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1.0 Summary 

 In this report, we present a mathematical framework for assessing the quality of signature systems in 

terms of fidelity, cost, risk, and utility—a method we refer to as Signature Quality Metrics (SQM).  We 

demonstrate the SQM approach by assessing the quality of a signature system designed to predict the 

culture medium used to grow a microorganism.  The system consisted of four chemical assays designed 

to identify various ingredients that could be used to produce the culture medium.  The analytical 

measurements resulting from any combination of these four assays can be used in a Bayesian network to 

predict the probabilities that the microorganism was grown using one of eleven culture media.  We 

evaluated combinations of the signature system by removing one or more of the assays from the Bayes 

network.  We demonstrated that SQM can be used to distinguish between the various combinations in 

terms of fidelity, cost, risk, and utility—and to account for tradeoffs between these attributes.  The 

approach assisted in clearly identifying assays that were least informative, largely in part because they 

only could discriminate between very few culture media, and in particular, culture media that are rarely 

used.  There are limitations associated with the data that were used to train and test the signature system.  

Consequently, our intent is not to draw formal conclusions regarding this particular system, but rather to 

illustrate an analytical approach that could be useful in comparing one system to another.  

 

 

2.0 Introduction 

 We present a mathematical framework for assessing the quality of signature systems in terms of 

fidelity, cost, risk, and utility. The objective is to provide researchers, developers, and decision makers 

with a holistic approach for assessing the quality of a signature detection system as it moves through the 

stages of research and development, construction and evaluation of prototypes, and eventual deployment 

in an operational environment.  We call the methodology Signature Quality Metrics (SQM).  It may be 

used to compare the quality of two (or more) different signature detection systems—or to compare the 

quality of various implementations of a single system.  SQM is based on statistical decision theory 

(Berger 1985) and the application of that theory, which is often referred to as decision science (Edwards 

et al. 2007).  We demonstrate the SQM approach in the context of assessing the signature quality of 

various chemical assays when predicting the culture media used to grow microorganisms.  

 

 The anthrax incidents of 2001 in the United States made painfully clear the vulnerability of 

populations to the intentional release of deadly microorganisms.  While medical and emergency 

personnel are essential for dealing with the medical side-effects of such an event, chemical and 

biological forensics assist in determining the source of contagion and where/how the microorganism was 

grown.  Such details aid law enforcement personnel in identifying suspects, and ultimately, the 

perpetrator—thereby preventing future acts of terror.  Many pieces of information taken together can 

lead investigators to the suspect.  The components of the culture medium used to grow the 

microorganisms are one such example.  The culture medium information can be used to narrow the 

suspect pool and otherwise inform the investigation.  Bacillus anthracis (B. anthracis) is just one 

example of a number of microorganisms that could be used in such an attack. 

 

Jarman et al. (2008) present a Bayesian network that leverages the results of three different assays to 

predict the culture medium used to grow a given batch of anthrax spores.   The three assays include:  1)  

electrospray ionization mass spectrometry (ESI-MS) for identification of agar, 2) isotope ratio mass 

spectrometry (IRMS) to determine the isotope ratios of carbon and nitrogen and the presence of agar,  

and  3) secondary-ion mass spectrometry (SIMS) to determine metals content (Zn
2+

 and Cu
2+

 in 
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particular).  Continuing this work, we added a fourth assay to the Bayes net, matrix-assisted laser 

desorption ionization mass spectrometry (MALDI-MS), to determine the presence or absence of heme.    

 

A Bayesian Network is a model that provides a link between data or beliefs and outcomes.  It is 

often expressed as a directed acyclic graph that defines causal relationships in a probabilistic setting.  In 

this case the Bayesian network expresses a relationship between analytical measurements and culture 

media.  For each assay, the “raw” data from the assay are mapped to conditional probabilities related to 

the heme, agar, metal, or carbon/nitrogen content of the assay and then mapped to a prediction of the 

probability of each culture medium.  The Bayesian network is illustrated in Figure 1.  For each of the 

eleven culture media, the Bayes net estimates the posterior probability that a particular culture medium 

was used to grow the microorganism, given the results of the four assays.  Note that IRMS is used to 

predict both the presence of agar and the type of C/N source.  

 

The Bayesian net developed by Jarman et al. (2008) is just one example of what we call a signature 

system.  A signature system is the collection of measurement techniques, data processing, and algorithms 

that are collectively used to measure and extract features for the purpose of detecting, predicting, or 

characterizing a phenomenon of interest.  For the Bayes net, the features are the test results from SIMS, 

MALDI-MS, ESI-MS, and IRMS which test for the presence of metals, heme, agar, and the isotopic 

ratios of carbon and nitrogen. The phenomenon of interest is the culture medium used to grow the 

microorganism being tested.  For the Bayes net signature system, we are interested in how the removal  

 

 
 

Figure 1:  Bayesian network representation of the bioforensic signature system which uses  

secondary-ion mass spectrometry (SIMS), electrospray ionization mass spectrometry (ESI-MS), 

isotope ratio mass spectrometry (IRMS), and matrix-assisted laser desorption ionization mass 

spectrometry (MALDI-MS) to predict the culture medium.  

 

of one (or more) of the assays from the net affects its performance.  Specifically, we evaluate the 15 

possible combinations
1
 that result from including 1, 2, 3, or 4 assays in the net (irrespective of order).  

The combinations of assays we investigate are given in Table 1. 

                                                      
1
 The number of combinations is given by ∑ (

 

 
)     

   . 
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Table 1.  Combinations of the assays included in the 15 implementations of the Bayes net.  An 

asterisk indicates the test was included, and a blank cell indicates the test was excluded. 

Combination 

Label 

Tests Performed 

SIMS MALDI ESI-MS IRMS 

c1 * * * * 

c2 * * *  

c3  * * * 

c4 *  * * 

c5 * *  * 

c6 * *   

c7 *  *  

c8 *   * 

c9  * *  

c10  *  * 

c11   * * 

c12 *    

c13  *   

c14   *  

c15    * 

 

 We are especially interested in the tradeoffs between fidelity and cost that arise when including (or 

excluding) various assays in the net, and how principles of decision science (Edwards et al. 2007) can be 

used to decide between variations of the Bayes net.  We define each of the SQM terms below: 

 Fidelity refers to how well the signature system detects or characterizes the phenomenon of 

interest.  This includes metrics like sensitivity, specificity, accuracy, receiver operating 

characteristic (ROC) curves, F-score, etc.  For the Bayes net signature system, fidelity refers to 

how well the net predicts the culture media. 

 Cost refers to the resources expended to develop, deploy, and/or utilize the signature system.  

Examples include the cost of measurement systems (e.g. SIMS, MALDI-MS, ESI-MS, and 

IRMS), the cost of consumable reagents, and/or associated labor costs.   

 Risk refers to the likelihood and consequences associated with decision errors that may result by 

employing the signature system, helping investigators balance the tradeoff between false 

positives and false negatives.    

 Utility provides an overall, relative measure of usefulness, or quality, of a signature system.  It is 

a function of two (or more) of the attributes of fidelity, cost, and risk.  It may also include any 

other relevant attribute(s) which may distinguish the value or quality of a signature system from 

another that are not already accounted for by fidelity, cost, or risk.  Examples of other attributes 

include the time required to collect, process, and analyze samples, human safety, ease of use, etc.  

For our analysis of the Bayes net signature system, the sample size, i.e., the amount of 

microorganisms consumed by a particular assay, is of particular interest because the limited 

forensic sample is arguably the most precious commodity in the analysis. 

We examined each of the Bayes net combinations in terms of fidelity, cost, risk, and utility.  As is 

often the case when deciding among alternatives on the basis of multiple attributes (Keeney & Raiffa 

1976), a single Bayes net combination that performed the best with respect to each attribute did not exist.  

Rather, we observed a number of combinations that were ideal in terms of one attribute (such as fidelity), 

but less ideal in terms of another, such as cost or sample size.  In situations like these, multiattribute 
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utility functions (Keeney & Raiffa 1976) provide a useful approach for distinguishing various signature 

systems by simultaneously accounting for fidelity, cost, risk, and/or other attributes.  
 

