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1 Introduction

This document describes the client/server architecture used to implement the system control
software. It looks at the history of this architecture as it pertains to our control systems,
discusses why this architecture is superior to traditional monolithic designs, and examines
some of the requirements for a client/server architecture and the design challenges those
requirements present. Finally, an in-depth examination is made of the actual implementation
of the client/server framework that has been implemented for use under Linux.

2 History

Originally all of our system control software was written to run under the QNX operating
system. QNX is a microkernel architecture operating system, meaning that internally, the
operating system is implemented as a number of small, concurrently running processes, that
each perform a specific task (process management, file system management, network driver,
etc.). These processes communicate with one another by passing messages back and forth
via the operating system kernel.

This paradigm (a large system comprised of many independent, narrow-scope processes com-
municating via message passing) also proved to be excellent for system control applications,
so it was adopted in the form of our client/server model architecture. Like the QNX OS
itself, our early system control software was also comprised of a number of concurrently
running applications, each of which was responsible for one piece of the over all system
control problem. Individual applications coordinated with each other by passing messages
back and forth. Under QNX, this was easy to do. Because QNX itself relied heavily on
message-passing, it provided a coherent and easy-to-use set of system library calls specifi-
cally designed for sending, queueing, acting on, and responding to messages sent between
two processes. For our own system control applications, all we had to do was take advantage
of these pre-existing system libraries.

Today however, our system control software is implemented on the Linux operating system.
This change from QNX to Linux has partly to do with cost (QNX is expensive, Linux is free),
partly to do with customer demand, and partly to do with the rich development environments
and toolsets available under Linux that are not available under QNX.

Unfortunately, Linux is not a microkernel, message-passing operating system, so it lacks the
extensive, message-based framework for inter-process communication (IPC) that QNX had.
Instead, a similar framework for Linux had to be developed in-house, so we could continue
to develop systems using the client/server model that had proven so effective for system
control applications over the years. This document describes the underlying architecture we
developed to support client/server applications under Linux.
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3 Client/Server Overview

In this section, the client/server architecture is discussed in general, higher-level terms. Here
we explain the client/server model, and discuss some of the design requirements necessary to
use the model successfully. What this section does not do is discuss actual implementation
details. Those will be covered beginning with section 4.

Before going too much further, it would be worthwhile to explain exactly what we mean by
“client/server architecture.” First some definitions.

• server — A server is any independent process (program) running on the system that
can accept requests from other processes, execute those requests, and then return the
result (if any) to the requester.

• client — A client process is any independent process (program) that requests services
of another process.

Although it is possible to have pure clients and pure servers, in practice, on our real-world
control systems, most servers are also clients. That is to say, although they do expect to do
work on behalf of client requests, they also send requests to other servers to do a portion of
their work. In real system control applications, nearly all the servers are also clients to at
least one other server. Pure clients are somewhat more common than pure servers.

3.1 Why Use a Client/Server Model?

Implementing a software design for an instrument control system (or most anything else) is
typically done by building a single, monolithic executable that implements all aspects of the
design. Implementing a design as a series of independent, concurrently running, executables
that cooperate by passing messages back and forth is unusual. So why bother? Why spend
the additional development effort needed to support a client/server solution if the project
requirements can be met by a single, monolithic application?

Years of experience using the client/server model to implement 20+ instrument control
systems has shown that the client/server model has numerous advantages over a monolithic
solution. Here are some of them:

• In the client/server model, individual applications (servers) are typically focused on
one, narrow task (providing the software interface to a turbo pump, for example). By
keeping the servers tightly focused, they stay small and more easily maintained.

• Client and server applications all run as independent processes. Independent processes
running under a modern multi-tasking operating system like Linux, enjoy hardware-
enforced memory protection. That is, one process can not corrupt the memory of
another process even if that is the author’s intention. When each process runs in its
own, isolated memory island this way, common memory corruption bugs like accessing
an array past its boundaries or writing through an uninitialized pointer, can crash the
application with the bug, but they cannot crash other applications on the system. This
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is enormously helpful, because this class of bug often presents itself highly intermit-
tently, and can be very difficult to track down and fix. In a monolithic implementation,
such bugs can literally affect every part of the system. With a client/server implemen-
tation, only the process containing the bug is affected. Because client/server processes
are, by their nature, small, that greatly reduces the volume of suspect code that needs
to be searched for the problem.

• Clients and servers can be started, stopped, and restarted while the system is running.
This is enormously useful during development and operation. New servers can be
started, tested, stopped, fixed, and restarted without having to take down the entire
system. Old versions can be replaced with new ones, on the fly, as the system runs.
Client/server relationships that existed before a server was stopped will automatically
be re-established when the server is restarted.

• Utility applications, unanticipated during the initial design and implementation, can
easily be added to a system without having to recompile any of the existing system
code, and even without restarting or suspending a currently operating system. This
ability has been enormously useful in the past, allowing new system monitoring utilities
or sensor data plotters (for example) to been added to (or removed from) operating
systems without having to stop or otherwise perturb them.

• There is generally no requirement that clients and servers run on the same computer
(although they generally do). In fact, clients and servers have no idea whether they’re
on the same hardware or not. Switching from one mode to the other requires absolutely
no code changes. This attribute makes the client/server model particularly applicable
to distributed control systems.

• Because servers are narrowly focused in scope, they are also naturally highly modular.
This means, once the initial effort has been expended to develop a new server, odds
are that that same server can be used again and again on new projects without any
code changes at all. This is not just theoretical. On the real-world control systems
we have implemented under the client/server model, typically 80% of the servers used
on a new project are completely unaltered versions taken from our server code base.
This has obvious reliability ramifications, since using pre-existing servers means using
tested and proven servers. That they require no modifications also means there is no
opportunity to introduce new bugs.

3.2 Message-Passing Model

The clients and servers that make up the system control software use a send-receive-reply
message-passing model. It works like this. Servers that are not currently busy satisfying
client request messages are receive blocked. That is to say, they are doing nothing but
waiting for a new request to arrive from a client. While in this state, they are suspended by
the operating system, so that they are not using any CPU cycles.

When clients send a request to a server, the server wakes up and begins to process the
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request. While waiting for the reply, the client is reply blocked. That is to say, the client is
suspended by the operating system until the server returns the results of the client’s request.

When the server has finished with its processing, it sends the reply message back to the
requesting client and goes back to sleep. The operating system releases the client, the client
uses the result returned from the server and goes on its merry way. The send-receive-reply
mechanism is shown diagrammatically in figure 1.

Figure 1: The send-receive-reply mechanism used during client/server communication.

3.3 Deadlock

As mentioned previously, it is common in the system control software for servers to also send
request messages to other servers (in which case the sending server is, for that instant, a
client). When servers can send requests to other servers, there is a danger of a condition
called deadlock occurring. Figure 2 illustrates the problem.
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Figure 2: Deadlock occurs when request chains form a loop.

In this example, a client makes a request of Server A and becomes suspended waiting for
a reply. In the course of processing the request, Server A sends a request to Server B, at
which time Server A becomes suspended, waiting for a reply. Further, Server B sends a
request to Server C and goes suspended, and Server C sends a request to Server A and
goes suspended. And there is the problem. Server A is already suspended, so it is unable to
respond to Server C’s request. As a result, Server C never wakes up to reply to Server B,
and Server B never wakes up to reply to Server A. In short, Server A is now suspended for
all time and the client is as well. This is deadlock.

With our send-receive-reply message-passing model (figure 1), deadlock can occur anytime
request message chains form a loop.

3.4 Connection Timeouts

In our actual implementation, the deadlock situation described in the previous section is not
quite as dire as described. Client connections have a timeout value associated with them,
so if a server doesn’t respond within the timeout interval, the client request will be aborted
and return an error.

In the current implementation, the timeout interval is set to three seconds for all client/server
message transactions. That is, servers have one second to respond to a client request before
the client gives up. In truth, when a message transaction fails, all clients will re-try the
request exactly one additional time1, so, the total delay before a failure is reported will be
twice the timeout delay (so two seconds for the current implementation).

Placing a limit on how long servers have to respond is no solution to the deadlock problem.
It simply provides a way for clients/servers in deadlock to break free so that they do not stay
unresponsive for all time. Even so, the original client request that created the deadlock will
never complete successfully. Even with connection timeouts, request message chains cannot
be allowed to form a loop.

