stack Cond	ISA Cond	Run No.	DB (°F)	RH (%)	Flow (scfm)	DB (°F)	DP (°F)	Flow (scfm)	DB (°F)	DP (°F)					
Norm	Min	TH-1	261	2.3	2.39	76	-4	3.31	90	71					
Name	NI	TH-2			4.07	79	-17	4.00	93	63					
Norm	Norm	TH-8	313 1.7	4.17 ^d	82	-17	4.88	94	60						
Man	Mari	TH-3	313	1./	1.7	1./	1.7	1.7	1.,	7.62	84	-7	0.24	92	45
Max	Max Max	TH-10 ^b			7.63	80	2	8.34	88	44					
Name	Mari	TH-4		0.8° 75 4	0.12	86	24								
Norm	Max	TH-7		1.6 °	7.42	81	-17	8.13	91	50					
Max	Max	TH-5	365	1.2 °	7.63	79	6	8.34	89	46					
>Max >Max	TH-6		1.2°	9.50	76	10	0.20	86	44						
	~iviax	ТН-9 в		1.2	8.50	77	-4	9.20	85	53					

- a. Dilution cases are defined by the combination of stack and ISA conditions from Table 4.1.
- b. Most tests were performed with a diluter with 28-inch overall length. The final two tests (TH-9 and TH-10), however, used a diluter that was 32-inches in overall length (more room for fittings).
- c. During these tests, humidity control on the environmental chamber was disabled for temperatures above ~330°F. As a result, the target humidity of 1.5% was not achieved for these tests.
- d. Dilution flow rate for TH-8 was incorrectly set 0.1 scfm higher than it should have been.

The HV-S3 temperature and humidity test results show that, even with relatively high dilution air temperatures and DPs, successful sample conditioning occurred. Although several tests had DP temperatures at or greater than 60°F, the room where testing was performed was always hotter than the conditioned air DP temperature, so condensation was not formed during any of these tests. These results show that dilution air DP temperatures can be quite a bit higher than the maximum ISA conditions, and with conservative dilution rates, the conditioned air DP is often still acceptable.

4.2.2 HV-S3A and HV-S3B Temperature, Humidity, and Aerosol Tests

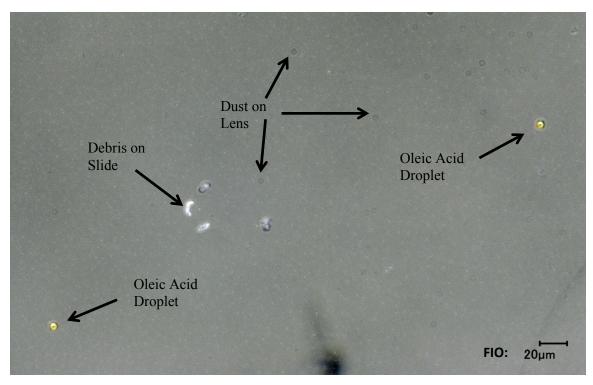
Aerosol penetration tests were performed at room temperature as well as at the HV-S3 minimum, normal, and maximum temperature conditions. All tests used the diluter with 32-inch overall length, and tests were performed with the diluter in both a horizontal and nominally vertical orientation. The 32-inch diluter, with fittings, was longer than the vertical space between the chamber outlet and the floor. As a result, the vertical orientation tests were performed with the diluter approximately 20° from vertical (see Figure 3.7). LV-S3 tests indicated that there was no impact to the aerosol penetration results due to diluter orientation, and these HV-S3 results are also similar for both diluter orientations. A summary of the HV-S3 aerosol penetration test results is presented in Table 4.6, and the completed data sheets from these tests are available in Appendix B.2.

Note that the data sheets include both the measured AD from the calibrated APS as well as the calculated AD based on the VOAG operating conditions and the aerosol solution. Since the APS measures the AD directly, the AD from this instrument is more accurate and reliable. The calculated particle size is listed as an indication for potential troubleshooting purposes. Although the calculated particle size should include all relevant factors that influence the final particle size, there are large differences between the measured and calculated aerosol size, which indicates that there are other factors that are not taken into account in these calculations. The calculated and measured aerosol sizes for both the LV-S3 and HV-S3 tests are tabulated within Appendix D.

There were several challenges in aerosol production and sampling during the course of these HV-S3 tests. Note that rows with text in parentheses in Table 4.6 represent tests with either poor aerosol production or low fluorescence particle counts. As a result, some consideration should be taken in interpreting these data, and these test results are not included in the final summary table (Table 5.2). AP-1 had low fluorescence values in the first wash, which indicates that insufficient particle deposition occurred on the final filter and the other internal surfaces. When sufficient deposition is measured, between 40 and 100 RFU/g (raw fluorescence units/gram of wash solution) was observed on at least one of the test components. However, AP-1 fluorescence measurements were less than 1 RFU/g, which means that there are very few particles included in the measurement, and consequently reduced confidence in the results of this test. AP-2, AP-10, and AP-12 also had less than 1 RFU/g for all elements in the first wash. These poor particle collection results were attributable to a misalignment of the flexible duct used to direct particles to the shrouded probe. For example, during AP-10, the flexible duct had fallen away from the aerosol injection probe, so most of the particles were directed away from the shrouded probe. In addition, we found that there was a particular location within the center of the environmental chamber fan that, if the flex duct opening was positioned over it, the air within the duct flowed from the shrouded probe toward the fan, rather than directing the aerosol toward the shrouded probe from the fan. Correcting these two flexible duct positions improved the aerosol collection for the test.

Table 4.6. Summary of Aerosol Penetration Tests for the HV-S3 Conditions

Dilutio	n Case ^a	n	Chan	nber	D	ilution A	Air	Con	ditioned	Air	Aerosol		H/							
Stack Cond	ISA Cond	Run No.	DB. (°F)	RH (%)	Flow (scfm)	DB (°F)	DP (°F)	Flow (scfm)	DB (°F)	DP (°F)	Penetra -tion	AD (μm)	Vg							
		(AP -1)	73.5	50	4.07	(77)	(3)	4.88	(76)	(16)	(87%) ^b	(10.2-10.2)	Н							
		(AP-10)				(81)	(1)		(78)	(12)	(84%) ^b	(9.31-9.02)								
Norm	Norm	AP-11	72.5	2.5	4.07	80	0	4.00	78	4	95% ^c	10.7-11.0								
		(AP-12)	73.5	35	4.07	(76)	(-2)	4.88	(76)	(10)	(82%) ^b	(10.8-10.3)	V							
	AP-13					79	3		78	11	98%	12.5-11.9								
NI	Man	(AP -2)	72.5	50	7.42	(84)	(25)	0.12	(82)	(21)	(74%) ^b	(10.2-9.66)	Н							
Norm	Max	AP-14	73.5	35	7.42	73	-9	8.13	74	-2	98%	11.0-9.89	V							
M	Min	(AP-15)	2(1	261 2.3	261 2.3	2.61	(68)	(-25)	4.52	(99)	(57)	(95%) ^d	(14.5-10.4)							
Max	Min	(AP-16)	261			2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	3.61	(72)	(-24)	4.53	(105)	(57)	(96%) ^d
		AP-3				79	-22		112	70	99%	9.38-9.53	Н							
Norm	Norm	AP-5			4.07	74	-10	4.88	107	72	99%	9.31-8.96	V							
		AP-7	313	1.7		73	3		105	72	99%	8.99-8.45	·							
Norm	Max	AP -4			7.42	80	-16	8.13	99	48	99%	9.20-9.33	Н							
NOIIII	Max	AP-6			7.42	79	0	6.13	101	55	99%	9.36-8.95	V							
Norm	Max	AP-8	365	0.8e	7.42	78	-3	8.13	101	46	99%	11.0-10.6	V							
Max	Max	AP-9	303	1.5	7.63	76	0	8.34	101	69	98%	12.8 ^f	•							


- a. Dilution cases are defined by the combination of stack and ISA conditions from Table 4.1.
- b. AP-1, AP-2, AP-10, and AP-12 had unusually low particle counts
- AP-11 had an unusual deposition distribution, where the fittings had twice the deposition of the filter, and moderate particle counts.
- d. AP-15 and AP-16 had aerosol production challenges
- e. During AP-8, humidity control on the environmental chamber was disabled for temperatures above ~330°F. As a result, the target humidity of 1.5% was not achieved. This limitation was discovered and removed for AP-9.
- f. The APS was not available during AP-9, so OPC measurements were used to estimate the mean AD. The OPC had coarse size bins, so it is expected that the size is 3-4 microns larger than APS (based on APS-OPC comparison during AP-10 and AP-11).
- g. Diluter Orientation: H=Horizontal, V=Vertical. Diluter with 32-inch overall length was used, which is longer than the distance to the floor, so when these tests were performed vertically, the diluter was actually about 20° from vertical.

Two tests to simulate the HV-S3 minimum stack conditions, AP-15 and AP-16, had aerosol production challenges. During AP-15, the aerosol jet production from the vibrating orifice aerosol generator quit unexpectedly. The jet was re-established quickly (within 1 minute); however, the particle size distribution was not as monodisperse and the mean AD was not as large as we had preferred for this

test. To evaluate the impact of particle size on the deposition result, this test began with aerosol production at $14.5~\mu m$. However, by the end of the test, the mean AD was closer to $10.5~\mu m$. In an attempt to perform a test with more reliable particle production, the AP-15 conditions were repeated with AP-16. Unfortunately, this test also had a broader particle size distribution than preferred, although the mean particle size was somewhat more consistent. The particle size mean was $14.0~\mu m$ at the start of the test, and $13.2~\mu m$ at the end of the test. Both the AP-15 and AP-16 aerosol penetration results were around 95%, which is somewhat lower than the majority of the tests, which where 98 to 99%. Therefore, there is an indication that larger particle sizes result in slightly higher deposition within the diluter.

AP-11, which had a relatively low aerosol penetration of 95%, had two somewhat unusual qualities in its penetration data. First, the majority of tests had the highest aerosol deposition on the filter paper, and a smaller amount on the fittings. AP-11, however, had twice the deposition on the fittings compared with the filter paper. In addition, while most filter aerosol deposition quantities were from 40 to 100 RFU/g, the aerosol deposition on the fittings during AP-11 was only 10.4 RFU/g. These two qualities make this test unusual, and no specific cause for this has been determined, so there is no reason to discount this result, except in that the fluorescence signal was perhaps marginal compared with other tests. For the remaining tests that had both good aerosol production and good aerosol collection, aerosol penetration values were similar to the results from LV-S3, typically between 98 and 99%. These high penetration values were observed for both diluter orientations, and there appears to be no impact of dilution flow rate (within the range tested) on the aerosol penetration.

During HV-S3 aerosol testing, the use of glass slides with oleophobic coating was explored to measure the particle size within the environmental chamber. Although the APS or OPC was used to measure the particle size injected into the chamber, there was some concern that the particles shrink within the chamber due to the high tempertures. Figure 4.3 shows an image of a portion of a glass slide that was placed near the floor of the chamber during AP-7. This shows two droplets that appear to be fluorescein-dyed oleic acid. The scale on the image is not calibrated, and is FIO. However, the deposited (and flattened) particles appear to be between 8.5 and 9.0 µm in diameter (assuming that part of the halo around the yellow portion visible in the image is part of the particle). The flattening factor for oleic acid on this coating has not been eperimentally determined; however, the previously-reported flattening factor of 1.34 from Olan-Figueroa (1982) is expected to be a good approximation for this coating. If the 1.34 flattening factor is assumed, the particles deposited in Figure 4.3 were 6.3 to 6.7 µm in diameter as a spherical particle. The measurement from the APS during AP-7 was nominally from 8.5 to 9.0 µm in AD, which corresponds to a physical diameter (PD) of 9.0 to 9.5 µm. (The physical diameter is simply the AD divided by the square-root of the aerosol density, which is 0.8931 g/cm³.) Under these assumptions, the oleic acid particle diameter shrank by about 2.7 microns, or 30%, within the chamber. A summary of the particle sizes from the APS and from the glass slide is presented in Table 4.7. Note that the glass slides were placed in the chamber at the start of the test, and retrieved after the end of the test, when the chamber interior had cooled. Therefore, the particles on these slides are expected to have experienced the maximum particle size reduction. The slides were within the chamber for about 60 minutes, whereas the particles involved in the tests were transported from the injection point to the collection point in about 7 seconds. The particle size reduction for shorter timeframes has not been determined.

Figure 4.3. Light Microscope Image (800x) of Oleic Acid Droplets Collected on a Glass Slide with Oleophobic Coating During AP-7. Scale is FIO.

Table 4.7. HV-S3 AP-7 Particle Sizes from APS, Glass Slide

APS, Prior	to Injection	Glass Slide in Chamber					
Measured AD (μm)	Calculated PD (µm)	Flattened (µm, FIO)	Estimated AD (μm, FIO)	Calculated PD (µm, FIO)			
8.5 – 9.0	9.0 - 9.5	8.5 - 9.0	6.0 - 6.3	6.3 - 6.7			

4.3 LV-S2 Test Results

The limited sample conditioner tests for the LV-S2 stack conditions were performed under two predefined dilution rates. Table 4.8 lists the estimated LV-S2 dilution rates for the combinations of stack and ISA conditions (excerpted from Table 3.1). Of these values, the flow rates tested were the two non-parenthesized rates.

Table 4.8. Estimated Dilution Rates for LV-S2. Rates in parentheses were not used in tests.

Stack	Temp	RH	Norm ISA (60°	F DB/-40°F DB)	Max ISA (80°F DB/-20°F DP)		
Condition	(°F)	(%)	Dil (scfm)	Cond (scfm)	Dil (scfm)	Cond (scfm)	
Norm	130	10	0.48	1.65	(0.79)	(1.96)	
Max	210	6	(2.48)	(3.46)	5.08	6.09	

Three LV-S2 temperature and humidity tests were performed to demonstrate the effectiveness of the sample conditioner and to document the temperature and humidity reduction with the sample conditioner. Appendix C contains the data sheets from the LV-S2 temperature and humidity reduction tests. These tests contained no calculations, so only the hand-written data sheets are necessary to document these tests. For these tests (unlike the LV-S3 tests), both the thermocouples and thermocouple inputs were calibrated.

The LV-S2 temperature and humidity tests were performed with the diluter with 28-inch overall length, and all three tests were performed with the diluter in a horizontal orientation. The results of the three LV-S2 tests are summarized in Table 4.9. These test results are similar to the HV-S3 test results in that, even with relatively high dilution air temperatures and DPs, successful sample conditioning occurred. No aerosol testing was performed under the LV-S2 conditions.

Table 4.9. Summary of Temperature and Humidity Reduction Tests for the LV-S2 Conditions

Dilutio	n Case ^a		Cha	mber	Di	ilution Ai	r	Conc	ditioned A	ir
Stack Cond	ISA Cond	Run No.	DB (°F)	RH (%)	Flow (scfm)	DB (°F)	DP (°F)	Flow (scfm)	DB (°F)	DP (°F)
Norm	Norm	TH-1	120	30 10.0	0.48	83	-1	1.65	87	47
Max	Max	TH-2	130		5.08	84	-7	6.09	86	13
Max	Max	TH-3	210	6.0	5.08	82	0	6.09	90	37

a. Dilution cases are defined by the combination of stack and ISA conditions from Table 4.1.

5.0 Conclusions

Two types of sample dilution equipment were evaluated in this project. The first, an axial diluter, resulted in the consistent formation of condensation, which can "scrub" aerosol from the sample stream and damage the sample filter. In subsequent tests the axial diluter was replaced with a porous tube diluter. Only limited tests were performed with the axial diluter, while the complete suite of tests was performed with the porous tube diluter.

Tests to evaluate the Mott porous tube diluter effectiveness at reducing the air temperature and dew point and to transport the sampled aerosol particles were performed under simulated LV-S3, HV-S3A, HV-S3B, and LV-S2 exhaust temperature and humidity conditions. A CAM will be installed on the LV-S3, HV-S3A, and HV-S3B stacks, and it has a temperature limit of 120°F. All four stacks will be equipped with a record sampler, which has a temperature limit of 150°F (65°C). At the WTP, the room air where stack monitoring occurs is expected to exceed 60°F. Dilution flow rates for these tests were estimated to either meet the target of DP less than 60°F or DB less than 120°F. The dilution air conditions were not controlled for these tests, but individual cases often met or exceeded these criteria.

5.1 Temperature and Humidity Test Results

The results of the temperature and humidity tests are summarized in Table 5.1. Note that only the valid data results where condensation was not formed are included in this table. Specifically, the data in parentheses from Table 4.2 are not included.

The outcomes of the temperature and humidity tests were

- the estimated dilution rates were a good starting point for conditioning the exhaust air,
- although the dilution air DP was not controlled or simulated in these tests, the resulting conditioned air DP was sufficient for preventing condensation in room air temperatures,
- the identification of condensation during sample conditioning is a significant challenge, and only large quantities of condensed moisture are readily detected, and
- the porous tube diluter has one potential cold spot on the upstream end of the diluter near the interface of the inlet tube and the diluter housing that should be heated to prevent condensation.

With the addition of a heat tape applied to the upstream end of the housing, the porous tube diluter is an effective sample conditioner that avoids internal condensation. A diluter with a 1.5-inch diameter inlet tube should be at least 4 inches in length to allow sufficient space for heating between compression fittings and the diluter housing (see Figure 4.2). This allows good contact between heat tape and the inlet tube and diluter housing to prevent condensation. An inlet tube of 2 inches in length is insufficient for heat tape application if a compression fitting is used.

5.2 Temperature, Humidity, and Aerosol Test Results

The results of the temperature, humidity, and aerosol tests are summarized in Table 5.2. Only valid data results are included here; specifically, the data in parentheses from Table 4.6 are not included. Tests

were performed for the LV-S3, HV-S3A, and HV-S3B conditions. The LV-S2 stack was not tested due to the expectation that sample conditioning may not be installed on this stack, and if a conditioning system is installed, results from other tests guide the LV-S2 installation. The criterion for transport system aerosol penetration is given in American National Standards Institute/Health Physical Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. This standard states that 50% of the 10 µm AD particles in the stack free stream must be delivered to the sample collector. In other words, depositional loss of particles should be limited to 50% in the sampling, transport, and conditioning systems. Based on preliminary estimates of the aerosol deposition along the LV-S3 transport lines using the DEPO 2001a code, the sample conditioner should have an 80% penetration or higher to ensure that the total transport system complies with the 50% penetration criterion. The aerosol penetration during these tests was greater than or equal to 95%, with most values equal to 98% or higher. The aerosol penetration was independent of

- dilution rate,
- diluter orientation,
- sample air temperature and humidity conditions, and
- aerosol size (within the tested range of 8.5 to 12.8 microns).

The high aerosol penetration rate under all test conditions was anticipated because the dilution air passes through the porous walls and essentially prevents the sample air from contacting the porous walls. Without contact with the walls, the aerosol deposition on those walls is understandably limited. We anticipate that, as long as the dilution rate is a positive value, and particularly if it is greater than or equal to the sample rate, penetration values should remain high. The primary location for aerosol deposition in this type of diluter is expected to be in the solid inlet and outlet tubes of the diluter.

Table 5.1. Summary of Temperature and Humidity (TH) Test Results

Dilutio	n Case ^a		C	hamber		Di	lution Air	•	Cond	litioned A	ir
Stack Cond	ISA Cond	Run No.	Stack	DB (°F)	%RH	Flow (scfm)	DB (°F)	DP (°F)	Flow (scfm)	DB (°F)	DP (°F)
Norm	Norm	TH-1	111.02		10.0	0.48	83	-1	1.65	87	47
Max	Max	TH-2	LV-S2	130	10.0	5.08	84	-7	6.09	86	13
Min	Norm	TH-4	LV-S3	185	16.9	5.09	77 ^b	-26	6.06	84	52
Max	Max	TH-3	LV-S2	210	6.0	5.08	82	0	6.09	90	37
Norm	Norm	TH-1				9.05	77 ^b	-15	9.87	83	46
Norm	NOIIII	TH-12	LV-S3	243	9.6	9.03	79 ^b	-15	9.87	85	28
Max	Mov	TH-9	LV-33	243	9.0	0.07	75 b	-20	10.72	82	23
Max	Max	TH-10			9.97 76 ^b	-15	10.72	81	27		
Min	Norm	TH-1	HV-S3	261	2.3	2.39	76	-4	3.31	90	71
Max	Norm	TH-11	LV-S3	282	5.6	9.76	77 ^b	5	10.52	86	43
Max	Max	TH-2	L V-33	262	3.0	9.97	82 b	-21	10.72	85	36
Norm	Norm	TH-2				4.07	79	-17	4.88	93	63
Norm	NOTH	TH-8	HV-S3	313	1.7	4.17°	82	-17	4.00	94	60
Max	Max	TH-3	11 V - 33	313	1./	7.63	84	-7	8.34	92	45
Max	Max	TH-10 ^d				7.03	80	2	0.34	88	44
Max	Norm	TH-4	HV-S3	365	0.8e	7.42	75	4	8.13	86	24
Max	INOIIII	TH-7	пу-33	303	1.6 ^e	7.42	81	-17	0.13	91	50
Max	Max	TH-5	HV-S3	365	1.2 e	7.63	79	6	8.34	89	46
May		TH-6	HV-S3	365	1.26	8.50	76	10	9.20	86	44
>Max >Max	TH-9 ^d	11 V -33	303	1.2 e	0.30	77	-4	9.20	85	53	

a. Dilution cases are defined by the combination of stack and ISA conditions from Table 4.1.

b. LV-S3 dilution temperatures are FIO. Measured with an un-calibrated thermocouple that was later calibrated and found to be within tolerance.

c. Dilution flow rate for HV-S3 TH-8 was incorrectly set $0.1\ scfm$ higher than it should have been.

d. HV-S3 TH-9 and TH-10 used a diluter with 32-inch overall length. All other tests used a diluter with 28-inch overall length.

e. During these tests, humidity control for the environmental chamber was erroneously limited, so the target humidity of 1.5% was not achieved.

Table 5.2. Summary of Temperature, Humidity, and Aerosol (AP) Test Results

Dilutio	n Case ^a		C	Chamber		Dilution Air	Cond. Air		Aerosol	
Stack Cond	ISA Cond	Run No.	Stack	DB (°F)	RH (%)	Flow (scfm)	Flow (scfm)	AD (μm)	Penetra- tion	H/V°
NI	Manne	AP-11				4.07	4.00	10.7-11.0	95%	3.7
Norm	Norm	AP-13	HV-S3	73.5	35	4.07	4.88	12.5-11.9	98%	V
Max	Norm	AP-14				7.42	8.13	11.0-9.9	98%	V
Norm	Norm	AP-1	LV-S3	75	22	9.05	9.87	9.6-9.7 ^b	99%	Н
Max	Norm	AP-2	LV-S3	75	40	9.76	10.34 ^d	9.5-9.4 ^b	98%	11
Norm	Norm	AP-3				9.05	9.87	9.6-9.4 ^b	99%	Н
		AP-4	LV-S3	243	9.6			9.5-9.3 ^b	99%	Н
Max	Norm	AP-5	LV-33	243	9.0	9.76	10.52	10.0-9.7 ^b	99%	V
		AP-6						9.3-9.1 ^b	99%	v
		AP -3						9.4-9.5	99%	Н
Norm	Norm	AP -5				4.07	4.88	9.3-9.0	99%	V
		AP - 7	HV-S3	313	1.7			9.0-8.5	99%	V
Man	Name	AP -4				7.42	0.12	9.2-9.3	99%	Н
Max	Norm	AP -6			7.42	8.13	9.4-9.0	99%	V	
Max	Norm	AP -8	HV-S3	365	0.8e	7.42	8.13	11.0-10.6	99%	V
Max	Max	AP –9	HV-S3	365	1.5	7.63	8.34	12.8 ^f	98%	v .

a. Dilution cases are defined by the combination of stack and ISA conditions from Table 4.1.

b. LV-S3 aerodynamic diameters from the un-calibrated APS are FIO.

c. Diluter Orientation: H=Horizontal, V=Vertical. HV-S3 tests in the vertical orientation were 20° from vertical due to the space constraints in using the 32-inch diluter

d. LV-S3 AP-2 conditioned air flow was incorrectly set at 10.34 scfm instead of 10.52 scfm, so the sampling rate from the chamber is a little low.

e. HV-S3 AP-8 humidity control for the environmental chamber was erroneously limited, so the target humidity of 1.5% was not achieved. The limitation was discovered and disabled for AP-9.

f. The APS was not available during HV-S3 AP-9, so the AD is from OPC measurements. This is expected to be an overestimate compared with the APS measurement due to coarser size bins.

5.3 Operational Considerations

There are a number of operational concerns identified in the course of testing that may impact the actual installation of equipment in these facilities.

The primary assumption made with these tests was that dilution was the preferred method for sample temperature and humidity reduction. However, the impact of dilution is that the ability to detect low level concentrations of constituents of interest with the sample monitor equipment is reduced by the dilution factor. For example, for the LV-S3 normal stack condition, diluted with ISA at normal conditions, the dilution flow rate is 11 times that of the stack sample flow rate (at standard conditions). This means that the sample concentration is reduced by an order of magnitude, and that the measurements reported by the stack monitor equipment must either be adjusted automatically to account for the sample dilution, or monitored and adjusted off-line to determine the true concentration in the stack exhaust. Under these conditions the instrument detection limit would effectively be an order of magnitude higher (less sensitive) than its actual detection limit due to the dilution in the sample, and any alarm levels will need to consider dilution.

Additionally, the simplest method for sample dilution was initially assumed to be a conservative dilution rate that could be fixed to apply for all anticipated stack conditions. This means that a high dilution factor is used, which maximizes the loss of instrument sensitivity. In addition, potential impact category (PIC)-1 stacks, which include the LV-S3, HV-S3A, and HV-S3B, require both a record sampler and a continuous air monitor. While the CAM can utilize a fixed sample flow rate, the record sampler requires that sampling rates be proportional to the stack flow rate. As was listed in Table 2.1, the stack velocities vary by a factor of 1.6 to 2.4 between the minimum and maximum flow conditions for these stacks. This means that, if a fixed dilution flow rate is preferred, it may need to be a higher flow rate than described in this report to accommodate the fluctuations in stack velocity. If a fixed dilution flow rate is prescribed, and the stack sample rate is varied, the sample dilution rate will not be a constant value. This impacts the interpretation of the concentration data from the stack monitoring equipment, and requires a shrouded probe that is rated for the range of stack sample rates.

During these tests, we observed that detection of condensation within the sample conditioning system was not obvious. If large amounts of condensation were present, the filter paper would be saturated, and a pressure signal was observed in the sample MFC. However, a large amount of condensation is not expected within the porous tube diluter. Instead, small amounts of water may condense at intermittent intervals if the heat tape is not sufficiently heating the upstream end of the diluter inlet/housing. During normal operation, condensation is not anticipated to be of concern. However, there are certain periods within the plant life cycle that may have a higher potential for condensation. For example, the melters in both the LAW and HLW facilities will be replaced at approximately 5 year intervals. Therefore, there will be start-up and shut-down periods over the course of the facility life. During these periods, ensuring that the dilution air is delivered first, followed by the sample air as well as pre-heating tubing with heat tape, will mitigate condensation formation. However, the occasional risk of condensation may warrant the addition of a drain port to remove condensed moisture from the sample transport system.

6.0 References

10 CFR 830, Subpart A. "Quality Assurance Requirements." *Code of Federal Regulations*, U.S. Department of Energy.

40 CFR 53, Subpart F. "Procedures for Testing Performance Characteristics of Class II Equivalent Methods for PM2.5." *Code of Federal Regulations*, U.S. Environmental Protection Agency.

40 CFR 60, Appendix A, Method 1. "Method 1—Sample and Velocity Traverses for Stationary Sources." *Code of Federal Regulations*, U.S. Environmental Protection Agency.

40 CFR 61, Subpart H. "National Emission Standard for Emissions of Radionuclides other than Radon from Department of Energy Facilities." *Code of Federal Regulations*, U.S. Environmental Protection Agency.

American National Standards Institute (ANSI). 1999^a. Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. ANSI/HPS N13.1—1999, McLean, VA.

American Society of Mechanical Engineers (ASME). 2001. Quality Assurance Requirements for Nuclear Facility Applications. NQA-1-2000, New York, NY.

DOE Order 414.1C. "Quality Assurance." U.S. Department of Energy, Washington, D.C.

Gupta R and AR McFarland. 2001. Experimental Study of Aerosol Deposition in Flow Splitters with Turbulent Flow. Aerosol Sci. Technol. 34. 216-226.

Hazen H, Memo to D Kurath. BNI CCN 228831 WA09 Transmittal of Memo CCN 228831 Supplemental Information Supporting High Temperature Probe Testing and Update to LV-S2 Stack Temperature, dated 21 March 2011, March 24, 2011, CCN 232711.

Kesavan J and RW Doherty. 2000. Use of Fluorescein in Aerosol Studies. Edgewood Chemical Biological Center Technical Report, ECBC-TR-103.

Lab Impex Systems. 2014. Product Datasheet SmartCAM Alpha Beta in Air Monitor. Datasheet No L236D. Available Online: http://www.labimpex.com/Resources/Resource/L236D SmartCAM.pdf

Liu, BYH, JK Agarwal. 1974. Experimental Observation of Aerosol Deposition in Turbulent Flow. Aerosol Science. 5, 145-155.

McFarland AR, A Mohan, NH Ramakrishna, JL Rea and J Thompson. 2000. DEPOSITION 2001a, Version 1.0. Deposition: Software to Calculate Particle Penetration through Aerosol Transport Systems. Texas A&M University. NUREG/GR-0006. College Station, TX.

Mott Corporation. 2008. Inertial Gas Sampling Filters. Available Online: http://www.mottcorp.com/resource/pdf/PMGASSAMP Brochure.pdf

6.1

^a The standard was reaffirmed in 2011 and is identical to the 1999 version, plus an errata list. Regulations have not been updated, so the 1999 version is referenced.

Mwembeshi M, Memo to J Glissmeyer. May 13, 2008. BNI CCN 179069. Stack Conditions Data for Emission Units LV-S2, LV-S3 & HV-S3A&B.

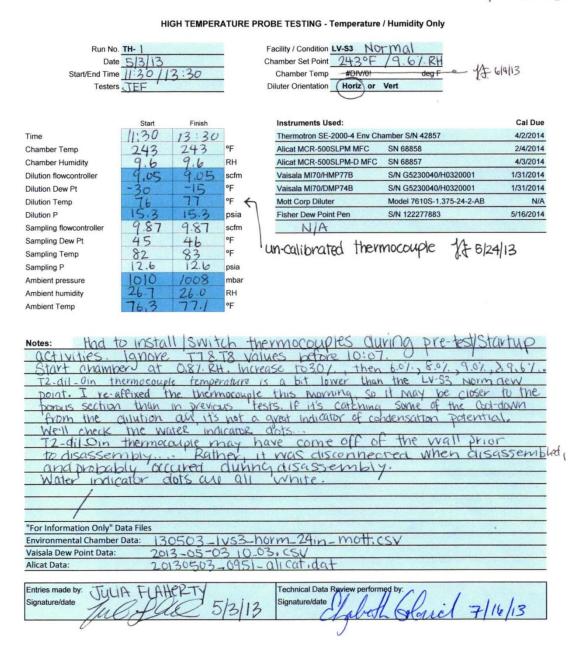
Mwembeshi M, Memo to H Hazen. April 21, 2010. BNI CCN 216991. Quality of WTP Instrument Service Air (ISA).

Mwembeshi M, Memo to H Hazen. February 10, 2012. BNI CCN 244088. Updated Stack Flowrate, Temperature, and Relative Humidity Data for HLW Melter Offgas Emission Units HV-S3A and HV-S3B.

Mwembeshi M, Memo to H Hazen. February 9, 2012. BNI CCN 244647. Superseding CCN 213167 with Updated Stack Temperature and Relative Humidity Data for LAW Melter Offgas Emission Unit LV-S3. Updated Process Data is Sourced from Calculation Change Notice 24590-LW-M4E-LOP-00009.

Olan-Figueroa, E, AR McFarland, CA Ortiz. 1982. Flattening Coefficient for DOP and Oleic Acid Droplets Deposited on Treated Glass Slides. American Industrial Hygiene Association Journal, 43 (6), 395-399.

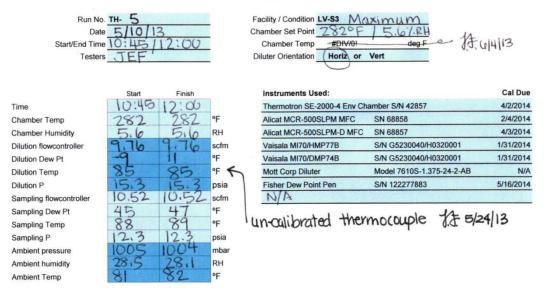
Peterson, R., July 24, 2013. WTP/RPP-MOA-PNNL-00738. Memorandum of Agreement 24590-QL-HC9-WA49-00001, Work Authorization 09 – Project 53024 Mott Diluter Based High Temperature Sample Conditioning Test Results for LV-S3.


Thermotron. 2009. SE-Series Environmental Chamber Instruction Manual, Revision 1. Holland, MI.

Tolocka, MP, PT Tseng, RW Wiener. 2001. Optimization of the Wash-Off Method for Measuring Aerosol Concentrations. Aerosol Science and Technology. 34 (5), 416-421.

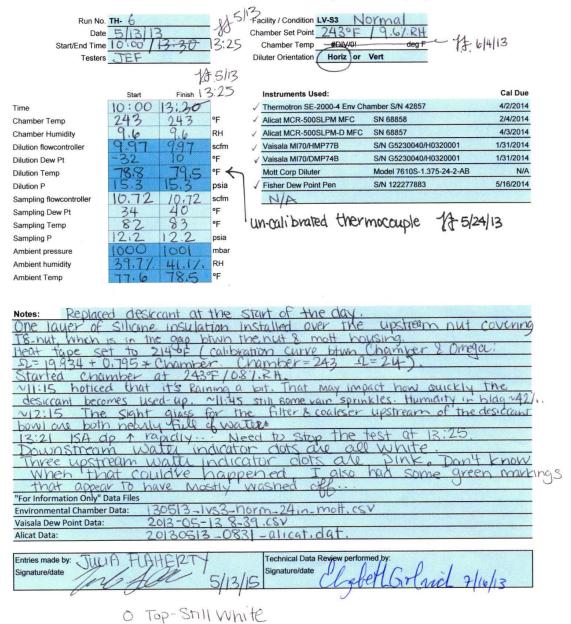
Appendix A LV-S3 Test Data Sheets

A.1 LV-S3 Temperature and Humidity Test Data Sheets


TDP-WTPSP-635 TH P4 of 15

Run No. Date Start/End Time Testers	5/6/13	Ch	namber Set Point 282°F / 5.6 / PH Chamber Temp #DIV/0! deg F liluter Orientation Wort	4 4 13			
	Start Finish		Instruments Used:	Cal Due			
Time	11:00 13:15		Thermotron SE-2000-4 Env Chamber S/N 42857	4/2/2014			
Chamber Temp	282 282	°F	Alicat MCR-500SLPM MFC SN 68858	2/4/2014			
Chamber Humidity	5.6 5.4	RH	Alicat MCR-500SLPM-D MFC SN 68857	4/3/2014			
Dilution flowcontroller	9.97 997	scfm	Vaisala MI70/HMP77B S/N G5230040/H0320001	1/31/2014			
Dilution Dew Pt	-34 -21	°F	Vaisala MI70/DMP74B S/N G5230040/H0320001	1/31/2014			
Dilution Temp	79 82	°F ←	Mott Corp Diluter Model 7610S-1.375-24-2-AB	N/A			
Dilution P	15.2 15.2	psia	Fisher Dew Point Pen S/N 122277883	5/16/2014			
Sampling flowcontroller	10.72 10.72	scfm	N/A				
Sampling Dew Pt	39 36 83 85	°F \	the second	T.			
Sampling Temp	THE RESERVE OF THE PARTY OF THE	oF 1	un-calibrated thermocouple 括s	24/13			
Sampling P	12.2 12.1	psia					
Ambient pressure	9955 993.7	mbar					
Ambient humidity	24.8 23.6	RH					
Ambient Temp	77.2 78.7	°F					
Notes: Replaced	1 desiccant Dr	ior to t	this test.				
This is at	est with the c	namber	r set to LV-S3 Max Condition	os			
	low controllers	set to	flows calculated for instrum	ent			
Service air 1			nditions (80°F/-20°Fdp).				
Programmed	chamber to star	1100	82°F and 0.5% RH, but that could				
achyeved. Lh			arted, it was a 270°F and 0.8%.	24.			
Step up to 28 Note: The wall	1 10.5 1 10	nd Slow	1	2122			
1111	nut to see how 1		TO TO TO TO LO	2:33,			
T2-9:1-oin did A	ot. Seems sixpicio	711111		ed, but			
1 - 1 120 11 010 1	ROCKS	MS. I-WY	wan to therease havingry arrest	112 1421			
Water indica		Still W	white Marker marks look abo	out the			
Same, 100 (No Water erasi			G , i			
N. D. V. L.	7						
"For Information Only" Da							
Environmental Chamber I		-max-n	orm_24in_motticsv				
Vaisala Dew Point Data:	2013-05-06:0	29-06.05	,				
Alicat Data: 20130506_0903_alicat.dat							
Entries made by: JuuA Signature/date	FLAHERTY Slees 5/6	13	Technical Data Review performed by: Signature/date Label Gilard	46/13			

	HIGH TEMPERATURE	PROBE TESTING - Tempera	ature / Humidity Only	
Run No Date Start/End Time Testers	5/6/2013	Facility / Condition LV-S3 Chamber Set Point 2 4 Chamber Temp #DIV Diluter Orientation Honz		- \$£6 4 13
	Start Finish	Instruments Used:		Cal Due
Time	16:20 17:30	Thermotron SE-2000-4 E	nv Chamber S/N 42857	4/2/2014
Chamber Temp	243 243 °F	Alicat MCR-500SLPM MF	C SN 68858	2/4/2014
Chamber Humidity	9.61 9.61 RH	Alicat MCR-500SLPM-D	MFC SN 68857	4/3/2014
Dilution flowcontroller	997 997 scfm	Vaisala MI70/HMP77B	S/N G5230040/H0320001	1/31/2014
Dilution Dew Pt	20 Z9 °F	Vaisala MI70/DMP74B	S/N G5230040/H0320001	
Dilution Temp	86 85 °F ◆	Mott Corp Diluter	Model 7610S-1.375-24-2-	
Dilution P	15.1 15.1 psia	Fisher Dew Point Pen	S/N 122277883	5/16/2014
Sampling flowcontroller	10.72 10.72 scfm	N/A		7,1
Sampling Dew Pt	40 43 °F	un-calibrated -	thermocauple of	15/24/12
Sampling Temp Sampling P	12.05 12.05 psia	un can brata	marriourpie o.	.d. 0/24/13
Ambient pressure	992.b 990.8 mbar			
Ambient pressure Ambient humidity	16.0 15.9 RH			
Ambient Temp	80.1 79.7 °F			
Ambient remp	0011			
Notes: Desico	ant will need to b	e replaced after	r this test.	
Should k	e okay with our	mon air co	onditions, Psycal	ic resultant
dew point	15 65°F & dry	bulb is 100°F.	(243°F/9.6% W/	85°F/30°Fdp
> 99.6°F/1	05.0°Fdp)	0.45	40.8 Scfm	69.80 sufm
kan the hea		20°F cooler than	1 The dry bulb	in the
dry bulb	this brings the	temperature of	the thermorough	chamber
wall (T2 dil	-Oin) to just a degi		dem point.	DIG ON THE
Check the	Water Indirator Few	ccs penning ne	tida portes.	
dots after "	the test. Rottom &	too at the lost	ream end were i	in contact
with water	r. Dots at downstr	eam end are 1st	ill white.	
"For Information Only" D	Pata Files			
Environmental Chamber			CSV	
Vaisala Dew Point Data:	2013-05-06 15-			
Alicat Data:	20130506_0903_a	licat.dat		
Entries made by: TILLIA	FLAHERTY	Technical Data Review po	erformed by:	
Signature/date	Slac 5/6/20	Signature/date	bet Edwid	7/16/13
0			0,00	
		→ Water	indicator dots	
	The second	on the	A LIACH	
	_	on th	ne upstream end	
	Bottom	OF H	ne Mott allute	V
	2 4	2 Chain	V Course was d	
	0	21101	v Some red dy	е,
	to N	India	cating that it	was in
		Con	tact with writer	at some
		DAIN	cating that it tact with water	toct
		F 011	1 001111 1011	1111


	THE TELL ELECTIONS TROUBLE TO THE TELL ELECTION OF	
Run No	o. TH- 4 Facility / Condition LV-S3 Min	
Dat	te 5/7/13 Chamber Set Point 185°F / 16.9 / RH	11
Start/End Time	ne 11:40 / 13:10 Chamber Temp -#DIV/01 deg F	e 15 G1413
Tester	or JEF Diluter Orientation (Horiz or Vert	
		0.15
-	Start Finish Instruments Used:	Cal Due
Time	11:40 13:10 Thermotron SE-2000-4 Env Chamber S/N 42857	4/2/2014
Chamber Temp	185	2/4/2014 4/3/2014
Chamber Humidity		
Dilution flowcontroller	5.09 5.09 scfm Vaisala MI70/HMP77B S/N G5230040/H03	
Dilution Dew Pt		
Dilution Temp	Mott Corp Diluter Model 7610S-1.375	
Dilution P	Fisher Dew Point Pen S/N 122277883	5/16/2014
Sampling flowcontroller	6.06 6.06 scfm N/A	
Sampling Dew Pt	and a literated thousand and	= 1/2 E124/12
Sampling Temp		1.0 0127/13
Sampling P	13.3 13.3 psia	
Ambient pressure	994.9 994.2 mbar	
Ambient humidity	27.8 27.8 RH	
Ambient Temp	13.6 15.1	
Notes: Replace	iced desiccant prior to this test.	
~8:50 Wrappe		affixed) in
insulation!	Try to increase temperature at T2-dil-Din.	
Initially Set +	the heat type to 165°F, but TZ-dil-Oin Was still a	t 98°F, So
increased heat	tape to 185°F @ ~9:11. (Target is > 114°F)	
MO:00 T2-0	111-Oin is Still only 103°F, so increased heat tape 1	o 205°F.
4RH at 11	1. or 99°Fdp.	
~10:45 Move	T8-nut to the gap between the nut & most housing	g. Check the
wall outside	temperature against inside temperature (T& vs T2)) for some
1 1 2	dilution an influence on TZ.	1 1 1
Water Indi	Icator dots are white at the end of the fest	, at both
ends.		
"For Information Only" [Data Files	
Environmental Chamber		
Vaisala Dew Point Data:		
Alicat Data:	20130507-0838-alicat.gat	
Entries made by: Juuf	A FLAHERTY Technical Data Review performed by:	7(16/13)
Signature/date	3 Fig. 6 517113 Signature/date Charlest Sta	2/13 =0 3/11
120	your sills made of	100 7/13 cm 1/6/13

Notes: Insulation installed over heat table (re-wrapped Lesterday).
One layer of silicone insulation installed over the distream
nut covering T8-nut, which is in the gap briwn the nut &
mott housing.
Started heat three at 244°F (calibration curve bown Chamber
Thermocouple & omega controller: IL=19.934+0.795xChamber)
Starred Chamber at 270°F/0.8% RH. Takes a bit of time to get
up to 282°F. Need to increase humidity first.
Dew point at Start-up was ~-25°F, so it's increased buickly in ~2 hrs.
Will need to replace desirrant after this test.
~ 9:06 tried to drain water from Pilter & the drain was stuck open, so had to
Stop flow momentarily to get it to close. ~9:14 opened up system briefly to
check downstream water indicator dots - still looked white.
During test duration, 12 heat tape set to 244°F.
PsyCalc: 2820F/5.61. RH/0.74SCFm + 810F/00Fdp/9.60ScFm > 990Fdb/610Fdp V OK W/ OUR CONDITIONS.
"For Information Only" Data Files One upstream
Environmental Chamber Data: 130510_1VS3_max_24in_mott.csv Water Imicator
Vaisala Dew Point Data: 2013-05-10 8-31.CSV dot Was Pinkey
Alicat Data: 20130510-0824-alicat.dat phobably tumed
auma start up.
Entries made by: TUUA FUAHERTY Technical Data Review performed by:
Signature/date Signature/date Sabett Garach 7/16/13

TOP-WTPSP-635 TH p9 of 15

HIGH TEMPERATURE PROBE TESTING - Temperature / Humidity Only

Side

Bottom Back (by Welds)

Bottom Front

-> Front/Upstream

Run No. Date Start/End Time Testers	5/13/13 16:05 /17:05	Chamber Set Point 243°F / Chamber Temp #DIV/01	Ymal 9.6%, RH deg F = H.	(J4 13
Time Chamber Temp Chamber Humidity Dilution flowcontroller Dilution Dew Pt Dilution P Sampling flowcontroller Sampling Dew Pt Sampling Dew Pt Sampling Temp Sampling P Ambient pressure Ambient humidity Ambient Temp	Start Finish	Instruments Used: Thermotron SE-2000-4 Env Cha Alicat MCR-500SLPM MFC Alicat MCR-500SLPM-D MFC Vaisala MI70/HMP77B Vaisala MI70/DMP74B Mott Corp Diluter Fisher Dew Point Pen	SN 68858 SN 68857 S/N G5230040/H0320001 S/N G5230040/H0320001 Model 7610S-1.375-24-2-AB S/N 122277883	Cal Due 4/2/2014 2/4/2014 4/3/2014 1/31/2014 1/31/2014 N/A 5/16/2014
Outside, the The T2-dil-O so this one to be a b Downstream Crased a	may condense that hotter than marer indicate	opped to 132 (1000). Perhaps the 236°F or dots (WID)	est. ome out, ess than dew heat tape i out all whi marker hay enish water	pt-135) Teeds Ite. Deen
For Information Only" De Environmental Chamber I/ Valsala Dew Point Data: Alicat Data: Entries made by: Signature/date	Data: 130513-1VS3-h 2013-05-13 15-0	Technical Data Review performe Signature/date		48/13
	Boltom Boltom	Back (blum we	elds)	