3.0 Methods 

3.1 Data Sources 
 

The data from the SIMS, MALDI, and ESI-MS tests used for this investigation are described in 

Jarman et al. (2008).  The http://dotearth.blogs.nytimes.com/2013/03/21/scientists-propose-a-new-

architecture-for-sustainable-development/?src=recg data for the IRMS test is described in Kreuzer-

Martin and Jarman (2007).  The dataset used to develop the original Bayes net signature system with all 

four assays (hereafter referred to as the training dataset) included 290 examples of SIMS analysis of 

Bacillus spores grown in various culture media, 50 examples of MALDI-MS analysis, 132 examples of 

ESI-MS analysis, and 216 examples of IRMS analysis of spores.  Training entails using the training 

dataset to estimate the conditional probabilities associated with the nodes of the Bayes net.  There are 11 

culture media considered in this study. Not all culture media were represented in each assay type 

discussed above because the data were, in part, combined from the results of various experiments 

available in the literature, as discussed by Jarman et al. (2008).  The 11 culture media, along with their 

expected content in terms of metal, heme, agar, and culture media food sources (Atlas 2010, Cliff et al. 

2005), are shown in Table 2. The observed carbon/nitrogen ratio (R) for each sample was mapped to one 

of five categories of culture medium food sources:  BP (beef extract/peptone), BT (beef 

extract/tryptone), ST (soy/tryptone), YS (yeast/sugar), and YT (yeast/tryptone). 

 

Each of the 15 Bayes net combinations was trained using the training dataset.  To evaluate the 

performance of the Bayes net combinations, we constructed an original test dataset by randomly 

sampling the training dataset with replacement based on what should be present for a particular culture 

medium (as described in Table 2).  To illustrate, suppose the culture medium for a single test observation 

contained heme.  Then a random draw of MALDI assay results from samples known to have heme was 

included in that observation.  To complete the data for the observation, a similar process was followed as 

necessary for the remaining Bayes net components:  presence of agar, metal content, and isotope ratios 

of C and N.  Thirty such observations were constructed for each of the eleven culture media, and thus the 

original test dataset contained 330 observations. 

 

Table 2.  Culture media and their constituents, (Atlas 2010, Cliff et al. 2005) 
Culture 

Label  
Description Metal  Heme  Agar  C/N ratio  

BA Blood Agar None Positive Present BP 

GA Glucose Agar Cu
2+

, Zn
2+

 Unknown Present YS 

GB Glucose Broth Cu
2+

, Zn
2+

 Unknown Absent YS 

NA Nutrient Agar None Unknown Present BP 

NB Nutrient Broth None Unknown Absent BP 

LBA Luria-Bertaini Agar None Unknown Present YT 

LBB Luria-Bertaini Broth None Unknown Absent YT 

NSMA Nutrient Sporulating Medium Agar None Unknown Present BT 

NSMB Nutrient Sporulating Medium Broth None Unknown Absent BT 

TSA Tryptic Soy Agar None Unknown Present ST 

TSB Tryptic Soy Broth None Unknown Absent ST 
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In practice, multiple assays would be performed on the same biological sample.  Unlike what would 

happen in practice, the training data available to us resulted from convenience samples with assays 

performed on separate biological samples.  Similarly, the assay results were each sampled separately in 

the test dataset construction.   When possible, it is ideal to use separate training and test datasets to 

construct and evaluate classification methods, such as the Bayes nets under consideration.  Often this is 

done through bootstrapping or k-fold cross-validation (Kohavi 1995).  In order to assess the error 

associated with the estimates of fidelity, risk, and utility calculated from the original test dataset, one 

thousand test datasets were constructed from bootstrapped samples of the original test dataset, i.e., each 

bootstrapped test data set had 330 observations and was obtained by sampling the original test data set 

with replacement.  Using test datasets derived from the training dataset has drawbacks.  First, it is likely 

that error estimates obtained from the bootstrapped test datasets will underestimate the true error 

associated with the measures of fidelity, risk, and utility for each combination.  Second, it is possible that 

estimates of the posterior probabilities of the culture media are biased.  While the SQM analysis 

techniques we present are valid, the particular numerical results computed from these data should be 

interpreted with caution, in light of the limitations of the data discussed in this paragraph. 

3.2 Fidelity 
 

 The principal objective of the Bayes net signature system is to predict which one of 11 different 

culture media was used to grow B. anthracis based on four assays (SIMS, MALDI-MS, ESI-MS, and 

IRMS) performed on the spores of the microorganism. Because the output of the Bayes net is a vector of 

posterior probabilities (i.e. one probability value for each culture media such that the sum of the 11 

probabilities is unity), scoring rules are an appropriate means of assessing the accuracy of the 15 

combinations of Bayesian networks.  A scoring rule (Bickel 2007) is a measure of the performance of 

the estimated probabilities of a finite set of outcomes, or categories, in light of the eventual outcomes.  

These estimated probabilities may be the result of some type of mathematical or statistical model (e.g. a 

Bayes net), or they could simply be the informed guesses of experts.  A scoring rule can be any function 

of these estimated probabilities and the true probabilities.  In practice, the true probabilities are often 

estimated by the frequencies of observed outcomes.  Three common scoring rules which also have the 

property of being strictly proper include the logarithmic, Brier, and spherical scoring rules (Winkler 

1996).  Strictly proper scoring rules have the property that they can be decomposed into the sum of two 

components (Bickel 2010), calibration and sharpness.  Calibration, or accuracy, is a measure of how 

well the probability estimates match the true values of the probabilities.  Sharpness refers to the degree 

to which the probability estimates place most of the probability on a single class (or very few classes).    

3.2.1 Definition of Scoring Rules 
 

 We now define the logarithmic and Brier scoring rules.  To simplify the notation, we omit distinguishing 

subscripts for the 15 combinations of the Bayes net.  Likewise, we omit subscripts that distinguish the 

1000 bootstrapped test datasets.  Thus, the following definitions apply to a particular combination of 

assays and a single bootstrapped test dataset.  Let             represent the measured data from the 

assays, where each    represents the data from a single “sample” in a test dataset.  In this case,       

indicates the size of a bootstrapped test dataset.  Note that    is a vector of dimension 1, 2, 3, or 4, 

depending on the number of assays that are included for the Bayes net combination of interest.  Let 

       index the culture media, where, for this example,     .  Let the Kronecker delta be defined 

as   (  )    if    truly belongs to culture media   and 0 otherwise.  Let  ̂(    ) denote the posterior 

probability (estimated by the Bayes net) that the culture medium used to grow B. anthracis sample is  , 
given the value of the observed data,   .  The logarithmic score (Hand 1997) is simply the logarithm of 

the probability estimate assigned to the correct class.   It is given by 
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   , (1) 

and takes values in (     ].  Here, “log” denotes the natural logarithm (although any base may be used).  

The Brier score (Hand 1997) is an average of the squared deviation between the estimated probability of 

culture media and the binary outcome of each culture media, and is given by 

   
 

 
∑ ∑ (  (  )   ̂(    ))

  
   

 
   , (2) 

and takes values in     ].  Larger scores are better for the logarithmic score, while smaller scores are 

better for the Brier score.   

 

To facilitate comparison of the Bayes net combinations using the log and Brier score, we follow the 

approach of Bickel (2010) and map the two scores to a common scale and orientation via a linear 

transformation.
2
 In the rescaled versions of the Brier and logarithmic scores, 0 indicates the score that 

would be obtained by uninformed guessing, i.e., the score resulting from uniform probability 

assignments, where each class is assigned a probability of    , and 1 indicates the largest possible (and 

best) score.  Note that worse-than-uniform probability estimates (which occurs, for example, when 

estimates greater than     are placed on incorrect classes, and less than     is placed on the correct class) 

can give rise to negative scores.  Furthermore, the logarithmic score has no minimum possible score, 

since assigning a probability of 0 to the correct class gives a logarithmic score of negative infinity.  

 

For the logarithmic score, uniform probability assignments (i.e. setting  ̂(    )      for each   in 

(1)) gives           Thus, the linear transformation of the logarithmic score in (1) that satisfies the 

criteria stated above is given by 

       (
 

    
)   (3)   

and takes values in (    ]   For the Brier score, uniform probability assignments in (2) gives   
(   )  ⁄ , and the corresponding linear transformation is given by  

      (
 

   
) , (4) 

taking values in [
   

   
  ]   Thus, for both    and   , larger is better, the maximum possible score is 1, 

and a score below 0 indicates performance that is worse than assigning equal probabilities to each of the 

culture media. 