1It is this automatic reconnect and re-request mechanism that makes it possible to shutdown and restart
servers, on the fly, without having to restart any of their associated clients.
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3.5 Server Hierarchy

As mentioned in both of the previous two sections, the solution to deadlock is simple. Do
not allow request message chains to form loops. Instead, servers need to be designed such
that request chains are linear (typically organized into a tree). Such a design will lend
itself to a natural hierarchy of servers. In real-world control systems, servers lower in the
hierarchy typically provide lower-level services (hardware drivers, etc.) while more abstract
tasks (overall system process control, user interfaces, etc.) are handled by servers higher up
in the hierarchy. Figure 3 below shows an example of a fictitious control system that has its
server processes arranged in a typical hierarchy.

Figure 3: Control system servers arranged in a typical hierarchy. In this example, GUI is a pure client
and event logger is a pure server.

Note in the above example, servers only send requests to servers that are below them in the
hierarchy. This is a required attribute for a proper design. So long as this rule is adhered
to, deadlock will be avoided.
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3.6 Message Serialization

In our client/server model, clients and servers run simultaneously and independently of one
another. A situation often arises where two or more clients (multiple, remotely located GUIs
or system monitor processes for example), send requests to the same server at or near the
same time. There is a potential for conflict here if the server does not completely finish
handling one request before the next request arrives.

To avoid this problem, each server maintains its own message queue. Messages sent to the
server are placed on the server’s message queue and are processed out of the queue, in full,
in first-in/first-out order. In effect, the message queue serializes concurrent requests, and
guarantees that the server can fully process one message before dealing with the next. Under
the QNX operating system, this ability to queue messages is built in. Under Linux, we have
had to implement our own message queues.

4 Server Implementation

4.1 Messaging Overview

Message passing is a central topic to any discussion about the client/server model. Because
the details of our chosen message-passing mechanism play an important role in the design
of the system servers (and clients), we will spend some time looking at the design details of
our message-passing mechanism before we delve into the specifics of the actual system server
design.

4.1.1 Message Transport

Clients and servers communicate with one another using the Internet standard transmission
control protocol (TCP) as the underlying message transport layer. TCP was chosen over
other Linux IPC mechanisms (shared memory or Unix sockets for example) because TCP
can just as easily transport messages between processes running on separate computers as
it can between processes running on the same computer. This was a feature of QNX’s
message-passing implementation as well, and it is a feature we have taken advantage of in
the past. We did not want to lose the option of multi-computer solutions for future projects.
Also, TCP is a reliable delivery protocol, so, when using TCP, no additional work is needed
checksumming messages, verifying message sequence numbers, etc. TCP takes care of that
itself. Finally, TCP already supports simultaneous connections to a single process from
multiple other processes. This is definitely a feature we require, and TCP gives us that for
free.
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4.1.2 Establishing Connections

Obviously, before a client can communicate with a server, it must first establish a TCP con-
nection to that server, and, before it can do that, it needs to know what IP address and TCP
port number the server is listening on for new client connections. In our implementation,
servers are known by short text names. A name resolver exists that can map these names to
IP address / port number pairs that a client can then use to create the connection. Servers
must register themselves with the name resolver facility before clients will be able to connect
to them. The name resolver feature is fully described in design document DES-0004, The
Server Name Resolver . Please look there for details.

Note that there is a certain amount of overhead involved in establishing a TCP connection
between client and server. Not only is there the overhead of creating the connection itself
(which, in addition to accepting a new TCP connection request, also requires spawning a
new thread on the server side), but, before a connection request can even be made, a client
must first connect to and query the name resolver. Obviously this is overhead we do not
want to incur every time a client sends a request message to a server. Instead, once a
TCP connection has been established, that connection remains open to be used over and
over again throughout the life of the client and its server. The only exception is if the
transmission of a request message ever fails, clients automatically attempt a reconnection.
It is this mechanism that makes it possible to stop an existing server and then restart it at
some later time without needing to stop or restart any of that server’s clients.

4.1.3 Message Format

Clients and servers exchange text-based messages encoded using an in-house format that
is simple to create and simple to parse. The format is fully described in design document
DES-0002, Data Serialization Protocol . The reader is urged to review that document
to better understand the following discussion.

Although messages are encoded using our Data Serialization Protocol (DSP), not just any
DSP format string constitutes a valid client/server message. Real client/server messages
have the following restrictions.

Request messages (that is, messages sent by clients to servers) all have the following format.

(<clientName>,<commandName>,(<parameters>))

In the same way that all system control servers are given short text names, system control
clients also assign themselves short text names. Mostly this is done for logging purposes.
In the above format description, <clientName> is the text name the client uses to refer to
itself, <commandName> is the name of the command the client wants the server to perform, and
<parameters> is a DSP element list (possibly empty) containing any additional parameters
the server will need to process the command.
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Reply messages (that is, messages sent by servers to clients) all have one of two possible
formats, depending on whether or not the server is reporting success or failure. Success
response messages are formatted as follows:

(ok,(<response>))

Here, “ok” is literally the string “ok.” <response> is a DSP element list (possibly empty)
containing any additional parameters the server needs to report back as part of the response.
Notice that <response> is enclosed in parentheses. The parentheses and the <response>

portion taken together constitute a complete, valid DSP message that must be parsed by
the DSP parser at least once more to get at the individual fields in the response.

Failure response messages are formatted as follows.

(error,<textDescription>)

Here, “error” is literally the string “error.” <textDescription> is a text string containing
a human-readable description of the error condition.

4.2 The BaseServer Class

All real-world servers have certain attributes in common. They all. . .

• are assigned a short text name by which they are known to the rest of the system

• need to register themselves by name with the name resolver to become available to
accept messages from clients

• need to listen for and handle new TCP client connection requests

• need to have their own message queues

• need to be able to receive, parse and understand client request messages formatted as
described in section 4.1.3

• need to be able to receive, parse and act on internal messages generated by the servers
themselves

• need to be able to send clients success and error response messages formatted as de-
scribed in section 4.1.3

• share a small set of standard messages which all clients can generate and all servers
can respond to

In the code base, these common characteristics have been captured by the C++ BaseServer

class defined in cliserv.h and implemented in cliserv.cpp. By providing a base class from
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which all real-world servers are expected to be derived, we can guarantee that all real-
world servers handle the above tasks in a consistent manner, and relieve server authors from
worrying about the underlying details involved in message passing and message queueing.
More importantly, if changes need to be made in the future (switching to a priority-based
message queue, for example), those changes only need to be made in the BaseServer class,
and all derived servers will inherit the changes automatically, without needing to be directly
modified.

The BaseServer class definition is rather large. A version of it without the in-code comments
appears below. Readers are directed to the full class definition in cliserv.h, and the associated
Doxygen documentation for the BaseServer class.

class BaseServer {

public:

BaseServer(const string name);

virtual ~BaseServer();

void Run();

protected:

bool ReplyMessage(const string resp = "()");

bool ReplyError(const string errMsg);

void QueueServerMessage(const int msgId);

virtual void ClientMessageHandler();

virtual void ServerMessageHandler(const int msgId);

virtual void GetServerStats();

virtual void GetNumSohParams();

virtual void GetSohParamInfo();

virtual void GetSohParams();

virtual void Shutdown();

bool shutdown;

string serverName;

CS_ServerStats stats;

string lastErrorMessage;

string clientName;

string command;

string payload;

int currentClientSockId;

private:

static void* SignalHandlingThread(void *data);

static void* ClientListenThread(void *data);

static void* ClientConnectionThread(void *data);

MessageParser msgParser;

time_t startTime;

struct SessionFrame {

int sockId;

BaseServer *base;

};

struct QueueElement {

bool clientMessage;

int value;

string message;

};

typedef deque<QueueElement> MessageQueue;

pthread_mutex_t statsMutex;
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pthread_mutex_t queueMutex;

pthread_cond_t cond;

MessageQueue messageQueue;

};

4.3 Client Connections

When a new server class is instantiated, its constructor performs a number of tasks, one
of which is to spawn a new thread, called the client listen thread (in the code, this thread
is implemented by the ClientListenThread() static method). The client listen thread,
registers the server with the name resolver (doing this in the base class relieves server authors
from having to worry about the name resolver facility), and creates a TCP socket on which
to listen for new client connections.

With the listening TCP socket created, the thread goes to sleep waiting for new client
connection requests to arrive. When a client connects, the client listen thread creates
another thread, called a client connection thread (implemented in the code by the static
ClientConnectionThread() method) and attaches the newly created client TCP connec-
tion to it. At that point, the client listen thread goes back to sleep, waiting for the next client
connection request. The newly created client connection thread handles all further commu-
nication with the client. Note that one new client connection thread gets created every time
a client connects to the server, and the thread goes away when the client disconnects.

