&= T\ U.S. DEPARTMENT OF

«2) ENERGY

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

The MKS-910 Server
DES-0035
Revision 1

Charlie Hubbard
July 2012

PNNL-22600

o

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

The MKS-910 Server
Charlie Hubbard

DES-0035
Revision 1
July 2012

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government
or any agency thereof, or Battelle Memorial Institute. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under
Contract DE-ACO05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical
Information, P.O. Box 62, Oak Ridge, TN 37831-0062
ph: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161
ph: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

The MKS-910 Server July 02, 2012

Contents

1 Introduction 1
2 MKS-910 Hardware 1
3 Serial Communications 2

4 Server Theory of Operation
4.1 Sensor Naming Convention
4.2 The Need for Data Caching
4.3 Threads and Mutexes
4.4 Concentration Calculations
4.5 A Layered Implementation L.
4.5.1 The SerialProtocol Class
4.5.2 The MKS910Unit Class
4.5.3 The MKS910Server Class

N O OU U e W w W

5 The Client API
5.1 Client-Specific Messages
5.1.1 MKS_-GET.DATA
5.1.2 MKS_.GET_ALL.DATA
5.2 MKSSET PIEZO ZERO o e
5.3 MKSSET PIEZO_SPAN
54 MKSSET PIRANI.ZERO
5.0 MKS_SET_PIRANISPAN
5.5.1 MKS.SET.-TARGET_-GAS
5.5.2 MKS GET NUMSENSORS

O © © © © o 0o o o

6 The Server Configuration File 10
6.1 Configuration File Syntax 10
6.2 Example Configuration File 10

6.2.1 State-of-Health Reporting 10

7 The Test Menu Program 11

DES-0035 1 Rev 1

The MKS-910 Server July 02, 2012

1 Introduction

This document describes the MKS-910 server application. This server amounts to a user-
mode device driver capable of managing one or more MKS model 910 DualT} rans' pressure
sensors. It is implemented by the mks910Server.cpp source module. The server supports the
client interface defined and implemented by the files mks910ClientLib.h and mks910Client:
Lib.cpp respectively. A standard text-mode test menu client for the server is implemented
by mks910Menu.cpp.

The primary documentation for the MKS-910 server source code is the Doxygen-generated
HTML documentation associated with each of the above source files. That documentation
set is automatically built based on the source code itself. It provides the most detailed, most
up-to-date descriptions of the code. The document you are reading now is supplemental, and
is intended to provide deeper background for the server and its client API. If contradictions
between this document and the Doxygen-generated documentation are found, the Doxygen-
generated documentation should be considered correct.

Like most of our hardware interfacing servers, the MKS-910 server is not necessarily in-
tended to provide an exhaustive interface to all of the hardware’s capabilities. Instead, only
that subset of functionality that we need for our current projects is supported. However,
the MKS-910 server is unique in that it actually implements functionality the underlying
hardware does not have. Specifically, provisions exist in the server to compute a binary gas
concentration based on simultaneous readings from the sensor’s internal piezo and pirani
pressure transducers. The details for this computation are handled by a PNNL-developed
library which is fully described by design document DES-0059, The MKS-910 Con-
centration Library. Please refer to that document for details.

2 MKS-910 Hardware

The MKS model 910 DualTrans' pressure sensor is an extended-range pressure sensor with
a usable pressure range between 1.0%10~° and 1500 Torr. This wide pressure range is achieved
by incorporating two independent pressure transducers into a single sensor package: a piran:
style transducer! that provides good pressure values at low pressures (below 10 Torr for the
MKS-910), and a piezoelectric pressure transducer that provides good pressure values above
10 Torr. Electronics integrated into the MKS-910 package monitor both transducers and
select a reading from one or the other (depending on the current pressure) to be reported
back as the pressure for the sensor.

!Pirani pressure sensors are thermal conductivity devices that function by measuring the rate at which
energy from a heating element can be dissipated to the surrounding gas molecules. They function optimally
at low pressures with a typical pressure range between 1.0 % 10~* and 1.0 Torr (somewhat extended on the
MKS-910). Because the rate of energy transfer depends on both the pressure of the gas surrounding the
heating element and the thermal conductivity of the gas, pirani gauges must be calibrated for the specific
gas mixture they’'re measuring.