Da Start/End Tin	o. TH-8 te 5/H/13 te 12:15 / 13:30	Facility / Condition Chamber Set Point Chamber Temp Diluter Orientation LV-S3 243°F #DIV/01 foriz or	deg F - 17: 61	4/13
Time 12:15 Chamber Temp Chamber Humidity Dilution flowcontroller Dilution Dew Pt Dilution Temp Dilution P Sampling flowcontroller Sampling Dew Pt Sampling Temp Sampling P Ambient pressure Ambient humidity Ambient Temp	T IIIIOTT	Instruments Used: Thermotron SE-2000-4 Env C Alicat MCR-500SLPM MFC Alicat MCR-500SLPM-D MFC Vaisala MI70/HMP77B Vaisala MI70/DMP74B Mott Corp Diluter Fisher Dew Point Pen N/A Un-Cali brated the	SN 68858	Cal Due 4/2/2014 2/4/2014 4/3/2014 1/31/2014 1/31/2014 N/A 5/16/2014
Notes: Replace Dew point of Set heat tap Measured by Omega continuity temper Free of conde	childrion air starts be to 243°F, which we the chamber (282°F) biller to the neck of so 245°F in "real" rature (T2-dil-oin heation. Toller (T2) is 128 my-bothed" layer to close the gas change in 2 72 a ware indicator pinka Top look one biwn welds ata Files	out at -20°F at vill be a much him part flange- values. So not m) during rest is Sof at 12:50 (+20° of silvone insulations of which walls f 13:15. This are with a little pink is sink, the marker seems	it's reading 118° Never 149° F. Should	OP.
Entries made by: Juli A	DOWNSTREATH DOWN STREAM	Technical Data Review performs Signature/date TOP OSIDE-COM BOTTOM	Jelouil 7/14	(3

Run No. Date Start/End Time Testers	5/23/13	Chamber Set Point Chamber Temp Diluter Orientation LV-S3 A 242° F #DIV/01 Horiz or	Orm 19.67. RH deg F = 11	0/4/13
	Start Finish	Instruments Used:		Cal Due
Time	10:50 11:55	Thermotron SE-2000-4 Env C	hamber S/N 42857	4/2/2014
Chamber Temp	244 243 °F	Alicat MCR-500SLPM MFC	SN 68858	2/4/2014
Chamber Humidity	9.5 9.6 RH	Alicat MCR-500SLPM-D MFC	SN 68857	4/3/2014
Dilution flowcontroller	9.97 9.97 scfm	Vaisala MI70/HMP77B	S/N G5230040/H0320001	1/31/2014
Dilution Dew Pt	-20 -20 °F	Vaisala MI70/DMP74B	S/N G5230040/H0320001	1/31/2014
Dilution Temp	72 75 % ←	Mott Corp Diluter	Model 7610S-1.375-24-2-AB	N/A
Dilution P	15.3 15.3 psia	Fisher Dew Point Pen	S/N 122277883	5/16/2014
Sampling flowcontroller	10.72 10.72 scfm	NA		
Sampling Dew Pt	21 23 %	,		
Sampling Temp	79 82 %	un-calibrated the	ermocouple 15.	5/24/13
Sampling P	12.3 12.2 psia	0.1	1.a.	512.1.2
Ambient pressure	1002 1005 mbar			
Ambient humidity	30.5 26.9 RH			
Ambient Temp	72.7 73.9 °F			
Notes: Replacite tapes Both set to Omaga T3 i Water in White a	over 1" transport III 243°F (~285°F INSTALLED ON NECK ON ACCUTOR COTS ON	of port-flunge both ends	rend of Motion Tics), reads ~ 126°F. of Mott rem	st,
Environmental Chamber	Data: 130523_1vs3.	norm- Zfin- mottic	SV	
Vaisala Dew Point Data:	2013-05-23 9	54.CSV		
Alicat Data:	20130523_094	2-alicat.dat		
Entries made by: Signature/date	JA FLAHERTY 5/23	Technical Data Review perfor Signature/date	McGlriel 7/1	6/13

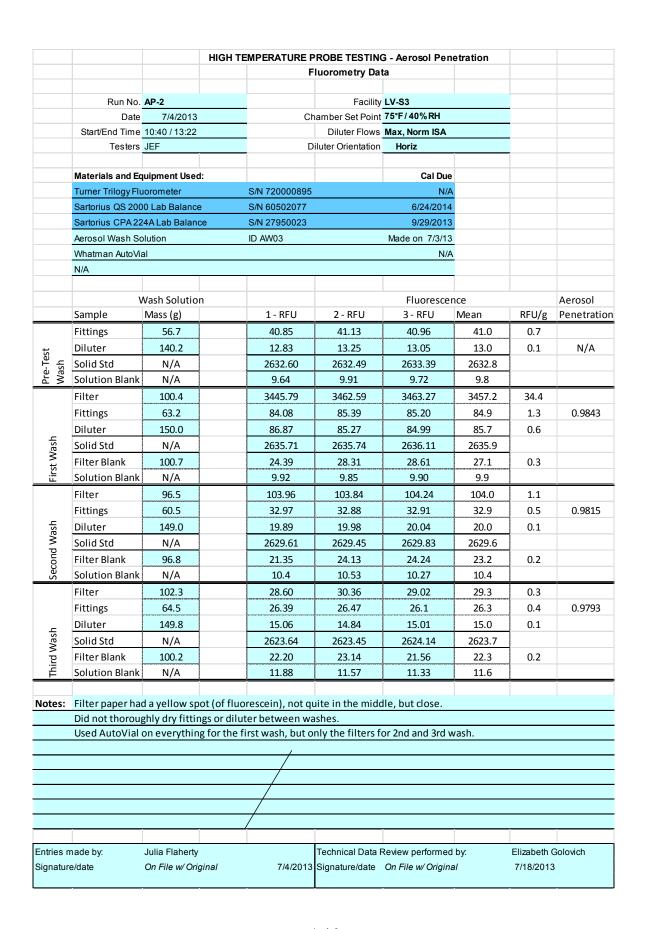
	10				
	TH- (0			orm	
Date	9 1		chamber Set Point 243°F	19.61.KH	1112
Start/End Time		<u>.</u>	Chamber Temp #DIV/0!	deg F e \$ 614	1112
resters	JEF, MSP	_ [Diluter Orientation Horiz or	Vert	
	Start Finish		Instruments Used:		Cal Due
Time	13:40 14:40		Thermotron SE-2000-4 Env Ch	namber S/N 42857	4/2/2014
Chamber Temp	243 243	°F	Alicat MCR-500SLPM MFC	SN 68858	2/4/2014
Chamber Humidity	9.6 9.6	RH	Alicat MCR-500SLPM-D MFC	SN 68857	4/3/2014
Dilution flowcontroller	9.97 9.97	scfm	Vaisala MI70/HMP77B	S/N G5230040/H0320001	1/31/2014
Dilution Dew Pt	-17 -15	°F	Vaisala MI70/DMP74B	S/N G5230040/H0320001	1/31/2014
Dilution Temp	76 76	°F 6	Mott Corp Diluter	Model 7610S-1.375-24-2-AB	N/A
Dilution P	15.3 15.3	psia	Fisher Dew Point Pen	S/N 122277883	5/16/2014
Sampling flowcontroller	10.72 10.72	scfm	N/A		
Sampling Dew Pt	25 27	°F			
Sampling Temp	80 81	°F \	1.1 1.1 1.1		
Sampling P	12.2 12.2	psia	in-call brated then	mocouple 14.5/2	4/13
Ambient pressure	1000 1000	mbar			
Ambient humidity	25.0 23.1	RH			
Ambient Temp	73.6 74.2	°F			
0	1-				
Notes: Same	desiccant as	149	(once-baked)		
Set both he	at tapes to	214°F	which should	correspond to a	1243°F
on the them	nocouples att	ached	to the cham		~
Omega T3	installed on	neck	of port flang	e reads ~ 126	F.
at aroun	10 12:50.	- 1 -	I by the oboo	-1 O 1to	
The little ord	inge indicate	or ba	I on the Stage	et tiller on T	re
drying sys	stem alsapp	reavea	las in its ful	1 of water	by
14:10, NOTE	Ting Really V	isible	in the Second s	tage, and dew	point
D prelig Stat	ple So it show	- 1)	OKAY.	de la lateration	I I also
~ 14:35; the	Grange ball o	in The	2 now Stage filte	r was a little b	it below
The halfwar	Mark.	FC 111	ctroans and	daystoctronus	0100
All yvaler	indicator do	12, U	SHEAR AND	CONON PLICALITY	are
white.	,				
	_/				
"For Information Only" Da	ata Éiles				
Environmental Chamber I	10.00.0	1852	norm_24in_moi	# 151/	
Vaisala Dew Point Data:	2013-05-	23 9 511	10111- 27111-11101	1101	
Alicat Data:	2013052	3 09/12	alicatidat		
	2-17052	1-0 92-	Micuri Clai		
Entries made by: TULL	A FIAHEDT	1	Technical Data Review perform	ned by:	
Signature/date	1	J	Signature/date // /		
7100	det	5/23/13	Chabel	h Solarch 7/10/1	3

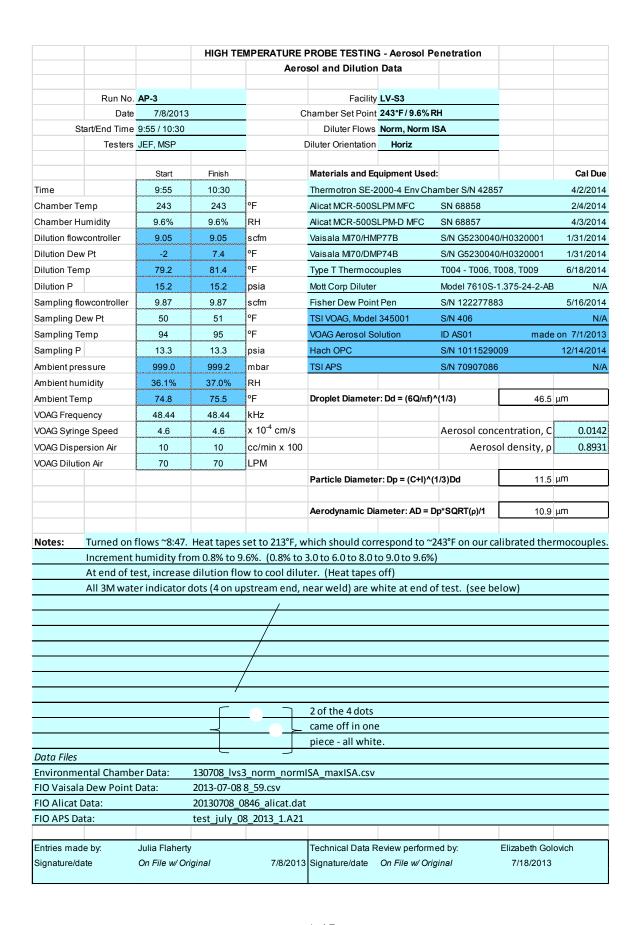
	HIGH TEMPER	ATURE PRO	BE TESTING - Temperature	/ Humidity Only	1
Start/End Time	5/24/13	Ch	acility / Condition LV-S3 M(282°E Chamber Temp illuter Orientation Horiz) or	2X 7/5.67.RH degf e 1/5 6	,14 13
	Start Finish		Instruments Used:		Cal Due
Time	10:40 11:40		Thermotron SE-2000-4 Env Ch	amber S/N 42857	4/2/2014
Chamber Temp	282 282	°F	Alicat MCR-500SLPM MFC	SN 68858	2/4/2014
Chamber Humidity	5.6 5.6	RH	Alicat MCR-500SLPM-D MFC	SN 68857	4/3/2014
Dilution flowcontroller	9.76 9.76	scfm	Vaisala MI70/HMP77B	S/N G5230040/H0320001	1/31/2014
Dilution Dew Pt	0 4.7	°F	Vaisala MI70/DMP74B	S/N G5230040/H0320001	1/31/2014
Dilution Temp	75.5 76.5	°F ←	Mott Corp Diluter	Model 7610S-1.375-24-2-AB	N/A
Dilution P	15.3 15.2	psia	Fisher Dew Point Pen	S/N 122277883	5/16/2014
Sampling flowcontroller	10.52 10.52	scfm	N/A	3.55	
Sampling Dew Pt	43 43	°F (n-calibrated they	mocouple 17:	5/24/12
Sampling Temp	85 86	°F · G	Tourblance The	100	210 1113
Sampling P	12.2 12.2	psia			
Ambient pressure	1001 100	mbar			
Ambient humidity	33.6 34.0	RH			
Ambient Temp	78.3 79.0	°F			
Donlar	od decicean	+'+-	anothers once	halad nallan	DOM
Notes: Replac	ed desiccar	11 Will		-baked gallon	prior
10 Test. Sus	pect desiccan	r ettic	10.00	ted by all in	i 'air
breaking this	bugh Stage	2 tilte		us object of C	2.00
Rainy Inis VI	norning, but	the rai	n appeals to h	THE SIOPPED OF	7:00.
Set both (omegas heat	Tapes	10 244°F (1)	-= 199 + 0.195	182).
09:15 - Omeg	a 13 installed	on he	10.00	e reads ~ 124°F	•
(which is Rec	ally (124-19.9)	0.745	- M	THE TOTAL	- 10
Dry au con	altion is No	t idea	, bounces b	W11 -5 X +5 -+	ap.
Psycaic est	imates Condi	nonea a		14°Fdb 8 62°Fd	
Conditioned	air = 75°Fdb	N. Section Section 1	(1100	We may even	be ok
W/ 200Fdp	conditioned a	M, Whi	1	conditioned au	
Maybe I risk	it the once-	00	desigrant seen		stable
At'the end	of the test		Nater indicato	C002 1. POLK	7
upstream	, and dou	instrea	m, were wh	VITE.	

|30524 - |VS3 - max - novm - 24 in - mott. CSV 2013-05-24-9-37 : CSV 20130524 - 0905 - alicat - dat Vaisala Dew Point Data: Alicat Data: Entries made by: Julia FLAHERTY Technical Data Review performed by:

"For Information Only" Data Files

Environmental Chamber Data:


Run No. Date Start/End Time Testers	5/24	13 /14:50 USP			8°F	Vert	1.6/4/13	
	Start	Finish		Instruments Used:			Cal Due	
Time	13:50	14:50		Thermotron SE-2000-4	Env Ch	namber S/N 42857	4/2/2014	
Chamber Temp	242	243	°F	Alicat MCR-500SLPM N	MFC	SN 68858	2/4/2014	
Chamber Humidity	9.7	9.6	RH	Alicat MCR-500SLPM-D	MFC	SN 68857	4/3/2014	
Dilution flowcontroller	9:05	9.05	scfm	Vaisala MI70/HMP77B		S/N G5230040/H0320001	1/31/2014	
Dilution Dew Pt	-22	-15	°F	Vaisala MI70/DMP74B		S/N G5230040/H0320001	1/31/2014	
Dilution Temp	74.6	78.8	°F	Mott Corp Diluter		Model 7610S-1.375-24-2-A	AB N/A	
Dilution P	15.2	15.2	psia	Fisher Dew Point Pen		S/N 122277883	5/16/2014	
Sampling flowcontroller	9.87	9.87	scfm	N/A				
Sampling Dew Pt	28	28	°F			H 10	Aleccalia	
Sampling Temp	83	85	°F	1 un-calibrate	ps	thermocouple	17 72410	
Sampling P	12.4	12.4	psia				•	
Ambient pressure	1001	1000	mbar					
Ambient humidity	37.0	37.3	RH					
Ambient Temp	79.2	79.6	°F					
Notes: Replace This test: S Set both ome During Dre-t and wouldn't Point was The "nut" in dew point v 14:30 ome At the ena upstream "For Information Only" Da Environmental Chamber D Vaisala Dew Point Data: Alicat Data:	ta Files	asionally at tar art-u back o ately center that A	bes tr p, tm n. Pu nigh dr ai ix. led or all l streo	ny outside. 213°F (1) Ne Vaisala ho lilled the ho (~20F), and 1 line was n neck of po	ind latter class		243). ut off the dew cant. nt improve	
Entries made by: JuciA	FUAHE	ERTY	_, ,	Technical Data Review p	erforme	1 0		
July	7/10	3/2	5/24	3 Signature/date	les	H. Colvid	Hula	
		01				- Or Out	Treft	


A.2 LV-S3 Aerosol Penetration Data Sheets

			HIGH TE	MPERATURE	PROBE TESTING	- Aerosol Pe	netration		
				Aero	sol and Dilution	Data			
	Run No.					LV-S3			
	Date	7/2/2013		C	hamber Set Point				
St		14:06 - 14:55				Norm, Norm IS	Α		
	Testers	JEF			Diluter Orientation	Horiz			
		Ctart	Fisials		Motorials and Es				Cal Due
T:		Start	Finish	1	Materials and Ed			7	
Time		14:06	14:55	°F	Thermotron SE-2			1	4/2/2014 2/4/2014
Chamber Te		75	75	1	Alicat MCR-500S		SN 68858		
Chamber H		22%	22%	RH	Alicat MCR-500S		SN 68857		4/3/2014
Dilution flow		9.05	9.05	scfm	Vaisala MI70/HM		S/N G5230040		1/31/2014
Dilution Dev		2.7	38	°F	Vaisala MI70/DM		S/N G5230040)/H0320001	1/31/2014
Dilution Terr	np	75	92	°F	Type T Thermoco		T005 & T009		6/18/2014
Dilution P		15.1	15.1	psia	Mott Corp Diluter		Model 7610S-1		
Sampling flo	owcontroller	9.87	9.87	scfm	Fisher Dew Poin		S/N 12227788	3	5/16/2014
Sampling D	ew Pt	-3.9	24.5	°F	TSI VOAG, Model	345001	S/N 406		N/A
Sampling Te	emp	74	87	°F	VOAG Aerosol So	olution	ID AS01	made	on 7/1/2013
Sampling P		13.3	13.3	psia	Hach OPC		S/N 10115290	09	12/14/2014
Ambient pre	ssure	996.9	996.4	mbar	TSLAPS		S/N 70907086		N/A
Ambient hun	midity	38.2%	35.5%	RH					
Ambient Ten	mp	77.7	82.6	°F	Droplet Diamete	r: Dd = (6Q/πf)^((1/3)	48.2	μm
VOAG Frequ	iency	43.63	43.61	kHz					
VOAG Syring	ge Speed	4.6	4.6	x 10 ⁻⁴ cm/s			Aerosol conc	entration, C	0.0142
VOAG Dispe	ersion Air	10	10	cc/min x 100			Aeroso	ol density, ρ	0.8931
	on Air	65	70	LPM					***************************************
VOAG Dilutio				4					
VOAG Dilutio	011741	k			Particle Diamete	r: Dp = (C+I)^(1	/3)Dd	11.9	μm
VOAG Dilutio					Particle Diamete	er: Dp = (C+I)^(1	/3)Dd	11.9	μm
VOAG Dilutio							·		
VOAG Dilutio					Particle Diamete		·	11.9	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
VOAG Dilutio		pen valves o	n vacuum p	ump, so first f		ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
Notes:		pen valves o	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
Notes:			n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
Notes: Data Files Environme	Forgot to o	er Data:	n vacuum p	ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
Notes: Data Files Environme	Forgot to o	er Data:		ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
Notes: Data Files Environme FIO Vaisala	Forgot to o	er Data:		ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
Notes: Data Files Environme FIO Vaisala FIO Alicat [Forgot to o	er Data:		ump, so first f	Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	11.3	
Notes: Data Files Environme FIO Vaisala FIO Alicat [ental Chambo a Dew Point Data:	er Data:	N/A	ump, so first f	Aerodynamic Dia	low sample fl	ov. Fixed at	11.3	μπ

Mash Sal	V	7/2/2013 11:30 / 18:55 JEF uipment Used orometer 0 Lab Balance 4A Lab Balanc	е	Ch	2 - RFU 171.24 33.27 2650.49 52.44	LV-S3	nce Mean 171.0 32.7 2650.2 54.5	RFU/g 2.5 0.3	Aerosol Penetratio
Mash Sal	Date Start/End Time Testers laterials and Equirner Trilogy Fluitartorius QS 200 lartorius CPA22 lerosol Wash So Whatman AutoVia I//A Vample littings littings littings litter olid Std olution Blank litter littings litter olid Std	7/2/2013 11:30 / 18:55 JEF uipment Used orometer 0 Lab Balance 4A Lab Balance lution al Vash Solution Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2	е	S/N 720000895 S/N 60502077 S/N 27950023 ID AW02 1 - RFU 172.03 32.51 2650.14 55.24 6996.81	amber Set Point Diluter Flows luter Orientation 2 - RFU 171.24 33.27 2650.49 52.44	75°F/22%RH Norm, Norm ISA Horiz Cal Due N/A 6/24/2014 9/29/2013 Made on 7/2/13 N/A Fluorescer 3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Mash Sal	Date Start/End Time Testers laterials and Equirner Trilogy Fluitartorius QS 200 lartorius CPA22 lerosol Wash So Whatman AutoVia I//A Vample littings littings littings litter olid Std olution Blank litter littings litter olid Std	7/2/2013 11:30 / 18:55 JEF uipment Used orometer 0 Lab Balance 4A Lab Balance lution al Vash Solution Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2	е	S/N 720000895 S/N 60502077 S/N 27950023 ID AW02 1 - RFU 172.03 32.51 2650.14 55.24 6996.81	amber Set Point Diluter Flows luter Orientation 2 - RFU 171.24 33.27 2650.49 52.44	75°F/22%RH Norm, Norm ISA Horiz Cal Due N/A 6/24/2014 9/29/2013 Made on 7/2/13 N/A Fluorescer 3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Mash Sal	Start/End Time Testers Idaterials and Equrner Trilogy Fluid artorius QS 200 Idartorius CPA 22 Idaterials AutoVia Idaterials Au	uipment Used orometer 0 Lab Balance 4A Lab Balance lution al Vash Solutior Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2	е	S/N 720000895 S/N 60502077 S/N 27950023 ID AW02 1 - RFU 172.03 32.51 2650.14 55.24 6996.81	2 - RFU 171.24 33.27 2650.49 52.44	Cal Due N/A 6/24/2014 9/29/2013 Made on 7/2/13 N/A Fluorescer 3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Mash Sal	Testers laterials and Equurner Trilogy Fluitartorius QS 200 lartorius CPA 22 lerosol Wash Solyhatman AutoVia li/A Vample littings litter lolid Std litter littings	uipment Used orometer 0 Lab Balance 4A Lab Balance lution al Vash Solutior Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2	е	S/N 720000895 S/N 60502077 S/N 27950023 ID AW02 1 - RFU 172.03 32.51 2650.14 55.24 6996.81	2 - RFU 171.24 33.27 2650.49 52.44	Cal Due N/A 6/24/2014 9/29/2013 Made on 7/2/13 N/A Fluorescen 3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Sa Sa Aei Wh N// N// Sa Fitt Sa Sa Aei Wh N// Sa Fitt So So Fill Fitt So Fill Fitt Fitt Fitt Fitt Fitt Fitt Fitt	laterials and Equurner Trilogy Fluinartorius QS 200 lartorius CPA 22 lerosol Wash Solyhatman AutoVia li/A Vample littings littings litter lolid Std litter littings	uipment Used orometer 0 Lab Balance 4A Lab Balance lution al Vash Solutior Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2	е	S/N 720000895 S/N 60502077 S/N 27950023 ID AW02 1 - RFU 172.03 32.51 2650.14 55.24 6996.81	2 - RFU 171.24 33.27 2650.49 52.44	Cal Due N/A 6/24/2014 9/29/2013 Made on 7/2/13 N/A Fluorescer 3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Sa Sa Aei Wh N// N// Sa Fitt Sa Sa Aei Wh N// Sa Fitt So So Fill Fitt So Fill Fitt Fitt Fitt Fitt Fitt Fitt Fitt	urner Trilogy Flu artorius QS 200 fartorius CPA 22 erosol Wash So Whatman AutoVia I/A V ample ittings biluter olid Std olution Blank ilter ittings biluter ittings	Vash Solution Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2	е	S/N 60502077 S/N 27950023 ID AW02 1 - RFU 172.03 32.51 2650.14 55.24 6996.81	171.24 33.27 2650.49 52.44	N/A 6/24/2014 9/29/2013 Made on 7/2/13 N/A Fluorescen 3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Sa Sa Aei Wh N// N// Sa Fitt So Fill So Fill Fitt Fitt Fitt Fitt Fitt Fitt Fitt	urner Trilogy Flu artorius QS 200 fartorius CPA 22 erosol Wash So Whatman AutoVia I/A V ample ittings biluter olid Std olution Blank ilter ittings biluter ittings	Vash Solution Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2	е	S/N 60502077 S/N 27950023 ID AW02 1 - RFU 172.03 32.51 2650.14 55.24 6996.81	171.24 33.27 2650.49 52.44	N/A 6/24/2014 9/29/2013 Made on 7/2/13 N/A Fluorescen 3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Sa S	artorius QS 200 artorius CPA 22 erosol Wash So Whatman AutoVia I/A V ample ittings biluter olid Std olution Blank ilter ittings biluter olid Std	0 Lab Balance 4A Lab Balance lution al Vash Solution Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2	е	S/N 60502077 S/N 27950023 ID AW02 1 - RFU 172.03 32.51 2650.14 55.24 6996.81	171.24 33.27 2650.49 52.44	6/24/2014 9/29/2013 Made on 7/2/13 N/A Fluorescen 3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Sa Fit Mash Mash So So Fill Fit	erosol Wash So Whatman AutoVia I/A V ample ittings Diluter olid Std olution Blank ilter ittings Diluter olid Std olution Slank olution Slank olution Slank olution Slank olution Slank	Vash Solution Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2	е	1- RFU 172.03 32.51 2650.14 55.24 6996.81	171.24 33.27 2650.49 52.44	9/29/2013 Made on 7/2/13 N/A Fluorescen 3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Aei Wh N// Sal Fitt So Fil Fit So Fil Fit	erosol Wash So Vhatman AutoVia I/A V ample ittings biluter olid Std olution Blank ilter ittings biluter olid Std	Vash Solution Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2		1 - RFU 172.03 32.51 2650.14 55.24 6996.81	171.24 33.27 2650.49 52.44	Made on 7/2/13 N/A Fluorescen 3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Sal Fitt Mash Mash So So So Fill Fitt Fitt Fitt Fitt Fitt Fitt Fitt	vhatman AutoVia I/A wample ittings biluter olid Std olution Blank ilter ittings biluter olid Std	Vash Solution Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2		1 - RFU 172.03 32.51 2650.14 55.24 6996.81	171.24 33.27 2650.49 52.44	Fluorescen 3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Sal Fitt Mash Mash So So So Si Fili Fitt Fitt Fitt Fitt Fitt Fitt Fit	V ample ittings biluter olid Std olution Blank ilter ittings biluter olid Std	Vash Solution Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2	1	172.03 32.51 2650.14 55.24 6996.81	171.24 33.27 2650.49 52.44	Fluorescen 3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Sal First Mash Mash So So So Si Fili Fitt First Fili Fitt Fitt Fitt Fitt Fitt Fitt Fit	V ample ittings biluter olid Std olution Blank ilter ittings biluter olid Std	Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2	1	172.03 32.51 2650.14 55.24 6996.81	171.24 33.27 2650.49 52.44	3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
First Wash Wash So	ample ittings viluter olid Std olution Blank ilter ittings viluter olid Std	Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2	1	172.03 32.51 2650.14 55.24 6996.81	171.24 33.27 2650.49 52.44	3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
First Wash Wash So	ample ittings viluter olid Std olution Blank ilter ittings viluter olid Std	Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2		172.03 32.51 2650.14 55.24 6996.81	171.24 33.27 2650.49 52.44	3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Fitst Mash	ample ittings viluter olid Std olution Blank ilter ittings viluter olid Std	Mass (g) 68.8240 128.5560 N/A N/A 100.2 73.0 149.2		172.03 32.51 2650.14 55.24 6996.81	171.24 33.27 2650.49 52.44	3 - RFU 169.73 32.45 2649.83	Mean 171.0 32.7 2650.2	2.5	Penetratio
Fitst Mash	ittings illuter olid Std olution Blank ilter ittings illuter olid Std	68.8240 128.5560 N/A N/A 100.2 73.0 149.2		172.03 32.51 2650.14 55.24 6996.81	171.24 33.27 2650.49 52.44	169.73 32.45 2649.83	171.0 32.7 2650.2	2.5	
First Wash Wash So So So Fill Fitt Fitt Fitt Fitt Fitt Fitt Fitt	olluter olid Std olution Blank ilter ittings biluter olid Std	128.5560 N/A N/A 100.2 73.0 149.2		32.51 2650.14 55.24 6996.81	33.27 2650.49 52.44	32.45 2649.83	32.7 2650.2	1	N/A
First Wash Wash OS	olid Std olution Blank ilter ittings biluter olid Std	N/A N/A 100.2 73.0 149.2		2650.14 55.24 6996.81	2650.49 52.44	2649.83	2650.2	0.5	IN/ A
Fill Fith Soo Fill Fith Fith Fith Fith Fith Fith Fith Fith	olution Blank ilter ittings biluter olid Std	N/A 100.2 73.0 149.2		55.24 6996.81	52.44				
Fil Fit Mash So So Fil Fit	ilter ittings biluter olid Std	100.2 73.0 149.2		6996.81			- L/I L	1	
Fit Wash So Fill Fit	ittings Diluter Olid Std	73.0 149.2			7015 01			CO 0	
First Wash So So Signature	olid Std	149.2		637.03	7015.81	6969.37	6994.0	69.8	0.0000
Fil: So Fil: Fil: Fil: Fil: Fil: Fil: Fil: Fil:	olid Std				630.42	627.5	630.0	8.6	0.9909
Fil Fit		N/A		108.02	107.13	107.52	107.6	0.7	
Fil Fit	il+or Dlank 1	1		2647.7	2648.55	2648.08	2648.1	-	
Fil Fit		99.0		25.95	25.05	25.16	25.4	0.3	
Fit	olution Blank	N/A		57.4	57.31	60.95	58.6		
	ilter	100.0		148.03	149.21	148.47	148.6	1.5	
ह्य Dil	ittings	66.8		89.23	89.34	88.96	89.2	1.3	0.9895
	iluter	140.7		19.48	19.74	19.78	19.7	0.1	
Second Wash os light of solid	olid Std	N/A		2648.71	2649.35	2649.12	2649.1		
ğ Fil	ilter Blank	97.9		24.03	23.32	23.88	23.7	0.2	
So So	olution Blank	N/A		58.74	58.47	58.28	58.5		
Fil	ilter	94.3		42.48	42.29	42.29	42.4	0.4	
Fit	ittings	75.7		65.24	66.84	65.03	65.7	0.9	0.9883
ے Dil	iluter	141.6		16.27	16.20	16.26	16.2	0.1	
S	olid Std	N/A		2647.76	2648.29	2648.71	2648.3	ĺ	
> —	ilter Blank	90.1		11.07	11.02	10.99	11.0	0.1	
. <u>=</u> So	olution Blank	N/A		59.01	59.23	59.01	59.1	1	
		, ,							
lotes: Pre	re-test fitting	wash involve	d swirling	g AW02, then wi	ping out with a	Kimwipe and a	dding the Ki	mwine to	the wash
solution.	,			, J=,c. wi		pe and a	o tric iti		
	diluter and fit	tings did not	use autov	/ial.					
	no autovial on								
	diluter after 1s								
,				/					
				/					
ntries made	de by:	Julia Flaherty			Technical Data F	Review performed	by:	Elizabeth (Golovich
Signature/da	-	On File w/ Orig	inal			On File w/ Origina	-	7/18/2013	

			HIGH TE	MPERATURE I	PROBE TESTING	- Aerosol Pe	netration		
				Aero	sol and Dilution	Data			
	Run No.	AP-2			Facility	LV-S3			
	Date	7/4/2013		С	hamber Set Point	75°F/40%RH			
Start/l	End Time	11:41 / 12:21			Diluter Flows	Max, Norm ISA	4		
	Testers	JEF		I	Diluter Orientation	Horiz			
		Start	Finish		Materials and Eq	uipment Used:			Cal Du
Time		11:41	12:21		Thermotron SE-2	000-4 Env Cha	mber S/N 42857	,	4/2/201
Chamber Temp)	75	75	°F	Alicat MCR-500S	LPM MFC	SN 68858		2/4/201
Chamber Humi	idity	40%	40%	RH	Alicat MCR-500S	LPM-D MFC	SN 68857		4/3/201
Dilution flowcon	ntroller	9.76	9.76	scfm	Vaisala MI70/HMI	P77B	S/N G5230040/	H0320001	1/31/201
Dilution Dew Pt		2.8	22.1	°F	Vaisala MI70/DMI	P74B	S/N G5230040/	H0320001	1/31/201
Dilution Temp		75	84	°F	Type T Thermoco	uples	T005 & T009		6/18/201
Dilution P		15.2	15.2	psia	Mott Corp Diluter	•	Model 7610S-1.	.375-24-2-AB	N/
Sampling flower	ontroller	10.34	10.34	scfm	Fisher Dew Point	Pen	S/N 122277883		5/16/201
Sampling Dew F		1.5	12.5	°F	TSI VOAG, Model		S/N 406		N/
Sampling Temp		72	80.4	°F	VOAG Aerosol So		ID AS01	made	on 7/1/201
Sampling P	,	13.3	13.2	psia	Hach OPC	iduoii	S/N 101152900		12/14/201
Ambient pressu	ıro	997.2	996.9	mbar	TSLAPS		S/N 70907086	.	N/
Ambient humidi		33.0%	28.1%	RH	ISIAFS		3/11/1090/1080		IN/
	ity			°F	Duamiet Diameter	Dd = (CO(-6)4	(4/2)	40.0	
Ambient Temp		75.9	78.2		Droplet Diameter	: Da = (δQ/πτ)^	(1/3)	46.9	μгп
VOAG Frequenc	•	47.20	47.20	kHz x 10 ⁻⁴ cm/s				6	0.044
VOAG Syringe S		4.6	4.6				Aerosol conce		0.014
VOAG Dispersion	on Air	10	10	cc/min x 100			Aeroso	l density, ρ	0.893
VOAG Dilution A	Air	70	70	LPM					
					Particle Diamete	r: Dp = (C+I)^(1	/3)Dd	11.6	μm
						, .		11.6	μm
					Particle Diamete Aerodynamic Dia	, .		11.6	
					Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	ne desicca	ant is pretty f	resh, but th	ne dew point is		ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	ne desicca	ant is pretty f	resh, but th	e dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	ne desicca	ant is pretty f	resh, but th	e dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	ne desicca	ant is pretty f	resh, but th	e dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	e desicca	ant is pretty f	resh, but th	e dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	ne desicca	ant is pretty f	resh, but th	ne dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	ne desicca	ant is pretty f	resh, but th	ne dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	ne desicca	ant is pretty f	resh, but th	ne dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	ne desicca	ant is pretty f	resh, but th	e dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	ne desicca	ant is pretty f	resh, but th	e dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	ne desicca	ant is pretty f	resh, but th	e dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	ne desicca	ant is pretty f	fresh, but th	e dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Notes: Th	e desicca	ant is pretty f	fresh, but th	e dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
	e desicca	ant is pretty f	fresh, but th	e dew point is	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Data Files					Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Data Files Environmenta	al Chamb	er Data:	130704_lvs3	3_roomtemp_/	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Data Files Environmenta FIO Vaisala De	al Chamb	er Data:	130704_lvs3 2013-07-04	3_roomtemp_ 11_46.csv	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Data Files Environmenta FIO Vaisala Det	al Chamb ew Point a:	er Data:	130704_lvs3 2013-07-04 20130704_1	3_roomtemp_ 11_46.csv 134_alicat.dat	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Data Files Environmenta FIO Vaisala Det	al Chamb ew Point a:	er Data:	130704_lvs3 2013-07-04 20130704_1	3_roomtemp_ 11_46.csv	Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.0	μm
Data Files Environmenta FIO Vaisala De FIO Alicat Data:	al Chamb ew Point a:	er Data:	130704_lvs: 2013-07-04 20130704_1 test_july_0	3_roomtemp_ 11_46.csv 134_alicat.dat	Aerodynamic Dia	eck the desico	o*SQRT(ρ)/1	gs after this	μm test.
Data Files Environmenta FIO Vaisala Det	al Chamb ew Point a:	er Data:	130704_lvs: 2013-07-04 20130704_1 test_july_0	3_roomtemp_/ 11_46.csv 134_alicat.dat 4_2013_1.A21	Aerodynamic Dia	eck the desico	o*SQRT(ρ)/1 ant bowl fitting	11.0	μm test.

			HIGH TE	MPERATURE P	ROBE TESTING	G - Aerosol Pen	etration		
				F	luorometry Da	ta			
	Run No.	AP-3			Facility	LV-S3			
	Date	7/8/2013		Ch	amber Set Point	243°F / 9.6% RH			
	Start/End Time	8:05 / 11:40			Diluter Flows	Norm, Norm ISA			
	Testers	JEF / MSP		D	iluter Orientation	Horiz			
	Materials and Ed		:			Cal Due			
	Turner Trilogy Flu			S/N 720000895		N/A			
	Sartorius QS 200			S/N 60502077		6/24/2014			
	Sartorius CPA 22		e	S/N 27950023		9/29/2013			
	Aerosol Wash So			ID AW04		Made on 7/5/13			
	Whatman AutoVi	al				N/A			
	N/A								
						=1			
	Sample	Wash Solution	I	1 - RFU	2 - RFU	Fluorescer 3 - RFU	Mean	RFU/g	Aerosol Penetration
		Mass (g)							reneuauoi
	Fittings	70.8		21.88	22.29	22.23	22.1	0.3	N1 / A
est 1	Diluter	143.0		21.08	21.70	21.81	21.5	0.2	N/A
Pre-Test Wash	Solid Std	N/A		2626.79	2626.77	2626.57	2626.7		
₫ >	Solution Blank	N/A		8.01	8.07	8.11	8.1		
	Filter	103.9		3566.43	3554.95	3569.35	3563.6	34.3	
	Fittings	59.5		561.73	561.83	559.19	560.9	9.4	0.9911
_	Diluter	153.6		58.57	61.92	61.17	60.6	0.4	
st W	Solid Std	N/A		2632.07	2631.40	2631.68	2631.7		
	Filter Blank	99.9		24.26	24.15	24.13	24.2	0.2	
Ē	Solution Blank	N/A		8.15	8.09	8.13	8.1		
	Filter	106.6		275.82	279.27	278.65	277.9	2.6	
	Fittings	61.4		198.83	198.33	198.36	198.5	3.2	0.9886
ash	Diluter	152.5		25.68	26.89	27.87	26.8	0.2	
Second Wash	Solid Std	N/A		2611.25	2610.83	2610.72	2610.9		
ono	Filter Blank	100.5		22.92	23.31	25.48	23.9	0.2	
Sec	Solution Blank	N/A		8.75	8.69	9.03	8.8		
	Filter	99.4		119.81	118.54	119.0	119.1	1.2	
	Fittings	61.2		78.81	79.07	78.48	78.8	1.3	0.9871
_	Diluter	147.4		16.12	16.64	16.52	16.4	0.1	
/ash	Solid Std	N/A		2433.79	2433.33	2434.03	2433.7		
Third Wash	Filter Blank	98.0		18.63	20.58	21.76	20.3	0.2	
ŦĬ	Solution Blank	N/A		9.52	9.89	10.2	9.9		
Notes:	Blow out the di	luter betwee	n washes						
	Used autovial f	or all of the 1	st washes	, and only filter	rs for the 2nd a	nd 3rd washes.			
				/					
				/					
				/ IE 7/0/12					
				/ JF 7/8/13					
				/					
Entries n	nade by:	Julia Flaherty			Technical Data I	Review performed	by:	Elizabeth (Golovich
Signatur	-	On File w/ Orig	inal	7/8/2013		On File w/ Origina	-	7/18/2013	
		9				23			

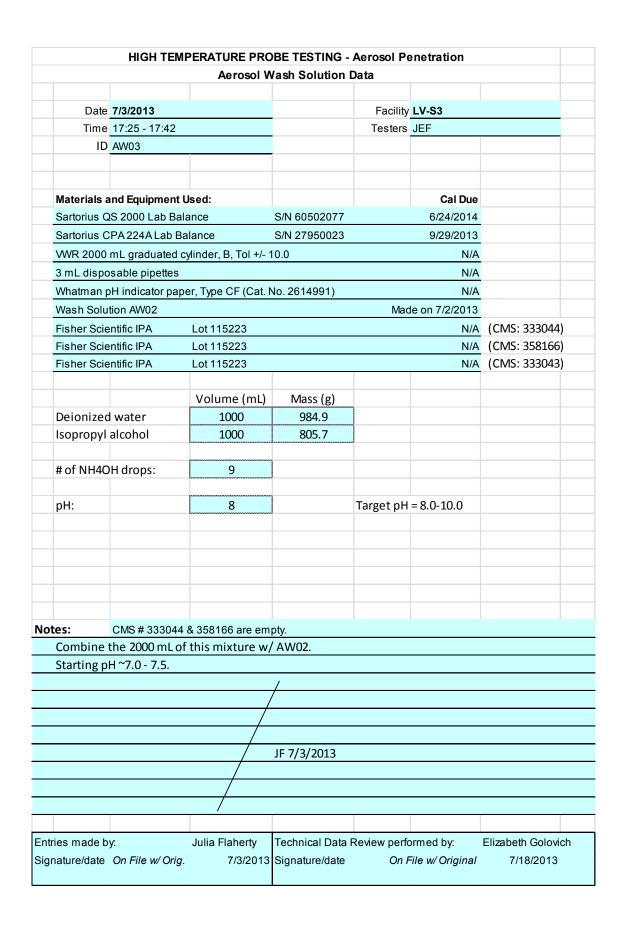
			HIGH TE	MPERATURE I	PROBE TESTING	- Aerosol Pe	netration		
				Aero	sol and Dilution	Data			
	Run No.	AP-4			Facility	LV-S3			
	Date	7/8/2013		С	hamber Set Point	243°F/9.6%R	Н		
Start/End Time		13:15 / 13:50			Diluter Flows	Max, Norm ISA	4		
	Testers	JEF, MSP		[Diluter Orientation	Horiz			
		Start	Finish	1	Materials and Eq	•			Cal Due
Time Character Terrary		13:15	13:50		Thermotron SE-2	000-4 Env Cha	mber S/N 4285	7	4/2/2014
Chamber Ter	mp	243	243	°F	Alicat MCR-500SI	_PM MFC	SN 68858		2/4/2014
Chamber Humidity		9.6%	9.6%	RH					4/3/2014
Dilution flowcontroller		9.76	9.76	scfm	Vaisala MI70/HMP77B S/N G		S/N G5230040	5230040/H0320001 1/31/2014	
Dilution Dew Pt		3	8	°F	Vaisala MI70/DMP74B		S/N G5230040/H0320001 1/31/2014		
Dilution Temp		85.6	86.7	°F	Type T Thermocouples		T004 - T006, T008, T009 6/18/201		6/18/2014
Dilution P		15.2	15.2	psia	Mott Corp Diluter		Model 7610S-1.375-24-2-AB		N/A
Sampling flowcontroller		10.52	10.52	scfm	Fisher Dew Point Pen		S/N 122277883 5/16/2		5/16/2014
Sampling Dew Pt		47	47	°F	TSI VOAG, Model 345001		S/N 406		N/A
Sampling Temp		98	99	°F	VOAG Aerosol Solution		ID AS01	made	on 7/1/2013
Sampling P		13.2	13.2	psia	Hach OPC		S/N 10115290	09	12/14/2014
Ambient pres	sure	998.9	998.9	mbar					
Ambient hum		32.7%	31.9%	RH					
Ambient Tem	-	77.9	77.8	°F	Droplet Diameter	Droplet Diameter: Dd = (6Q/πf)^(1/3)		46.5	ım
VOAG Freque		48.40	48.40	kHz		(()	(,	.0.0	
. ,		4.6	4.6	x 10 ⁻⁴ cm/s			Aerosol conc	entration C	0.0142
VOAG Syringe Speed VOAG Dispersion Air		10	10	cc/min x 100			Aerosol concentration, C		0.8931
·		70	70	LPM			Aerosol density, ρ		0.0331
VOAG Dilution	n Air	70	70	LPIVI	D4'-1- Di4-	D (O+1)A/4	(0) D-I	44.5	·m
					Particle Diamete	r: Dp = (C+I)^(1	/3)Da	11.5	uII