4.4 The Message Queue

4.4.1 Server Request Messages

Servers actually receive messages from two sources. The most common source is from clients
sending request messages, but servers also have the ability to generate messages to them-
selves. For lack of a better term, we will call these internally generated messages server
request messages. This ability for servers to send messages to themselves is primarily useful
in two situations — timers and software signals. Much more will be said about timers and
signals in sections 4.5 and 4.6, but here is a brief overview.

Quite often it is useful for a server to be able to wake itself up periodically to perform some
task. For example, a server responsible for regulating the temperature of a heater may want
to wake itself up once a second, check the current temperature and adjust the heater power
accordingly. This can be accomplished by use of a timer facility. During server initialization,
the server sets up a timer to expire at one second intervals and then goes to sleep, waiting
for client requests. When the timer fires, it places a message on the server’s message queue.
The server reacts in the same way that it would when handling incoming client requests.
Namely, it wakes up, takes the message off the queue, recognizes it as a request to check on
the heater power, adjusts the heater power as necessary and goes back to sleep.
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Server request messages differ from standard client request in a few ways.

• They don’t come from a client; They come from the server itself.

• They do not carry any payload other than a single integer identifier that indicates the
source of the message (i.e., a specific timer).

• Because they are generated by servers to themselves, they don’t need to be encoded as
DSP format messages. Instead, they are written directly into the server’s own message
queue.

• Unlike client requests, which are always responded to, server request messages are acted
upon, but they are never responded to (after all, there’s no corresponding client to
receive a response). This also prevents deadlock2. Servers can never send regular client
messages to themselves because client requests always block waiting for a response.
There is no need to block for server messages, because server messages never generate
responses.

The other place server request messages are commonly used is in response to software signals.
As an example of a software signal, consider the Linux kill command. When a user uses
the kill command from the command line to terminate a running application, what actually
happens is a POSIX software SIGTERM signal is generated and sent to the program by the
operating system. On receipt of this signal, most programs simply exit. However, that is not
mandatory. Programs that care to can set up signal handlers that intercept the SIGTERM
signal (as well as many others) and act on it in other ways. Commonly, a program may use
this ability to perform some clean-up tasks before they exit. Other programs may choose to
ignore the signal altogether, making them immune from being killed by a SIGTERM signal.

Being able to intercept signals and operate on them in ways that make sense to a specific
application is extremely useful. The system servers take advantage of this internally by
setting up signal handlers for several common signals (SIGTERM included). When they
receive one of these signals, the signal handler packages the signal into a server request
message and queues the message to the server. At this point, the message becomes like any
other message in the server’s message queue, and it will be handled in the order received.
Typically a server will respond to a SIGTERM message by performing any clean-up tasks
that are necessary and exiting. Different signals may cause different behavior, and authors
of servers are free to override the defaults for their specific server.

4.4.2 Message Queue Implementation

Internally, the BaseServer class maintains a message queue that is used to hold client request
messages and internally generated server request messages waiting their turn for processing.
Messages placed on the queue are serviced in the order they are received.

The queue itself is implemented as a standard STL deque structure (this is the messageQueue
field defined in the class definition above). Individual elements in the queue are of type

2See section 3.3 for a detailed description of the deadlock problem.
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QueueElement, (also defined above), which is a simple struct containing three fields –
clientMessage, value, and message.

• clientMessage — This is a Boolean field. If true, it indicates that the message
contained within this element is a normal DSP-encoded message that originated from
a client. Otherwise, this element represents a server request message.

• value — This is an integer field that can be interpreted in two different ways. As
noted earlier, server request messages are identified by a single integer identifier. If
clientMessage is false, then the element contains a server request message and this
field contains that identifier. If clientMessage is true, then this field holds the socket
ID of the socket the client is using to communicate with the server. It is necessary
to save this socket ID so the server will know on which TCP connection the response
should be sent.

• message — This is an STL string field. If clientMessage is true, then the element
contains a standard client message and this field contains the DSP-encoded version of
that message. If the element contains a server request message instead, then this field
is unused.

New queue elements get added to the message queue from two different places, corresponding
to the two different kinds of messages that can be queued (client requests and server requests).

Server request messages are added to the queue by the QueueServerMessage() method.

void QueueServerMessage(const int msgId);

This method takes as its only parameter, an integer identifier that will be copied to the
value field of a QueueElement. The method is simple. All it does is construct a new queue
element and adds it to the server’s message queue.

Client request messages are added to the queue by the static ClientConnectionThread()

method. Remember there is one of these threads for every client that is connected to the
server.

ClientConnectionThread() is also quite simple. It uses an instance of the ReadStream

class (please see design document DES-0003, The ReadStream Utility Class , where
this class is fully described) to read DSP-formatted messages arriving from the client on the
client’s TCP connection. Once a full message has arrived, it is added to an appropriately
configured QueueElement element and added to the message queue. Then the thread goes
back to waiting for further client request messages.

Elements are pulled off the message queue and processed by the server’s Run() method. The
Run() method acts as the server’s queue processor. It is implemented in the server’s main-
line thread, and it spends most of its time asleep, waiting for new messages to appear in the
queue. When a new element appears on the queue, the Run() method wakes up, removes
the front element, and passes it on for further processing. Each additional queue element
is likewise processed (if there are any additional queue elements) until the queue is empty.
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Once the queue is empty, the thread goes back to sleep until another message appears on
the queue.

Processing is slightly different depending on whether the element contains a client request or
a server request. If it contains a client request, the message is extracted from the element’s
message field and a top level parse of the DSP format message is performed (using the
MessageParser utility class described in design document DES-0002, Data Serializa-
tion Protocol). All valid client requests must be of the format described in section 4.1.3,
which means they contain three parameters — client name, command name, and a parameter
list (possibly empty). These three parameters are extracted and stored in the BaseServer

class variables clientName, command, and payload respectively. Then the client message
dispatcher is called to further decipher the message, perform the requested action and send
a reply back to the client. The client message dispatcher is further described in section 4.4.3.

If the element pulled from the message queue contains a server request, then the server
message dispatcher is called instead, passing to it the value field from the queue element.
The server message dispatcher will be further described in section 4.4.5.

4.4.3 Client Message Dispatcher

The client message dispatcher is implemented in the code by the ClientMessageHandler()

method.

virtual void ClientMessageHandler();

This method serves as a clearing house for all client requests. If the request can be serviced
by a very small amount of code, it may be handled directly by this method. However, more
typically the request is sent on to a message handler that is written to deal with the specific
command in the message. Technically, ClientMessageHandler() requires three things —
the name of the client that sent the message, the name of the command the client wants
performed and the list of additional parameters (if any) that the server will need to perform
the command—yet the method takes no parameters. That is because those three bits of
information have already been copied to internal class variables, as described in the previous
section. The dispatcher as well as all specific-purpose message handlers expect to find the
information in those class variables.

Notice that ClientMessageHandler() is a virtual method. All real-world servers override
this method in order to handle their own server-specific commands. A typical real-world
version of this method will compare the command variable to a list of messages the server is
prepared to handle, and process the message if a match is found. If no match is found, it is
assumed the message is one of the common messages shared by all servers (see section 6),
and the BaseServer class’ version of the method is called to deal with it.
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4.4.4 Client Message Handlers

As described in the previous section, typically the client message dispatcher passes received
client messages on to message handler methods for final processing. See the definitions
and implementations of the BaseServer methods GetServerStats(), GetNumSohParams(),
GetSohParamInfo(), GetSohParams() and Shutdown() in the files cliserv.h and cliserv.cpp
for examples of client message handlers implemented in the base server.

Client message handlers have several attributes in common.

• When client message handlers are called, the class internal variables clientName,
command, and payload are still valid. Client message handlers rely on those to get
at the content of the client’s request. For that reason, client message handlers do not
take any parameters.

• It is the responsibility of the message handlers to further parse the client request as
necessary to extract whatever parameters were passed as part of the message. This is
typically done using one or more local instances of a MessageParser class (for com-
plete details on this class, see the design document DES-0002, Data Serialization
Protocol), or one of the parsing helper functions described in section 8.

• All client request messages must be responded to, and it is the responsibility of the
individual client message handlers to send those response messages back to the client.