DES-0035 1 Rev 1

The MKS-910 Server July 02, 2012

Normally, the sensor reports pressure as an analog output voltage driven by its integrated
electronics. The output has a range of 1.0 to 9.2 V, increasing at the rate of 1 V volt per
decade. If the sensor was being used strictly as an extended-range pressure sensor, this would
be sufficient. However, for our application, the sensor is actually used as an inexpensive,
yet accurate, binary gas concentration analyzer. To perform the binary gas calculation, it is
necessary to know the instantaneous readings of the piezo and pirani transducers simulta-
neously. Fortunately, the MKS-910 also offers an RS-232 interface through which the value
of each transducer (and an embedded low-precision temperature sensor) can be read at any
time. This server communicates with all attached 910 sensors using their RS-232 interfaces
and makes no provisions for using the analog output alternative.

3 Serial Communications

As mentioned in the previous section, this server communicates with the MKS-910 sensors
it manages via RS-232 serial links using an MKS proprietary, ASCII text-based communi-
cation protocol. Full details of the protocol can be found in the MKS-910 users manual (see
document MKS-910-manual.pdf in the manuals subirectory), but highlights of the protocol
are listed below:

e The server communicates with the MKS-910 pressure sensor over an RS-232 link, but
RS-485 links are also supported by the hardware. RS-485 permits multiple sensors to
be connected to the same serial port, and, for that reason, individual sensors must
be assigned a sensor-specific address. Even though the server doesn’t use RS-485, all
messages to the sensor(s), must still contain the address field. The factory default
address is “253.” The server uses address 253 for all messages to all sensors.

e All messages must begin with an “@” character followed by the three-digit device
address. The “@” character is a synchronization character that MKS-910s can use to
recognize the beginning of a new message.

e All messages are terminated with a three-character sequence consisting of a semicolon
followed by two capital “F”s (“;FF”).

e Messages sent to the MKS-910 from the server are either queries or commands. Short
(typically two- or three-character) message identifiers are used to identify each specific
message. For example, the string “PR1” is used to query the value of the sensor’s
pirani transducer.

e Command messages are used to set the values of various MKS-910 parameters. Com-
mand messages are distinguished by the presence of an exclamation mark (“!”) in
the message string. As an example, the following command message uses the “GT”
command (gas type) to tell the sensor to assume nitrogen is the gas being measured
when interpreting the readings from the pirani transducer.

©@253GT!NITROGEN; FF

DES-0035 2 Rev 1

The MKS-910 Server July 02, 2012

e Query messages are used to request the value of parameters and transducer data from
the sensor. Query messages are distinguished by the presence of a question mark (“?”)
in the message string. As an example, the following query message uses the “SN”
query (serial number) to request the sensor’s serial number.

©@253SN7; FF

e Response messages sent from the MKS-910 to the server contain the string “ACK”
to indicate success (followed by result data if the response is to a query message), or
the string “NAK” to indicate an error occurred. In both cases, these keywords appear
immediately following the address of the device generating the response.

©253ACK000012345; FF
Q@253NAK; FF

4 Server Theory of Operation

In this section we’ll briefly look at the implementation of the MKS-910 server code. For a
more complete description, the reader is urged to consult the Doxygen-generated documen-
tation for the MKS910Server class, its helper classes, and the server’s source code in the file
mks910Server.cpp.

4.1 Sensor Naming Convention

Each MKS-910 sensor managed by the server is assigned a short, human-readable text name
that is unique across the project. That is to say, if a 910 has been assigned the name
“conc01,” no other project server can have a sensor or control output by that same name.
The server uses these text names internally to identify specific 910s, and these are also the
names that client applications use when referencing specific 910’s through the server. The
individual sensor names are assigned in the server’s configuration file, which is more fully
described in section 6.

4.2 The Need for Data Caching

Each MKS-910 sensor managed by the server regularly returns at least four bits of informa-
tion that are read from the sensor itself. These are the current piezo transducer reading,
the current pirani transducer reading, the current temperature transducer reading and the
pirani gas type calibration currently configured on the sensor. Unfortunately, these data are
acquired by querying the sensor over a slow serial connection (9600 baud). If multiple sen-
sors are being queried frequently by multiple clients (which is tyically the case), the number
of read requests can easily overwhelm the serial connection’s ability to keep up. For this
reason, a data caching mechanism is implemented in the server.

DES-0035 3 Rev 1

The MKS-910 Server July 02, 2012

At approximately one-second intervals, the server queries all data from all attached sensors
and stores the results in a local cache. Then, when clients request sensor data, these cached
values are returned. This means the data delivered to clients can be as much as one second
old. However, returning data out of the local cache happens very, very quickly, making it
possible to service a very large number of client data requests without overwhelming the
serial links.