 

We now present two approaches for measuring the sharpness of the probabilities estimated by the 

Bayes net.  Sharpness increases as probability estimates approach unity for a particular class (but not 

necessarily the correct class) and as the estimates for the remaining classes go to zero.  In the 

decomposition of the logarithmic score, the measure of sharpness is given by the negative entropy, or 

information, of the estimated probabilities (Bickel 2010), averaged across the   test cases:  

   
 

 
∑ (∑  ̂(    )     ̂(    ) 

   ) 
   , (5) 

which takes values in [-      ]   This interval arises because    is minimized for uniform probability 

assignments and maximized when  ̂(     )    and  ̂(    )    for        Note that       is defined 

to be 0, which makes sense because                .   

 

For the Brier score, a useful measure of sharpness (Murphy 1973) resembles the variance of a 

Bernoulli random variable (again, averaged across the   test cases): 

                                                      
2
 Any linear transformation of a strictly proper scoring rule is also strictly proper (Toda 1963).   
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   ) 

   , (6) 

which takes values in         ].  The endpoints of this interval arise under the same two conditions 

that produce the bounds for (5), i.e. the lower bound resulting from uniform probability assignments and 

the upper bound occurring when all the probability is assigned to a single class.  Larger is better for both 

  and  .  As with the Brier and logarithmic scores, we can rescale   and   with nearly the same
3
 linear 

transformations used in (3) and (4) so that they range from 0 to 1: 

      (
 

    
)   (7) 

      (
 

   
)  (8) 

The information,  , is typically associated with the logarithmic score because it estimates the true 

(negative) entropy that is a component of the decomposition of that score (Bickel 2010).  Likewise, the 

sharpness,    is usually associated with the Brier score because it estimates the sharpness component of 

the decomposition of the Brier score (Murphy 1973). 

 

The logarithmic score (hereafter referred to as the log score) is a local rule, in the sense that it 

accounts only for how well the Bayes net predicts the correct culture medium.  The Brier score, on the 

other hand, gives weight to the fidelity of the predictions for each of the culture media.  In other words, 

for any signature system that produces a vector of probability estimates, the log score rewards the system 

only for putting high probability on the correct class, while the Brier score rewards the system for 

putting low probability on all the incorrect classes (and necessarily, a relatively large amount of 

probability will be assigned to the correct class).  In many, if not most, instances, the log score is 

preferred because it agrees with the likelihood principle and it provides a more consistent basis (Winkler 

1996, Bickel 2010) for comparing the performance of several signature systems. We include the Brier 

score in the discussion primarily because of its common historical use. 

3.2.2 Fidelity of the Bayes Net Combinations 
 

We chose to evaluate the 15 combinations of 4 assays using the rescaled Brier and logarithmic 

scoring rules.  Figure 2 illustrates the rescaled log score (L
R
) versus the rescaled information (I

R
) and the 

rescaled Brier score (B
R
) versus the rescaled sharpness (S

R
).  The scores obtained from calculating these 

quantities for each of 1000 bootstrap sample results are displayed as bag plots (Rousseeuw, Ruts, and 

Tukey, 1999).  Bag plots are essentially two-dimensional box plots where, typically, the inner 50% of 

the data are contained in the innermost bag.  The outermost bag (referred to as the loop) is the convex 

hull that contains all points not deemed to be outliers.  The small red dots indicate outliers that are 

outside the loop.  The bag plots provide a sense of the error in the estimates of the various scores.  

Informally, if the bags of two combinations overlap, this suggests the fidelity of the corresponding 

combinations may be indistinguishable.  

 

Inspection of Figure 2 reveals the two pairs of scoring rule metrics (L
R
, I

R
) and (B

R
, S

R
) both lead to 

similar conclusions:  combinations c1, c3, c4, and c11 appear to be the most promising in terms of both 

their fidelity (measured by L
R
 and B

R
) and their information or sharpness (I

R
 and S

R
).  The overlap of the 

bagplots suggests these combinations are statistically similar.  These results are corroborated by metrics 

of risk and utility, as discussed below. 

 

                                                      
3
 The only difference being that the coefficient in (8) is the negative of the coefficient in (4). 
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Figure 2: Bayes net models evaluated by rescaled logarithmic score vs. the rescaled information 

and rescaled Brier score vs. the rescaled sharpness.  The median values plotted in panels (A) and 

(C) were calculated from the 1000 bootstrap samples of each combination.  Likewise, the two-

dimensional boxplots (known as bagplots) of the 1000 bootstrap samples for each combination are 

shown in panels (B) and (D). 

 

3.3 Cost and Other Attributes 

 

There are two important considerations with regard to the resources consumed when exercising the 

Bayes net signature system:  1) the monetary cost to perform the assays, and 2) the sample size required 

for each assay.   The cost of analyzing a single sample (including sample processing) using a given assay 

was estimated using prices posted on websites by commercial laboratories.  In Table 3, we list them as 

approximate because there may be slight variations from one laboratory to the next.  While these prices 

will change over time, these specific cost estimates serve the purpose to illustrate how we account for 
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cost in the SQM analysis.   In what follows, the cost of each Bayes net combination was calculated by 

summing the costs of the assays in that combination (as shown in Table 1).  

 

In many cases, we anticipate the amount of biological material available for analysis will be small.  

Many of the assays are destructive, and it will often be desirable to not consume the entire sample so that 

additional, confirmatory tests may be performed as desired.  Consequently, the forensic sample is the 

most precious resource consumed by the Bayes net signature system.  Thus, if two assays provide the 

same (or similar) forensic intelligence, the one that consumes the least amount of biological sample is 

preferred.  Alternatively, we want to “spend” the sample on assays that provide the greatest insight.  The 

sample size is analogous to a cost, expressed in terms of mg of sample consumed instead of dollars 

spent.  Approximate sample sizes are provided in Table 3.    

 

Another attribute that might be of interest would be the time required for sample processing and 

analysis for each of the assays.  For this analysis, however, we did not include the attribute of time 

because the relatively minor differences in processing time among the assays would be insignificant 

compared to the amount of time that would be required to deliberate and execute a comprehensive 

forensic investigation. 

  

Table 3.  Estimated commercial costs and sample size requirements for a single sample 

Assay Cost ($) Sample Size (mg) 

SIMS:  Elemental content 200 0.1 

MALDI-MS:  Heme analysis 170 0.01 

ESI-MS: Agar analysis 250 1.0 

IRMS:  C,N isotope ratio and Agar analysis 100 0.3 

 

3.4 Risk 

 

 While the Bayes net heretofore discussed only makes predictions about the likelihood that a 

particular culture medium was used to grow the organism of interest, investigators ultimately need to 

associate the predicted culture medium with potential suspects.  As the perpetrator clearly must have the 

specialized knowledge required to produce B. anthracis spores, one way to make this association is to 

link the culture medium to research institutions that are known to have used that particular medium to 

culture B. anthracis and to focus the investigation on individuals associated with those institutions such 

as current or former employees, students, or trainees.  Consequently, our conceptual model for assessing 

the risk of the Bayes net signature system is that law enforcement officials will sequentially investigate 

institutions that are likely to be associated with the culprit, beginning with the most likely institution(s) 

first, followed by the next most likely, and so on.  For convenience, we will use the term culpable 

institution
 
to refer to the institution whose investigation leads to the identification of the

 
culprit.  

However, this terminology is not meant to infer that an institution itself is culpable. 

 

Thus, we calculate risk as a function of the number of institutions investigated until the culpable 

individual(s) are found. If a particular combination of assays results in a Bayes net signature system that 

results, on average, in five institutions being investigated before a culprit is identified, that combination 

has lower risk than, say, a combination that results in investigating six institutions on average before 

identifying the culprit.  While not perfectly realistic, this measure of risk more closely reflects the 

context of the use of the signature system than do measures of fidelity, like the log and Brier score.   
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3.4.1 Extending the Bayes net 
 

 Webb-Robertson et al. (2012) extended the Bayes net to predict likely institutions and even 

geographical regions where suspects may be present.   By curating scientific literature, Webb-Robertson 

et al. (2012) related culture media used to grow Bacillus species with those institutions where they were 

grown.  They identified over 2,469 documents with abstracts that mention a Bacillus species published 

between 2001 and 2011.  A random sample of 150 documents was taken from the twenty-five journals 

with the most publications among the identified documents.  The text from the title, authors, institutions, 

abstract, and Materials and Methods sections was extracted from these 150 documents. Two 

microbiology students independently reviewed each of the publications’ abstract and Materials and 

Methods sections following a strict protocol to annotate each citation with the specific culture medium 

used (e.g., tryptic soy broth). The annotation protocol was as follows:  1) read the abstract and Materials 

and Methods sections, 2) open spreadsheet, 3) indicate whether the document indeed mentioned cultured 

B. anthracis, 4) note the culture media, 5) look again, and 6) record any additional information.  Among 

the 150 annotated documents 144 were validated to be associated with Bacillus, and in 52 of those, they 

were able to identify the culture medium or media with confidence.   