• Because success and failure indications are returned directly to the client, client mes-
sage handlers do not need to return a return value.

Two methods exist to assist with constructing and sending response messages back to clients
— ReplyMessage() and ReplyError(). These are described below.

bool ReplyMessage(const string resp = "()");

The ReplyMessage() method (defined in cliserv.h and implemented in cliserv.cpp) is used
by client message handlers when returning a success result to a client. It takes a single STL
string parameter called resp. This parameter contains a DSP-encoded message containing
any parameters that need to be passed along with the response beyond the success indication
itself. That is, the resp string contains the (<response>) portion (including the parenthe-
ses) of the response message described in section 4.1.3. The “ok” as well as the outermost
enclosing parentheses are automatically added by ReplyMessage().

Note that if the response has no additional parameters to send, then resp should be set to
the empty DSP message “()”. As a convenience, the resp parameter defaults to the empty
DSP message if no value is explicitly provided for the parameter.

The ReplyMessage() method returns a Boolean value. If true is returned, it indicates that
the message was delivered to the client successfully. If false is returned, it indicates that
the response message could not be delivered to the client (perhaps the client is no longer

DES-0005 15 Rev 4



The Client/Server Architecture February 24, 2012

running or the TCP link to the client has been broken). In this case, the BaseServer class
variable lastErrorMessage will contain a text description of the failure.

bool ReplyError(const string errMsg);

The ReplyError() method (defined in cliserv.h and implemented in cliserv.cpp) is used by
client message handlers when returning a failure result to a client. The method takes a
single STL string parameter called errMsg. This parameter contains a human-readable text
description of the error. Note that, unlike ReplyMessage(), which requires its parameter to
be encoded as a DSP message, the errMsg string is bare. The ReplyError() method will
make sure that the text is properly DSP-encoded before sending it to the client.

The ReplyError() method returns a Boolean value. If true is returned, it indicates that
the message was delivered to the client successfully. If false is returned, it indicates the
response message could not be delivered to the client. In this case, the BaseServer class
variable lastErrorMessage will contain a text description of the failure.

4.4.5 Server Message Dispatcher

The server message dispatcher is implemented in the code by the ServerMessageHandler()

method.

virtual void ServerMessageHandler(const int msgId);

Like ClientMessageHandler(), this is a virtual method that is expected to be overridden
by any real-world server implementation that expects to generate server request messages.
Unlike ClientMessageHandler(), this method does take a parameter, msgId, which corre-
sponds to the value field from the message queue element. The msgId parameter identifies
the source of the server request (a timer expiring for instance) and allows it to take the
appropriate action. Like ClientMessageHandler(), ServerMessageHandler() may choose
to handle the message directly if it can be done in a small amount of code, but typically the
message is handed off to a specific-purpose message handler to be dealt with.

4.4.6 Mutexes and Condition Variables

As we have seen, all system servers are multi-threaded applications. Each server has its
main-line thread, which processes new messages that appear on the message queue: one
thread to listen for new client connections, and one additional thread for each currently
connected client. Each server also has a signal handling thread, which will be described in
greater detail in section 4.5.

The main-line thread and all client connection threads need access to the server’s message
queue. Because the threads all run independently of each other, there is the danger that two
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or more threads could try to make changes to the queue simultaneously, which would likely
result in a corrupted message queue, which would spell disaster.

A way is needed to protect access to the queue such that no more than one thread can
manipulate it at a time. Linux (via the POSIX pthreads library) provides a mechanism for
doing that called a mutex. A mutex can be thought of as an access token. If you have the
mutex, you can access the queue, otherwise, you have to wait for whoever does have the
mutex to give it up so you can take it.

In the code, the mutex used to protect the server’s message queue is called queueMutex. It
is defined as

pthread_mutex_t queueMutex;

In those places where the message queue is manipulated (that is to say, in the Run(),
QueueServerMessage(), and ClientConnectionThread() methods), you will see code sim-
ilar to the following:

pthread_mutex_lock(&queueMutex);

<do some stuff with the queue here>

pthread_mutex_unlock(&queueMutex);

In this code, “locking” the mutex means “acquiring the token.” If a thread attempts to lock
a mutex that is already held by some other thread, the operating system puts the thread to
sleep until such time as the mutex becomes available. If the thread is executing code that
follows the lock request, it means that, at that point, it owns the mutex, and it can safely
modify the queue without having to worry about other threads conflicting with it. Once a
thread finishes modifying the queue, it must “unlock” the mutex, which is to say “relinquish
the token so another thread can take it.”

Although the message queue mutex handily solves the problem of multiple threads trying
to access the message queue at the same time, there is another problem that has to do with
the queue processor (the BaseServer::Run() method, which runs in the main-line thread).
Specifically, the queue processor needs to know when there are new messages on the queue
so that it can handle them.

There are about two ways to handle this — the good way, and the poor way. We will describe
the poor way first, so that you can see the problems with it and how those problems are
overcome by the good way.

One solution might be to have the queue processor sit in a tight loop, constantly polling the
status of the queue, so as soon as a new message is available, it can parse and dispatch it.
This is called a busy wait loop. A busy wait loop is undesirable because most of the time
it does nothing useful (because most of the time there are no new messages on the queue
waiting to be processed). Even so, the thread locks the mutex, checks the message queue,
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and unlocks the mutex over and over and over again, as fast as the CPU and operating
system allow. Doing this is hugely inefficient and a tremendous drain on the CPU.

The burden placed on the CPU could be partially alleviated by introducing a sleep in the
loop. For instance, the loop could check the queue, and, if there are no messages waiting,
go to sleep for one second before checking again. Although this would work, it introduces
an unnecessary and probably unacceptable delay between the time a client request is added
to the queue and the time the server actually starts processing the request.

What is really needed is a way for the individual client connection threads to notify the
queue processing thread when they add a new message, and leave the queue processing
thread asleep, consuming no CPU cycles, until that notification arrives. Fortunately, the
operating system (via the POSIX pthreads library) offers just such a capability in the form
of, what the library calls, a condition variable.

Condition variables are tied to a mutex. In the code base, the same mutex that is used to
protect the message queue from simultaneous access is also used with the condition variable.
To see how this works, we will examine some code.

pthread_mutex_lock(&queueMutex);

while(!shutdown) {

pthread_cond_wait(&cond, &queueMutex);

...

while (messageQueue.size() > 0) {

// process front message off the queue

...

pthread_mutex_lock(&queueMutex);

}

}

The above code snippet is a stripped-down version of the BaseServer::Run() method’s
queue processor. For clarity, most everything but the use of the condition variable has been
removed. The code begins by locking the mutex. This guarantees exclusive access to the
condition variable (called cond in the code). With the mutex locked, a call to pthread ·
cond wait() is made, passing to it both the mutex and the condition variable. In effect,
pthread cond wait() tells the OS to put the thread to sleep until some other thread notifies
it that there is work to be done. As its last action before going to sleep, pthread cond ·
wait() also unlocks the mutex so that the condition variable is available to other threads.

The important things to take away from this are:

• The mutex must be locked before the call to pthread cond wait()

(pthread cond wait() will unlock the mutex itself before putting the thread to sleep)

• While asleep, the message processor thread consumes no CPU cycles

• The client connection threads can cause the message processor to wake up by signalling
through the condition variable whenever they put new messages on the queue

This last item is demonstrated by the following code snippet taken from the part of the code
that handles client connections.
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while (readStream.Read(sf->sockId, element.message)) {

pthread_mutex_lock(&sf->base->queueMutex);

sf->base->messageQueue.push_back(element);

pthread_cond_signal(&sf->base->cond);

pthread_mutex_unlock(&sf->base->queueMutex);

}

Here, the client connection thread uses the ReadStream utility class (see design document
DES-0003, The ReadStream Utility Class for full details), to wait for a complete
message to arrive from a client. Then it locks the mutex (to gain exclusive access to the
message queue and the condition variable), places the new message on the queue, and calls
pthread cond signal(). This causes the operating system to wake up the queue processor
thread to handle the new message. If new messages arrive while the queue processor is
handling the current message, they will be enqueued properly and handled, in the order
received, as quickly as the queue processor can process them out of the queue.

The code that adds server request messages to the queue, interacts with the condition variable
in exactly the same way.

4.5 Signal Handling

As mentioned in section 4.4.1, in addition to messages sent by clients, servers can also receive
messages they send to themselves. This commonly happens in two cases — timed events,
which are discussed in section 4.6, and software signals.

