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Abstract 

Recent years have seen a resurgence of nuclear power worldwide, with interest in extending the 
operating life of the approximately 436 reactors currently in service (as of March, 2012), 61 new reactors 
being constructed, and as many as 162 under consideration.  Renewed worldwide interest in nuclear 
power has been somewhat tempered by the March 2011 incident at Fukushima Dai-ichi in Japan.  
However, nuclear power is still considered a key element in meeting future worldwide sustainable energy, 
energy security, and emissions goals.  Currently, three separate thrusts to safe and economical nuclear 
power development for energy security are being pursued in the United States:  (i) longer term operation 
for the legacy fleet, from 40–60 and possibly 60–80 years; (ii) near-term new nuclear plants with a 
60-year design life; and (iii) small modular reactors, which are expected to employ light water reactor 
technology at least in the medium term.  Within these activities, attention is turning to enhanced methods 
for plant component and structural health management.   

The operating U.S. fleet includes 104 light water reactors.  In addition, there are now (as of May 
2012) four new nuclear power plants (AP-1000 plants) under construction in the United States, and two 
delayed plants are being completed by the Tennessee Valley Authority.  There is also interest in the 
United States in small modular reactors (SMRs), which could be easier to match to existing grid 
infrastructure and which could replace aging coal fired plants.  The current low price for natural gas 
presents a challenge to the economics of nuclear power, at least in the short term; however, some recent 
studies have demonstrated that nuclear generation will be competitive in the longer term (at least in some 
markets) when anticipated escalation in gas prices and the cost of building, operating, and maintaining 
gas-fired plants are considered over those same time periods.   

This report reviews the current state of the art of prognostics and health management (PHM) for 
nuclear power systems and related technology currently applied in field or under development in other 
technological application areas, as well as key research needs and technical gaps for increased use of 
PHM in nuclear power systems.  The historical approach to monitoring and maintenance in nuclear power 
plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for 
passive components, are reviewed.  An outline is given for the technical and economic challenges that 
make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and new 
plant designs.  There is a general introduction to PHM systems for monitoring, fault detection and 
diagnostics, and prognostics in other, non-nuclear fields.  The state of the art for health monitoring in 
nuclear power systems is reviewed.  A discussion of related technologies that support the application of 
PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor 
technology, and PHM software architectures is provided.  Appropriate codes and standards for PHM are 
discussed, along with a description of the ongoing work in developing additional necessary standards.  
Finally, an outline of key research needs and opportunities that must be addressed in order to support the 
application of PHM in legacy and new NPPs is presented. 
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Summary 

Recent years have seen a resurgence of nuclear power worldwide, with interest in extending the 
operating life of the approximately 436 reactors currently in service (as of March 2012), 61 new reactors 
being constructed, and as many as 162 under consideration.  While the renewed interest in nuclear power 
has been somewhat tempered by the March 2011 incident at Fukushima Dai-ichi in Japan, nuclear power 
is still considered key to meeting future worldwide sustainable energy, energy security, and emissions 
goals.  Currently, three separate thrusts to safe and economical nuclear power development for energy 
security are being pursued in the United States.   

The first thrust is focused on life extension of operating light-water reactors (LWRs), referred to as 
long-term operation (LTO).  In the United States, 71 reactors have been approved for license extension 
from 40 years to 60 years of operation, and 9 plants have already entered LTO (in some cases, with power 
uprates).  Similar trends are being reported worldwide.  Interest is now turning to a second license 
extension to enable operation from 60–80 years, so-called extended LTO or life-beyond-60 (LB60).  The 
question of safely and economically operating some of these plants beyond 60 years is now being 
considered in anticipation of this second round of license extensions.  The existing fleet is considered to 
be too valuable to decommission, even if $1B per plant is needed for refurbishment to give another 
20 years of operation.  Through power uprates of existing plants, U.S electric companies have added the 
equivalent of five or six new reactors in the past 30 years by upgrading legacy plants in order to produce 
more power from the same plant (Carter 2006).  

The second pathway focuses on new LWR reactor designs.  In the United States, the Westinghouse 
AP-1000 has emerged as the primary Generation III+ design, and four plants are currently under 
construction.  The AP-1000 has enhanced safety features and a 60-year design life.  Similar features are 
being included in other Generation III+ designs, including the ABWR, APWR, EPR, EBR, and Advanced 
CANDU Reactor (ACR), many of which are being built worldwide.  

The third thrust is in the area of advanced reactor designs that rely on passive safety systems for 
decay heat removal; in the near-term, there is a focus on light water reactor designs and a particular focus 
on so-called small modular reactors (SMRs). 

Over the years, operational experience has shown that greater situational awareness of the state of 
safety-critical nuclear plant systems, structures, and components is necessary, particularly as they age 
over time due to exposure to harsh service conditions.  While replacement of a subset of components is 
possible, it may be economically prohibitive to replace several of the larger components, including the 
reactor pressure vessel and primary piping.  Thus, detection, management, and mitigation of aging-related 
degradation in these critical components become important to maintain safety margins.  In this context, 
the technical challenges related to detecting, characterizing, monitoring, and managing materials 
degradation need to be identified and addressed.  These challenges are not unique to the operating fleet of 
LWRs, as the next generation of nuclear power reactors is expected to have similar needs in terms of 
managing and mitigating degradation; therefore, it is likely that any technology developed for detecting 
and characterizing degradation will have applications beyond the current fleet.  Additionally, some next-
generation reactor designs have potentially increased monitoring needs due to extended fuel cycles, 
reduced access to critical components, and remote siting with reduced maintenance staff.  
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The key technology developments necessary for detecting and managing degradation in reactor 
components are:  (1) nondestructive measurement methods and analyses to detect degradation and 
anomalies, (2) algorithms to characterize and monitor the degradation state of the component, and 
(3) algorithms that use the degradation state information to determine remaining useful life (RUL) and 
probability of failure (POF) of the component.  The POF information may then be used in a probabilistic 
risk assessment (PRA) model to assess the risk significance of the degradation and the corresponding 
reduced safety margin.  Together, these technologies constitute prognostics and health management 
(PHM) systems.  Ideally, degradation detection should occur early in the degradation development 
lifecycle, to enable the application of appropriate mitigation or repair actions, thereby maintaining the 
necessary safety margins.  Appropriate PHM systems therefore can potentially preclude serious 
consequences due to aging-related faults. 

This report reviews the current state of the art of prognostics and health management for nuclear 
power systems and related technology currently applied in field or under development in other 
technological application areas.   

The nuclear power industry worldwide poses a unique challenge for application of health 
management systems.  NPPs worldwide are closely regulated by national and international licensing 
bodies, and application of PHM systems which may impact safety-critical systems (and some non-safety–
related systems) will require a clear licensing basis outlining appropriate algorithms, architectures, and 
applications.  In the United States, the evaluation of such a licensing basis is the responsibility of the 
Nuclear Regulatory Commission. 

Section 2 describes the historical approach to monitoring and maintenance in nuclear power plants 
(NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive 
components.  The Maintenance Rule, enacted in the mid-1990s, provides a performance-based approach 
to monitoring and improving the effectiveness of active component maintenance; however, it does not 
encourage efficient (or discourage inefficient) maintenance practices.  Passive components do not fall 
under the purview of the Maintenance Rule, but are managed by periodic in-service inspection as dictated 
by the Aging Management Plan.  While these approaches have been adequate for maintaining safety 
margins in the past, several challenges exist that suggest the move to more predictive monitoring and 
maintenance activities.  

Section 3 outlines the technical and economic challenges that make PHM attractive for both legacy 
plants through Light Water Reactor Sustainability (LWRS) and new plant designs.  While the traditional 
approaches to maintenance and degradation management (the Maintenance Rule and Aging Management 
Plan) have been adequate in the past, these approaches are generally not optimized in terms of effort, 
time, or cost.  As plants move into longer service lives (both through LWRS and extended license periods 
of newer designs), the frequency of periodic inspection and maintenance may have to increase to 
compensate for increasing failure rates of known fault modes and heretofore unknown fault modes.  
Advanced reactor designs introduce an additional set of challenges with exposure to potentially more 
severe stressors and the use of new, innovative materials to accommodate them.  These technical 
challenges, along with the economic benefits of moving from periodic and find-and-fix maintenance 
strategies to just-in-time maintenance, build a strong case for applying PHM in current and future NPPs.  
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This is followed by a general introduction to PHM systems in Section 4.  Full PHM systems typically 
include several tasks or modules, including data collection, fault detection, fault diagnostics, system 
prognostics, and planning.  By applying this entire suite, the goals of most PHM systems can be realized:  
increased assurance of safety; increased productivity; reduced downtime; reduced number and severity of 
failures, particularly unanticipated failures; optimized operating performance; extended operating periods 
between maintenance; reduced unnecessary planned maintenance; and reduced life-cycle cost.  Section 4 
discusses the current state of the art in data collection, monitoring and fault detection, diagnostics, and 
prognostics for both passive and active components.  In some cases, such as data collection and fault 
detection, the algorithms and approaches for active and passive components are different, but the 
overarching approach to PHM is shared.  

Current technologies for monitoring, fault detection and diagnostics, and prognostics in other, non-
nuclear fields are discussed in Section 5.  This discussion focuses on advances in health monitoring for 
electronics, defense applications, avionics, and wind turbines.  While the specific models and results 
found in these areas may not be directly applicable to NPPs, the algorithms and approaches generally are 
applicable. 

Section 6 outlines the state of the art for health monitoring in nuclear power systems.  This discussion 
is divided between the advances in active components (focusing on sensors, pumps, and valves) and 
passive components (e.g., metals, reactor vessel internals, concrete, cables, buried pipes, and 
transformers).  The state of the art is largely focused on fault detection and diagnostics for these 
components, although some work in prognostics is described.  Additionally, the results of pilot 
applications and fielded systems in NPPs are summarized.  

Section 7 describes related technologies that support the application of PHM systems in NPPs, 
including digital instrumentation and control (I&C) systems, wired and wireless sensor technology, and 
PHM software architectures.   

Appropriate codes and standards for PHM are discussed in Section 8, along with a description of the 
ongoing work in developing additional necessary standards.  The applicable codes include those which 
define the NDE techniques approved for use in NPPs (defined by the ASME Boiler and Pressure Vessel 
Code), as well as standards developed for prognostics and health monitoring in general.  These 
algorithmic standards are not application-specific and have not been reviewed by the U.S. Nuclear 
Regulatory Commission (NRC) for application to U.S. NPPs.  It will likely be necessary to develop 
nuclear-specific and/or nuclear-applicable standards for advanced NDE and PHM techniques for review 
and endorsement by the NRC. 

Section 9 outlines key research needs and opportunities that must be addressed in order to support the 
application of PHM in legacy and new NPPs.  While significant advances have been made in the last 
20 years, much work is still needed to bring PHM from the research arena into NPP deployment.  Some 
of these needs are specific to the application to NPPs and nuclear components, including high-fidelity 
physics-of-failure models, experimental failure and aging data, and optimal sensor design and placement 
(particularly for passive components) to give adequate coverage at reasonable cost.  Some areas of 
research are more general to the PHM community as a whole (uncertainty analysis and propagation, 
online performance metrics, verification and validation of PHM algorithms and models, etc.), and 
ongoing research in other fields can likely be leveraged to address these needs for NPPs.  Finally, well-
defined methods for incorporating the results of PHM algorithms into a more holistic view of plant 
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operation, maintenance, and decision making are needed to provide a practical advantage for the use of 
PHM in terms of safety and economics. 

Finally, concluding remarks are given in Section 10 and references in Section 11. 
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1.1 

1.0 Introduction 

Recent years have seen a resurgence of nuclear power worldwide, with interest in extending the 
operating life of the approximately 436 reactors currently in service (as of 2011), 61 new reactors being 
constructed, and as many as 162 under consideration.  While the renewed interest in nuclear power has 
been somewhat tempered by the March 2011 incident at Fukushima Dai-ichi in Japan, nuclear power is 
still considered key to meeting future worldwide energy and emissions goals.  Currently, three separate 
thrusts to support safe and economical nuclear power development for energy security are being pursued 
in the United States.   

The first pathway is addressing life extension of operating light-water reactors (LWRs).  In the United 
States, many of the operating 104 reactors are moving to extended operation (from the initial license 
period of 40 years to extended life of 60 years), and similar trends are being reported worldwide (Chockie 
et al. 1991; Bond 1999; Gregor and Chockie 2006; Bond et al. 2008c).  The question of safely and 
economically operating some of these plants beyond 60 years is now being considered, because the cost 
of building replacement generating capacity while also building new plants to meet anticipated growth in 
electricity demand would challenge the available technical, manufacturing, regulatory, and economic 
infrastructures.  The first round of license extensions required extensive research into aging mechanisms, 
detection, and management (Shah and MacDonald 1993; Tipping 2010).  In the United States, this 
information was used by the NRC to develop the technical basis for license renewal that included the 
AMP and the Maintenance Rule (NRC 2001, 2005a, b, 2010d).  Similar questions about aging detection 
and management are being asked for subsequent license extensions, with the anticipation being that other 
aging mechanisms will dominate as plants go beyond 60 years.  

The second area focuses on new LWR reactor designs, commonly referred to as Generation III+ 
(Gen III+) reactors.  In the United States, the Westinghouse AP-1000 design has emerged as the primary 
Gen III+ design.  This design includes enhanced safety features and a 60-year design life.  Similar 
features are being included in other Gen III+ designs, including the ABWR, APWR, EPR, EBR, ACR, 
many of which are being built worldwide. 

The third thrust is in the area of advanced reactor designs that rely on passive safety systems for 
decay heat removal (called Generation IV designs), with a particular focus on so-called small modular 
reactors (SMR) (Abu-Khader 2009; Ingersoll 2009).  Gen IV and SMR designs for near-term deployment 
are expected to adapt well-known LWR technology; however, these reactors may include new design 
features, such as integral primary systems, and new components, such as helical coil heat exchangers.  
Longer-term designs are expected to feature non-light water coolants, including liquid metal, liquid salt, 
high-temperature gas, etc., and operate at higher temperatures than those seen in current LWR designs.  
These advanced designs will have additional monitoring needs due to high-temperature degradation 
phenomena in advanced materials, measurement challenges associated with extreme coolant 
environments, and unique operational characteristics.  Both LWR-based and advanced designs of full-
scale and small reactors will likely have additional monitoring needs that may not be met by traditional 
inspection techniques.  Continuous surveillance of component condition is also a means to compensate 
for a relative lack of understanding of long-term component and materials behavior. 

Operational experience (with the light water fleet in the United States and overseas, heavy water fleet 
worldwide, as well as advanced reactor designs that have been built and operated in limited numbers) has 
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shown that greater situational awareness of the state of safety-critical nuclear plant systems, structures, 
and components is necessary, particularly as they age due to exposure to harsh service conditions.  While 
replacement of a subset of components is possible, and may even be economically attractive, it may be 
economically prohibitive to replace several of the larger components, including the reactor pressure 
vessel, primary piping, and instrumentation cabling.  Thus, management and mitigation of aging-related 
degradation in these critical passive components becomes important to maintain safety margins.  In this 
context, the technical challenges related to detecting, characterizing, monitoring, and managing materials 
degradation need to be identified and addressed (Chockie et al. 1991; Bond et al. 2011a).  These 
challenges are not unique to the operating fleet of LWRs, as the next generation of nuclear power reactors 
is expected to have similar requirements in terms of managing and mitigating degradation; therefore, it is 
likely that any technology developed for detecting and characterizing degradation will have applications 
beyond the current fleet. 

The key technology developments necessary for detecting and managing degradation in reactor 
components are:  (1) nondestructive measurement methods and analyses to detect degradation and 
anomalies; (2) algorithms to characterize and quantify degradation (with a degradation metric) and to 
monitor the degradation state of the component; and (3) algorithms that use the degradation state 
information, combined with expected operating conditions (stressors), to determine remaining useful life 
(RUL) of the component.  The RUL information may then be applied to a probabilistic risk assessment 
(PRA) model to assess the risk significance of the degradation and the corresponding safety margin.  
Together, these technologies constitute prognostics and health management (PHM) systems.  Ideally, 
degradation detection should occur early in the degradation development lifecycle, to enable the 
applicability of any appropriate mitigation actions (Stevenson 2006).  Appropriate PHM systems can 
potentially preclude serious consequences due to aging-related faults. 

This report reviews the current state of the art of prognostics and health management for nuclear 
power systems and related technology currently applied in field or under development in other 
technological application areas.  Section 2 describes the historical approach to monitoring and 
maintenance in nuclear power plants, including the Maintenance Rule for active components and Aging 
Management Plans for passive components.  Section 3 outlines the technical and economic challenges 
that make PHM attractive for both legacy plants through Light Water Reactor Sustainability (LWRS) and 
new plant designs.  This is followed by a general introduction to PHM systems in Section 4.  Current 
technologies for monitoring, fault detection and diagnostics, and prognostics in non-nuclear fields are 
discussed in Section 5.  Section 6 outlines the state of the art for health monitoring in nuclear power 
systems.  Section 7 describes related technologies that support the application of PHM systems in nuclear 
power plants (NPPs), including digital instrumentation and control (I&C) systems, wired and wireless 
sensor technology, and PHM software architectures.  Appropriate codes and standards for PHM are 
discussed in Section 8, along with a description of the ongoing work in developing additional necessary 
standards.  Section 9 outlines key research needs and opportunities that must be addressed in order to 
support the application of PHM in legacy and new NPPs.  Finally, concluding remarks are given in 
Section 10 and references in Section 11. 
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2.0 Historical Approach to Monitoring and Maintenance in 
NPPs in the USA 

The U.S. Nuclear Regulatory Commission (NRC) requires that commercial nuclear power plants 
(NPPs) operate in a safe condition.  In looking at longer term operation, the NRC published its license 
renewal rule, Title 10 of the Code of Federal Regulations (10 CFR) Part 54, on May 8, 1995, which 
provides the requirements for renewal of operating licenses for nuclear power plants.  This explicitly 
states in 10 CFR 54.21(a)(1)(i) that an aging management review of containment structures is performed 
to ensure that the effects of aging will be managed so that their intended functions will be maintained for 
the period of extended operation.  In 1990, the Nuclear Management and Resources Council (NUMARC), 
now the Nuclear Energy Institute (NEI), submitted for NRC review, the industry reports (IRs), NUMARC 
Report 90-01 and NUMARC Report 90-10, addressing aging management issues associated with PWR 
containments and BWR containments for license renewal, respectively (Liu et al. 1997). 

