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SUMMARY 

This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal 

Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. 

Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory 

(ANL) are investigating a simplified solvent extraction system for providing a single-step process to 

separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the 

minor actinides from the lanthanide fission products. Currently, Am and Cm are the only minor actinide 

elements being considered; however, inclusion of Np and Pu in the actinide product stream may 

ultimately be considered as an option.  

The separation of the minor actinides from the other HLW constituents by solvent extraction is based 

on the selective complexation of certain metal ions in either the aqueous or organic phase. The solvent 

system investigated in FY 2012 combined octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine 

oxide (CMPO) with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester acid (HEH[EHP]), both of 

which were dissolved in n-dodecane. CMPO is known to extract trivalent actinide and lanthanide ions 

from nitric acid media by forming complexes of the type [M(NO3)3(CMPO)3] in the organic phase. 

Most other fission products form weaker complexes with CMPO and are therefore not extracted; a 

notable exception is Zr(IV), which is strongly extracted by CMPO. At low aqueous phase acid 

concentrations (e.g., pH 2 to 4), HEH[EHP] forms lipophilic complexes with a number of metal ions, 

including the trivalent actinide and lanthanides. However, by employing a complexing agent (e.g., a 

polyaminocarboxylate) that preferentially binds the actinides in the aqueous phase, the actinides can be 

separated from the lanthanides. In this case, the polyaminocarboxylate binds the actinides in the aqueous 

phase while the lanthanides are complexed by HEH[EHP] in the organic phase. In this work we 

investigated both practical aspects of the CMPO + HEH[EHP] system, and the fundamental chemistry 

involved. 

The extraction behavior in the CMPO + HEH[EHP] extraction system displays regimes in which the 

HEH[EHP] chemistry dominates (i.e., low HNO3 concentrations) and those in which the CMPO 

chemistry dominates (i.e., high HNO3 concentrations). At 0.1 mol/L HNO3 the lanthanide distribution 

ratios for the 0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] solvent system follow the general trend of 

increasing D with increasing atomic number. Because a similar trend is seen with 1.0 mol/L HEH[EHP] 

in n-dodecane without CMPO present, the chemistry of the combined solvent is dominated by the 

chemistry of HEH[EHP] at 0.1 mol/L HNO3, with CMPO playing little, if any role. Above 0.5 mol/L 

HNO3 the nitric acid dependence for the extraction of Am and the lanthanides into the 0.2 mol/L CMPO + 

1.0 mol/L HEH[EHP] solvent displays a pattern in which the D values increase until approximately 

1 mol/L HNO3, then decline at higher HNO3 concentrations. This pattern is that expected for the situation 

in which CMPO is dominating the extraction chemistry. From a practical standpoint, the extraction 

behavior for the CMPO + HEH[EHP] extraction system is more favorable than that previously 

determined for the CMPO + HDEHP (bis(2-ethylhexyl)phosphoric acid) system because the distribution 

ratios remain high above 1 mol/L HNO3. 

The minor actinide stripping behavior of the CMPO + HEH[EHP] system is also more favorable than 

that for the CMPO + HDEHP system. The latter is highly sensitive to the aqueous phase solution pH. 

The dependence on pH is greatly reduced when HEH[EHP] is used as the acidic extractant in the solvent 

formulation. Furthermore, it should be possible to operate the minor actinide stripping section at lower 

pH, which is another advantage because it will reduce downstream solution adjustments required for 

conversion of the minor actinides to their oxide forms. 

Fourier transform infrared (FTIR) spectroscopic and visible spectrophotometric investigations 

qualitatively indicate that CMPO binds to Nd(III) in the HEH[EHP] system more weakly than in the 

analogous HDEHP system. Quantification of this effect is in progress. 
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1. INTRODUCTION 

Advanced concepts for closing the nuclear fuel cycle typically include separating the minor actinides 

(i.e., Np, Am, and Cm) from other fuel components to mitigate their long-term effects on the performance 

of geological repositories for irradiated fuel. Separating these elements from the material going to the 

repository and subsequently converting them (e.g., by fission with fast neutrons) to stable or short-lived 

nuclides greatly reduces the long-term risks associated with nuclear power. Separating Cm also has near-

term benefits for the repository by reducing its heat load. Recent efforts in the United States have 

considered separating the transuranic (TRU) elements Np, Pu, Am, and Cm from irradiated nuclear fuel 

as a single group. Including the minor actinides with the Pu makes the Pu less desirable for weapons 

production and thus improves the proliferation resistance of the fuel cycle compared to conventional fuel 

recycling schemes, which separate pure Pu (Todd and Wigeland 2006). The work described here is 

focused on separating the trivalent actinides Am and Cm, but inclusion of Np and Pu in the actinide 

product scheme could be considered as an option. 