POSIX signals are a way for events to be generated, sent to, and handled by a process
asynchronously. They are somewhat akin to hardware interrupts, in that a signal event can
occur at any time, and, when it does, it is handled by a special function that runs outside
of the normal code execution path, so that it is always immediately available to handle the
event. For hardware interrupts, the special handler function is called an interrupt handler.
As you might expect, for software interrupts (signals), the handler function is called a signal
handler.

All processes running on a Linux system have the ability to receive signals, although few of
them have explicit signal handlers. If the code author does not explicitly provide a signal
handler, then default signal handling behavior takes over. By default, signals are typically
ignored or cause the running process to terminate, depending on the nature of the signal.

In server applications based on the BaseServer class, the situation is somewhat more compli-
cated, because BaseServer-based applications are multi-threaded. We only want one thread
to respond to signals. All other threads should just ignore them. This is accomplished in
two steps. First, in the BaseServer constructor, there is code that causes the application to
ignore all incoming signals.

sigfillset(&set);
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sigprocmask(SIG_BLOCK, &set, NULL);

Because all threads inherit their signal handling ability from their parent, and the parent of
all threads is the thread that runs the BaseServer constructor, all threads in a BaseServer

derived application will ignore all signals. . . except for one.

Once signals are set to be globally ignored, a special signal-handling thread is created (im-
plemented by the static SignalHandlingThread() method).

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

pthread_create(&thread, &attr, SignalHandlingThread, (void*)this);

The signal handling thread uses a call to the system library function sigwaitinfo() to, in
effect, say “Put me to sleep now, but wake me up if any signal is delivered to this application.”

sigfillset(&set);

for (;;) {

sigwaitinfo(&set, &info);

\\ process signal here

...

}

Although this is not the normal way of registering a signal handler, in effect, the signal
handling thread becomes the signal handler for the entire server application. The thread
sleeps until a signal is delivered to the server, at which time the thread wakes up and
examines the signal. The thread responds to the signal by queueing a server request message
(see section 4.4.1) and then going back to sleep waiting for the next signal to arrive.

The server request message that gets queued contains an integer identifier that indicates to
the queue processor the type of signal that was received or the source of the signal (depending
on the signal). The queue processor hands these queued signal events off to the appropriate
message handler for further processing. For instance, if a SIGTERM signal was generated,
(a user could do this from the command line using the kill or killall shell commands for
example), the default server request handler (ServerMessageHandler()) responds by setting
the server’s internal shutdown flag to true, which, in turn, causes the queue processor (the
Run() method) to exit and the server’s destructor to run, hopefully performing whatever
clean-up needs to be performed before finally exiting.

As mentioned previously, the ServerMessageHandler() method can be overridden by real-
world server authors to implement whatever behavior they deem appropriate for various
signals.
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4.6 Timers

The other common source of server request messages (that is messages that servers queue
to themselves) is timers. These are used frequently for those servers that need to wake
up periodically and perform some task (like adjust a heater’s output power as described in
section 4.4.1).

On Linux systems, a convenient way to get timer functionality is to use POSIX standard
per-process timers, which are implemented in a series of library functions, including timer ·
create(), timer delete(), and timer settime(). POSIX timers are versatile, and their
versatility makes them somewhat more complicated to use than need be for the task at hand.
For that reason, a wrapper class called Timer (described below) has been created to simplify
the interface for server authors (see cliserv.h for the class definition and cliserv.cpp for its
implementation). The class definition appears below.

class Timer {

public:

enum TimerType_e {

ONE_SHOT,

PERIODIC

};

Timer(const int sid);

~Timer();

bool Set(const int ms, const TimerType_e type, const int msgId);

bool Start();

bool Stop();

string lastErrorMessage;

private:

bool timerCreated;

int ms;

TimerType_e type;

timer_t tid;

int sigId;

};

As can be seen, Timer-based timers can be started and stopped, and their expiration interval
can be set. In addition, timers can run either in one shot mode (after they expire once, they
don’t expire again unless manually restarted), or periodic mode (timers continue to expire
at the expiration interval until manually stopped).

Notice that there are no explicit methods for creating a timer or deleting timer. The associ-
ated POSIX timer is created internally, as necessary when the Set() method is called, and
it is deleted when the class destructor runs.

Timer-based timers notify the process that owns them that they have expired by sending
a POSIX signal to the process. This signal is handled using the server’s standard signal
handling mechanism (see section 4.5) — with one complication. Timer based timers use
POSIX real-time signals. Real-time signals differ somewhat from the signals discussed in
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section 4.5. For our purposes, the main differences are:

• They have no pre-defined meaning. This is different from signals like SIGHUP, SIGTERM
and SIGKILL which mean specific things. For example, SIGTERM is a request for a
process to terminate and SIGKILL is a command to terminate immediately (cannot
be overridden). The interpretation of POSIX real-time signals, on the other hand, is
left entirely to the application writer.

• POSIX real-time signals can carry an additional bit of data (either an integer or a
pointer) with them in addition to the signal number itself.

The following code snippet, taken from the base server’s signal handling thread’s static
method, shows how BaseServer-based servers handle timer signals specially.

for (;;) {

sigwaitinfo(&set, &info);

if (info.si_code == SI_TIMER) {

base->QueueServerMessage(info.si_value.sival_int);

}

else {

switch (info.si_signo) {

case SIGTERM:

base->QueueServerMessage(BASE_SIGTERM_MSG);

break;

...

As you will recall from section 4.5, all BaseServer-based servers have a special signal han-
dling thread that handles incoming signals for the entire server application. It does this
by using the sigwaitinfo() library function to receive information on all delivered signals.
When a signal is delivered, sigwaitinfo() populates a structure with information about
the signal. For normal signals, the only bit of information available is the number of the
signal itself (found in the field si signo). For real-time signals, the struct contains a couple
of other bits of useful information. The field si code contains the value SI TIMER for signals
that were generated as the result of a POSIX timer expiring. Also, the field si value.sival ·
int contains whatever integer value was attached to the signal when the author created it.
It is this value that gets placed in the message queue and used by the queue processor to
determine which message handler to call to handle the timer expiration.

4.6.1 The Timer Constructor

Timer::Timer(const int sid)

The Timer class constructor takes one parameter — an integer value called sid. This is the
ID of the signal to be attached to this timer, and should not be confused with the value the
timer will deliver to the message queue when it expires. The number of POSIX real-time
signals that are available on Linux and other Unix-like operating systems varies from system
to system but the range of legal values is specified by two symbolic constants — SIGRTMIN
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and SIGRTMAX. It is recommended that servers use SIGRTMIN as the signal associated
with their first timer. If additional timers are required, use SIGRTMIN+1, SIGRTMIN+2,
etc.

The constructor does not actually create a POSIX timer. Instead, it simply initializes some
internal class parameters and stores away the ID of the real-time signal to be used when a
POSIX timer is actually created.

4.6.2 The Timer Destructor

Timer::~Timer()

The Timer class destructor checks to see if a real POSIX timer has been created for the class,
and, if so, deletes it.

4.6.3 The Set() Method

bool Timer::Set(const int ms, const TimerType_e type, const int msgId)

The Set() method takes three parameters with the following meanings.

• ms — An integer parameter that contains the timer’s expiration interval specified in
milliseconds

• type — This parameter should contain either Timer::PERIODIC or Timer::ONE SHOT.
It determines whether or not the timer will automatically restart after it expires.

• msgId — This is an integer message ID to be delivered to the server’s message queue
each time the timer expires.

This method returns true if the call was successful or false otherwise. If the call fails, the
class variable lastErrorMessage will contain a text description of the error.

It is the Set() method that actually creates a POSIX timer for the object. If a POSIX timer
has already been allocated to the object, the old timer is first deleted, then a new timer is
created. The ID of the real-time signal to be used with the timer and the ID of the message
to be delivered to the server’s message queue are both associated with the timer at the time
the timer is created.

4.6.4 The Start() Method

bool Timer::Start()
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The Start() method starts a timer previously initialized by the Set() method. It takes no
parameters. The method returns true if the call was successful or false otherwise. If the
call fails, the class variable lastErrorMessage will contain a text description of the error.

4.6.5 The Stop() Method

bool Timer::Stop()

The Stop() method can be used to stop a timer previously initialized by the Set() method.
Calling Stop() on a timer that is already stopped is harmless. This method takes no
parameters. The method returns true if the call was successful or false otherwise. If the
call fails, the class variable lastErrorMessage will contain a text description of the error.