4.3 Threads and Mutexes

The server uses pthread library style threads internally, starting one new thread for each
MKS-910 sensor the server manages. Each thread is responsible for querying its associated
sensor for all of its data at one-second intervals and updating that sensor’s local data cache.

These threads need to access data structures (primarily the data cache) and other resources
(primarily the serial ports) that the main server application also accesses. Because the
threads run concurrently with the main application code, there is the danger that a thread
will try to access/modify one of these shared resources at the same time the main code is
trying to access/modify the same resource. Allowing that to happen is a recipe for disaster.
Instead, pthread library mutezes? are used to guarantee that these shared resources can only
be accessed by one thread at a time. More specific details will be given in sections 4.5.1 and
4.5.2.

4.4 Concentration Calculations

The MKS-910 server provides an interface to multiple MKS-910 sensors that clients can use
to read pressure and temperature information. However, the main intent of the server is to
provide a mechanism for using off-the-shelf MKS-910 units as an accurate and inexpensive
binary gas concentration analyzer. This is possible because the 910’s piezo transducer is
not effected by the chemical composition of the gas mixture it is measuring, but its pirani
transducer is. This means that for any given pressure, as the ratio of two gases in a binary
gas mixture (helium mixed in nitrogen for example) changes, the reported piezo pressure
does not change, but the reported pirani pressure does. If both pressures are known, this
effect can be used to determine what the current binary gas concentration must be.

In the current implementation, a very large two-dimensional lookup table has been developed
with pirani pressure on one axis and piezo pressure on the other axis. The individual cells
of the lookup table give the ratio of the two gases at that particular combination of pressure
values. This actually works very well, providing numbers approaching the accuracy of special-
purpose binary gas analyzers that are physically much larger and ten times more expensive.

The code that manages the lookup table is implemented as an external module rather than
embedding it in the mks910Server.cpp source code directly, because there are occasionally

2A more in-depth look at the roll of mutexes can be found in the section “Mutexes and Condition
Variables” in design document DES-0005, The Client/Server Architecture.

DES-0035 4 Rev 1

The MKS-910 Server July 02, 2012

external utilities (for data analysis for example) that also need to link against the lookup
code. The lookup module is more fully described in design document DES-0059, The
MKS-910 Concentration Library.

4.5 A Layered Implementation

As with most of our servers that control hardware via serial links, the MKS-910 server is
implemented in layers based on three primary classes. At the lowest layer, there is the
SerialProtocol class. This class handles the details of low-level serial communication with
the pressure sensors. Next there is the MKS910Unit class. This class provides all the func-
tionality to configure and operate a single MKS-910 pressure sensor. Each MKS910Unit class
maintains a dedicated instance of the SerialProtocol class, which it uses to communicate
with its associated pressure sensor. Finally there is the MKS910Server class. This class is
responsible for client/server message handling and high-level interaction with the pressure
sensors. It maintains one instance of the MKS910Unit class for each sensor the server man-
ages. These are used to query and manipulate the individual sensors. In this section, we’ll
look at each of these three components in detail. The reader is also urged to consult the
Doxygen-generated documentation for these three classes.

4.5.1 The SerialProtocol Class

The purpose of the SerialProtocol class is to handle the low-level details involved in
sending and receiving messages to/from individual MKS-910 pressure sensors over an RS-
232 serial connection. The primary documentation for this class is its Doxygen-generated
HTML pages. The reader should look there for an in-depth look at the class’ capabilities.

The SerialProtocol class is responsible for providing access to the serial port associated
with a specific pressure sensor. It maintains an internal file descriptor to the serial port
through which it communicates. When the class is instantiated, the serial port is opened and
configured with appropriate baud rate, word size, start bit, stop bit and parity settings. Con-
versely, when a SerialProtocol object is destroyed, the serial port is automatically closed.
All communication with the server’s pressure sensors occurs through the SerialProtocol
class.

Because the serial port is one of those resources that can be accessed both by the sensor’s
data update thread and the main server application at the same time, it requires mutex
protection. The SerialProtocol class contains an internal mutex member variable (cleverly
named ‘mutex’) that is used to protect the serial port. The locking and unlocking of the
mutex is handled automatically by methods of the class, so users of the class don’t have to
worry about it.