A critical challenge in this regard is separating the minor actinide elements (especially Am and Cm) 

from the lanthanide fission products. The lanthanides are generally neutron poisons and thus reduce the 

efficiency of destruction processes for the minor actinide elements. Although there are active programs 

worldwide investigating the separation of minor actinide elements from the lanthanides, recent work in 

the United States has focused on the “uranium extraction plus” (UREX+) suite of separation processes. 

One of the disadvantages of this approach is its complexity. For example, in the “UREX+1a” concept for 

irradiated fuel recycling, a series of four solvent extraction processes are proposed to partition the fuel 

into useful products and fission product waste (Regalbuto 2011). The Sigma Team for Minor Actinide 

Separation was established within the Fuel Cycle Research and Development Program to discover and 

develop new, more efficient methods for separating the minor actinide elements from the lanthanide 

elements and for separating Am from Cm. This report summarizes work conducted at Pacific Northwest 

National Laboratory (PNNL) in Fiscal Year (FY) 2012 as part of the Sigma Team for Minor Actinide 

Separation. 

The work conducted at PNNL in FY 2012 focused primarily on testing the hypothesis that a 

multifunctional neutral extractant can be combined with an acidic extractant to form a single process 

solvent for separating trivalent actinides from the trivalent lanthanides and other fission products in acidic 

high-level nuclear waste. This notion exploits subtle differences in the coordination chemistry of the 

actinide elements compared to the lanthanide elements. In particular, the slight preference of the actinide 

ions for soft donor ligands, such as amines, is used to selectively remove the actinides from a solvent 

phase loaded with both the lanthanides and actinides. 

2. SIGNIFICANCE 

Developing a single process that combines the attributes of the transuranic extraction (TRUEX) and 

trivalent actinide-lanthanide separations by phosphorus-reagent extraction from aqueous complexes 

(TALSPEAK) processes would benefit the development of advanced closed fuel cycles by reducing the 

complexity of operations required to recover the minor actinides. Converting the transuranic elements to 

short-lived or stable nuclides requires separation from the lanthanide elements, which are generally 

neutron poisons and thus reduce the efficiency of fissioning processes. As previously mentioned, the 

“UREX+” suite of separation processes recently developed and investigated in the United States suffers 

the disadvantage of process complexity because of the number of different solvent extraction steps 

required. Combining two of these solvent extraction steps into a single process has significant potential to 

reduce the process complexity, thereby improving the economics of advanced fuel cycle recycle 

technology. Two processes that might be suited to “blending” are the TRUEX and the TALSPEAK 

processes. Section 3 presents the background material concerning these two processes. 
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3. APPROACH 

The TRUEX process separates the TRU elements Np, Pu, Am, Cm and the lanthanide fission 

products from the other fission products in 1 to 3 M HNO3. This is achieved by extracting the TRU 

elements with octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide (CMPO, Figure 3.1) into 

an aliphatic hydrocarbon diluent. Tributyl phosphate (TBP) is added to the TRUEX solvent as a modifier 

to prevent third-phase formation at high solvent loading (Horwitz et al. 1985). Similar processes have 

been developed using diamide extractants, such as the DIAMEX process (Courson et al. 2000; Malmbeck 

et al. 2000), and tetraalkyldiglycolamide extractants (Modolo et al. 2007, 2008; Magnusson et al. 2009). 

All of these methods involve co-extraction of the TRU and lanthanide elements into a hydrocarbon 

solvent containing the neutral extractant, followed by co-recovery of the TRU elements and lanthanides 

into a dilute acid stripping solution. 