4.7 Server Statistics

Internally, the BaseServer class (and therefore all real-world servers as well) maintain a
number of statistics on the number of clients that have connected, have disconnected, are
currently connected, message queue depth, message counts, per-message processing timings,
etc. These statistics are meant to help developers better characterize the behavior of their
systems. The statistics are available to all clients via the standard CS GET SERVER STATS

message (more fully described in section 6).

Each server maintains its statistics counters in a class variable called stats, which is a
struct of type CS ServerStats. This structure itself contains an STL map of another
structure called CS MessageStats which is used to contain count and timing information
for each individual message that the server handles. The data fields of both structures are
shown below.

struct CS_MessageStats {

string messageId;

int num;

double minTime;

double avgTime;

double maxTime;

};

typedef map<string, CS_MessageStats> CS_MSMap;

struct CS_ServerStats {

int upTime;

int numClientConnects;

int numClientDisconnects;

int currentNumClients;

int maxNumClients;

int numClientMessages;

int numServerMessages;
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int currentQueueDepth;

int maxQueueDepth;

CS_MSMap msMap;

};

Both of these structures are defined in cliserv.h. For more information on these, refer to the
Doxygen-generated documentation for the structures and the comments in the source code
itself.

5 State-of-Health Data

NOTE: The following discussion describes support for sensor state-of-health reporting, but only
insofar as it concerns the BaseServer class. For a full discussion on system-wide state-of-health
reporting, see design document DES-0006, The State-of-Health Server .

Long experience has shown that many or most servers that go into a real-world control
system function as device drivers. That is to say, they provide the software interface to
some piece of hardware like a pressure sensor, a temperature controller, a gas concentration
analyzer, etc. One task that has been generally useful on all control systems implemented
using our client/server architecture is state-of-health (SoH) monitoring.

One design goal for our real-world control systems is to provide a generic way to log all sensor
data to disk at periodic intervals. The trouble is, different control systems have different
sets of hardware for which SoH information is desired. For a generic SoH monitoring task
to exist, all sensors (that is to say, the servers that are responsible for the sensors) need to
be able to report their sensor information in a consistent way. One way to guarantee this
consistency is to make it a part of the BaseServer class, so all real-world servers inherit the
same SoH reporting mechanism.

The BaseServer SoH mechanism expects all reporting sensors to be identifiable by a unique
(system-wide), human-readable, short text name, and each sensor to provide exactly one
value. For example, a temperature sensor might be called “heat1” and its one piece of
reported information would be its temperature, say 37.4 degrees Celsius. Sensors that report
multiple values per sensor are handled with pseudo-sensors. For example, a pressure sensor
called “ps101” that reports both a pressure and a temperature, might provide two SoH
records called “ps101.press” and “ps101.temp,” each of which reports only a single value.

For each reporting sensor (or pseudo-sensor), two pieces of information exist — an informa-
tion record that describes the sensor but contains no sensor data, and a data record that
contains a sensor’s value but no description. In the code, the information record is defined
by the structure SOH ParamInfo and the data record by SOH Param. Both structures are
defined in cliserv.h and are reproduced below.

struct SOH_ParamInfo {

string name;

string units;

bool analog;
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string Serialize();

void Deserialize(const string s);

};

typedef map<string, SOH_ParamInfo> SOH_ParamInfoMap;

struct SOH_Param {

string name;

double value;

string Serialize();

void Deserialize(const string s);

};

typedef map<string, SOH_Param> SOH_ParamMap;

Access to this information comes in the form of three public methods of the BaseServer

class, which are described below. See the method implementations in cliserv.cpp for complete
details.

virtual void GetNumSohParams();

virtual void GetSohParamInfo();

virtual void GetSohParams();

The first thing to note is that all of these methods are virtual. That is because these methods,
as implemented in BaseServer, do nothing. In that sense, these three methods serve more as
a template for server authors than useful functions. Authors of servers that need to provide
SoH information must override these three methods with their own versions appropriate to
the specific server being written.

Also note that these three methods are client-request message handlers. They take no
parameters because, when they run, client message handlers expect to have the complete
details of the client request message available in the BaseServer internal class variables
clientName, command, and payload (see section 4.4.2). They also provide no return value
because client message handlers report success or failure directly back to clients via the
ReplyMessage() or ReplyError() methods. They do not report results back to the client
message dispatcher that calls them (see section 4.4.3).

5.1 The GetNumSohParams() Method

Authors of real-world servers that override this method are expected to return the number
of reporting SoH sensors (including pseudo-sensors) the server maintains. The response
message should be formatted as follows.

(ok,(<num>))
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Here <num> is the number of reporting SoH sensors the server maintains.

The version of GetNumSohParams() implemented in the BaseServer class always returns
zero (0).

5.2 The GetSohParamInfo() Method

Authors of real-world servers that override this method are expected to return to the client a
series of one or more sensor (or pseudo-sensor) information records (SOH ParamInfo structs)
as described above. The records must be DSP-encoded using the following format:

(<rec>,<rec>,...,<rec>)

Here each <rec> represents a DSP-encoded version of one SOH ParamInfo struct. The
number of <rec> entries in the returned list should match the number returned by the
GetNumSohParams() method. Rather than building the DSP representations of the indi-
vidual <rec> entries manually, the server author should call the SOH ParamInfo struct’s
Serialize() method, which will return a proper DSP encoding of the struct.

The version of GetSohParamInfo() implemented in the BaseServer class always returns an
empty list.

5.3 The GetSohParams() Method

Authors of real-world servers that override this method are expected to return to the client a
series of one or more sensor (or pseudo-sensor) data records (SOH Param structs) as described
above. The records must be DSP-encoded using the following format.

(<rec>,<rec>,...,<rec>)

Here each <rec> represents a DSP-encoded version of one SOH Param struct. The number of
<rec> entries in the returned list should match the number returned by the GetNumSohParams()
method. Rather than building the DSP representations of the individual <rec> entries man-
ually, the server author should call the SOH ParamInfo struct’s Serialize() method, which
will return a proper DSP encoding of the struct.

The version of GetSohParams() implemented in the BaseServer class always returns an
empty list.
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6 Standard Server Messages

All servers derived from the BaseServer class (that is to say, all real-world servers) support
a standard subset of commands in addition to any server-specific commands they may also
offer. All server commands, including the standard commands, are represented by short
text strings assigned to symbolic constants. The constants are used throughout the code (as
opposed to the bare strings) and we will use only the constants in this document as well.

The symbolic constants for the standard server commands are defined near the top of cliserv.h
with the definitions reproduced below:

const string CS_PING = "basePing";

const string CS_GET_SERVER_STATS = "baseGetServerStats";

const string CS_GET_NUM_SOH_PARAMS = "baseGetNumSohParams";

const string CS_GET_SOH_PARAM_INFO = "baseGetSohParamInfo";

const string CS_GET_SOH_PARAMS = "baseGetSohParams";

const string CS_SHUTDOWN = "baseShutdown";

The BaseServer class provides message handlers for all of these messages, so all real-world
servers will automatically be able to respond to at least this set of commands without the
server author having to handle them locally. However, most of the BaseServer client message
handler methods are virtual, so server authors do always have the option of overriding the
default response for these commands if circumstances warrant.

6.1 The CS PING Command

The CS PING command is a request from a client simply to see if the server is responsive.
Handling of this command is so simple, that the BaseServer class does not even provide
an explicit message handler for it. Instead, it is handled directly out of the client message
dispatcher (see section 4.4.3) with a call to ReplyMessage().

6.2 The CS GET SERVER STATS Command

This command is serviced by the GetServerStats() message handler. It provides a way for
clients to request the current set of statistics counters maintained internally by the server
(see section 4.7 for details).

6.3 The CS GET NUM SOH PARAMS Command

This command is serviced by the GetNumSohParams() message handler.

For full details on this and the other state-of-health oriented commands, see section 5.
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6.4 The CS GET SOH PARAM INFO Command

This command is serviced by the GetSohParamsInfo() message handler.

For full details on this and the other state-of-health oriented commands, see section 5.

6.5 The CS GET SOH PARAMS Command

This command is serviced by the GetSohParams() message handler.

For full details on this and the other state-of-health oriented commands, see section 5.

6.6 The CS SHUTDOWN Command

This command simply tells the server to shut itself down in a clean manner. It is handled
directly out of the client message dispatcher (see 4.4.3), so it has no corresponding message
handler.