Ensuring that the intended functions of SSCs in an NPP will be maintained for the period of operation 
and extended operation is, in part, a fulfillment of the defense-in-depth safety strategy employed by the 
NRC.  Defense-in-depth includes multiple, independent, and redundant layers of protection to mitigate 
and contain possible accident scenarios that may result in radiation release (Diaz 2004).  Chockie et al. 
(1991) identified four elements that are necessary for effective maintenance and aging management 
programs: 

1. Prioritized selection of critical systems, structures, and components; 

2. Collection and analysis of equipment performance measures to understand aging; 

3. Applying maintenance to mitigate the effects of aging; and  

4. The use of feedback to improve the maintenance and aging management programs. 

Monitoring and maintenance programs prescribed by the NRC and implemented at NPPs draw a 
distinction between active and passive SSCs.  Simply put, passive SSCs do not move during normal 
functions while active SSCs do.  Passive components include structures, pressure vessel, heat exchangers, 
cables, pipes, pressurizers, steam generators, etc.  Active components include pumps, motors, generators, 
sensors, control rod drive, etc.  The distinction between active and passive components can be 
complicated.  For instance, pumps and valves are generally considered active components, but their 
bodies, casings, and support structures are passive.  Historically, maintenance of active components is 
covered by the Maintenance Rule, while passive component degradation and maintenance are addressed 
under the plant’s Aging Management Plan.  These are essential elements of the NRC’s defense-in-depth 
policy for ensuring the safety and integrity of operating reactors.  The following sections briefly discuss 
the Maintenance Rule and Aging Management Plan, respectively.   

2.1 Active Components – the Maintenance Rule 

The requirements for performance monitoring and aging management of active components are 
contained in the Maintenance Rule (the Rule), defined in (10 CFR 50.65 2011); section (a) of the Rule 
defines the technical requirements while section (b) defines the scope of SSCs that fall into the Rule.  The 
Rule was designed to provide the nuclear power industry with a performance-based rule to improve the 
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overall effectiveness of maintenance programs and integrate risk considerations into maintenance 
processes.  Application of this rule and good maintenance practices should provide for detection and 
accommodation of any degradation of active SSC performance.  The Rule requires that each NPP 
operator set goals to monitor the SSCs in order to ensure that those SSCs are capable of performing their 
intended function, even in design basis accident scenarios.  Representative measurands are used to 
quantify, monitor, and trend performance to detect equipment performance degradation and aging.  These 
measurands may include flow, pressure, vibration, or temperature for monitoring individual components.  
Failures that are likely to cause loss of an intended function should be monitored through these unit-
specific measurands to give early warning of degradation.  However, when this is not the case, reliability 
and availability are traditional measurands for monitoring the overall health of systems.  Risk-significant 
systems must be monitored at the individual, or train, level to ensure that poorly performing systems are 
not being compensated for by higher-performing redundant systems.  Additionally, common-cause 
failures and generic problems are monitored across similar components in different system component 
groups.  A review of the Rule is given by Gregor and Chockie (2006) and Stevenson (2006). 

The Rule was issued in 1991 and became fully effective in July 1996.  Guidance for applying and 
fulfilling the Rule is given in NUMARC 93-01 (1996), which was endorsed by NRC (1997).  The scope 
of the rule, defined in section (b), includes (1) safety-related SSCs that are relied upon to remain function 
during and after design basis accidents and (2) nonsafety-related SSCs that are relied upon to mitigate 
accidents or transients, that could prevent safety-related SSCs from fulfilling their functions, or that could 
cause a reactor scram or actuation of a safety-related system through their failure.  Most NPPs use an 
expert panel to determine which SSCs fall into each of these categories.  The NRC reviews the 
application of the Rule and NUMARC guidance at each NPP in the United States.  As utilities began to 
develop maintenance monitoring programs to fulfill the Rule leading up to 1996, lessons of early efforts 
at implementation were summarized in Petrone et al. (1995).  These early inspections found that utilities 
were largely applying the Rule accurately to develop maintenance monitoring programs.  After the Rule 
had been in place for a few years, another review of baseline inspections was performed which found that 
the Rule was well-understood and appropriately applied for monitoring maintenance effectiveness (Wong 
et al. 1999).  While the Rule has been adequate for monitoring the effectiveness of maintenance of active 
components, it does not directly improve the scheduling or economics of performing maintenance.  In 
fact, most maintenance activities remain periodically scheduled under the Rule; however, well-applied 
condition-based maintenance (CBM) could reduce unnecessary maintenance and cost, and its 
effectiveness could also be monitored under the Rule. 

2.2 Passive Components – Aging Management Plans 

Management of aging and degradation of passive components and structures is accomplished through 
the plant’s aging management plan (AMP) and scheduled in-service inspection (ISI).  The AMP applies to 
all SSCs that are safety-related or whose failure could affect safety-related functions, as well as those 
SSCs relied on for compliance with fire protection, environmental qualification, pressurized thermal 
shock, anticipated transients without scram, or station blackout regulations.  The NRC’s guidance with 
regard to AMPs is provided in a set of reports referred to as the Generic Aging Lessons Learned (GALL) 
reports (NRC 2001, 2005a, b, 2010d).  These reports provide the technical basis for determining whether 
aging management programs at operating reactors are adequate or need modification as plants enter 
extended operation.  Specific programs that need modification are also identified, and the information in 
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these reports are included in the NRC’s Standard Review Plan for Review of License Renewal 
Applications (NRC 2010c). 

A key component of the AMP is the scheduled ISI of passive components, codified in 10 CFR 50.55a 
(2007), which specify the requirements for nondestructive inspection (such as inspection periodicity, 
inspection techniques, and qualification procedures).  These elements are contained in the American 
Society for Mechanical Engineers (ASME) Boiler & Pressure Vessel (BPV) Code, which the Code of 
Federal Regulations incorporates by reference.  The ASME Code specifies the minimum requirements for 
nondestructive examination (NDE).  Specifically, Section XI of the Code defines the acceptable 
volumetric and surface examination techniques, minimum requirements for acceptable procedures, and 
the acceptance criteria for flaws that are detected.  In addition, requirements for qualification of the 
procedures, equipment, and personnel are specified to ensure reliable inspections.   

Reliability of the nondestructive ISI techniques is key to ensuring that the defense-in-depth 
philosophy works as intended.  In this context, reliability includes several factors, such as the minimum 
detectable flaw, critical flaw size, and the probability of detection (POD), which is a function of 
equipment, inspection method that is implemented (procedure), and human factors (such as operator 
training, inspection environment, etc.) (Mueller et al. 2012).  The reliability of NDE was originally 
examined in several studies conducted by the US Air Force (Singh 2000).  Concerns regarding the ability 
of available NDE techniques to detect critical flaws in safety-related components in nuclear power plants 
caused the NRC and other organizations (in the United States and overseas) to conduct a series of studies 
on the reliability of ultrasonic NDE techniques (Chockie 1981; Doctor 1984; Fong 1986; Bates et al. 
1987; Nichols and McDonald 1987; Willetts and Ammirato 1987; Doctor et al. 1995; Doctor 2007; Miller 
2008).  These studies demonstrated that several sources of variability were present that impacted the 
reliability of NDE, and that an appropriate performance demonstration procedure was needed to ensure 
consistent reliability in field examinations.  These results were codified into the ASME BPV Code, in 
Section IX, Appendix VIII, and are also the basis for performance demonstration procedures for other 
NDE techniques (Chockie 1985). 

In the United States, for certain inspection techniques and components, the nuclear industry has 
developed additional examination guidelines, such as those developed under the Boiling Water Reactor 
Owners Group’s Vessel and Internals Project (BWRVIP) program, and the Materials Reliability Program 
(MRP) (for instance, EPRI 2008c; EPRI 2011c).  In addition, the concept of risk-informed inspections is 
being explored (IAEA 2010), which categorizes SSCs as being of either high or low safety significance. 
The AMP is then tailored to ensure that high-safety significance SSCs are inspected, while maintaining 
some minimum inspection coverage of low-safety significance SSCs.  

One persistent issue with the operating plants is that these were generally designed without 
consideration for in-service requirements; indeed, the ISI and AMP programs were established only after 
these plants were built and operating (Shah and MacDonald 1993; Tipping 2010).  The result is that 
several parts of the plant structures and components are not amenable to easy inspection, and the NRC 
therefore annually has to handle several requests for relief from the ISI requirements for these 
components.  Some of these issues are being addressed in the licensing for next-generation reactors, with 
particular attention being paid to inspectability (EPRI 2007).  Such changes, in concert with new and 
advanced online nondestructive monitoring methods such as acoustic emission, are expected to form the 
technical basis for safe extended operation in the future. 





 

3.1 

3.0 Technical and Economic Motivations 

This section discusses the technical and economic challenges that make PHM attractive for both 
legacy plants and new plant designs.  While the traditional approaches to maintenance and degradation 
management (the Maintenance Rule and Aging Management Plan) have been adequate in the past, these 
approaches are generally not optimized in terms of effort, time, or cost.  As plants move into longer 
service lives (both through LWRS and extended license periods of newer designs), the frequency of 
periodic inspection and maintenance may have to change to compensate for potentially increasing failure 
rates of known fault modes and heretofore unknown fault modes.  Advanced reactor designs introduce an 
additional set of challenges with exposure to potentially more severe stressors and the use of new, 
innovative materials to accommodate them.  Condition monitoring and PHM may have the potential to 
improve plant safety, increase efficiency, and reduce operating costs in NPPs, both legacy and future. 

3.1 Light-Water Reactor Sustainability 

Of the 104 NPPs in operation in the United States, 71 have received the first round of license 
extension, from 40 to 60 years of operation, and most of the remaining plants’ applications are under 
review. To date, nine U.S. plants have entered extended operation.  Industry polls indicate that license 
renewal is largely supported by the public, with 81% of respondents in favor of extending operation of 
existing plants (Bisconti 2007).  A review of the practical issues of policy and environment for license 
renewal concludes that advanced monitoring technology is key for extending licenses (Cerafici 2009).  As 
of December 2011, nine plants have entered long-term operation (LTO); that is, operation beyond the 
original 40-year licensing period (NRC 2011).  Consideration is already being given to the second round 
of license extensions for operation from 60 to 80 years, called extended LTO.  Light Water Reactor 
Sustainability (LWRS) refers to the research and development programs designed to support safe and 
economic operation of the existing reactor fleet during LTO and extended LTO.  To continue to provide 
secure, reliable nuclear power generation, it is imperative to understand and manage the challenges posed 
by NPP system aging.   

Aging is a potential problem for both active components (which exhibit increasing failure rate over 
time due to wear-out failures) and passive structures (whose safety margins are being reduced toward the 
lowest allowable level).  Historically, active components have been well maintained, managed, 
diagnosed, repaired, and replaced as necessary under the Maintenance Rule.  However, the application of 
advanced prognostics and health monitoring methods may support the economics of LWRS as the 
maintenance of these components shifts from conservative, periodic maintenance scheduling to just in 
time repair.  The health assessment of passive structures and components will necessarily need to 
transition to a more continuous approach to ensure their intended functions will be maintained for the 
period of operation and extended operation.  Additionally, advanced monitoring of passive structures may 
provide warning of incipient fault and failure in advance of traditional ISI techniques, further ensuring 
that intended functions are maintained over the same period.  

 Redundancy is one of the principal barriers against the negative effects of random failures; however, 
as systems age, the likelihood of simultaneous failures of redundant safety systems becomes more 
compelling.  Concerns over the effects of aging on plant SSCs have been building for at least the past 
25 years (Novak and Podest 1987).  Currently, there is increased interest in using condition-based rather 
than time-based maintenance for active components and automated online monitoring instead of periodic 



 

3.2 

ISI for passive structures to support LWRS (Jarrell et al. 2004; Bond et al. 2008c; Bond et al. 2008d; 
Bond and Meyer 2011). 

3.2 Generation III+, IV, and Future Plants 

The U.S. fleet of operating LWR plants is largely considered Generation II (Gen II) designs.  
Generation III and III+ reactors are advanced LWR designs.  Gen III reactor designs improve on Gen II 
by incorporating improvements that have developed during the operation of Gen II reactors.  Gen III 
designs commonly include improved fuel technology, thermal efficiency, passive safety systems, and a 
standardized design for multiple units.  Worldwide, several Gen III plants have been built and operated, 
including four advanced boiling water reactors (ABWR) in Japan.  Gen III+ designs, such as the 
AP-1000, the European Pressurized Reactor (EPR), and the Economic Simplified Boiling Water Reactor 
(ESBWR), offer further improvements in safety and economics over the Gen III designs.  Several 
Gen III+ plants are currently under construction, including EPR plants in Finland, France, and China.  
On-line monitoring (OLM) is now being deployed as part of new LWR plants; for example, by AREVA 
in the new EPR reactor at Olkiluoto in Finland, where 256 online measurement channels are included 
(AREVA 2007). 

Development and deployment of small-scale nuclear power reactors (generally considered less than 
350 MW) and their maintenance, monitoring, and control are part of the mission under the U.S. DOE 
Small Modular Reactor (SMR) program.  Ingersoll (2009) describes SMRs as “deliberately small 
reactors” with modular characteristics and multiple units deployed at the same plant site.  SMRs are 
designed to potentially operate in remote locations with limited infrastructure and skilled personnel.  
These reactors have additional monitoring concerns over traditional nuclear plant designs; these needs 
include increased expectations of availability, longer operating cycles between planned refueling and 
maintenance opportunities, and increased concerns for safety and proliferation resistance.   

Both LWR-based and advanced reactor designs for SMRs will necessarily have significantly different 
I&C needs than the existing reactor fleet (Clayton and Wood 2011).  LWR-based designs may include 
integral primary systems, which will have sensor access requirements very different from existing LWRs.  
The location of active components, such as pumps, inside the reactor vessel limits the ability to perform 
periodic diagnostic measurements; automated, online measurements for these components will be 
necessary to provide surveillance and health assessment.  Additionally, unconventional components, such 
as helical coil steam generators, do not have well-established performance and degradation histories.  
Continuous surveillance of these systems will alleviate some of the uncertainty associated with deploying 
unproven technology.  Advanced SMR designs commonly use different coolants and operate at higher 
temperatures than traditional LWRs, which may pose problems for existing sensor technology.  There are 
significant challenges associated with the choice of materials that are compatible with the unique 
operating conditions expected for advanced designs.  New forms of degradation (such as high-
temperature creep, oxidation/carburization, etc.) in passive components such as heat exchanger tubing, 
pressure boundary components, and reactor internals are anticipated due to these operating conditions.  In 
addition, there are a host of advanced structural materials being proposed for use in SMRs (such as ODS 
steels) where the long-term structural performance is not well understood.  Thus, the development of 
rapidly growing degradation in passive components is likely to impact the safe long-term operation of 
SMRs if not detected in a timely manner.  Traditional approaches based on periodic in-service 
nondestructive inspection methods (such as those used in current LWRs) for detecting such degradation 
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are not applicable to SMRs, given the expectation of longer operating periods between re-fueling outages, 
and potential lack of inspection access to critical components.  Many of these designs are intended for 
energy applications in addition to electricity production, such as process heat production.  Longer 
operating cycles will also affect the online monitoring and surveillance needs of SMRs.  Most LWR-
based designs anticipate a 3- to 4-year operating cycle, while some advanced concepts project core 
lifetimes of 20- to 30-years.  In both cases, outage frequency may be driven by inspection and 
maintenance needs, which makes timely, accurate detection of faults and incipient failures even more 
paramount.  Proponents of SMR designs also anticipate reduced maintenance staff as a cost-saving 
feature.  While the maintenance requirements for an individual reactor may be reduced, the total workload 
at a specific site will increase with the number of plants (and, therefore, the number of systems and 
components) located at the site.  Again, accurate, timely detection of faults and projection of RUL will 
help alleviate the maintenance burden by focusing efforts on those SSCs which need maintenance. 

Several advanced concepts have been proposed as part of Generation IV initiative to develop the 
future fleet of nuclear power generating plants.  Most of the concepts represent significant departures 
from current LWR technology inspired by efforts to improve existing technology in one or more areas 
including increased electricity generation efficiency, minimization of waste, implementation of passive 
safety features, and improved proliferation resistance.  A review by Abram and Ion (2008) identifies six 
Generation IV concepts, including the very high-temperature gas-cooled reactor (VHTR), the gas-cooled 
fast reactor (GFR), the sodium-cooled fast reactor (SFR), the lead-cooled fast reactor (LFR), the molten 
salt reactor (MSR), and the super-critical water-cooled reactor (SCWR).  Robinson (2006) presents a 
general framework for processing monitoring data and maintenance records to characterize current and 
future performance and to estimate current and future failure probabilities for subsystems and components 
of advanced reactors.  A key challenge in developing PHM systems for future systems is the lack of 
operating data to train and validate PHM models.  An adaptive approach has been proposed to move from 
high-fidelity simulations developed in the design phase to actual operating data as it becomes available 
(Hines et al. 2011).   

Several experimental and prototype reactors have been built that demonstrate VHTR and SFR 
technologies while demonstrations of LFR and MSR technologies have been more limited.  GFR or 
SCWR reactor technologies have yet to be demonstrated (Abram and Ion 2008).  In contrast, global 
experience in the operation of LWRs is extensive, yet knowledge of materials degradation behavior in 
LWRs is incomplete, particularly when considering LTO and extended LTO.  Advanced reactors will 
pose a considerably greater challenge, given that thermal, chemical, and radiological stressors will be 
more extreme.  To meet this challenge, many advanced reactor components will likely be fabricated from 
new or relatively unfamiliar materials.  As a consequence, “surprises” must be anticipated with respect to 
materials aging in advanced reactors; a proactive approach to aging management incorporating online 
monitoring, measurements of early degradation, and prognostics can help alleviate the burden of 
operating new reactor designs.  In addition, certain advanced reactor designs, such as the Pebble Bed 
Modular Reactor (PBMR), are designed to refuel online, reducing the frequency of convenient 
opportunities for maintenance.  Implementation of proactive aging management concepts can help 
operators of these reactors cope with extended periods between maintenance.   
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3.3 Business Case for PHM 

The current U.S. nuclear power fleet represents about 10% of installed capacity and it is used to 
generate approximately 20% of U.S. electricity.  This base load generation remains the most economical 
source of electricity in the United States (Nicholson et al. 2011; WNA 2011).  Operations and 
maintenance (O&M) costs comprise approximately 60–70% of the overall generating cost in NPPs, while 
only 15–30% of costs are attributed to fuel.  Furthermore, of the O&M costs in U.S. plants, approximately 
80% are labor costs (Wacker et al. 2007).  The use of PHM has potential to impact the economics of 
maintenance for both active and passive SSCs (Bond et al. 2008b; Bond et al. 2012 (draft)). 