 

Subject matter experts identified a set of 34 key words (83 including abbreviations and spelling 

variations) that would be associated with the culture media found within the 52 documents.  Identifiers 

were chosen for the culture media and for institutions at the institution level (e.g., Florida Department of 

Health, Bureau of Laboratories is simply coded as the Florida Department of Health).  Each of these 52 

documents has 1) binary vectors of size 83 where a ‘1’ indicated the presence of a particular key word, 

2) the institution(s) that were listed as associated with the authors of the manuscript and 3) the culture 

medium (or media) used to grow Bacillus.  The remaining 92 documents (144 total Bacillus documents 

less the 52 annotated documents) had the first two sets of descriptions, key words and institutions, but 

the true culture medium was unknown.  A total of 84 institutions were represented among the 

documents. We subsequently refer to the institution and culture medium data obtained from the literature 

as the textual data. 

3.4.2 Risk Model 
 

 As with the scoring rules from Section 3.2.1, for the sake of simplicity we omit distinguishing 

subscripts for the 1000 bootstrapped test datasets.  Thus, the following definitions apply to a particular 

combination of assays and a single bootstrapped test dataset.  Let         index the Bayes net 

combinations defined in Table 1.  Let         index the institutions, where, in this case,    
   institutions were identified via the curating process described in Section 3.4.1.  We use         to 

index the 11 culture media, and           to index the measured outcomes of a single “sample” 

grown in culture medium   in the test dataset.  Let      denote the space of assay measurements, 

where             , depending on the number of assays in the particular Bayes net combination, and 

let      denote the random vector of assay measurements, and    
 represent the observed assay 

measurement for sample   .  Sometimes we will refer simply to an observed datum   when it is not 

necessary to distinguish between culture media or sample replicates in the test dataset. 

 

Let   represent the culpable
 4 

institution, the investigation of which will lead to the successful 

identification of the culprit(s).  We define   as a discrete random variable that takes values in the set 
{       }.  Hence,      will indicate that institution   is culpable, and  (   ) will represent the 

corresponding probability.  For simplicity, we assume there is only one institution whose investigation 

                                                      
4
 For convenience, we often refer informally to   with admittedly imprecise language such as the culpable 

institution. Or we may refer to  (   ) as the culpability probability of institution      
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will lead to identification of the culpable party.  Let   represent the true culture media used to grow the 

microorganism in the attack, taking values in {       }.   Thus,     indicates that culture medium   
was used, and  (   ) represents the corresponding probability of that event.  Again, we assume only 

a single culture medium was used to grow the microorganism.  Clearly, the series of possible events 

leading from the prediction of the culture medium to correctly identifying and prosecuting the culprit are 

complex.  While these simplifying assumptions of the risk model may lack realism, they provide a 

framework that makes it possible to compare one Bayes net combination to another in terms of risk. 

 

Let      (   ) and  (   ) represent a priori probabilities
5
 for the culture medium and 

institutional culpability probabilities, respectively. Values of    may be chosen based on the prevalence 

of the culture media, as some media may be more common (or preferable to use) than others.  However, 

in the absence of such information, a non-informative prior distribution could be used where each culture 

medium is equally likely, i.e.        ⁄   Values of  (   ) may be chosen based on available 

information, e.g. institution size, location, and/or their known capability to produce certain 

microorganisms.  Or, a non-informative distribution could be used such that   (   )    ⁄  for all  .   
Naturally, these probabilities must be chosen such that ∑       and ∑  (   )   .   

 

We estimated the values of    using the counts of the number of instances where a particular culture 

media was mentioned in the textual data.  These are shown in Table 4.  Of the 11 culture media 

considered in this work (see Table 2), only 8 were represented in the textual data, i.e., all but GA, GB, 

and NSMB.  To reconcile this discrepancy, we assumed GA, GB, and NSMB are unlikely to be used 

and, consequently, we set their prior probabilities to be small (0.005) to reflect the fact they were not 

observed in the textual data, but also not exclude them entirely.  The media NA and NSMA were not 

distinguished from each other in the textual data, i.e., they were given the same label.  We chose to set 

the prior probabilities for NA and NSMA to be equal to half the frequency with which the single label 

occurred in the textual data, thereby presuming that NA and NSMA are equally likely.   The remainder 

of the probabilities were chosen by dividing the count by 171 (the sum of the counts) and then 

renormalizing so that ∑      . 

 

 

Table 4:  Assigning the prior probabilities,   , of the culture media, using the textual data.  Media 

acronyms are defined in Table 2. 

Media BA GA GB NA NB LBA LBB NSMA NSMB TSA TSB 

Count 11 0 0 6 15 39 22 6 0 35 10 

   0.0752  0.0050 0.0050 0.0410 0.1026 0.2668 0.1505 0.0410 0.0050 0.2394 0.0684 

 

In comparing the 15 Bayes net combinations, we proceed with the assumption, for a given culture 

medium, that institutions capable of producing Bacillus are likely to be culpable, a priori, based on the 

frequency with which they discuss using a particular culture medium in scientific publications.   

Specifically, institution   is deemed capable of obtaining and using culture medium   if they published on 

having done so in the textual data.  We represent institutional capability symbolically as  (      
 )   , that is, there is a non-zero prior probability that institution   is culpable, given that culture 

medium   was used in the attack.  Institution   is deemed incapable of using culture medium   if there are 

no records in the textual data of that institution using that particular medium, in which case   (  
     )   .   Because our textual data were obtained from a sample of the literature, the prior 

estimates of institutional culpability and culture media prevalence obtained from the textual data will be 

                                                      
5
 These probabilities reflect our best guess of the culture media prevalence and the probability of institutional 

culpability before assay data from a forensic sample are available. 
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subject to sampling bias.  In particular, it is likely there are cases where we incorrectly set  (      
 )    because we simply did not observe any cases where institution   published about using culture 

medium  .   Notwithstanding these limitations, for the purpose of illustrating the methodology of 

calculating the risk, we proceed with the understanding that conclusions from our example analysis may 

be inaccurate because of limitations in both the textual and assay data.   

 

We now define a capability matrix,   {   }, with   rows and   columns, where     is a count of 

the number of articles in the textual data where institution   mentions the use of culture medium  .   If 
any of the rows of   are equivalent, the publishing profiles of the corresponding institutions are 

identical.  There were 11 instances where 2 or more institutions had identical publishing profiles, making 

it difficult for the extended Bayes net model to distinguish the culpability of these institutions. We used  

  to estimate the prior conditional culpability probability for each institution and the prevalence of the 

culture medium to arrive at the estimate of the marginal culpability probabilities, as follows: 

 

 (   )   ∑  (       ) (   )
 
   

 ∑ (
   

∑    
 
   

) (
∑    

 
   

∑ ∑    
 
   

 
   

)   
   

∑    
 
   

∑ ∑    
 
   

 
   

     (9) 

In the absence of assay data and a prediction of the culture medium from the Bayes net, these a 

priori estimates of the institutional culpability probabilities    would guide the order in which an 

investigation would take place.  The institution with the largest    would be investigated first, followed 

by the institution with the next largest     and so on. We make the simplifying assumption that the culprit 

will successfully be identified after investigating one, several, or, in the worst case scenario, all, of the   

institutions.   When there are ties in the   , we assume institutions with ties are investigated in a 

randomized order.  In what follows, it will be useful to rank the   ’s such that the largest    is ranked 1  

and the smallest receives rank  , and the sum of the ranks is ∑   
     (   )  ⁄     Ties are handled by 

averaging the corresponding ranks, as illustrated in Table 5.  We define the vector of ranks of a priori 

probabilities as follows:     (    (  )     (  )       (  ))
 
. 

 

Table 5:  Example of average ranking method for four institutions 

                               

  4 2.5 1 2.5 

 

 In the more meaningful situation where assay data from a forensic sample are available, (9) can be 

modified by replacing the prior probability     (   ) with the posterior probability,    (     ), 

obtained from Bayes net combination  , as follows: 

   (     )   ∑  (       )  (     ) 
    ∑ (

   

∑    
 
   

)   (     ) 
    (10) 

Let   ( )  (    (  (     ))      (  (     ))       (  (     )))
 

 represent the ranks 

of the posterior probability estimates of institutional culpability obtained from Bayes net combination  . 