7 The BaseClient Class

In the same way that all real-world servers are derived from the BaseServer class, all real-
world client interfaces are derived from the BaseClient class. The BaseClient class exists
for a few reasons:

• It automatically manages the communication link to the server. That is, the Base·
Client class (and it’s derived classes) can initially establish a connection to the server
(if it exists), and can automatically re-establish the connection if the server is shut
down and restarted.

• It provides a standard mechanism (the SendMessage() method) for sending messages
to the server and receiving responses back from the server

• It provides one API method for each of the standard server messages (see section 6).
This frees the user of the class from having to worry about how requests and response
messages are encoded or transmitted. Real-world client interface classes derived from
BaseClient are expected to continue this paradigm, providing one API method for
each server-specific message supported by the corresponding server.

7.1 Client Thread Safety

Before we begin an in-depth examination of the BaseClient class, we should take a closer
look at the need for thread safety. As previously discussed (see section 4.4.6), servers are
always multi-threaded applications, so the BaseServer class needs a mechanism to ensure
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that various structures shared by those threads (namely the message queue and the server
statistics structures) are protected from simultaneous access. For that, we use a POSIX
standard pthread library mutex.

Although client interface classes are not by themselves multi-threaded, the applications
that use them frequently are. Theoretically, each multi-threaded application that uses a
BaseClient-derived client interface could implement their own mutex(es) to ensure a single
client interface is used by only a single thread at a time. In fact, multi-threaded client ap-
plications are actually pretty common, but thread protection is tricky to do right, and it is
easy to get wrong. Getting it wrong can mean deadlocks and/or highly intermittent (indeed
seemingly random) data corruption that is very difficult to diagnose and correct. To relieve
the application writer of this burden, all BaseClient-derived interface classes provide inter-
nal mutex protection of those portions of the interface class (primarily the communication
link to the server) that could potentially fail if accessed simultaneously by more than one
thread.

The specifics of the BaseClient mutex protection implementation as well as other design
decisions that affect thread safety (primarily concerning the SendMessage() method) will
be discussed in more detail later on.

7.2 BaseClient Class Method Details

A cleaned-up version of the BaseClient class definition appears below, with detailed method
descriptions following. In the code, the class is defined in cliserv.h and implemented in
cliserv.cpp.

class BaseClient {

public:

BaseClient(const string clientName, const string serverName);

virtual ~BaseClient();

string ServerExists();

string GetServerStats(CS_ServerStats &stats);

string ShutdownServer();

string GetNumSohParams(WORD &num);

string GetSohParamInfo(SOH_ParamInfoMap &infoMap);

string GetSohParams(SOH_ParamMap &paramMap);

protected:

string SendMessage(const string command, string &response, const string params = "()");

string clientName;

string serverName;

int sockId;

private:

pthread_mutex_t mutex;

bool connected;

virtual string Connect();

};
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7.2.1 The BaseClient Constructor

BaseClient(const string clientName, const string serverName);

The BaseClient constructor takes two parameters:

• clientName — An STL string containing a short text name by which the client will
identify itself to the system (client names are used mostly for logging purposes).

• serverName — An STL string containing the short text name of the server with which
the client will communicate. This string must match the name the server uses to
register itself with the name resolver (see design document DES-0004, The Server
Name Resolver for complete details).

The constructor does surprisingly little. It merely stores away the client and server names,
marks the communication link to the server as disconnected, and initializes the mutex used
to help ensure thread safety.

7.2.2 The BaseClient Destructor

virtual ~BaseClient();

The BaseClient destructor also does little. It only closes the communication link to the
server (if it is open) and destroys the mutex.

7.2.3 The connected Class Variable

bool connected;

Internally, the BaseClient class maintains a private Boolean variable called connected, that
serves as the class’ best guess as to whether or not the class currently has a valid connection
to the server. This is generally misunderstood, so we will clarify the point here.

If connected is true, that does not necessarily mean that the client/server connection is
actually usable, it just means the connection was valid the last time it was used, and the
assumption is that it is still valid. In this circumstance, the client will immediately try to
send on the connection without trying to establish a connection first. Almost all of the
time, this will be successful. However, if it is not successful, the client will set connected to
false and then begin procedures to establish a new connection to the server. All connected
gains us is a way to quickly bypass the connection process unless it’s needed (which happens
rarely).
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7.2.4 The Connect() Method

virtual string Connect();

The Connect() method is a private method used internally to connect to the server. It takes
no parameters and returns an STL string as its return value. If the returned string contains
the text “ok,” it indicates that the call to Connect() was successful. Otherwise the returned
string contains a text description of why the call failed.

Connect() is actually just a helper function to the SendMessage() method (it is not called
from anywhere else). Discussing Connect() now will serve as a segue into the discussion of
SendMessage() to follow.

Connect() does several things. First, it contacts the server name resolver to obtain a current
IP address and TCP port number on which the server can be contacted. Then, it checks the
client’s current concept of the state of the connection (that is the connected class variable
discussed above). If the client thinks there is already a valid connection to the server, that
connection is first closed as a precaution. Finally, Connect() attempts to establish a new
TCP connection to the server. If all these steps succeed, then “ok” is returned, otherwise
an appropriate error message is returned.

7.2.5 The SendMessage() Method

string SendMessage(const string command,

string &response,

const string params = "()");

SendMessage() is the method that the BaseClient class (and all derived classes) use in
its API wrappers to send requests to servers and receive the resulting responses. It also is
responsible for managing the communication link to the server. SendMessage() takes three
parameters:

• command — The name of the command the client is asking the server to perform. In the
case of the standard server commands, these are always one of the symbolic constants
defined in cliserv.h and discussed in section 6. In practice, client authors that derive
from BaseClient() are expected to maintain this paradigm, so the command parameter
should always be a symbolic constant for a command string.

• response — On successful return of the call to SendMessage(), this parameter will
contain the payload portion of the response from the server (that is to say, any addi-
tional parameters that are part of the server’s response beyond the simple “success”
or “failure” indication). For server responses that contain no additional parameters,
the response parameter will just contain the DSP empty message, “()”.
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• params — This parameter is a DSP-encoded message containing any additional param-
eters (beyond the name of the command) that need to accompany the request to the
server. Having this parameter come third, rather than grouping it with the command

parameter, seems a little out of order. It’s done this way so that the params parameter
can be defaulted to the DSP empty message. This is a convenient addition, because
a great number of server commands do not take any additional information, in which
case the params parameter can be left out entirely.

SendMessage() returns an STL string as its return value. If this string is the text “ok,”
it indicates that the command was successfully delivered to the server and the server pro-
cessed the command and returned a success indication. In this circumstance, the response

parameter is valid and will contain any additional parameters that are part of the server’s
response. If the return value is not “ok,” then it is a text description of the failure. In this
circumstance, the response parameter is not valid and cannot be depended upon to contain
anything useful.

With each call to SendMessage, several things happen:

1. The various components that go into a server request message (client name, command
name, optional parameters), are bundled into a DSP encoded message as described in
section 4.1.3

2. The request is now ready to be transmitted to the server. It turns out that the
sole shared resource that needs to be protected against simultaneous access between
multiple threads communicating with a server through a single client interface is the
communication link, so, before transmitting the message, the client class’ mutex is
locked.

3. The BaseClient connected class variable is examined. If there is no current connec-
tion to server in place, one is established using the Connect() helper method described
previously.

4. The message is transmitted to the server, and the reply from the server is read

5. In the event of a failure in either the transmission of the request or receipt of the
response, the communication link is torn down and re-established (using the Connect()
method), and a second attempt is made to exchange messages with the server

6. The mutex that protects the communication link is released

7. A top-level DSP parse is performed on the response. If the server returned a success
indication, then any additional parameters present in the response are placed in the
response parameter and SendMessage() exits with a return value of “ok.” Otherwise,
the text description of the error returned by the server becomes the SendMessage()

return value, and response is undefined.

Of course, the above sequence mostly describes the success path. Failures along the way
(the server name resolver has no entry for the server, a TCP link can not be established, the
message exchange fails, etc.) will ultimately result in an appropriate error message being
returned as the method’s return value.
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At this point, more should be said about thread safety, because all of the features imple-
mented to provide thread safety are implemented here in the SendMessage() method. The
first of these features is the mutex used to protect the communication link. As previously
stated, the communication link is the only shared resource that needs protection. The
SendMessage() method is the only place in the client code where the communication link is
dealt with, so it is also the only place where the mutex needs to be locked or unlocked. 3

The communication link is the only resource that needs protection because SendMessage()

has been carefully designed such that other bits of information that might normally be points
of contention between threads are located on the call stack. This is important. Because each
thread has its own call stack, as long as data items used by SendMessage() exist as local
variables, function parameters or return values, each thread will get its own copy of the
data items and simultaneous calls will not conflict. It is for this reason that Connect()’s
interface to the server name resolver is a local variable. This is also the reason that error
messages reported back by SendMessage() are reported back by way of the method’s return
value. Finally, having the server response data returned through the response parameter,
guarantees that each thread must provide its own storage for the response.