					Aerodynamic Dia	meter: AD = D	p*SQR1(ρ)/1	10.9 լ	ım
	C++	fl n:4	2.02		 		t - NO 400F		
			2:03. Heat t	apes set to 21.	3°F, which shoul	a correspona	to ~243*F on 0	our calibrated	
		pies.		CO/ /O DO/ t- :	204-604-004	- 0 0+- 0 C0/\			
i	thermocou			6% III X% TO					
1	Increment	humidity fro		•					
İ	Increment Both water	humidity fro filter and oi	l filter on ai	r system filling	g up with water;	nearly full by	end of test.	. / h-l	`
İ	Increment Both water	humidity fro filter and oi	l filter on ai	r system filling		nearly full by	end of test.	t. (see below)
İ	Increment Both water	humidity fro filter and oi	l filter on ai	r system filling	g up with water;	nearly full by	end of test.	t. (see below)
1	Increment Both water	humidity fro filter and oi	l filter on ai	r system filling	g up with water;	nearly full by	end of test.	t. (see below)
1	Increment Both water	humidity fro filter and oi	l filter on ai	r system filling	g up with water;	nearly full by	end of test.	t. (see below)
1	Increment Both water	humidity fro filter and oi	l filter on ai	r system filling	g up with water;	nearly full by	end of test.	t. (see below)
İ	Increment Both water	humidity fro filter and oi	l filter on ai	r system filling	g up with water; ear weld are all	nearly full by white at the o	end of test.	t. (see below)
İ	Increment Both water	humidity fro filter and oi	l filter on ai	r system filling	g up with water; ear weld are all water indicator	nearly full by white at the e	end of test.	t. (see below)
İ	Increment Both water	humidity fro filter and oi	l filter on ai	r system filling	g up with water; ear weld are all water indicator upstream end c	nearly full by white at the e	end of test.	t. (see below)
1	Increment Both water	humidity fro filter and oi	l filter on ai	r system filling	g up with water; ear weld are all water indicator	nearly full by white at the e	end of test.	t. (see below)
	Increment Both water	humidity fro filter and oi	l filter on ai	r system filling	g up with water; ear weld are all water indicator upstream end c	nearly full by white at the e	end of test.	t. (see below)
Data Files	Increment Both water The four wa	humidity fro filter and oi ater indicato	I filter on ai	r system filling	water indicator upstream end call white.	nearly full by white at the e	end of test.	t. (see below)
Data Files Environmer	Increment Both water The four wa	numidity fro filter and oi ater indicato	I filter on ai r dots on up	r system filling stream end, n	g up with water; ear weld are all water indicator upstream end c	nearly full by white at the e	end of test.	t. (see below)
Data Files Environmer FIO Vaisala	Increment Both water The four wa	numidity fro filter and oi ater indicato	130708_lvs: 2013-07-08	r system filling stream end, n	water indicator upstream end call white. SA_maxISA.csv	nearly full by white at the e	end of test.	t. (see below)
Data Files Environmer FIO Vaisala FIO Alicat D	Increment Both water The four water The four water The four water The four water The four water The four water The four water The four water	numidity fro filter and oi ater indicato	130708_lvs: 2013-07-08 20130708_0	system filling stream end, n	water indicator upstream end call white. SA_maxISA.csv	nearly full by white at the e	end of test.	t. (see below)
Data Files Environmer FIO Vaisala FIO Alicat D	Increment Both water The four water The four water The four water The four water The four water The four water The four water The four water	numidity fro filter and oi ater indicato	130708_lvs: 2013-07-08 20130708_0	r system filling stream end, n	water indicator upstream end call white. SA_maxISA.csv	nearly full by white at the e	end of test.	t. (see below)
Data Files Environmer FIO Vaisala FIO Alicat Di FIO APS Dat	Increment Both water The four water	humidity fro filter and oi ater indicato	130708_lvs: 2013-07-08 20130708_0 test_july_0	system filling stream end, n	water indicator upstream end c all white.	dots on	end of test.		
Data Files Environmer FIO Vaisala FIO Alicat D	Increment Both water The four water	numidity fro filter and oi ater indicato	130708_lvs: 2013-07-08 20130708_0 test_july_0	sstream end, n 3_norm_norm 8_59.csv 846_alicat.dat 8_2013_1.A21	water indicator upstream end c all white. SA_maxISA.csv Technical Data R	dots on	end of test. end of the tes	t. (see below	

			HIGH TEMPERA	TURE P	ROBE TESTING	G - Aerosol Pene	etration		
				F	luorometry Dat	a			
	Run No.	AP-4			Facility	LV-S3			
	Date	7/8/2013		Ch	amber Set Point	243°F / 9.6% RH			
	Start/End Time	15:10 / 16:05			Diluter Flows	Max, Norm ISA			
	Testers	JEF / MSP		D	iluter Orientation	Horiz			
	Materials and Ed					Cal Due			
	Turner Trilogy Flu		S/N 720			N/A			
	Sartorius QS 200		S/N 605			6/24/2014			
	Sartorius CPA 22					9/29/2013			
	Aerosol Wash So		ID AW04			Made on 7/5/13			
	Whatman AutoVia	al				N/A			
	N/A								
		Vash Solution				Fluorescen			Aerosol
	Sample	Mass (g)	1 - F		2 - RFU	3 - RFU	Mean	RFU/g	Penetratio
	Fittings	61.2	78.		79.07	78.48	78.8	1.3	
sst	Diluter	147.4	16.	12	16.64	16.52	16.4	0.1	N/A
Pre-Test Wash	Solid Std	N/A	2433	3.79	2433.33	2434.03	2433.7		
Pre Wa	Solution Blank	N/A	9.5	52	9.89	10.20	9.9		
	Filter	88.0	4467	7.85	4482.92	4497.07	4482.6	50.9	
	Fittings	45.3	619	.06	620.90	619.45	619.8	13.7	0.9913
	Diluter	149.1	83.	46	85.74	85.64	84.9	0.6	
lsh	Solid Std	N/A	247		2476.32	2476.03	2476.0		
Š	Filter Blank	89.4	16.		16.76	16.69	16.5	0.2	
First Wash	Solution Blank	N/A	10.		10.70	10.78	10.8	0.2	
	Filter	91.6	133		134.09	133.85	134.0	1.5	
		48.7	83.		83.45	83.66	83.4	1.7	0.9894
_	Fittings							1	0.9694
Vas	Diluter	119.4	18.		18.2	18.55	18.5	0.2	
Second Wash	Solid Std	N/A	2569		2569.65	2569.76	2569.8		
cor	Filter Blank	90.7	14.		13.58	14.00	14.0	0.2	
Se	Solution Blank	N/A	10.	75	10.67	10.87	10.8		
	Filter	75.5	84.	96	85.49	85.87	85.4	1.1	
	Fittings	59.0	133	.07	127.31	130.59	130.3	2.2	0.9879
ج	Diluter	103.6	14.	88	15.57	15.03	15.2	0.1	
Nas	Solid Std	N/A	2633	3.84	2633.11	2633.19	2633.4		
Third Was	Filter Blank	77.5	12.	54	12.9	13.22	12.9	0.2	
Η	Solution Blank	N/A	11.	57	11.37	11.47	11.5		
Notes:	Use the 3rd wa	sh from AP-3	as pre-wash for th	is test ((AP-4).				
	Use autovial fo	r all first wash	n, and only filters	for seco	ond and third w	ash.			
	Don't blow out								
			odd Run anothe						
	65.7g wash for	fittings #4: 69	.53, 70.53, 72.05 I	RFU.					
			/						
			/ JF	7/8/13					
			/						
intries n	nade by:	Julia Flaherty			Technical Data F	Review performed	by:	Elizabeth (
Signatur		On File w/ Orig			Signature/date			7/18/2013	

			HIGH TE	MPERATURE I	PROBE TESTING	- Aerosol Pe	netration		
				Aero	sol and Dilution	Data			
	Run No.	AP-5			Facility	LV-S3			
	Date	7/9/2013		С	hamber Set Point	243°F/9.6%RI	Н		
St	art/End Time	14:36 / 15:20			Diluter Flows	Max, Norm ISA	1		
	Testers	JEF		ı	Diluter Orientation	Vert			
		Start	Finish		Materials and Ed	uipment Used:			Cal Due
Time		14:36	15:20		Thermotron SE-2	000-4 Env Cha	mber S/N 4285	7	4/2/2014
Chamber Te	emp	243	243	°F	Alicat MCR-500S	LPM MFC	SN 68858		2/4/2014
Chamber Hu	umidity	9.6%	9.6%	RH	Alicat MCR-500S	LPM-D MFC	SN 68857		4/3/2014
Dilution flow	controller	9.76	9.76	scfm	Vaisala MI70/HM	P77B	S/N G5230040	/H0320001	1/31/2014
Dilution Dew	v Pt	3	16	°F	Vaisala MI70/DM	P74B	S/N G5230040	/H0320001	1/31/2014
Dilution Tem	ıp	87.2	89.0	°F	Type T Thermoco	ouples	T004 - T006, T0	008, T009	6/18/2014
Dilution P		15.4	15.4	psia	Mott Corp Diluter		Model 7610S-1	.375-24-2-AB	N/A
Sampling flo	wcontroller	10.52	10.52	scfm	Fisher Dew Point	Pen	S/N 12227788	3	5/16/2014
Sampling De		48	49	°F	TSI VOAG. Model		S/N 406	-	N/A
Sampling Te		98	100	· °F	VOAG Aerosol So		ID AS01	made	on 7/1/2013
Sampling P		12.9	12.9	psia	Hach OPC		S/N 10115290		12/14/2014
Ambient pre	ecura	1000	999.7	mbar	TSLAPS		S/N 70907086	 	N/A
Ambient hun		27.2%	26.5%	RH	13174 3		3/14 / 090/ 000		IN/A
		79.1	78.8	°F	Droplet Diamete	r: Dd = (60/=f\A	(4/2)	46.5	ım
Ambient Ten				kHz	Droplet Diamete	. Du = (δQ/πι)··	(1/3)	40.5	וווג
VOAG Frequ	•	48.38	48.38	x 10 ⁻⁴ cm/s			A	t t C	0.01.12
VOAG Syring		4.6	4.6				Aerosol conc		0.0142
VOAG Dispe		10	10	cc/min x 100			Aeroso	ol density, p	0.8931
VOAG Dilutio	on Air	70	70	LPM					
					Particle Diamete	r: Dp = (C+I)^(1	/3)Dd	11.5	ц m
					Aerodynamic Dia	meter: AD = D	o*SQRT(ρ)/1	10.9	μ m
Notes:		•			ch should corres	•			
Notes:	Forgot to a	pply water ir	ndicator dot	s on the dilute	er. It's 13:40, but	the tubing is			
Notes:	Forgot to a	pply water ir r is covered	ndicator dot in heat tape	s on the dilute , so dis-assem	er. It's 13:40, but bly is not trivial	the tubing is	already hot, s		
Notes:	Forgot to a (The dilute Incremente	pply water in r is covered ed the humic	ndicator dot in heat tape dity from 0.8	s on the dilute , so dis-assem 8% to 9.6% (fro	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Notes:	Forgot to a (The dilute Incremente The water f	pply water in r is covered ed the humic filter filled u	ndicator dot in heat tape dity from 0.8 p during tes	s on the dilute , so dis-assem % to 9.6% (fro t. The oil filte	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Notes:	Forgot to a (The dilute Incremente The water f	pply water in r is covered ed the humic filter filled u	ndicator dot in heat tape dity from 0.8 p during tes	s on the dilute , so dis-assem 8% to 9.6% (fro	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Notes:	Forgot to a (The dilute Incremente The water f	pply water in r is covered ed the humic filter filled u	ndicator dot in heat tape dity from 0.8 p during tes	s on the dilute , so dis-assem % to 9.6% (fro t. The oil filte	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Notes:	Forgot to a (The dilute Incremente The water f	pply water in r is covered ed the humic filter filled u	ndicator dot in heat tape dity from 0.8 p during tes	s on the dilute , so dis-assem % to 9.6% (fro t. The oil filte	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Notes:	Forgot to a (The dilute Incremente The water f	pply water in r is covered ed the humic filter filled u	ndicator dot in heat tape dity from 0.8 p during tes	s on the dilute , so dis-assem % to 9.6% (fro t. The oil filte	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Notes:	Forgot to a (The dilute Incremente The water f	pply water in r is covered ed the humic filter filled u	ndicator dot in heat tape dity from 0.8 p during tes	s on the dilute , so dis-assem % to 9.6% (fro t. The oil filte	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Notes:	Forgot to a (The dilute Incremente The water f	pply water in r is covered ed the humic filter filled u	ndicator dot in heat tape dity from 0.8 p during tes	s on the dilute , so dis-assem % to 9.6% (fro t. The oil filte	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Notes:	Forgot to a (The dilute Incremente The water f	pply water in r is covered ed the humic filter filled u	ndicator dot in heat tape dity from 0.8 p during tes	s on the dilute , so dis-assem % to 9.6% (fro t. The oil filte	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Notes:	Forgot to a (The dilute Incremente The water f	pply water in r is covered ed the humic filter filled u	ndicator dot in heat tape dity from 0.8 p during tes	s on the dilute , so dis-assem % to 9.6% (fro t. The oil filte	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
	Forgot to a (The dilute Incremente The water f	pply water in r is covered ed the humic filter filled u	ndicator dot in heat tape dity from 0.8 p during tes	s on the dilute , so dis-assem % to 9.6% (fro t. The oil filte	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Data Files	Forgot to a (The dilute Incremente The water i before this	pply water ir r is covered ed the humic filter filled u test. Ran th	ndicator dot in heat tape dity from 0.8 p during tes e lower sys	s on the dilute , so dis-assem % to 9.6% (fro t. The oil filte tem for this te	er. It's 13:40, but ibly is not trivial om 0.8 to 3.0 to 6 or is about half fu st.	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Data Files Environme	Forgot to a (The dilute Incremente The water i before this	pply water ir r is covered ed the humic filter filled u test. Ran th	ndicator dot in heat tape dity from 0.8 p during tes e lower sys	s on the dilute , so dis-assem to 9.6% (fro t. The oil filte tem for this te	er. It's 13:40, but ibly is not trivial om 0.8 to 3.0 to 6 or is about half fu st.	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Data Files Environme FIO Vaisala	Forgot to a (The dilute Incremente The water t before this ntal Chambe Dew Point	pply water ir r is covered ed the humic filter filled u test. Ran th	ndicator dot in heat tape dity from 0.8 p during tes e lower syst	s on the dilute , so dis-assem 8% to 9.6% (fro t. The oil filte tem for this te	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu st.	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Data Files Environme FIO Vaisala FIO Alicat E	Forgot to a (The dilute Incremente The water t before this ntal Chambo Dew Point Data:	pply water ir r is covered ed the humic filter filled u test. Ran th	ndicator dot in heat tape dity from 0.8 p during tes e lower syst e lower syst 2013-07-09 2013-07-09	s on the dilute , so dis-assem 8% to 9.6% (fro t. The oil filte tem for this te 3_norm_maxIS 15_09.csv 331_alicat.dat	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu st.	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Data Files Environme	Forgot to a (The dilute Incremente The water t before this ntal Chambo Dew Point Data:	pply water ir r is covered ed the humic filter filled u test. Ran th	ndicator dot in heat tape dity from 0.8 p during tes e lower syst e lower syst 2013-07-09 2013-07-09	s on the dilute , so dis-assem 8% to 9.6% (fro t. The oil filte tem for this te	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu st.	the tubing is) .0 to 8.0 to 9.0	already hot, s to 9.6%).	o we'll skip t	nis one.
Data Files Environme FIO Vaisala FIO Alicat I FIO APS Da	Forgot to a (The dilute Incremente The water t before this ntal Chambo Dew Point Data: ta:	pply water ir r is covered ed the humic filter filled u test. Ran th	dicator dot in heat tape dity from 0.8 p during tes e lower system 130709_lvs: 2013-07-09 20130709_1 test_july_0	s on the dilute , so dis-assem 8% to 9.6% (fro t. The oil filte tem for this te 3_norm_maxIS 15_09.csv 331_alicat.dat	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu st.	the tubing is .) .0 to 8.0 to 9.0 Ill. Fresh desi	already hot, s to 9.6%). ccant was add	o we'll skip t	nis one.
Data Files Environme FIO Vaisala FIO Alicat E	Forgot to a (The dilute Incremente The water i before this ntal Chambo Dew Point Data: ta: e by:	pply water ir r is covered ed the humic filter filled u test. Ran th	dicator dot in heat tape dity from 0.8 p during tes e lower system 130709_lvs: 2013-07-09 20130709_1 test_july_0	s on the dilute , so dis-assem 3% to 9.6% (fro it. The oil filte tem for this te 3_norm_maxIS 15_09.csv 331_alicat.dat 9_2013_1.A21	er. It's 13:40, but bly is not trivial om 0.8 to 3.0 to 6 or is about half fu st.	the tubing is .) .0 to 8.0 to 9.0 Ill. Fresh desi	already hot, s to 9.6%). ccant was add	o we'll skip t	nis one.

	7/9/2013 12:54 / 16:50 JEF uipment Used: orometer 0 Lab Balance 4A Lab Balance duttion al	e	Ch	namber Set Point	LV-S3 243°F/9.6%RH Max, Norm ISA			
Date Start/End Time Testers Jaterials and Equiner Trilogy Fluorius QS 200 artorius CPA 22 erosol Wash Sol/hatman AutoVia //A Jample jittings jiluter oliid Std olution Blank	7/9/2013 12:54 / 16:50 JEF uipment Used: orometer 0 Lab Balance 4A Lab Balance duttion al	e	S/N 720000895 S/N 60502077 S/N 27950023	namber Set Point Diluter Flows	243°F/9.6%RH Max, Norm ISA Vert Cal Due N/A 6/24/2014 9/29/2013			
Date Start/End Time Testers Jaterials and Equirer Trilogy Fluorius QS 200 artorius CPA 22 erosol Wash Sol/hatman AutoVia //A Jample jittings jiluter oliid Std olution Blank	7/9/2013 12:54 / 16:50 JEF uipment Used: orometer 0 Lab Balance 4A Lab Balance duttion al	e	S/N 720000895 S/N 60502077 S/N 27950023	namber Set Point Diluter Flows	243°F/9.6%RH Max, Norm ISA Vert Cal Due N/A 6/24/2014 9/29/2013			
Start/End Time Testers laterials and Equimer Trilogy Fluorius QS 200 artorius CPA 22 erosol Wash Scot/hatman AutoVia //A umple ittings illuter ollid Std olution Blank	12:54 / 16:50 JEF uipment Used: corometer 0 Lab Balance 4A Lab Balance duttion al Vash Solution Mass (g) 75.2	e	S/N 720000895 S/N 60502077 S/N 27950023	Diluter Flows	Max, Norm ISA Vert Cal Due N/A 6/24/2014 9/29/2013			
Testers laterials and Equarterius QS 200 artorius CPA 22 erosol Wash Sc //hatman AutoVia //A vample ittings illuter olid Std olution Blank	uipment Used: orometer 0 Lab Balance 4A Lab Balance dution al Vash Solution Mass (g) 75.2	e	S/N 720000895 S/N 60502077 S/N 27950023		Vert Cal Due N/A 6/24/2014 9/29/2013			
laterials and Equirner Trilogy Fluorius QS 200 artorius CPA 22 erosol Wash Scothatman AutoVist/A Vample ittings illuter ollid Std ollution Blank	uipment Used: lorometer 0 Lab Balance 4A Lab Balance dution al Vash Solution Mass (g) 75.2	e	S/N 720000895 S/N 60502077 S/N 27950023	iluter Orientation	Cal Due N/A 6/24/2014 9/29/2013			
urner Trilogy Flu artorius QS 200 artorius CPA 22 erosol Wash Sc //hatman AutoVia //A uample ittings iiluter oliid Std olution Blank	O Lab Balance 4A Lab Balance dution al Vash Solution Mass (g) 75.2	e	S/N 60502077 S/N 27950023		N/A 6/24/2014 9/29/2013			
urner Trilogy Flu artorius QS 200 artorius CPA 22 erosol Wash Sc //hatman AutoVia //A uample ittings iiluter oliid Std olution Blank	O Lab Balance 4A Lab Balance dution al Vash Solution Mass (g) 75.2	e	S/N 60502077 S/N 27950023		N/A 6/24/2014 9/29/2013			
artorius QS 200 artorius CPA 22 erosol Wash Sc //hatman AutoVia //A wample ittings iiluter oliid Std olution Blank	0 Lab Balance 4A Lab Balance clution al Vash Solution Mass (g) 75.2		S/N 60502077 S/N 27950023		6/24/2014 9/29/2013			
artorius CPA 22 erosol Wash Sc //hatman AutoVia //A v ample ittings illuter ollid Std olution Blank	4A Lab Balance solution al Vash Solution Mass (g) 75.2		S/N 27950023		9/29/2013			
erosol Wash Sc Ihatman AutoVia I/A V ample ittings illuter olid Std olution Blank	Vash Solution Mass (g) 75.2							
/hatman AutoVia /A V ample ittings iluter olid Std olution Blank	Vash Solution Mass (g) 75.2		ID AWU5		Made on 7/8/13			
/A vample ittings illuter olid Std olution Blank	Vash Solution Mass (g) 75.2	ı			AL/A			
V ample ittings iluter olid Std olution Blank	Mass (g) 75.2	l			N/A			
ample ittings iluter olid Std olution Blank	Mass (g) 75.2	ı						
ample ittings iluter olid Std olution Blank	Mass (g) 75.2	•			Fluorescen	CE		Aerosol
ittings iluter olid Std olution Blank	75.2		1 - RFU	2 - RFU		Mean	RFU/g	Penetratio
iluter olid Std olution Blank			32.27	32.18	32.46	32.3	0.4	. chediado
olid Std olution Blank	130.9		17.22	17.39	17.91	***************************************	0.4	NI/A
olution Blank					2642.81	17.5	0.1	N/A
	N/A N/A		2643.89 8.25	2643.05 8.28	2642.81 8.33	2643.3 8.3		
liter i				1			44.7	
	98.0		1147.86	1145.08	1144.64	1145.9	11.7	0.0000
ittings	102.7		4471.18	4471.54	4475.78	4472.8	43.6	0.9966
iluter	148.0		27.84	28.04	27.62	27.8	0.2	
olid Std	N/A		2646.23	2645.75	2645.61	2645.9		
ilter Blank	102.3		14.58	16.19	16.45	15.7	0.2	
olution Blank	N/A		8.49	8.26	8.58	8.4		
ilter	100.0		71.99	73.20	72.21	72.5	0.7	
ittings	120.4		119.87	119.89	119.55	119.8	1.0	0.9940
iluter	148.6		22.75	22.60	23.46	22.9	0.2	
olid Std	N/A		2645.13	2644.31	2644.86	2644.8		
ilter Blank	104.1		14.24	13.50	13.58	13.8	0.1	
olution Blank	N/A		10.48	10.71	10.74	10.6		
ilter	97.7		28.65	29.49	29.44	29.2	0.3	
ittings	120.5		27.04	28.54	31.91	29.2	0.2	0.9924
iluter	143.9		14.16	14.61	14.23	14.3	0.1	
olid Std	N/A		2634.78	2636.78	2636.10	2635.9		
ilter Blank	98.1		13.56	14.34	14.46	14.1	0.1	
olution Blank	N/A		10.90	10.96	10.83	10.9		
				filters on seco	nd and third was	hes.		
id not blow or	ut diluter bety	ween was	hes.					
			/					
		/	/					
		/						
	Julia Flaherty			Technical Data I	Review performed	by:	Elizabeth (3olovich
de by:	On File w/ Orig	inal	7/9/2013	Signature/date	On File w/ Origina	I	7/18/2013	
ol ilt ilt ilt ol	lid Std ter Blank lution Blank ter tings uter lid Std ter Blank lution Blank tovial used f	lid Std N/A ter Blank 104.1 lution Blank N/A ter 97.7 tings 120.5 uter 143.9 lid Std N/A ter Blank 98.1 lution Blank N/A tovial used for everything d not blow out diluter between the bet	lid Std N/A ter Blank 104.1 lution Blank N/A ter 97.7 tings 120.5 uter 143.9 lid Std N/A ter Blank 98.1 lution Blank N/A tovial used for everything on first we denot blow out diluter between was a by: Julia Flaherty	lid Std N/A 2645.13 ter Blank 104.1 14.24 lution Blank N/A 10.48 ter 97.7 28.65 tings 120.5 27.04 luter 143.9 14.16 lid Std N/A 2634.78 ter Blank 98.1 13.56 lution Blank N/A 10.90 tovial used for everything on first wash, then only a not blow out diluter between washes.	Idid Std N/A 2645.13 2644.31 Iter Blank 104.1 14.24 13.50 Iution Blank N/A 10.48 10.71 Iter 97.7 28.65 29.49 Itings 120.5 27.04 28.54 Iuter 143.9 14.16 14.61 Idid Std N/A 2634.78 2636.78 Iter Blank 98.1 13.56 14.34 Iution Blank N/A 10.90 10.96 Itovial used for everything on first wash, then only filters on second not blow out diluter between washes. Interpretation of the property of the p	Idid Std N/A 2645.13 2644.31 2644.86 Iter Blank 104.1 14.24 13.50 13.58 Iution Blank N/A 10.48 10.71 10.74 Iter 97.7 28.65 29.49 29.44 Itings 120.5 27.04 28.54 31.91 Iter 143.9 14.16 14.61 14.23 Idid Std N/A 2634.78 2636.78 2636.10 Iter Blank 98.1 13.56 14.34 14.46 Idution Blank N/A 10.90 10.96 10.83 Itovial used for everything on first wash, then only filters on second and third wash on the blow out diluter between washes. Technical Data Review performed	Idid Std N/A 2645.13 2644.31 2644.86 2644.8 Iter Blank 104.1 14.24 13.50 13.58 13.8 Iution Blank N/A 10.48 10.71 10.74 10.6 ter 97.7 28.65 29.49 29.44 29.2 tings 120.5 27.04 28.54 31.91 29.2 uter 143.9 14.16 14.61 14.23 14.3 Id Std N/A 2634.78 2636.78 2636.10 2635.9 ter Blank 98.1 13.56 14.34 14.46 14.1 Iution Blank N/A 10.90 10.96 10.83 10.9 tovial used for everything on first wash, then only filters on second and third washes. 31.00 10.90 10.96 10.83 10.9 a by: Julia Flaherty Technical Data Review performed by: 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90 10.90	lid Std N/A 2645.13 2644.31 2644.86 2644.8 ter Blank 104.1 14.24 13.50 13.58 13.8 0.1 lution Blank N/A 10.48 10.71 10.74 10.6 ter 97.7 28.65 29.49 29.44 29.2 0.3 tings 120.5 27.04 28.54 31.91 29.2 0.2 uter 143.9 14.16 14.61 14.23 14.3 0.1 lid Std N/A 2634.78 2636.78 2636.10 2635.9 ter Blank 98.1 13.56 14.34 14.46 14.1 0.1 lution Blank N/A 10.90 10.96 10.83 10.9 tovial used for everything on first wash, then only filters on second and third washes. If not blow out diluter between washes.


			HIGH TE	MPERATURE I	PROBE TESTING	- Aerosol Pe	enetration		
					sol and Dilution				
	Run No.	AP-6			Facility	LV-S3			
	Date	7/11/2013		C	hamber Set Point	243°F/9.6%R	н		
Sta	art/End Time	14:30 / 15:10			Diluter Flows	Max, Norm IS/	Δ		
	Testers	JEF, JAG, MSF)	- 1	Diluter Orientation	Vert			
		Start	Finish		Materials and Eq	uipment Used:			Cal Due
Time		14:30	15:10		Thermotron SE-2	000-4 Env Cha	mber S/N 4285	7	4/2/2014
Chamber Ter	mp	243	243	°F	Alicat MCR-500SI	LPM MFC	SN 68858		2/4/2014
Chamber Hu	midity	9.6%	9.6%	RH	Alicat MCR-500SI	LPM-D MFC	SN 68857		4/3/2014
Dilution flow	controller	9.76	9.76	scfm	Vaisala MI70/HMF	P77B	S/N G5230040	/H0320001	1/31/2014
Dilution Dew	Pt	-17	-6	°F	Vaisala MI70/DMF	P74B	S/N G5230040	/H0320001	1/31/2014
Dilution Tem	р	87.7	87.2	°F	Type T Thermoco	uples	T004 - T006, T	008, T009	6/18/2014
Dilution P		15.3	15.3	psia	Mott Corp Diluter		Model 7610S-1	.375-24-2-AB	N/A
Sampling flow	wcontroller	10.52	10.52	scfm	Fisher Dew Point	Pen	S/N 12227788	3	5/16/2014
Sampling De	w Pt	45	47	°F	TSI VOAG, Model	345001	S/N 406		N/A
Sampling Te	mp	101	101	°F	VOAG Aerosol So	lution	ID AS01	made	on 7/1/2013
Sampling P		12.8	12.8	psia	Hach OPC		S/N 10115290	09	12/14/2014
Ambient pres	sure	995.3	995.0	mbar	TSLAPS		S/N 70907086		N/A
Ambient hum		25.4%	28.0%	RH					
Ambient Tem		81.6	79.9	°F	Droplet Diameter	:: Dd = (6Q/πf)^	(1/3)	46.5	um
VOAG Freque		48.49	48.51	kHz		(••,	()	10.0	p
VOAG Syringe	,	4.6	4.6	x 10 ⁻⁴ cm/s			Aerosol conc	antration C	0.0142
		10	10	cc/min x 100					0.8931
VOAG Disper				-			Aerosc	ol density, ρ	0.0331
VOAG Dilutio	n Air	70	70	LPM	Davidala Diamata	D (O+1)A/4	1/0\D.1	44.5	m
					Particle Diamete	r: up = (C+i)^(1	1/3)Da	11.5	μш
					Asuadomania Dia		**************************************	40.0	
					Aerodynamic Dia	illieter: AD – D	ρ σακι(ρ)/ ι	10.9	μш
Notes:	AD 6 is a ro	peat of AP-5.							
			+ +o 212°E v	which chould a	correspond to ~2	12°E on our c	alibrated there	macaunlas	
	•				orrespond to 2		anbrated then	mocoupies.	
			•		coating. We place		ambor at arou	and 11:40 w	hich
				•	front of probe,			anu 11.40, w	IIICII
	•				off before I wra			thormocou	nla broka
						•	t tape, and the	thermocou	pie bioke.
		dots were w			track a little afte	er i piii.			
All Sivi Wat	ei iliuicatoi	uots were w	/	i or test.					
			/						
			/						
Data Files									
Environmer	ntal Chambe	er Data:	130711 lvs	3 norm maxIS	SA.csv				
FIO Vaisala			2013-07-11						
FIO Alicat D				148 alicat.dat					
FIO APS Dat				1_2013_1.A21					
Entries made	e by:	Julia Flaherty			Technical Data R	eview performe	ed by:	Elizabeth Gol	ovich
	_	,					-		
Signature/da	te	On File w/ Orig	jinal	7/11/2013	Signature/date	On File w/ Orig	inal	7/18/2013	

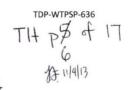
			HIGH TE	MPERATURE F	PROBE TESTING	G - Aerosol Pen	etration		
				F	luorometry Da	ta			
	Run No.	AP-6			Facility	LV-S3			
	Date	7/11/2013		Ch	namber Set Point	243°F / 9.6% RH			
	Start/End Time	8:35 / 16:30			Diluter Flows	Max, Norm ISA			
	Testers	JEF, JAG, MSP		D	iluter Orientation	Vert			
	Materials and Ed	•				Cal Due			
	Turner Trilogy Flu			S/N 720000895		N/A			
	Sartorius QS 200			S/N 60502077		6/24/2014			
	Sartorius CPA 22		e	S/N 27950023		9/29/2013			
	Aerosol Wash So			ID AW06		Made on 7/9/13			
	Whatman AutoVi	al				N/A			
	N/A			1	1				
	,	A/ l- C - l - +:				FI			A I
	Sample	Wash Solution	I	1 - RFU	2 - RFU	Fluorescer 3 - RFU	Mean	DELL/~	Aerosol Penetratio
		Mass (g)		8				RFU/g	renetiatio
	Fittings	104.7		24.38	24.92	24.91	24.7	0.2	h1/-
est	Diluter	148.1		17.81	17.68	17.80	17.8	0.1	N/A
Pre-Test Wash	Solid Std	N/A		2626.75	2628.35	2627.83	2627.6		
₫ >	Solution Blank	N/A		9.35	9.88	9.35	9.5		
	Filter	99.2		2028.65	2019.65	2027.52	2025.3	20.4	
	Fittings	100.4		3411.13	3413.94	3406.41	3410.5	34.0	0.9925
	Diluter	151.1		61.75	62.02	61.92	61.9	0.4	
First Wash	Solid Std	N/A		2643.80	2644.06	2644.85	2644.2		
st V	Filter Blank	102.9		17.33	17.98	17.55	17.6	0.2	
Fir	Solution Blank	N/A		12.27	12.78	13.40	12.8		
	Filter	95.1		94.19	93.39	93.17	93.6	1.0	
	Fittings	93.2		219.99	217.95	219.53	219.2	2.4	0.9907
ash	Diluter	124.2		15.78	17.63	16.39	16.6	0.1	
Second Wash	Solid Std	N/A		2640.95	2641.01	2641.65	2641.2		
)UO	Filter Blank	101.3		14.55	14.77	14.86	14.7	0.1	
Sec	Solution Blank	N/A		13.16	13.17	13.11	13.1		
	Filter	86.4		44.36	45.23	44.96	44.9	0.5	
	Fittings	77.0		61.39	61.16	61.84	61.5	0.8	0.9891
_	Diluter	128.2		13.50	13.37	13.29	13.4	0.1	
Vash	Solid Std	N/A		2648.82	2648.39	2647.93	2648.4		
Third Was	Filter Blank	85.8		13.74	13.98	13.86	13.9	0.2	
Ę	Solution Blank	N/A		13.93	13.72	13.89	13.8		
lotes:	Used autovial u	used for all of	the first v	vashes, and on	ly the filters on	second and thir	d washes.		
	Did not blow o	ut diluter bet	ween was	shes.					
	Shook the filte	r paper (a lot)	for the fi	rst wash, so we	had lots of pie	ces for the seco	nd and third	l wash.	
				/					
				/					
			/						
ntries n	nade by:	Julia Flaherty			Technical Data F	Review performed	by:	Elizabeth (Golovich
Signatur		On File w/ Orig	inal	7/11/2013		On File w/ Origina	-	7/18/2013	
_		Ū				_			

			V	OAG A	erosol Soluti	on Data	
	Date	7/1/2013			Facility	LV-S3	
	Time	17:00			Testers	JEF	
	ID	AS01					
	Materials and E					Cal Due	
	Sartorius QS 20	00 Lab Balar	ice	S/N 605	02077	6/24/2014	
	Sartorius CPA 2		ince	S/N 279	50023	9/29/2013	
	3 mL disposable						
	Turner Designs			Lot # A2	16E236	N/A	
	Isopropyl Alcoho			Lot 115	223	N/A	(CMS 333044)
	Oleic Acid, Tech	nical Grade,	90%	Lot#M	(BH5625V	N/A	
	Taurat Naire Inc.				Damait /	•	
	Target Mix, by Oleic Acid	voiume:	1.0		Density, g/m 0.89	L	
	Fluorescein So	lution	0.02		1.28		
	Isopropyl Alco		70		0.79		
	ізоргоруї лісо	1101	70		0.73		
	Target Mix, by	mass:			mass in 400g		
	Oleic Acid		0.89		6.3328		
	Fluorescein So	lution	0.0256		0.1822		
	Isopropyl Alco		55.3		393.4851		
	Total:		56.2156		400.0000		
	Actual Mix, by	mass:	6.2264	· -	-	in 71.02 parts	
	Oleic Acid	lution	6.3364		7.12	1.00	
	Fluorescein So		0.184	4	0.14	0.02	
	Isopropyl Alco <i>Total:</i>	1101	393.5 400.0204		498.10 <i>505.36</i>	70.00 <i>71.02</i>	
	rotui.		400.0204		303.30	/1.02	
	Volumetric Co	ncentration	of nonvol	atile sol	ute. C	0.0142	
	Aerosol Densit					0.8931	
	2.223.23.131	- / / F				0.0001	
Note	s:	1 L amber N	algene iar is	s ~83a.			
	e up the oleic ac				ore use.		
Entrie	s made by:	Julia Flahert	у	Technic	al Data Reviev	performed by:	Elizabeth Golov
	· ·	le w/ Original	•			File w/ Original	

		HIGH TEMP	PERATURE PRO	BE TESTING -	Aerosol Pe	netration	
			Aerosol W	ash Solution D	Data		
	Date	7/1/2013			Facility	LV-S3	
	Time	10:55 - 11:20			Testers	JEF	
	ID	AW01	,				
	Materials a	ınd Equipment U	sed:			Cal Due	
	Sartorius C	S 2000 Lab Bala	nce	S/N 60502077		6/24/2014	
	Sartorius C	PA 224A Lab Bal	ance	S/N 27950023		9/29/2013	
	WR 2000	mL graduated cy	linder, B, Tol +/- 1	0.0		N/A	
	3 mL dispo	sable pipettes				N/A	
	Whatman p	H indicator pape	r, Type CF (Cat. N	lo. 2614991)		N/A	
	Sigma Aldr		``	Batch #68996Ml	K	N/A	(CMS: 307609)
	Sigma Aldr			Batch #68996Ml	K		(CMS: 307610)
	N/A						(0.0.0.00,020)
			Volume (mL)	Mass (g)			
	Deionized	l water	1000	983.9			
	Isopropyl		1000	809.0			
	зоргоруг		1000	303.0			
	# of NH40	H drops:	9				
	pH:		8		Target pH	= 8.0-10.0	
	P				.a.gecp	0.0 _0.0	
Nο	tes:	Starting pH ~ 6.5	,				
140			nay have been si	maller than the	others		
	#307609 is	•	idy flave been si	Than er than the	others.		
	#30700313	cilipty.	/				
			/				
			JF 7/1/2013				
			31 7/1/2013				
		/					
Ent	ries made b	\r_	Iulia Elaborty	Technical Data	Paviou porfo	ormed by	Elizabeth Golovich
		-	Julia Flaherty	Technical Data I			
Sigi	nature/uate	On File w/ Orig.	7/1/2013	Signature/date	On F	File w/ Original	7/18/2013

		HIGH TEMP	PERATURE PRO	BE TESTING -	Aerosol Pe	netration	
			Aerosol W	ash Solution I	Data		
	Date	7/2/2013			Facility	LV-S3	
	Time	10:35 - 10:55			Testers	JEF	
	ID	AW02					
	Materials a	nd Equipment U	sed:			Cal Due	
	Sartorius Q	S 2000 Lab Bala	ince	S/N 60502077		6/24/2014	
	Sartorius C	PA 224A Lab Ba	lance	S/N 27950023		9/29/2013	
	WR 2000	mL graduated cy	linder, B, Tol +/- 1	10.0		N/A	
	3 mL dispo	sable pipettes				N/A	
	Whatman p	H indicator pape	er, Type CF (Cat. N	No. 2614991)		N/A	
	Wash Solu	tion AW01			Mad	e on 7/1/2013	
	Sigma Aldr	ich IPA	Batch # 68996Ml	K		N/A	(CMS: 307610)
	Sigma Aldr		Batch # 68996Ml	 K		N/A	(CMS: 307608)
	J						
			Volume (mL)	Mass (g)			
	Deionized	water	1000	987			
	Isopropyl		1000	804.5			
	# of NH40	H drops:	9				
			•				
	pH:		8		Target pH	= 8.0-10.0	
No	tes:	CMS # 307610 i	s empty.				
	Combine		this mixture wi	th yesterday's	AW01 for a	new AW02.	There's ~1L of
			enough for a te				
		H ~7.0 to 7.5.		/			
	<u></u>		/	/			
			/				
			/				
			/	JF 7/2/2013			
			/				
Ent	ries made b	y:	Julia Flaherty	Technical Data	Review perfo	ormed by:	Elizabeth Golovich
Sig	nature/date	On File w/ Orig.		Signature/date	On F	ile w/ Original	7/18/2013

		HIGH TEMP	PERATURE PRO	BE TESTING -	Aerosol Pe	netration			
			Aerosol W	/ash Solution I	Data				
	Date	7/5/2013			Facility	LV-S3			
	Time	16:17 - 16:40			Testers	JEF			
	ID	AW04							
	Materials a	ınd Equipment U	sed:			Cal Due			
	Sartorius Q	S 2000 Lab Bala	ince	S/N 60502077		6/24/2014			
	Sartorius C								
	WR 2000	mL graduated cy	linder, B, Tol +/- 1	10.0		N/A			
	3 mL dispo	sable pipettes				N/A			
	Whatman p	H indicator pape	er, Type CF (Cat. N	No. 2614991)		N/A			
	Wash Solu	tion AW03			Mad	e on 7/3/2013			
	Fisher Scientific IPA Lot 115223 N/A (CMS: 333043)								
	Fisher Scientific IPA Lot 127641 N/A (CMS: 392783)								
			Volume (mL)	Mass (g)					
	Deionized	l water	600	588.8					
	Isopropyl	alcohol	600	487.9					
	# of NH40	H drops:	6						
	pH:		8		Target pH	= 8.0-10.0			
No	tes:			/					
				/					
			/						
				4-4					
				JF 7/3/2013					
			/						
			/						
	ries made b		Julia Flaherty	Technical Data I		,	Elizabeth Golovich		
Sig	nature/date	On File w/ Orig.	7/5/2013	Signature/date	On F	ile w/ Original	7/18/2013		


		HIGH TEMP	PERATURE PRO	BE TESTING -	Aerosol Pe	enetration	
			Aerosol W	ash Solution I	Data		
	Date	7/8/2013			Facility	LV-S3	
	Time	6:20			Testers	JEF	
	ID	AW05					
	Materials a	ınd Equipment U	sed:			Cal Due	
	Sartorius Q	S 2000 Lab Bala	nce	S/N 60502077		6/24/2014	
	Sartorius C	PA 224A Lab Ba	lance	S/N 27950023		9/29/2013	
	WR 2000	mL graduated cy	linder, B, Tol +/- 1	10.0		N/A	
	3 mL dispo	sable pipettes				N/A	
			er, Type CF (Cat. N	No. 2614991)		N/A	
	Wash Solut				Mad	le on 7/5/2013	
	Fisher Scie	entific IPA	Lot 127641				(CMS: 392783)
	Fisher Scie		Lot 127641			N/A	· .
	1.0		(65.222.2 ,				
			Volume (mL)	Mass (g)			
	Deionized	l water	1000	988.7			
	Isopropyl		1000	802.2			
	1001-11						
	# of NH40	H drops:	9				
	pH:		8.0		Target pH	= 8.0-10.0	
No	tes:	Very small amo	unt of AW04 left (<	<500 mL).			
			ne remaining A	· · · · · · · · · · · · · · · · · · ·			
	CMS #3927	783 is empty.					
			/				
			/				
Ent	ries made b	y:	Julia Flaherty	Technical Data I	Review perfo	ormed by:	Elizabeth Golovich
		On File w/ Orig.	7/8/2013	Signature/date	On F	File w/ Original	7/18/2013

		HIGH TEMP	PERATURE PRO	BE TESTING -	Aerosol Pe	enetration	
			Aerosol W	ash Solution I	Data		
	Date	7/9/2013			Facility	LV-S3	
	Time	17:40 - 18:00			Testers	JEF	
	ID	AW06					
	Materials a	ınd Equipment U	sed:			Cal Due	
	Sartorius C	S 2000 Lab Bala	ince	S/N 60502077		6/24/2014	
	Sartorius C	PA 224A Lab Ba	lance	S/N 27950023		9/29/2013	
	WR 2000	mL graduated cy	linder, B, Tol +/- 1	10.0		N/A	
	3 mL dispo	sable pipettes				N/A	
	Whatman p	H indicator pape	er, Type CF (Cat. N	No. 2614991)		N/A	
	Wash Solu	tion AW05			Mad	e on 7/8/2013	
	Fisher Scie	entific IPA	Lot 127641			N/A	(CMS: 392782)
	Fisher Scie	entific IPA	Lot 127641			N/A	(CMS: 392781)
			Volume (mL)	Mass (g)			
	Deionized	l water	1400	1387.9			
	Isopropyl	alcohol	1400	1085.4			
	# of NH40	H drops:	13				
	pH:		8.0		Target pH	= 8.0-10.0	
No	tes:	Very small amo	unt of AW05 left (<	<500 mL).			
	Combine	this mix with th	ne remaining A	W05.			
	CMS #392	782 is empty.					
			/				
	tries made b	-	Julia Flaherty	Technical Data		-	Elizabeth Golovich
Sig	nature/date	On File w/ Orig.	7/9/2013	Signature/date	On F	File w/ Original	7/18/2013