The TALSPEAK process uses bis(2-ethylhexyl)phosphoric acid (HDEHP, Figure 3.1) as the 

extractant (Nilsson and Nash 2007). In this case, an aqueous-soluble complexant, 

diethylenetriaminepentaacetic acid (DTPA, Figure 3.1), is used to complex the actinide ions and prevent 

their extraction into the organic phase, or to strip the actinides from the organic phase in the so-called 

“reverse TALSPEAK” method. Because DTPA binds the lanthanide ions less strongly than the actinide 

ions, the lanthanides are extracted by HDEHP in the presence of DTPA, thereby achieving a separation of 

the lanthanides from the actinides. Although it has been demonstrated to be effective at separating the 

minor actinide elements from the lanthanides, the TALSPEAK process suffers some limitations; 

specifically, the process chemistry is not completely understood and is difficult to model, the extraction 

kinetics are slow, and the process is highly sensitive to pH. Recently, a variant of the TALSPEAK 

process was proposed in which HDEHP is replaced by its phosphonic acid analog, 2-

ethylhexylphosphonic acid mono-2-ethylhexyl ester acid (HEH[EHP], Figure 3.1), and DTPA is replaced 

by N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid (HEDTA, Figure 3.1) (Braley et al. 2012). 

The HEH[EHP]/HEDTA system offers the advantage of more predictable extraction behavior, faster 

kinetics, and less dependence on pH. 

In UREX+1a, the TALSPEAK process is applied to the actinide/lanthanide product from TRUEX 

(after adjustment) to separate the TRU elements from the lanthanides. In this report, we describe the 

progress made towards combining the functions of the TRUEX and TALSPEAK processes into a single 

process capable of both separating the minor actinide elements from acidic high-level liquid waste and 

from the lanthanide fission products.
(a)

 The approach taken combines a bifunctional neutral extractant 

(CMPO) with an acidic extractant (HDEHP or HEH[EHP]) to form a single process solvent. The CMPO 

chemistry was expected to dominate under conditions of high acidity (≥ 1 M HNO3), resulting in co-

extraction of the minor actinide and lanthanide elements into the organic phase. After suitable scrubbing 

steps, contacting the loaded solvent with a buffered DTPA solution at pH ~3 to 4 was expected to result in 

a condition in which the HDEHP chemistry dominates, and the system would behave in a manner 

analogous to a “reverse TALSPEAK” process. The greater affinity of DTPA for the actinide ions versus 

the lanthanides was expected to cause the minor actinide elements to be selectively stripped into the 

aqueous phase, thereby separating them from the lanthanides. Work in previous fiscal years indicated that 

CMPO + HDEHP is perhaps not the ideal combination of neutral and acidic extractants, so work in FY 

2012 focused mainly on the CMPO + HEH[EHP] system. Structures for the various extractants and 

complexants used in this study are given in Figure 3.1. 

                                                      

 
(a)  This report focuses on the work conducted at PNNL. A parallel, yet coordinated, effort is underway at Argonne National 

Laboratory. Results of the latter study will be reported separately. 
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Figure 3.1. Chemical structures of the extractants and complexants used in this study. 
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4. SUMMARY OF RESULTS 

4.1 Extraction of Americium and the Lanthanides from Nitric Acid  

Lumetta et al. (2009, 2010a,b) established the feasibility of combining CMPO with HDEHP into a 

single process solvent for extracting and separating the minor actinides in FY 2009 and 2010. They 

determined that, for a solvent consisting of 0.1 mol/L CMPO + 1 mol/L HDEHP in n-dodecane, the 

distribution ratios (D = organic phase concentration ÷ aqueous phase concentration) for the extraction of 

Am(III) and Eu(III) from 1 mol/L HNO3 are comparable to those obtained in the TRUEX process solvent 

(0.2 mol/L CMPO + 1.4 mol/L TBP in n-dodecane or normal paraffin hydrocarbon). However, they also 

determined that increasing the nitric acid concentration above 1 mol/L resulted in decreases in the 

Am(III) and Eu(III) distribution ratios (Figure 4.1a). This extraction behavior is similar to that seen for 

HDEHP, without any CMPO present, although CMPO does increase the Am and Eu distribution ratios at 

1 to 3 mol/L HNO3. In many respects, the CMPO/HDEHP system is dominated by the HDEHP 

chemistry, even at high HNO3 concentrations. This is an undesirable feature of the combined CMPO + 

HDEHP system; it would be preferable for the D values to remain above 1 for HNO3 concentrations 

greater than 1 mol/L. 
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Figure 4.1. Extraction of Am(III) and trivalent lanthanides by (a) 0.1 mol/L CMPO + 1.0 mol/L HDEHP 

in n-dodecane (Lumetta et al. 2012a), and (b) 0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] in 

n-dodecane (this work), as a function of HNO3 concentration. Each lanthanide ion was 
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initially present at approximately 2 mmol/L in the aqueous phase. Note that the ordinate 

scales are different for (a) and (b) and that the spline curves are included only to guide the 

eye. 