The United States faces an additional challenge due to the coal-fired power plant fleet, which is also 
aging.  On December 21, 2011, the Environmental Protection Agency (EPA) issued the Mercury and Air 
Toxics Standards, which require the reduction of energy-related emissions, largely from coal-fired power 
plants, over the next three years.  Because the cost to employ these pollution-control measures will be 
necessarily passed on to consumers, nuclear-generated power is likely to remain an economically 
competitive form of electricity generation.   

At the time of this writing (2012), natural gas is being considered an economic alternative to nuclear 
power (Barron 2012).  Primarily, this is based on the present low cost of natural gas.  However, recent 
studies show that the total cost of gas-fired plants are a function of several other factors, including market 
regulation, transportation, building and maintaining the plant, electric grid upgrades, and any escalation in 
the supply cost of natural gas and the cost of electricity (Barron 2012).  As a result, nuclear generation 
may remain an economically competitive alternative to natural gas. 

Equipment maintenance has some associated fixed cost for labor, repair and replacement parts, and 
the minimum necessary downtime for repair.  Unscheduled maintenance due to unexpected equipment 
degradation or failure can incur significant additional costs, including possible secondary degradation or 
failure that may result from an in-service equipment failure.  The time needed to perform unscheduled 
maintenance may be extended due to a lack of necessary parts, equipment, and crew and the added repair 
time for secondary failures.  The lost revenue from reduced or halted electricity production during this 
extended repair time is a significant cost, estimated at approximately $1.25 million per day of plant 
shutdown for an average plant in the United States (NEI 2011).  Discovery of unanticipated pressure 
vessel head degradation at the Davis-Besse nuclear plant led to a 25-month outage and estimated repair 
costs exceeding $600 million.  In September 2008, a turbine generator malfunction at the D.C. Cook 
nuclear plant resulted in a fire, which led to eventual manual plant shutdown.  Turbine repairs totaled 
$332 million in addition to lost revenue during the one-year outage.  Two separate instances of cooling 
tower collapse in August 2007 and July 2008 at the Vermont Yankee plant led to a reduction in power 
generation to approximately 35% capacity for 11 and 12 days, respectively.  Obviously, it is of paramount 
importance to be aware of impending SSC failures so that preventive maintenance can be performed, 
operations can be adjusted, or auxiliary equipment can be employed to avoid these costs when possible.  
Information from online monitoring and prognostics enables turning unscheduled maintenance actions 
(resulting from unexpected malfunction of SSCs) into scheduled work.   

The results of the Nuclear Plant Aging Research (NPAR) program and complimentary industry-
driven aging research programs indicate that the aging phenomena in existing NPPs do not pose an 
insurmountable technical challenge to life extension; the life of these plants is primarily limited by the 
cost of effective inspection and maintenance programs and the cost of repair or replacement of degraded 
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SSCs.  Legacy commercial aircraft face many of the same challenges that legacy NPPs face in continued 
operation, including both policy challenges (i.e., significant regulations that control technology 
certification and application) and technical challenges (i.e., lack of data collection and processing 
infrastructure in legacy systems).  From a business perspective, the goal in applying PHM to the 
commercial aircraft industry is identical to that of the legacy NPP fleet: to yield maximum profit while 
maintaining safe operation.  Leão et al. (2008a) present a cost-benefit analysis (CBA) for applying PHM 
to the aging commercial aircraft fleet to extend life and alleviate unnecessary maintenance.  Many of the 
enumerated benefits and costs are common to both industries.  Benefits include increased system 
availability and reliability; reduction in scheduled maintenance tasks and associated costs; reduction in 
secondary damage due to failure of a primary component; reduction in maintenance-induced failures (due 
to unintentional damage caused during normal maintenance activities); reduction of insurance costs; and 
intangible benefits, including building a positive public perception of maintenance and safety practices.  
Common sources of cost include PHM system development and certification; deployment of additional 
sensors and processing capabilities; maintenance of PHM system, including replacing and repairing 
sensors and maintaining PHM models; training of appropriate personnel; and additional maintenance 
performed due to inaccurate or conservative prognostic models.  Quantification of the individual figures 
prescribed to each benefit and cost is difficult due to changes over time and the uncertainty in equipment 
condition that makes prognostics necessary.  Cost of new technology deployment and related issues, such 
as replacement of instrumentation cabling, in a given plant may be the economic decider for the 
feasibility of extended operation (Bond et al. 2011b). 

Anecdotally, appropriate application of PHM reduces the cost of maintenance while increasing 
system availability and reliability.  No formalized CBA for applying PHM in a specific NPP has been 
found; however, analyses by Bond et al. (2011b) and Wacker et al. (2007) suggests that fleet-wide 
savings of over $1 billion per year are possible in the United States when PHM is applied to all key 
equipment in legacy power plants.  Analyses of PHM in other industries and in general suggest significant 
potential savings.  Duc and Ming (2011) compare the costs of different maintenance policies, including 
two scheduled maintenance plans and two CBM plans.  The CBM systems do not include the use of 
prognostics to schedule maintenance; maintenance is performed when a sensed indicator exceeds a pre-
defined threshold.  Even with these naïve maintenance policies and under varying costs of failure and 
maintenance quality, the two CBM methodologies consistently present significant cost savings over the 
scheduled maintenance plans.  Banks and Merenich (2007) apply a trade space visualization software to 
CBA, which accounts for the cost associated with operational unavailability, a significant cost for NPPs.  
Hecht (2006) investigated application of PHM to electronic equipment and identified several general 
results that may be widely applicable, including the use of broad spectrum sensors to cover a large 
number of failure mechanisms with minimal hardware; targeted application of PHM sensors and 
algorithms to those where the difference in cost between pre-planned and unanticipated maintenance is 
high; and managing the cost of sensors and implementation to ensure some savings are realized if 
prognostic coverage is not as high as expected.  Tian et al. (2011a; 2011b) give a methodology to 
economically optimize maintenance planning of multi-component systems based on condition monitoring 
results.  This method capitalizes on fixed costs associated with any maintenance action, such as sending a 
maintenance team to the site, by combining many maintenance actions that will be necessary in some 
short-term window into one maintenance event.  Drummond and Yang (2008) present a different 
approach to CBA by determining a range of key features (cost of failure, failure rate, false alarm cost, 
etc.) over which the algorithm is economically useful compared to schedule-based and run-to-failure 
maintenance policies.  The existing literature on CBA for PHM applied to a variety of components and 
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systems suggest a strong business case for applying PHM to maintenance planning and life extension of 
SCCs in legacy NPPs; however, this analysis will need to be performed on a plant-by-plant basis.  The 
case for PHM in future NPPs is even stronger, because the added cost of expensive retrofitting can be 
avoided by incorporating sensors, communication infrastructure, and other PHM considerations 
beginning in the design phase. 

Considering the lessons learned in operating and maintaining the existing fleet of NPPs, new reactors 
will clearly benefit from including advanced monitoring, fault detection, diagnostic, and prognostic 
infrastructure from initial design through operation.  Retrofitting health monitoring systems to existing 
plants is more costly and likely more complicated than incorporating the necessary monitoring systems in 
the design phase.  However, in both legacy and future plants, the economics of PHM for NPPs is 
attractive. 
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4.0 Introduction to Prognostics and Health 
Management Systems 

Several related programs have been proposed since the late 1990s to facilitate the move from find-
and-fix maintenance policies to predictive maintenance.  The Joint Strike Fighter (JSF) research group 
includes fault detection and isolation, enhanced diagnostics, material condition assessment, performance 
monitoring, and estimation of remaining useful life (RUL) under the umbrella of prognostics (Hess et al. 
2005).  However, this collection of activities seems better suited to the common moniker of Prognostics 
and Health Management (PHM) or the program suggested by the U.S. Deputy Under Secretary of 
Defense for Logistics and Material Readiness, Condition Based Maintenance plus (CBM+) (Jaw and 
Merrill 2008; Millar 2009).  Full health monitoring systems, also called Condition Based Maintenance 
(CBM) systems, are the focus of much research.  Callan et al. (2006) outline a five-step CBM system, 
which includes:  data acquisition, data manipulation, condition monitoring, health assessment, and 
prognostics.  Walter (2006) extends this system with a sixth module:  advisory generation.  Pipe (2008) 
and Hess et al. (2005) suggest the use of RUL estimates for maintenance planning and logistics systems.  
Kothamasu et al. (2006) describe using prognostic estimates to aid maintenance scheduling and planning; 
they also suggest prognostics for optimal control algorithms. 

The Life Extension Analysis and Prognostics (LEAP) program focused on health monitoring of 
complex mechanical systems for diagnostics, prognostics, and maintenance scheduling (Greitzer et al. 
1999b).  One outcome of the LEAP research program was a prognostics architecture concept that helped 
to communicate logistics and organizational requirements fundamental to establishing capabilities for 
anticipatory logistics that exploit prognostics analyses for different applications and multiple analytical 
methods (Greitzer 2000).  This has led to a six-step PHM development process (Greitzer and Ferryman 
2001): 

1. Conduct a thorough failure modes and effects analysis (FMEA) to identify maintenance issues and 
high-frequency/high-cost faults and failures; 

2. Identify sensors that are necessary to diagnose and/or predict faults; 

3. Conduct a cost-benefit analysis to determine the monetary and intangible impacts; 

4. Design and fabricate additional sensors, if necessary; 

5. Collect testbed and field data for system development and validation; and 

6. Develop and apply prognostic algorithms in a prototype version of the PHM system. 

The LEAP program also resulted in a prognostic methodology termed LEAP-Frog, which attempts to 
trade-off between short- and long-window regressions to provide optimal response to changing system 
conditions while controlling prognostic uncertainty (Greitzer 2001a). 

Figure 4.1 illustrates the modules of a typical health monitoring system.  By applying the entire suite 
of modules, one can accomplish the goals of most prognostic systems:  increased productivity; reduced 
downtime; reduced number and severity of failures, particularly unanticipated failures; optimized 
operating performance; extended operating periods between maintenance; reduced unnecessary planned 
maintenance; and reduced life-cycle cost.  Data collected from a system of interest is monitored for 
deviations from normal behavior.  Monitoring can be accomplished through a variety of methods, 
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including first-principle models, empirical models, and statistical analysis (Hines and Seibert 2006).  If a 
fault is detected, it is often important to identify the type of fault; systems will likely degrade in different 
ways depending on the type of fault and so different prognostic models will be applicable.  Expert 
systems, such as fuzzy rule-based systems, are common fault diagnosers.  With this information, a 
prognostic model is employed to estimate the RUL of the system.  This model may include information 
from the original data, the monitoring system residuals, and the results of the fault detection and isolation 
routines.  Finally, knowledge of the estimated current and predicted future system health can be used to 
inform O&M planning or for optimal, fault-accommodating/fault-adaptive control.  Table 4.1 assesses the 
maturity of diagnostics and prognostics for several classes of SSCs and application spaces.   
 
 

 
 

Figure 4.1.  Suite of Modules in a Health Monitoring System (Hines et al. 2008b) 
 
 
Table 4.1. Assessment of State of Maturity for Diagnostic [D] and Prognostic [P] Technologies (adapted 

from (Howard 2005; Bond et al. 2008a) 
 

Diagnostic/Prognostic Technology for: AP(a) A(b) I(c) NO(d) 
Basic Machinery (motors, pumps, generators, etc.) D&P    
Complex Machinery (helicopter gearboxes, etc.) D&P    
Metal Structures D P   
Composite Structures  D P  
Electronic Power Supplies (low power) D P   
Avionics and Controls Electronics D P   
Medium Power Electronics (radar, etc.) D P   
High Power Electronics (electric propulsion, etc.) D P   
Instrument Re-calibration – monitoring (NPP) D   P 
Active Components – nuclear power plants D  P  
Passive Components – nuclear power plants   D P 
(a) AP = Technology currently available and proven effective. 
(b) A = Technology currently available, but V&V not completed. 
(c) I = Technology in process, but not completely ready for V&V. 
(d) NO = No significant technology development in place. 
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Each module in the PHM system is described in the sections below, from data collection through 
prognostics.  Incorporating this information into control and O&M planning is an area of active research 
and is described later in this report.   

4.1 Data Collection – NDE for Passives, Variable Sensing for Actives 

Traditional reliability-type analysis estimates the probability of faults and failures in a system based 
only on population distributions, but this does not give any insight into the current or future condition of a 
specific SSC.  Information from an SSC of interest is necessary to make an accurate, reliable prediction of 
individual health.   

Active components in NPPs include pumps, valves, motors, sensors, etc.  For these active 
components, PHM systems can capitalize on the information already collected by the plant I&C system:  
temperature, flow, pressure, etc.  Pump health may be estimated using discharge pressure and flow; valve 
operation could be monitored through the changes in flow as the valve position setpoint is changed; and 
sensor calibration can be monitored and diagnosed by using the data those sensors are collecting. 

For some active components, additional measurements may be useful or necessary to develop more 
robust and accurate prognostic models.  Pumps and motors can be monitored through vibration 
measurements; in fact, reactor coolant pumps and casing are commonly monitored through the reactor 
coolant pump vibration monitoring system (RCPVMS) (Koo and Kim 2000).  However, these systems do 
not currently support automated, online analysis of the vibration data to detect and diagnose abnormal 
conditions.  Motors, such as those used for motor-operated valves, can be monitored through multiple 
features, such as input current and voltage, active power, motor position measures, and applied forces.  
These monitoring methods using additional data sources are described in more detail in Section 6.1.  
Many of these additional measurements, such as vibration, motor position, or electrical signatures, may 
largely be obtained autonomously, online, and unobtrusively. 

Similar measurement capabilities are not as readily available for passive components.  Damage in 
passive components takes many forms (corrosion, cracking, etc.) and typically results in a localized 
change in material properties (electrical or thermal conductivity, magnetic permeability, elastic modulus, 
etc. (Raj et al. 2003)).  Measurements that are sensitive to these discontinuities are generally used to 
detect damage in passive components in a nondestructive manner.  Nondestructive measurement methods 
available for passive components include radiography, ultrasonic imaging, visual inspection, 
electromagnetic inspection (including eddy currents, potential drop methods, etc.), and thermal imaging 
(Meyer et al. 2010; Meyer et al. 2011a).  Almost all of these methods (with the exception of visual 
inspection) are focused on the detection of hidden damage in components, and rely on the interaction of 
applied energy with the material damage sites.  In most cases, the inspection process requires progressive 
scanning to inspect the entire component, and may require significant intervention (i.e., not autonomous, 
online, or unobtrusive).  As with active components, the resulting data only provides a snapshot of the 
current condition of the system.   

Exceptions (for passive component nondestructive condition measurements) include wide-area 
inspection methods such as acoustic emission (AE) monitoring and guided ultrasonic waves (GW).  AE 
relies on the (usually long-range) detection of stress waves that emanate from damage sites, either 
intrinsically due to the growth process of the damage or as a result of an external applied load to the 
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component.  AE is well suited for online monitoring of passive components in nuclear power plants, and 
has been applied for crack growth detection (Harris and Dunegan 1974; Hutton et al. 1984; Hutton 1993; 
Hutton et al. 1993; Ai et al. 2010; Meyer et al. 2011b), leak detection (IAEA 2008b), and loose part 
monitoring (IAEA 2008b).  GW also relies on the interaction of long-range stress waves with damage in 
the component (Rose 1999; Meyer et al. 2012b).  However, GW is an active technique that uses 
transducers to generate guided waves in the structure, and records the result of the interaction.  The 
guided waves that are used in GW inspection are able to propagate over long distances (10s of meters) 
enabling wide-area inspection (Rose 2002).  A brief review of applications of GW for nuclear power plant 
components is provided in (Meyer et al. 2012b). 

The methods described above are focused on detecting the presence of damage in materials that result 
in a change in the local material properties.  Inspection methods that rely on modal frequency analysis for 
structural monitoring have been proposed in other application spaces (Vipperman 1999; Zimmerman et al. 
2008).  These methods typically use accelerometers to measure displacements at different points in the 
components and use the result to analyze changes in primary modes of vibration of the structure.  
Changes in the modal structure are usually correlated to the level of structural damage.   

4.2 Monitoring Methods 

Condition monitoring describes a suite of activities for estimating system state and providing early 
warning of anomalous behavior.  Requirements for extending data collection to equipment condition 
assessment include (Rasmussen 2005): 

• clear understanding of all failure modes of interest, 

• installed instrumentation capable of detecting these failure modes, 

• defined instrument signatures for each failure mode, 

• significantly slow progression from fault to failure to provide early detection, 

• unambiguous early detection to provide actionable information, and 

• negligible probability of false- and missed-alarms. 

Detailed reviews of state estimation and fault detection methods are given in Hashemian (1995), 
Hines and Seibert (2006), Heo (2008), and Ramachandran et al. (2010).  State estimation and fault 
detection will be briefly described in the following sections.  State estimation methods can be roughly 
divided into physical models and empirical models. 

4.2.1 Physical Models 

If the underlying physical mechanisms of a system are well understood, then an analytical model 
based on first principles can be designed to describe the expected nominal (or in some cases faulted) 
behavior based on measured system features or operating conditions.  For instance, if the pressure of 
saturated steam at the outlet of a steam generator in a PWR is measured, the temperature can be 
determined based on well-known physical relationships.  Physical models are attractive for engineering 
systems because they explicitly account for mechanical, material, and operational characteristics; they can 
be developed and evaluated before the system has been built and operated; and they can be applied to a 
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wide variety of operational and material conditions to understand behavior over a wider range of 
operation.  However, these models can be costly and time-consuming to develop for large, complex 
systems, and developed models often have limited applicability.  Additionally, simplifying assumptions 
are often necessary for phenomena that are not fully understood or to improve runtime performance. 