Appendix B HV-S3 Test Data Sheets

B.1 HV-S3 Temperature and Humidity Data Sheets

		TDP-WTPS	P-636
		TH PA of	
	HIGH TEMPERATI	URE PROBE TESTING - Temperature / Humidity Only	
Dun No	ru I	Facility / Condition HV-S3 MIN	
Run No.	- Alia	Facility / Condition HV-S3 MIN Chamber Set Point 261 °F / 2.3/. RH	
	9:40 /10:45		
	JEF	Diluter Orientation Horiz or Vert	
		\circ	
	Start Finish	Instruments Used: Cal I	Due
Time	9:40 10:45	√ Thermotron SE-2000-4 Env Chamber S/N 42857 4/2/2 4/2 4/2/2 4/2/2 4/2 4/2/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2	
Chamber Temp	261.7 261.0 °F		
Chamber Humidity	2.3 2.3 RI		014
Dilution flowcontroller		cfm / Alicat MCR-500SLPM-D MFC SN 68857 4/3/2	014
Dilution Dew Pt	-4 -4 °F	Vaisala MI70/HMP77B S/N G5230040/H0320001 1/31/2	014
Dilution Temp	78 76 %	Vaisala MI70/DMP74B S/N G5230040/H0320001 1/31/2	014
Dilution P		sia / Mott Corp Diluter 18"oAL Model 7610S-1.375-24-2-AB	N/A
Sampling flowcontroller	3.31 3.31 sc	cfm / Fisher Dew Point Pen S/N 122277883 5/16/2	014
Sampling Dew Pt	71 71 °F	1-173	
Sampling Temp	89 90 °F		
Sampling P	000 000	sia	
Ambient pressure		bar	
Ambient humidity	287. 30%. RI		
Ambient Temp	76.5 75.4 °F		
O.S.Y. RHY is ~ 63°F o Set heat to the calibrat Mass flow	Won't go auith ape Set point the thermocon controllers turn a test, used by white esiccant used	famy warm lab temperature. to 227°F, which is around 255°F or uple. Heat tape turned on ~8:25. ned on ~8:45. few steps: 1%, 1.5%, 2%, 2.3%. conscope to Check color of 2M dats. for test.	ich
Alicat Data (FIO).	T- 12 12 12 12 00.	1/2 at out and	
Entries made by: Juli Signature/date	A FLAHERTY THE	Technical Data Review performed by: Signature/date // Carlot 11/11/13	

HIGH TEMPERATURE PROBE TESTING - Temperature / Humidity Only

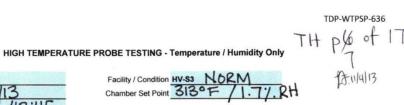
Run No. TH- 2

Date 7 30 13

Start/End Time 10:05 / 11:05

Testers TEF TAG

Facility / Condition HV-s3 Norm


Chamber Set Point 313°F / 1.7′. RH

Diluter Orientation Horiz or Vert

.^	Start	Finish	
Time 3201	10:05	11:05	Ĭ
Chamber Temp	313	313	°F
Chamber Humidity	1.70	1.7	RH
Dilution flowcontroller 4.97	4.08	4.07	scfm
Dilution Dew Pt	-20	-17	٩F
Dilution Temp	78	79	٩F
Dilution P	14.8	14.8	psia
Sampling flowcontroller	4.88	4.88	scfm
Sampling Dew Pt	62	63	٥F
Sampling Temp	92	93	٥F
Sampling P	14.5	14.5	psia
Ambient pressure	1001	1002	mbar
Ambient humidity	28	28	RH
Ambient Temp	77.5	78.5	°F

Instruments Used:		Cal Due
Thermotron SE-2000-4 Env Ch	amber S/N 42857	4/2/2014
Type T Thermocouples	Tool-Toob, Too9, Too8	6/18/2014
Alicat MCR-500SLPM MFC	SN 68858	2/4/2014
Alicat MCR-500SLPM-D MFC	SN 68857	4/3/2014
Vaisala MI70/HMP77B	S/N G5230040/H0320001	1/31/2014
Vaisala MI70/DMP74B	S/N G5230040/H0320001	1/31/2014
Mott Corp Diluter 28" OAL	Model 7610S-1.375-24-2-AB	N/A
Fisher Dew Point Pen	S/N 122277883	5/16/2014

Chamber conditions were 267°F and 0.3%. RH, but at 8am, the Chamber conditions were 267°F and 0.8%. RH. (64°Fdp). Turn on heat tape at around 8:10 am. Set point = 269°F, which should be around 313°F for the calibrated thermocouple. Turn on man flow controllers at around 8:17. Inspected interior wy borescope. All visible clots appeared white, some of the green marker is visible. Typarently no condensation.
Chamber conditions were 267°F and 0.8%. RH. (64°Fdp). Turn on heat tape at around 8:10 am. Set point = 269°F, which Should be around 313°F for the calibrated thermocouple. Turn on mass flow controllers at around 8:17. Inspected interior wy borescope. All visible clots appear. white, some of the green marker is visible.
Turn on heat tape at around 8:10 am. Set point = 269°F, which should be around 313°F for the calibrated thermocouple. Turn on mass flow controllers at around 8:17. Inspected interior wy borescope. All visible clots appeared white, some of the green marker is visible.
Should be around 313°F for the calibrated thermocouple. Turn on mass flow controllers at around 8:17. Inspected interior wy borescope. All visible clots appeared white, some of the green marker is visible.
Inspected interior will borescope. All visible clots appeared white, some of the green marker is visible.
white, some of the green marker is visible.
17 paverity no condensation.
// =1001/2
/ 13013
Data Files
Environmental Chamber Data: 130730- hvs3-norm-1vs2-max-CSV
Vaisala Dew Point Data (FIO): 2013-07-30 9-04 .CSV
Alicat Data (FID): 2013 0730 - 0815 - alicat, dat
Service Coloradical Coloradica
Entries made by: Julia FLAHERTY Technical Data Regiew performed by:
Signature/date Signature/date Signature/date
present 150/10 Chileth Ostarch 1/11/13

Run No. TH- 3
Date 7/30/13
Start/End Time 11:45 /12:45
Testers JEP

Chamber Set Point 313°F / 1.77, Kind Diluter Orientation Horiz or Vert

	Start	Finish	
Time	11:45	12:45	
Chamber Temp	312	313	٥F
Chamber Humidity	1.7	1.7	RH
Dilution flowcontroller	7.63	7.63	scfm
Dilution Dew Pt	-15	-7	°F
Dilution Temp	82	84	٥F
Dilution P	15.0	15.0	psia
Sampling flowcontroller	8.34	8.34	scfm
Sampling Dew Pt	44	45	٥F
Sampling Temp	90	92	٥F
Sampling P	13.6	13.6	psia
Ambient pressure	1001	1001	mbar
Ambient humidity	27%	267.	RH
Ambient Temp	80.8	81.0	٥F

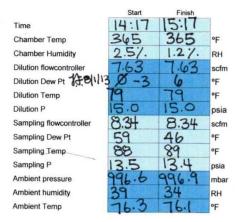
Instruments Used:		Cal Due
Thermotron SE-2000-4 Env Cha	amber S/N 42857	4/2/2014
Type T Thermocouples T	001 -TOO6, TOO9, TO	8 6/18/2014
Alicat MCR-500SLPM MFC	SN 68858	2/4/2014
Alicat MCR-500SLPM-D MFC	SN 68857	4/3/2014
Vaisala MI70/HMP77B	S/N G5230040/H0320001	1/31/2014
Vaisala MI70/DMP74B	S/N G5230040/H0320001	1/31/2014
Mott Corp Diluter 28"0AL	Model 7610S-1.375-24-2-AB	N/A
Fisher Dew Point Pen	S/N 122277883	5/16/2014

Notes: Runthis test directly after TH-2, another HVS3 norm Case. Both tests use the top desiccent. bottom (st 713013) Installed new filter paper (correctly) for this test. Heat tape set to 269°F! Pallibrated thermocouples read this at around 300°F. Inspected interior with borescope. All visible dots appear white, some of the green marker is visible. Apparently no condensation.
/ H. 7/30/13
Data Files 130730_ hvs3_horm_lvs2_max.csv Environmental Chamber Data: 130730_ hvs3_horm_lvs2_max.csv Vaisala Dew Point Data (FIO): 2013.07.30_0815_allcat.dat
Entries made by: JUUA FUAHERTY Signature/date 1/30/13 Technical Data Review performed by: Signature/date 1/30/13 Technical Data Review performed by: Signature/date 1/30/13

HIGH TEMPERATURE PROBE TESTING - Temperature / Humidity Only	TH	TDP-WTPSP-	636
For Was I Condition I IIV CO. LACK		1 1/4/12	

Run No.	тн- 4	
Date	8/1/13	
Start/End Time	10:00	/11:00
Testers	JEF '	

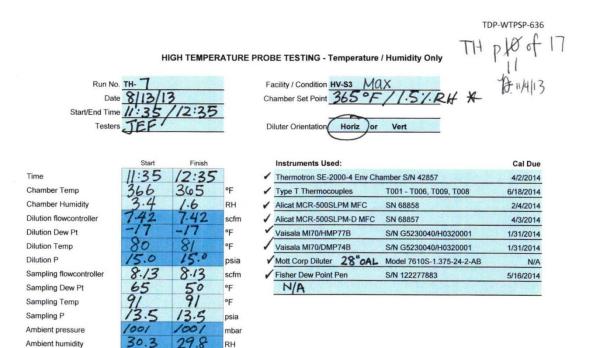
Facility / Condition	HV-S3	Max		
Chamber Set Point	365	°F/	1.5%.Rt	+


78,11141

	Start	Finish	
Time	10:00	11:00	
Chamber Temp	366	365	٥F
Chamber Humidity	0.9	0.8	RH
Dilution flowcontroller	7.42	7.42	scfm
Dilution Dew Pt	-8	4	٥F
Dilution Temp	72	75	°F
Dilution P	15.0	15.0	psia
Sampling flowcontroller	8.13	8.13	scfm
Sampling Dew Pt	32	24	°F
Sampling Temp	84	86	٥F
Sampling P	13.5	13.5	psia
Ambient pressure	997.2	997.4	mbar
Ambient humidity	35%	45%	RH
Ambient Temp	71.7	75.0	۰F

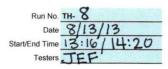
Instruments Used:		
Thermotron SE-2000-4 Env Cha		4/2/2014
Type T Thermocouples	Tool-Too6, Too9, Too8	6/18/2014
Alicat MCR-500SLPM MFC	SN 68858	2/4/2014
Alicat MCR-500SLPM-D MFC	SN 68857	4/3/2014
Vaisala MI70/HMP77B	S/N G5230040/H0320001	1/31/2014
Vaisala MI70/DMP74B	S/N G5230040/H0320001	1/31/2014
Mott Corp Diluter 28"oAL	Model 7610S-1.375-24-2-AB	N/A
Fisher Dew Point Pen	S/N 122277883	5/16/2014

Notes: Programmed chamber to start at 6am at 365°F and
O.S.Y. RH. ThermAlarm tripoed at Tildam, so the chamber
Shut off. ThermAlarm was set at 376°F. At fam, Chamber
had cooled to 320°F. Manual Run set to 365°F & 0.5% RH.
Turned on heat tape v8:20, set point = 310°F should be near 365°F
on calibrated thermocouples.
With chamber temp at 350°F, noticed that humidity panel says
"Temp out of range" and throttle is 0%. Set temperature at
328°F to get 18 of that msg. Chamber was at 328°F/3.0%. RH
~9:00, then set to 365°F/1.5%. RH (but probably ho humidity
control.)
Despite my affempt to retain some moisture from a lower
temperature, it appears that NO.8% PH is where the chamber
wants to be this won't be conservative for moisture
Used borescope to examine interior Appears that no condensation
Data Files Was formed.
Environmental Chamber Data: 130801_ NVS3_MAX.CSV
Vaisala Dew Point Data (FIO): 2013-08-01 8-47-CSV
Alicat Data (FIO): 20130801_0847_alicat.dat
•
Entries made by: Turi FLAHERTY Technical Data Review performed by:
Signature/date Signature/date
progenice offis Charth Broken 11/11/13



Instruments Used:		Cal Due
Thermotron SE-2000-4 Env Ch	amber S/N 42857	4/2/2014
Type T Thermocouples To	8001-T006, T009, T008	6/18/2014
Alicat MCR-500SLPM MFC	SN 68858	2/4/2014
Alicat MCR-500SLPM-D MFC	SN 68857	4/3/2014
Vaisala MI70/HMP77B	S/N G5230040/H0320001	1/31/2014
Vaisala MI70/DMP74B	S/N G5230040/H0320001	1/31/2014
Mott Corp Diluter 28" AL	Model 7610S-1.375-24-2-AB	N/A
Fisher Dew Point Pen	S/N 122277883	5/16/2014

Notes: *No humidity control at this temperature. Ran chamber at.
328°F with higher humicity (set to 12%, but only goes to 65% RH
13:00: 3500 gr/ld, 173 of dp. Tuch on heat tape,
Switched to bottom desiculate abstratof test named.
The decident along the second of the second
Chamber continues to fluctifate a bit.
The dry air system water filter is mif full at start of text
despite the fact that it was around twice just before.
The day air dwp+ nit 10°F ~14:37, so switched back to top (~0°F).
Used a honescope to inspect conditioner interior defertest.
White 3M water indicator dots and some, green marker is visible,
so apparently no condensation formed.
14. 0/1/12
Data Files
Environmental Chamber Data: 130801 - hvs3 - max.csV
Vaisala Dew Point Data (FIO): 2013-08-01 8-47-CSV
Alicat Data (FIO): 2013080 -0847 - alicat.dat
The state of the s
Entries made by: Tuua Fuherry Signature/date Technical Data Review performed by: Signature/date
Signature/date / Signature/date Lafe H (1) 1/13
The state of the s


				TDP-WTPSP-636
				14 pg of 17
	HIGH TEMPERATURE PRO	DBE TESTING - Temperature	/ Humidity Only	11 7/1
	THOSE FEMALES	DE TEOTINO Tomporataro	. mannancy only	12.11/4/13
Run No	. тн- 6	Facility / Condition HV-S3	lax	75.174/10
Date		Chamber Set Point 365°	-11.5% RH	4 *
Start/End Time			7 1 0201 -11	5
Testers	TEC MA	Diluter Orientation Horiz or	Vert	
	201,311			
	Start Finish	Instruments Used:		Cal Due
Time	10:25 11:50	Thermotron SE-2000-4 Env Ch		4/2/2014
Chamber Temp	364 365 °F	Type T Thermocouples	1001-T006, T009	TOON 6/18/2014
Chamber Humidity	3.5 1.2 RH	Alicat MCR-500SLPM MFC	SN 68858	2/4/2014
Dilution flowcontroller	8.50 8.50 scfm	Alicat MCR-500SLPM-D MFC	SN 68857	4/3/2014
Dilution Dew Pt	<u>0</u> 10 °F 3	Vaisala MI70/HMP77B	S/N G5230040/H032000	1/31/2014
Dilution Temp	16 16 °F %	Vaisala MI70/DMP74B	S/N G5230040/H032000	1/31/2014
Dilution P	15.1 15.1 psia 18.	Mott Corp Diluter 28"0AL	Model 7610S-1.375-24-2	2-AB N/A
Sampling flowcontroller	9.20 9.20 scfm	Fisher Dew Point Pen	S/N 122277883	5/16/2014
Sampling Dew Pt	60 86 - 7F 44	NA		
Sampling Temp	83 44 - 86	•		
Sampling P	13.4 13.4 psia			
Ambient pressure	1002 1002 mbar			
Ambient humidity	487. 337. RH			
Ambient Temp	75 73 %			
At Start-up at 1 scfm. to increase	Just run cillution Set humidity to 7. Set humidity to 7. Set humidity. Because mp at 49.00. Start of range "msg. 17.87. RH/184°F de mass flow control at asing top desiccan emperature is st collity is loss than 17.1. RH at 10:42, 1.77. Data: 130802-hvs3-	rmocouples). au (no total f //. and it hit t se it should w/ 300° F So pollers. 365° F. iii oscillating Rit at 11:23.	70 1 2 1	e neighborhood namber) o Continued of o the o Flow R test, but to:42, although streamend of
Signature/date	A FLAHERTY 8/2/13	Technical Data Review perform Signature/date	H Golniel	1 11/11/13
diluterati Should k faded (fer this test. Thermo be) All 3M dots are v heat effect?) bu	couples look a white, green mi tstill visible	pod (where the arber appear • No conden	ney 4/1satron.



Ambient Temp

HIGH TEMPERATURE PROBE TESTING - Temperature / Humidity Only

TH P12 of 17

	Start	Finish	
Time	13:14	14:20	
Chamber Temp Chamber Humidity Dilution flowcontroller 4.17	313	313	٥F
Chamber Humidity	1.7	1.7	RH
Dilution flowcontroller 4.17	4.07	4.17	scfm
Dilution Dew Pt	-/5	77	٥F
Dilution Temp	83	82	٥F
Dilution P	14.8	14.7	psia
Sampling flowcontroller	4.88	4.88	scfm
Sampling Dew Pt	59	60	°F
Sampling Temp	94	94	٩F
Sampling P	14.0	14.0	psia
Ambient pressure	1000	999.3	mbar
Ambient humidity	26.4	25.9	RH
Ambient Temp	81.6	81.5	°F

Instruments Used:		Cal Due
✓ Thermotron SE-2000-4 Env Cha	amber S/N 42857	4/2/2014
✓ Type T Thermocouples	T001 - T006, T009, T008	6/18/2014
✓ Alicat MCR-500SLPM MFC	SN 68858	2/4/2014
✓ Alicat MCR-500SLPM-D MFC	SN 68857	4/3/2014
✓ Vaisala MI70/HMP77B	S/N G5230040/H0320001	1/31/2014
✓ Vaisala MI70/DMP74B	S/N G5230040/H0320001	1/31/2014
Mott Corp Diluter 28"OAL	Model 7610S-1.375-24-2-AB	N/A
✓ Fisher Dew Point Pen	S/N 122277883	5/16/2014
AIM		

Notes: Still running the lower desiccant, which was fresh, never-baked bends with little previous use this morning. Omega heat tape set to 269°F (which actually corresponds to ~280°F on the calibrated type T thermocouples installed under the heat tape). Temperature and relative humidity continue to fluctuate a bit at the start of this test. (Y-1°F, 0.17! RH) Notice at the end of the test (of course!) the dilution flow rate was incorrectly set to 4.17 scfm instead of 4.07 scfm. This means slightly less than 1.3 acm was sampled from the chamber. We're looking at value the sample onto so this
The sample rate, so this
small deviation should be fine.
Used borescope to inspect interior. No signs of condensation.
Data Files
Environmental Chamber Data: 130813 - NvS3 - Max - NoVM · CSV
Vaisala Dew Point Data (FIO): 2013-08-13 12-49-CSV
Alicat Data (FIO): 20130813_0833_01/cqt.dqt
Francis T & Challen
Entries made by: Julia FLAHERTY Signature/date 8/13/13 Technical Data Review performed by: Signature/date 1

						TH	P13 of 11
	н	GH TEMPERA	ATURE PR	ROB	E TESTING - Temperature	Humidity Only	
-	a			1000	M	ax	
Run No.		0			City / Condition 11-50		
Date	A - 1/	3		Cha	amber Set Point 305 F	1.5%.RH *	
Start/End Time	9:50/	10:50					
Testers	JEF			Dil	uter Orientation (Horiz) or	Vert	
,							
ζ	7:50 Start	Finish			Instruments Used:		Cal Due
Time Move	265	10:50			Thermotron SE-2000-4 Env Cha	mber S/N 42857	4/2/2014
Chamber Town ONE .	20	365	°F	,	Type T Thermocouples	T001 - T006, T009, T008	6/18/2014
Chamber Humidity	C7.	1.24	RH	,	Alicat MCR-500SLPM MFC	SN 68858	2/4/2014
Dilution flowcontroller	8.50	8.50	scfm		Alicat MCR-500SLPM-D MFC	SN 68857	4/3/2014
Dilution Dew Pt	-6	-4	°F	,	Vaisala MI70/HMP77B	S/N G5230040/H0320001	1/31/2014
Dilution Temp	76	77	°F		Vaisala MI70/DMP74B	S/N G5230040/H0320001	1/31/2014
Dilution P	15.1	15.1	psia		Mott Corp Diluter 32"OAL	Model 7610S-1.375-24-2-AB	N/A
Sampling flowcontroller	9.20	9.20	scfm	7	Fisher Dew Point Pen	S/N 122277883	5/16/2014
Sampling Dew Pt	69	53	°F	•	N/A	OIN PEEL 17000	3/10/2014
Sampling Temp	86	85	°F		- 171		
Sampling P	13.3	13.3	psia				
Ambient pressure	999.0	998.8	mbar				
Ambient humidity	43.5	37.8	RH				
Ambient Temp	74.8	74.2	°F				
	110	5000 800 000 <u>1000 000</u>	,				
0.					- 12		
Notes: Starting	set ·	Point	328°F	8	0.47.RH) W	as too nestricti	ve for
humidity, so	the C	namber'	only	h	ut 265°F (and	(0.8%. RH).	
Changed' Set	point	to 328	\$0F 8 (9.9	11. RH. While to	emperature is	increasing,
turn on hea	rt Tap	e (8:1	SAM	1	with Set po	int = 310°F.	.1
inch the nu	micity	ap T	2 1.	2	., Which kee	ps the conu	inoned
any dembol	nr ai	to The	Reg 1	e	low the any	bulb At y	:15, the
(conditioned o	iv mas	8205	creus	601	temperature.	aci point to 3	62°F.
* humidity	S MA	controll	ed bi	1	the chamber	at this tow	perature.
At 9:50 Start	time	, temper	ature	Tiv	the chamber 1	NUA Still oscill	atina.
around the s	et Doint	(430	FA	.,,	THIS CHAPTER TO	di ili cacili	4
Pulled out th	ne '4"	glass A	iber f	11	ter after this tes	st. It's tinged v	ellow
. //				1			

orange (Fluorescen?) and feels like it may have had moisture on it. Presumably condensation would have been during the start-up. Notes on Fluorescence below? Data Files 130826. hvs3-max-horm. CSV 2013-08-26 8-53.csv 20130826-0828-alicat dat **Environmental Chamber Data:** Vaisala Dew Point Data (FIO): Alicat Data (FIO):

Technical Data Review performed by: Signature/date () Golorich

Fluorescence Measurements:

Solid Std: 2612.77, 2611.71, 2611.28 RFU Solution Blank: 11:50; 11:40, 11:43 RFU Filter in 95.2g Soln: 369.75, 366.50, 363.16 RFU 4>38 RFU/g

Turner Trilogy Sartorius Balance Wnatman AutoVial

Filter is still tinged yellow after wash.

		GH TEMPERA	TURE PRO	DBE TESTING - Temperature	Humidity Only	P13 of 1
	o. TH- 10				orm	17-114/13
	te <u>8 26 1</u>	412.00	(Chamber Set Point 313°F	11.7% RH	10.1.
Start/End Tim	TOC	/13:20)			
Teste	rs JEF			Diluter Orientation Horiz or	Vert	
	Start	Finish		Instruments Used:		Cal Due
Time	12:20	13:20	9	✓ Thermotron SE-2000-4 Env Cha	amber S/N 42857	4/2/2014
Chamber Temp	312	313	°F	✓ Type T Thermocouples	T001 - T006, T009, T008	6/18/2014
Chamber Humidity	1.7	1.7	RH	✓ Alicat MCR-500SLPM MFC	SN 68858	2/4/2014
Dilution flowcontroller	7.63	7.63	scfm	✓ Alicat MCR-500SLPM-D MFC	SN 68857	4/3/2014
Dilution Dew Pt		2	°F	✓ Vaisala MI70/HMP77B	S/N G5230040/H0320001	1/31/2014
Dilution Temp	81.0	80.4	°F	Vaisala MI70/DMP74B	S/N G5230040/H0320001	1/31/2014
Dilution P	15.0	15.6	psia	Mott Corp Diluter 32"OAL	Model 7610S-1.375-24-2-AB	N/A
Sampling flowcontroller	8.34	8.34	scfm	Fisher Dew Point Pen	S/N 122277883	5/16/2014
Sampling Dew Pt	44	44	°F	AM		
Sampling Temp	89	88.	°F			
Sampling P	13.6	13.6	psia			
Ambient pressure	7.799	997.7	mbar			
Ambient humidity	29.4	30.2	RH			

Notes: The chamber conditions have been slowly oscillating
around the set point for a while, and the deviation from the set point is small, so the test was started at 12:20.
Eilter looks any after test.
iteat tupe set to Zio°F.
Data Files
Environmental Chamber Data: 130826_hvs3_max_horm.csV
Vaisala Dew Point Data (FIO): 2013-08-26 8-53.CSV
Alicat Data (FIO): 20130826-0828-91/C9+094
Entries made by: Julia Flaherty Signature/date Signature/date Signature/date Signature/date Signature/date Signature/date Signature/date Signature/date
110 Contractor 11113

Ambient Temp

B.2 HV-S3 Aerosol Penetration Data Sheets

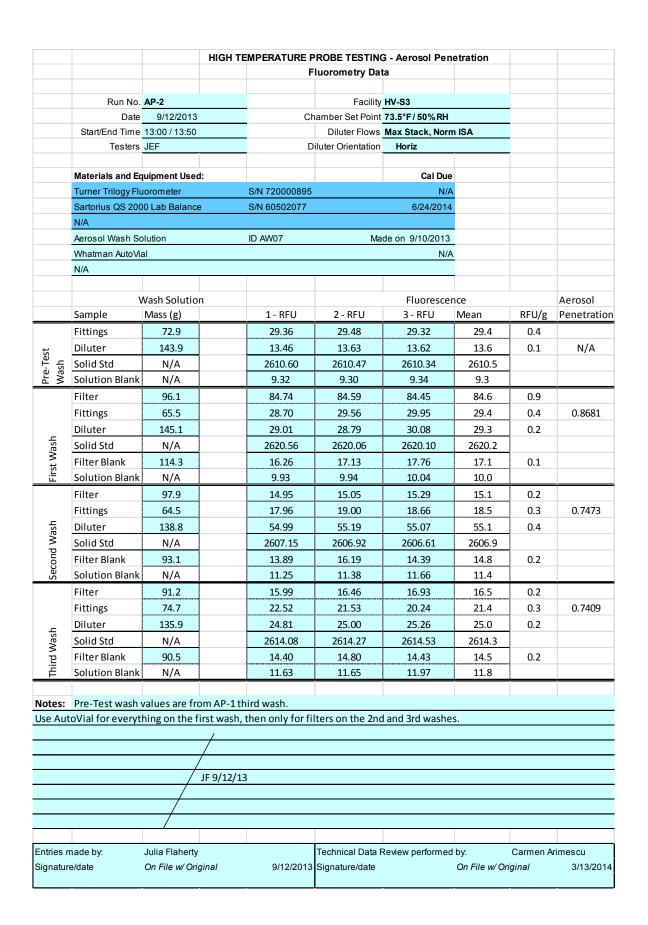
			HIGH TE	MPERATURE	PROBE TESTING	G - Aerosol Pe	netration		
					sol and Dilution				
	Run No.	AP-1			Facility	HV-S3			
	Date	9/12/2013		C	hamber Set Point	73.5°F/50%R	Н		
Star	t/End Time	9:40 / 10:15			Diluter Flows	Norm Stack, N	lorm ISA		
	Testers	JEF			Diluter Orientation	Horiz			
		Start	Finish		Materials and Ed	quipment Used:			Cal Due
Time		9:40	10:15		Thermotron SE-2	2000-4 Env Cha	mber S/N 4285	7	4/2/2014
Chamber Tem	ıp	73.5	73.5	°F	Alicat MCR-500S	LPM MFC	SN 68858		2/4/2014
Chamber Hum	nidity	50%	50%	RH	Alicat MCR-500S	LPM-D MFC	SN 68857		4/3/2014
Dilution flowco		4.07	4.07	scfm	Vaisala MI70/HM	P77B	S/N G5230040)/H0320001	1/31/2014
Dilution Dew F		0	3	°F	Vaisala MI70/DM		S/N G5230040		1/31/2014
Dilution Temp		76.2	77.3	°F	Type T Thermoco		T004, T006, T0		6/18/2014
Dilution P		14.7	14.7	psia	Mott Corp Diluter		Model 7610S-		
	aantrallar			1					
Sampling flow		4.88	4.88	scfm °F	Fisher Dew Poin		S/N 12227788	J	5/16/2014
Sampling Dev		15	16	-	TSI VOAG, Model		S/N 406		N/A
Sampling Tem	ıp	75	76	°F	VOAG Aerosol So		ID AS02		ide on 8/8/13
Sampling P		14.1	14.1	psia	TSI APS, Model 3	3321	S/N 70907086		7/29/2014
Ambient press	ure	999.3	999.3	mbar	N/A	ı			
Ambient humi	dity	36.8%	33.0%	RH					
Ambient Temp)	76.4	77.0	°F	Droplet Diamete	r: Dd = (6Q/πf)^	(1/3)	49.6	μm
VOAG Frequer	псу	40.06	40.07	kHz					
VOAG Syringe	Speed	4.6	4.6	x 10 ⁻⁴ cm/s			Aerosol cond	entration, C	0.0153
VOAG Dispers	ion Air	10	10	cc/min x 100			Aeros	ol density, ρ	0.8931
VOAG Dilution	Air	70	70	LPM					
APS Mean AD		10.2	10.2	μm	Particle Diamete	er: Dp = (C+I)^(1	/3)Dd	12.6	μm
APS Sig-G		1.111	1.09						
					Aerodynamic Dia	ameter: AD = D	p*SQRT(ρ)/1	11.9	μm
							.,		
Notes: R	oom air ca	se with no h	eat tape.						
Used upper o	desiccant s	system.							
			/						
			/ 						
			/						
			JF 9/12/13						
			-, , -						
Data Files			130012 hv	3 room air.cs	V				
Data Files Environment	tal Chamh	er Data:							
Environment				9 42.csv					
Environment FIO Vaisala D	ew Point		2013-09-12						
Environment FIO Vaisala D FIO Alicat Da	ew Point ta:		2013-09-12 20130912_0	 0935_alicat.dat					
Environment FIO Vaisala D FIO Alicat Da	ew Point ta:		2013-09-12 20130912_0						
Environment FIO Vaisala D FIO Alicat Da FIO APS Data	ew Point ta: ::	Data:	2013-09-12 20130912_(test_sept_	 0935_alicat.dat	ic_mass.txt	Review performa	ed by:	Carmen Arim	escu
Environment FIO Vaisala D FIO Alicat Da	Dew Point ta: :: by:		2013-09-12 20130912_(test_sept_			Review performe	ed by: On File w/ Orig		escu 3/13/2014

			HIGH TE	MPERATURE P	ROBE TESTIN	G - Aerosol Pen	etration		
				F	luorometry Da	ta			
	Run No.					HV-S3			
	Date	9/12/2013		Ch		73.5°F/50%RH			
	Start/End Time					Norm Stack, Nor	m ISA		
	Testers	JEF		D	iluter Orientation	Horiz			
	Materials and Ed	uipment Used	l:			Cal Due			
	Turner Trilogy Flu			S/N 720000895		N/A			
	Sartorius QS 200		<u> </u>	S/N 60502077		6/24/2014			
	N/A								
	Aerosol Wash So	olution		ID AW07	Ma	ade on 9/10/2013			
	Whatman AutoVi					N/A			
	N/A								
	\	Wash Solutio	n			Fluorescer	nce		Aerosol
	Sample	Mass (g)		1 - RFU	2 - RFU	3 - RFU	Mean	RFU/g	Penetration
	Fittings	74.2		82.43	84.97	85.40	84.3	1.1	
+;	Diluter	145.2		55.86	55.08	54.98	55.3	0.4	N/A
Pre-Test Wash	Solid Std	N/A		2587.67	2587.43	2587.32	2587.5		
Pre-Te Wash	Solution Blank	N/A		9.22	9.00	9.00	9.1		
	Filter	102.7		39.28	39.24	39.25	39.3	0.4	
	Fittings	72.4		63.70	63.92	63.66	63.8	0.9	0.8881
	Diluter	151.8		23.27	24.64	24.54	24.2	0.2	
ash.	Solid Std	N/A		2423.09	2423.29	2423.29	2423.2		
irst Wash	Filter Blank	99.0		14.50	16.54	16.75	15.9	0.2	
Firs	Solution Blank	N/A		9.10	9.13	9.05	9.1		
	Filter	105.6		15.44	14.98	14.68	15.0	0.1	
	Fittings	79.9		31.63	32.34	31.42	31.8	0.4	0.8770
sh	Diluter	148.8		13.97	13.98	13.95	14.0	0.1	
Second Wash	Solid Std	N/A		2617.94	2618.51	2617.82	2618.1	5.2	
puo	Filter Blank	109.4		13.54	14.72	15.53	14.6	0.1	
Seco	Solution Blank	N/A		9.14	9.19	9.15	9.2	5.1	
<u> </u>	Filter	95.2		14.86	15.84	15.97	15.6	0.2	
	Fittings	72.9		29.36	29.48	29.32	29.4	0.2	0.8722
	Diluter	143.9		13.46	13.63	13.62	13.6	0.1	0.0722
ash	Solid Std	N/A		2610.60	2610.47	2610.34	2610.5	0.1	
<u> </u>	Filter Blank	83.9		15.63	15.45	15.53	15.5	0.2	
Third Wash	Solution Blank	83.9 N/A		9.32	9.30	9.34	9.3	0.2	
	Jointion Blank	IN/A		3.32	9.30	3.34	3.3		

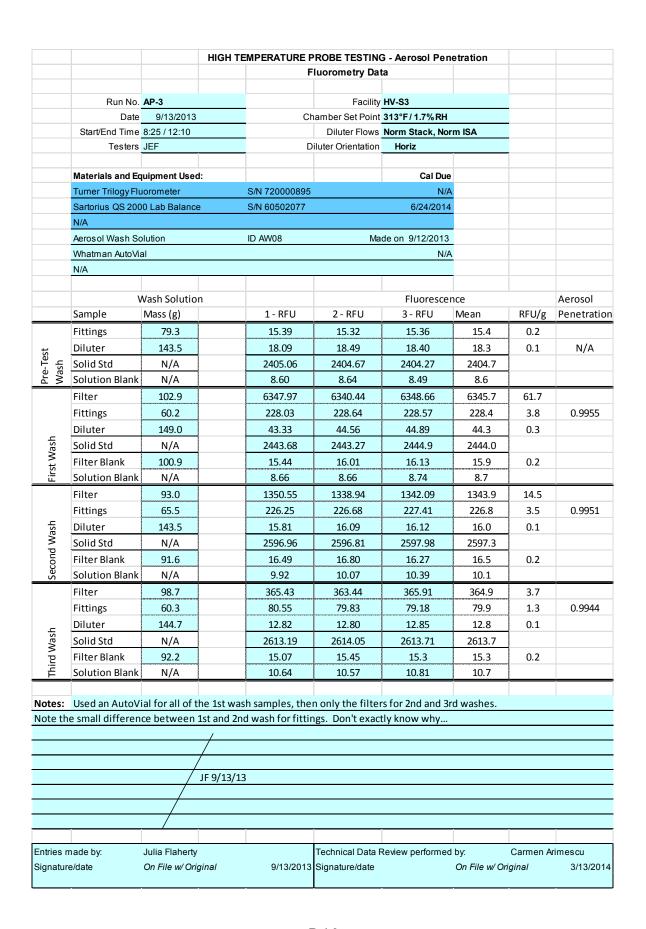
Notes: Dry out the diluter after Pre-Test Wash using dilution air.

Use AutoVial for everything on the first wash, then only filters on 2nd and 3rd wash.

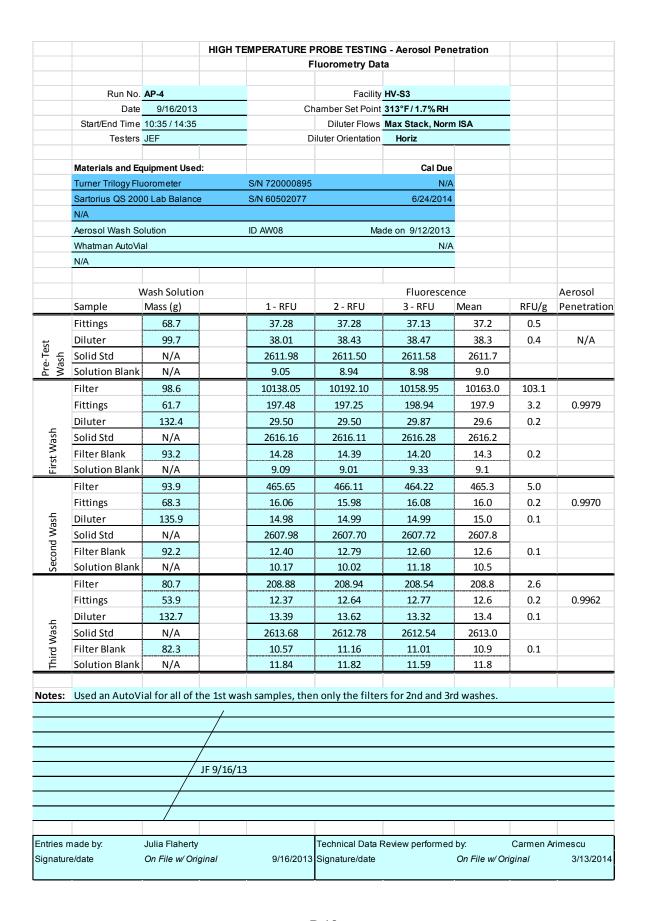
Did not blow out diluter with dilution air between washes.

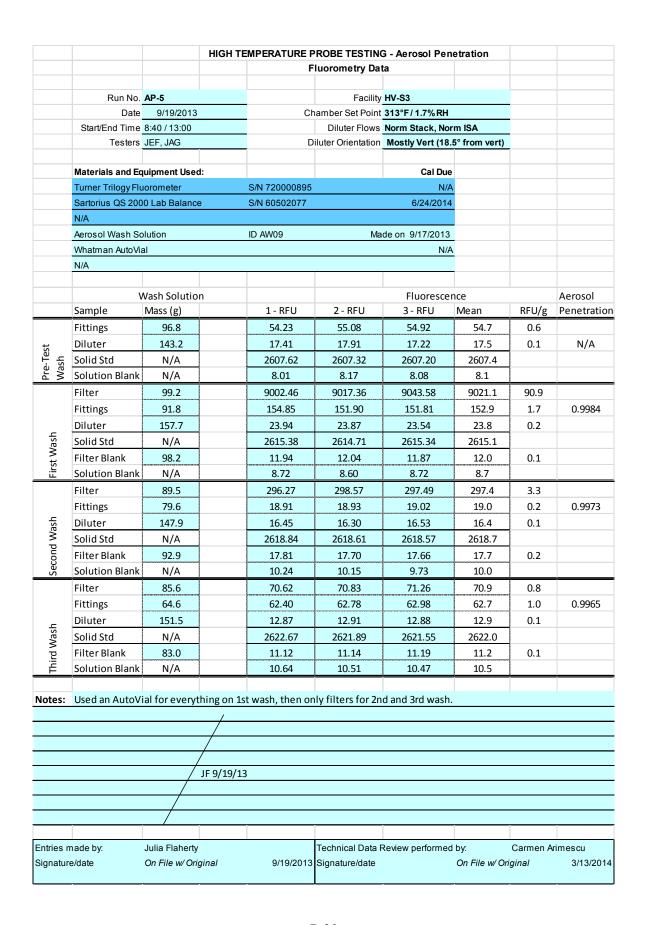

Used dilution air at end of 3rd wash. In addition to some liquid, gas (like party fog) came out, for about 1 min.

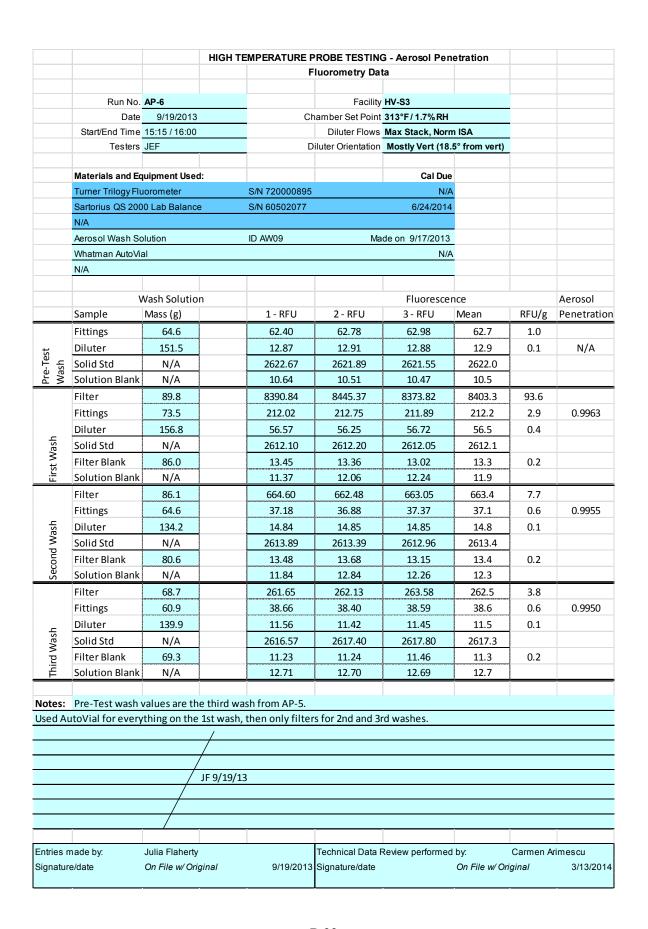
Air was ~ 1scfm.


The fluorescence values on the first wash wasn't as high as I'd expected. Perhaps because the flow rate was lower than previous tests? Se how AP-2 turns out.