Switching the acidic extractant from HDEHP to HEH[EHP] improves the extraction profile. 

Figure 4.1b presents the dependence of the extraction of Am and relevant lanthanide ions on the HNO3 

concentration, using 0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] in n-dodecane as the extraction solvent. 

The extraction behavior in the CMPO/HEH[EHP] extraction system displays regimes in which the 

HEH[EHP] chemistry dominates (i.e., low HNO3 concentrations) and those in which the CMPO 

chemistry dominates (i.e., high HNO3 concentrations). At 0.1 mol/L HNO3, the lanthanide distribution 

ratios for the 0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] solvent system follow the general trend of 

increasing D with increasing atomic number, with the exception of Nd, which is out of sequence. This 

trend is also seen with 1.0 mol/L HEH[EHP] in n-dodecane without CMPO present. The distribution 

ratios for the extraction of Nd, Sm, Eu, and Gd from 0.1 mol/L HNO3 into 1.0 mol/L HEH[EHP] (with no 

CMPO present) were measured to be 0.62, 8.65, 19.4, and 19.6, respectively (the D values for La, Ce, and 

Pr were below the detection limit for the inductively coupled plasma atomic emission spectroscopy 

[ICP-OES] method used). Hence at 0.1 mol/L HNO3, the chemistry of the combined solvent is dominated 

by the chemistry of HEH[EHP], with CMPO playing little, if any role.  

Above 0.5 mol/L HNO3, the nitric acid dependence for the extraction of Am and the lanthanides into 

the 0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] solvent displays a pattern in which the D values increase 

until approximately 1 mol/L HNO3, then decline at higher HNO3 concentrations. Such a pattern is seen 

for the TRUEX solvent, which consists of CMPO modified with TBP (Horwitz et al. 1985). This 

extraction behavior can be explained by the formation of [M(NO3)3(CMPO)3] species in the organic phase 

(Horwitz et al. 1987), which is favored by increasing nitrate concentration in the aqueous phase. 

However, at high HNO3 concentration, competition from the extraction of HNO3 into the organic phase 

reduces the effective CMPO concentration, thus lowering the distribution ratios for the M(III) ions. The 

observation of a maximum in the D values suggest that above ~0.5 mol/L HNO3, the extraction chemistry 

in the CMPO + HEH[EHP] system is dominated by that of CMPO. 

4.2 Selective Stripping of the Minor Actinides 

Once the minor actinides and the lanthanides have been co-extracted into the combined process 

solvent (and after any required scrubbing steps), the minor actinides must be selectively stripped from the 

solvent, leaving the lanthanide elements in the organic phase. As is done in the TALSPEAK process, this 

is achieved by contacting the solvent with a carboxylate-buffered solution containing a 

polyaminocarboxylate ligand. Figure 4.2 shows the Am and lanthanide distribution ratios for the 

0.1 mol/L CMPO + 1 mol/L HDEHP/n-dodecane solvent system using 0.05 mol/L DTPA in a 1.5 mol/L 

citrate buffer as the Am-selective stripping solution (Lumetta et al. 2012a). The data indicate that, much 

like the TALSPEAK process, the distribution ratios for the CMPO + HDEHP solvent system are highly 

dependent on pH in the minor actinide stripping regime. To achieve high lanthanide/actinide separation 

factors, the pH must be tightly controlled (approximately ± 0.1 pH unit) around pH 3.4. 