4.2.2 Empirical Models 

Unlike physical models, empirical models are built on historical operation data with no explicitly 
defined understanding of the underlying physical mechanisms of the system.  These modeling methods 
can be classified according to two characteristics:  parametric versus nonparametric and inferential versus 
auto-associative (Table 4.2).  Parametric models use the available data to determine the parameter values 
for a functional fit and then “throw away” the historic data; a well-known classic parametric model is 
linear regression.  Conversely, nonparametric models retain the historic exemplars in a memory matrix 
and include an algorithm for combining these exemplars to make a prediction for each new observation 
(e.g., kernel regression).  Inferential models use a set of explanatory variables to predict one response 
variable; again, a classic example is linear regression.  Autoassociative models predict the “correct” set of 
variable measurements given the measured values of those variables; here, the inputs and the outputs 
represent the same variables.  These state estimation methods can be thought of as error correction 
routines. 
 
 

Table 4.2.  Categorization of Select Empirical State Estimation Methods 
 

 Parametric Nonparametric 
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Linear Regression 
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Kernel Regression 
Locally Weighted Regression 
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Autoassociative 
Neural Networks 

(AANN) 

Autoassociative 
Kernel Regression (AAKR) 

Multivariate State 
Estimation Technique (MSET) 

 

All of these state estimation techniques, both physical and empirical, inherently have uncertainty 
associated with their outputs.  Sources of this uncertainty include instrument channel uncertainty 
(electrical and sensor noise, instrumentation faults, process variation) and estimation model uncertainty 
(integrity and appropriateness of the model).  Statistical monitoring techniques can be used to determine if 
system operation is nominal or faulted while taking these uncertainties into consideration; the next section 
describes some common fault detection routines.   

4.2.3 Fault Detection Methods 

The simplest method of fault detection is thresholding.  Thresholding monitors a sensed value (or 
state estimation residual) and alarms when it exceeds some predefined, fixed threshold.  This type of fault 
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detection looks for gross changes in the sensor value.  Care must be taken when setting the alarm 
threshold to balance between false alarms (due to noise naturally present in the system) and missed alarms 
(common when faults only induce small changes in a single variable).  Advanced fault detection methods 
typically compare the nominal system state estimated by a physical or empirical model to the system state 
measured by sensed variables to detect discrepancies between expected and actual behavior.  The 
difference between expected and actual behavior, called the residual, characterizes system deviations 
from normal behavior and can be used to determine if the system is operating in an abnormal state.  
Statistical methods are commonly used in this analysis to account for noise and uncertainties in the 
predicted and measured system states.  Several reviews of fault detection routines are available (Isermann 
1984; Gertler 1988; Angeli and Chatzinikolaou 2004; Miljkovic 2011).  Three common routines are 
described here:  error uncertainty limit monitoring, sequential probability ratio test, and control charts. 

Error Uncertainty Limit Monitoring (EULM) fault detection is an adaptation of simple threshold 
monitoring developed specifically for sensor calibration monitoring in NPPs.  EULM fault detection 
adapts simple thresholding for use in the nuclear power industry by monitoring the uncertainty bounds 
about a sensed value (or state estimation residual) and alarming when the uncertainty bounds exceed 
some threshold, as shown in Figure 4.2.  The calculation of drift limits inherently accounts for the 
imperfect estimation of monitoring system residuals by incorporating the effects of faulty inputs on 
modeling outputs through the model’s auto-sensitivity.  This approach offers an additional level of 
conservatism to the fault detection, indicating when the monitored parameter is no longer within the error 
thresholds to some specified confidence level.   
 
 

 
 

Figure 4.2.  EULM Fault Detection 
 

The sequential probability ratio test (SPRT) was developed by Wald (1945).  This statistical test 
considers a sequence of residuals and determines if they are more likely from the distribution that 
represents normal behavior or that of a faulted distribution, which may have a shifted mean value or 
altered standard deviation from the nominal distribution.  Figure 4.3 shows the nominal and faulted 
distributions for a SPRT test for a positive shift in mean value.  Here, the faulted distribution must be pre-
defined to perform the sequential analysis.  If the behavior of expected faults is not well understood, the 
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faulted distribution can be defined to achieve specified false- and missed-alarm probabilities.  However, 
this method is based on the assumption that noise and residuals are normally distributed and white, which 
may not occur in practice. 
 
 

 
 

Figure 4.3.  Nominal and Faulted Gaussian Distributions 
 

A control chart, also called a Shewhart Chart, indicates if an engineering system is statistically “in 
control” or “out of control.”  Control charts are graphical approaches to fault detection where the sampled 
values of a parameter (or residual) are plotted with an expected distribution indicating the centerline value 
and upper and lower control limits (Figure 4.4).  Two types of control charts are common:  mean-standard 
deviation control chart (X̅-S) and mean-range control chart (X̅-R).  These charts can be used when the 
system is relatively stable, meaning that the standard deviation (or range) does not vary significantly over 
time under normal operation.  X̅-S chart is used when a large number of samples are available to calculate 
the standard deviation.  When the sample size is too small to accurately estimate the variance, the X̅-R 
chart can be used considering the range to be an alternative to the standard deviation.  Both the X̅-S and 
X̅-R charts are useful for detecting large changes (3σ or more) in a process mean or variance, but they do 
not perform as well for small changes.  The cumulative sum (CUSUM) chart can be used as a supplement 
to the traditional control charts to detect smaller changes (such as a 1σ or 2σ change in mean or variance).  
Control charts provide a heuristic approach to fault detection, as opposed to the hypothesis testing used in 
SPRT.  Because of their graphical nature, the variation patterns created in control charts can sometimes be 
used for fault diagnostics.  Several rule sets have been proposed to evaluate the type of error based on 
control chart patterns, including Nelson rules (Nelson 1984) and the Western Electric or Wheeler rules 
(Montgomery 2005).   
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Figure 4.4.  Control Chart for Fault Detection 
 

The goal in fault (or flaw) detection in passive components is similar to the goal for active component 
fault detection—does a measurement contain potential evidence of a flaw in the material or component?  
As of this writing, flaw detection and diagnostics in most commercial applications of NDE is generally 
performed manually; that is, by one or more analysts examining the measured data to identify signals of 
interest, followed by a more comprehensive evaluation (also manual) of the measured data to determine if 
the signal is from a flaw of interest.  The detection is also generally performed as a function of spatial 
location (as opposed to the time-based fault detection typically used with active components).  However, 
the basic principles are the same in that, in both cases, some form of change detection approach is used.   

In recent years, there has been increased interest in the use of automated algorithms to analyze NDE 
measurements from passive components.  While most of the work is still in the research phase, there are 
some notable successes, where the automated analysis technology is being transitioned to use in a field 
setting (Zetec ; Benson et al. 2007; EPRI 2008a, 2009b).  Automated algorithms for flaw detection are 
usually applied off-line, that is, after all of the measurement data has been acquired (though some recent 
applications in the nuclear power area are emerging where the goal is near-real time flaw detection 
(Benson et al. 2007; EPRI 2009b)).  In general, automated analysis also follows a two-step process as in 
the manual case, where the first step is to identify signals of interest (detection) followed by a second step 
of careful analysis to determine if the identified signal is a flaw and, if so, to characterize the severity of 
the identified flaw.  This section discusses the first (detection) step only; the second step is detailed in the 
next section of Fault Diagnostics.  Note that, in the literature, such a division is often not explicitly 
described and, indeed, the line dividing the two steps is somewhat fuzzy at best.  However, the distinction 
is made here to align the discussion on passive component fault diagnostics with that on active 
component diagnostics and maintain a uniform outline.   

The problem of flaw detection in passive components has seen a number of approaches, which are 
usually empirical in nature.  Typically some signal enhancement operations (prefiltering) are performed 
first (Udpa 2004) (either explicitly, or implicitly as part of the thresholding phase applied next).  The goal 
here is to reduce the impact of measurement noise and enhance the overall signal-to-noise ratio (SNR).  
Often, this step also results in a reduced set of signals that need to be evaluated, as obvious non-flaw 
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signals are eliminated.  This is usually followed by some form of thresholding (either in the time domain 
or in an alternative domain such as frequency or wavelet) to clearly identify the signals of interest.  The 
benefits of this approach are most often apparent in the analysis of imaging data, as this step can eliminate 
all but a few regions of the image for follow-on analysis (Xiang et al. 2001).   

Approaches that have been proposed for detection are based on a range of filtering and transform 
algorithms, including adaptive filtering (for instance, Shekhar et al. 2001), template-based algorithms (for 
instance, Baskaran et al. 2004), time-frequency transforms (for instance, Legendre et al. 2000), and other 
transforms such as the Hilbert-Huang Transform (Quek et al. 2003).  The diversity of approaches is partly 
due to the diversity in available nondestructive measurement techniques.  In the area of ultrasonic NDE 
alone, a number of SNR enhancement techniques have been assessed.  Spatial and frequency 
compounding (Bencharit et al. 1986; Choi 2007) methods use weighted averages of several measurements 
to improve SNR.  Deconvolution methods assume a linear model for each of the measurement 
subsystems, and attempt to compensate for their effect on the measured data.  Deterministic 
deconvolution techniques that assume a convolving filter did not result in an improvement in SNR with 
model data, particularly for low amplitude responses from cast austenitic stainless steel (CASS) 
specimens (Hargreaves 1988).  Similar results were observed when deconvolution using a minimum 
phase filter was applied, and the most promising results were obtained by a minimum entropy 
deconvolution technique (Hargreaves 1988).  Other studies have also indicated the potential for 
improvement in flaw detection through deconvolution (Ghouti 1997).  Wavelet and related time-
frequency techniques have also been successfully applied to reduce speckle noise and enhance ultrasonic 
signal SNR (Chen et al. 1999; Park et al. 2004).  Other methods, such as the split spectrum processing 
technique (Bilgutay et al. 1989; Shankar et al. 1989) as well as the more general class of synthetic 
frequency diversity algorithms (Ericsson 1994) also show some potential.  Time-averaged mean and 
mean-squared values were effective when the back surface response was relatively strong but were 
relatively ineffective for low amplitude signals (Hargreaves 1988).  However, split-spectrum based 
polarity thresholding (Shankar et al. 1989), either alone or in combination with other processing 
techniques such as minimization (Newhouse et al. 1985) appears to significantly improve detectability in 
challenging materials, such as CASS specimens.  A maximum entropy model of spectral analysis also had 
limited success (Hargreaves 1988).  Miralles et al. (2004) discuss the application of higher order statistics 
(HOS) for analyzing ultrasonic backscatter.  Though the focus of the work is on classifying scatterer (or 
grain) sizes based on HOS, similar approaches may potentially be applied to improve SNR or characterize 
microstructure.  The use of nonlinear homomorphic filters (Morris et al. 1995) for reducing distortion and 
improving the imaging of strong scatterers have also been proposed.  Note that synthetic aperture 
focusing techniques (SAFT) for CASS inspection (Silverstein and Thomas 1993; Anderson et al. 2007) 
also make use of signal processing tools to improve the beam-forming capabilities and reduce clutter.  

Similar approaches to addressing the detection problem for other NDE measurements (Arunachalam 
et al. 2002; Ramuhalli et al. 2003b; Shin et al. 2004) techniques have been studied.  

4.3 Fault Diagnostics 

When a fault has been detected, diagnostic routines attempt to determine some information about the 
fault.  Diagnosis can entail fault isolation, fault identification, or, most commonly, both.  Fault isolation 
refers to locating the fault to a specific piece of equipment or area.  Fault identification refers to 
determining the cause of the fault.  Often, these two analyses are completed in tandem; a fault is detected 
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and the diagnostic system determines both the location and cause (and, in some cases, severity) given the 
available fault symptoms.  Fault symptoms are the features and signatures available that may help 
diagnose the fault; symptoms could include sensed data, monitoring system residuals, fault detection 
results, alarm patterns, etc.   

Traditionally, diagnostics employed rule-based systems, wherein explicit if-then rules were used to 
determine a diagnosis given a symptom or set of symptoms.  These systems were attractive, because they 
were naturally able to capture engineering judgment and past experience in a set of rules.  However, rule-
based systems are extremely brittle (Rich and Venkatasubramanian 1987).  Before a new rule can be 
added, it must be compared to all the existing rules to avoid inconsistencies and conflicts (particularly 
when one symptom may be indicative of multiple different fault modes).  Rule bases can easily become 
unmanageable as the rule list is expanded to include more and more scenarios.  The if-then rules do not 
contain any deep knowledge of the system, so the rule-based engine will necessarily fail when a new 
condition is encountered that is not encapsulated in the rules, and changes in system design and operation 
are not easily propagated through the existing rules.  Fuzzy rule-based systems overcome some of these 
challenges by naturally allowing a certain amount of uncertainty, or “fuzziness,” in the rules; here, 
conflicting rules are not as detrimental to the overall system and “guesses” can be made for new situations 
based on the expert knowledge contained in rules.  However, even fuzzy systems can suffer from rule 
bases that are too large for practical analysis.  Research in diagnostic systems has investigated more 
sophisticated algorithms for several decades.  A review of early work is given by Milne (1987). 

In addition to expert systems, many traditional and advanced classification algorithms have been 
applied to fault diagnostics, including k-nearest neighbors (kNN), principal component analysis (PCA), 
neural networks, self-organizing maps, clustering, fuzzy clustering, etc.  A series of review papers 
describes diagnostic methods based on quantitative models (Venkatasubramanian et al. 2003c), 
qualitative models (Venkatasubramanian et al. 2003a), and process history (Venkatasubramanian et al. 
2003b).  Yang (2004) gives a thorough review of both model-based diagnosis and data-driven diagnosis. 

While diagnostic algorithms can be generally developed, fully developed diagnostic modules are 
extremely situationally dependent.  A diagnostic system for a car engine is not applicable to a jet engine.  
In fact, a diagnostic system for a specific car engine (say a 1998 Saturn SL-1) may not be appropriate for 
a 1998 Ford Taurus, or even a 1995 Saturn of the same model.  However, some work has been done in the 
power industry, specifically by the Electric Power Research Institute (EPRI), to pool information across a 
fleet of power-generating stations (both nuclear and non-nuclear) to build a more widely applicable 
Diagnostic Advisor.  That work is briefly described in a later section.   

The issue of diagnostics in passive components is similar, in that the goal is to determine whether a 
highlighted signal of interest (see previous section) contains evidence of material damage, and if so, 
whether the severity of the damage (in terms of location, size, and shape) can be quantified.  This problem 
of material damage diagnostics is part of a general class of problems referred to as inverse problems 
(National Research Council 1996; Udpa and Udpa 1997; Ramuhalli 2002).  Inverse problems in general 
are ill-posed (Tarantola 1987), lacking both uniqueness and continuous dependence of the measured 
signals on the inputs (Vogel 2002).  This has resulted in the development of a variety of solution 
techniques for inverse problems in NDE (Udpa and Udpa 1997).  As discussed in the previous section, 
flaw diagnostics for passive components in the field is generally performed by a manual analysis of 
measurement data.  In the nuclear plant NDE area, this is almost exclusively the case although flaw 
detection in other application areas is slowly moving to the use of automated algorithms.  Manual analysis 



 

4.11 

typically makes use of a calibration standard.  Measurements from the component under test are 
compared to those from the calibration standard to determine whether a response is flaw-like or not.  In 
recent years, the use of data from a calibration standard has also been proposed for automated analysis 
and is an example of a direct approach for flaw diagnostics, which maps the measurement to the material 
property space (Hwang et al. 1997; Udpa and Udpa 1997; Ramuhalli et al. 2002; Sohn et al. 2003).  
Direct approaches apply a feature extraction step to extract relevant attributes of the measurement signal 
that has been identified as high interest during the detection phase.  Physical features (such as rise time 
and energy), frequency-domain features, statistical features (high-order moments), and time-frequency 
features (wavelets, etc.) have all been applied to this task (Polikar et al. 1998; Simone et al. 2001; Kim et 
al. 2006).  The final step of flaw signal detection is performed using one of several approaches, including 
hypothesis testing, neural networks, fuzzy systems, expert systems, etc., where the original measurement 
may be ultrasonic, radiographic, eddy current, or visual (or some other nondestructive measurement 
approach).   

However, direct techniques are limited in that they require data from known damage (training data) to 
determine the mapping parameters, are sensitive to noise, and can only be used when measurements are 
acquired from flaws similar to those used in the training process.  Alternative approaches draw inspiration 
from the many techniques that are well-established for inversion (or reconstruction) in the area of imaging 
(Barrett and Myes 2004).  

In the context of flaw diagnostics (specifically quantification of flaw parameters such as shape and 
size), iterative methods that employ simulation models of the measurement physics are generally 
considered as an alternative to direct techniques (Yan et al. 1998).  The model is used to estimate the 
measurement given the flaw or damage characteristics (i.e., shape, size, and location), which is iteratively 
derived by minimizing the difference between the estimated and actual measurements using optimization 
techniques such as conjugate gradient, simulated annealing (Kirkpatrick et al. 1983), or genetic 
algorithms (Haupt 1995).   

Two classes of forward models (i.e., models of the measurement physics) have been utilized.  The 
first group of models are numerical models such as a finite element model or integral equation models 
(Hoole et al. 1991; Caorsi et al. 1994; Monebhrrun et al. 1998; Yan et al. 1998; Balasubramanian et al. 
2001; Li et al. 2001; Kim et al. 2003; Arunachalam 2006; Connolly et al. 2009), and although accurate, 
tend to be computationally expensive because the models must be solved during each iteration.  
Alternative forward models based on neural networks have also been proposed (Qing et al. 1997; Zhang 
and Gupta 2000; Ramuhalli et al. 2002, 2003a; Joshi 2006).   

Other non-iterative forward model-based inversion techniques have also been proposed for the 
general problem of flaw diagnostics, including tomographic reconstruction using the Fourier slice 
theorem (Kim et al. 2003; Barrett and Myes 2004; Arunachalam 2006), point source technique, and 
(Potthast 2001) linear sampling (Colton and Kirsch 1996; Colton and Kress 1998).  Constraints on 
material properties in the form of Markov random fields (Caorsi et al. 1994), as well as other 
regularization methods, have also been attempted (Tikhonov and Arsenin 1977; Morozov 1993; Vogel 
2002; Barrett and Myes 2004).  These methods are non-recursive (i.e., they attempt to solve the inverse 
problem over the entire problem domain using all of the data) and are generally computationally 
expensive.   