Entries made by: Julia Flaherty Technical Data Review performed by: Carmen Arimescu
Signature/date On File w/ Original 9/12/2013 Signature/date On File w/ Original 3/13/2014

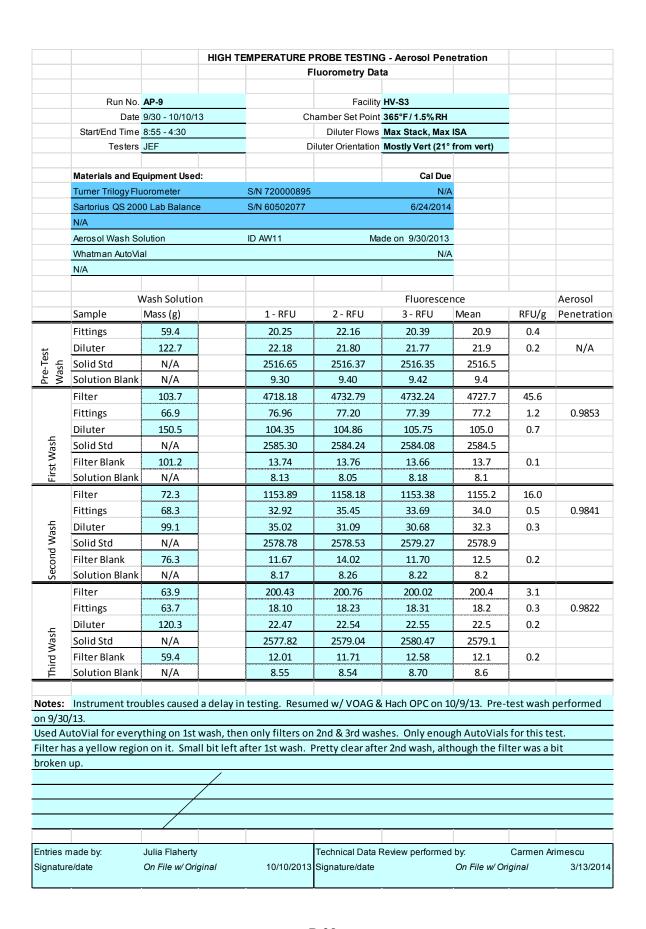

			HIGH TE	MPERATURE	PROBE TESTING	G - Aerosol Pe	netration		
				Aero	sol and Dilution	Data			
	Run No.					HV-S3			
_	Date	9/12/2013		С	hamber Set Point				
Star		12:07 / 12:50				Max Stack, No	rm ISA		
	Testers	JEF			Diluter Orientation	Horiz			
		Start	Finish		Materials and Ed	uinment Head:			Cal Due
Time		12:07	12:50		Thermotron SE-2			7	4/2/2014
Chamber Tem	n	73.5	73.5	°F	Alicat MCR-500S		SN 68858	1	2/4/2014
Chamber Hum		48.3%	50.0%	RH	Alicat MCR-500S		SN 68857		4/3/2014
Dilution flowcontroller		7.42	7.42	scfm	Vaisala MI70/HM		S/N G5230040	/H0320001	1/31/2014
Dilution Dew P		14.5	25	°F	Vaisala MI70/DM		S/N G5230040		1/31/2014
	ι			°F					
Dilution Temp		81.5	83.9		Type T Thermoco	•	T004, T006, T0		6/18/2014
Dilution P		15.0	15.0	psia	Mott Corp Diluter		Model 7610S-1		N/A
Sampling flow		8.13	8.13	scfm °F	Fisher Dew Poin		S/N 12227788	3	5/16/2014
Sampling Dew		13	21	4	TSI VOAG, Model		S/N 406		N/A
Sampling Tem	ıp	79	82	°F	VOAG Aerosol So		ID AS02		de on 8/8/13
Sampling P		13.6	13.6	psia	TSI APS, Model 3	321	S/N 70907086		7/29/2014
Ambient press		998.0	997.6	mbar	N/A				
Ambient humic	-	28.2%	27.4%	RH					
Ambient Temp		79.4	80.4	°F	Droplet Diamete	r: Dd = (6Q/πt)^	(1/3)	49.5	μm
VOAG Frequen	-	40.20	40.20	kHz					
VOAG Syringe	Speed	4.6	4.6	x 10 ⁻⁴ cm/s			Aerosol conc		0.0153
VOAG Dispers		10	10	cc/min x 100			Aeroso	ol density, ρ	0.8931
VOAG Dilution	Air	70	70	LPM					
APS Mean AD		10.2	9.66	μm	Particle Diamete	er: Dp = (C+I)^(1	/3)Dd	12.6	μm
APS Sig-G		1.116	1.105						
					Aerodynamic Dia	ameter: AD = D	o*SQRT(ρ)/1	11.9	μm
		om air case v							
Still using up	per desico	ant system.	Probably n	eed to change	out disccant be	ads after this t	test.		
				/					
			/	IE 0/12/12					
				JF 9/12/13					
			/_						
Data Files			•						
Environment	al Chambe	er Data:	130912 hvs	3 room air.cs					
FIO Vaisala D			2013-09-12						
FIO Alicat Da				935_alicat.dat					
FIO APS Data				12_2013_1_cor					
					_				
Entries made l	by:	Julia Flaherty			Technical Data F	Review performe	ed by:	Carmen Arim	escu
Signature/date		On File w/ Orig	ginal	9/12/2013	Signature/date		On File w/ Orig	inal	3/13/2014
o.g. ata. or aato					0		Ū		


			HIGH TE	MPERATURE I	PROBE TESTING	- Aerosol Pe	netration		
				Aero	sol and Dilution	Data			
	Run No.				Facility				
01	Date	9/13/2013		C	hamber Set Point				
Start/E		10:25 / 11:05				Norm Stack, N	lorm ISA		
	Testers	JEF		-	Diluter Orientation	Horiz			
		Start	Finish		Materials and Ed	uinment Head:			Cal Du
Time		10:25	11:05		Thermotron SE-2			,	4/2/201
Chamber Temp		313	313	°F	Alicat MCR-500S		SN 68858		2/4/201
Chamber Temp		1.7%	1.7%	RH	Alicat MCR-500S		SN 68857		4/3/201
Dilution flowcont	•	4.07	4.07	scfm				/L0220001	
	uonei			°F	Vaisala MI70/HM		S/N G5230040/		1/31/201
Dilution Dew Pt		-24	-22		Vaisala MI70/DM		S/N G5230040/		1/31/201
Dilution Temp		80.4	79.1	°F	Type T Thermoco		T004, T006, T00		6/18/201
Dilution P		14.7	14.7	psia	Mott Corp Diluter		Model 7610S-1		N/
Sampling flowco		4.88	4.88	scfm	Fisher Dew Point		S/N 122277883	3	5/16/201
Sampling Dew F		70	70	°F	TSI VOAG, Model		S/N 406		N/
Sampling Temp		113	112	°F	VOAG Aerosol So		ID AS02	mad	de on 8/8/1
Sampling P		14.0	14.0	psia	TSI APS, Model 3	321	S/N 70907086		7/29/201
Ambient pressu	re	994.8	994.4	mbar	N/A				
Ambient humidit	ty	28.4%	32.1%	RH					
Ambient Temp		79.2	78.4	°F	Droplet Diamete	r: Dd = (6Q/πf)^	(1/3)	49.5	μ m
VOAG Frequency	у	40.19	40.20	kHz					
VOAG Syringe S	peed	4.6	4.6	x 10 ⁻⁴ cm/s			Aerosol conce	entration, C	0.015
VOAG Dispersio	n Air	10	10	cc/min x 100			Aeroso	I density, ρ	0.893
VOAG Dilution A	ir	70	70	LPM					
APS Mean AD		9.38	9.53	μm	Particle Diamete	r: Dp = (C+I)^(1	/3)Dd	12.6	μm
APS Sig-G		1.105	1.116						
					Aerodynamic Dia	ameter: AD = D _l	p*SQRT(ρ)/1	11.9	μ m
								E / O 20/ DLL I	
Notes: Tur	rn on dil	ution and pu	mps at 9:15	Omega heat	tapes set to 275	F. Chamber v	was set to 313	F / U.3%KH, I	outis
		•	•	Omega heat	tapes set to 275	°F. Chamber v	was set to 313	F / U.3%KH, I	outis
actually at 263	°F / 0.8%	RH (65°F dp)		-		°F. Chamber v	was set to 313	F / U.3%KH, I	outis
actually at 263	°F / 0.8%	RH (65°F dp)		-		F. Chamber v	was set to 313	F / U.3%KH, I	outis
Notes: Tur actually at 263 Turn on AS02 ju	°F / 0.8%	RH (65°F dp)		-		°F. Chamber v	was set to 313	F / U.3%KH, I	outis
actually at 263	°F / 0.8%	RH (65°F dp)		ticle size at 9:4		F. Chamber	was set to 313	F / U.3%KH, I	outis
actually at 263	°F / 0.8%	RH (65°F dp)		-		F. Chamber v	was set to 313	F / U.3%KH, I	outis
actually at 263	°F / 0.8%	RH (65°F dp)		ticle size at 9:4		F. Chamber v	was set to 313	F / U.3%KH, I	outis
actually at 263	°F / 0.8%	RH (65°F dp)		ticle size at 9:4		F. Chamber v	was set to 313	F / U.3%KH, I	outis
actually at 263	°F / 0.8%	RH (65°F dp)		ticle size at 9:4		F. Chamber v	was set to 313	F / U.3%KH, I	outis
actually at 263	°F / 0.8%	RH (65°F dp)		ticle size at 9:4		F. Chamber v	was set to 313	F / U.3%KH, I	outis
actually at 263	°F / 0.8%	RH (65°F dp)		ticle size at 9:4		F. Chamber	was set to 313	F / U.3%KH, I	outis
actually at 263	°F / 0.8%	RH (65°F dp)		ticle size at 9:4		F. Chamber	was set to 313	F / U.3%KH, I	outis
actually at 263' Turn on AS02 j	°F / 0.8%	RH (65°F dp)		ticle size at 9:4		F. Chamber	was set to 313	F / U.3%KH, I	outis
actually at 263 Turn on AS02 j	°F / 0.8% et at 9:38	RH (65°F dp)	to check par	JEF 9/13/13		F. Chamber	was set to 313	F / U.3%KH, I	outis
actually at 263' Turn on AS02 ju Data Files Environmental	°F / 0.8% et at 9:38	RH (65°F dp) 3. Start APS (to check par	JEF 9/13/13		F. Chamber	was set to 313	F / U.3%KH, I	outis
actually at 263' Turn on AS02 ju Data Files Environmental FIO Vaisala De	°F / 0.8% et at 9:38 I Chambi	RH (65°F dp) 3. Start APS (130913_hvs 2013-09-13	JEF 9/13/13 3_norm.csv 10_09.csv	48.	F. Chamber	was set to 313	F / U.3%KH, I	outis
Data Files Environmental FIO Vaisala De	°F / 0.8% et at 9:38 I Chambi	RH (65°F dp) 3. Start APS (130913_hvs 2013-09-13 20130913_C	JEF 9/13/13 3_norm.csv 10_09.csv 913_alicat.dat	48.	F. Chamber	was set to 313	F / U.3%KH, I	outis
Data Files Environmental FIO Alicat Data	°F / 0.8% et at 9:38 I Chambi	RH (65°F dp) 3. Start APS (130913_hvs 2013-09-13 20130913_C	JEF 9/13/13 3_norm.csv 10_09.csv	48.	F. Chamber	was set to 313	F / U.3%KH, I	outis
Data Files Environmental FIO Vaisala De FIO Alicat Data	°F / 0.8% et at 9:38 I Chamb w Point	RH (65°F dp) 3. Start APS i er Data:	130913_hvs 2013-09-13 20130913_C test_sept_1	JEF 9/13/13 3_norm.csv 10_09.csv 913_alicat.dat	48.				
Data Files Environmental FIO Vaisala De	°F / 0.8% et at 9:38 I Chamb w Point	RH (65°F dp) 3. Start APS (130913_hvs 2013-09-13 20130913_C test_sept_1	JEF 9/13/13 3_norm.csv 10_09.csv 913_alicat.dat 13_2013_1_cor	48.			Carmen Arime	

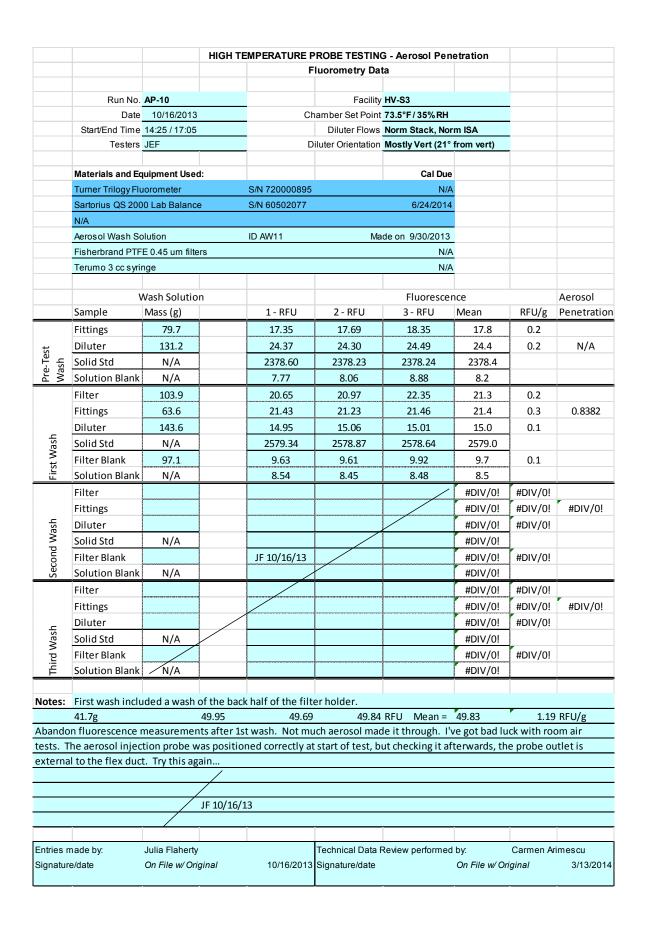

			HIGH TE	MPERATURE I	PROBE TESTING	6 - Aerosol Pe	netration		
				Aero	sol and Dilution	Data			
	Run No.	AP-4			Facility	HV-S3			
	Date	9/16/2013		C	hamber Set Point	313°F/1.7%R	Н		
St	art/End Time	12:50 / 13:30			Diluter Flows	Max Stack, No	orm ISA		
	Testers	JEF		- 1	Diluter Orientation	Horiz			
		Start	Finish		Materials and Eq	uipment Used:			Cal Due
Time		12:50	13:30		Thermotron SE-2	000-4 Env Cha	mber S/N 4285	7	4/2/2014
Chamber Te	emp	312	313	°F	Alicat MCR-500SI	LPM MFC	SN 68858		2/4/2014
Chamber Hu	umidity	1.7%	1.7%	RH	Alicat MCR-500SI	LPM-D MFC	SN 68857		4/3/2014
Dilution flow	controller	7.42	7.42	scfm	Vaisala MI70/HMF	P77B	S/N G5230040	/H0320001	1/31/2014
Dilution Dew	v Pt	-23	-16	°F	Vaisala MI70/DMF	P74B	S/N G5230040	/H0320001	1/31/2014
Dilution Tem	ıp	80.5	79.6	°F	Type T Thermoco	uples	T004, T006, T0	08, T009	6/18/2014
Dilution P		15.0	15.0	psia	Mott Corp Diluter	32" OAL	Model 7610S-1	I.375-24-2-AB	N/A
Sampling flo	wcontroller	8.13	8.13	scfm	Fisher Dew Point	:Pen	S/N 12227788	3	5/16/2014
Sampling De	ew Pt	49	48	°F	TSI VOAG, Model	345001	S/N 406		N/A
Sampling Te	emp	100	99	°F	VOAG Aerosol So	lution	ID AS02	ma	de on 8/8/13
Sampling P		13.5	13.5	psia	TSI APS, Model 3		S/N 70907086		7/29/2014
Ambient pres		996.7	996.2	mbar	N/A	 -			
Ambient hun		29.2%	32.9%	RH					
Ambient Ten		79.0	77.7	°F	Droplet Diameter	·· Dd = (6Ω/πf)^	(1/3)	49.5	ıım
VOAG Freque		40.11	40.11	kHz	Di opiot Biamoto	. 50 (00/11)	(1.0)	40.0	μιτι
	,			x 10 ⁻⁴ cm/s			A arasal sans	ontration C	0.0153
VOAG Syring		4.6	4.6				Aerosol conc		***************************************
VOAG Dispe		10	10	cc/min x 100			Aeroso	ol density, ρ	0.8931
VOAG Dilutio		70	70	LPM					
APS Mean Al	D	9.20	9.33	μm	Particle Diamete	r: Dp = (C+I)^(1	/3)Dd	12.6	μm
APS Sig-G		1.171	1.121						
					Aerodynamic Dia	ımeter: AD = D	p*SQRT(ρ)/1	11.9	μm
	- '								
				on Omega is 2					
Turn on AP	S ~12:25 to o	theck on ASC	2 particle si	ze. Chamber i	s still oscillating			-	
Turn on AP: Fixed the fl	S ~12:25 to c lex duct for	theck on ASC this test. Pr	2 particle si for to this or	ze. Chamber ine, there was a	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP: Fixed the fl	S ~12:25 to c lex duct for	theck on ASC this test. Pr	2 particle si for to this or	ze. Chamber ine, there was a	s still oscillating	t between th	e aerosol injed	ction probe a	nd
Turn on AP: Fixed the fl	S ~12:25 to c lex duct for	theck on ASC this test. Pr	2 particle si for to this or	ze. Chamber ine, there was a	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP: Fixed the fl	S ~12:25 to c lex duct for	theck on ASC this test. Pr	2 particle si for to this or	ze. Chamber ine, there was a on probe may	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP: Fixed the fl	S ~12:25 to c lex duct for	theck on ASC this test. Pr	2 particle si for to this or	ze. Chamber ine, there was a	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP: Fixed the fl	S ~12:25 to c lex duct for	theck on ASC this test. Pr	2 particle si for to this or	ze. Chamber ine, there was a on probe may	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP: Fixed the fl	S ~12:25 to c lex duct for	theck on ASC this test. Pr	2 particle si for to this or	ze. Chamber ine, there was a on probe may	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP: Fixed the fl	S ~12:25 to c lex duct for	theck on ASC this test. Pr	2 particle si for to this or	ze. Chamber ine, there was a on probe may	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP: Fixed the fl	S ~12:25 to c lex duct for	theck on ASC this test. Pr	2 particle si for to this or	ze. Chamber ine, there was a on probe may	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP: Fixed the fl	S ~12:25 to c lex duct for	theck on ASC this test. Pr	2 particle si for to this or	ze. Chamber ine, there was a on probe may	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP: Fixed the fl	S ~12:25 to c lex duct for	theck on ASC this test. Pr	2 particle si for to this or	ze. Chamber ine, there was a on probe may	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP. Fixed the fl shrouded p	S ~12:25 to c lex duct for	theck on ASC this test. Pr	2 particle si for to this or	ze. Chamber ine, there was a on probe may	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP. Fixed the fl shrouded p	S ~12:25 to c lex duct for probe. The t	theck on ASC this test. Pr ip of the aer	2 particle si for to this or cosol injection	ze. Chamber ine, there was a on probe may JEF 9/16/13	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP. Fixed the fl shrouded p Data Files Environme	S ~12:25 to collex duct for orobe. The to	check on ASC this test. Pr ip of the aer	2 particle si for to this or cosol injection	ze. Chamber in the there was a con probe may // JEF 9/16/13	s still oscillating a kink in the duc	t between th	e aerosol injed	ction probe a	nd
Turn on AP. Fixed the fl shrouded p Data Files Environme FIO Vaisala	S ~12:25 to collex duct for orobe. The to the total chamber of the total	check on ASC this test. Pr ip of the aer	2 particle si for to this or cosol injection 130916_hvs 2013-09-16	ze. Chamber in the properties of the properties	s still oscillating a kink in the duc have been sticki	t between th	e aerosol injed	ction probe a	nd
Turn on AP. Fixed the fl shrouded p Data Files Environme FIO Vaisala FIO Alicat E	S ~12:25 to collex duct for orobe. The to orobe. The to orobe. The to orobe the total chamber of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power	check on ASC this test. Pr ip of the aer	130916_hvs 2013-09-16	ze. Chamber in the there was a con probe may // JEF 9/16/13 3_norm.csv 9 11_21.csv .114_alicat.dat	s still oscillating a kink in the duct have been sticki	t between th	e aerosol injed	ction probe a	nd
Turn on AP. Fixed the fl shrouded p Data Files Environme FIO Vaisala FIO Alicat E	S ~12:25 to collex duct for orobe. The to orobe. The to orobe. The to orobe the total chamber of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power point of the power	check on ASC this test. Pr ip of the aer	130916_hvs 2013-09-16	ze. Chamber in the properties of the properties	s still oscillating a kink in the duct have been sticki	t between th	e aerosol injed	ction probe a	nd
Data Files Environme FIO Vaisala FIO APS Da	S ~12:25 to collex duct for probe. The to probe. The to probe the top top the top top the top top top the top top top top top top top top top top	check on ASC this test. Pr ip of the aer	130916_hvs 2013-09-16_1 test_sept_:	ze. Chamber in the there was a con probe may // JEF 9/16/13 3_norm.csv 9 11_21.csv .114_alicat.dat	s still oscillating a kink in the duct have been sticki	t between the	e aerosol injec duct a bit as w	ction probe a	
Turn on AP. Fixed the fl shrouded p Data Files Environme FIO Vaisala	s ~12:25 to collex duct for probe. The to probe. The to probe. The to probe	check on ASC this test. Pr ip of the aer	130916_hvs 2013-09-16 20130916_1 test_sept_:	ze. Chamber in the there was a con probe may // JEF 9/16/13 3_norm.csv 9 11_21.csv .114_alicat.dat 16_2013_1_cor	s still oscillating a kink in the duct have been sticki	t between the	e aerosol injec duct a bit as w	ction probe a vell.	

			HIGH TE	MPERATURE I	PROBE TESTING	G - Aerosol Pe	enetration		
				Aero	sol and Dilution	Data			
	Run No.					HV-S3			
	Date	9/19/2013		C	hamber Set Point				
Star		11:15 / 11:45				Norm Stack, N	lorm ISA		
	Testers	JEF, JAG			Diluter Orientation	Mostly Vert	1		
		Start	Finish		Materials and Ed	uinment Heed:			Cal Due
Time		11:15	11:45		Thermotron SE-2			7	4/2/2014
-	••	313	313	°F	Alicat MCR-500S		SN 68858	1	2/4/2014
Chamber Tem	•	1.7%		RH	Alicat MCR-500S				4/3/2014
Chamber Hun Dilution flowed			1.7%				SN 68857	V/LI0220001	
		4.07	4.07	scfm °F	Vaisala MI70/HM		S/N G5230040		1/31/2014
Dilution Dew F		-16 	-10		Vaisala MI70/DM		S/N G5230040		1/31/2014
Dilution Temp)	75.4	74.0	°F	Type T Thermoco		T004 - T006, T		6/18/2014
Dilution P		14.8	14.8	psia	Mott Corp Diluter		Model 7610S-1		N/A
Sampling flow		4.88	4.88	scfm	Fisher Dew Poin		S/N 12227788	3	5/16/2014
Sampling Dev		71	72	°F	TSI VOAG, Model		S/N 406		N/A
Sampling Ten	np	107	107	°F	VOAG Aerosol So		ID AS02		de on 8/8/13
Sampling P		14.0	14.0	psia	TSI APS, Model 3	321	S/N 70907086		7/29/2014
Ambient press	sure	1003	1003	mbar	N/A	1	1		
Ambient humi	dity	28.5%	31.5%	RH					
Ambient Temp)	76.3	74.9	°F	Droplet Diamete	r: Dd = (6Q/πf)^	(1/3)	49.5	μm
VOAG Frequer	ncy	40.12	40.13	kHz					
VOAG Syringe	Speed	4.6	4.6	x 10 ⁻⁴ cm/s			Aerosol conc	entration, C	0.0153
VOAG Dispers	sion Air	10	10	cc/min x 100			Aeroso	ol density, ρ	0.8931
VOAG Dilution	Air	70	70	LPM					
APS Mean AD		9.31	8.96	μm	Particle Diamete	er: Dp = (C+I)^(1	1/3)Dd	12.6	μm
APS Sig-G		1.325	1.142						
					Aerodynamic Dia	ameter: AD = D	p*SQRT(ρ)/1	11.9	μm
Notes: T	Turn on hea	at tapes at ar	ound 9:22.						
Turn on dilut	tion, samp	le flows aroι	und 9:38.						
Diluter is ins	talled at a	bout 18.5° fro	om vertical	due to the len	gth. With fitting	gs, it's an inch	or two taller t	than the spac	e
available be	tween the	shrouded p	robe transp	ort tube and t	he floor.				
The aerosol	injection p	robe has sor	ne condens	ation before i	nstalling VOAG 1	tubing.			
			/						
				JEF 9/19/13					
			/_						
			/_						
			_/						
			/						
		/	/						
D . E''									
Data Files	tal Chara	D-t	420040 h	2					
Environmen				3_norm.csv					
FIG Main-1- 5			2013-09-19	_					
FIO Alicat Da			Z0120313_(935_alicat.dat					
FIO Alicat Da			tact cant	10 2012 1	c macc tyt				
			test_sept_:	19_2013_1_cor	ic_mass.txt				
FIO Alicat Da	a:			19_2013_1_cor		Review performs	ed by:	Carmen Arima	escu
FIO Alicat Da	by:				Technical Data R	Review performe	ed by: On File w/ Orig	Carmen Arimo	escu 3/13/2014

			HIGH TE	MPERATURE I	PROBE TESTING	- Aerosol Pe	enetration		
				Aero	sol and Dilution	Data			
	Run No.	AP-6			Facility	HV-S3			
	Date	9/19/2013		C	hamber Set Point	313°F/1.7%R	Н		
Sf	tart/End Time	14:12 / 14:45			Diluter Flows	Max Stack, No	orm ISA		
	Testers	JEF		I	Diluter Orientation	Mostly Vert			
		Start	Finish	1	Materials and Ed	uipment Used:			Cal Due
Time		14:12	14:45		Thermotron SE-2	000-4 Env Cha	mber S/N 4285	7	4/2/2014
Chamber Te	emp	313	313	°F	Alicat MCR-500S	LPM MFC	SN 68858		2/4/2014
Chamber H	umidity	1.7%	1.7%	RH	Alicat MCR-500S	LPM-D MFC	SN 68857		4/3/2014
Dilution flow	controller	7.42	7.42	scfm	Vaisala MI70/HM	P77B	S/N G5230040	/H0320001	1/31/2014
Dilution Dev	w Pt	-2	0	°F	Vaisala MI70/DM	P74B	S/N G5230040	/H0320001	1/31/2014
Dilution Tem	np	80.2	79.0	°F	Type T Thermoco	uples	T004 - T006, T	008, T009	6/18/2014
Dilution P		15.1	15.1	psia	Mott Corp Diluter	32" OAL	Model 7610S-1	1.375-24-2-AB	N/A
Sampling flo	owcontroller	8.13	8.13	scfm	Fisher Dew Point	Pen	S/N 12227788	3	5/16/2014
Sampling D		52	55	°F	TSI VOAG, Model	345001	S/N 406		N/A
Sampling Te		101	101	°F	VOAG Aerosol So		ID AS02	mai	de on 8/8/13
Sampling P	T .	13.4	13.4	psia	TSI APS, Model 3		S/N 70907086		7/29/2014
Ambient pre		1000	999.9	mbar	N/A	021	0/14 / 030/ 000		1123/2014
Ambient hur		26.1%	27.9%	RH	IN/A				
				°F	Droplet Diamete	Dd = (60/_f)A	(4/2)	47.0	··m
Ambient Ter		80.4	78.4	1	Droplet Diamete	. Du = (δQ/πι)	(1/3)	47.6	μπ
VOAG Frequ		45.29	45.31	kHz x 10 ⁻⁴ cm/s					0.0450
VOAG Syring		4.6	4.6				Aerosol conc	· ·	0.0153
VOAG Dispe		10	10 	cc/min x 100			Aeroso	ol density, ρ	0.8931
VOAG Dilutio		70	70	LPM					
	ND .	9.36	8.95	μm	Particle Diamete	r: Dp = (C+I)^(1	/3)Dd	12.1	μm
APS Mean A	_								
APS Mean A APS Sig-G		1.136	1.150						
			1.150		Aerodynamic Dia	ameter: AD = D	p*SQRT(ρ)/1	11.4	μm
		1.136							
APS Sig-G Notes:	Turn on air	1.136 flows ~13:30). Still using		Aerodynamic Dia				
APS Sig-G Notes:	Turn on air	1.136). Still using						
APS Sig-G Notes: Will need t	Turn on air to switch de	1.136 flows ~13:30). Still using re "real" tes						
APS Sig-G Notes: Will need t Diluter is in	Turn on air to switch de nstalled at a	1.136 flows ~13:30 siccant before). Still using re "real" tes n vertical.						
APS Sig-G Notes: Will need t Diluter is in	Turn on air to switch de nstalled at a	1.136 flows ~13:30 siccant befor). Still using re "real" tes n vertical.						
APS Sig-G Notes: Will need t Diluter is in	Turn on air to switch de nstalled at a	1.136 flows ~13:30 siccant befor). Still using re "real" tes n vertical.	t.					
APS Sig-G Notes: Will need t Diluter is in	Turn on air to switch de nstalled at a	1.136 flows ~13:30 siccant befor). Still using re "real" tes n vertical.						
APS Sig-G Notes: Will need t Diluter is in	Turn on air to switch de nstalled at a	1.136 flows ~13:30 siccant befor). Still using re "real" tes n vertical.	t.					
APS Sig-G Notes: Will need t Diluter is in	Turn on air to switch de nstalled at a	1.136 flows ~13:30 siccant befor). Still using re "real" tes n vertical.	t.					
APS Sig-G Notes: Will need t Diluter is in	Turn on air to switch de nstalled at a	1.136 flows ~13:30 siccant befor). Still using re "real" tes n vertical.	t.					
APS Sig-G Notes: Will need t Diluter is in	Turn on air to switch de nstalled at a	1.136 flows ~13:30 siccant befor). Still using re "real" tes n vertical.	t.					
APS Sig-G Notes: Will need t Diluter is in	Turn on air to switch de nstalled at a	1.136 flows ~13:30 siccant befor). Still using re "real" tes n vertical.	t.					
APS Sig-G Notes: Will need t Diluter is in	Turn on air to switch de nstalled at a	1.136 flows ~13:30 siccant befor). Still using re "real" tes n vertical.	t.					
Notes: Will need t Diluter is ir Switched t	Turn on air to switch de nstalled at a	1.136 flows ~13:30 siccant befor). Still using re "real" tes n vertical.	t.					
Notes: Will need to Diluter is in Switched t	Turn on air to switch de nstalled at a o upper des	flows ~13:30 siccant before bout 12° fror iccant at 13:5). Still using re "real" tes n vertical.	t.					
Notes: Will need to Diluter is in Switched t	Turn on air to switch de nstalled at a o upper des	flows ~13:30 siccant before bout 12° frore iccant at 13:5	n. Still using re "real" tes n vertical.	JEF 9/19/13 3_norm.csv					
Notes: Will need to Diluter is in Switched t	Turn on air to switch de nstalled at a o upper des	flows ~13:30 siccant before bout 12° frore iccant at 13:5	130919_hvs	JEF 9/19/13 3_norm.csv 9_49.csv	cant, with -5°F d				
Notes: Will need to Diluter is in Switched t	Turn on air to switch de installed at a o upper des ental Chambo a Dew Point Data:	flows ~13:30 siccant before bout 12° frore iccant at 13:5	130919_hvs 2013-09-19 2013-0919_C	JEF 9/19/13 3_norm.csv 9_49.csv 935_alicat.dat	cant, with -5°F d				
Notes: Will need to Diluter is in Switched t	Turn on air to switch de installed at a o upper des ental Chambo a Dew Point Data:	flows ~13:30 siccant before bout 12° frore iccant at 13:5	130919_hvs 2013-09-19 2013-0919_C	JEF 9/19/13 3_norm.csv 9_49.csv	cant, with -5°F d				
Notes: Will need to Diluter is in Switched t	Turn on air to switch de installed at a o upper des ental Chambo a Dew Point Data:	flows ~13:30 siccant before bout 12° frore iccant at 13:5	130919_hvs 2013-09-19 2013-0919_test_sept_1	JEF 9/19/13 3_norm.csv 9_49.csv 935_alicat.dat	cant, with -5°F d	p, since condi	tioned air dev	w point is 16°	F.
Notes: Will need to Diluter is in Switched t	Turn on air to switch de installed at a o upper des ental Chambia Dew Point Data: ental chambia be by:	flows ~13:30 siccant before bout 12° frore iccant at 13:5	130919_hvs 2013-09-19 20130919_test_sept_1	JEF 9/19/13 3_norm.csv 9_49.csv 935_alicat.dat 19_2013_1_cor	cant, with -5°F d	p, since condi	tioned air dev	w point is 16°	F.

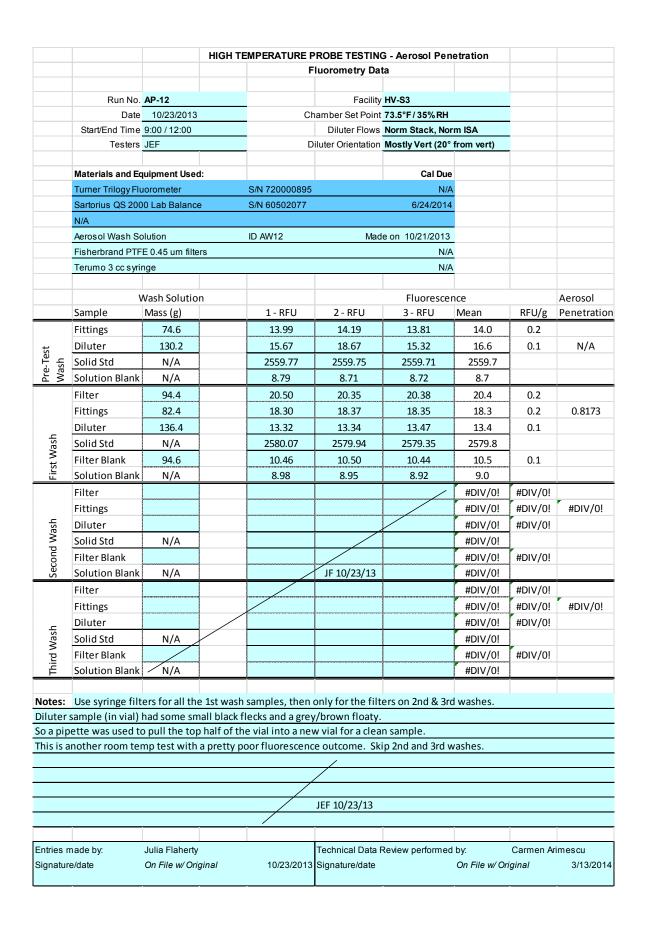

			HIGH TE	MPERATURE	PROBE TESTING	G - Aerosol Pe	netration		
				Aero	sol and Dilution	Data			
	Run No.					HV-S3			
	Date	9/24/2013		C	hamber Set Point				
Star		12:15 / 12:45				Norm Stack, N			
	Testers	JEF			Diluter Orientation	Nearly Vert (20	o from vert)		
		Start	Finish		Materials and Ed	uinment Head:			Cal Due
Time		12:15	12:45		Thermotron SE-2			7	4/2/2014
Chamber Tem	ın.	313	313	°F	Alicat MCR-500S		SN 68858	1	2/4/2014
Chamber Hum		1.7%	1.7%	RH	Alicat MCR-500S		SN 68857		4/3/2014
Dilution flowed	,	4.07	4.07	scfm	Vaisala MI70/HM		S/N G5230040	/H0320001	1/31/2014
Dilution Dew F		4.07	3	°F	Vaisala MI70/DM		S/N G5230040		1/31/2014
				°F					
Dilution Temp		14.5	73.3		Type T Thermoco	•	T004 - T006, T		6/18/2014
Dilution P		14.7	14.7	psia	Mott Corp Diluter		Model 7610S-1		N/A
Sampling flow		4.88	4.88	scfm °F	Fisher Dew Poin		S/N 12227788	3	5/16/2014
Sampling Dev		71	72	-	TSI VOAG, Model		S/N 406		N/A
Sampling Tem	тр	105	105	°F	VOAG Aerosol So		ID AS03		e on 9/19/13
Sampling P		13.9	13.9	psia	TSI APS, Model 3	321	S/N 70907086		7/29/2014
Ambient press		995.5	995.2	mbar	N/A				
Ambient humi	,	33.2%	37.1%	RH					
Ambient Temp		74.5	74.2	°F	Droplet Diamete	r: Dd = (6Q/πf)^	(1/3)	49.9	μM
VOAG Frequer	тсу	40.20	40.21	kHz					
VOAG Syringe	Speed	4.7	4.7	x 10 ⁻⁴ cm/s			Aerosol conc	entration, C	0.0165
VOAG Dispers	ion Air	10	10	cc/min x 100			Aeroso	ol density, ρ	0.8931
VOAG Dilution	Air	70	70	LPM					
APS Mean AD		8.99	8.45	μm	Particle Diamete	er: Dp = (C+I)^(1	/3)Dd	12.9	μm
APS Sig-G		1.124	1.228						
					Aerodynamic Dia	ameter: AD = D	o*SQRT(ρ)/1	12.2	μm
		t tapes set to	275°F.						
Used filtered	d aerosol s	olution.							
			/	/ /					
				JEF 9/24/13					
			/_						
			/						
		/							
Data Eilec	tal Chambe	ar Data:	130927 hvs	3_norm.csv					
	Lui Cilailib		2013-09-24						
Environment		Data:		U.U.V					
Environment FIO Vaisala D	Dew Point			1046 alicat dat					
Environment FIO Vaisala D FIO Alicat Da	Dew Point ta:		20130924_1						
Environment FIO Vaisala D FIO Alicat Da	Dew Point ta:		20130924_1	1046_alicat.dat 24_2013_1_cor					
Data Files Environment FIO Vaisala D FIO Alicat Da FIO APS Data Entries made	Dew Point ta:		20130924_1 test_sept_2		nc_mass.txt	Review performe	ed by:	Carmen Arimo	escu
Environment FIO Vaisala D FIO Alicat Da	Dew Point ita: n: by:		20130924_1 test_sept_2	 24_2013_1_cor		Review performe	ed by: On File w/ Origi		escu 3/13/2014

			HIGH TE	MPERATURE P	ROBE TESTING	G - Aerosol Pen	etration		
				F	luorometry Da	ta			
	Run No.	AP-7			Facility	HV-S3			
	Date			Ch	namber Set Point				
	Start/End Time					Norm Stack, Nor			
	Testers	JEF		D	iluter Orientation	Nearly Vert (20°	from vert)		
	Matariala and Ca					Cal Dua			
	Materials and Ed		i	C/N 72000000		Cal Due			
	Turner Trilogy Flu Sartorius QS 200			S/N 720000895 S/N 60502077		N/A 6/24/2014			
	N/A	JU Lab Dalalice		3/N 60302077		6/24/2014			
	Aerosol Wash So	alution		ID AW10	Ma	de on 9/20/2013			
	Whatman AutoVi			ID AVV 10	IVIO	N/A			
	N/A	aı				N/A	<u> </u>		
	N/A								
	\	Nash Solution	ı			Fluorescer	nce		Aerosol
	Sample	Mass (g)		1 - RFU	2 - RFU	3 - RFU	Mean	RFU/g	Penetratio
	Fittings	68.2		17.55	17.48	17.54	17.5	0.3	
	Diluter	127.5		17.55	17.48	19.74		0.3	NI/A
Pre-Test Wash	Solid Std			2600.63	2599.99		19.7	0.2	N/A
Pre-Te Wash		N/A		 	-	2600.02	2600.2		
△ >	Solution Blank	N/A		8.59	8.94	8.85	8.8	04.5	
	Filter	94.2		7688.87	7677.64	7669.33	7678.6	81.5	
	Fittings	64.1		118.39	119.12	119.29	118.9	1.9	0.9977
_	Diluter	138.5		26.23	26.02	26.34	26.2	0.2	
First Wash	Solid Std	N/A		2575.47	2575.18	2574.19	2574.9		
st v	Filter Blank	99.9		14.25	13.82	13.89	14.0	0.1	
Ϊ	Solution Blank	N/A		8.89	8.99	9.19	9.0		
	Filter	79.5		684.96	689.46	684.59	686.3	8.6	
	Fittings	68.6		28.83	29.07	29.00	29.0	0.4	0.9968
ash	Diluter	121.1		12.73	13.39	12.89	13.0	0.1	
Second Wash	Solid Std	N/A		2595.47	2595.27	2595.37	2595.4		
Ouc	Filter Blank	80.5		17.58	17.39	17.11	17.4	0.2	
Sec	Solution Blank	N/A		10.26	10.35	10.4	10.3		
	Filter	67.8		297.20	294.63	296.41	296.1	4.4	
	Fittings	67.8		12.86	12.97	13.1	13.0	0.2	0.9960
_	Diluter	114.1		10.61	10.69	11.11	10.8	0.1	
/ash	Solid Std	N/A		2593.18	2593.17	2592.33	2592.9		
Third Wash	Filter Blank	64.7		12.95	12.92	12.77	12.9	0.2	
Thir	Solution Blank			10.52	10.43	10.28	10.4		
Notes:	Used AutoVial	for everything	g on the f	irst wash, then	only filters for	2nd and 3rd was	hes.		
			/						
		/							
			IF 9/24/13	3					
ntries n	nade by:	Julia Flaherty			Technical Data I	Review performed	bv	Carmen A	rimescu
Signatur		On File w/ Orig	inal	9/24/2013	Signature/date	to non-ponomied	On File w/ Or		3/13/201
g.iatai	J. 4410	Cirriio W Orig		0,27,2010	o.g.iataro/date		On the W Of		J, 10/201


			HIGH TE	MPERATURE I	PROBE TESTING	- Aerosol Pe	netration		
				Aero	sol and Dilution	Data			
	Run No.	AP-8			Facility	HV-S3			
	Date	9/27/2013		С	hamber Set Point	365°F/1.5%R	H*		
Sta	rt/End Time	14:30 / 15:00			Diluter Flows	Max Stack, No	orm ISA		
	Testers	JEF		[Diluter Orientation	Mostly Vert			
		Start	Finish	8	Materials and Eq	uipment Used:			Cal Du
Time		14:30	15:00		Thermotron SE-2	000-4 Env Cha	mber S/N 4285	7	4/2/201
Chamber Ten	np	365	365	°F	Alicat MCR-500S	LPM MFC	SN 68858		2/4/201
Chamber Hur	midity	2.0%	0.8%	RH	Alicat MCR-500S	LPM-D MFC	SN 68857		4/3/201
Dilution flowco	ontroller	7.42	7.42	scfm	Vaisala MI70/HM	P77B	S/N G5230040	/H0320001	1/31/201
Dilution Dew I	Pt	2	-3	°F	Vaisala MI70/DM	P74B	S/N G5230040	/H0320001	1/31/201
Dilution Temp)	76.8	77.7	°F	Type T Thermoco	ouples	T004 - T006, T	008, T009	6/18/201
Dilution P		15.1	15.1	psia	Mott Corp Diluter	32" OAL	Model 7610S-1	1.375-24-2-AB	N/
Sampling flow	vcontroller	8.13	8.13	scfm	Fisher Dew Point	t Pen	S/N 12227788	3	5/16/201
Sampling Dev		74	46	°F	TSI VOAG, Model	345001	S/N 406		N/A
Sampling Ten		100	101	°F	VOAG Aerosol So			mad	e on 9/26/1
Sampling P		13.4	13.4	psia	TSI APS, Model 3	` `	S/N 70907086		7/29/2014
Ambient press	SUIFA	1001	1000	mbar	N/A	021	0/14 / 000 / 000		77207201
Ambient humi		33.6%	32.8%	RH	TO/A				
	•				Dranlet Diemete	Dd = (60/-6\A	(4/2)	40.0	···m
Ambient Tem		80.6	81.6	°F kHz	Droplet Diamete	r. Du = (δQ/πι)··	(1/3)	49.0	μп
VOAG Freque	-	41.39	41.47	x 10 ⁻⁴ cm/s			A 1		0.022
VOAG Syringe	Speed	4.6	4.6				Aerosol conc		0.032
VOAG Dispers		10	10	cc/min x 100			Aeroso	ol density, ρ	0.892
VOAG Dilution	n Air	70	70	LPM					
APS Mean AD		11.0	10.6	μm	Particle Diamete	r: Dp = (C+I)^(1	/3)Dd	15.8	μm
APS Sig-G		1.183	1.213						
					Aerodynamic Dia	ameter: AD = D	p*SQRT(ρ)/1	14.9	μm
Notes:	Turn on air	flow ~13:18.	Using botto	om desiccant,	dew point is aro	und 4°F. Can	deal with that	t until testing	g time
					dew point is aro	und 4°F. Can	deal with tha	t until testing	g time
or rather, ke	ep an eye	on it as we i	ncrease hun		·	und 4°F. Can	deal with tha	t until testing	g time
or rather, ke * Humidity i	ep an eye s not contr	on it as we i	ncrease hun chamber at	nidity.	ure.	und 4°F. Can	deal with tha	t until testing	g time
or rather, ke * Humidity i Switch to to	ep an eye s not contr p desiccan	on it as we i olled by the t at 13:34. Ch	ncrease hun chamber at namber is at	nidity. this temperat 328°F and 5.59	ure.		deal with tha	t until testing	g time
or rather, ke * Humidity i Switch to to Probably saf	ep an eye s not contr p desiccan fest to stop	on it as we i olled by the t at 13:34. Co at 6%RH (Co	ncrease hum chamber at namber is at onditioned a	nidity. this temperat 328°F and 5.59	ure. %RH at 13:37. s approaching di		deal with that	t until testing	g time
or rather, ke * Humidity i Switch to to Probably saf 13:42 increa:	ep an eye s not contr p desiccan fest to stop se chambe	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328	ncrease hun chamber at namber is at onditioned a to 365. Star	nidity. this temperat 328°F and 5.59 iir dew point is	ure. %RH at 13:37. s approaching di		deal with tha	t until testing	g time
or rather, ke * Humidity i: Switch to to Probably saf 13:42 increas "New" desic	ep an eye s not contr p desiccan fest to stop se chambe ccant is onl	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328 y -1°F dp at 1	ncrease hum chamber at namber is at onditioned a to 365. Star .3:45.	nidity. this temperat 328°F and 5.59 iir dew point is	ure. %RH at 13:37. s approaching di is 6.2%.		deal with tha	t until testing	g time
or rather, ke * Humidity i: Switch to top Probably saf 13:42 increas "New" desic	eep an eye s not contr p desiccan fest to stop se chambe ccant is onl se heat tap	on it as we i olled by the t at 13:34. Ch at 6%RH (Cc r T from 328 y -1°F dp at 1 se to 315°F o	ncrease hum chamber at namber is at onditioned a to 365. Star .3:45. n Omega. 1:	nidity. this temperat 328°F and 5.59 air dew point is ting humidity 3:52 change th	ure. %RH at 13:37. s approaching di is 6.2%.	y bulb).			
or rather, ke * Humidity i: Switch to to Probably saf 13:42 increa: "New" desic 13:50 increa: Chamber ter	sep an eye s not contr p desiccan fest to stop se chambe ccant is onl se heat tap mperature	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328 y -1°F dp at 1 ee to 315°F o is still oscill.	ncrease hun chamber at namber is at onditioned a to 365. Star 3:45. n Omega. 13	nidity. this temperat 328°F and 5.59 air dew point is ting humidity 3:52 change th	ure. %RH at 13:37. s approaching di is 6.2%. at to 300°F. of test but since	y bulb).			
or rather, ke * Humidity i: Switch to to Probably saf 13:42 increa: "New" desic 13:50 increa: Chamber ter	sep an eye s not contr p desiccan fest to stop se chambe ccant is onl se heat tap mperature	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328 y -1°F dp at 1 ee to 315°F o is still oscill.	ncrease hun chamber at namber is at onditioned a to 365. Star 3:45. n Omega. 13	this temperat 328°F and 5.55 air dew point is ting humidity 3:52 change th 1 365°F at start	ure. %RH at 13:37. s approaching di is 6.2%. at to 300°F. of test but since	y bulb).			
or rather, ke * Humidity i: Switch to to Probably saf 13:42 increa: "New" desic 13:50 increa: Chamber ter	sep an eye s not contr p desiccan fest to stop se chambe ccant is onl se heat tap mperature	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328 y -1°F dp at 1 ee to 315°F o is still oscill.	ncrease hun chamber at namber is at onditioned a to 365. Star 3:45. n Omega. 13	this temperat 328°F and 5.55 air dew point is ting humidity 3:52 change th 1 365°F at start	ure. %RH at 13:37. s approaching di is 6.2%. at to 300°F. of test but since	y bulb).			
or rather, ke * Humidity i: Switch to to Probably saf 13:42 increa: "New" desic 13:50 increa: Chamber ter	sep an eye s not contr p desiccan fest to stop se chambe ccant is onl se heat tap mperature	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328 y -1°F dp at 1 ee to 315°F o is still oscill.	ncrease hun chamber at namber is at onditioned a to 365. Star 3:45. n Omega. 13	this temperat 328°F and 5.55 air dew point is ting humidity 3:52 change th 1 365°F at start	ure. %RH at 13:37. s approaching di is 6.2%. at to 300°F. of test but since	y bulb).			
or rather, ke * Humidity i: Switch to to Probably saf 13:42 increa: "New" desic 13:50 increa: Chamber ter	sep an eye s not contr p desiccan fest to stop se chambe ccant is onl se heat tap mperature	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328 y -1°F dp at 1 ee to 315°F o is still oscill.	ncrease hun chamber at namber is at onditioned a to 365. Star 3:45. n Omega. 13	this temperat 328°F and 5.55 air dew point is ting humidity 3:52 change th 1 365°F at start	ure. %RH at 13:37. s approaching di is 6.2%. at to 300°F. of test but since	y bulb).			
or rather, ke * Humidity i. Switch to tol Probably saf 13:42 increa: "New" desic 13:50 increa: Chamber ter VOAG. ~14:4	sep an eye s not contr p desiccan fest to stop se chambe ccant is onl se heat tap mperature	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328 y -1°F dp at 1 ee to 315°F o is still oscill.	ncrease hun chamber at namber is at onditioned a to 365. Star 3:45. n Omega. 13	this temperat 328°F and 5.55 air dew point is ting humidity 3:52 change th 1 365°F at start	ure. %RH at 13:37. s approaching di is 6.2%. at to 300°F. of test but since	y bulb).			
or rather, ke * Humidity i Switch to to Probably saf 13:42 increa: "New" desic 13:50 increa: Chamber ter VOAG. ~14:4	s not contr p desiccan fest to stop se chambe ccant is onl se heat tap mperature 45 VOAG b	on it as we i olled by the t at 13:34. Ch o at 6%RH (Co r T from 328 y -1°F dp at 1 be to 315°F o is still oscill- ehavior got o	ncrease hun chamber at namber is at onditioned a to 365. Star 3:45. n Omega. 13	nidity. this temperat 328°F and 5.59 air dew point is ting humidity 3:52 change th 1 365°F at start a bit. Tweake	ure. %RH at 13:37. s approaching di is 6.2%. at to 300°F. of test but since	y bulb).			
or rather, ke * Humidity i Switch to to Probably saf 13:42 increa: "New" desic 13:50 increa: Chamber ter VOAG. ~14:4	sep an eye s not contr p desiccan fest to stop se chambe ccant is onl se heat tap mperature 45 VOAG b	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328 y -1°F dp at 1 se to 315°F o is still oscille chavior got of	ncrease hun chamber at namber is at noditioned a to 365. Star 3:45. n Omega. 1: ating around erradic, just	nidity. this temperat 328°F and 5.59 air dew point is ting humidity 3:52 change th 1 365°F at start a bit. Tweake	ure. %RH at 13:37. s approaching di is 6.2%. at to 300°F. of test but since	y bulb).			
or rather, ke * Humidity i Switch to to Probably saf 13:42 increa: "New" desic 13:50 increa: Chamber ter VOAG. ~14:4	sep an eye s not contr p desiccan fest to stop se chambe ccant is onl se heat tap mperature 45 VOAG b	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328 y -1°F dp at 1 se to 315°F o is still oscille chavior got of	ncrease hum chamber at namber is at onditioned a to 365. Star .3:45. n Omega. 1: ating arounce erradic, just	nidity. this temperat 328°F and 5.59 air dew point is ting humidity 3:52 change th 1 365°F at start a bit. Tweake	ure. %RH at 13:37. s approaching dis 6.2%. at to 300°F. of test but since d frequency.	y bulb).			
or rather, ke * Humidity i Switch to to Probably saf 13:42 increa: "New" desic 13:50 increa: Chamber ter VOAG. ~14:4 Data Files Environmen FIO Vaisala I FIO Alicat Da	sep an eye s not contr p desiccan fest to stop se chambe ccant is onl se heat tap mperature 45 VOAG b tal Chamb Dew Point ata:	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328 y -1°F dp at 1 se to 315°F o is still oscille chavior got of	ncrease hum chamber at namber is at onditioned a to 365. Star 3:45. In Omega. 1: ating around erradic, just	this temperat 328°F and 5.59 sir dew point is ting humidity 3:52 change th 3 365°F at start a bit. Tweaker	ure. %RH at 13:37. s approaching dries 6.2%. at to 300°F. of test but since drequency.	y bulb).			
or rather, ke * Humidity i: Switch to to Probably saf 13:42 increa: "New" desic 13:50 increa: Chamber ter	sep an eye s not contr p desiccan fest to stop se chambe ccant is onl se heat tap mperature 45 VOAG b tal Chamb Dew Point ata:	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328 y -1°F dp at 1 se to 315°F o is still oscille chavior got of	ncrease hum chamber at namber is at onditioned a to 365. Star 3:45. In Omega. 1: ating around erradic, just	this temperat 328°F and 5.59 sir dew point is ting humidity 3:52 change th 1365°F at start a bit. Tweake	ure. %RH at 13:37. s approaching dries 6.2%. at to 300°F. of test but since drequency.	y bulb).			
or rather, ke * Humidity i Switch to to Probably saf 13:42 increa: "New" desic 13:50 increa: Chamber ter VOAG. ~14:4 Data Files Environmen FIO Vaisala I FIO Alicat Da	sep an eye s not contr p desiccan fest to stop se chambe ccant is onl se heat tap mperature 45 VOAG b tal Chamb Dew Point ata: a:	on it as we i olled by the t at 13:34. Ch at 6%RH (Co r T from 328 y -1°F dp at 1 se to 315°F o is still oscille chavior got of	ncrease hum chamber at namber is at onditioned a to 365. Star 3:45. In Omega. 1: ating around erradic, just 130927_hvs N/A 20130927_1 test_sept_2	this temperat 328°F and 5.59 sir dew point is ting humidity 3:52 change th 1365°F at start a bit. Tweake	ure. %RH at 13:37. s approaching dries 6.2%. at to 300°F. of test but since drequency.	e the humidit	y is conservati		rted the