Again, we make a simplifying assumption that the cost,  , of investigating a particular institution is the 

same for all institutions.   We now specify a loss function that reflects the cost of the number of 

institutions investigated until the culprit is found.  The posterior loss function is given by 

  (    ( ))        (  (     ))     
  ]( )    (11) 

respectively, where the value of the superscript   ] indicates the    element of the posterior rank vector 

  ( ).  For example, if the culpable institution is      the posterior loss would be  (    ( ))  
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  ]( )        (  (     ))    If there are ties among the   (     ), the average ranking 

method reflects the assumption that tied institutions are inspected in a random order.  Consequently, the 

loss function in (11) returns the expected, or average, loss for the tied institutions.  To illustrate, consider 

again the ranking in Table 5 and suppose    .  Because      , we randomly choose to investigate 

either institution 2 or 4. If institution 2 is investigated before 4, the cost will then be   , since we must 

investigate institutions 3, 2, and then 4 before finding the culprit.  Because the ordering is random, 

investigating institution 2 before 4 occurs with probability one half.  If we randomly choose to 

investigate institution 4 before 2—which again occurs with probability one half—the cost will be   .  

Hence, the expected cost, or expected loss, when    occurs is    (  )     (  )      . 

 

To determine the risk we must average the loss over the variety of conditions that are reflected in the 

assay test data, i.e., averaging over the distribution of     Let  (   ) denote the conditional distribution 

of   given that institution   is culpable.  The conditional risk of Bayes net combination  , i.e., the 

expected loss when   is culpable, is given by 

  (   )  ∫  (    ( ))  (   )
 

, (12) 

where   (   ) is a flexible measure theoretic notation that accommodates any combination of discrete 

or continuous elements of  .  For example, if all the elements of   were discrete, then (12) can be 

written as the finite sum of the loss function multiplied by the corresponding elements of the probability 

mass function associated with  (   ).  If all the elements of   were continuous, the integral in (12) 

would still remain, but   (   ) would be replaced with  (   )  , the corresponding conditional 

density function and the variable of integration.  In practice, we often estimate  (   ) using the 

empirical cumulative distribution function calculated from the test data.  For our Bayes net problem, 

applying this approach requires that we first define    {        }  the set of culture media that 

could have been obtained or used by institution  .  We can then define the empirical estimate of  (   ) 

by assigning probability mass to each element of the dataset.  Specifically, we have 

  (     
|   )   (     

|       ) (       )  
 

  
 

  

∑       

      (13) 

This estimate of  (   ) assumes that within a culture medium, each observed data point    
 is equally 

probable and the set of    
 (             ) in the dataset are a comprehensive representation of the 

distribution  (     ).  Using (13) we can estimate the conditional risk (12) as follows: 

  ̂(     )  ∑ ∑  (    (   
))

  

        
    (14) 

When evaluating the various combinations of Bayes nets, it is of interest to average the conditional 

risk in (12) across the possible institutions, weighted by the a priori culpability probabilities of the 

institutions.  This is known as the Bayes risk: 

   ( )  ∫  (   )  ( )
 

  (15) 

where   denotes the support, or range, of  , and   ( ) is the prior probability measure for     Thus, for 

hypothetical Bayes net combinations   and  ,  if   ( )   ( )  then   is preferred to   in terms of risk.  

To compare the 15 Bayes net combinations, we estimated the Bayes risk of Bayes net combination   by 

averaging (14) over the prior institutional culpability probabilities as follows: 

  ̂( )  ∑  ̂(      )  
 
    (16) 

We calculated (16) for each of the 1000 bootstrapped test datasets produced from each of the 15 Bayes 

net combinations.  Doing so requires the assumption that dependencies induced by estimating  (   ) 

with overlapping (bootstrapped) test datasets are non-consequential (i.e. the estimates will behave as if 
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they had been calculated on independent test datasets).   Given the definition of the loss function in (11),  

equation (16) is an estimate of the expected investigation cost (EIC).   

3.4.3 Calculation 
 

 In calculating the EIC, we set     in the loss function.  Thus, the EIC may be interpreted as the 

expected number of institutions that would be investigated before identifying the culprit. Keep in mind 

that these estimates of the EIC only reflect the information available from the Bayes net prediction of the 

culture medium and the fairly limited sample of the textual data. Boxplots of the estimated Bayes risk 

(16), calculated for each of 1000 bootstrapped samples of size 330 for each of the 15 test combinations 

are presented in Figure 3.  Corroborating the results from the fidelity metrics, combinations with lower 

EIC are preferred to those with higher EIC, which, for these data, are combinations 1, 3, 4, and 11.  

Referring to Table 1, c1 included all four assays, c3 consisted of MALDI, ESI-MS, and IRMS, c4 

included SIMS, ESI-MS, and IRMS, and c11 included only ESI-MS and IRMS.  It may be of interest 

that these four combinations always included ESI-MS and IRMS tests, which suggests that ESI-MS and 

IRMS are most effective in minimizing the expected cost of sequentially investigating institutions until 

the culprit is identified. 

 

 
Figure 3:  Boxplots of the EIC,  ̂( )  of 1000 bootstrapped samples for each test combination 

 

3.5 Applying Decision Science 
  

 Comparing signature systems on the basis of multiple attributes often leads to tradeoffs for decision 

makers.  As discussed by Edwards et al. (2007) and others, a good place to begin is to list possible 

outcomes in terms of attributes of interest for each signature system and then compare the various 

systems (in our case, Bayes net combinations) in terms of their performance with respect to each 
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attribute.  For example, suppose some system (call it A) is better than another system (call it B) for at 

least one attribute, and that A is at least as good as B with respect to the remaining attributes.  Then 

system B would be considered inferior to A and would be removed from future consideration. This 

process can be repeated for each system until all inferior combinations are identified. Those that remain 

constitute the Pareto frontier (Henderson and Quandt, 1980), also called the efficient frontier (Keeney 

and Raifa, 1976).    

 

Some attributes are stochastic, (e.g. the EIC), because they are functions of data. When using 

stochastic attributes to compare combinations, we must approach the comparison with care to ensure that 

as we attempt to identify inferior solutions, the difference observed between two combinations is 

statistically meaningful.   At this point, we avoid the formal notion of statistical significance, because 

traditional statistical hypothesis tests (e.g. t-test, Wilcoxon rank-sum test), which determine whether the 

means of two populations are distinct, require independent observations.  Clearly this was not the case 

for our analysis of the Bayes net combinations because the bootstrapped datasets were all generated from 

a single test dataset.  Nonetheless, we compared the distributions of stochastic attributes in an informal 

manner, e.g. using boxplots, and if overlap is observed or suspected in their distributions (especially 

overlap in the inner quartile ranges of two Bayes net combinations), then those combinations may be 

statistically indistinguishable in terms of that attribute.  Such statistical ties may be resolved by using 

other attributes as a basis for comparison, which can be formally accomplished by employing a utility 

analysis, presented below. 

 

In Table 6, we compare the 15 combinations on the basis of three attributes:  EIC, the sample size, 

and the total assay cost.
6
   Recognizing that it is better to have smaller risk, a smaller sample size, and a 

smaller cost, we can begin to pare down these fifteen combinations by removing those that are inferior to 

another combination.  Specifically, a combination (call it A) is inferior to another combination (call it B) 

if 1) all of the attributes of A are equally or less preferable than the corresponding attributes of B, and 2) 

for at least one attribute, A is strictly less preferable than B. 
 

Table 6:  Multiattribute assessment of each assay combination.  The estimated Bayes risk,  ̂(  )   
is averaged over the 1000 bootstrap samples.  Non-inferior combinations are highlighted with 

enclosing rectangles. 