If HEH[EHP] is used as the acidic extractant in the combined solvent formulation, the dependence on 

pH is greatly reduced. Figure 4.3 shows the Am and lanthanide distribution ratios for the 0.2 mol/L 

CMPO + 1.0 mol/L HEH[EHP]/n-dodecane solvent system using 0.1 mol/L HEDTA in a 0.1 mol/L 

citrate buffer as the Am-selective stripping solution. Although this system is not completely optimized, 

the data do indicate that the minor actinide stripping process is much less sensitive to pH when 

HEH[EHP] is used as the acidic component in the extraction solvent. Furthermore, it should be possible 

to operate the minor actinide stripping section at lower pH, which is another advantage; it will reduce 

downstream solution adjustments required for conversion of the minor actinides to their oxide forms. 
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Figure 4.2. Extraction of Am, Nd, Sm, Eu, and Gd by 0.1 mol/L CMPO + 1 mol/L HDEHP in 

n-dodecane as a function of equilibrium pH at 1.5 mol/L citrate and 0.05 mol/L DTPA (from 

Lumetta et al. 2012a). 
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Figure 4.3. Extraction of Am(III) and Ln(III) by 0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] in 

n-dodecane as a function of pH from citrate-buffered solutions; aqueous conditions: 

0.1 mol/L citrate, 0.1 mol/L HEDTA; each lanthanide ion was initially present at 

approximately 2 mmol/L in the aqueous phase. 

Further experimentation suggested 0.15 mol/L HEDTA + 0.15 mol/L citrate would provide more 

optimal selective stripping of the minor actinides from the 0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] in 

n-dodecane solvent. Figure 4.4 shows the behavior of most of the relevant lanthanides and Am(III) using 

this formulation for minor actinide stripping. In this experiment, the lanthanides were extracted into 

0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] in n-dodecane from 2 mol/L HNO3. After scrubbing with 

0.15 mol/L citrate solution (initial pH = 3, final pH =2), the loaded solvent was contacted with 0.15 mol/L 

HEDTA + 0.15 mol/L citrate at several different pH conditions. A separate portion of 0.2 mol/L CMPO + 

1.0 mol/L HEH[EHP] in n-dodecane was loaded in identical manner, but with 
241

Am tracer added. All 

contacts were performed at an organic-to-aqueous phase ratio of one, with mixing achieved by vortex 

mixing for 15 min at 1,900 rpm. The results indicate good separation of the lanthanides from Am can be 

achieved, especially above pH 2.5. It should be noted that Pm(III) was not included in this experiment. 

The data in Figure 4.3 suggest that the Pm/Am separation factor might be slightly less than the Nd/Am 

separation factor, so the separation factors plotted in Figure 4.4 are probably slightly higher than would be 

achieved if Pm were present. 
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Figure 4.4. Back-extraction of Am(III) and Ln(III) from 0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] in 

n-dodecane as a function of pH; aqueous conditions: 0.15 mol/L citrate, 0.15 mol/L 

HEDTA; each lanthanide ion was initially present at approximately 2 mmol/L in the organic 

phase. 

4.3 Fission Product Behavior 

Investigation of the extraction behavior of the transition metal fission products Zr(IV), Mo(VI), and 

Ru(III) was initiated in FY 2012, along with investigation of the behavior of Fe(III). The distribution 

ratios for the extraction of Fe(III) and Ru(III) from nitric acid into 0.2 mol/L CMPO + 1.0 mol/L 

HEH[EHP] in n-dodecane were too low to be reliably determined by ICP-OES. Zirconium(IV) and 

Mo(VI) were strongly extracted at all nitric acid concentrations examined (Figure 4.5a).  

Under the conditions expected for stripping of the minor actinides, the Zr(IV) distribution ratios 

remain high, but those of Mo(VI) and Fe(III) are below one (Figure 4.5b). Molybdenum(VI) can be 

removed from the solvent by scrubbing with an aqueous citrate solution before the minor actinide 

stripping step. Indeed, when a solution of 0.2 mol/L CMPO + 1.0 mol/L HEH[EHP] in n-dodecane, pre-

loaded with Mo(VI), Zr(IV), and the lanthanides was contacted with 0.25 mol/L citrate at an initial pH of 

3, the measured Mo(VI) distribution ratio was 0.04. This indicates that Mo(VI) should be readily 

scrubbed from the solvent with a citrate solution. Zirconium(IV) remained in the organic phase when 

contacted with 0.25 mol/L citrate solution. The distribution ratios for La(III), Ce(III), Pr(III), Nd(III), 

Sm(III), Eu(III), and Gd(III) were all greater than 10 under these conditions. Fe(III) can also be scrubbed 

from the solvent with citrate solution. The citrate scrub also has the advantage that it would “condition” 

the solvent phase for the minor actinide stripping step, which also utilizes a citrate-based aqueous phase. 
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Figure 4.5.  Distribution ratios for Zr(IV), Mo(VI), and Fe(III) for extraction into 0.2 mol/L CMPO + 

1.0 mol/L HEH[EHP] in n-dodecane from (a) nitric acid media, and (b) 0.15 mol/L HEDTA 

+ 0.25 mol/L citrate. 