 

4.12 

Data fusion algorithms (Waltz and Llinas 1990; Abidi 1992; Dasarathy 1997; Hall and Llinas 1997) 
for inverse problems in NDE have primarily been applied in direct solutions.  In general, algorithms based 
on transform-based methods, Kalman filtering (and extended Kalman filtering) methods, Bayesian and 
other stochastic approaches, evidence-based techniques (such as Dempster-Shafer evidential reasoning), 
neural networks and rule-based systems have all been proposed for NDE applications (Pearson et al. 
1988; Maren et al. 1989; Abidi 1992; Gros 1997; Liu et al. 2003; Ramuhalli and Liu 2004).  Several 
authors have proposed the use of other techniques that include wavelet transforms (Verma et al. 2003; 
Kumar and Ramuhalli 2005b; Kumar et al. 2005), geometric transformations (Oagaro et al. 2004), 
independent component analysis (Simone and Morabito 2000), neural network algorithms (Yim et al. 
1994; Ramuhalli and Liu 2004), and fusion using optimum filters or deconvolution methods (Yim et al. 
1996; Kumar and Ramuhalli 2005a).  There are relatively fewer methods that attempt to use statistical 
techniques for data fusion for NDE (Lee and Bajcsy 2004; Basseville et al. 2007).  Applications range 
from NDE of aerospace components (Forsyth and Komorowski 2000; Liu et al. 2003; Kumar and 
Ramuhalli 2005b; Kumar et al. 2005) to thermal protection systems in aerospace vehicles (Hundhausen 
2004) and gas transmission pipelines (Oagaro et al. 2004).  Recent work in this area has focused on 
optimal fusion metrics for wavelet transform-based fusion algorithms (Kumar and Ramuhalli 2005b), 
generalized regression methods for multisensor fusion (Liu et al. 2008), and decision-level fusion (Dion et 
al. 2007), with applications for aerospace structures (Kumar and Ramuhalli 2005b; Kumar et al. 2005) 
and nuclear power plants (Kumar and Ramuhalli 2005a).  Fusion using physics-based models, although 
not as widespread, has also been investigated by several authors (Nandhakumar and Aggarwal 1997; Tian 
et al. 2003). 

One specific issue that has seen a greater focus in passive component diagnostics is the concept of 
reliability of the measurement technique.  In general, the detection and diagnostics of flaws in materials is 
subject to uncertainty from a number of sources including measurement noise, material microstructure, 
surface condition and access, and human factors.  A number of studies have been conducted to evaluate 
the reliability of the different NDE measurement methods and have resulted in probability of detection 
(POD) information (Berens and Hovey 1981, 1983) identifying the probability of detection of a flaw of 
specified size, false call probability (FCP), and the associated confidence bounds based on flaw type, 
material, and inspection technique (Singh 2000).  In the nuclear power area, NDE reliability studies 
resulted in performance demonstration requirements that are codified in the ASME BPV Code 
(Section XI, Appendix VIII), and are used to qualify equipment, procedures, and personnel prior to 
allowing their use in ISI.  The use of automated analysis methods for flaw detection and diagnostics adds 
a layer of complexity to the assessment of reliability.  For instance, when using automated analysis 
methods, questions arise regarding the applicability of the algorithms to data that is generally not 
available during the algorithm development process.  In recent years, EPRI has been evaluating the use of 
performance qualification procedures for automated analysis systems.  A recent example is the 
Automated Analysis Performance Demonstration Database, which is used to qualify automated analysis 
tools for eddy current inspection of steam generator tubing (EPRI 2009b).   

Whether using manual or automated analysis methods, the POD associated with a particular 
measurement and analysis technique will need to be incorporated in any subsequent remaining useful life 
analysis (Simonen et al. 2007; Kulkarni and Achenbach 2008).  In turn, the failure probabilities can also 
be applied to determine the effectiveness of ISI programs (Khaleel and Simonen 2009). 
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4.4 Prognostic Algorithms 

As suggested by the “No Free Lunch” Theorem, no one prognostic algorithm is ideal for every 
situation (Ho and Pepyne 2001; Koppen 2004).  A variety of models have been developed for application 
to specific situations or specific classes of systems.  The efficacy of these algorithms for a new process or 
system depends on the type and quality of data available, the assumptions inherent in the algorithm, and 
the assumptions which can validly be made about the system.  As such, these prognostic algorithms can 
be categorized according to many criteria.  One proposed categorization focuses on the type of 
information used to make prognostic estimates; this results in three classes of prognostic algorithms 
(Figure 4.5) (Coble and Hines 2008; Hines and Usynin 2008).  
 
 

 
 

Figure 4.5.  Prognostic Algorithm Categorization (Hines et al. 2008b) 
 

Type I, or reliability-based, prognostics is traditional time-to-failure analysis; this type of prognostic 
algorithm characterizes the expected lifetime of an average system operating in an historically average 
environment.  These methods may be applied if no data specific to the current system is available.  
Examples of Type I prognostics include Weibull analysis, exponential or normal distribution analysis, and 
nonparametric distribution analysis.  A readily apparent shortcoming of this group of methods is the 
absence of consideration for operating conditions and environment in making RUL estimates.  Typically, 
systems operating in harsher conditions will fail more quickly while those in milder environments more 
slowly.   

Type II, or stressor-based, prognostics address this shortcoming by incorporating operational and 
environmental condition data to estimate RUL.  This type of prognostics characterizes the lifetime of an 
average system or component operating in a specific environment.  Type II methods can be used if 
operating conditions, such as load, input current and voltage, ambient temperature, vibration, etc., are 
measurable and correlated to system degradation.  Algorithms in this class include simple regression 
analysis, specific formulations of the Markov Chain model and shock model, the proportional hazards 
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model, and the life consumption model.  Although more specific than Type I models, Type II models are 
deficient because they neglect unit-to-unit variance, which may be due to manufacturing-, installation-, 
and maintenance action-variability.   

The final class of algorithms, Type III or degradation-based prognostics, characterize the lifetime of a 
specific unit or system operating in its specific environment.  Extrapolation of a general path model 
(GPM) or a particle filter model is the most common empirical Type III method.  This extrapolation 
involves trending a prognostic parameter and extrapolating it to some predefined failure threshold.  A 
prognostic parameter is a measure, either directly sensed from the system or inferred from a set of sensor 
readings, which characterizes system degradation or health.  System failure is commonly indicated by a 
soft failure threshold at which the system no longer performs to its specifications or cannot be expected to 
perform for an appreciable amount of time; this is generally some point before a catastrophic failure 
occurs.  Additional Type III methods include a degradation-based formulation of the Markov Chain 
model and the shock model.  This kind of individual-based analysis is generally considered the ultimate 
goal of prognostics for safety-critical or high-value components and systems.   

Several surveys of prognostic algorithms are available (Schwabacher 2005; Schwabacher and Goebel 
2007; Hines et al. 2008b), but the details of these algorithms are beyond the scope of this report.  Some 
key algorithms in each of the prognostic categories are summarized in Table 4.3.  Prognostic algorithms 
typically produce point estimates for RUL; however, estimates of the uncertainty associated with these 
RUL estimates are necessary to allow for optimized maintenance, operations planning, and safety when 
using RUL for risk-based decision-making.  The following section briefly describes the research in 
characterizing prognostic uncertainty.  This is followed by a description of prognostic performance 
metrics.   

4.4.1 Prognostic Uncertainty Analysis 

A systematic analysis of uncertainty can help reveal both reducible and irreducible uncertainty 
sources to aid in managing the overall RUL uncertainty.  Uncertainty in prognostic estimates stems from 
several sources.  Usynin (2007) identifies four sources:  (1) variability of the severity and order of both 
past and future operating conditions (or loads), (2) variability in the initial degradation of a component or 
system, (3) variability in the amount of degradation which defines failure (the critical degradation 
threshold), and (4) data uncertainty due to inspection and data collection routines.  Sankararaman et al. 
(2009) and Liang et al. (2009) identify two additional sources of uncertainty:  physical variability (i.e., 
variability in material properties, manufacturing, geometry, etc.) and model uncertainty (i.e., model 
integrity and appropriateness, including uncertainty in how well the model captures the failure mechanism 
and uncertainty in the model parameters).  The effect of model choice on prognostic model performance 
is investigated in Daigle et al. (2011) and Saha et al. (2011). 

Several approaches have been proposed and applied to the problem of uncertainty estimation, each of 
which is well-suited to specific algorithms or systems.  Closed-form equations for uncertainty estimation 
are used in Hines and Seibert (2006) and Engel et al. (2000) based on the prognostic model architecture.   
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Table 4.3.  Classification of Selected Prognostic Algorithms 
 

 
Algorithm Inputs Assumptions 

Application 
Spaces Example References 

T
yp

e 
I Weibull Analysis 

Current 
Runtime 

Component and system failure can be accurately 
described by population-based failure probabilities 

Traditional 
reliability 
analysis 

(Yang and Xue 1996; Lall et al. 1997; Pecht 
et al. 2002; Girish et al. 2003; Vichare et al. 
2004; Chen and Zheng 2005; Kharoufeh and 
Cox 2005; Xu and Zhao 2005) 

T
yp

e 
II

 

Proportional 
Hazards Models 

Operating 
History 

Uses operation condition-based covariates to 
modify a baseline hazard function 

 (Cox and Oakes 1984; Dale 1985; Kumar 
and Klefsjö 1994; Liao et al. 2006) 

Physics of Failure 
Models 

Accurate models of the underlying physical 
progression of faults to failure must be available 

Electronics, 
materials 

(Pecht and Dasgupta 1995; Kacprzynski et 
al. 2002; Valentin et al. 2003; Kacprzynski 
et al. 2004; Oja et al. 2007; Kulkarni and 
Achenbach 2008) 

Life Consumption 
Models 

Operation at a given condition consumes some set 
amount of life, which is subtracted from the 
expected equipment life. 

Electronics, 
circuit boards 

(Ramakrishnan and Pecht 2003; Mishra et 
al. 2004) 

Regression Analysis Built-in Self Test (BIST) results are used to 
extrapolate the effects of operation on the full 
system 

Circuit boards (Goodman 2000; Mishra et al. 2002; 
Hofmeister et al. 2006a; Hofmeister et al. 
2006b) 

Markov Chain 
Models 

Future operating conditions are random and do not 
depend on past conditions.  A predictable amount of 
damage occurs in each operating condition. 

  

Shock Models Shocks occur randomly in time and magnitude, 
usually as a function of the current operating 
conditions. 

  

T
yp

e 
II

I 

General Path Model 

Prognostic 
Parameter 

A parametric model (regression, neural network, 
etc.) is fitted to a prognostic parameter and 
extrapolated to the failure threshold 

 (Upadhyaya et al. 1994; Chinnam 1999; 
Engel et al. 2000; Byington et al. 2004; 
Hines et al. 2006; Keller et al. 2006; Brown 
et al. 2007; Coble 2010; Liu et al. 2010; 
Coble and Hines 2011) 

LEAP-Frog Similar to the GPM using a short-window 
regression for faster response to system changes 

 (Greitzer et al. 1999b; Greitzer 2001b; 
Greitzer and Ferryman 2001) 

Particle Filter Model of damage accumulation is available as are 
estimates of noise in the measurement. 

Passive 
components 

(Orchard and Vachtsevanos 2007; 
Ramuhalli et al. 2010) 

Markov Chain 
Models 

Similar to above, but the model is informed by the 
current level of degradation 

  

Shock Models Similar to above, but shock arrival time and/or 
magnitude is informed by the current amount of 
degradation 
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Liu et al. (2010) utilize a bootstrap approach wherein the prognostic model is developed and executed 
many (in this work, 50) times and features of the RUL prediction are estimated from the aggregate results.  
Sankararaman et al. (2009) employ a Monte Carlo approach with a physical degradation model, a 
modified Paris’ crack growth model.  For each simulation, model parameters are randomly sampled from 
the parameter distributions, and the resulting crack growth is evaluated.  The final result is a distribution 
of crack lengths as a function of the number of duty cycles.   

Bayesian approaches to estimating uncertainty are common because they naturally incorporate 
information about the current system with prior knowledge (i.e., expert opinion, results of past analyses).  
Byington et al. (2004) utilize Bayesian belief models to estimate the uncertainty.  Saha and Goebel (2008) 
utilize Bayesian methods for quantifying the uncertainty in both diagnostic (through relevance vector 
machines) and prognostic (through particle filters) results for battery monitoring.  Liang et al. (2009) 
present two Bayesian-based uncertainty estimation methods:  inner-outer loop Monte Carlo simulation for 
offline estimation of uncertainty and Bayesian estimation based on particle filtering models for online 
application.  The authors further develop uncertainty analysis methods for additional filtering algorithms 
(particle filtering, exact filtering, and multiple-model filtering) based on the Fokker-Planck-Kolmorgorov 
(FPK) partial differential equation for uncertainty representation with dynamic system models (Liang et 
al. 2010a).  This method can be applied to systems with exact solutions (exact filtering), systems that 
switch between competing fault modes (multiple-model filtering), and nonlinear systems excited by non-
Gaussian noise (particle filters).   

An accurate estimate of RUL uncertainty is necessary to evaluate the efficacy and usefulness of a 
prognostic result.  In addition to uncertainty, several prognostic performance metrics have been proposed 
in recent years, both for offline method evaluation and online RUL estimation evaluation.  These are 
described in the next section.  

4.4.2 Prognostic Performance Metrics 

Performance metrics are necessary to allow model developers to compare two or more competing 
models, to understand the validity of a prognostic estimate, and to characterize model performance over 
different operating regimes, fault modes, or systems.  Performance metrics for monitoring, fault detection, 
and diagnostic systems are well established (Hines et al. 2008a), including accuracy, robustness or auto-
sensitivity, spill-over or cross-sensitivity, fault detectability, uncertainty measures, fault detection time, 
and false alarm/missed alarm rates.  However, these conventional metrics fall short in characterizing 
prognostic model performance (Saxena et al. 2009a).  Leão et al. (2008b) attempt to extend some of these 
metrics to prognostics, including false and missed alarm rates, but these prognostic metrics have seen 
limited application.   

Generally, there are two classes of prognostic model performance analysis:  offline and online.  
Offline performance metrics evaluate the prognostic algorithm, as a whole, applied to a specific 
component or class of components.  Offline performance utilizes known ground-truth, such as actual 
failure times, to evaluate model performance.  This type of analysis can be useful in the development 
stage for selecting between multiple competing prognostic models.  Online analysis gives a measure of 
how well a prognostic model is performing in real time for a specific SSC that has not yet failed.  Offline 
performance metrics are currently more commonly proposed and employed for evaluating prognostic 
algorithms.  Metrics such as the “badness indicator” given by the probability integral test (PIT) (Leao et 
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al. 2010; Leao et al. 2011) can be used to comprehensively evaluate prognostic algorithms and compare 
competing solutions.  The badness indicator quantitatively characterizes the deviation of the empirical 
cumulative density function (CDF) from the expected CDF in the PIT analysis.  By establishing 
confidence bounds and critical values for PIT (Leao et al. 2011), traditional hypothesis testing can be used 
to determine how a prognostic algorithm performs given the amount of training and validation data 
available.  Additionally, Leao et al. (2008b) suggests a prognostics extension to the receiver operating 
characteristics, called the progROC curve, to help evaluate the trade-off between two conflicting 
prognostics goals. 

Prognostic algorithm performance metrics tend to characterize performance in terms of either 
accuracy (estimation error) or precision (uncertainty).  The field, however, is plagued by a problem 
common to many areas of prediction:  The more precise the prognostic estimate, the less likely it is that 
this estimate will be correct.  Practically, there is a trade-off between RUL accuracy and RUL precision; 
therefore, both features should be considered simultaneously. 

Prognostic models result in a time-series of RUL estimates, and the performance requirements for 
these predictions vary throughout the life of the system. In general, we are willing to suffer large errors 
and uncertainties early in life if the prognostic performance improves as the system approaches failure 
(Line and Clements 2006; Saxena et al. 2008b; Saxena et al. 2009a).  Traditional error measures do not 
account for these progressive acceptable accuracy and precision levels.  Saxena et al. (2008b) suggest 
several metrics to account for this, the most interesting of which are the α-λ performance metrics for 
accuracy and precision.  The α-λ performance dictates that the accuracy (or uncertainty) should be within 
some specified α*100% of the actual value within a relative distance, λ, to the actual failure, as shown in 
Figure 4.6.  In this figure, 𝑟∗𝑙 is the actual RUL, and both lines marked 𝑟𝑙 (red and green) represent 
different RUL estimates.  The shaded region indicates 20% error about the actual RUL.  The α-λ 
performance is a binary true/false metric indicating the estimate is or is not within the specified tolerance 
at a given fraction of life.  For the case shown, both estimates have an α-λ accuracy of "true" for α of 
0.2 and λ of 0.5; however, only the red estimate would have an α-λ performance of "true" for λ of 0.9.  
The Prognostic Horizon, also proposed in Saxena et al. (2008b), indicates the lead time between end of 
life (failure) and when the prognostic model first predicts failure to some specified performance (accuracy 
and/or precision).  These metrics are expanded in Saxena et al. (2009b, 2010a; 2010b) to incorporate 
predicted RUL distribution information.  The proposed metrics are largely visual, requiring evaluation of 
a graph of model performance, similar to that in Figure 4.6.  Development of a single value to quantify 
this performance has not yet been reported. 

In addition to concerns about the importance of correctly accounting for temporal needs, prognostic 
models that predict that failure will occur within a short time before actual failure are generally 
considered better than those that predict failure will occur in the same short time after the actual failure.  
RUL estimates greater than the actual remaining life leave room for unexpected failures and unplanned 
maintenance.  Saxena et al. (2008b) suggest an exponentially weighted accuracy metric to account for 
this, which gives a larger penalty for late predictions than for early predictions of failure.  This metric 
considers the RUL predictions made at one point in time across a population of systems, instead of the 
entire time series of predictions.  A similar error metric was used in the 2008 PHM data challenge 
(Saxena et al. 2008a).  
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Figure 4.6.  α-λ Performance for Accuracy (Saxena et al. 2008b) 
 

Research in health monitoring algorithms and applications is active in many areas outside of the 
nuclear industry.  In fact, most advances in PHM have originated in other areas, although the results may 
be applicable to NPPs.  The following section summarizes the recent research in a few key industries: 
electronics, defense, avionics, and wind turbines.  
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5.0 Applications of Current Technologies in Other Fields 

Increasing availability and reliability is economically attractive for many applications and systems, 
while avoiding serious degradation and consequent failure is paramount for safety critical applications.  
As such, PHM and CBM have found use in a variety of fields in the past decades.  For instance, 
automated CBM and control for building systems, such as heating, ventilating, air conditioning, and 
refrigeration (HVAC&R) systems, can save an estimated 15–30% of wasted energy in commercial 
buildings; a two-part review of these systems is given in Katipamula and Brambley (2005a, b).  At the 
time of this review, automated CBM for building systems remained largely the purview of research.  The 
authors cite several research needs to bring these systems to deployment, including well-defined methods 
for automation of fault detection, diagnostics, and control and methods to detect and diagnose multiple, 
simultaneous faults.  Additionally, research at Sun Microsystems has led to the development of a 
continuous system telemetry harness (CSTH) for enterprise servers.  The CSTH monitors parameters of 
the operating server, such as voltage, current, and temperature, and uses the MSET algorithm and SPRT 
detection routine to detect deviations from the expected server behavior (Gross et al. 2003; Mishra and 
Gross 2003; Whisnant et al. 2005; Gross et al. 2006).  The use of CSTH data with electronic PHM 
algorithms has improved visibility of server health, reduced the number of Could-Not-Duplicate faults, 
and increased server availability. 