 

Combination 
EIC 

(Number of Institutions) 

Sample Size 

(mg) 

Assay Cost 

($) 

c1 16.46 1.41 720 

c2 22.37 1.11 620 

c3 16.43 1.31 520 

c4 16.83 1.4 550 

c5 19.89 0.41 470 

c6 28.06 0.11 370 

c7 22.88 1.1 450 

c8 20.67 0.4 300 

c9 22.48 1.01 420 

c10 19.67 0.31 270 

c11 16.82 1.3 350 

c12 26.42 0.1 200 

                                                      
6
 We did not include a measure of fidelity in the analysis because they are closely related to risk.  However, we 

could have used the log score instead of the Bayes risk as one of the attributes. 
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Combination 
EIC 

(Number of Institutions) 

Sample Size 

(mg) 

Assay Cost 

($) 

c13 26.85 0.01 170 

c14 23.87 1 250 

c15 20.45 0.3 100 

 

Using Figure 3, we can informally identify combinations that are statistically indistinguishable in 

terms of their EIC if the box (defined by the inner quartile range) of one combination overlaps the 

median (defined by the solid line inside the box) of another combination.  We will consider the 

following pairs enclosed in parentheses as having the same EIC:  (c1, c3), (c4, c11), (c10, c5), (c8, c15), 

and (c2, c9).  Note that c1 has a larger sample size and cost than c3, while the EIC is statistically 

equivalent.  Thus, c1 is inferior to c3.  The same is true for c4 versus c11.  Following this process of 

elimination, the inferior combinations can be identified as follows: 

 c1 is inferior to c3, 

 c4 is inferior to c11, 

 c5 is inferior to c10, 

 c8, c9, and c14 are inferior to c15, 

 c2, c7 are inferior to c9, and 

 c6 is inferior to c13. 

This leaves c3, c10, c11, c12, c13, and c15 as the combinations that comprise the Pareto frontier with 

respect to risk, sample size, and cost. The frontier, which has the appearance of a convex hull, is 

illustrated by the red points in Figure 4. 

 
Figure 4:  Three-dimensional scatter plot of attributes listed in Table 6.  The red points indicate 

the Pareto frontier. 
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The only way to decide between combinations on the frontier is to determine the value we place on 

each of the attributes.  Which of these matters the most:  EIC, sample size, or assay cost?  Which matters 

least?  And by how much?  A multiattribute decision analysis (Keeney & Raiffa, 1976, Edwards et al. 

2007) addresses these questions, and ultimately, helped us identify the preferred Bayes net 

combination(s).  This involves constructing a single attribute utility function for each of the three 

attributes, and then aggregating them together in an additive or multiplicative fashion, as we discuss 

next. 

3.5.1 Utility Analysis 
 

 Following the approach of Keeney (1972), we construct a multiattribute utility function of three 

attributes:  1) the investigation cost incurred to identify the culprit, 2) sample size, and 3) assay cost.  

The expectation of the multiattribute utility function will serve to compare all fifteen combinations, and 

in particular, the set of combinations that are on the Pareto frontier.  Hence, the multiattribute utility 

function will replace the loss function in (12), (14), and by extension, (16).   

 

 The first step is to elicit a single attribute utility function,           ]      ], for each attribute   

that reflects the utility we ascribe to the attribute for a given value of  .   While     is usually 

monotonic, it does not have to be.  An increasing     is used when larger values of the attribute are 

preferred to lower values.  A decreasing    is used when smaller values of the attribute are preferred to 

larger ones.  Thus, larger utility is always preferred to lower utility.  A linear    represents a constant 

rate of change in the utility as the value of the attribute,  , increases. Exponential (or other curved 

shapes) model an increasing or decreasing rate of change in the utility, corresponding to convex and 

concave shapes, respectively.  Nonlinear utility functions are appropriate when the change in utility 

resulting from a unit increase in   depends on the value of      For example, if increasing    from 

         results in a greater (or smaller) change in utility than we obtain by increasing    from 

           the utility function would be nonlinear.  A variety of techniques exist for helping 

investigators construct single attribute utility functions that best suit their values and preferences (Berger 

1985, Keeney & Raifa 1976 , Edwards et al., 2007). These often include using a gamble (or lottery) 

heuristic (Berger 1985). 

 

 

Let         index the attributes we will use to compare two or more signature systems, let    

denote the value of attribute  ,  and let    denote the corresponding single attribute utility function. 

Also, let   (          )   represent the vector of attributes measured for a particular signature 

system.  Under reasonable independence conditions (Keeney & Raiffa 1976), a common choice for the 

multiattribute utility function is given by  

  ( )  ∑     (  ) 
    (17) 

or 

  ( )  
 

 
(∏ (       (  ))    

   ) (18) 

where        for all  ,        and    .  For both (17) and (18),  ( ) takes values in the unit 

interval, provided each    maps to the unit interval.  For attributes    observed on system   and    

observed on system  , system   is preferred to   if  (  )   (  ).  If any of the attributes are 

stochastic, then system   is preferred to   if  ( (  ))   ( (  )), where the expectation is taken over 

the joint distribution of  . 
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The additive utility function7 in (17) is appropriate under the assumption of additive independence 

and requires ∑      
   .  There are a number of approaches for determining whether additive 

independence is a valid assumption (Keeney & Raifa 1976, Delquié 1997) and for choosing the 

attributes such that additive independence is preserved (Edwards, et al 2007).   Likewise, there are 

several approaches for choosing the weights,   , that reflect the value investigators place on each 

attribute (Keeney 1972, Ma et al. 1999, Wang & Parkan 2005, Wang & Luo 2010, and Goicoechea et al. 

1982, Section 4.3.3).   While the form of the multiplicative utility model (18) is more complex than (17), 

it does not require the specification of additional parameters beyond those required by the additive form, 

because the value of   can be obtained from the   . When additive independence is not satisfied, 

investigators should use the more appropriate multiplicative utility model.  The value of   can be 

obtained by numerically solving the following equation using an iterative root-finding algorithm: 

     ∏ (     ) 
    (19) 

If ∑      
   , the solution will lie in the open interval (    )   If ∑      

   , the solution will be 

greater than 0.  However, if  ∑      
   ,  the additive model (17) should be used. 

 

3.5.1.1 Determining the Single Attribute Utility Functions 
 

 We now demonstrate the utility analysis for the Bayes net combinations.  To begin, we must identify 

the single attribute utility functions for investigation cost, sample size, and assay cost.  While we refer to 

these single attribute utility functions as the “utility of investigation cost” or the “utility of the sample 

size,” it is important to clarify that these single attribute utility functions actually represent the utility (or 

benefit) we ascribe to a Bayes net combination that has a specified value of the attribute.  For example, 

the single attribute utility function for sample size provides the utility we ascribe to the Bayes net 

combinations that have a given sample size.  We begin by presenting a generalized version of a single 

attribute exponential utility function.  We will then apply it to our three attributes of interest. 

 

 For simplicity, we temporarily omit the subscript,  , that distinguishes one attribute and another. As 

before, let   denote the value of single attribute, where         .   Here,    could be the worst, least 

preferable value of  , and that     is the best, or most preferable.  Alternatively,     could be the worst 

and    the best.  Either way works, so long as these endpoints represent the two preferential extremes 

over the domain of  . Let     (  –    )   (    –    ) denote a linear normalization of   such that   
    .  The single attribute exponential utility function is given by  

 
 ( )     (      ) (

   (    )  

   (  )  
)     

 ( )     (      )      
    (20) 

where      (  ),       (   ),         (       ), and   is a shape parameter that governs the 

extent of the convexity or concavity of  ( ).  The interval     (      )      (      )] is the range of 

 ( ).  The first equation in (20) is a parametric curve that can be increasing, decreasing, convex, or 

concave.  The second equation is linear, and it can also be increasing or decreasing. 

 

 The utility function is increasing in   if        and decreasing if          The three parameters, 

  ,    , and    must be elicited from the investigator.  The extreme values of  ( ),    and    , are 

relatively straightforward to estimate as they indicate the minimal or maximal values of the utility 

function.  Typically, they will be 0 and 1, or 1 and 0.  For    ,  ( ) is convex, and the larger the value 

                                                      
7
 The additive utility model is a special case of the multiplicative model.  Consequently, (18) reduces to (17) 

when ∑      
   . 
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of  , the more convex the function becomes.  Likewise,     results in  ( ) being concave. For    , 

 ( ) is nearly linear.  Not surprisingly, it is straightforward to show using l'Hôpital's rule that the convex 

or concave exponential utility function converges to the linear function as   becomes small:  

        { 
  (      ) (

   (    )  

   (  )  
)}     (      )  . (21) 

 The parameter   is arguably the most difficult to determine. It is chosen to reflect the investigator's 

preference in how the utility changes as   changes throughout its domain. Once    and     are specified, 

a single point (    (  )) can be used to solve for the value of  .  A technique motivated by utility 

theory that is often employed (Keeney & Raiffa, 1976) to elicit the value of   involves an investigator 

determining a certainty equivalent for the attribute.  To illustrate the concept of a certainty equivalent, 

consider an example where you are offered 1) either a guaranteed amount of money,   , where     
   , or 2) a lottery with a 50% chance of winning $100.  How large or small would   have to be for you 

to be just willing to risk losing $  for a 50% chance to win $100?  Alternatively, how much would you 

be willing to pay in order to play the lottery? 