			HIGH TEMPERATUI	RE PROBE TESTIN	G - Aerosol Per	netration		
				Fluorometry Da				
	Run No.	AP-8		Facility	HV-S3			
	Date	9/27/2013		Chamber Set Point	365°F / 1.5% RH	*		
	Start/End Time	10:30 / 16:05			Max Stack, Nor			
	Testers			Diluter Orientation				
					, , , , , ,			
	Materials and Ed	uipment Used	:		Cal Due	e		
	Turner Trilogy Flu		S/N 720000	895	N//	A		
	Sartorius QS 200				6/24/2014			
	N/A			· ·				
	Aerosol Wash So	alution	ID AW10	Ms	ide on 9/20/2013	2		
	Whatman AutoVia		ID AWTO	IVIC	N//			
	-	aı			IN//	<u> </u>		
	N/A	1			1			
	1	Nash Solution			Eluorosso	nco		Aerosol
	Sample	Mass (g)	1 - RFU	2 - RFU	Fluoresce 3 - RFU	Mean	RFU/g	
								Penetration
	Fittings	67.9	19.54	19.81	19.47	19.6	0.3	
est	Diluter	114.3	26.38	26.39	26.17	26.3	0.2	N/A
Pre-Test Wash	Solid Std	N/A	2555.71	L 2555.44	2555.30	2555.5		
P 📎	Solution Blank	N/A	7.95	7.92	7.92	7.9		
	Filter	94.6	6623.88	6658.53	6630.18	6637.5	70.2	
	Fittings	62.3	193.34	192.32	193.29	193.0	3.1	0.9973
	Diluter	139.6	27.70	28.05	28.19	28.0	0.2	
lsh	Solid Std	N/A	2593.18		2593.29	2593.3		
Š	Filter Blank	94.2	12.05	12.38	12.71	12.4	0.1	
First Wash	Solution Blank		8.12	8.30	8.36	8.3	0.1	
<u> </u>			i	1			F 4	
	Filter	88.0	472.43		471.63	473.2	5.4	0.0004
_	Fittings	62.4	17.86	18.49	18.21	18.2	0.3	0.9961
/ash	Diluter	112.5	12.35	12.57	12.80	12.6	0.1	
Second Wash	Solid Std	N/A	2545.06	5 2544.65	2544.53	2544.7		
on S	Filter Blank	84.4	13.04	13.43	13.07	13.2	0.2	
Se	Solution Blank	N/A	9.16	9.76	9.55	9.5		
	Filter	82.9	215.23	215.10	215.87	215.4	2.6	
	Fittings	62.4	12.50	12.63	12.66	12.6	0.2	0.9946
_	Diluter	100.4	13.33	13.59	13.66	13.5	0.1	
'ash	Solid Std	N/A	2580.08		2580.56	2580.7		
Third Wash	Filter Blank	86.2	10.42	10.82	10.74	10.7	0.1	
Лir	Solution Blank	N/A	9.71	9.60	9.68	9.7	0.1	
	COTACION DIGIN	,^	3.71	5.00	3.00	5.7		
Notes:	Used AutoVial	for everything	g on the first wash, tl	nen only filters for	2nd and 3rd wa	shes		
			o at some point in the	•	Zilu allu Slu Wd	iorico.		
			VOAG period, but no		tell			
			namber at this tempe		ccii.			
Hullill	arry is not contro	med by the th	/	iature.				
			/					
Entries m	nade by	Julia Flaherty		Technical Data	Review performe	d by:	Carmen A	rimescu
Entries m		Julia Flaherty On File w/ Orig	inal 0/27/2	Technical Data 2013 Signature/date	Review performe	d by: On File w/ Or	Carmen A	rimescu 3/13/2014

			HIGH TEI	MPERATURE I	PROBE TESTING	- Aerosol Pe	netration		
				Aero	sol and Dilution	Data			
	Run No.	AP-9			Facility	HV-S3			
	Date	10/9/2013		С	hamber Set Point	365°F/1.5%R	н		
Sta	art/End Time	5:25 / 5:55			Diluter Flows	Max Stack, Ma	x ISA		
	Testers	JEF		ı	Diluter Orientation	Mostly Vert (2	1° from vert)		
		Start	Finish		Materials and Eq	uipment Used:			Cal Due
Time		5:25	5:55		Thermotron SE-2	000-4 Env Cha	mber S/N 42857	7	4/2/2014
Chamber Tei	mp	365	365	°F	Alicat MCR-500S	LPM MFC	SN 68858		2/4/201
Chamber Hu	midity	1.5%	1.5%	RH	Alicat MCR-500S	LPM-D MFC	SN 68857		4/3/201
Dilution flow	controller	7.63	7.63	scfm	Vaisala MI70/HM	P77B	S/N G5230040/	/H0320001	1/31/201
Dilution Dew	Pt	0	0	°F	Vaisala MI70/DMI	P74B	S/N G5230040/	/H0320001	1/31/2014
Dilution Tem	р	77	76	°F	Type T Thermoco	uples	T004 - T006, T0	008, T009	6/18/201
Dilution P		15.1	15.1	psia	Mott Corp Diluter	32" OAL	Model 7610S-1	.375-24-2-AB	N/A
Sampling flow	wcontroller	8.34	8.34	scfm	Fisher Dew Point	:Pen	S/N 122277883	3	5/16/2014
Sampling De	w Pt	69	69	°F	TSI VOAG, Model	345001	S/N 406		N//
Sampling Te		101	101	°F	VOAG Aerosol So		ID AS03	mad	e on 9/19/1:
Sampling P	p	13.3	13.3	psia	Hach OPC		S/N 101152901		3/7/2014
Ambient pres	SIIFA	1000	1000	mbar	TSI APS, Model 3	321	S/N 70907086	. •	7/29/2014
Ambient hum		27.9%	30.3%	RH	TOTAL O, IVIDUCT O	021	0/14 / 030/ 000		11231201
	•			°F	Duamlet Diameter	Dd = (CO/-£\A	(4/2)	47.5	
Ambient Tem	•	81.5	80.9		Droplet Diameter	: Da = (6Q/π1)··	(1/3)	47.5	μπ
VOAG Freque	•	41.45	41.45	kHz x 10 ⁻⁴ cm/s					0.016
VOAG Syringe	e Speed	4.2	4.2				Aerosol conce	entration, C	0.016
VOAG Disper	sion Air	10	10	cc/min x 100			Aeroso	l density, ρ	0.893
VOAG Dilutio	n Air	70	70	LPM					
APS Mean AD)	N/A	N/A	μm	Particle Diamete	r: Dp = (C+I)^(1	/3)Dd	12.3	μm
APS Mean AD APS Sig-G)	N/A N/A	N/A N/A	μm	Particle Diamete	r: Dp = (C+I)^(1	/3)Dd	12.3	μm
)			μm	Particle Diamete Aerodynamic Dia			12.3	
APS Sig-G		N/A	N/A		Aerodynamic Dia	ımeter: AD = Dp			
APS Sig-G Notes:	Original, 9/	N/A /30/13 Notes	N/A : ~9:30 turn	on heat tape,	Aerodynamic Dia	nmeter: AD = Dp	o*SQRT(ρ)/1	11.7	μm
APS Sig-G Notes:	Original, 9/	N/A /30/13 Notes	N/A : ~9:30 turn	on heat tape,	Aerodynamic Dia	nmeter: AD = Dp	o*SQRT(ρ)/1	11.7	μm
APS Sig-G Notes: ~9:42 lost p	Original, 9/ ower to bui	N/A /30/13 Notes	N/A : ~9:30 turn ntarily, afte	on heat tape, r a minute or s	Aerodynamic Dia	nmeter: AD = Dp	o*SQRT(ρ)/1	11.7	μm
Notes: ~9:42 lost primmediatel	Original, 9/ ower to bui y. (except	N/A //30/13 Notes ilding mome for the need	N/A : ~9:30 turn ntarily, afte to re-set he	on heat tape, r a minute or s	Aerodynamic Dia	ameter: AD = Dp - Imed operatio	o*SQRT(ρ)/1 on. Everything	11.7 g else return	μm
Notes: ~9:42 lost primmediatel	Original, 9/ ower to bui y. (except	N/A //30/13 Notes ilding mome for the need	N/A : ~9:30 turn ntarily, afte to re-set he	on heat tape, r a minute or s	Aerodynamic Dia set point = 300°l so, chamber resu	ameter: AD = Dp - Imed operatio	o*SQRT(ρ)/1 on. Everything	11.7 g else return	μm
Notes: ~9:42 lost primmediatel Turns out th	Original, 9/ ower to bui y. (except ne power b	N/A /30/13 Notes Ilding mome for the need ump scrambl	N/A : ~9:30 turn ntarily, after to re-set he ed the therr	on heat tape, r a minute or s eat tape) mocouple data	Aerodynamic Dia set point = 300°l so, chamber resu	nmeter: AD = Dr =. Imed operation	o*SQRT(ρ)/1 on. Everything motron to trou	11.7 g else return ubleshoot.	μm ed
Notes: ~9:42 lost primmediatel Turns out th	Original, 9/ ower to bui y. (except ne power b	N/A /30/13 Notes Iding mome for the need ump scrambl	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to	on heat tape, r a minute or s eat tape) mocouple data o 370°F, so hur	Aerodynamic Dia set point = 300°l so, chamber resu	ameter: AD = Dr	on. Everything motron to trou coated glass s	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th	Original, 9/ower to buily. (except ne power built ton 10/9. Sgstrange, s	N/A /30/13 Notes Iding mome for the need ump scrambl	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to	on heat tape, r a minute or s eat tape) mocouple data o 370°F, so hur	Aerodynamic Dia set point = 300°l so, chamber resu a acquisition - w midity is control	ameter: AD = Dr	on. Everything motron to trou coated glass s	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th Re-start tes APS is being 13-15 um bi	Original, 9/ower to buildy. (except the power build) to 10/9. So strange, son	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi o the data ar	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected,	on heat tape, r a minute or s eat tape) mocouple data o 370°F, so hur but the Hach	Aerodynamic Dia set point = 300°l so, chamber resu a acquisition - w midity is control	nmeter: AD = Dr nmed operation ork with Thern ed. Included d for sizing. Th	o*SQRT(ρ)/1 on. Everything motron to trou coated glass s ne peak from t	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th Re-start tes APS is being 13-15 um bi	Original, 9/ower to buildy. (except the power build) to 10/9. So strange, son	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi o the data ar	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected,	on heat tape, r a minute or s eat tape) mocouple data o 370°F, so hur but the Hach	Aerodynamic Dia set point = 300°l so, chamber resu a acquisition - w midity is controll OPC will be used	nmeter: AD = Dr nmed operation ork with Thern ed. Included d for sizing. Th	o*SQRT(ρ)/1 on. Everything motron to trou coated glass s ne peak from t	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th Re-start tes APS is being 13-15 um bi	Original, 9/ower to buildy. (except the power build) to 10/9. So strange, son	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi o the data ar	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected,	on heat tape, r a minute or s eat tape) mocouple data o 370°F, so hur but the Hach	Aerodynamic Dia set point = 300°l so, chamber resu a acquisition - w midity is controll OPC will be used	nmeter: AD = Dr nmed operation ork with Thern ed. Included d for sizing. Th	o*SQRT(ρ)/1 on. Everything motron to trou coated glass s ne peak from t	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th Re-start tes APS is being 13-15 um bi	Original, 9/ower to buildy. (except the power build) to 10/9. So strange, son	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi o the data ar	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected,	on heat tape, r a minute or s eat tape) mocouple data o 370°F, so hur but the Hach	Aerodynamic Dia set point = 300°l so, chamber resu a acquisition - w midity is controll OPC will be used	nmeter: AD = Dr nmed operation ork with Thern ed. Included d for sizing. Th	o*SQRT(ρ)/1 on. Everything motron to trou coated glass s ne peak from t	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th Re-start tes APS is being 13-15 um bi	Original, 9/ower to buildy. (except the power build) to 10/9. So strange, son	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi o the data ar	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected,	on heat tape, r a minute or s eat tape) mocouple data o 370°F, so hur but the Hach	Aerodynamic Dia set point = 300°l so, chamber resu a acquisition - w midity is controll OPC will be used	nmeter: AD = Dr nmed operation ork with Thern ed. Included d for sizing. Th	o*SQRT(ρ)/1 on. Everything motron to trou coated glass s ne peak from t	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th	Original, 9/ower to buildy. (except the power build) to 10/9. So strange, son	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi o the data ar	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected,	on heat tape, r a minute or s eat tape) mocouple data o 370°F, so hur but the Hach	Aerodynamic Dia set point = 300°l so, chamber resu a acquisition - w midity is controll OPC will be used	nmeter: AD = Dr nmed operation ork with Thern ed. Included d for sizing. Th	o*SQRT(ρ)/1 on. Everything motron to trou coated glass s ne peak from t	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th	Original, 9/ower to builty. (except the power built on 10/9. Sign strange, sign	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi to the data ar uses were resi	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected,	on heat tape, r a minute or seat tape) mocouple data o 370°F, so hur but the Hach	Aerodynamic Dia set point = 300°l so, chamber resu a acquisition - w midity is controll OPC will be used	nmeter: AD = Dr nmed operation ork with Thern ed. Included d for sizing. Th	o*SQRT(ρ)/1 on. Everything motron to trou coated glass s ne peak from t	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th	Original, 9/ ower to bui y. (except ne power bui t on 10/9. S g strange, s n ocouple issu	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi to the data ar ues were reso	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected,	on heat tape, r a minute or seat tape) mocouple data o 370°F, so hur but the Hach o	Aerodynamic Dia set point = 300°l so, chamber resu a acquisition - w midity is controll OPC will be used	nmeter: AD = Dr nmed operation ork with Thern ed. Included d for sizing. Th	o*SQRT(ρ)/1 on. Everything motron to trou coated glass s ne peak from t	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th Re-start tes APS is being 13-15 um bi	Original, 9/ ower to bui y. (except ne power but t on 10/9. S g strange, s n ocouple issu ntal Chamb Dew Point	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi to the data ar ues were reso	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected, plived on its 131009_hvs 2013-10-09	on heat tape, r a minute or seat tape) mocouple data o 370°F, so hur but the Hach o	Aerodynamic Dia set point = 300° so, chamber resu a acquisition - w midity is controll OPC will be used ght on 9/30/13.	nmeter: AD = Dr nmed operation ork with Thern ed. Included d for sizing. Th	o*SQRT(ρ)/1 on. Everything motron to trou coated glass s ne peak from t	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th	Original, 9/ ower to bui y. (except ne power b t on 10/9. S g strange, s n ocouple issu ntal Chamb Dew Point ata:	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi to the data ar ues were reso	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected, plyed on its 131009_hvs 2013-10-09 20131009_1	on heat tape, r a minute or seat tape) mocouple data or 370°F, so hur but the Hach own at midnig	Aerodynamic Dia set point = 300° so, chamber resu a acquisition - w midity is controll OPC will be used ght on 9/30/13.	nmeter: AD = Dr nmed operation ork with Thern ed. Included d for sizing. Th	o*SQRT(ρ)/1 on. Everything motron to trou coated glass s ne peak from t	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th	Original, 9/ ower to bui y. (except ne power b t on 10/9. S g strange, s n ocouple issu ntal Chamb Dew Point ata:	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi to the data ar ues were reso	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected, blved on its 131009_hvs 2013-10-09 20131009_1 test_oct_09	on heat tape, r a minute or seat tape) mocouple data o 370°F, so hur but the Hach o own at midnig	Aerodynamic Dia set point = 300°l so, chamber resu a acquisition - w midity is control OPC will be used	nmeter: AD = Dr nmed operation ork with Thern ed. Included d for sizing. Th	o*SQRT(ρ)/1 on. Everything motron to trou coated glass s ne peak from t	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th	Original, 9/ ower to bui y. (except ne power b t on 10/9. S g strange, s n ocouple issu ntal Chamb Dew Point ata:	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi to the data ar ues were reso	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected, blved on its 131009_hvs 2013-10-09 20131009_1 test_oct_09	on heat tape, r a minute or seat tape) mocouple data of 370°F, so hur but the Hach of own at midnig a max.csv 16_03.csv 549_alicat.dat2013_1.A21	Aerodynamic Dia set point = 300°l so, chamber resu a acquisition - w midity is control OPC will be used	nmeter: AD = Dr nmed operation ork with Thern ed. Included d for sizing. Th	o*SQRT(ρ)/1 on. Everything motron to trou coated glass s ne peak from t	11.7 g else return ubleshoot. lides in chai	μm ed mber.
Notes: ~9:42 lost primmediatel Turns out th Re-start tes APS is being 13-15 um bi FYI: Thermo	Original, 9/ower to builty. (except the power bill ton 10/9. Signature of the power bill ton 10/9. Signature	N/A /30/13 Notes ilding mome for the need ump scrambl Set the humi to the data ar ues were reso	N/A : ~9:30 turn ntarily, after to re-set he ed the therr dity range to e collected, plived on its 131009_hvs 2013-10-09 20131009_1 test_oct_09 Hach_OPC_	on heat tape, r a minute or seat tape) mocouple data of 370°F, so hur but the Hach of own at midnig a max.csv 16_03.csv 549_alicat.dat2013_1.A21	Aerodynamic Dia set point = 300°l so, chamber resu a acquisition - w midity is control OPC will be used	ameter: AD = Dr umed operation ork with There ed. Included d for sizing. The No known rea	or. Everything motron to trou coated glass sine peak from the son for that.	11.7 g else return ubleshoot. lides in chai	μm ed mber. in the


			HIGH TE	MPERATURE I	PROBE TESTING	- Aerosol Pe	netration		
				Aero	sol and Dilution	Data			
	Run No.	AP-10			Facility	HV-S3			
	Date	10/16/2013		C	hamber Set Point	73.5°F/35%R	Н		
Sta	art/End Time	15:45 / 16:15			Diluter Flows	Norm stack, N	lorm ISA		
	Testers	JEF		ı	Diluter Orientation	Mostly Vert (2	1° from vert)		
		Start	Finish		Materials and Eq	uipment Used:			Cal Due
Time		15:45	16:15		Thermotron SE-2	000-4 Env Cha	mber S/N 4285	7	4/2/2014
Chamber Te	mp	73.5	73.5	°F	Alicat MCR-500S	LPM MFC	SN 68858		2/4/2014
Chamber Hu	ımidity	34.0%	34.9%	RH	Alicat MCR-500S	LPM-D MFC	SN 68857		4/3/2014
Dilution flow	controller	4.07	4.07	scfm	Vaisala MI70/HMI	P77B	S/N G5230040	/H0320001	1/31/2014
Dilution Dew	Pt	1.5	1.0	°F	Vaisala MI70/DMI	P74B	S/N G5230040	/H0320001	1/31/2014
Dilution Tem	р	79.7	80.5	°F	Type T Thermoco	ouples	T004 - T006, T0	008, T009	6/18/2014
Dilution P		14.9	14.8	psia	Mott Corp Diluter	32" OAL	Model 7610S-1	.375-24-2-AB	N/A
Sampling flo	wcontroller	4.88	4.88	scfm	Fisher Dew Point	Pen	S/N 12227788	3	5/16/2014
Sampling De	ew Pt	26.8	11.9	°F	TSI VOAG, Model	345001	S/N 406		N/A
Sampling Te	mp	69.6	77.8	°F	VOAG Aerosol So	lution (filtered)	ID AS03	mad	e on 9/19/13
Sampling P		14.1	14.1	psia	Hach OPC		S/N 10115290	10	8/7/2014
Ambient pres	ssure	1006	1006	mbar	TSI APS, Model 3	321	S/N 70907086		7/29/2014
Ambient hum	nidity	24.9%	23.6%	RH					
Ambient Tem	מו	77.5	79.9	°F	Droplet Diameter	r: Dd = (6Q/πf)^	(1/3)	47.5	μm
VOAG Freque		41.48	41.46	kHz		(+4)	(,		P
VOAG Syring	•	4.2	4.2	x 10 ⁻⁴ cm/s			Aerosol conc	entration C	0.0165
, ,		10	10	cc/min x 100				ol density, ρ	
VOAG Disper		70	70	LPM			Aerosc	ii delisity, p	0.0331
					Dantiala Diamasta	D (C.I)A/4	(2) D-1	40.0	··m
APS Mean AL	J	9.31	9.02	μm	Particle Diamete	r: up = (C+I)^(I	/3)Da	12.3	μш
APS Sig-G		1.118	1.130		A a u a de un a un i a Dia		**************************************	44.7	
					Aerodynamic Dia	inieter: AD – D	p SQRT(p)/T	11.7	μп
Notes:	Diacod glac	c clidos w/o	loctronic ar	ndo conting in	the chamber to	collect partic	oc Slidos pur	nharad 26 9	27
Room air te			iectionic gra	aue coating in	the chamber to	conect partici	es. Silues ilui	ilbereu 20 d	. 21.
		•	ol cizo. The	v aro nominall	y sync'd to colle	ct camples at	the came time		
				•	r set point. Befo	•			ock
					rve outlet of the				
Bummer	agii tile wili	dow, but car	it see it. Ai	ter test, obser	ve outlet of the	nijection pro	DE 13 EXCEITIBI	to the next	iuci.
builliller									
				/					
				JF 10/16/13					
				3. 10, 10, 13					
			/						
Data Files	ntal Chambe	er Data:	131016 hvs	3 room air.cs	SV				
	Trai Gilailio		2013 10 16						
Environme	Dew Point			.539 alicat.dat					
Environme FIO Vaisala				_					
Environmer FIO Vaisala FIO Alicat D	ata:		test oct 16	5 2013 1 conc	. IIUIII.LXL				
Environmer FIO Vaisala FIO Alicat D FIO APS Dat	ata: ta:			5_2013_1_cond 131016 AP10.	_				
Data Files Environmen FIO Vaisala FIO Alicat D FIO APS Dat FIO Hach Da	ata: ta:			5_2013_1_conc 131016_AP10.	_				
Environmer FIO Vaisala FIO Alicat D FIO APS Dat	eta: ta: eta:	Julia Flaherty	Hach_OPC_		_	eview performe	ed by:	Carmen Arim	escu
Environmer FIO Vaisala FIO Alicat D FIO APS Dat FIO Hach Da	e by:		Hach_OPC_	 131016_AP10.	xlsx	eview performe	ed by: On File w/ Origi		escu 3/13/2014

			HIGH TE	MPERATURE I	PROBE TESTING	- Aerosol Pe	netration		
					sol and Dilution				
	Run No.	AP-11			Facility	HV-S3			
	Date	10/17/2013		C	hamber Set Point	73.5°F/35%R	Н		
S	start/End Time	11:15 / 12:04			Diluter Flows	Norm stack, N	orm ISA		
	Testers	JEF		ı	Diluter Orientation	Mostly Vert (2	1° from vert)		
		Start	Finish		Materials and Eq	uipment Used:			Cal Due
Time		11:15	12:04		Thermotron SE-2	000-4 Env Cha	mber S/N 42857	7	4/2/2014
Chamber Te	emp	73.5	73.5	°F	Alicat MCR-500S	LPM MFC	SN 68858		2/4/2014
Chamber H	lumidity	35.0%	34.9%	RH	Alicat MCR-500S	LPM-D MFC	SN 68857		4/3/2014
Dilution flow	vcontroller	4.07	4.07	scfm	Vaisala MI70/HMI	P77B	S/N G5230040	/H0320001	1/31/2014
Dilution Dev	w Pt	0.0	0.0	°F	Vaisala MI70/DMI	P74B	S/N G5230040	/H0320001	1/31/2014
Dilution Ten	np	76.8	79.8	°F	Type T Thermoco	uples	T004 - T006, T0	008, T009	6/18/2014
Dilution P		15.0	15.0	psia	Mott Corp Diluter	32" OAL	Model 7610S-1	.375-24-2-AB	N/A
Sampling flo	owcontroller	4.88	4.88	scfm	Fisher Dew Point	Pen	S/N 122277883	3	5/16/2014
Sampling D	ew Pt	12	3.5	°F	TSI VOAG, Model	345001	S/N 406		N/A
Sampling To	emp	74	78	°F	VOAG Aerosol So	lution (filtered)	ID AS04	mad	e on 9/26/13
Sampling P		14.2	14.2	psia	Hach OPC		S/N 10115290	10	8/7/2014
Ambient pre	essure	1011	1011	mbar	TSI APS, Model 3	321	S/N 70907086		7/29/2014
Ambient hui		25.7%	24.8%	RH	,				
Ambient Tei	-	78.9	81.9	°F	Droplet Diameter	:: Dd = (6Q/πf)^	(1/3)	47.5	ıım
VOAG Frequ		41.47	41.46	kHz	Di opiot Biamoto		(1,0)	47.0	μπ
VOAG Syring	,	4.2	4.2	x 10 ⁻⁴ cm/s			Aerosol conce	antration C	0.0323
	•								
VOAG Dispe		10 70	10 70	cc/min x 100 LPM			Aerosc	ol density, ρ	0.8929
						D (0:04/4	(a) a	45.0	
APS Mean A	-AD	10.7	11.0	μm	Particle Diamete	r: Dp = (C+I)^(1	/3)Da	15.3	μт
APS Sig-G		1.209	1.170				*******		
-					Aerodynamic Dia	ımeter: AD = Di	o*SQRT(ρ)/1	14.4	μm
_					Acrodynamic Bio				
Number	Charaban b	114							
		•	•		ring the course c				
Room tem	perature tes	t, so no heat	tapes were	used.	ring the course o	of this test.	ided make / E	lan duat	
Two glass s	perature tes slides with e	t, so no heat lectronic gra	tapes were	used.		of this test.	uded probe / f	lex duct.	
Room tem Two glass s Slides num	perature tes slides with e nbered 28 & 2	t, so no heat lectronic gra 29.	tapes were	used. were placed ir	ring the course o	of this test.			
Room tem Two glass s Slides num	perature tes slides with e nbered 28 & 2	t, so no heat lectronic gra 29.	tapes were	used. were placed ir	ring the course o	of this test.			uring test.
Room tem Two glass s Slides num	perature tes slides with e nbered 28 & 2	t, so no heat lectronic gra 29.	tapes were	used. were placed ir	ring the course o	of this test.			uring test.
Room tem Two glass s Slides num	perature tes slides with e nbered 28 & 2	t, so no heat lectronic gra 29.	tapes were	used. were placed ir	ring the course o	of this test.			uring test.
Room tem Two glass s Slides num	perature tes slides with e nbered 28 & 2	t, so no heat lectronic gra 29.	tapes were	used. were placed ir	ring the course o	of this test.			uring test.
Room tem Two glass s Slides num	perature tes slides with e nbered 28 & 2	t, so no heat lectronic gra 29.	tapes were	used. were placed ir	ring the course o	of this test.			uring test.
Room tem Two glass s Slides num	perature tes slides with e nbered 28 & 2	t, so no heat lectronic gra 29.	tapes were	used. were placed ir	ring the course o	of this test.			uring test.
Room tem Two glass s Slides num	perature tes slides with e nbered 28 & 2	t, so no heat lectronic gra 29.	tapes were	e used. were placed in and added dud	ring the course o	of this test.			uring test.
Room tem Two glass s Slides num	perature tes slides with e nbered 28 & 2	t, so no heat lectronic gra 29.	tapes were	used. were placed ir	ring the course o	of this test.			uring test.
Room tem Two glass : Slides nun Checked ti	perature tes slides with e nbered 28 & 2	t, so no heat lectronic gra 29.	tapes were	e used. were placed in and added dud	ring the course o	of this test.			uring test.
Room tem Two glass : Slides num Checked th	perature tes slides with e nbered 28 & he flex duct	t, so no heat lectronic gra 29. position at si	tapes were	e used. were placed in and added duc JF 10/17/13	ring the course on the chamber un	of this test.			uring test.
Room tem Two glass : Slides num Checked th Data Files Environme	perature tes slides with e nbered 28 & he flex duct p	t, so no heat lectronic gra 29. position at si	tapes were	used. were placed in and added due JF 10/17/13 131017_hvs3	ring the course on the chamber un	of this test.			uring test.
Room tem Two glass s Slides num Checked th Data Files Environme	perature tes slides with e nbered 28 & he flex duct p	t, so no heat lectronic gra 29. position at si	tapes were	used. were placed in and added duc. JF 10/17/13 131017_hvs3 2013_10_17 1	ring the course of the chamber until tape for extract tap	of this test.			uring test.
Room tem Two glass: Slides num Checked th Data Files Environme FIO Vaisala FIO Alicat	perature tes slides with e nbered 28 & : he flex duct p ental Chambo a Dew Point Data:	t, so no heat lectronic gra 29. position at si	tapes were	JF 10/17/13 131017_hvs3 2013_10_17 1 20131017_10	ring the course of the chamber until tape for extra strape for extrape for extra strape for extrape for extra strape for extrape for extra strape for extrape for extrape for ex	of this test.			uring test.
Room tem Two glass: Slides num Checked th Data Files Environme FIO Vaisala FIO Alicat I	perature tes slides with e nbered 28 & he flex duct p ental Chambo a Dew Point Data: ata:	t, so no heat lectronic gra 29. position at si	tapes were	used. were placed in and added duc JF 10/17/13 131017_hvs3 2013_10_17_10 20131017_10 test_oct_17_	ring the course of the chamber until tape for extra strape for extrape for extra strape for extra strape for extrape for extrape for extrape for extrape for extra strape for extrape for extrape for extrape for extrape for extra	of this test. Inder the shrow Security. Flex m.txt			uring test.
Room tem Two glass: Slides num Checked th	perature tes slides with e nbered 28 & he flex duct p ental Chambo a Dew Point Data: ata:	t, so no heat lectronic gra 29. position at si	tapes were	used. were placed in and added duc JF 10/17/13 131017_hvs3 2013_10_17_10 20131017_10 test_oct_17_	ring the course of the chamber until tape for extra strape for extrape for extra strape for extrape for extra strape for extrape for extra strape for extrape for extrape for ex	of this test. Inder the shrow Security. Flex m.txt			uring test.
Room tem Two glass: Slides num Checked th Data Files Environme FIO Vaisala FIO Alicat I FIO APS Da FIO Hach D	ental Chambe a Dew Point Data: ata:	t, so no heat lectronic gra 29. position at si er Data:	tapes were	used. were placed in and added duc JF 10/17/13 131017_hvs3 2013_10_17_10 20131017_10 test_oct_17_	ring the course of the chamber until tape for extra strape for extra strape for extra strape for extra strape for extra strape for extra strape for extra strape for extra strape for extra strape for extra strape for extra strape for extra strape for extra strape for extra strape for extrape fo	of this test. Inder the shrou	duct remaine	d in place du	
Room tem Two glass: Slides num Checked th Data Files Environme FIO Vaisala FIO Alicat I	ental Chambe a Dew Point Data:	t, so no heat lectronic gra 29. position at si	tapes were	used. were placed in and added dud JF 10/17/13 131017_hvs3 2013_10_17 10 20131017_10: test_oct_17_ Hach_OPC_1:	ring the course of the chamber until tape for extra strape for extrape for extra strape for extra strape for extrape for extrape for extrape for extrape for extra strape for extrape for extrape for extrape for extrape for extra	of this test. Inder the shrou	duct remaine	d in place du	

			HIGH TE	MPERATURE P	ROBE TESTING	G - Aerosol Pen	etration		
				F	luorometry Dat	ta			
	Run No.	AP-11			Facility	HV-S3			
	Date	10/17/2013		Ch	namber Set Point	73.5°F/35%RH			
	Start/End Time	9:50 / 16:00			Diluter Flows	Norm Stack, Nor	m ISA		
	Testers			D		Mostly Vert (21°			
						,			
	Materials and Ed	uipment Used:				Cal Due			
	Turner Trilogy Flu	ıorometer		S/N 720000895		N/A			
	Sartorius QS 200	0 Lab Balance		S/N 60502077		6/24/2014			
	N/A								
	Aerosol Wash So	olution		ID AW11	Ma	de on 9/30/2013			
	Fisherbrand PTF	E 0.45 um filter	s			N/A			
	Terumo 3 cc syrii	nge				N/A			
	,								
	V	Vash Solution	l			Fluorescer	nce		Aerosol
	Sample	Mass (g)		1 - RFU	2 - RFU	3 - RFU	Mean	RFU/g	Penetration
	Fittings	64.7		26.83	27.10	26.75	26.9	0.4	
٠	Diluter	115.8		22.47	22.58	22.62	22.6	0.2	N/A
Tes: h	Solid Std	N/A		2570.80	2570.06	2569.90	2570.3	1 0.2	1177
Pre-Test Wash	Solution Blank	N/A		9.19	9.59	9.69	9.5		
<u> </u>	Filter	93.5		475.15	473.30			F 1	
						474.66	474.4	5.1	0.0700
	Fittings	52.9		547.32	547.71	549.39	548.1	10.4	0.9733
4	Diluter	125.0		53.03	52.66	52.82	52.8	0.4	
First Wash	Solid Std	N/A		2590.61	2591.22	2591.05	2591.0		
st \	Filter Blank	90.3		9.61	9.63	9.59	9.6	0.1	
<u>iĒ</u>	Solution Blank	N/A		10.97	10.93	10.85	10.9		
	Filter	76.1		15.87	15.86	15.86	15.9	0.2	
	Fittings	70.5		25.60	25.44	25.31	25.5	0.4	0.9583
ash	Diluter	119.3		32.64	32.63	32.50	32.6	0.3	
Second Wash	Solid Std	N/A		2586.59	2584.86	2584.34	2585.3		
ouc	Filter Blank	78.9		8.29	8.34	8.35	8.3	0.1	
Sec	Solution Blank	N/A		10.67	10.69	10.70	10.7		
	Filter	68.8		9.75	9.74	9.84	9.8	0.1	
	Fittings	55.4		23.78	23.78	24.00	23.9	0.4	0.9505
	Diluter	111.3		18.71	18.56	18.90	18.7	0.2	0.0000
ash	Solid Std	N/A		2477.70	2478.05	2477.54	2477.8	0.2	
<u> </u>	Filter Blank	62.5		8.27	8.18	8.16	8.2	0.1	
Third Wash							12.7	0.1	
<u> </u>	Solution Blank	N/A		12.79	12.81	12.62	12.7		
Notes:	Back half of filt	er holder (1st	wach)						
45.8g	30.31	30.32		RFU	(AVG=30.32 RF	II 0 66 REII/a)			
	30.31 cc syringe w/ a				`	, , , , ,	samples (4"	filter filte	r blank)
	2nd and 3rd was		.o diopen	sample from	. 200	. J, the fitter	-3	cor, mice	
	visit during 2nd								
	e distribution of		readings	in the first was	sh: nearly 50/50	between Filter	& Fittings.	Check bac	k thru the
	uspect this is un								
,			<i></i>	. /				,	
Entries m	nade by:	Julia Flaherty			Technical Data F	Review performed	by:	Carmen A	rimescu
Entries m	-	Julia Flaherty On File w/ Orig	inal	10/17/2013	Technical Data F Signature/date	Review performed	by: On File w/ Or		rimescu 3/13/2014

			HIGH TE	MPERATURE I	PROBE TESTING	- Aerosol Pe	netration		
					sol and Dilution				
	Run No.	AP-12			Facility	HV-S3			
	Date	10/23/2013		С	hamber Set Point	73.5°F/35%R	Н		
Sta	art/End Time	10:10 / 11:00			Diluter Flows	Norm stack, N	orm ISA		
	Testers	JEF		ſ	Diluter Orientation	Mostly Vert (2	0° from vert)		
		Start	Finish		Materials and Eq	uipment Used:			Cal Due
Time		10:10	11:00		Thermotron SE-2	000-4 Env Cha	mber S/N 4285	7	4/2/2014
Chamber Ter	mp	73.5	73.5	°F	Alicat MCR-500S	LPM MFC	SN 68858		2/4/2014
Chamber Hu	ımidity	33.6%	35.1%	RH	Alicat MCR-500S	LPM-D MFC	SN 68857		4/3/2014
Dilution flow	controller	4.07	4.07	scfm	Vaisala MI70/HMI	P77B	S/N G5230040	/H0320001	1/31/2014
Dilution Dew	Pt	0.0	-2.0	°F	Vaisala MI70/DMI	P74B	S/N G5230040	/H0320001	1/31/2014
Dilution Tem	р	72.5	76.4	°F	Type T Thermoco	uples	T004 - T006, T	008, T009	6/18/2014
Dilution P		14.9	14.9	psia	Mott Corp Diluter	32" OAL	Model 7610S-1	I.375-24-2-AB	N/A
Sampling flow	wcontroller	4.88	4.88	scfm	Fisher Dew Point	Pen	S/N 12227788	3	5/16/2014
Sampling De	ew Pt	30.2	10.3	°F	TSI VOAG, Model	345001	S/N 406		N/A
Sampling Te	mp	64.7	75.5	°F	VOAG Aerosol So	lution (filtered)	ID AS04	mad	e on 9/26/13
Sampling P		14.1	14.1	psia	Hach OPC		S/N 10115290	10	3/7/2014
Ambient pres	ssure	1006	1006	mbar	TSI APS, Model 3	321	S/N 70907086		7/29/2014
Ambient hum		29.5%	28.1%	RH	,				
Ambient Tem		74.8	78.4	°F	Droplet Diameter	r: Dd = (6Q/πf)^	(1/3)	47.5	um
VOAG Freque		41.50	41.49	kHz	Di opiot Biamotoi	. Du (ouxi)	(110)	47.0	μ
VOAG Syringe	•	4.2	4.2	x 10 ⁻⁴ cm/s			Aerosol conc	entration C	0.0323
		10	10	cc/min x 100					0.8929
VOAG Disper		60	60	LPM			Aerosc	ol density, ρ	0.8925
					D41-1- Di4-	D (O+1)A/4	(O) D-I	45.0	
APS Mean AD)	10.8	10.3	μm	Particle Diamete	r: Dp = (C+I)^(1	/3)Da	15.3	μгп
APS Sig-G		1.174	1.283		A		**************************************		
					Aerodynamic Dia	imeter: AD = D	ο ⁻ 5 Q R1(ρ)/1	14.4	μт
Notes:	Poom tom	oraturo toci	co no hoat	tanos aro uso	d				
_			•	tapes are use	coating (oleoph	obic) vectors	lay are placed	in the hotte	m of the
		x duct. Slide			coating (oleopi	iobic) yesterc	iay are praceu	III tile botto	iii oi tiie
Started MF0		x duct. Silue	s numbered	1 30 00 31.					
		nnoartowa	nt to stahiliz	e in the humi	dity set point. A	t 10·50 (2 hrs	since the chan	nher set noir	+
THE CHAITIBE									
actablished		•			arey see porner 7.	10.50 (21113			IL WaS
	l), it finally	looks like th	e humidity r	nay stabilize.		· · · · · · · · · · · · · · · · · · ·		· .	
During the	l), it finally course of th	looks like the test, the A	e humidity r .PS showed	nay stabilize. some periods	of noisy particle	· · · · · · · · · · · · · · · · · · ·		· .	
During the o	l), it finally course of th d finish, bu	looks like the test, the A	e humidity r .PS showed arily for the	may stabilize. some periods duration.		· · · · · · · · · · · · · · · · · · ·		· .	
During the o	l), it finally course of th d finish, bu	looks like the test, the A	e humidity r .PS showed arily for the	may stabilize. some periods duration.		· · · · · · · · · · · · · · · · · · ·		· .	
During the o	l), it finally course of th d finish, bu	looks like the test, the A	e humidity r .PS showed arily for the	may stabilize. some periods duration.		· · · · · · · · · · · · · · · · · · ·		· .	
During the o	l), it finally course of th d finish, bu	looks like the test, the A	e humidity r .PS showed arily for the	may stabilize. some periods duration.		· · · · · · · · · · · · · · · · · · ·		· .	
During the o	l), it finally course of th d finish, bu	looks like the test, the A	e humidity r .PS showed arily for the	may stabilize. some periods duration.		· · · · · · · · · · · · · · · · · · ·		· .	
During the of the start an FYI: Double	l), it finally course of th d finish, bu	looks like the test, the A	e humidity r .PS showed arily for the	may stabilize. some periods duration.		· · · · · · · · · · · · · · · · · · ·		· .	
During the of the start an FYI: Double	l), it finally course of th d finish, bu -checked fl	looks like th e test, the A t not necess ex duct / duc	e humidity r PS showed arily for the at tape at sta	nay stabilize. some periods duration. rt of test.	of noisy particle	· · · · · · · · · · · · · · · · · · ·		· .	
During the of the start an FYI: Double Data Files Environmen	l), it finally course of th d finish, bu -checked fl	looks like the etest, the At not necess ex duct / duct	e humidity r PS showed arily for the ct tape at sta	nay stabilize. some periods duration. rt of test. 3_room_air.cs	of noisy particle	· · · · · · · · · · · · · · · · · · ·		· .	
During the of the start an FYI: Double Data Files Environmer FIO Vaisala	l), it finally course of th d finish, bu -checked fl ntal Chambo Dew Point	looks like the etest, the At not necess ex duct / duct	e humidity r PS showed arily for the ttape at sta	nay stabilize. some periods duration. rt of test. 3_room_air.cs	of noisy particle	· · · · · · · · · · · · · · · · · · ·		· .	
During the of the start an FYI: Double Data Files Environmer FIO Vaisala FIO Alicat D	ntal Chambo Dew Point Data:	looks like the etest, the At not necess ex duct / duct	e humidity r PS showed arily for the ttape at sta 131023_hvs 2013-10-23 20131023_0	nay stabilize. some periods duration. rt of test. 3_room_air.cs 10_11.csv 959_alicat.dat	of noisy particle	· · · · · · · · · · · · · · · · · · ·		· .	
During the of the start an FYI: Double Data Files Environmer FIO Vaisala	d), it finally course of th d finish, bu -checked fl ntal Chambo Dew Point bata:	looks like the etest, the At not necess ex duct / duct	e humidity r PS showed arily for the ttape at sta 131023_hvs 2013-10-23 20131023_0 test_oct_23	nay stabilize. some periods duration. rt of test. 3_room_air.cs	of noisy particle	· · · · · · · · · · · · · · · · · · ·		· .	
During the of the start an FYI: Double Data Files Environmer FIO Vaisala FIO Alicat D	d), it finally course of th d finish, bu -checked fl ntal Chambo Dew Point bata:	looks like the etest, the At not necess ex duct / duct	e humidity r PS showed arily for the ttape at sta 131023_hvs 2013-10-23 20131023_0	nay stabilize. some periods duration. rt of test. 3_room_air.cs 10_11.csv 959_alicat.dat	of noisy particle	· · · · · · · · · · · · · · · · · · ·		· .	
During the of the start an FYI: Double Data Files Environmer FIO Vaisala FIO Alicat D	ntal Chambo Dew Point bata: ata:	looks like the etest, the At not necess ex duct / duct	e humidity r PS showed arily for the ct tape at sta 131023_hvs 2013-10-23 20131023_0 test_oct_23 N/A	nay stabilize. some periods duration. rt of test. 3_room_air.cs 10_11.csv 959_alicat.dat	of noisy particle	size. The siz	e distribution	· .	clean" at
During the of the start an FYI: Double Data Files Environmen FIO Vaisala FIO Alicat D FIO APS Dat FIO Hach Da	ntal Chamb Dew Point vata:	looks like the e test, the A t not necess ex duct / duce	e humidity r PS showed arily for the ct tape at sta 131023_hvs 2013-10-23 20131023_0 test_oct_23 N/A	nay stabilize. some periods duration. rt of test. 3_room_air.cs 10_11.csv 959_alicat.dat _2013_1_conc	of noisy particle v _mass.txt	size. The siz	e distribution	was pretty "	clean" at

			HIGH TE	MPERATURE I	PROBE TESTING	3 - Aerosol Pe	enetration		
				Aero	sol and Dilution	Data			
	Run No.	AP-13			Facility	HV-S3			
	Date	10/29/2013		С	hamber Set Point	73.5°F/35%R	Н		
Sta	art/End Time	1:26 / 2:06			Diluter Flows	Norm stack, N	lorm ISA		
	Testers	JEF		Γ	Diluter Orientation	Mostly Vert	ī		
		Start	Finish		Materials and Ed	uipment Used			Cal Due
Time		1:26	2:06		Thermotron SE-2			7	4/2/2014
Chamber Ter	mp	73.5	73.5	°F	Alicat MCR-500S	LPM MFC	SN 68858		2/4/2014
Chamber Hu		36.0%	35.0%	RH	Alicat MCR-500S	LPM-D MFC	SN 68857		4/3/2014
Dilution flowe	controller	4.07	4.07	scfm	Vaisala MI70/HM	P77B	S/N G5230040)/H0320001	1/31/2014
Dilution Dew	Pt	3.9	2.7	°F	Vaisala MI70/DM	P74B	S/N G5230040)/H0320001	1/31/2014
Dilution Tem	р	76.1	79.3	°F	Type T Thermoco	ouples	T004 - T006, T	008, T009	6/18/2014
Dilution P		14.8	14.8	psia	Mott Corp Diluter	32" OAL	Model 7610S-	1.375-24-2-AB	N/A
Sampling flow	wcontroller	4.88	4.88	scfm	Fisher Dew Poin	t Pen	S/N 12227788	3	5/16/2014
Sampling De	w Pt	11	11	°F	TSI VOAG, Model	345001	S/N 406		N/A
Sampling Te	mp	75	78	°F	VOAG Aerosol So	olution (filtered)	ID AS04	mad	le on 9/26/13
Sampling P		13.7	13.7	psia	Hach OPC		S/N 10115290	10	3/7/2014
Ambient pres	sure	1003	1003	mbar	TSI APS, Model 3	321	S/N 70907086		7/29/2014
Ambient hum	idity	16.1%	16.2%	RH					
Ambient Tem	ıp	78.7	80.9	°F	Droplet Diamete	r: Dd = (6Q/πf)^	(1/3)	47.5	μm
VOAG Freque	ency	41.49	41.48	kHz					
VOAG Syringe	e Speed	4.2	4.2	x 10 ⁻⁴ cm/s			Aerosol cond	entration, C	0.0323
VOAG Disper	sion Air	10	10	cc/min x 100			Aeros	ol density, ρ	0.8929
VOAG Dilution	n Air	60	60	LPM					
APS Mean AD)	12.5	11.9	μm	Particle Diamete	er: Dp = (C+I)^(1	/3)Dd	15.3	μm
APS Sig-G		1.154	1.193						
					Aerodynamic Dia	ameter: AD = D	p*SQRT(ρ)/1	14.4	μm

Notes: Use top desiccant system. Drained ~50 cc at 12:35.