Stripping the Zr(IV) from the CMPO + HEH[EHP] solvent remains an important challenge. Previous 

work suggests that an acidic solution of N,N,N',N'-tetraethyldiglycolamide (TEDGA) should be capable 

of stripping the Zr(IV) from the solvent along with the lanthanides (Lumetta et al. 2012a). However, the 

Zr(IV) distribution ratio was 34 when the lanthanide and Zr-loaded 0.2 mol/L CMPO + 1.0 mol/L 

HEH[EHP] solution was contacted with 0.025 mol/L TEDGA in 1 mol/L HNO3. It is possible that 

complexation of the TEDGA by the lanthanides present in this system reduced the free TEDGA 

concentration to the point that it was ineffective at stripping the Zr(IV). If this is the case, increasing the 

TEDGA concentration might lead to more effective Zr(IV) stripping. However, further experimentation is 

needed to verify this. 

4.4 Synergic Extraction Behavior 

Studies of the CMPO + HDEHP combined solvent system revealed a strong synergic interaction of 

CMPO and HDEHP in the extraction of Am and Nd from buffered DTPA solutions (Lumetta et al. 2011). 

This synergic behavior is detrimental to the process because it reduces the lanthanide/actinide separation 

factors compared to those achieved in the TALSPEAK process. Yet another advantage of the CMPO + 

HEH[EHP] solvent system is that the synergism in the extraction of the trivalent actinides and lanthanides 

is greatly reduced. Figure 4.6 presents the Am and lanthanide distribution ratios for extraction from a 

lactate-buffered HEDTA solution into mixed CMPO + HEH[EHP] solvents with varying CMPO mole 

fraction. The data indicates that there is mild synergism for extraction of the light lanthanides under these 

conditions, but the synergic behavior decreases with increasing Z for the lanthanides. There is no 

evidence of synergic extraction behavior for the lanthanides from Sm and higher. Likewise, only a 
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relatively weak synergism is observed for the extraction of Am by CMPO/HEH[EHP] mixtures. 

Interestingly, the lanthanide/Am separation factors increase with increasing proportion of CMPO in the 

solvent mixture. This contrasts with the CMPO/HDEHP system for which the opposite was observed 

(Lumetta et al. 2010a). A separation factor (Nd/Am) of ~80 was obtained at a CMPO mole fraction of 0.5. 
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Figure 4.6. Extraction of Am(III) and Ln(III) by CMPO + HEH[EHP] solutions with variable 

CMPO mole fraction, but with the total [CMPO] + HEH[EHP] = 0.2 mol/L; diluent = 

n-dodecane; aqueous phase = 0.02 mol/L HEDTA + 1 M lactate at pH = 3.6. 

4.5 Fundamental Chemistry of the Extraction Systems 

Ultimately, to model and control a lanthanide/actinide separation process based on a combined 

extraction solvent, it is necessary to understand the fundamental chemical equilibria involved and the 

species that are formed in solution. Spectral studies were undertaken to probe the fundamental aspects of 

the solution chemistry involved in the combined solvent systems, using Nd(III) as a prototypical extracted 

metal ion. A series of n-dodecane solutions of HEH[EHP] with varying concentrations of Nd(III) were 

prepared by contacting 0.5 mol/L HEH[EHP] with equal volumes of aqueous 0.011, 0.0055, or 

0.0011 mol/L NdCl3. Figure 4.7 shows the visible electronic spectra of these three Nd(III) solutions. The 

spectral features are independent of the Nd(III) concentration in the HEH[EHP] solution, suggesting that 

a single species exists in solution under the examined conditions. Indeed, the same spectrum was obtained 

under highly loaded conditions in which the 0.5 mol/L HEH[EHP] solution was contacted six successive 

times with equal volumes of 0.11 M NdCl3  
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Nd/HEH[EHP] Spectra at Variable Nd Loading
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Figure 4.7. Visible spectrum of 0.5 mol/L HEH[EHP] solutions in n-dodecane at different Nd loadings. 