 

 Speaking now more generally, an estimate of the certainty equivalent,   , can be found by 

identifying the value of    such that an investigator is indifferent between having    for certain versus a 

50% / 50% lottery of having     or    .  Once the certainty equivalent is specified, the value of   can be 

obtained as follows.  To simplify the following algorithm, denote the midpoints of the domain and range 

of the utility function by   ̃  
      

 
 and  ̃  

      

 
, respectively.   

 

1. If     ̃, the utility function is linear, and       
2. If     ̃ and    , or if      ̃ and     , the solution for   will be positive.  Set the first 

equation in (20) equal to  ̃ and solve for   numerically over the range of (    ), for suitably 

large     . 

3. If     ̃ and    , or if      ̃ and     , the solution for   will be negative.  Set the first 

equation in (20) equal to  ̃ and solve for   numerically over the range of (     ), for suitably 

large     .  

 While the simplicity of the exponential utility function is appealing, it also has its limitations.  Other 

functional forms for single attribute utility functions are possible, and there are more comprehensive 

methods for eliciting utility functions.  For example, multiple points in the utility space may be elicited 

from a decision maker and the curve that best fits the points may be used as the utility function. See 

Keeney & Raiffa (1976) and Berger (1985) for more discussion and examples. 

 

We will construct a single attribute utility function for each of the three attributes of interest, 

investigation cost, sample size, and assay cost, which we will distinguish using the subscripts       and 

 , respectively.  For example, we write the utility function for investigation cost as    (  ).  The 

parameter values of the utility functions reflect our preferences—but we do not assert that these values 

are best.  Furthermore, the preferences of other decision makers would likely lead to different parameter 

choices.  The parameter values we chose for the three single attribute utility functions are shown Table 7, 

with corresponding graphs shown Figure 5. 

 

For each attribute, we set    equal to the smallest value of the attribute observed in the original test 

dataset, and     equal to the largest value of the attribute in the original test dataset. For all three 

attributes, we chose decreasing utility functions (evidenced by       ), because low investigation cost, 

small sample size, and low assay cost correspond to high utility.  The admittedly unusual values of   
  

and   
   where chosen to ensure that the range of the expected utility of investigation cost,  (  (  )), 

was     ].  This is discussed in more detail in Section 3.5.1.3.  Using the lottery method discussed above, 
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we chose values of the certainty equivalents for each attribute that seemed reasonable and solved for the 

corresponding value of  .   

 

Table 7:  Parameter values for single attribute utility functions 

 
Attribute Subscript                   

Investigation cost 1 1 83.5 2.503        25       

Sample size 2 0.01 1.41 1 0 1        

Assay cost 3 100 720 1 0 441   

 

We elected to use a convex nonlinear utility function for investigation cost to reflect the fact that an 

increase in investigation cost from 1 to 20 is less preferred than an increase from 60 to 80.  This 

emphasizes the value of having a low investigation cost, which results when the correct, culpable, 

institution is investigated early on.  In other words, we would be willing to risk incurring an additional 

investigation cost of (                         ) in order to have a 50% chance of correctly 

picking the institution at the beginning of the investigation and thus have an investigation cost of one 

institution.  This type of risk preference is an example of what is commonly known as risk seeking, or 

risk prone (Keeney & Raiffa, 1976). 

 

We used a concave nonlinear utility function for sample size to reflect the fact that a change from, 

say, 0.1 mg to 0.5 mg would be preferred over a change from 1 mg to 1.5 mg, because the sample is a 

finite resource.  In other words, when the sample is nearly consumed by various test assays, it becomes 

increasingly valuable.  Thus, Bayes net combinations that consume more of the sample have less utility 

than those which consume less, and the rate of decrease in utility for combinations with higher 

consumption is more pronounced than for combinations with lower consumption.  This concave utility 

function reflects a risk averse preference (Keeney & Raifa, 1976). 

 

We assumed a risk neutral, linear utility function for assay cost, which seemed reasonable because 

the assay cost ranges over a relatively small interval (from $100 to $720). 

 
Figure 5:  Single attribute utility functions for investigation cost, sample size, and assay cost.  

Dotted lines indicate the certainty equivalents and their corresponding utility of 0.5. 

3.5.1.2 Determining the Weights 
 

 Having constructed the utility single attribute utility functions, we can now determine the relative 

value weights,   ,            for risk, sample size, and cost, respectively.  We use the methodology 

discussed by Keeney (1974). 
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We begin by considering five extreme, hypothetical outcomes that could arise from various Bayes 

net combinations. These five cases, labeled                    , are presented in Table 8.  Note these 

five cases are not the same as the 15 combinations, c1-c15, discussed earlier.  Specifically,    and    
represent the two hypothetical Bayes net combinations that would take on the most desirable or least 

desirable values of each attribute.
8
  This is important because it ensures that the utility of the most 

desirable hypothetical combination,   , is 1, i.e.   (                   )     and the utility of 

the least desirable hypothetical combination,   , is 0, i.e.   (                      )      
  

To determine     we must determine the probability,     such that we are indifferent between 1) 

having    for certain versus 2) a gamble of having    with probability     or having    with probability 

    .  Another way to express it:  Given we have    for certain, we must determine the smallest 

probability    such that we would accept a         chance of exchanging    for    (and gain the 

lowest possible sample size and cost) versus the (    )       chance of exchanging    for    (and 

raise the investigation cost to its worst possible value).  The value of    is then set equal to      Because 

the investigation cost is our principal measure of the performance of the Bayes net in predicting the 

culpable institution, it is far more important than sample size or assay cost, and consequently we chose 

          . 

 

Table 8:  Hypothetical cases for assessing the relative value weights 

Combination description Label 

Risk 

(Number of 

Institutions) 

Sample 

Size (mg) Cost ($) 

Most extreme cases 
Most desirable    1 0.01 100 

Least desirable    83.5 1.41 720 

Hypothetical cases where one 

attribute is the best and the 

others are the worst 

Invest. cost best    1 1.41 720 

Sample size best    83.5 0.01 720 

Assay cost best    83.5 1.41 100 

 

Employing a similar procedure for   , suppose we have    for certain.  Because sample size is 

important (but not as much as investigation cost), we would be willing to accept as small as a 20% 

chance of obtaining the lowest possible investigation cost and assay cost (i.e. exchanging    for   ) 
versus an 80% chance of raising the sample size to its worst possible value, 1.41 mg (i.e. exchanging    
for   ).  Thus,            Finally, suppose we have    for certain.  Because assay cost is the least 

important attribute, we would be willing to accept as little as a 5% chance of obtaining the lowest 

possible risk and sample size (i.e. exchanging    for   )  versus an 95% chance of raising the assay cost 

to its worst possible value, $720 (i.e. exchanging    for   ).   Thus,             
 

In this instance, because                                 the multiplicative form 

of the utility function, (18), is appropriate.  Using these values of    ,           defined previously, 

solving (19) gives           .  Having now determined each of the components of the multiplicative 

utility function (        ,   ,      , and  ) we can calculate the utility for each Bayes net 

combination.   

 

                                                      
8
 The best and worst values of investigation cost, sample size, and assay cost in Table 8 correspond to 

rounded values of either    or     from Table 7.   
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3.5.1.3 The completed multi attribute utility function 
 

At this point, it is useful write the complete multiplicative utility function and its expected value.  

Beginning with the single attribute utility functions for sample size and assay cost, inserting the values of 

Table 7 into (20) and gives: 

   (  
 )    (exp [     (

  
      

         
)]   ) (exp     ]   )⁄     (22) 

   (  
 )    (  

     ) (       )⁄     (23) 

where   
  denotes the sample size and   

  denotes the assay cost for Bayes net combination  . The utility 

function for investigation cost is a function of the true institution,   and the assay data,  : 

   (    ( ))             (   [      (
  

  ]
( )  

      
)]   ) (         ]   )⁄     (24) 

where   ( ), the ranked posterior probabilities for combination  , is defined in Section 3.4.2, and 

  
  ]

( ) is defined in (11).   The multiplicative utility function (18) of the three attributes can be 

expressed as follows: 

 

 (    ( )   
    

 )  

        (    ( ))      (  
 )      (  

 )

       (      (    ( ))  (  
 )        (    ( ))  (  

 )        (  
 )  (  

 ))

               (    ( ))  (  
 )  (  

 )

    (25)  

where                                       , as discussed previously. 