Bit of paper taped to shroud are used to verify flow out of flex duct.

This test will include a measure of the filter/filter holder efficiency, with a second filter holder downstream of the usual filter holder 40cc of AS04 is left. Will need to mix more soon.

Turned on chamber at ~12:30. Let it run a bit to stabilize humidity.

When measured directly from the VOAG output, the AS04 particle size distribution was somewhat broad (~6 bins) and mean was 11.4 um and dropping. At start of test, measured throught the tee, the mean was higher and very narrow 2 bins.

Odd, but I'll go with it.

1:37 the mean dropped a bit to 12.1 um, with 3 bins.

Also, the humidity is still osciallating a bit.

The aerosol size distribution varied quite a bit during this test. Most times look okay, but occasionally looked terrible.

Data Files Environmental Chamber Data: 131029_hvs3_room_air.csv FIO Vaisala Dew Point Data: 2013-10-29 13 53.csv (recording started at 1:40) FIO Alicat Data: 20131029_1316_alicat.dat FIO APS Data: test_oct_29_2013_1_conc_mass.txt FIO Hach Data: N/A Entries made by: Julia Flaherty Technical Data Review performed by: Carmen Arimescu Signature/date On File w/ Original 10/29/2013 Signature/date On File w/ Original 3/13/2014

			HIGH TE	MPERATURE F	ROBE TESTING	G - Aerosol Pen	etration		
				F	luorometry Da	ta			
	Run No.	AP-13			Facility	HV-S3			
	Date	10/29/2013 - 1	0/30/2013	Ch	namber Set Point	73.5°F/35%RH			
	Start/End Time	11:25 / 9:25			Diluter Flows	Norm Stack, Nor	m ISA		
	Testers	JEF		D	iluter Orientation	Mostly Vert			
	Materials and Ed	uipment Used	:			Cal Due			
	Turner Trilogy Flu	uorometer		S/N 720000895		N/A			
	Sartorius QS 200	00 Lab Balance		S/N 60502077		6/24/2014			
	N/A								
	Aerosol Wash So	olution		ID AW12	Mad	e on 10/21/2013			
	Whatman AutoVia	al (PTFE filter n	nedia)			N/A			
	N/A					N/A			
		Wash Solution	1		_	Fluorescer			Aerosol
	Sample	Mass (g)		1 - RFU	2 - RFU	3 - RFU	Mean	RFU/g	Penetration
	Fittings	51.1		38.61	38.64	39.00	38.8	0.8	
st	Diluter	114.2		23.16	21.16	21.38	21.9	0.2	N/A
Pre-Test Wash	Solid Std	N/A		2564.53	2565.34	2565.05	2565.0		
Pre Wa	Solution Blank	N/A		9.37	9.38	9.45	9.4		
	Filter	73.6		2252.21	2261.04	2252.92	2255.4	30.6	
	Fittings	53.6		1858.61	1856.04	1862.46	1859.0	34.7	0.9876
	Diluter	126.6		104.06	104.15	104.49	104.2	0.8	
ash	Solid Std	N/A		2567.55	2567.34	2567.35	2567.4		
First Wash	Filter Blank	71.3		11.62	11.87	11.64	11.7	0.2	
Firs	Solution Blank			11.90	11.76	11.76	11.8		
	Filter	62.1		66.57	66.68	66.20	66.5	1.1	
	Fittings	52.9		94.95	95.18	95.25	95.1	1.8	0.9855
ų,	Diluter	121.1		22.13	22.08	22.01	22.1	0.2	0.0000
Second Wash	Solid Std	N/A		2576.91	2576.40	2576.40	2576.6	0.2	
p	Filter Blank	63.3		10.79	10.64	10.68	10.7	0.2	
9	Solution Blank	N/A		13.77	13.79	13.91	13.8	0.2	
<u> </u>	Filter	63.2		30.48	30.04	30.47	30.3	0.5	
		55.9		43.12	42.46	42.88		0.3	0.9838
	Fittings						42.8	1	0.3636
ısh	Diluter	119.9		16.74	16.64	16.63	16.7	0.1	
Third Wash	Solid Std	N/A		2417.29	2418.26	2418.07	2417.9	0.0	
hird	Filter Blank	62.3		10.13	12.60	9.74	10.8	0.2	
F	Solution Blank	N/A		15.74	15.24	15.29	15.4		
								2 1000	0
		efficiency ch	eck with t	nis test. Two fi	iter holders, w	hich adds two m	ore washes:	2nd fittin	gs &
2nd filte	er. t wash of fitting	c #2· 62 F~	24.82, 2	5.69, 24.72 RF	11				
1st wash			24.82, 2 35.97, 35	•					
TOF MIGS!	Filter #2			.76, 13.06 RFU					
Used Au						mbers are pretty	v low, skin t	he 2nd and	d 3rd washes
for thes			eariga m	_ 3 111001 #2 11	IU		,, skip t	Ena uni	
	itoVial for filters	s on 2nd & 3rd	d washes.						
		/ 2001							
Entries m	nade by:	Julia Flaherty			Technical Data I	Review performed	by:	Carmen A	rimescu
	-	-					•		
Signature	e/date	On File w/ Orig	ıınaı	10/30/2013	Signature/date		On File w/ Or	iginal	3/13/2014

			HIGH TE	MPERATURE I	PROBE TESTING	3 - Aerosol Pe	netration		
				Aero	sol and Dilution	Data			
	Run No.					HV-S3			
	Date	11/5/2013		С	hamber Set Point				
S	start/End Time					Max stack, no			
	Testers	JEF		I	Diluter Orientation	Mostly Vert (2:	2° from vert)		
		Ctort	Finish		Motorials and E	uulamaat Haadi			Cal Dua
T:		Start	Finish		Materials and Ed			7	Cal Due
Time		9:35	10:15	°F	Thermotron SE-2			1	4/2/2014
Chamber T	•	73.6	73.5		Alicat MCR-500S		SN 68858		2/4/2014
Chamber H		30.6%	35.0%	RH	Alicat MCR-500S		SN 68857		4/3/2014
Dilution flov		7.42	7.42	scfm	Vaisala MI70/HM		S/N G5230040		1/31/2014
Dilution Dev		-1.5	-8.7	°F	Vaisala MI70/DM		S/N G5230040		1/31/2014
Dilution Ter	np	74.1	72.7	°F	Type T Thermoco	•	T004 - T006, T		6/18/2014
Dilution P		15.2	15.2	psia	Mott Corp Diluter		Model 7610S-1		
Sampling fl	owcontroller	8.13	8.13	scfm	Fisher Dew Poin	t Pen	S/N 12227788	3	5/16/2014
Sampling D	ew Pt	6	-2	°F	TSI VOAG, Model	345001	S/N 406		N/A
Sampling T	emp	71	74	°F	VOAG Aerosol So	olution (filtered)	ID AS04	mad	e on 9/26/13
Sampling P		12.9	12.9	psia	Hach OPC		S/N 10115290	10	3/7/2014
Ambient pre	essure	1006	1007	mbar	TSI APS, Model 3	321	S/N 70907086		7/29/2014
Ambient hu	midity	22.9%	23.7%	RH					
Ambient Te	mp	75.9	77.1	°F	Droplet Diamete	r: Dd = (6Q/πf)^	(1/3)	47.5	μm
VOAG Frequ	uency	41.49	41.49	kHz					
VOAG Syrin	ge Speed	4.2	4.2	x 10 ⁻⁴ cm/s			Aerosol conc	entration, C	0.0323
VOAG Disp	ersion Air	10	10	cc/min x 100			Aeroso	ol density, ρ	0.8929
VOAG Diluti	on Air	60	60	LPM					
	ND	11.0	9.89	μm	Particle Diamete	er: Dp = (C+I)^(1	/3)Dd	15.3	μm
APS Mean A	- U	11.0	3.03						
APS Mean A APS Sig-G	4D	1.191	1.167	Pili	T di tiolo Biamoto				
	-U			,			·	14.4	
				P	Aerodynamic Dia		·	14.4	
		1.191	1.167		Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	14.4	
APS Sig-G Notes:	This is a "m	1.191 ostly vert" r	1.167 epeat of the		Aerodynamic Dia	ameter: AD = Dp	o*SQRT(ρ)/1	14.4	
APS Sig-G Notes: 9:29 notice	This is a "m	1.191 nostly vert" r ex duct had	1.167 epeat of the fallen off th	less-than-sat	Aerodynamic Dia isfactory AP-2 to bbe. Fixed.	ameter: AD = Dp	o*SQRT(ρ)/1	14.4	
APS Sig-G Notes: 9:29 notice APS partic	This is a "m ed that the fl le size distril	1.191 lostly vert" r ex duct had bution looks	1.167 epeat of the fallen off th generally g	e less-than-sat e injection pro ood through th	Aerodynamic Dia isfactory AP-2 to bbe. Fixed.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
APS Sig-G Notes: 9:29 notice APS partic	This is a "m ed that the fl le size distril	1.191 lostly vert" r ex duct had bution looks	1.167 epeat of the fallen off th generally g	e less-than-sat e injection pro ood through th	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
APS Sig-G Notes: 9:29 notice APS partic	This is a "m ed that the fl le size distril	1.191 lostly vert" r ex duct had bution looks	1.167 epeat of the fallen off th generally g	e less-than-sat e injection pro ood through th	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
APS Sig-G Notes: 9:29 notice APS partic	This is a "m ed that the fl le size distril	1.191 lostly vert" r ex duct had bution looks	1.167 epeat of the fallen off th generally g	e less-than-sat e injection pro ood through th	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
APS Sig-G Notes: 9:29 notice APS partic	This is a "m ed that the fl le size distril	1.191 lostly vert" r ex duct had bution looks	1.167 epeat of the fallen off th generally g	e less-than-sat e injection pro ood through th	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
APS Sig-G Notes: 9:29 notice APS partic	This is a "m ed that the fl le size distril	1.191 lostly vert" r ex duct had bution looks	1.167 epeat of the fallen off th generally g	e less-than-sat e injection pro ood through th	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
APS Sig-G Notes: 9:29 notice APS partic	This is a "m ed that the fl le size distril	1.191 lostly vert" r ex duct had bution looks	1.167 epeat of the fallen off th generally g	e less-than-sat e injection pro ood through th	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
APS Sig-G Notes: 9:29 notice APS partic	This is a "m ed that the fl le size distril	1.191 lostly vert" r ex duct had bution looks	1.167 epeat of the fallen off th generally g	e less-than-sat e injection pro ood through th	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
APS Sig-G Notes: 9:29 notice APS partic	This is a "m ed that the fl le size distril	1.191 lostly vert" r ex duct had bution looks	1.167 epeat of the fallen off th generally g	e less-than-sat e injection pro ood through th r and btwn the	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
APS Sig-G Notes: 9:29 notice APS partic	This is a "m ed that the fl le size distril	1.191 lostly vert" r ex duct had bution looks	1.167 epeat of the fallen off th generally g	e less-than-sat e injection pro ood through th r and btwn the	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
Notes: 9:29 notice APS partic Fittings bt	This is a "m ed that the fl le size distril	1.191 lostly vert" r ex duct had bution looks	1.167 epeat of the fallen off th generally g	e less-than-sat e injection pro ood through th r and btwn the	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
Notes: 9:29 notice APS partic Fittings bt	This is a "m ed that the fl le size distril	1.191 ostly vert" r ex duct had bution looks port line elb	epeat of the fallen off the generally goow& diluter	e less-than-sat e injection pro ood through th r and btwn the	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
Notes: 9:29 notice APS partic Fittings bt	This is a "med that the fl le size distril wn the trans	1.191 ostly vert" r ex duct had bution looks port line elb	epeat of the fallen off the generally goow& diluter	JEF 11/5/13	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test.	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
Notes: 9:29 notice APS partic Fittings bt	This is a "med that the fle size distril wn the trans	1.191 ostly vert" r ex duct had bution looks port line elb	epeat of the fallen off the generally grow& diluter	JEF 11/5/13	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test. ISA line & ISA t	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
Notes: 9:29 notice APS partic Fittings bt Data Files Environme	This is a "med that the fle size distril wn the trans	1.191 ostly vert" r ex duct had bution looks port line elb	epeat of the fallen off the generally grow& diluter	JEF 11/5/13 3_room_air.cs 10_40.csv	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test. : ISA line & ISA t	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
Notes: 9:29 notice APS partic Fittings bt Data Files Environme FIO Vaisal: FIO Alicat FIO APS Da	This is a "med that the fle size distril wn the transental Chamba Dew Point Data:	1.191 ostly vert" r ex duct had bution looks port line elb	epeat of the fallen off the generally grow& diluter	JEF 11/5/13 3_room_air.cs 10_40.csv .026_alicat.dat	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test. : ISA line & ISA t	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
Notes: 9:29 notice APS partic Fittings bt Data Files Environme FIO Vaisal: FIO AIsa	This is a "med that the fle size distril wn the transental Chamba Dew Point Data:	1.191 ostly vert" r ex duct had bution looks port line elb	1.167 epeat of the fallen off the generally grow& dilutes 131105_hvs 2013-11-05 20131105_1 test_nov_0	JEF 11/5/13 3_room_air.cs 10_40.csv .026_alicat.dat	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test. : ISA line & ISA t	ameter: AD = Dp	o*SQRT(ρ)/1 horizontal.		
Notes: 9:29 notice APS partic Fittings bt Data Files Environme FIO Vaisali FIO Alicat	This is a "med that the fle size distril wn the transental Chamba a Dew Point Data: ata:	1.191 ostly vert" r ex duct had bution looks port line elb	1.167 epeat of the fallen off the generally grow& diluter 131105_hvs 2013-11-05 20131105_1 test_nov_0 N/A	JEF 11/5/13 3_room_air.cs 10_40.csv .026_alicat.dat	Aerodynamic Dia isfactory AP-2 to bbe. Fixed. ne test. : ISA line & ISA t	est, which was	»*SQRT(ρ)/1 horizontal. y tight - AKA r		μm

			HIGH TE	MPERATURE P	PROBE TESTING	G - Aerosol Pen	etration		
				F	luorometry Da	ta			
	Run No.	AP-14			Facility	HV-S3			
	Date	11/5/2013		Ch	namber Set Point	73.5°F/35%RH			
	Start/End Time	8:25 - 11:20			Diluter Flows	Max Stack, Norn	n ISA		
	Testers			D		Mostly Vert (22°			
						, ,	,		
	Materials and Ed	uipment Used	:			Cal Due			
	Turner Trilogy Flu			S/N 720000895		N/A			
	Sartorius QS 200			S/N 60502077		6/24/2014			
	N/A								
	Aerosol Wash So	olution		ID AW13	Ma	ide on 11/1/2013			
	Whatman AutoVi		nedia)	1574410	1110	N/A			
	N/A		icula)			N/A			
	IN/A					19/7	1		
	1	Nash Solution	n			Fluoresce	nce		Aerosol
	Sample	Mass (g)	•	1 - RFU	2 - RFU	3 - RFU	Mean	RFU/g	Penetration
		1			1	8			i enetration
	Fittings	58.8		24.02	23.98	24.09	24.0	0.4	h. / a
est	Diluter	128.6		21.21	21.27	20.76	21.1	0.2	N/A
Pre-Test Wash	Solid Std	N/A		2572.97	2572.79	2572.69	2572.8		
₽ >	Solution Blank	N/A		7.83	7.99	8.05	8.0		
	Filter	63		368.59	370.13	365.08	367.9	5.8	
	Fittings	57.4		2297.09	2284.53	2301.81	2294.5	40.0	0.9844
	Diluter	123.5		89.60	89.98	89.58	89.7	0.7	
ash	Solid Std	N/A		2580.11	2579.73	2580.10	2580.0		
Š	Filter Blank	67.2		10.77	11.40	10.64	10.9	0.2	
First Wash	Solution Blank			9.93	9.12	9.22	9.4	0.2	
	Filter	61.4		54.52	54.44	54.42	54.5	0.9	
					 	<u> </u>		1	0.0031
ح	Fittings	53.2		86.43	87.16	87.18	86.9	1.6	0.9821
Second Wash	Diluter	114.2		17.18	17.44	17.51	17.4	0.2	
> p	Solid Std	N/A		2591.89	2592.11	2592.18	2592.1		
cor	Filter Blank	62.3		9.84	9.62	9.82	9.8	0.2	
Se	Solution Blank	N/A		9.45	9.43	9.42	9.4		
	Filter	64.5		30.47	30.17	30.26	30.3	0.5	
	Fittings	52.6		29.26	29.12	29.34	29.2	0.6	0.9801
_	Diluter	117.9		14.68	14.69	14.70	14.7	0.1	
Vasl	Solid Std	N/A		2590.45	2590.55	2590.75	2590.6		
Third Wash	Filter Blank	64.8		8.43	8.47	8.97	8.6	0.1	
Ţ.	Solution Blank	N/A		9.77	9.84	9.91	9.8		
Notes:	Include a filter	efficiency ch	eck with t	his test.					
	t wash, Fittings								
First wa									
	Fittings #		.61, 17.73	3, 17.84 RFU					
Used Au	utoVial for every	thing on the	1st wash,	then only the f	ilters for 2nd &	3rd washes.			
			/						
		/	JEF 11/5/	13					
								1	
Entries n	nade by:	Julia Flaherty			Technical Data I	Review performed	l by:	Carmen A	rimescu
Signature	e/date	On File w/ Orig	inal	11/5/2013	Signature/date		On File w/ On	iginal	3/13/2014

		HIGH TE	MPERATURE I	PROBE TESTING	G - Aerosol Pe	netration		
			Aero	sol and Dilution	Data			
Run No.	AP-15			Facility	HV-S3			
Date	11/22/2013		С					
						x ISA		
Testers	JEF		[Diluter Orientation	Mostly Vert			
	044	Finink		Motorials and Fa				Cal Dua
							7	4/2/2014
mn			о <u>г</u>				<i>I</i>	2/4/2014
•							/LI0220001	4/3/2014 1/31/2014
								1/31/2014
ρ					· ·			6/18/2014
waantrallar				•				N/A
			-				3	5/16/2014
			l -					N/A
mp			·		olution (filtered)			on 11/19/13 3/7/2014
					1004			
				1STAPS, Model 3	321	S/N 70907086	Î	7/29/2014
-			-		D. (00) 04	(4.6)		
				Droplet Diamete	r: Da = (6Q/πt)^	(1/3)	47.5	μm
,						A = ==== l == ===		0.100
								0.168
						Aeroso	ol density, p	0.893
)			μm	Particle Diamete	er: Dp = (C+I)^(1	/3)Dd	26.2	μm
	1.533	1.750						
				Aerodynamic Dia	ameter: AD = D	p*SQRT(ρ)/1	24.8	μm
lloot tono o	m at 0.20 as	t to 220°F	(000000)					
•		•						
			SI.					
- ' '			27 Occasiona	lly the particle	ciza dictributi	on looked tar	riblo	
				············			ilbic.	
			•				s narticles to	the
						or the opanion	<u> </u>	
				match vesterday	/'s test, and m	avbe eliminat	e noisy parti	cles.
hange.			, , , , , , , , , , , , , , , , , , ,	, ,	,	,		
<u> </u>		/						
		,						
		JEF 11/22/1	3					
	er Data:	131122_hvs	3_min.csv					
ntal Chambe			10. 12.csv					
ntal Chambo Dew Point		2013-11-22						
			942_alicat.dat					
Dew Point		20131122_0					1	
Dew Point ata: :a:		20131122_0 test_nov_22	942_alicat.dat					
Dew Point ata:		20131122_0 test_nov_22	942_alicat.dat 2_2013_1.A21	Technical Data R	Review performe	ed by: On File w/ Orig	Carmen Arim	escu 3/13/2014
	Date art/End Time Testers mp midity controller Pt p wcontroller w Pt mp sure idity p ency e Speed sion Air n Air) Heat tape of v on at 8:46 ed upper de stopped at as still betw ich about it Smaller di ed VOAG fr	Start 10:30 / 11:10 Testers JEF	Run No. Date 11/22/2013 10:30 / 11:10 10:30 / 11:10 10:30 11:10 10:30 11:10 10:30 11:10 10:30 11:10 10:30 11:10 10:30 11:10 10:30 11:10 10:30 11:10 10:30 11:10 10:30 11:10 10:30 11:10 10:30 11:10 10:30 11:10 10:30 10:30 11:10 10:30 10	Run No. AP-15 Date 11/22/2013 CO Art/End Time 10:30 / 11:10 Testers JEF	Run No. AP-15 Date 11/22/2013 Chamber Set Point Diluter Flows Testers JEF Diluter Orientation Start Finish Materials and Ed. 10:30 / 11:10 Thermotron SE-2 Midity 2.3% 2.3% RH Alicat MCR-500S midity 2.3% 2.3% RH Alicat MCR-500S pointroller 3.61 3.61 scfm Vaisala MI70/DM Pt -26 -25 °F Vaisala MI70/DM pp 68.3 67.5 °F Type T Thermocc Mott Corp Diluter Mott Corp	Run No. AP-15	Run No. AP-15	Run No. AP-15

			HIGH TE	MPERATURE F	PROBE TESTING	3 - Aerosol Pen	etration		
					luorometry Da				
	Run No.	AP-15			Facility	HV-S3			
	Date	11/21 - 11/22/	/13	Ch	namber Set Point	261°F/2.3%RH			
	Start/End Time	4:30 - 12:45			Diluter Flows	Min Stack, Max I	SA		
	Testers	JEF		D	iluter Orientation	Mostly Vert			
	Materials and Ed	juipment Used	d:			Cal Due			
	Turner Trilogy Flu	iorometer		S/N 720000895		N/A			
	Sartorius QS 200	0 Lab Balance	е	S/N 60502077		6/24/2014			
	N/A								
	Aerosol Wash So	olution		ID AW13	Ma	de on 11/1/2013			
	Whatman AutoVia	al (PTFE filter r	media)			N/A			
	N/A					N/A			
	\	Wash Solutio	n			Fluorescer	nce		Aerosol
	Sample	Mass (g)		1 - RFU	2 - RFU	3 - RFU	Mean	RFU/g	Penetratio
	Fittings	54.3		11304.83	11299.10	11305.69	11303.2	208.2	
ب	Diluter	117.2		486.84	484.97	487.06	486.3	4.1	N/A
Pre-Test Wash	Solid Std	N/A		2558.67	2557.74	2557.41	2557.9		,
Pre-Te Wash	Solution Blank	N/A		8.90	8.95	8.87	8.9		
	Filter	64.4		358.37	359.70	360.34	359.5	5.6	
								1	0.0022
	Fittings	60.0		801.09	802.11	800.22	801.1	13.4	0.9623
۲	Diluter	121.3		89.79	90.10	89.98	90.0	0.7	
Nas	Solid Std	N/A		2581.39	2581.14	2581.00	2581.2		
First Wash	Filter Blank	64.2		12.89	12.92	13.07	13.0	0.2	
ιĒ	Solution Blank	N/A		8.95	8.95	9.10	9.0		
	Filter	61.3		66.66	66.14	66.07	66.3	1.1	
	Fittings	47.1		58.52	58.60	58.59	58.6	1.2	0.9592
ash	Diluter	117.1		18.60	19.15	19.30	19.0	0.2	
Second Wash	Solid Std	N/A		2583.64	2853.33	2583.19	2673.4		
ouc	Filter Blank	60.0		11.31	11.31	11.16	11.3	0.2	
Sec	Solution Blank	N/A		9.90	9.79	9.79	9.8		
	Filter	62.2		29.00	29.15	29.51	29.2	0.5	
	Fittings	51.1		28.88	28.70	28.80	28.8	0.6	0.9546
	Diluter	115.6		16.67	18.64	18.91	18.1	0.2	0.00.0
ash	Solid Std	N/A		2590.79	2590.89	2590.81	2590.8	0.2	
Third Was	Filter Blank	60.8		8.72			8.8	0.1	
hirc					8.81	8.99		0.1	
	Solution Blank	N/A		10.24	10.27	10.58	10.4		
lotos	Dro Tost sot	had the call	ttor Don t	octs on 11/12 0	 	or agreed Add	l ovtra ara t	oct wash	components
	Pre-Test set up			137652.10 RF		-	•	est wash (omponents
plitter	: 28.3 g #2 : 42.7 g	3248.69,	3239.88,	3250.05 RF		(too much wash	1)		
ilter	#2 . 42.7 g : 71.0 g	353.14,	351.49,	351.35 RF					
	t the fittings fo			221.22 KE	0				
ittings	: 52.3 g	47.25, 48.97		FU					
Diluter	: 98.0 g	20.73, 20.71							
	oVial for first wa	•	•		rashes.				
Jse Aut		.,	,						
N/A	nade by:	Julia Flaherty			Technical Data F	Review performed	by:	Carmen A	rimescu
N/A	-	Julia Flaherty On File w/ Orig		11/22/2013	Technical Data F	Review performed	by: On File w/ Or		rimescu 3/13/201

			HIGH TE	MPERATURE I	PROBE TESTING	- Aerosol Pe	netration		
				1	sol and Dilution				
	Run No.	AP-16			Facility	HV-S3			
	Date	1/16/2014		С	hamber Set Point	261°F/2.3%RH	1		
Sta	art/End Time	11:31 / 12:20	*		Diluter Flows	Min stack, Ma	x ISA		
	Testers	JEF		[Diluter Orientation	Mostly Vert (2	0° from Vert)		
		Start	Finish		Materials and Eq	uipment Used:			Cal Due
Time		11:31	12:20		Thermotron SE-2	000-4 Env Cha	mber S/N 4285	7	4/2/2014
Chamber Te	mp	261	261	°F	Alicat MCR-500S	LPM MFC	SN 68858		2/4/2014
Chamber Hu	ımidity	2.3%	2.3%	RH	Alicat MCR-500S	LPM-D MFC	SN 68857		4/3/2014
Dilution flow	controller	3.61	3.61	scfm	Vaisala MI70/HM	P77B	S/N G5230040	/H0320001	1/31/2014
Dilution Dew	Pt	-25.7	-23.7	°F	Vaisala MI70/DM	P74B	S/N G5230040	/H0320001	1/31/2014
Dilution Tem	р	73.5	72.3	°F	Type T Thermoco	ouples	T004 - T006, T	008, T009	6/18/2014
Dilution P		15.0	15.0	psia	Mott Corp Diluter	32" OAL	Model 7610S-1	.375-24-2-AB	N/A
Sampling flo	wcontroller	4.53	4.53	scfm	Fisher Dew Point	t Pen	S/N 12227788	3	5/16/2014
Sampling De	ew Pt	57	57	°F	TSI VOAG, Model	345001	S/N 406		N/A
Sampling Te		105	105	°F	VOAG Aerosol So			mad	e on 1/8/14
Sampling P		14.3	14.3	psia	Hach OPC	()	S/N 10115290		3/7/2014
Ambient pres	ssure	1020	1020	mbar	TSI APS, Model 3	321	S/N 70907086		7/29/2014
Ambient hum		20.4%	21.1%	RH	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Ambient Tem	,	77.5	77.3	°F	Droplet Diameter	r: Dd = (60/πf)^	(1/3)	43.7	um
VOAG Freque		55.16	53.39	kHz	Di opiet Diamete	1. Du = (0@/ii)	(170)	43.7	дін
VOAG Freque	-	4.2	4.2	x 10 ⁻⁴ cm/s			Aerosol conc	entration C	0.1677
VOAG Disper		10	10	cc/min x 100			Aeroso	ol density, ρ	0.8931
VOAG Dilutio		60	60	LPM	B (1 B)	D (0:04/4	(a) D I	24.4	
APS Mean Al	J	14.0	13.2	μm	Particle Diamete	r: Dp = (C+I)^(1	/3)Da	24.1	μт
APS Sig-G		1.603	1.322						
					Aerodynamic Dia	ameter: AD = D	p*SQRT(ρ)/1	22.8	μm
	0 . 1								
		pe to 230°F o		~10:09.					
		%RH (60°F dp	<i>'</i>						
		llers at ~10:1		IDA 1/04	C ICA or 20%5 -l		-1-1-040305	Diamana and and the	ala tanan dan
AS09 at ~1	· · · · · ·	ciose to fin	ai SP, runnir	ig ipa on voa	G, ISA ~-20°F dp	, conditioned	air is ~103°F.	Plan on Switt	ning to
		ean hefore	connecting \	/OAG to cham	ber. Afterwards	chows lots o	of noisy counts	e ovenly dist	ibuted
					n 12 & 15 um. (S		i floisy counts	s everily disti	ibuteu
					m chamber 11:50	•	hlachaat had	online w/	
	.2 um, Peak		ee: Discoili	iett VOAG IIOI	iii chamber 11.50	J - 12.05, troui	biesilout, baci	Comme w/	
			ing hroak so	n the serosol i	njection duratio	n was 31 min			
1000 a 131	IIIII VOAG t	TOUDICSTIOOL	/	o the acrosori	injection duratio	iii was 54 iiiiii	•		
			JEF 1/16/14						
Data Files			JL1 1/10/14						
Environme	ntal Chambe	er Data:	140116 hvs	3 min csv					
FIO Vaisala			2014-01-16	_					
FIO Alicat D		_ a.u.		11_45.csv 113 alicat.dat					
FIO APS Dat				2014_1.A21					
			.550_Jun_10						
Entries made	e by:	Julia Flaherty			Technical Data R	eview performe	ed by:	Carmen Arime	escu
Signature/da	-	On File w/ Ori		1/16/2014	Signature/date		On File w/ Orig	inal	3/13/2014

			HIGH TE	MPERATURE F	PROBE TESTING	G - Aerosol Pen	etration		
				F	luorometry Da	ta			
	Run No.	AP-16			Facility	HV-S3			
	Date	1/16/2014		Ch	namber Set Point	261°F/2.3%RH			
	Start/End Time	9:15 / 14:10			Diluter Flows	Min Stack, Max I	SA		
	Testers	JEF		D	iluter Orientation	Mostly Vert (20°	from vert)		
	Materials and Ed					Cal Due			
	Turner Trilogy Flu			S/N 720000895		N/A			
	Sartorius QS 200	0 Lab Balance		S/N 60502077		6/24/2014			
	N/A								
	Aerosol Wash So	olution		ID AW14	M	ade on 1/15/14			
	Whatman AutoVia	al (PTFE filter m	nedia)			N/A			
	N/A					N/A			
		Vash Solution	1	4 5=::	2	Fluorescer		DE:::/	Aerosol
	Sample	Mass (g)		1 - RFU	2 - RFU	3 - RFU	Mean	RFU/g	Penetration
	Fittings	66.9		21.01	21.85	21.82	21.6	0.3	
est	Diluter	129.9		23.81	23.71	23.85	23.8	0.2	N/A
Pre-Test Wash	Solid Std	N/A		2574.67	2574.96	2575.51	2575.0		
g ≥	Solution Blank	N/A		21.56	21.70	21.32	21.5		
	Filter	64.1		503.11	502.98	501.77	502.6	7.8	
	Fittings	62.6		565.46	562.87	563.37	563.9	9.0	0.9672
	Diluter	123.1		70.43	70.32	70.52	70.4	0.6	
ash	Solid Std	N/A		2570.57	2569.68	2569.56	2569.9		
First Wash	Filter Blank	60.5		13.06	12.94	12.94	13.0	0.2	
Firs	Solution Blank	N/A		20.49	20.52	20.61	20.5		
	Filter	55.5		105.48	105.45	105.70	105.5	1.9	
	Fittings	68.0		48.09	47.93	48.11	48.0	0.7	0.9648
sh	Diluter	120.1		15.80	16.02	17.87	16.6	0.1	
econd Wash	Solid Std	N/A		2589.60	2589.59	2588.35	2589.2	0.2	
pu	Filter Blank	57.0		208.27	209.14	207.90	208.4	3.7	
5	Solution Blank	N/A		21.19	21.25	21.28	21.2	3.7	
01	Filter	66.5		38.75	30.41	30.00	33.1	0.5	
		67.2		21.60	21.64	21.64		0.3	0.9563
	Fittings				 		21.6		0.9505
sh	Diluter	111.2		23.94	23.78	24.78	24.2	0.2	
Š	Solid Std	N/A		2575.23	2575.98	2575.67	2575.6		
Third Wa	Filter Blank	64.2		29.84	38.77	39.33	36.0	0.6	
<u> </u>	Solution Blank	N/A		21.40	21.42	21.64	21.5		
	Used Whatman		-		then only filter	s for 2nd and 3r	d washes.		
	'filter blank" fro	•			مام مصاله سمماره	anaa Eusant	:£ :4!a	ما المصمالة المح	ما اماليوم ميو
	223.91, 223.51 RI ontamination w,							ea, then tr	iere could be
	t the filters were	•							
inougin	t the miters were	3 Witched, Di	/	wasii seeiiis to	indicate it was	not pretty str	ange.		
			/						
			JEF 1/16/1	4					
			<u>., .</u> 0, 1						
	nade hv	Julia Flaherty			Technical Data F	Review performed	bv:	Carmen A	rimescu
Entries m									
Entries m Signature	-	On File w/ Orig	inal	1/16/2014	Signature/date		On File w/ Or	iginal	3/13/2014

		HIGH 1				G - Aerosol P	enetration	
			V	OAG A	erosol Soluti	on Data		
	Date	8/8/2013			Facility	HV-S3		
	Time	4:30			Testers	JEF, MSP		
	ID	AS02						
	Materials and E	quipment Used:				Cal Due		
	Sartorius QS 20	00 Lab Balance		S/N 60	502077	6/24/2014		
	Sartorius CPA 2	24A Lab Balance	Э	S/N 27	950023	9/29/2013		
	3 mL disposable	e pipettes						
	Turner Designs	Fluorescein		Lot#A	216E236	N/A		
	Isopropyl Alcoho					N/A		
		nical Grade, 90%	<u></u>	Lot#M	KBK4194V	N/A		
	0.0.07.0.0, 1.00.1			200				
	Target Mix, by	volume:			Density, g/m	L		
	Oleic Acid		1.0		0.89			
	Fluorescein Sc	lution	0.02		1.28			
	Isopropyl Alco		65		0.79			
	зоргоругино		0.5		0.73			
	Target Mix, by	macc			mass in 400 a			
	Oleic Acid	111055.	0.89		mass in 400 g 6.8114			
	Fluorescein Sc	lution	0.0256		0.8114			
			51.35					
	Isopropyl Alco	ПОІ	52.2656		392.9927 400.0000			
	rotar.		32.2030		400.0000			
	Actual Mix, by	mass:			by volume	in 66.02 parts		
	Oleic Acid		6.8095		7.65			
	Fluorescein Sc		0.1936		0.15			
	Isopropyl Alco	hol	392.9		497.34			
	Total:		399.9031		505.14	66.02		
	Volumetric Co		nonvolatil	e solut	e, C	0.0153		
	Aerosol Densi	ty, ρ				0.8931		
Note	s:	TSI APS: Mean	 AD = 8.6 mic	rons, a	nd peak (AKA m	node) AD = 8.35	micron.	
	-	2 2 C. MOGIT	2.0.0 11110	/	- F - w. (/ # 0 (1)	22,72 0.00		
			,		JEF 8/8/13			
			/					
Entrie	s made by:	Julia Flaherty		Technic	cal Data Reviev	v performed by:	Carmen Arir	nes
		On File w/ Orig	8/8/2013			File w/ Original		
	ture/date	· ·	8/8/2013					

		HIGH T	\ \	OAG 4	Aerosol Soluti	on Data		
					terosor oorati	on bata		
	Date	9/19/2013			Facility	HV-S3		
	Time	4:10				JEF, MSP		
		AS03				, , , , ,		
		7.000						
	Materials and E	quipment Used:				Cal Due		
	Sartorius QS 20			S/N 60	502077	6/24/2014		
	Sartorius CPA 2	24A Lab Balance		S/N 27	950023	9/29/2013		
	3 mL disposable	e pipettes						
	Turner Designs			Lot#A	216E236	N/A		
	Isopropyl Alcoho			200		N/A		
	,	nical Grade, 90%		Lot#M	KBK4194V	N/A		
	Oleie Acid, Teeli	incar Grade, 30 %		LOC# IV	IKBICT 154V	INA		
	Target Mix, by	volume:			Density, g/m	<u> </u>		
	Oleic Acid	volunic.	1.0		0.89			
	Fluorescein So	Jution	0.02		1.28			
	Isopropyl Alco		60		0.79			
	130propyr Aico	1101	- 00		0.75			
	Target Mix, by	mass.			mass in 200 g	•		
	Oleic Acid	111033.	0.89		3.6841			
	Fluorescein So	lution	0.0256		0.1060			
	Isopropyl Alco		47.4		196.2099			
	Total:		48.3156		200.0000			
	Actual Mix, by	mass:			by volume	in 61.02 parts		
	Oleic Acid		3.6823		4.14	1.00		
	Fluorescein Sc	lution	0.1073		0.08	0.02		
	Isopropyl Alco	hol	196.2		248.35	60.00		
	Total:		199.9896		252.58	61.02		
				<u> </u>				
		ncentration of no	nvolatile s	olute, (C	0.0165		
	Aerosol Densi	ty, ρ				0.8931		
Notes	S:				/			
				_/				
				/_				
			/					
		=				_		
	s made by:	Julia Flaherty				v performed by:		mes
Signat	ure/date	On File w/ Original	9/19/2013	Signatu	ure/date <i>On</i>	File w/ Original	3/13/2014	

			\	OAG A	ROBE TESTIN Aerosol Soluti	on Data		
						011 2 414		
	Date	9/26/2013			Facility	HV-S3		
		10:00			-	JEF, MSP		
		AS04						
	Materials and E	quipment Used:				Cal Due		
	Sartorius QS 20			S/N 60	502077	6/24/2014		
	Sartorius CPA 2	24A Lab Balance		S/N 27	950023	9/29/2013		
	3 mL disposable	e pipettes						
	Turner Designs	• •		Lot#A	216E236	N/A		
	Isopropyl Alcoho			201		N/A		
		nical Grade, 90%		Lot#M	KBK4194V	N/A		
	Olcie Acid, Tech	ilical Grade, 50 %		LOT# IV	IKBICH 154 V	IV/A		
	Target Mix, by	volume.			Density, g/m	I		
	Oleic Acid	volunic.	1.0		0.89			
	Fluorescein So	lution	0.02		1.28			
	Isopropyl Alco		30		0.79			
	130propyr Aico		30		0.75			
	Target Mix, by	mass:			mass in 200 g			
	Oleic Acid	111433.	0.89		7.2312			
	Fluorescein Sc	lution	0.0256		0.2080			
	Isopropyl Alco		23.7		192.5608			
	Total:		24.6156		200.0000			
	Actual Mix, by	mass:			by volume	in 31.02 parts		
	Oleic Acid		7.2112		8.10	1.00		
	Fluorescein Sc	olution	0.1911	3	0.15	0.02		
	Isopropyl Alco	hol	193.0		244.30	30.01		
	Total:		200.4023		252.56	31.02		
		ncentration of no	nvolatile s	olute,		0.0323		
	Aerosol Densi	ty, ρ				0.8929		
Notes	:	250 mL amber bott	le: 164.4184	1 g				
			JE 0/20/40					
			JF 9/26/13	3				
				-	15 (5 :		•	
	s made by:	Julia Flaherty				v performed by:		es
Signat	ure/date	On File w/ Original	9/26/2013	Signati	ire/date <i>On</i>	File w/ Original	3/13/2014	