The following sections summarize research and development in condition monitoring and PHM for 
electronics, defense systems, avionics, and wind turbines, which represent some of the most developed 
PHM application areas.   

5.1 Electronic Prognostics 

Traditionally, electronic failures were viewed as completely random in nature; however, significant 
research has looked at monitoring aging mechanisms and effects in recent years (Droste and Finklea 
2006; Hofmeister et al. 2006b; Vichare and Pecht 2006; Gu et al. 2007; Kalgren et al. 2007; Bailey et al. 
2011; Lall et al. 2011).  Electronic system prognostics on the board or circuit level commonly utilize a 
built-in self test (BIST) prognostic monitor or canary (Goodman 2000; Mishra et al. 2002; Goodman et al. 
2006; Hofmeister et al. 2006a).  A prognostic monitor is a “pre-calibrated semiconductor cell that is co-
located with the actual circuit on a semi-conductor device” (Mishra et al. 2002).  The prognostic cell is 
designed to experience a higher current level than the actual circuit by decreasing the cross sectional area 
of the current-carrying path in the canary.  Because the canary cell undergoes a higher current density, it 
is expected to fail in a predictably faster way than the actual circuit.  By locating several prognostic 
monitors with different known accelerating factors on a circuit, the failure times of each of these cells can 
be trended to predict failure in the actual circuit at any time after at least two prognostic monitors have 
failed.  While this method is convenient and uncomplicated, Pecht et al. (2001) argue that BIST monitors 
are not always sufficient for detecting and identifying failures.  The authors found BIST results to suffer 
from a high false alarm rate and a low correlation between the fault indicated by the BIST and the actual 
fault.  These shortcomings should be considered before applying this type of prognostic monitoring 
module.   

The use of physics of failure models for estimating RUL has focused mainly on electronic system 
prognostics, because accurate physical models of component-level electronics are well-understood (Pecht 
and Dasgupta 1995; Kelkar et al. 1997; Valentin et al. 2003; Oja et al. 2007).  Life Consumption models 
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(LCM) based on physics-of-failure models were first proposed by Ramakrishnan and Pecht (2003) for 
monitoring RUL in electronic systems.  The LCM methodology monitors the environment of a 
component or system during its entire lifecycle to determine the amount of damage incurred by the 
various loads and conditions experienced.  This damage is translated to lost “life” which is subtracted 
from the expected life of an average system or component.  LCM is illustrated in Ramakrishnan and Pecht 
(2003) and Mishra et al. (2004) by application to a mounted printed circuit board operated under the hood 
of a moving vehicle.  Both temperature and vibration levels were monitored on the board during use.  The 
methodology was shown to effectively estimate RUL of the circuit board, even in the event of unexpected 
damage accumulation caused by a large, random shock.  Development of a more general LCM 
methodology which utilizes empirical models, such as neural networks, kernel regression models, or 
simple regression, for damage estimation would increase the applicability of this algorithm.  Several 
methods for fusing physics-of-failure models and empirical results for electronic prognostics have been 
proposed (Mathew et al. 2008; Cheng and Pecht 2009). 

5.2 Defense 

PHM systems have found significant use in mission critical defense systems.  The relevant work falls 
under the umbrella of several acronyms in addition to PHM:  vehicle health management (VHM), 
integrated vehicle health management (IVHM), integrated structural health management (ISHM), health 
and usage monitoring systems (HUMS), etc.  These programs share similar goals and technologies, but 
are often applied to different platforms.  The ultimate goal for defense system PHM is to increase the 
likelihood of mission success through an autonomous real-time health monitoring system which supports 
automatic fault detection and diagnosis, failure prognosis, reconfiguration (when possible), and reporting 
to operators, maintainers, and logistics planners.  Walker (2010) outlines a methodology for leveraging 
domain knowledge developed during initial design analysis (such as failure mode, effects, and criticality 
analysis [FMECA]) to develop a PHM system for remotely piloted aircraft, though the development 
methodology is more widely applicable to PHM system design for any system.  Similarly, Line and 
Clements (2005) describe a systematic approach for developing PHM systems using the PHM Pro tool 
with application to the Joint Strike Fighter. 

Significant efforts in defense system PHM coincided with the Joint Strike Fighter (JSF) program 
(Smith et al. 1997; Ferrell 1999, 2000).  JSF was conceived as a platform for Autonomic Logistics, and 
PHM was a key technology to support that concept (Hess and Fila 2002; Hess et al. 2004).  Autonomic 
Logistics, or AutoLog, replaces human-led logistics with automated flight scheduling, maintenance 
planning, and spare parts ordering informed by an assessment of the actual condition of critical 
components in operation.  AutoLog relies on an integrated report from the PHM system to perform 
logistics planning; this automated approach was expected to minimize incorrect maintenance actions; 
decrease downtime during fault detection, troubleshooting, diagnosis, spare parts ordering, etc.; and 
reduce support response requirements.  Additionally, by utilizing AutoLog across the entire fleet of JSFs, 
systemic problems could be identified and corrected before they become fleet-wide and catastrophic.  
While there was much discussion of integrated PHM systems, related research for JSF largely focused on 
PHM solutions for specific subsystems or components, such as electronics and power supplies (Orsagh et 
al. 2005; Keller et al. 2006; Orsagh et al. 2006; Line et al. 2007), rotating components in jet engines 
(Suarez et al. 2004), propulsion systems (Powrie and Novis 2006), oil system monitoring (Powrie 2000), 
corrosion monitoring (Demo et al. 2011), etc.   
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Research to support PHM for the M1 Abrams main battle tank gas turbine engine resulted in the 
development of a fault diagnosis engine called the Turbine Engine Diagnostics using Artificial Neural 
Networks (TEDANN) (Illi et al. 1994; Kangas et al. 1994; Greitzer et al. 1997; Greitzer et al. 1999a).  
This system used 48 sensors mounted on the engine (32 embedded sensors and 16 retrofitted sensors) to 
monitor and diagnose common engine faults.  An unsupervised, self-organizing neural network was used 
to classify engine operation (i.e., low-idle, tactical idle, full power, etc.).  A bank of supervised networks 
was used for engine modeling and diagnostics through pattern recognition.  This system was later 
expanded into the Real-time Engine Diagnostics-Prognostics (REDI-PRO) system to incorporate a larger 
diagnostic capability and prognostics (Greitzer and Pawlowski 2002).  REDI-PRO used information from 
38 engine-mounted sensors (25 embedded and 13 retrofitted) with neural networks, rule-based diagnosers, 
and extrapolation-based prognosers.  REDI-PRO prototype system was installed on two U.S. Army 
National Guard tanks for several years and on U.S. Army tanks at Yuma Proving Ground (YPG) for 
several months.  While in place at YPG, one of the outfitted tanks experienced a failure caused by an 
extreme air filter clog.  REDI-PRO was able to detect a change in the system and predict the imminent 
failure several operating hours before the detection of the air filter clog by onsite maintenance personnel 
(Greitzer and Ferryman 2001).  While the specific neural networks and rule bases developed in this 
research are specific to the AGT1500 engine, the methodologies and architecture employed in REDI-PRO 
can also be applied to other systems.   

The Advanced Technology Office (ATO) began development of a model-based dynamic diagnostic 
reasoning technology (DARTS) in the early 1990s (Su et al. 1993; Darty et al. 1994), which evolved into 
the Diagnostician (Giordano and Levy 1994; Giordano and Carey 1995).  The Diagnostician has been 
successfully embedded in several systems (NAVSTAR, Seawolf Submarine, NASA Remote Power 
Controller) to provide more accurate diagnostics by extending the existing built-in test capabilities to 
built-in diagnostics.  In the late 1990s, the Diagnostician was extended to including prognostic 
capabilities, called the Prognostics Framework (Su et al. 1999; Su et al. 2000b).  The Prognostics 
Framework gives an overall system view of prognosis by using model-based reasoning to integrate built-
in test and sensor data into diagnostic and prognostic models.  It integrates the outputs of specialized 
prognostic modules for specific subsystems into one holistic view of system health and RUL.  The 
Abrams M1A1 tank was a test platform for the Prognostics Framework (Su et al. 2000a).  This test 
integrated the results of prognostic algorithms developed for five subsystems of the tank, including REDI-
PRO, the gas turbine engine prognostic routine.   

5.3 Avionics and Aerospace Systems 

Many of the PHM technologies developed for defense systems can be leveraged in the commercial 
avionics and aerospace fields (Roemer et al. 2001; Smeulers et al. 2002; Fang and Guanzhong 2010).  
SmartSignal Corp. has provided fault monitoring services through their Equipment Condition Monitoring 
(eCM) tool to commercial airlines, including Delta Airlines and Southwest Airlines, since the early 2000s 
(Medill 2003).  The algorithms used in eCM are based on the MSET model developed at Argonne 
National Laboratory for monitoring NPPs.  Researchers at NASA are particularly interested in PHM and 
automatic reconfiguration for space vehicles, from launch site ground equipment (Ren et al. 2011) to 
reconfigurable control and mission planning (Liang et al. 2010b) to unmanned missions (Reichard et al. 
2007).   
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NASA developed a comprehensive roadmap for integrated vehicle health management to guide 
efforts in-house and coordinating efforts with other groups (Srivastava et al. 2009).  This roadmap 
outlines an approach to developing PHM systems at four key levels.  The first level is foundational, 
which includes development of advanced sensors and materials, advanced modeling (both physical and 
empirical), advanced analytics, and development of verification and validation routines.  Level two 
includes subsystems such as the airframe, the propulsion system, and software.  Level three focuses on 
themes, or programmatic research such as detection, diagnosis, prognosis, fault and failure mitigation, and 
integrity assurance.  The final level combines the results and applications of the lower level into a 
validated, integrated vehicle health management system for the full aircraft.  For each major level of 
research, the roadmap highlights key projects, milestones, and metrics that will be necessary to fulfill the 
needs of that research.  This comprehensive technical plan provides a strong foundation for coordinating 
efforts across multiple groups and moving the state of aircraft PHM forward toward a final, deployable 
system. 

5.4 Wind Turbines 

The wide use of large wind turbines, also called wind energy convertors (WECs), has made wind 
energy the fastest growing renewable source of electricity generation worldwide.  Onshore WECs achieve 
availability in excess of 95% (Wilkinson et al. 2007); however, offshore deployment of WECs is 
increasingly attractive due to more favorable wind conditions offshore and reduced public objection to 
offshore location.  Offshore location will significantly limit access to WECs for inspection and 
maintenance, which increases the emphasis on early detection and diagnosis of incipient failures 
(Wilkinson et al. 2006).  Typically, scheduled maintenance of WECs is performed once every six months 
and requires approximately 24 hours to complete.  Unscheduled maintenance due to unanticipated faults 
and failures requires, on average, 130 hours to complete (Adams et al. 2011).  For offshore locations, the 
downtime for unscheduled maintenance may be even longer, while personnel wait for access to the site.  
To improve the economic competitiveness of wind energy, much research has focused on condition 
monitoring and diagnostics for subsystems, such as the drivetrain, rotors and blades, support structure, 
etc., and the WEC as a whole; reviews of related research are given in Hyers et al. (2006) and Hameed 
et al. (2009).   

Most WEC monitoring systems rely on the available data from the Supervisory Control and Data 
Acquisition (SCADA) system, including wind parameters (speed and direction), energy conversion 
parameters (power output, rotor speed, generator torque, etc.), vibration parameters (drivetrain and tower 
acceleration), and temperature parameters (both component and air temperature) (Yang et al. 2009; Zaher 
et al. 2009).  In Yang et al. (2009), experiments performed on a wind turbine condition monitoring test rig 
indicated that drivetrain mechanical faults could be detected by analyzing electrical signals from the 
generator, the power signal in particular, through the use of wavelet transforms.  This method eliminates 
the need for costly torque, vibration, or proximeter measurements.  Kusiak and Li (2011) developed a 
monitoring system which first detects a fault, then estimates the severity of the fault, and finally diagnoses 
the fault type.  Using data collected by the SCADA system at 5-minute sampling intervals, faults were 
detected approximately 60-minutes before failure with reasonable accuracy.  This is likely not a long 
enough lead time for offshore applications; however, the method may be improved by increasing the 
sampling speed of the SCADA system.  Zaher et al. (2009) used neural networks to model nominal WEC 
behavior and used model residuals to detect anomalous behavior.  The authors were able to detect a fault 
in the cooling oil six months in advance of a failure, which would give ample time to plan and execute 
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maintenance actions to avoid the failure.  They also suggest a multi-agent system (MAS) for integrating 
monitoring methods for multiple types of faults into one system, giving an overall WEC monitoring 
platform.  Several commercial monitoring systems have been developed for WECs.  Seven commercially 
available systems are described in Hameed et al. (2010). 

Development and application of PHM technologies has been more active in non-nuclear fields over 
the past decades.  However, significant work has been underway to advance the state of the art for nuclear 
applications, including health monitoring for NPP SSCs.  The following section summarizes the recent 
work in developing PHM for application in NPPs.  The state of the art is largely focused on fault 
detection and diagnostics for both active and passive components, although some work in prognostics is 
described.  Additionally, the results of pilot applications and fielded systems in NPPs are summarized. 
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6.0 PHM Systems for Nuclear Power Applications 

Major progress is being made by early adopters in NPPs, such as by Electricity de France (EDF) and 
by Exelon, who are deploying 700 units with centralized diagnostic monitoring.  In general, however, the 
nuclear power community is slower to adopt on-line health monitoring than other communities, 
particularly when compared with the fields reviewed earlier.  Although PHM systems have not found 
ubiquitous use in NPPs, significant work has been completed to develop these capabilities.  Reviews of 
the research in on-line monitoring (OLM) and PHM highlight several possible applications.  Uhrig and 
Hines (2005) review the uses of computation intelligence in nuclear engineering, include noise analysis 
techniques, online sensor validation, regularization of ill-posed surveillance and diagnostic problems, 
transient identification, core monitoring, efficiency improvement, and anticipatory control.  An early 
review of possible applications of OLM in NPPs was given by Hashemian and Feltus (2006), including 
identifying process-to-sensor problems, detecting instrument anomalies (such as venturi meter fouling), 
and detecting thermal hydraulic anomalies in the coolant system.  Hashemian (2011c) further lists eight 
applications for OLM in NPPs: detecting sensing-line blockages, testing the response time of pressure 
transmitters, monitoring calibration of pressure transmitters on-line, cross-calibrating temperature sensors 
in situ, assessing equipment condition, performing predictive maintenance of reactor internals, monitoring 
fluid flow, and extending the life of neutron detectors.  Ma and Jiang (2011) add instrument channel 
dynamic performance monitoring, reactor core monitoring, loose parts monitoring, and transient 
identification.  

A recent review by an International Atomic Energy Agency (IAEA) Coordinated Research 
Programme (CRP) investigated and summarized the state of the art in advanced surveillance, diagnostic, 
and prognostic techniques for NPP SSCs (IAEA 2012).  The applicable work in PHM can be divided 
between active and passive components, listed in Table 6.1.  The following sections summarize the 
advances in PHM for active and passive components, respectively.  The results of some pilot applications 
and field tests are then summarized. 
 
 

Table 6.1.  Examples of Active and Passive SSCs in NPPs 
 

Passive SSCs Active SSCs 
cables and connections air compressors 

containment batteries 
containment liner circuit boards 

core shroud control rod drive 
heat exchangers cooling fans 

piping diesel generators 
pressurizer instrumentation 

channels (sensors) 
pump casings motors 
reactor vessel pumps 

steam generators transistors 
support structures valves 

transformers power supplies 
valve bodies  

ventilation ducts  
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6.1 Active Components 

Many active components can be monitored through the data already sensed for the plant I&C system.  
In some cases, additional continuous measurements will greatly improve monitoring ability, such as 
vibration measurements for pump monitoring.  However, the detection and diagnosis of faults in 
interconnected systems is highly complex.  Simply monitoring and thresholding sensed measurements is 
an incomplete approach to condition monitoring.  The control systems related to most of the sensed 
values will work to keep them within specified tolerances through feedback loops.  In many cases, it is 
necessary to consider fault detection and diagnostics at the system level instead of the device level by 
developing models of normal system behavior and comparing measurements to these model predictions.  
The following sections describe research to date on monitoring some key active components: sensors, 
pumps, and valves. 

6.1.1 Sensor Calibration Monitoring 

To ensure safe and effective operation of an NPP, sensing and transmitting reliable values for key 
parameters are central to nuclear power instrumentation for control.  Current practice in the United States 
requires recalibration of process instrumentation channels during every refueling outage. These 
calibrations often require that the instrument be taken out of service and falsely-loaded to simulate in-
service conditions (Hines et al. 1996).  Recalibration is both a labor-intensive and costly process, resulting 
in longer outages, increased maintenance cost, and additional radiation exposure to maintenance 
personnel, and it can actually be counterproductive, introducing errors in calibration of previously 
unfaulted sensors.  Hashemian (1995) describes methods to test calibration of sensors during steady state 
plant operation, including redundant channel averaging, process modeling, and comparison with 
calibrated reference channels.  In 1998, EPRI demonstrated a non-intrusive method for monitoring the 
performance of instrument channels and extending the required recalibration interval for well-performing 
sensors (EPRI 1998).  The NRC endorsed the generic concept of online monitoring for sensor calibration 
interval extension in 2000 and gave 14 requirements to be addressed by plant-specific license 
amendments necessary to relax the calibration frequency currently required by the technical specifications 
(NRC 2000).  To date, the Sizewell B plant in the United Kingdom is the only NPP to receive approval 
for transmitter calibration extension from their regulatory authority (Lillis and Orme 2005).  Rather than 
develop and propose a specific algorithm or set of algorithms for OLM, the burden of Sizewell B’s safety 
case is centered around historical evidence from their maintenance records showing that their transmitters 
do not systematically drift.  In this approach, OLM algorithms are used as a performance monitoring tool 
to provide more frequent monitoring of transmitter performance than the traditional manual calibration 
method, which only assesses transmitter performance at every refueling outage.  Sensor calibration 
monitoring has shown at Sizewell B that sensors and transmitters may function reliably and within 
calibration for 8 years or longer (Hashemian et al. 2004; Lillis 2010).  