The class really only provides one public method — SendReceiveCommand(). This is the
method that all users of the class use to send commands or queries to the associated sen-
sor and read back the sensor responses. It is important that each thread talking through

DES-0035) Rev 1

The MKS-910 Server July 02, 2012

the serial port have exclusive access to the serial port throughout the entire send/receive
transaction. This method guarantees that the class mutex is locked just before sending the
command (or query) and not unlocked again until the response has been completely received.

4.5.2 The MKS910Unit Class

The MKS910Unit class provides the high-level interface to a single MKS-910 pressure sensor.
This class is responsible for initializing its associated pressure sensor on initial start up, and
it provides methods for carrying out all queries and manipulations on the sensor that are
needed by the server or the server’s clients. This class also provides the thread function (a
static class method called DataUpdateThread()) that implements the thread that keeps the
sensor’s local cache up to date.

Each instance of the MKS910Unit class...

e has its own internal SerialProtocol object that it uses to communicate with its
associated pressure sensor

e provides the storage for the local data cache associated with this sensor

e starts a new copy of the DataUpdateThread() method in its own, detached thread.
At approximately one-second intervals, this thread queries the attached sensor for its
various data and uses the results to update the sensor’s local data cache.

e provides an internal mutex used to prevent the data update thread and the main server
application code from accessing the local data cache at the same time

Finally, the MKS-910 server’s simulator mode is also implemented at the MKS910Unit class
level. In this way, even in simulator mode, all client/server message handling code remains
the same and runs the same way as it would if the server were managing real hardware.
Also, to the extent possible, calls to MKS910Unit methods also run the same code as they
would if not in simulator mode, and the data update thread is created and destroyed in the
same way in both cases.

Simulator mode is implemented via conditional compilation based on the compiler’s pre-
processor and a #defined symbol called SIMULATOR that is passed in from the compiler
command line at compile time. When the code is to be compiled in standard mode, the
value of SIMULATOR is set to zero. When the code is to be compiled in simulator mode, the
value of SIMULATOR is set to one?.

In many places in the server source code, mostly in the implementation of the MKS910Unit
class, one will find the following pattern:

#if SIMULATOR == O
// we are in real mode

3Setting the value of the SIMULATOR variable is typically handled indirectly via the project Makefile in
response to values set on the command line to the GNU make utility. See the comments at the top of the
project Makefile for more information.

DES-0035 6 Rev 1

The MKS-910 Server July 02, 2012

do real stuff

#else

// we are in simulator mode

do simulated stuff

#endif

While in simulator mode, MKS910Unit class’ data query method is unaffected. It continues
to return values from the class’ local cache structure as it would in real mode. Set methods
(used to set zeros, spans and gas type, for example), on the other hand, are different. They
no longer send commands to the real hardware. Instead they simply update the cache
parameter values directly (if appropriate) and then exit. The data update thread continues
to get created in simulator mode in the usual way, so that portion of the code can be tested,
but it doesn’t actually send any queries to real hardware.

4.5.3 The MKS910Server Class

The MKS910Server class, derived from our standard BaseServer class?, is what makes the
MKS-910 server application an actual server.

On initial server start up, one instance of the MKS910Server class is instantiated. It’s con-
structor processes the server’s configuration file (see section 6) and instantiates MKS910Unit
objects for each MKS-910 defined therein.

The MKS910Server class maintains an STL map, called nameUnitMap, that maps the short
text labels by which individual sensors are known, to the specific MKS910Unit objects that
interface with those sensors. This map is populated as the server’s configuration file is
processed, and it is referenced again and again by the various client message handlers to
locate a specific sensor’s associated MKS910Unit object.

5 The Client API

The MKS-910 server, like all servers written for our client/server architecture, relies on a
client API class for its client interface. Client API classes provide one public method for
each message supported by their corresponding server. These methods handle the details
of formatting and sending the request message to the server and receiving, parsing and
returning the server’s response. This hides all the messy details of client/server message
passing from the client.

4See design document DES-0005, The Client/Server Architecture for complete details on the
BaseServer class and our standard client/server implementation.

DES-0035 7 Rev 1

The MKS-910 Server July 02, 2012

The client API class for the MKS-910 server is called MKS910Client. It is defined in
mks910ClientLib.h and implemented in mks910ClientLib.cpp. The most important thing
to note about the client interface is that, from the client perspective, individual MKS-910
sensors are known by small, human-readable text names (like “dps102” or “concl”). These
text names are assigned in the server’s configuration file, which is described fully in section

6).