		пісп	TEMPERATUR	E PROBE TESTIN	G - Aerosoi Pe	eneuauon	
			VO	AG Aerosol Soluti	on Data		
	Date	11/1/2013		Facility	HV-S3		
	Time	8:55 - 9:20		Testers	JEF		
	ID	AS05					
	Materials and E	quipment Used:			Cal Due		
	Sartorius QS 20	00 Lab Balance	S/I	N 60502077	6/24/2014		
	Sartorius CPA 2	24A Lab Balance	S/I	N 27950023	9/29/2013		
	3 mL disposable	e pipettes					
	Turner Designs	Fluorescein	Lo	t# A216E236	N/A		
	Isopropyl Alcoho	I, 99.9%	Lo	t 132647	N/A	(CMS 3932	153)
	Oleic Acid, Tech	nical Grade, 90%	Lo	t# MKBK4194V	N/A	(CMS 3928	305)
	Oleic Acid, Tech	nical Grade, 90%	Lo	t# MKBH5625V	N/A		
	Isopropyl Alcoho		Lo	t 127641	N/A	(CMS 3932	154)
						,	
	Target Mix, by	volume:		Density, g/m	L		
	Oleic Acid		1.0	0.89			
	Fluorescein Sc	lution	0.02	1.28			
	Isopropyl Alco	hol	30	0.79			
	.оор.ору.тоо			0.75			
	Target Mix, by	mass:		mass in 200 g			
	Oleic Acid		0.89	7.2312			
	Fluorescein Sc	lution	0.0256	0.2080			
	Isopropyl Alco		23.7	192.5608			
	Total:		24.6156	200.0000			
	Actual Mix, by	mass:		by volume	in 31.02 parts		
	Oleic Acid		7.2364	8.13	1.00		
	Fluorescein Sc	lution	0.201	0.16	0.02		
	Isopropyl Alco	hol	192.5	243.67	30.00		
	Total:		199.9374	251.96	31.02		
		ncentration of n	onvolatile solu	ite, C	0.0325		
	Aerosol Densi	ty, ρ			0.8930		
Vote		250 mL amber bo					
Oleic	: 5.3476 g from	CMS# 392805 (Lo	t#MKBK4194V)	. Balance from Lo	t# MKBH5625V	. Bottle c	ontaiı
nate	rial floating ins	de - looks like gl	ass fibers or p	olyester batting	Shake, but sta	ays.	
mpt	ied IPA CMS # 3	93153.					
Entrie	s made by:	Julia Flaherty	Те	chnical Data Reviev	v performed by:	Carmen Ar	imesc

		1•		RE PROBE TESTIN		, iio a a a a a a	
			VC	OAG Aerosol Soluti	on Data		
		11/15/2013		Facility			
		8:05 - 8:20		Testers	JEF		
	ID	AS06					
		quipment Used:			Cal Due		
	Sartorius QS 20	00 Lab Balance	S	/N 60502077	6/24/2014		
	Sartorius CPA 2	24A Lab Balance	S	/N 27950023	9/29/2013		
	3 mL disposable	e pipettes					
	Turner Designs	Fluorescein	L	ot# A216E236	N/A		
	Isopropyl Alcoho	ol, 99.9%	L	ot #127641	N/A	(CMS 3931	154)
	Oleic Acid, Tech	nical Grade, 90%	L	ot#MKBH5625V	N/A		
		/					
		JEF 11/15/13					
	Target Mix, by	volume:		Density, g/m	I		
	Oleic Acid	voiume.	1.0	0.89			
	Fluorescein Sc	lution	0.02	1.28			
	Isopropyl Alco		20	0.79			
	ізоргоруї Аісо	1101	20	0.79			
	Target Mix, by	macc.		mass in 80 g			
	Oleic Acid	111033.	0.89	4.2595			
	Fluorescein Sc	lution	0.0256	0.1225			
	Isopropyl Alco		15.8	75.6180			
	Total:	1101	16.7156	80.0000			
	Total.		10.7130	80.0000			
	Actual Mix, by	macc.		by volume	in 21.02 parts		
	Oleic Acid	111033.	4.2603	4.79	· ·		
	Fluorescein Sc	lution	0.1495	0.12	0.02		
	Isopropyl Alco		75.6	95.70	20.00		
	Total:		80.0098	100.60	21.02		
				200.00	22.02		
	Volumetric Co	ncentration of no	nvolatile soli	ute. C	0.0481		
	Aerosol Densi			7 -	0.8938		
	1.0.0001 Delibi	-,, ۴			3.3330		
Note	S:	Use 120ml amber	hottle Oleica	cid is pretty cloudy - s	till has lote of m	aterial that I	looks
	olyester battin		bould. Oleloa	ora is premy doudy - S	1103 1013 UI III	atoriai tiiat i	JUNS
ιικε μ	oryester battiii	b	,				
			JEF 11/15/13				
			JEF 11/15/13				
Entri c	s made his	Iulia Elabort	-	ochnical Data Basis	unorformed by	Carman Ar	imas
	s made by:	Julia Flaherty		echnical Data Review			iiies
Siuna	ture/date	On File w/ Original	11/15/2013 5	ignature/date On	File w/ Original	3/13/2014	

		півп	IEWIFERATOR	RE PROBE TESTIN	G - Aerosor Pe	ene u a u o n
			VO	AG Aerosol Soluti	on Data	
	Date	11/15/2013		Facility	HV-S3	
	Time	8:30 - 8:45		Testers	JEF	
	ID	AS07				
	Materials and E	quipment Used:			Cal Due	
	Sartorius QS 20		S/I	N 60502077	6/24/2014	
		24A Lab Balance		N 27950023	9/29/2013	
	3 mL disposable			112700020	0/20/2010	
		• •		t# A216E236	N/A	
	Turner Designs					/CN4C 2024E4\
	Isopropyl Alcoho			t#127641		(CMS 393154)
	Oleic Acid, Tech	nical Grade, 90%	Lo	t# MKBH5625V	N/A	
		JEF 11/15/13				
	Target Mix, by	volume:		Density, g/m	L	
	Oleic Acid		1.0	0.89		
	Fluorescein Sc	lution	0.02	1.28		
	Isopropyl Alco	hol	15	0.79		
	Target Mix, by	mass:		mass in 80 g		
	Oleic Acid		0.89	5,5775		
	Fluorescein Sc	lution	0.0256	0.1604		
	Isopropyl Alco		11.85	74.2621		
	Total:		12.7656	80.0000		
	Actual Mix, by	mass:		by volume	in 16.02 parts	
	Oleic Acid		5.5765	6.27		
	Fluorescein Sc	lution	0.1638	0.13		
	Isopropyl Alco		74.3	94.05	15.00	
	Total:		80.0403	100.44	16.02	
	Volumetric Co	ncentration of no	nvolatile solut	e. C	0.0629	
	Aerosol Densi			-, -	0.8932	
	, terosor berisi	,, P			0.0532	
Notes	•	lleg 120ml ambar	hottle Olois sai	d is pretty cloudy a	till has lots of ma	aterial that looks
			Dome. Oleic aci	d is pretty cloudy - s	un nas iois oi Ma	ateriai liiat 100KS
ike þ	olyester battin	Б····				
			IEE 44 /4E /40			
			JEF 11/15/13			
					_	
intrie	s made by:	Julia Flaherty		chnical Data Review	v performed by:	
	ture/date	On File w/ Original	11/15/2013 Sig		File w/ Original	

					erosol Soluti	G - Aerosol Pe on Data		
			, v		erosor soruti	On Data		
	Date	11/19/2013			Facility	HV-S3		
		5:20 / 5:40			Testers			
		AS08			103(013	OL1		
	10	A300						
	Motorials and E	quipment Used:				Cal Due		
				2/NLCO	-00077			
	Sartorius QS 20				502077	6/24/2014		
		24A Lab Balance		5/N 27	950023	9/29/2013		
	3 mL disposable	• •						
	Turner Designs		L	_ot#A	216E236	N/A		
	Isopropyl Alcoho	ol, 99.9%	L	_ot #12	7641	N/A	(CMS 3932	L54)
	Oleic Acid, Tech	nical Grade, 90%	L	_ot# M	KBH5625V	N/A		
		JEF 11/19/13						
	Target Mix, by	volume:			Density, g/m	L		
	Oleic Acid		1.0		0.89			
	Fluorescein Sc	lution	0.02		1.28			
	Isopropyl Alco	hol	5		0.79			
	,							
	Target Mix, by	mass:			mass in 90 g			
	Oleic Acid		0.89		16.4625			
	Fluorescein Sc	lution	0.0256		0.4735			
	Isopropyl Alco		3.95		73.0640			
	Total:		4.8656		90.0000			
	Actual Mix, by	mass:			by volume	in 6.02 parts		
	Oleic Acid		16.4774		18.51	-		
	Fluorescein Sc	lution	0.4635		0.36	0.02		
	Isopropyl Alco	hol	73.0		92.41	5.00		
	Total:		89.9409		111.28	6.02		
	Volumetric Co	ncentration of no	nvolatile solu	ute, C		0.1680		
	Aerosol Densi	ty, ρ				0.8930		
Notes	s:	Amber bottle - 162.9	9815 g (250 m	L).				
		us material in the			ke polyester l	patting.		
2.50	2222,,	/	/		- 1,			
			JEF 11/19/20)13				
			-1. 11, 15, 20					
Entrie	s made by:	Julia Flaherty	1	Techni	al Data Review	v performed by:	Carmen Ar	imes
	ture/date	On File w/ Original	11/19/2013			File w/ Original		68
oigila	ui e/uale	On the w/ Ongillal	11/18/2013	Jigi iall	i c/uate UII	The W Oliginal	3/13/2014	

		111311			erosol Soluti	G - Aerosol Pe	,	
			V	JAG P	terosoi Soiuti	on Data		
	Dete	4/0/0044			Facility	10/ 00		
		1/8/2014			Facility			
		11:00			Testers	JEF		
	ID	AS09						
	Materials and E					Cal Due		
	Sartorius QS 20	00 Lab Balance		S/N 60	502077	6/24/2014		
	N/A							
	3 mL disposable	• •						
	Turner Designs	Fluorescein	L	_ot#A	216E236	N/A		
	Isopropyl Alcoho	1, 99.9%	L	_ot #13	2647	N/A	(CMS#39315	55)
	Oleic Acid, Tech	nical Grade, 90%	L	_ot#M	KBH5625V	N/A		
		JEF 1/8/14						
	Target Mix, by	volume:			Density, g/m	L		
	Oleic Acid		1.0		0.89			
	Fluorescein So	lution	0.02		1.28			
	Isopropyl Alco	hol	5		0.79			
	,							
	Target Mix, by	mass:			mass in 250 g			
	Oleic Acid		0.89		45.7292			
	Fluorescein So	lution	0.0256		1.3154			
	Isopropyl Alco		3.95		202.9554			
	Total:		4.8656		250.0000			
	Actual Mix, by	mass:			by volume	in 6.02 parts		
	Oleic Acid		45.7		51.35	·		
	Fluorescein So	lution	1.3		1.02	0.02		
	Isopropyl Alco	hol	202.9		256.84	5.00		
	Total:		249.9		309.20	6.02		
	Volumetric Co	ncentration of no	nvolatile solu	ute, C		0.1677		
	Aerosol Densit					0.8931		
Notes	:	Same ratio as AS08	3. Larger volur	ne to a	ccommodate u	se of QS2000 la	b balance.	
		us material in the						
	7, 112, 00	/	/		1 - /			
			JEF 1/8/2014	l .				
Fntries	s made by:	Julia Flaherty	1	Techni	cal Data Review	v performed by:	Carmen Arim	166
	ure/date	On File w/ Original	1/8/2014			File w/ Original		.03
vigriali	ai cruate	On The W Onginal	1/0/2014	Jigirall	ii cruate Off	c w Oligilial	0/10/2014	

	HIGH TEMPERATURE PROBE TESTING - Aerosol Penetration									
			Aerosol V	Vash Solution	Data					
	Date	9/10/2013			Facility	HV-S3				
	Time	12:25 - 12:50			Tester(s)	JEF				
	ID	AW07								
	Materials a	ınd Equipment	Used:			Cal Due				
	Sartorius Q	S 2000 Lab Bal	ance	S/N 60502077		6/24/2014				
	N/A									
	WR 2000	mL graduated o	cylinder, B, Tol +/-	10.0		N/A				
	3 mL disposable pipettes N/A									
	Whatman p	H indicator pap	er, Type CF (Cat.	No. 2614991)		N/A				
	Wash Solu	tion	AW06		N	lade on 7/9/13				
	2-propanol	, Fisher	Lot 127641			N/A	(CMS 393150)			
	2-propanol	, Fisher	Lot 132647			N/A	(CMS 393149)			
			Volume (mL)	Mass (g)						
	Deionized	water	1400	1385.0						
	Isopropyl	alcohol	1400	1083.2						

	# of NH40	H drops:	15							
	pH:		8.5		Target pH	= 8.0-10.0				
	tes:	-	nder weighs 1122	2.1 g empty.						
CM	S 393150 e	mpty.								
				JE 0/40/42						
				JF 9/10/13						
			/							
Fnti	ries made b	V'	Julia Flaherty	Technical Data F	Review nerfo	ormed by:	Carmen Arimescu			
		On File w/ Orig	-	Signature/date		File w/ Original	3/13/2014			
J.91			5 3.20 10	- Gradio	0., 1	- gar				

HIGH TEMPERATURE PROBE TESTING - Aerosol Penetration									
		Aerosol V	Vash Solution	Data					
Date	9/12/2013			Facility	HV-S3				
Time	6:30 - 6:55			Tester(s)	JEF				
ID	AW08								
Materials a	and Equipment I	Used:			Cal Due				
Sartorius C	S 2000 Lab Bal	ance	S/N 60502077		6/24/2014				
WR 2000	mL graduated o	cylinder, B, Tol +/-	10.0		N/A				
	sable pipettes	, , ,			N/A				
		er, Type CF (Cat.	No. 2614991)		N/A				
Wash Solu		AW07	140. 2014331)	Ma	de on 9/10/13				
			Lot 122647	iVla		(CNAS 202140)			
	entific 2-propano		Lot 132647			(CMS 393149)			
	entific 2-propano		Lot 127641			(CMS 393151)			
Fisher Scie	entific 2-propano) 	Lot 132647		N/A	(CMS 393152)			
		Volume (mL)	Mass (g)						
Deionized		1400	1385.2						
Isopropyl	alcohol	1400	1084.5						
_									
# of NH4C	H drops:	16							
		p							
pH:		8.0		Target pH	= 8.0-10.0				
Notes:	Emptied CMS #	# 393149 and 393	3151.						
		/							
		/							
			JF 9/12/13						
		/							
		/							
Entries made b	V:	Julia Flaherty	Technical Data I	Review perfo	ormed by:	Carmen Arimescu			
	On File w/ Orig	· ·	Signature/date		ile w/ Original	3/13/2014			
	2 II. 3.1g	5.12,2010		0.77	Juguiai	5 3/20 1 1			

	HIGH TEMPERATURE PROBE TESTING - Aerosol Penetration									
			Aerosol V	Vash Solution	Data					
	Date	9/17/2013			Facility	HV-S3				
	-	12:10 - 12:35			Tester(s)	JEF				
	ID	AW09								
		and Equipment l				Cal Due				
		S 2000 Lab Bal		S/N 60502077		6/24/2014				
			sylinder, B, Tol +/-	10.0		N/A				
		sable pipettes				N/A				
	Whatman p		er, Type CF (Cat.	No. 2614991)		N/A				
	Wash Solu		AW08		Ma	ide on 9/12/13				
		entific 2-propano		Lot 132647			(CMS 393152)			
		entific 2-propano		Lot 127641			(CMS 392784)			
	Fisher Scie	entific 2-propano	ı	Lot 127641		N/A	(CMS 392785)			
			. ,	, ,						
		-	Volume (mL)	Mass (g)	1					
	Deionized		1700	1684.0						
	Isopropyl	alcohol	1700	1324.0						
	(2)1140		20							
	# of NH40	H drops:	20							
	m I I.		8.0		Towast old	- 0 0 10 0				
	pH:		8.0		Target pH	= 8.0-10.0				
No	tes:	Less than 0.5L	of AW08 left.							
	Starting pl									
		52 and 392784	are empty.							
			/							
				JF 9/17/13						
			$\overline{}$							
		/								
Ent	ries made b	V.	Julia Flaherty	Technical Data F	Paviaw narfo	rmed hv	Carmen Arimescu			
		On File w/ Orig		Signature/date		File w/ Original	3/13/2014			
Oig	nature/date	On the woong	3/1/12013	Oignature/date	On i	ne w Ongman	3/13/2014			

	HIGH TEMPERATURE PROBE TESTING - Aerosol Penetration									
			Aerosol V	Vash Solution	Data					
	Date	9/20/2013			Facility	HV-S3				
	Time	14:10 - 14:50			Tester(s)	JEF				
	ID	AW10								
		ınd Equipment l				Cal Due				
	Sartorius Q	S 2000 Lab Bal	ance	S/N 60502077		6/24/2014				
	WR 2000	mL graduated c	ylinder, B, Tol +/-	10.0		N/A				
	-	sable pipettes				N/A				
	Whatman p	H indicator pap	er, Type CF (Cat.	No. 2614991)		N/A				
	Wash Solu	tion	AW09		Ma	de on 9/17/13				
	Fisher Scie	ntific 2-propano	l	Lot 127641		N/A	(CMS 392785)			
	Fisher Scie	ntific 2-propano	l	Lot 127641		N/A	(CMS 392786)			
	Fisher Scie	ntific 2-propano	l	Lot 132647		N/A	(CMS 393144)			
			Volume (mL)	Mass (g)						
	Deionized		1600	1585.6						
	Isopropyl	alcohol	1600	1245.9						
	# of NH40	H drops:	20							
	pH:		8.0		Target pH	= 8.0-10.0				
No:	tes:	About 750 mL o	of AMAOO is loft							
NO		MS 392785 an								
	Linpuca C	1VIS 552765 an	u 332700. /							
				JF 9/20/13						
			/							
	1	/								
	ries made b		Julia Flaherty				Carmen Arimescu			
Sig	nature/date	On File w/ Orig	9/20/2013	Signature/date	On F	File w/ Original	3/13/2014			

	HIGH TEMPERATURE PROBE TESTING - Aerosol Penetration									
			Aerosol V	Vash Solution	Data					
	Date	9/30/2013			Facility	HV-S3				
	Time	8:30 - 8:45			Tester(s)	JEF				
	ID	AW11								
	Materials a	ınd Equipment l	Jsed:			Cal Due				
	Sartorius Q	S 2000 Lab Bal	ance	S/N 60502077		6/24/2014				
	WR 2000	mL graduated c	ylinder, B, Tol +/-	10.0		N/A				
	3 mL dispo	sable pipettes				N/A				
	Whatman p	H indicator pap	er, Type CF (Cat.	No. 2614991)		N/A				
	Wash Solu	tion	AW10		Ma	ide on 9/20/13				
	Fisher Scie	ntific 2-propano	ıl	Lot 132647		N/A	(CMS 393146)			
	Fisher Scie	ntific 2-propano	ıl	Lot 132647		N/A	(CMS 393148)			
	N/A									
			Volume (mL)	Mass (g)						
	Deionized	l water	1400	1388.3						
	Isopropyl	alcohol	1400	1089.3						
			***************************************	***************************************						
	# of NH40	H drops:	20							

	рН:		8.0		Target pH	= 8.0-10.0				
No	tes:	About 1 L of AW	/10 is left.							
	Emptied C	MS 393146.								
		•	of the mixture v							
	After addi	ng NH4OH, th	e pH was betwe	en 8.0 and 8.5,	but closer	in color to 8.	0.			
				/						
			/	0/20/2012						
				9/30/2013						
			/							
Ent.	rion made b)	Iulia Elaborti	Toohnigal Data	Poviou: porfe	rmod by	Carmen Arimescu			
	ries made b	y. On File w/ Orig	Julia Flaherty	Technical Data F Signature/date		File w/ Original	3/13/2014			
oigi	nature/uate	on the woolig	3/30/2013	oignature/uate	On F	no w Onginal	5/15/201 4			

	HIGH TEMPERATURE PROBE TESTING - Aerosol Penetration									
			Aerosol V	Vash Solution	Data					
	Date	10/21/2013			Facility	HV-S3				
	Time	11:55 - 12:15			Tester(s)	JEF				
	ID	AW12								
	Materials a	and Equipment I	Used:			Cal Due				
	Sartorius Q	S 2000 Lab Bal	ance	S/N 60502077		6/24/2014				
	WR 2000	mL graduated o	ylinder, B, Tol +/-	10.0		N/A				
	3 mL dispo	sable pipettes				N/A				
	Whatman p	H indicator pap	er, Type CF (Cat.	No. 2614991)		N/A				
	Wash Solut	tion	AW11		Ma	de on 9/30/13				
	Fisher Scie	ntific 2-propano	ol	Lot 132647		N/A	(CMS 393143)			
	Fisher Scie	ntific 2-propano	ol	Lot 132647		N/A	(CMS 393145)			
	N/A									
			Volume (mL)	Mass (g)						
	Deionized	l water	1700	1690.6						
	Isopropyl	alcohol	1700	1328.0						
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	# of NH40	H drops:	20							
	pH:		8.0		Target pH	= 8.0-10.0				
No			mL of AW11 left in	n bottle.						
		143 empty.)							
	Starting pi	H between 7.0) and 7.5.							
				JEF 10/21/13						
			/							
			/							
Ent	ries made b	y:	Julia Flaherty	Technical Data F	Review perfo	ormed by:	Carmen Arimescu			
		On File w/ Orig		Signature/date		ile w/ Original	3/13/2014			
Ŭ		ŭ		J		ŭ				

HIGH TEMPERATURE PROBE TESTING - Aerosol Penetration									
			Aerosol W	ash Solution	Data				
	Date	11/1/2013			Facility	HV-S3			
	Time	8:30 - 8:50			Tester(s)	JEF			
	ID	AW13							
	Materials an	d Equipment Used	d:			Cal Due			
	Sartorius QS	2000 Lab Balance	9	S/N 60502077		6/24/2014			
	WR 2000 m	L graduated cylind	der, B, Tol +/-	10.0		N/A			
	3 mL dispos	N/A							
	Whatman pH	N/A							
	Wash Solution	10/21/2013							
		tific 2-propanol	AW12	Lot # 132647			(CMS 393147)		
		tific 2-propanol		Lot# 132647			(CMS 393147)		
	N/A	unc 2-proparior		LUI# 132047		IN/A	(CIVIS 292122)		
	IN/A								
		,	Volume (mL	Mass (g)					
	Daionizady		,	,					
	Deionized v		1600	1586.7					
	Isopropyl a	ICONOI	1600	1245.7					
	// - C NII I 40 I I		20						
	# of NH4OH	arops:	20						
						0.0.10.0			
	рН:		8.0		Target pH	= 8.0-10.0			
No	tes:	~750mL of AW12	left in bottle.						
	Emptied 39		ما مسام است	h 7 0 9 7 F					
	ph before a	ammonium hydro	oxide was b	twn 7.0 & 7.5.					
				/					
				JEF 11/1/13					
				JLI 11/1/13					
Ent	rios mada hur	Iulia Elaborty		Technical Data	Paviou por	formed by	Carmen Arimescu		
		Julia Flaherty	11/1/2012	Technical Data					
Sigi	nature/date	On file w/ original	11/1/2013	Signature/date	On F	File w/ Original	3/13/2014		

	HIGH TEMPERATURE PROBE TESTING - Aerosol Penetration									
			Aerosol W	ash Solution	Data					
	Date	1/15/2014			Facility	HV-S3				
	Time	14:10 - 14:30			Tester(s)	JEF				
	ID	AW14								
	Materials an	d Equipment Used	d:			Cal Due				
	Sartorius QS	2000 Lab Balance	9	S/N 60502077		6/24/2014				
	WWR 2000 m	L graduated cylind	der, B, Tol +/-	10.0		N/A				
	3 mL dispos	able pipettes				N/A				
	Whatman p⊢	l indicator paper, T	ype CF (Cat. I	No. 2614991)		N/A				
	Wash Solution	on	AW13			11/1/2013				
	Fisher Scien	tific 2-propanol		Lot # 132647		N/A	(CMS 393155)			
	Fisher Scien	tific 2-propanol		Lot # 132647		N/A	(CMS 393156)			
	N/A									
		,	Volume (mL	Mass (g)						
	Deionized v	water	1000	1050.3						
	Isopropyl a	lcohol	1000	774.4						
	# of NH4OH	drops:	10							
	pH:		8.0		Target pH	= 8.0-10.0				
No		~1L of AW13 in bo	ottle							
		eights 1121.7g								
		/IS#393155 (IPA)								
	Starting pH	7.0								
				$\overline{}$						
				/						
				JEF 11/1/13						
Ent	ries made bv:	Julia Flaherty		Technical Data	Review perf	ormed bv:	Carmen Arimescu			
	nature/date	On file w/ original	1/5/2014	Signature/date		File w/ Original	3/13/2014			
5				0		J				

Appendix C

LV-S2 Temperature and Humidity Data Sheets

Appendix C LV-S2 Temperature and Humidity Data Sheets

			TDP-W	ITPSP-636
			TH PH	of 17
	HIGH TEMPERATURE PR	OBE TESTING - Temperature / Humidit		
		12913	1/21	1114 13
	lo. TH-	Facility / Condition HV-33 LV-S2	Norm	
		Chamber Set Point 130°F / 10%.	2 H	
	ne 12:00 / 13:00 ers JEF	Diluter Orientation Horiz or Vert		
1636	JEF	Diluter Orientation Horiz or Vert		
	Start Finish	Instruments Used:		Cal Due
Time	12:00 13:00	Thermotron SE-2000-4 Env Chamber S/N		4/2/2014
Chamber Temp	130 130 %		, Too9, Too8	6/18/2014
Chamber Humidity	0.48 0.48 scfm	Alicat MCR-500SLPM MFC SN 68858		2/4/2014
Dilution flowcontroller Dilution Dew Pt	0.48 0.48 scfm	Alicat MCR-500SLPM-D MFC SN 6885		4/3/2014
Dilution Temp	82 83 °F	A CONTRACTOR OF THE PROPERTY O	30040/H0320001	1/31/2014
Dilution P	111 6	0-11	30040/H0320001	1/31/2014
Sampling flowcontroller	14.5 14.5 psia		10S-1.375-24-2-AB	N/A
Sampling Dew Pt	47 47 °F		11883	5/16/2014
Sampling Temp	87 87 %	NJA		
Sampling P	14.2 14.2 psia			
Ambient pressure	996.5 996.1 mbar			
Ambient humidity	26 / 25/ RH			
Ambient Temp	81.5 81.9 %			
Notes: Ran The dew p	this test Right af	ter HV-S3 Min te	St (TH-1).	62 , ²
the parts	can be dis-assem	bled without lowerin	a the hum	
No conde	ensation should form		bservina 2	M
dot color	۲.		3	
Used bon		M dots. They looked	white.	
Bottom C	desicoant Used for	test.		
	/			
				4 1 1
		,		
	14	1 7/29/13		
The second second	150	J-424D		
Data Files			Recording Repu	
Environmental Chamber	r Data: 130729_hvs3_k	nin-lusz-horm.csv	9.00	
Vaisala Dew Point Data ((FIO): 2013-07-29 8-	59.CSV		
Alicat Data (FIO):	20130729_0843	-alicat dat		
Entrine mode to	· Causes			
Entries made by: Juu Signature/date	A FLAHERTY	Technical Data Review performed by:	0	-1
Mes	Jaco 7/29/13	Signature/date	Print- 111	11/12

TDP-WTPSP-636 TH p16 of 17

	HIGH TEMPERATURE P	PROBE TESTING - Temperature / Humidity Only			
Run No	. TH- 2	Facility / Condition HV-33 LV-S2 Norm			
Date		Chamber Set Point 130°F / 10% RH			
Start/End Time	13:25/14:25				
Tester	SJEF	Diluter Orientation (Horiz) or Vert			
-	Start Finish	Instruments Used:	Cal Due		
Time	13.23 17.23	Thermotron SE-2000-4 Env Chamber S/N 42857	4/2/2014		
Chamber Temp	130 130 °F	Type T Thermocouples Tool-Tool, Too9, Too8	6/18/2014		
Chamber Humidity	10 10 RH	✓ Alicat MCR-500SLPM MFC SN 68858	2/4/2014		
Dilution flowcontroller	5.08 5.08 scfm	✓ Alicat MCR-500SLPM-D MFC SN 68857	4/3/2014		
Dilution Dew Pt	0 0 0 0	Vaisala MI70/HMP77B S/N G5230040/H0320001	1/31/2014		
Dilution Temp	82 84 °F	✓ Vaisala MI70/DMP74B S/N G5230040/H0320001	1/31/2014		
Dilution P	14. / 14. / psia	Mott Corp Diluter 28" OAL Model 7610S-1.375-24-2-AB	N/A		
Sampling flowcontroller	6.09 6.09 scfm	✓ Fisher Dew Point Pen S/N 122277883	5/16/2014		
Sampling Dew Pt	10 13 °F	NA			
Sampling Temp	87 86 °F				
Sampling P	13.4 13.4 psia				
Ambient pressure	995.9 995.6 mbar				
Ambient humidity	25 /. 24 /. RH				
Ambient Temp	82.1 82.8 °F				
0					
Notes: Switch	shed to top desico	cant Br this test, rest; no colorchange will water			
Removed on		est; no color change wi water	6		
- On	upstream end /				
and the second					
	. /				
1.00		Marine and American Company and Company and Company			
	/ 1/	Local Control Control			
	1127	129/13			
	/ 10.				
	/				
Data Files					
Environmental Chamber	10.1.00	min_lvs2-normcsv			
Vaisala Dew Point Data (FIO): 2013-07-29 8-59. CSV					
Alicat Data (FIO):	20130129-084	3_alicat.aat			
Entries made by: Till	'n Finlles TV	Taskelad Date Date and the			
Signature/date	TH FUHRER IX	Technical Data Review performed by:			
In Committee In Co	1/2012 7/29	Signature/date Signature/date	11/12		
/ACC	1000	of the Colone	11/15		

TDP-WTPSP_636
TH PHOF 17
HIGH TEMPERATURE PROBE TESTING - Temperature / Humidity Only

Run No. TH- 3
Date 7 30/13
Start/End Time 13:31/14:25
Testers JEF

Facility / Condition LV-S2 Max
Chamber Set Point 210°F / 6.0′. RH Diluter Orientation (Horiz or Vert

	Start	Finish	
Time	13:31	14:26	
Chamber Temp	209	210	۰F
Chamber Humidity	6.1	6.0	RH
Dilution flowcontroller	5.08	5.08	scfm
Dilution Dew Pt	-4	0	°F
Dilution Temp	87	82	٥F
Dilution P	14.8	14.8	psia
Sampling flowcontroller	6.09	6.09	scfm
Sampling Dew Pt	35	37	۰F
Sampling Temp	92	90	٥F
Sampling P	13.9	13.9	psia
Ambient pressure	1001	1001	mbar
Ambient humidity	24	26	RH
Ambient Temp	85.3	80.4	°F

Instruments Used:		Cal Due
Thermotron SE-2000-4 Env Ch	4/2/2014	
Type T Thermocouples	T001-T006, T009, T008	6/18/2014
Alicat MCR-500SLPM MFC	SN 68858	2/4/2014
Alicat MCR-500SLPM-D MFC	SN 68857	4/3/2014
Vaisala MI70/HMP77B	S/N G5230040/H0320001	1/31/2014
Vaisala MI70/DMP74B	S/N G5230040/H0320001	1/31/2014
Mott Corp Diluter 28"OAL	Model 7610S-1.375-24-2-AB	N/A
Fisher Dew Point Pen	S/N 122277883	5/16/2014

the decision to
Notes: Using bottom desiccant.
Heat tape Set to 187°F. It's a bit higher due to residual
heat from previous tests.
Took a bit of time to get the chamber in the right spot.
Temperature and humidity conditions continue to fluctuate a
bit during test.
Used a bortescope to inspect interior. All visible dots
agreed white. Apparant to no concensation.
appeal white. Apparently no condensation.
/M. 712-1/2
JF. 1130/13
1-
Data Files /
Environmental Chamber Data: 130736_hvs3_norm_lvs2_max.csv
Vaisala Dew Point Data (FIO): 2013-07-30 9-06 · CSV
Alicat Data (FIO): 20130730_0815-alicat-dat
Entries made by: Juia FLAHERTY Technical Data Review performed by:
Signature/date Signature/date
alithat 1/30/13 chatch (solared 11/11/13

Appendix D Aerosol Aerodynamic Diameter

Appendix D Aerosol Aerodynamic Diameter

The particle size of the aerosol produced by the vibrating orifice aerosol generator (VOAG) is a function of the aerosol solution concentration, aerosol solution flow rate (which is, a function of the syringe diameter and speed), and frequency of the orifice. The aerodynamic diameter calculation is simplified as the physical diameter multiplied by the ratio of the square root of the aerosol density and unit density. The aerodynamic diameter is calculated as:

$$AD = \left(\frac{6QC_{vol}}{\pi f}\right)^{1/3} \frac{\sqrt{\rho_p}}{\sqrt{\rho_o}}$$

where:

AD = particle aerodynamic diameter, μ m:

 $Q = \text{liquid volumetric flowrate, } \mu \text{m}^3/\text{s};$

 C_{vol} = volume concentration (particle volume produced per drop volume), dimensionless;

f = frequency of applied vibrational signal, 1/s,

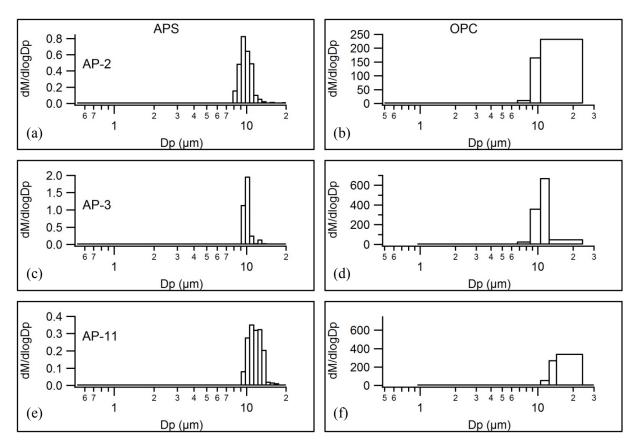
 ρ_p = particle density, g/cm³, and

 ρ_o = unit particle density, 1 g/cm³.

The production of aerosol during the aerosol penetration tests was monitored with either an aerodynamic particle sizer or an optical particle counter, and in some cases, both. The APS measures the aerodynamic particle size directly; whereas, the OPC measures the optical diameter within user-defined size channels, and post-processing is needed to calculate the aerodynamic diameter. Table D.1 below lists the aerosol solution concentration and VOAG settings, along with the calculated and measured aerodynamic diameters. Note that the APS measurements during LV-S3 are FIO; the instrument was calibrated after these tests were performed. In the region of 10 micron AD, there was an approximately 6% difference between the previous calibration, which was performed under a non-WTPSP project, and the calibration performed in 2013 under this project. Additionally, the OPC AD has been calculated, and these calculations have been formally reviewed with a CCP.

Note that, in general, the calculated and measured AD does not agree. The agreement is better between the calculated and APS-measured values during LV-S3 tests compared with during the HV-S3 tests, and in particular, the second half of the HV-S3 tests. The APS measurements also showed a very narrow band of particle sizes compared with the OPC measurements, which had significant particle counts in several size channels.

Table D.1. Summary of Aerosol Concentration, VOAG Settings, and Calculated and Measured Aerosol Aerodynamic Diameter during LV-S3 and HV-S3 Aerosol Penetration Tests. APS Measured AD values shown are the start and finish values from each test. LV-S3 APS measurements (italicized) are FIO.


Aerosol Solution Concentration (mL/mL)	VOAG Syringe Speed (x 10 ⁻⁴ cm/s)	VOAG Frequency (kHz)	Calculated AD (μm)	APS Measured AD (µm)	OPC Measured AD - FIO (µm)	Run No.
			LV-S3			
		43.6	11.3	9.6-9.7	11.9	AP-1
		47.2	11.0	9.6-9.6	12.0	AP-2
0.0140		48.4	10.9	9.7-9.4	10.8	AP-3
0.0142	4.6	48.4	10.9	9.6-9.4	10.6	AP-4
		48.4	10.9	10.0-9.7	10.4	AP-5
		48.5	10.9	9.4-9.2	10.6	AP-6
			HV-S3			
		40.1	11.9	10.2-10.2		AP-1
	4.6	40.2	11.9	10.2-9.7		AP-2
0.0153		40.2	11.9	9.4-9.5	N/A	AP-3
		40.1	11.9	9.2-9.3		AP-4
		40.1	11.9	9.3-9.0		AP-5
		45.3	11.4	9.4-9.0		AP-6
0.0165	4.7	40.2	12.2	9.0-8.5	N/A	AP-7
0.0323	4.6	41.5	14.9	11.0-10.6	N/A	AP-8
0.0165	4.2	41.5	11.7	N/A	12.8	AP-9
0.0165	65 4.2	41.5	11.7	9.3-9.0	11.8	AP-10
		41.5	14.4	10.7-11.0	15.4	AP-11
0.0222		41.5	14.4	10.8-10.3		AP-12
0.0323	4.2	41.5	14.4	12.5-11.9	N/A	AP-13
		41.5	14.4	11.0-9.9		AP-14
0.1680	4.2	41.7	24.8	14.5-10.4	N/A	AP-15
0.1677	4.2	55.4	22.8	14.0-13.2	N/A	AP-16

In comparing the APS and OPC measurements in Table D.1, the OPC diameter is always larger than the APS diameter. During LV-S3, the OPC ranged from about 0.5 µm to nearly 2.0 µm larger than the APS diameter. During HV-S3, there were only two tests with both instruments in operation, and the OPC was 2.5 to 4.5 µm larger than the APS measurement. One reason for the differences between the two instruments is the difference in size channels, and the relative differences between certain tests are likely attributable to changes in the prescribed size channels for the OPC. Table D.2 lists the size channels used by the OPC for particles larger than 8.5 µm. (Smaller sizes are similar between tests, and aren't expected to contribute to differences in the mean diameter.) Note that the first two LV-S3 tests had only two size channels between 8.5 and 23.6 µm, while HV-S3 tests had four size channels from 8.5 to 23.6 µm. To illustrate the impact of size channel settings, consider a particle with a diameter of 15 µm. During the LV-S3 AP-1 test, this particle would be counted by the largest bin, between 10.4 and 23.6 µm, and the mean value (average between 10.4 and 23.6) would be 17 µm. During the HV-S3 AP-9 test, however, this particle would again be counted by the largest bin, but this bin is 14.2 to 23.6 µm. The average for this bin is 18.9 µm, which is nearly 2 µm larger than the LV-S3 AP-1 case, and nearly 4 µm larger than the true particle size. The larger mean OPC diameters (relative to the calculated and APS diameters) during the HV-S3 tests is likely attributable to change in size channels during these tests.

Table D.2. OPC Particle Size Channel Setting Comparison

Test		Sizes	(AD, µm)		
LV-S3 AP-1 & AP-2	8.5	10.4	23.6		
LV-S3 AP-3 – AP-6	8.5	10.4	12.3	23.6	
HV-S3 AP-9 – AP-11	8.5	10.4	12.3	14.2	23.6

To graphically illustrate the differences between the APS and OPC measurements, and the impact of size channel positions, Figure D.1 shows a comparison of the APS (left column) and OPC (right column) particle size distributions from the LV-S3 AP-2 (top row), AP-3 (middle row), and HV-S3 AP-11 (bottom row) tests. The optical diameters from the OPC have been converted to aerodynamic diameter for this plot. Note that the AP-2 and AP-3 mean particle size with the APS were comparable, while there was a 1 micron difference between the two tests with the OPC. This difference appears to be driven by the large number of particles in the 10.4 to 23.6 μ m bin during AP-2. During AP-3, more particles were measured in the 10.4 to 12.3 μ m channel. For HV-S3 AP-11, on the other hand, the mean particle size was increased, and according to the APS, particles as large as 17 μ m were produced, although most particles were smaller than 14 μ m. With the OPC, most particles were in the largest bin, driving a larger mean particle size than the APS. An evaluation comparing additional differences between the APS and OPC has not been performed.

Figure D.1. Particle Size Distribution from the LV-S3 AP-2, AP-3 and HV-S3 AP-11 Tests Measured by the APS and OPC. Dp represents the aerodynamic particle size in each plot. (a), (c), and (e) are from the APS, while (b), (d), and (f) are from the OPC. (a) and (b) are AP-2, (c) and (d) are AP-3, and (e) and (f) are AP-11.

Appendix E Mott Porous Tube Diluter Quote

Appendix E **Mott Porous Tube Diluter Quote**

mott corporation

84 Spring Lane, Farmington, CT 06032-3159 860-747-6333 Fax 860-747-6739 www.mottcorp.com

Julia Flaherty Pacific Northwest Ntl Lab Po Box 999 Msin K6-75 Richland, WA 99354 USA 509-371-7251

Quotation

200720000000000000000000000000000000000	
Quotation #:	QU0200669-2
Customer No.:	CA0012710
Cust Reference #:	
Payment Terms:	Net 30 days
IncoTerms:	EXW
Date:	06/05/2013
Page:	1 of 1

Line	Item Number / Description	Customer Ref Part No.	Lead Time ARO	Qty	U/M	Unit Price
1	TBD		6-8 weeks ARO	1	EA	

7610S-1.375-24-2-AB
S=3/4"OD SAMPLE LINE
MOTT 7610 SERIES IGS FILTER ASSEMBLY:
POROUS OD = 1.5" (use .062" rolled and welded sheet tube)
POROUS NOMINAL ID = 1.375"
POROUS LENGTH = 24"
OAL = 32"
SAMPLE LINE OD = 3/4"OD (POSITIONED 6" FROM INLET)
MEDIA GRADE = 2
POROUS MATERIAL = 316LSS
HARDWARE MATERIAL = 316SS
IGS FILTER ELEMENT MOUNTED IN HOUSING

HOUSING LENGTH SHOULD BE THE MINIMUM REQUIRED TO PROVIDE FOR WELDING CUSTOMER REQUESTS MINIMAL AMOUNT OF EXPOSED SOLID TUBING ON THE INSIDE OF THE UNIT

SAME AS 7610019-020 EXCEPT SOLID TUBE LENGTHS ON EACH END OF THE ELEMENT ARE TO BE 4" L FOR A 32" OVERALL LENGTH

If you have any questions or require further information, please do not hesitate to contact us.

Thank you for your inquiry.

Applications Engineer

rt Saunders

Material certification is available upon request at time of original order placement, whether verbal or written, for a fee or \$30.00 per order. It may be possible to provide certifications after the initial order is processed, and when necessary, a charge of \$100.00 will apply.

Please Note the Following: Minimum order requirement: US\$500.00. Incoterms: EXW Farmington, CT USA. Payment Terms: Net 30 Days upon approval. Wire transfer details available upon request. MasterCard and Visa are accepted.

Pricing on this quotation is based on existing stock levels.

A new quotation may be necessary in the event stock levels change.

Mott standard tolerances and manufacturing conditions apply unless otherwise noted.

Quotation valid for 60 days from date of issue.

Appendix F Document List

Appendix F Document List

Project Plan	PP-WTPSP-053	Tests of a High Temperature Sample Conditioning System for the Waste Treatment Plant LV-S2, LV-S3, HV-S3A and HV-S3B Exhaust Systems
Test Plan	TP-WTSP-052 Rev 0.	Tests of a High Temperature Sample Conditioning System for the Waste Treatment Plant LV-S2, LV-S3, HV-S3A and HV-S3B Exhaust Systems
Laboratory Record Book	BNW-61301	WTP Stack Qualification Testing – High Temperature Probe
Test Data Package	TDP-WTPSP-635	Tests of a High Temperature Sample Conditioner for the Waste Treatment Plant LV-S3 Exhaust System
	TDP-WTPSP-636	Tests of a High Temperature Sample Conditioner for the Waste Treatment Plant HV-S3A and HV-S3B Exhaust System
Calculation Packages	CCP-WTPSP-1313	High Temperature Probe LV-S3 Aerosol Penetration Test Calculations
S	CCP-WTPSP-1314	High Temperature Probe HV-S3A and HV-S3B Aerosol Penetration Test Calculations
	CCP-WTPSP-1121	Mean Aerosol Aerodynamic Diameter Calculations from an Optical Particle Counter

Distribution

No. of Copies*

OFFSITE

3 Bechtel National, Inc.

PA Douglass	H4-02
MM Mwembeshi	H4-02
WTP Docs	H4-02

ONSITE

6 Pacific Northwest National Laboratory

JA Glissmeyer	K3-54
JE Flaherty	K9-30
RA Peterson	P7-22
JM Barnett	J2-25
Information Release	K3-52
Project File	K3-52

* All distribution will be made electronically.

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352 1-888-375-PNNL (7665) www.pnl.gov