The state of the art in OLM for sensor calibration interval extension was reviewed in the 
NUREG/CR-6895 series (Hines and Seibert 2006; Hines et al. 2008a; Hines et al. 2008c) and a recent 
IAEA report (IAEA 2008a).  Research in monitoring algorithms has largely focused on empirical models, 
including neural networks (Eryurek and Turkcan 1991; Hines et al. 1996; Nabeshima et al. 2002; Ayaz et 
al. 2003; Seker et al. 2003; Fantoni 2005), multivariate state estimation technique (MSET) (Singer et al. 
1995; Gross et al. 1997; Singer et al. 1997; Hines and Usynin 2005), and auto-associative kernel 
regression (Garvey et al. 2006; Garvey and Hines 2006; Garvey et al. 2007a, b).  The results from pilot 



 

6.3 

applications of OLM for calibration monitoring show that common sensor faults, including sensor drift, 
sensor bias, stuck sensors, etc., can be reliably detected (Bickford et al. 2002; Davis et al. 2002; Hines and 
Davis 2005). 

The application of OLM for sensor calibration interval extension requires an amendment to the plant 
technical specifications (TS).  To date, no U.S. plant has successfully obtained this amendment, leaving 
significant uncertainty in what will be necessary for a successful application.  To alleviate some of this 
uncertainty, the Pressurized Water Reactor Owner’s Group (PWROG) is working to develop generic 
criteria for the extension of calibration intervals and the associated license amendment.  The research 
initiated by the PWROG will address several issues: 

1. Determine the impact of transmitter calibration extension on probabilistic risk analysis (PRA), 
defense-in-depth, and safety margins. 

2. Perform a generic transmitter drift study using statistical analysis of transmitter maintenance records. 

3. Develop guidance to determine OLM acceptance criteria. 

6.1.2 Pumps 

The degradation and failure of reactor coolant pumps (RCPs) can cause significant economic losses 
for NPPs which have to shut down for extended periods for maintenance and replacement.  As such, 
RCPs have received significant research attention for fault detection and diagnosis.  Jenkins (1985) 
describes the expert analysis of the cause of increasing vibrations in the 1B RCP at Three Mile Island 
Unit #1.  This analysis involved removing the pump from service and performing a series of tests and 
first-principle analyses to identify the root-cause of the problem, which was eventually determined to be a 
cracked pump shaft in the shaft overhang below the pump bearing.  The analysis was initiated when pump 
vibration levels reached 750 microns, a three-fold increase over the normal vibration range of 225–280 
microns.  The development of online fault detection and diagnostic systems could significantly reduce the 
burden on this type of prescribed testing and expert physical analysis, reducing maintenance time and 
preventing secondary damage due to the possible significant vibrations.  

Singer et al. (1990) developed a SPRT-based fault detection and diagnostic system that was applied to 
the RCPs at the EBR-II reactor at Argonne National Laboratory.  This monitoring system used a network 
of SPRT tests and if-then rules to (1) detect anomalies in the plant data in real-time and (2) determine if 
the anomaly was due to sensor or pump degradation.  The developed system provided extremely early 
operator notification of anomalies, diagnosed the most likely fault mode, and recommended corrective 
actions based on existing operational and emergency procedures.  A similar system using SPRT with an 
expert system for monitoring RCPs based on sensed speed, vibration, power, and discharge pressure 
measurements was patented by Gross et al. (1993). 

Vibration monitoring is common for detecting and diagnosing faults in pumps.  Commonly, vibration 
data are analyzed using the Fourier transform, but this method is only useful for stationary signals.  Often, 
the statistical properties of signals collected from faulted equipment are changing due to the nature of the 
fault progression.  To better capture and understand the time-dependence of these signals, a time-
frequency representation is necessary.  Koo and Kim (2000) use the Wigner distribution of the vibration 
signals to extract frequency information for fault detection and diagnostics.  They use a single neural 
network trained to classify behavior as either normal or one of six faulted conditions: shaft bow, shaft 
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misalignment, unbalance, oil-less bearing rub, structure looseness, and shaft crack.  Jung and Seong 
(2006) use the Wigner-Ville distribution, which accounts for cross-interference between different 
components of a signal, to detect RCP impeller looseness.  This approach makes use of power line 
signals, three-phase voltage, and current, instead of vibration signals.  The three-phase voltage is 
measured from a secondary tap of potential transformer, and the current from current transformer output; 
this allows a non-intrusive measurement that will not interrupt plant operation.  The proposed detection 
method was validated using data collected during heat-up and cool-down phases of operation.  The 
authors corroborate their fault detection results through comparison to RCP vibration monitoring results 
and visual inspection. 

Jarrell et al. (2004) identify the primary stressors which cause degradation of centrifugal pumps and 
formulate deterministic relationships between these stressors and the resulting degradation.  Vibration 
data analyses showed agreement between the motor position indicator, the vibration response, and the 
dynamic force loading on the bearing in experimental tests.  The experiments highlighted a set of 
correlations that link measurable degradation stressors to resulting degradation rates and failure.  

6.1.3 Valves 

Check valves are critical to safe NPP operation.  The NRC has mandated periodic inspection of these 
valves, which typically involves partial disassembly.  Haynes (1990) gives a review of monitoring and 
diagnostic methods for check valves, focusing on acoustic emission, ultrasonic inspection, and magnetic 
flux signature analysis.  The state of the art at the time indicated that the combination of acoustic emission 
with either ultrasonic inspection or magnetic flux signature analysis would enable monitoring of all major 
check valve operating conditions.  The reviewed technologies largely involved portable, walk-around 
monitors.  Several studies have looked at using acoustic emission signals for valve health monitoring.  
Nakamura and Terada (1985) used high frequency (100 kHz+) resonance type acoustic emission sensors 
to monitor for leaks in pressurizer valves.  After accounting for low levels of background noise, the 
acoustic signal was used to detect leaks and estimate the valve leak rate.  Log-linear relationships between 
the RMS sensor output voltage and the valve leak rate were empirically defined for both subcooled water 
and saturated steam.  Lee et al. (2006) took a similar approach to monitoring check valves for two types 
of failure: disk wear and foreign object intrusion.  They developed linear relationships between the RMS 
output voltage and the leak rate dependent on the amount of disk wear or size of the foreign object.  
Furthermore, they were able to perform fault diagnosis based on the frequency spectra profiles of the 
check valve leakage.  These spectra profiles are not highly dependent on pressure or leak rate, but are 
strongly dependent on the type of fault, exhibiting spectra peaks at different frequencies depending on the 
fault mode.  McShane and Ulerich (1992) developed and patented a check valve monitoring system using 
ultrasonic transducers coupled to a pipe, instead of directly to the valve.  This technique measured the 
fluid turbulence downstream of the valve to assess the condition of the check valve. 

Classical methods for monitoring motor operated valves (MOVs) include off-line operator testing of 
valves during outages and remote testing methods that rely on accurate first principle models of the 
induction machine in the MOV.  Chai et al. (1994) developed a first principle model of the motor in an 
MOV using measureable stator variables.  An inverse filter was used to reconstruct the forces acting on 
the motor and actuator from vibration signals collected on the actuator casing, and an adaptive filter was 
used to adjust the gear mesh center frequency as the load changes and the speed of the motor varies.  The 
developed models accurately estimated motor behavior and pinion and worm gear frequency for normal 
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operation in laboratory tests.  It was proposed that these accurate estimations of MOV forces and motions 
could be used in a diagnostic system; however, none was presented.  Arcella et al. (1994) patented an 
online valve diagnostic monitoring system which relies on three sensors: a motor current sensor and strain 
and position sensors coupled to the valve stem.  This system utilized some simple data analysis, such as 
deviations from baseline data and an expert rule-based system for fault diagnosis.  Granjon (2011) 
proposes a method to monitor MOVs relying exclusively on remote electrical measurements, such as 
supply voltages and currents, without incorporating any internal MOV measurements.  By replacing 
periodic walk-around monitoring with remote electrical monitoring, the MOV can be continuously 
monitored for degradation and faults.  The estimated active power is used as an indicator of the stem nut 
mechanical condition.  In this work, one indicator (active power) is used to monitor one component of the 
MOV.  However, the results indicate that active power is closely related to internal mechanical 
phenomena in the MOV; this indicator may be useful for monitoring additional faults and/or components.   

Upadhyaya et al. (2003) give an example of an advanced surveillance, fault detection, and diagnostic 
system applied to a turbine control valve during transient operation.  This approach involves a data-driven 
model for predicting nominal variable values and a decision-making module for anomaly detection and 
diagnosis.  The work presented is based on a full-scope PWR simulation code. 

6.2 Passive Components 

A key element of long-term operations of current and future NPPs is the management of aging and 
degradation in the materials and components that make up passive systems.  Methods to assess the 
condition of these SSCs in a nondestructive way are necessary to assure adequate safety margins 
throughout plant life.  Table 6.2 lists the technologies currently approved by the ASME Boiler and 
Pressure Vessel code for nondestructive inspection of nuclear structures and components.  All of these, 
with the exception of AE, are allowed for periodic ISI.  Acoustic emission monitoring is currently the 
only method sanctioned within the ASME Code for online monitoring of NPP structures and may only be 
used to monitor the growth of an existing flaw that has been characterized using another NDE technique.  
Evaluation of the growth rate based on these measurements must be performed every two months and 
extrapolated to the next outage to determine if mitigating or repair activities are necessary or if operation 
can continue uninterrupted.  In addition, existing code rules imply that if a new flaw is detected by 
acoustic emission, the flaw must be sized using an alternative NDE method.  
 
 
Table 6.2. Summary of NDE Technologies Included in Section XI of the ASME Boiler and Pressure 

Vessel Code 
 

Surface Examination Volumetric Examination 
Magnetic Particle Radiographic 
Liquid Penetrant Ultrasonic Testing 
Eddy Current Eddy Current 
Ultrasonic Testing Acoustic Emission 
Visual Inspection  
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As existing plants consider extending their operating licenses beyond 60 years, the resulting increased 
material exposure to time at temperature, neutron irradiation, reactor coolant, and mechanical stress is 
likely to impact degradation accumulation in passive SSCs.  Future plant designs will also likely begin 
service with longer expected lifetimes, leading to these same increased exposures.  Experience with 
operating LWRs has shown that new degradation mechanisms appear in passive materials approximately 
every seven years (Wilkowski et al. 2002).  Materials aging issues related to future plant designs are still 
not completely identified and will depend on the operating conditions as well as the specific material 
used.  Monitoring and understanding operation and degradation conditions as early as possible in the 
operating cycle is therefore important passive components.  Enhanced online monitoring can help 
compensate for the relative lack of knowledge about degradation modes in long-lived structures and 
advanced materials.   

Research in accurate monitoring, flaw detection and diagnosis (location and size), and prognostics for 
passive components is ongoing (Bond 1999; Meyer et al. 2012a), although no PHM systems for passive 
components have been deployed in operating NPPs to date.  The technical gaps in available ISI and NDE 
methods were identified in Bond et al. (2009a) and Bond et al. (2009b).  Some emerging NDE techniques 
may be applied for continuous online monitoring of components susceptible to SCC (Cumblidge et al. 
2009; Bond 2010; Doctor et al. 2010; Bond et al. 2011a; Bond and Meyer 2011; Bond et al. 2011b).  The 
combination of new (and possibly currently unknown) degradation mechanisms and the increase in the 
number of components that become susceptible to aging-related degradation as plants transition to long-
term operations are likely to challenge the capabilities of available ISI technology (Doctor 1988; 
Dobmann 2006; Bond et al. 2009c).  Current nondestructive evaluation techniques used for ISI are 
typically applied to detect large flaws that occur near the end of component life. In order to manage aging, 
recent years have seen a move towards NDE for early damage detection in NPP materials (Fantoni et al. 
2009; Bond et al. 2011a).  There is a possibility that such early physical damage can be detected as the 
change of locally averaged material properties with appropriate sensors. An assessment that relates 
technology to various phases in degradation development for PMMD was recently prepared (Bond et al. 
2011a).  There is also growing interest in sensors and technology for on-line monitoring for the detection 
of early damage in structural materials (Inman et al. 2005; Bond et al. 2008c).  Monitoring for early 
detection of materials degradation requires novel sensors and enhanced data integration techniques.  A 
range of acoustic and electromagnetic measurement methods may be suitable, including nonlinear 
acoustics (Matlack et al. 2012), eddy current (Raj et al. 2003; Lois and Ruch 2006), and magnetic 
Barkhausen emission (Raj et al. 2003; Dobmann 2006).  However, there are still no accepted 
measurement technologies for the detection and assessment of some degradation mechanisms unique to 
NPPs, such as void swelling.  A recent review of monitoring techniques for passive systems is given in 
Meyer et al. (2011a).  Several key areas of effort have been identified for passive SSCs, including the 
reactor pressure vessel and Class 1 metal components, reactor vessel internals, concrete structures, cables, 
buried piping, and large transformers.  These are summarized below.  

6.2.1 Metals 

Currently, degradation in the reactor pressure vessel (RPV) and Class 1 components is managed 
through periodic ISI as mandated by the ASME BPV Code, with risk-based principles used to determine 
ISI intervals and the components for inspection in any given interval.  In Class 1 components, issues of 
concern with respect to long-term operation include (Griffith et al. 2012): 
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• stress corrosion cracking; 

• helium-induced degradation and cracking in weld repairs; 

• phase transformations due to irradiation; 

• crack initiation, especially in nickel-based alloys; 

• embrittlement and hardening of RPV steels. 

Other degradation mechanisms also become important when considering advanced reactor designs 
(O'Donnell et al. 2008), including high-temperature effects on new materials such as 9Cr-1Mo steel.  
Each of these degradation types, as well as other degradation mechanisms that occur in these components, 
likely have different underlying mechanisms (many of which are poorly understood) that drive the 
accumulation of damage and initiation of cracking.  The components in which materials susceptible to 
these mechanisms are used also differ in scale from small-bore piping to the RPV.  These two issues 
combine to create significant challenges in the development of NDE methods for detecting degradation in 
metal components.  

Recent research has identified several novel techniques that could be applied to monitoring metallic 
components for degradation mechanisms of concern (Raj et al. 2003; Schuster et al. 2004; Meyer et al. 
2011b).  These techniques include: 

• Guided ultrasonic waves (Meyer et al. 2012b), 

• Magnetic and electromagnetic methods including eddy current testing, magnetic Barkhausen noise 
(Raj et al. 2003), etc. 

• Advanced ultrasonic measurements, including nonlinear methods (Matlack et al. 2012), diffuse field 
methods (Ghoshal and Turner 2009), etc. 

• Other techniques such as potential drop methods, Seebeck measurements, etc. 

As stated earlier, acoustic emission (AE) is currently the only approved monitoring technique that is 
listed in the ASME BPV Code.  A number of studies on the use of AE for monitoring nuclear components 
have been performed, and applications include crack growth monitoring, leak detection, and loose part 
detection and monitoring (Harris and Dunegan 1974; Hutton et al. 1984; Hutton 1993; Hutton et al. 1993; 
IAEA 2008b; Ai et al. 2010; Meyer et al. 2011b).  AE was also deployed for a limited field trial to 
monitor the growth of cracks in two RPV nozzles at Limerick Generating Station Unit 1 (BWR) reactor 
and the Watts Bar Unit 1 (PWR) reactor (Hutton et al. 1991; Hutton et al. 1993).  The flaws were known 
to exist and had first been characterized using conventional ultrasonic inspections.  These tests 
demonstrated the ability of AE testing to discriminate signals due to crack growth from background noise 
caused by an active coolant loop and the ability to perform monitoring on components at temperatures 
near 300°C (achieved through the use of acoustic waveguides to protect the transducers from the high 
temperature components).  AE was deployed for the duration of two fuel cycles at Limerick Unit 1 and 
operated well for the first fuel cycle.  The equipment experienced degradation during the second fuel 
cycle as a result of thermal exposure. 
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6.2.2 Reactor Vessel Internals 

Reactor internals consist of components that maintain the structural integrity of the reactor core, and 
include components such as the core shroud, baffle-former bolts, guide tubes, jet pumps, etc.  Though 
internal to the core, components such as fuel assemblies, control rods, and in-core monitors are not 
considered reactor core internals.  Reactor internals are exposed to environmental stressors, such as 
temperature, irradiation, local pH and acid concentration, coolant flow, applied loads, etc.  PWR and 
BWR designs entail different core internals; even different PWR vendor designs are sufficiently different 
to have different core internal systems.  In all cases, the majority of reactor internal components are made 
from stainless steels due to their corrosion resistance, toughness, ductility, strength, and fatigue 
characteristics.  Studies on the effects of aging on reactor internals are summarized in Luk (1993b) and 
IAEA (2007) for PWRs, and Luk (1993a) and IAEA (2005) for BWRs.   

Reactor internals are not components of the reactor primary containment system and are not 
considered safety-critical.  In most cases, internals can be replaced if necessary and their failure will not 
weaken the system itself.  However, failure of these internals can create conditions that challenge the 
integrity of the primary containment system, and can cause expensive unplanned outages for repair. 
Currently, reactor core internal degradation is managed through visual inspection of accessible parts, on 
an approximately 10-year cycle.  There is both a safety and an economic benefit to investigating 
techniques for degradation assessment of reactor internals that enables reliable long-term operation.  

Known degradation modes are shared for PWR and BWR components; these include corrosion, stress 
corrosion cracking (SCC), irradiation-assisted SCC (IASCC), fatigue, embrittlement (both thermal- and 
radiation-induced), and creep and stress relaxation.  Many of the known degradation modes are age-
related.  Mechanisms of particular concern for long-term operation include: 

• IASCC of baffle-former bolts, 

• Fretting wear of control rod guide tubes, 

• Swelling and void formation. 