Spectra are arbitrarily offset for clarity. 

Figure 4.8 compares the fourier transform infrared (FTIR) spectrum
(a)

 of neat HEH[EHP] to that of 

0.5 mol/L HEH[EHP] in n-dodecane. For the latter, the contribution of n-dodecane to the spectrum was 

removed by subtracting the spectrum of n-dodecane (subtraction factor = 0.86) using GRAMS/AI 

version 7.02 (Thermo Electron Corp.). The HEH[EHP] FTIR spectrum in n-dodecane agrees very well 

with that for neat HEH[EHP], except that the vibrational bands are generally shifted to slightly higher 

energy for the solution-phase spectrum. Table 4.1 presents the key band assignments for HEH[EHP]. 

Neodymium(III) was loaded into the 0.5 mol/L HEH[EHP]/n-dodecane solution by contacting three 

successive times with aqueous 0.11 mol/L NdCl3 at an organic-to-aqueous phase ratio of 2. This 

procedure resulted in 0.0193 mol/L Nd in the HEH[EHP] solution.
(b) 

The FTIR spectrum of HEH[EHP] is 

compared to that of the Nd‒HEH[EHP] complex in Figure 4.9. The spectrum of the latter was obtained by 

subtracting first the spectrum of n-dodecane (subtraction factor = 0.86), the subtracting the contribution of 

HEH[EHP] to the spectrum (subtraction factor = 0.85). Band assignments for the Nd‒HEH[EHP] 

complex are presented in Table 4.1. Upon complexation to Nd(III), the (P=O) band of HEH[EHP] shifts 

from 1,198 to 1,163 cm
-1

 indicating complexation through the phosphoryl oxygen. The broad band at 

1679 cm
-1

 in the HEH[EHP] solution , attributed to the hyrdogen-bonded O‒H stretch, disappears upon 

compexation to Nd(III). This suggests the disruption of the dimeric HEH[EHP] structure (Tkac et al. 

                                                      

 
(a)  FTIR spectra were recorded on a Bruker Alpha-P spectrometer equipped with a diamond attenuated total reflectance (ATR) 

cell. 
(b)  The organic-phase Nd concentration was determined by stripping the Nd into 6.2 mol/L HNO3 and analyzing the resulting 

aqueous solution by ICP-OES. 
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2012). The (P‒O) band of HEH[EHP] at 983 cm
-1

 disappears upon complexation to Nd(III), but another 

band appears at 868 cm
-1

, which might be the associated complexed (P‒O) band. If this is the case, it 

would indicate a strong interaction of the second oxygen in the HEH[EHP] ligand with the Nd(III) center. 

This in turn would suggest a complex of the type NdA3 rather than Nd(AHA)3 where A represents the 

deprotonated HEH[EHP] anion and AHA represents a mono-deprotonated HEH[EHP] dimer. Further 

investigation of this hypothesis is needed. 

Comparison of 0.5 M HEH[EHP] (after dodecane subtraction)
with neat HEH[EHP]
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Figure 4.8. Comparison of the FTIR spectrum of neat HEH[EHP] to that of 0.5 mol/L HEH[EHP] in 

n-dodecane. 

Table 4.1. FTIR band assignments for HEH[EHP] and the Nd-HEH[EHP] complex.
 (a) 

Band Assignment 

HEH[EHP] 

Neat/0.5 mol/L
(b) 

Nd-HEH[EHP] Complex
(c) 

P=O 1194/1198 1163 

O‒H (H-bonded) 1675/1679 Not observed 

P‒O 976/983 868 (tentative) 

C‒O‒P 1032/1036 1055,1066 
(a) Band assignments are made based on those made by Tkac et al. (2012); all values reported 

in units of cm‒1. 
(b) 0.5 mol/L in n-dodecane. 
(c) 0.0193 mol/L Nd loaded into 0.5 mol/L HEH[EHP].  
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Comparison of Nd-HEH[EHP] solution (after subtraction)
with the starting HEH[EHP] solution
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Figure 4.9. FTIR spectrum of 0.5 mol/L HEH[EHP] in n-dodecane, before and after loading with 

0.0193 mol/L Nd. 