5.1 Client-Specific Messages

The MKS-910 server can receive and respond to a number of standard messages. These are
fully described in design document DES-0005, The Client/Server Architecture, and
will not be further discussed here, except to say that the MKS-910 server fully supports the
standard state-of-health reporting mechanism implemented by the BaseServer class® (more
details section 6.2.1).

In addition to these standard messages, the server can accept and respond to a number of
client-specific messages that are defined by the client API. These are described in detail in
this section®.

5.1.1 MKS_GET_DATA

This message, implemented by the client class’ GetData() method, returns the current pres-
sure, temperature and gas concentration values for the specified MKS-910 sensor. See the
Doxygen documentation for the MKS910DataRecord structure for more details on what in-
formation is returned.

5.1.2 MKS_GET_ALL_DATA

This message, implemented by the client class’ GetAl1Data() method, returns an STL map
of MKS910DataRecord structures (keyed on sensor name), reporting the current values for
all MKS-910 sensors managed by the server.

5.2 MKS SET PIEZO_ZERO

This message, implemented by the client class’ SetPiezoZero() method, is used to set the
value of the low end of the piezo transducer’s range. At the time the message is sent, the
pressure sensor is supposed to be at a vacuum of 1 % 10~2 Torr or better. On receipt of the
message, the target sensor adjusts its reported piezo value to zero.

Also see design document DES-0006, The State-of-Health Server for more information on the
standard state-of-health reporting mechanism.

6The symbolic constants that comprise the following subsection headers come from the file
mks910ClientLib.h. Please review the Doxygen documentation for those files for more information.

DES-0035 8 Rev 1

The MKS-910 Server July 02, 2012

5.3 MKS SET PIEZO SPAN

This message, implemented by the client class’ SetPiezoSpan() method, is used to set
the value of the upper end of the piezo transducer’s range. Unlike the MKS_SET PIEZ0_ZERO
message, this message takes the pressure applied to the to the sensor at the time the message
is sent as a parameter (obviously, this pressure value should come from an independent,
calibrated sensor). At the time the message is sent, the pressure should be in the range of
100 to 1000 Torr.

5.4 MKS SET PIRANI ZERO

This message, implemented by the client class’ SetPiraniZero() method, is used to set the
value of the low end of the pirani transducer’s range. At the time the message is sent, the
pressure sensor is supposed to be at a vacuum of 8 * 107¢ Torr or better. On receipt of the
message, the target sensor adjusts its reported pirani value to zero.

5.5 MKS_SET PIRANI SPAN

This message, implemented by the client class’ SetPiraniSpan() method, is used to set
the value of the upper end of the pirani transducer’s range. Unlike the MKS_SET PIRANI -
ZERO message, this message takes the pressure applied to the to the sensor at the time
the message is sent as a parameter (obviously, this pressure value should come from an
independent, calibrated sensor). At the time the message is sent, the pressure should be at
or near atmospheric pressure (760 Torr).

5.5.1 MKS SET TARGET_GAS

This message, implemented by the client class’ SetTargetGas() method, configures the
specified sensor to report pressures from its pirani transducer with the assumption that
the gas being measured is of the specified type (nitrogen, helium, etc.). This is necessary
because the pirani transducer arrives at its pressure value indirectly as a function of thermal
conductivity of the gas being measured. For accurate results, the specific gas being measured
must be defined.

5.5.2 MKS_GET_NUM_SENSORS

This message, implemented by the client class’ GetNumberofSensors () method, returns the
total number of MKS-910 sensors being managed by the server.

DES-0035 9 Rev 1

The MKS-910 Server July 02, 2012

6 The Server Configuration File

The MKS-910 server uses a configuration file to associate human-readable text names with
specific MKS-910 sensors and map them to specific RS-232 serial ports.

6.1 Configuration File Syntax

The server’s configuration file is an ASCII text file meant to be hand-edited with a text
editor like gedit, emacs or vim. In the text file, blank lines and lines that begin with a “#”
character are ignored. All other lines are sensor definition lines. Sensor definition lines are
comprised of four fields separated by one or more space characters.

e serial-port — The name of the serial port the sensor is connected to

e name — A short text label that will be assigned to this sensor. This is the name that
clients use when referencing a specific sensor. This field is not case sensitive.

e gas — This is the name of the type of gas this sensor is expected to measure. Valid

Ut 0 6 %W 7

values include “nitrogen,” “n2,” “air,” “argon,” “ar,” “hydrogen,” “helium,” “he,”
“h20,” and “water.” This field is not case sensitive.

o description — This field contains a free-form text description of the sensor

6.2 Example Configuration File

This section contains a complete example of a typical MKS-910 server configuration file.