 The expected utility is given by integrating (25) with respect to the joint probability distribution of 

              .  The expected utility,    (    ( )      )], is analogous to the Bayes risk (15), except 

the utility function is used instead of the loss function.  Because the sample size and assay cost are not 

stochastic, their distributions are degenerate.  Thus, the overall joint distribution reduces simply to 

 (   )   (   ) ( ).  Because the expected value of a linear combination is the linear combination of 

the expected values, we have 

 

   (    ( )   
    

 )]  

       [  (    ( ))]      (  
 )      (  

 )

       (      (  
 )    (    ( ))]        (  

 )    (    ( ))]        (  
 )  (  

 ))

               (  
 )  (  

 )    (    ( ))]

    (26) 

where the expectations are with respect to  (   ).  We calculate  [  (    ( ))] using (16), except the 

loss function   is replaced by    as defined in (24).  

 By design, the range of            is the unit interval, [0,1], i.e., the least preferable values of the 

attribute are assigned a single attribute utility score of 0, while the most preferable are assigned a score 

of 1.  However, based on the data in the test datasets, we chose the range of    to be              ] so 

that  [  (    ( ))] would range from 0 to 1, thereby making it comparable to the ranges of           .  

This is essential in order for the   parameters to weight the attributes in the way that reflects our 

preferences.  Had we chosen   
    and   

        [  (    ( ))] would have ranged from 0.538 to 

0.723, effectively diminishing the influence of investigation cost in discriminating between the Bayes net 

combinations—precisely the opposite of what we intended to achieve by assigning        .  The need 

to set   
         and   

          occurred because our three attributes are a mix of stochastic 

(  ) and non-stochastic (   and   ) attributes.  
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As we did with the EIC in Figure 3, we calculated the expected utility (26) for each of the 1000 

bootstrap samples in order to reflect the variability inherent in the data.  The results are shown in Figure 

6.   

3.5.2 Comparing the Bayes Net Combinations 
 

The expected multi attribute utility function (26) is a metric we may use to compare the 

combinations on the Pareto frontier (c3, c10, c11, c12, c13, and c15).  Referring to Figure 6, we can 

clearly rule out c10, c12, c13, and c15.  While combinations c3 and c11 have nearly overlapping utility 

distributions, c3 has the highest overall expected utility, reflecting our preferences for the attributes via 

the weights (        ) and the shapes of the single utility functions (        ).   

 

 
Figure 6:  Boxplots of the expected multiplicative utility (26) of 1000 bootstrapped samples for 

each test combination 

 

To further investigate the influence of the four assays on the Bayes net, note that c1, c3, c4, and c11 

all have statistically similar utility.  Referring back to Table 1, we see that c1 contains all the assays, c3 

excludes SIMS, c4 excludes MALDI, and c11 excludes both SIMS and MALDI.  This suggests that 

SIMS and MALDI are the least informative of the tests, while ESI-MS and IRMS are the most valuable.   

For the combinations where ESI-MS or IRMS were not performed (this includes all combinations except 

c1, c3, c4, and c11), the utility was considerably lower.   This suggests the C/N isotope ratio and the 

presence/absence of Agar result in the greatest utility, while tests for heme and metals (MALDI and 

SIMS) are the least useful.   However, it is likely that the primary reason why SIMS and MALDI appear 

to be less useful arises from the fact that the MALDI test for heme is indicative of only one culture 

medium, blood agar (BA), and the SIMS test for metals is only indicative of two culture media, glucose 

agar (GA) and glucose broth (GB) (refer to Table 2).  It may be that these tests perform quite well in 
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identifying these particular culture media—but unless these media have a very high prevalence within 

the literature, the performance of SIMS and MALDI will not easily be reflected in the aggregate 

measures of EIC and utility that we used, which also include the performance of the other eight culture 

media.  Table 4 indicates that BA, GA, and GB are rather rare, and so their influence on the EIC and 

utility calculations would be minimal.  Likewise, the fidelity metrics were aggregated across all culture 

media.  Consequently, excluding SIMS, MALDI, or both from the Bayes net did not severely impact 

fidelity of the Bayes net, which likely explains why c1, c3, c4, and c11 perform well in Figure 2. 

 

4.0 Conclusion 

 We demonstrated an approach for assessing the quality of a signature system designed to predict the 

culture medium used to grow B. anthracis.  The system was comprised of four chemical assays designed 

to 1) identify the presence of heme, 2) identify the presence of agar, 3) categorize the culture media food 

content via analysis of the isotopic ratios of C and N, and 4) identify the presence of Cu
2+ 

or
 
Zn

2+
.  The 

analytical results from any combination of these four assays can be used in a Bayesian network to predict 

the probabilities that the spores were grown using one of eleven culture media.  We evaluated 

combinations of the signature system by removing one or more of the assays from the Bayes net.  We 

measured and compared the quality of the various Bayes nets in terms of fidelity, cost, risk, and utility, a 

method we refer to as Signature Quality Metrics (SQM). 

 

Because the primary output of the Bayes net was a vector of posterior probability estimates of the 

culture medium, we measured fidelity using two proper scoring rules, the logarithmic score and the Brier 

score.  We also considered respective decompositions of those scores, the information and sharpness, 

which measure the strength of the probability predictions of the Bayes net.  We obtained estimates of the 

cost for commercial laboratories to conduct each of the four assays under consideration.  Combining the 

results of the Bayes net with information obtained from the scientific literature, we developed a risk 

model to calculate the expected number institutions that would have to be investigated before 

discovering the culpable party.  Another important attribute in this problem was the sample size, i.e., the 

amount of spores consumed by a particular combination of assays.  

 

We illustrated a multiattribute assessment of the fifteen Bayes net combinations with a utility 

analysis that reflected the value we placed on each of the attributes of concern:  investigation cost, 

sample size, and assay cost.  We accounted for variability in the estimates of fidelity, risk, and utility by 

calculating these quantities repeatedly on bootstrapped samples of the test data.  We demonstrated that 

the assays which detect heme and metals (Cu
2+

,
 
Zn

2+
) were the least useful.  That is, removing one or 

both of these assays from the Bayes net did not appreciably diminish the quality of the Bayes net in 

terms of fidelity, risk, nor utility.  However, both these assays are each only indicative of a small number 

of culture media (blood agar for the heme assay, glucose agar or glucose broth for the metals assay).  

Furthermore, based on the literature sample, blood agar, glucose agar, and glucose broth are not likely to 

be used often.  Thus, it is likely that while assays for heme and metals may be quite proficient in 

correctly predicting blood agar or glucose agar and glucose broth, their overall utility is diminished 

because they are of no value in predicting the remaining culture media which are more prevalent.  The 

question of whether the heme and metals assays are of merit could be addressed by dividing the culture 

media into two groups and repeating a similar SQM analysis for 1) blood agar, glucose agar and glucose 

broth, and 2) for the remaining eight culture media.   

 

As is the case for most mathematical models, our analysis required various assumptions—especially 

for the calculation of risk and utility.  One of the most important assumptions we employed for the risk 

and utility analysis was that the natural prevalence of the culture media was well-estimated by the extent 

to which they were mentioned in a sample of the scientific literature.  We also assumed that the a priori 
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likelihoods of institutional culpability (where culpability occurs if investigation of an institution 

eventually leads to correct identification of the culprit) were well-estimated by the amount of relevant 

literature produced by the institution.  However, there are likely numerous other factors beyond the 

extent of their publications that may influence the a priori probability that an institution is culpable. We 

also assumed that each institution, regardless of size or location, was equally costly to investigate and 

that if a culpable institution were investigated, the perpetrator would be identified. 

 

The data set used to develop (i.e. train) the Bayes net was gathered from a variety of sources in an 

opportunistic fashion.  This somewhat limits our ability to trust the data because it was not obtained from 

a single study whose purpose was to demonstrate the feasibility of the Bayes net.  Likewise, since the 

data used to evaluate the Bayes net combinations were derived from the training data, the performance of 

the Bayes net combinations is likely overstated.  However, the drawbacks of these limitations and 

assumptions are somewhat mitigated because the principal objective of our work was to make relative 

comparisons between the fifteen Bayes net combinations, as opposed to making absolute assessments of 

signature quality.  Because each of the Bayes net combinations are likely to be influenced by these 

limitations in a similar way, relative comparisons may still be meaningful. 

 

The arguably subjective choices for the components of the utility analysis (i.e., the forms of the 

single attribute utility functions and the attribute weights) may also be a concern.  However, a sensitivity 

analysis to explore the impact of those parameters could be conducted to determine the extent to which 

those parameters influence the comparisons. 
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