To explore the complexation of CMPO to the Nd-HEH[EHP] complex, a series of n-dodecane 

solutions containing constant total HEH[EHP] concentration (0.25 mol/L), constant total Nd 

concentration (9.66 × 10
-3

 mol/L), and variable CMPO concentration (0 to 0.1 mol/L) was prepared, and 

the visible spectrum of each was recorded. Figure 4.10 presents an overlay of the spectra obtained. At the 

time of writing, full analysis of this spectral data set to determine the complexation constant for the Nd-

HEH[EHP]-CMPO ternary complex had not been completed. However, some qualitative observations 

concerning the strength of CMPO binding in this system can be made. As indicated by the relatively 

small changes in the hypersensitive 
4
I9/2 → 

4
G5/2, 

2
G7/2 transitions (560 ‒ 610 nm), the complexation of 

CMPO to the Nd-HEH[EHP] complex appears to be much weaker than for the analogous HDEHP 

system. Significant spectral changes were observed for the hypersensitive bands after adding CMPO to 

the Nd-HEDHP system (Lumetta et al. 2012b). 

The visible spectrum of the Nd-HEH[EHP]-CMPO ternary complex was isolated by subtracting the 

spectrum of the Nd-HEH[EHP] complex (spectrum  in Figure 4.10) from the spectrum obtained when 

0.1 mol/L CMPO was added (spectrum L in Figure 4.10) (subtraction factor = 0.55). Figure 4.11 shows 

the resulting spectrum. Also shown in Figure 4.11 is the spectrum obtained for the Nd-HDEHP-CMPO 

system at a CMPO/Nd ratio of ~4. Two points can be made regarding these data. First, in the case of the 

Nd-HEH[EHP]-CMPO system, at a CMPO/Nd ratio of ~10, the spectrum attributed to the binary Nd-

HEH[EHP] complex had to be mathematically subtracted to reveal the spectrum of the ternary Nd-

HEH[EHP]-CMPO complex. In contrast, no spectral manipulation was necessary to reveal the spectrum 

of the Nd-HDEHP-CMPO ternary complex, even at a lower CMPO/Nd ratio of 4. Again, this supports the 

notion that the complexation of CMPO to Nd(III) in the HEH[EHP] system is significantly weaker than in 

the HDEHP system. Second, the visible spectra of the ternary complexes is very similar in both the 
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HEH[EHP] and HDEHP systems, suggesting that the structural aspects of the complexes are the same in 

both systems. 

Nd_HEHEHP_CMPO series. All 13 samples

05/03/12 + 05/04/12.
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Figure 4.10. Overlay of the visible spectra obtained for 0.25 mol/L HEH[EHP] + 9.66 × 10
-3

 mol/L Nd + 

variable CMPO system. 
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Figure 4.11. Visible spectra of the Nd-HEH[EHP]-CMPO and Nd-HDEHP-CMPO ternary complexes. 

See text for details. 

4.6 Conclusion 

Combining the extractants CMPO and HEH[EHP] into a single solvent with n-dodecane as the 

diluent is a promising approach for developing a single-step process for separation of the minor actinides 

from acidic high-level liquid waste. The CMPO + HEH[EHP] system has a number of advantages over 

the analogous CMPO + HDEHP system, including:  

1. improved performance for the co-extraction of lanthanides and actinides from nitric acid media 

2. less sensitivity to the pH during the stripping of the minor actinides 

3. reduced synergistic extraction behavior, which in turn leads to higher lanthanide/actinide separation 

factors.  

The transition metal fission products Mo(VI) and Zr(IV) are extracted into the CMPO + HEH[EHP] 

solvent. Molybdenum can be easily scrubbed out by contacting with citrate solution. Zirconium remains 

in the solvent through the minor actinide stripping step. Ideally, the Zr(IV) would be stripped along with 

the lanthanides, but methods to achieve this must still be developed and demonstrated. 

Spectroscopic studies suggest the binding of CMPO to Nd(III) in the HEH[EHP] system is 

significantly weaker than in the analogous HDEHP system. This is perhaps because of the higher basicity 

of the deprotonated HEH[EHP] anion compared to the deprotonated HDEHP anion. It can be envisioned 

that the higher basicity of the HEH[EHP] anion leads to greater electron density at the Nd(III) center, 

thereby reducing the strength of the CMPO-Nd coordinate bond. 
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