#

Blank lines or lines beginning with a ’#’ are ignored. All other
lines are relevant.

#

#

serial-port name gas description

/dev/ttyMXUSB2 dps101 air Initial sample concentration
/dev/ttyMXUSB13 dps102 air Getter outlet
/dev/ttyMXUSB15 dps200 n2 Detector concentration

6.2.1 State-of-Health Reporting

All servers written to our client/server architecture specification have at least the poten-
tial to respond to state-of-health requests. By default, such client requests are handled
automatically by the underlying BaseServer class, which results in an empty list of SoH

DES-0035 10 Rev 1

The MKS-910 Server July 02, 2012

parameters being returned to the client. However, the MKS-910 server has legitimate SoH
data to return for each pressure sensor it manages. This is handled by overriding the three
default BaseServer SoH message handlers (GetNumSohParams (), GetSohParamInfo(), and
GetSohParams ()) with versions of our own.

For each sensor managed by the server, we return four pieces of information: the pirani
transducer reading, the piezo transducer reading, the computed binary gas concentration
(as a percentage) and the temperature transducer reading. These values are reported us-
ing the pseudo-sensor concept discussed in section 5 of design document DES-0005, The
Client/Server Architecture. The names of the four reported pseudo-sensors are gener-
ated by appending the text “.pirani,” “.piezo,” “.conc” or “.temp” to the actual sensor’s
name.

PR A4

7 The Test Menu Program

For development and testing purposes, a small text-mode menu client application, called
mks910Menu, (see mks910Menu.cpp) has been developed for the MKS-910 server. The
program uses the MKS910Client class to provide the client API the server supports. It also
maintains a client interface to the system event logger”, so it can record when it starts up
and when it shuts down.

The menu program is meant to be started from within a terminal window. It requires no
command line arguments. When the program runs, it presents the user with the following
text menu.

General Server Items:

-1 - ping server

-2 - get server statistics

-3 - get server message response interval histogram
-4 - get number of SOH parameters

-5 - get SOH parameter information

-6 - get SOH parameters

-99 - shutdown server

MKS910 Server Specific Items:
1 - Get MKS910 Data

- Get All MKS910 Data

Set piezo zero point

Set piezo span

Set pirani zero point

Set pirani span

Set Target Gas

Get Number of Sensors

W N OO WN

0 - Exit Program

Enter Selection >

"See design document DES-0007, The System Event Logger for more information.

DES-0035 11 Rev 1

The MKS-910 Server July 02, 2012

The first seven menu items correspond to standard messages that all servers can support®.
Following this are eight items that correspond to the eight client messages described in
section 5. Users choose the number of the message they want to send and are prompted for
additional parameters as needed.

The menu program is a full client, supporting every client request message the server is
able to process. It allows testers to send each of those messages to the server and view the
server’s responses. It is intended primarily as a development, testing and debugging tool:
however, experience has shown that it is also useful as a bare-bones user interface to the
server running on real-world systems.

8See design document DES-0005, The Client/Server Architecture for more information on the
standard client messages.

DES-0035 12 Rev 1

U.S. DEPARTMENT OF

ENERGY

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

902 Battelle Boulevard
P.O. Box 999
Richland, WA 99352

1-888-375-PNNL (7665)
www.pnnl.gov

	Introduction
	MKS-910 Hardware
	Serial Communications
	Server Theory of Operation
	Sensor Naming Convention
	The Need for Data Caching
	Threads and Mutexes
	Concentration Calculations
	A Layered Implementation
	The SerialProtocol Class
	The MKS910Unit Class
	The MKS910Server Class

	The Client API
	Client-Specific Messages
	MKS_GET_DATA
	MKS_GET_ALL_DATA

	MKS_SET_PIEZO_ZERO
	MKS_SET_PIEZO_SPAN
	MKS_SET_PIRANI_ZERO
	MKS_SET_PIRANI_SPAN
	MKS_SET_TARGET_GAS
	MKS_GET_NUM_SENSORS

	The Server Configuration File
	Configuration File Syntax
	Example Configuration File
	State-of-Health Reporting

	The Test Menu Program