7.2.6 User API Methods

The remaining BaseClient class methods are API wrappers around the various standard
server messages described in section 6. These API methods are what users of the class would
use to communicate with the server. There is one method for every client request message
the server supports.

Because the standard messages have already been covered in section 6, not much will be said
about the individual methods other than what messages they correspond to. However, it
should be noted that all of these methods (and similar methods implemented by the authors
of real-world client interfaces) do have certain things in common.

• Their main purpose is to hide the details of the underlying message encoding and
message passing mechanisms from the user. Users should not care (or necessarily
even know) that the input parameters to the method call are being bundled into a
DSP-compliant string and transmitted over a TCP connection to be processed.

• All API methods use the SendMessage() method to communicate with the server.
Therefore, authors of client interfaces (but not users of client interfaces) do need to be
familiar with the DSP format and be able to build and parse DSP format messages.

• All API methods return STL strings that either hold the text “ok” (the call was
successful) or a text description of the problem (if the call was unsuccessful). The
returned string is exactly the string returned by the internal call to SendMessage().

3Well, actually, the communication link is also manipulated by the Connect() method, but Connect() is
only ever called from within SendMessage(), and it relies on SendMessage()’s manipulation of the mutex
to ensure exclusive access to the link.
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• When server responses contain additional information beyond the server’s success or
failure indication, that information is parsed out of its DSP format container and
placed into the method’s output parameters.

Short descriptions of the individual BaseClass API methods appear below.

string ServerExists();

The ServerExists() method corresponds to the CS PING standard server message. It takes
no parameters. A success response indicates that the server is running and responsive.

string GetServerStats(CS_ServerStats &stats);

The GetServerStats() method corresponds to the CS GET SERVER STATS standard server
message. It has one output parameter. On successful return, the output parameter will
contain a copy of the server’s internal statistics counters (see section 4.7 for more details).

string ShutdownServer();

The ShutdownServer() method corresponds to the CS SHUTDOWN standard server message.
It takes no parameters. A success response indicates that the server acknowledges the request
to shutdown and has done so (or at least is in the process of doing so).

string GetNumSohParams(WORD &num);

The GetNumSohParams() method corresponds to the CS GET NUM SOH PARAMS standard server
message. It has one output parameter. On successful return, the parameter will contain the
number of items the server is configured to report as state-of-health information (this is
always zero, unless the server author has explicitly overridden the default behavior of the
server).

string GetSohParamInfo(SOH_ParamInfoMap &infoMap);

The GetSohParamInfo() method corresponds to the CS GET SOH PARAM INFO standard server
message. It has one output parameter, which is a reference to an STL map of SOH ParamInfo

structures. On successful return, the map will contain one entry for each state-of-health item
the server supports. Servers that do not override the default behavior will always return
empty maps.

string GetSohParams(SOH_ParamMap &paramMap);
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The GetSohParams() method corresponds to the CS GET SOH PARAMS standard server mes-
sage. It has one output parameter, which is a reference to an STL map of SOH Param struc-
tures. On successful return, the map will contain one entry for each state-of-health item the
server supports. Servers that do not override the default behavior will always return empty
maps.

8 Message Parsing Helper Functions

Authors of real-world servers and/or real-world client interface classes are required to deal
with DSP format messages fairly directly. In client classes, request messages are sent to
servers by calling the SendMessage() method. The method’s params and response param-
eters are both encoded as DSP format strings, and it is the author’s responsibility to be
able to build (in the case of the params parameter) or parse (in the case of the response

parameter) these strings. Similarly, servers receive the parameter portion of client request
messages by parsing a DSP format internal class variable called payload. Response messages
pass additional parameters back to clients by calling the ReplyMessage() method, which
takes as its one parameter, a DSP-encoded string holding the parameters to be returned. It
is the author’s responsibility to build that string.

Some helper mechanisms have been developed to make the task of encoding and parsing DSP
strings more convenient for the author. The first of these is, of course, the MessageParser

class, which implements the standard parser for DSP format strings (see design document
DES-0002, Data Serialization Protocol for complete details). But there are other
mechanisms as well. In many, many cases, the information that needs to be passed to a
server or a client consists of just a single parameter. Authors can always explicitly construct
the DSP encoding for a single parameter or explicitly use the MessageParser utility class
to parse them. But for convenience, six helper functions have been written (three to encode,
three to decode) for authors to use instead. These six functions are defined in cliserv.h and
implemented in cliserv.cpp. The function definitions are reproduced below.

string SerializeInt(const long n);

string SerializeFloat(const double n);

string SerializeString(const string s);

long DeserializeInt(const string s);

double DeserializeFloat(const string s);

string DeserializeString(const string s);

Use of these is pretty self-explanatory. The top three functions take an integer, floating
point, or string parameter respectively, and return as their return value a DSP-encoded
string containing the value of the input parameter. For example, SerializeInt(1234)

returns the string “(1234).” For string variables, the encoded string is also properly escaped
with DSP special characters as required.

The bottom three functions perform the reverse operation. They take a DSP-encoded string
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containing a single parameter and return the integer, floating point, or string value contained
within.

Passing single parameter messages back and forth between clients and servers is probably
the most common case (after the zero parameter case, which requires no encoding/decoding
on the author’s part), and the above six functions make dealing with that case relatively
painless. The next-most common situation is probably passing data structures back and
forth. Throughout the code base, struct and class structures that get passed as part of
client/server messages have two methods defined called Serialize() and Deserialize().
They are typically defined as follows:

string Serialize() const;

void Deserialize(const string &s);

The Serialize() method encodes the contents of the data structure into a DSP format
string that is returned. The Deserialize() method performs the opposite function, taking
a DSP format string of the type created by Serialize() and parsing its contents into the
fields of the data structure.

9 The BaseServer Test Server

The BaseServer class is primarily intended to be derived from in order to create real-
world server classes. However, it does contain or support all the mechanisms necessary to
function as a working server itself. Of course, a server that uses BaseServer directly isn’t
particularly useful, because it cannot do anything other than respond to the few standard
server messages (see section 6) that all servers can respond to. Nevertheless, even that
much makes building a server based only on BaseServer useful for development, testing and
demonstration purposes.

The file baseServer.cpp in the code base does exactly that. Turning a server class into a
stand-alone server is extremely easy. You simply create an instance of the server class and
call its Run() method. The main() function from baseServer.cpp is shown below. This is
the only code necessary to create the server.

#include "cliserv.h"

int main(const int argc, const char *argv[])

{

BaseServer *server;

server = new BaseServer(argv[1]);

server->Run();

delete server;

return(0);

}
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Here the parameter argv[1] is expected to be the name the server uses when registering
with the name resolver.

Once the server is started, it can be communicated with using the test client described below.

10 The BaseServer Test Client

In the same way that the BaseServer class can be used as-is to create a working (albeit
trivial) server, the BaseClient class can be used to create a working demonstration client.
Building a useful client application from BaseClient takes more effort, though. Keep in
mind, that client classes only provide the API methods to send/receive messages to/from
the server. It is up to the test client application to actually do something useful with the
API methods.

Our test client is implemented by the file baseMenu.cpp. The code implements a simple, text-
based menu application that allows the user to send any of the standard server messages
to the server and view the server’s response. It is primarily useful during development and
testing but it also serves as a useful demonstration of the client/server model.

The test client is expected to be started from a command-line terminal, and it takes as its
one parameter the name of the server it should communicate with (this must be the same
name that the server used when registering with the server name resolver). When run, the
user is presented with the following menu. Each entry corresponds to a different standard
server message (and therefore a different BaseClient API method).

General Server Items:

-1 - ping server

-2 - get server statistics

-3 - get number of SOH parameters

-4 - get SOH parameter information

-5 - get SOH parameters

99 - shutdown server

0 - Exit Program

Enter Selection >

The test client application is not limited to talking to just the test server. In fact, because
all servers are capable of responding to the standard server messages, the test client will
work with any server.
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