Currently, the ASME BPV Code mandates periodic visual inspection of reactor vessel internals and 
removable core support structures.  The inspection is performed using industry guidelines documented by 
the BWR Vessel and Internals Program (BWRVIP) and the Materials Reliability Program (MRP), which 
provide additional guidance regarding the inspection requirements and acceptance criteria.  Visual 
inspection can detect distortion, cracking, loose or missing parts, wear, or corrosion.  Current guidelines 
also require the use of alternative confirmatory inspection methods (such as ultrasonics or eddy current 
inspection) on select components (EPRI 2008c).  Ultrasonic examination is useful for inspecting critical 
reactor vessel components, such as baffle bolts and guide tube support pins.  Remote visual inspections of 
reactor internals can detect surface flaws, but the method has many shortcomings.  Only components 
which are accessible can be visually inspected; components in inaccessible regions, those with surface 
deposits, or with complicated geometry cannot be effectively inspected through simple visual 
examination.  The technique is also subject to variability due to lighting and the condition of the surface 
(shiny, dull finish, or oxide layer) (Cumblidge et al. 2004; Cumblidge et al. 2007).  Additionally, visual 
inspection cannot detect subsurface faults or partial through-wall cracks originating on the hidden surface.  
These techniques are currently not used for online monitoring of component degradation; instead these 
are used for periodic in-service inspection.  Several on-line monitoring techniques are recommended to 
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give indicators of internal conditions during use, including loose parts monitoring, neutron noise 
monitoring, direct vibration monitoring, and primary water chemistry monitoring.  These on-line 
techniques do not directly detect degradation of core internals, but they may provide relevant information 
during plant operation, when visual inspection is not feasible. 

In advanced reactors, structural and safety-related components made of non-metallic materials such as 
graphite are also being considered (Kunerth and McJunkin 2011).  These materials bring additional 
challenges in terms of inspection and monitoring, as the mechanisms of interest (such as void-swelling 
and loss of structural strength) may not be directly measurable using remote visual methods.  Alternative 
inspection methods, including ultrasonics and acousto-ultrasonics, eddy current inspection, and 
radiography have been proposed for these materials (Kunerth and McJunkin 2011).  

6.2.3 Concrete 

In NPPs, two major concrete structures exist: the reactor containment and the nuclear island.  These 
two structures have unique features and challenges.  Concrete is exposed to the external environment (i.e., 
heat, humidity, etc.) as well as irradiation, the combined effects of which, over long-term exposure, may 
impact structural strength, integrity, and shielding effectiveness.  Currently, degradation in concrete 
components is detected through periodic inspection as mandated by the ASME BPV Code.  The reactor 
containment presents a major challenge for any type of inspection due to its large size; inspection of the 
entire containment is expensive in terms of both time and cost.  Development of intelligent monitoring 
techniques can help focus the more intensive ISI to areas of the structure at particular risk for faults.  The 
nuclear island is built of rebar-enforced concrete, which likely requires different inspection methods, and 
access is limited. 

In general, concrete structures in NPP have a history of high reliability.  However, several cases of 
degradation are known from operating experience, and include cracking, spalling, corrosion of rebars, 
water infiltration, etc.  Other known degradation modes in concrete (in NPPs and elsewhere) include 
chloride attack, alkali-silica reactions, sulfate attack, carbonation, freeze-thaw, dry-out, shrinkage, creep, 
thermal fatigue, aggregate growth, decomposition of water, and leaching of calcium (Naus 2009).  In 
many cases, deterioration can be accelerated by the simultaneous occurrence of multiple degradation 
mechanisms.  Experience with concrete structures in nuclear environments indicates that prolonged 
exposure to irradiation and/or high temperature can result in decrease in tensile and compressive strength 
which can compromise the performance of the concrete structure, and potentially degrade shielding 
effectiveness (Shah and Hookham 1998; Norris et al. 1999; Naus 2009).  The properties of concrete 
depend on the behavior of the coarse aggregate material used in the mix, resulting in differing properties 
due to differences in concrete composition, which further complicates inspection and degradation 
detection.  The combination of large scale structures with possibly limited access and differences in 
composition creates significant challenges in the development of NDE methods for detecting degradation 
in NPP concrete.  

Currently, degradation assessment of concrete structures in NPPs is performed through visual 
inspection.  The examination of concrete containments is covered in article IWL-2000 of Section XI of 
the ASME Code.  Components covered within the scope of this article are concrete sections of the 
containment, metallic reinforcement systems, and post-tensioned tendon systems.  Article IWL-2000 
specifies two visual examination categories.  The first category is referred to as a general visual 
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examination.  This inspection must be detailed enough to identify regions of the concrete that are 
deteriorating or under distress in order to assess the condition of structural concrete.  The second type of 
visual examination is referred to as a detailed visual examination.  The purpose of detailed visual 
inspections is to determine the severity of deterioration or distress at suspect sites on the concrete surface, 
the condition of post-tensioned tendon anchoring hardware, the condition of concrete at 
repair/maintenance sites, and the condition of exposed reinforcing steel.  A detailed visual inspection is 
often triggered by the identification of suspect sites during the general visual inspection.   

Inaccessible below-grade areas are subject to an environmental assessment to judge the likelihood of 
corrosion.  This environmental assessment includes an evaluation of the below-grade conditions, existing 
or potential degradation mechanisms, and condition of installed protective barriers.  Additionally this 
evaluation includes a review of design and construction criteria, in-place condition-monitoring programs, 
and a specification of requirements for the examination of representative samples of below-grade 
concrete.   

Research in other industries is evaluating the effectiveness and reliability of several NDE methods for 
concrete inspection, particularly for concrete structures; this research may prove beneficial to developing 
NDE methods for monitoring concrete structures in NPPs.  These techniques include (IAEA 2002; 
Malhotra and Carino 2004), but are not limited to: 

• ultrasonic testing (including guided ultrasonic waves), 

• thermographic imaging, 

• radiographic imaging, 

• half-cell potential and surface potential, 

• polarization resistance, 

• impact-echo, and 

• microwave techniques. 

A comprehensive review of methods for concrete inspection in NPP is presented in Naus (2007). 
Recent work in the area of NPP concrete inspection also includes online monitoring of post-tensioned 
tendons using strain gages at the Ginna plant (EPRI 2011b); this pilot study is described in a later section. 

6.2.4 Cables 

In 1993, the International Atomic Energy Agency (IAEA) initiated a coordinated research project 
(CRP) to address the aging management of in-containment cables at NPPs (IAEA 1997).  Because it 
simply is not practical to inspect the over 1000 km of cable within an NPP, a prioritization scheme is 
necessary to limit cable inspection programs to a manageable level. In the context of aging management, 
the outer jacket and electrical insulation (both made of polymeric materials) are typically considered most 
significant.  Typical cable architecture consists of one or several conductors individually wrapped with 
electrical insulation and bundled inside of a protective jacket (IAEA 2000).  Three types of cables are of 
concern in nuclear power plants: power, control, and instrumentation cables.  Degradation of these cables 
has largely been ignored because they are considered to be passive, long-lived components with high 
historical reliability. However, longer service life entails increased exposure to environmental stressors, 
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such as temperature, irradiation, moisture and humidity, local oxygen concentration, vibration, flooding 
of underground cables, etc.  Under these conditions, the material of most concern appears to be the 
polymeric insulation and jacket material on these cables (IAEA 2000).  Longer cable circuits may pass 
through several different environments over their length routed through the plant.  Licensee data has 
shown that the number of cable failures is already increasing with plant age, even within the rated 40-year 
lifetime (Villaran and Lofaro 2010).   

Cable integrity and function can be monitored indirectly through in-service tests of safety-related 
systems and components.  Cable monitoring programs are summarized in NUREG/CR-7000 (Villaran 
and Lofaro 2010).  However, adequate function of the cables under test conditions does not indicate the 
same performance during high stress events, such as operation when fully loaded or during extended 
periods as under normal service operation or design basis events.  Several laboratory tests are available 
for cable monitoring; however, these require that a sample of the cable aged under the same conditions as 
the location of interest is available for testing.  These tests are generally undesirable for one of two 
reasons:  (a) the test may be destructive, meaning that the number of cable samples limits the frequency of 
the test, or (b) cable samples may not have experienced the same environmental stressors seen in 
inaccessible locations.  A number of in situ cable monitoring techniques are currently employed, 
including visual inspection, the compressive modulus test, dielectric loss test, insulation resistance and 
polarization index, AC voltage withstand test, partial discharge test, DC high potential test, step voltage 
test, infrared thermography, etc.  These tests all suffer serious disadvantages.  Many are only applicable to 
accessible lengths of cable, such as visual inspection and the compressive (or indenter) modulus test.  
Anandakumaran (2007) correlated the results of elongation at break (a destructive test) to those of the 
compressive modulus (a nondestructive, in situ test).  A threshold for the compressive modulus was 
determined beyond which successful performance during LOCA scenarios could not be guaranteed 
(indicated by 50% elongation at break).  However, the compressive modulus is a manual test which can 
only be performed periodically on accessible lengths of cable.  Some techniques require the cable to be 
disconnected at one or both ends, including the dielectric loss test, insulation resistance and polarization 
index, AC voltage withstand, DC high potential, and step voltage tests.  Additionally, several of the 
electrical tests involve high voltage, which can damage the insulation during testing (i.e., AC voltage 
withstand, partial discharge, and DC high potential tests).  Two techniques have been developed and 
demonstrated for non-destructive, in situ cable inspection:  time domain reflectometry (TDR) and line 
resonance analysis (LIRA).   

TDR operates on the same principles as radar (IEC 2010).  A pulse of energy is transmitted down a 
cable from one end, which must be disconnected from the system for testing, and is reflected back when it 
encounters any change in electrical impedance along the cable.  These changes may be due to the far end 
of the cable or faults and degradation along the length of the cable.  The time necessary for the pulse to 
travel to the impedance change and reflect back to the open end of the cable can be used to determine the 
location of the impedance change.  These measurements can identify the location and magnitude of an 
impedance change due to electrical or insulation faults or the presence and location of water; however, 
this requires accurate baseline data for comparisons.  When appropriately applied, TDR is able to identify 
changes in cable impedance due to loose connections, moisture, and cracks in cable conductors, 
connectors, and insulation.  Transient conditions, such as immersion or vibration-induced failure, will 
only be detected if they are present during testing.  TDR is applicable to low- and medium-voltage cables, 
as well as cable insulation and jackets of all types.  The pulse used to detect faults is very low power and 
non-destructive to the cables being investigated.   
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LIRA analyzes electrical test signals from a waveform generator by modeling the cable’s wire system 
using transmission line theory (Fantoni and Toman 2006; Fantoni et al. 2009; Fantoni 2010).  Through 
narrow-band frequency domain analysis of high frequency resonance effects, LIRA can be used to detect 
local or global changes in the electrical properties of a cable, which may result from insulation faults or 
degradation.  The cumulative phase shift of the input impedance gives a condition indicator for aging and 
small defects, while amplitude changes account for larger effects.  Because LIRA tests can detect small 
changes in the electrical properties in insulation materials, localized and bulk thermal aging can be 
detected and identified well before significant physical deterioration occurs.  LIRA was developed at 
Halden Reactor Project from 2003–2005, and then further developed by Wirescan AS.  LIRA has been 
tested extensively with low, medium, and high voltage cables, both in laboratory tests and in-situ 
experiments.  Work with EPRI from 2006–2007 tested the capabilities of LIRA to identify cuts, gouges, 
and thermal aging in cables.  Unlike TDR, LIRA can be performed in situ without disconnecting the 
cable.  LIRA can be performed online by accounting for the effects of loads attached to the cable during 
the results analysis. 

TDR is currently widely used in NPPs to assess instrumentation cable condition; however, this 
technique cannot be applied during plant operation because the cable must be disconnected at one end.  It 
detects local, significant anomalies but is not as effective for minor flaws which may be precursors to 
larger faults.  Additionally, the method requires accurate baselines for comparison to determine the 
location and magnitude of a fault.  LIRA overcomes many of the disadvantages of TDR—it can be 
performed on-line, and it can detect small changes in electrical parameters.  However, research in LIRA is 
ongoing.  Currently, the test is not simple to perform nor the results to interpret; execution and analysis 
will need to be largely automated for wide-scale application in NPPs. 

In June 2010, the USNRC issued a draft regulatory guide on condition monitoring of cables (NRC 
2010a), which states that no single, nonintrusive method is currently available for accurately predicting 
the survivability of cables under accident conditions.  Therefore, a combination of techniques may be 
necessary to give a robust view of cable condition.  Recent work is focused on evaluating the available 
cable-testing techniques and developing a holistic approach to integrating the results of multiple testing 
modalities (Hashemian and Bean 2011).  This integration is expected to improve the range of faults and 
degradations that can be detected and the robustness and confidence of those detections.  

6.2.5 Buried Piping 

Buried piping is in direct contact with soil or concrete.  Three types of buried piping should be 
considered: safety-related pipes, non-safety-related pipes which convey radiologically contaminated 
fluids, and other non-safety-related pipes conveying water, fuels, oils, gases, etc.  Potential impacts of 
buried pipe faults and failures include:  

• Safety and operational challenges, 

• Negative environmental impacts, 

• Additional regulatory requirements, 

• EPA violations with adverse industry publicity, 
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• License renewal delays, and 

• Heightened opposition to extension of existing license and new plant construction. 

Buried piping is subject to external environments (chemical, geotechnical, and civil-structural) that 
may be unique to each installation or site.  A number of materials (mostly metallic, although concrete is 
used for large-diameter piping such as water-intake piping) are used for buried piping in operational 
NPP (Braverman et al. 2005).  In recent years, there is increased interest in the use of large-diameter 
HDPE piping for some non-safety related buried piping (SECY-09-0174 2009).  Buried pipes also come 
in a large range of sizes, varying from over 10 ft diameter down to 2 inches and smaller.  These issues 
together provide significant challenges to inspecting large installations of buried pipes.  Recently, the 
nuclear industry began an initiative through NEI to develop guidelines for the management of buried 
piping integrity (NEI 2010).  Additionally, research at EPRI focuses on programs to control the 
degradation of buried piping (EPRI 2008b). 

The main causes of degradation in buried piping include fouling or debris, soil movement, surface 
traffic, and corrosion (Braverman et al. 2005; NRC 2005a, b).  Buried piping is susceptible to degradation 
(corrosion and fouling) on both the outer diameter (OD) and inner diameter (ID) surfaces.  Preventative 
measures are taken for metallic buried piping which may corrode on the OD, such as coating with 
corrosion resistant materials or applying cathodic protection systems.  While buried piping is normally 
reliable, damage to the coatings can lead to localized corrosion and small leaks.  Underground piping at 
some nuclear power plants has degraded to the point that through-wall leakage has occurred, leading to, in 
a few cases, releases of tritium into surrounding groundwater (GAO 2011).  The plants’ safety systems 
continue to function properly despite these leaks.  EPRI’s recommendations for monitoring and 
controlling the degradation of buried piping are given in EPRI (2008b). 

Buried piping at NPPs offers a unique challenge because these pipelines were not designed in a way 
that readily accommodates inspection techniques employed in other industries, such as pigging.  NPP 
piping may have more bends than can be accommodated with these techniques and may lack the 
necessary access points.  Therefore, inner diameter inspections are prohibitive for long stretches of 
pipeline that consists of elbows, tees, or other sources of sharp redirection.  Additionally, access to buried 
piping outer diameter is restricted due to contact with soil or concrete.   

Currently, most inspection of buried pipes involves excavating to visually inspect sections of the pipe.  
Alternative technologies that may be relevant include remote visual systems, ultrasonic inspection 
methods for piping wall thickness evaluation, and electromagnetic inspection methods (such as eddy 
current) for detecting areas of corrosion (Braverman et al. 2005).  In-line inspection using “smart pigs” is 
a widely applied technique for piping inspection in the petrochemical industry; its applicability to NPP 
buried piping is under evaluation (Kirby 2012).  Guided ultrasonic wave (GUW) is considered one of the 
leading technologies for performing inspections of buried piping (Ahmad et al. 2009) but is limited to 
inspections of a few 10’s of meters and also encounters difficulties with inspecting pipeline beyond 
elbows, tees, or other joints.  Thus, full-length inspections of buried pipes with GUW would require 
excavation every 20–30 meters or beyond every elbow for placement of a GUW probe.  NDE 
technologies employed by the oil and gas industries for inspecting buried piping are not immediately 
transferrable to NPP buried piping for the reasons enumerated above. 

Several other entry and excavation tests, including hydrotests, are being explored by the industry.  
Additional inspection methods that may be applicable include liquid penetrant testing, magnetic particle 



 

6.14 

testing, radiography, pulsed eddy current, hydrotest, remote field electromagnetic inspection (Lord et al. 
1988), and corrosion tests such as electrical resistance probes, corrosion coupons, and linear polarization 
resistance.  Many of these methods require physical access to the section of pipe under test.  The use of 
remote probes that can be inserted into the piping system for in-line inspection is also of interest.  
However, questions remain regarding access to NPP piping systems that were not designed with 
inspection in mind. 

6.2.6 Transformers 

The reliability of electric transmission grids depends on the availability of high-voltage transformers.  
Although transformers have been historically over-designed, economic competition in recent decades has 
led to lower-cost, lower-reliability transformers in service.  This implies that transformer degradation is a 
concern for transformers of all ages:  over-designed transformers installed in the 1970s, 1960s, or earlier 
are nearing the end of their original design life, and transformers installed after approximately the mid-
1980s are also experiencing wear-out failures due to the lower reliability standard.  In fact, transformers 
in service in the USA are experiencing an exponential increase in explosions and failure rate (Bartley 
2002).  Replacing existing transformers is costly both in terms of time and money; replacements can cost 
between $3- and $6-million with lead times of more than a year.  However, unanticipated failures can 
affect generating stations, resulting in increased maintenance costs and lost revenue.  In fact, a recent 
transformer failure at the Indian Point Unit 2 reactor caused a reactor trip and resulted in the reactor being 
offline for over two weeks.  Many groups are investigating the use of existing technologies to better 
monitor the condition of high-voltage oil-filled transformers.  These techniques can be coupled with 
advanced fault detection, diagnostic, and prognostic methodologies to provide a full health-monitoring 
system for transformers.  

Bartley (2003) identifies twelve failure modes which were experienced by members of an 
international delegation of the International Association of Engineering Insurers.  Of these twelve failure 
modes, two of are particular interest because of their relative ubiquity in legacy transformers:  insulation 
failure and oil contamination.   

Traditional transformer monitoring techniques have seen widespread use for many years or even 
decades.  Other, more advanced technologies are still in the research phase, but may be applicable for 
integration into a full health monitoring system.  These methodologies include: dissolved gas analysis, 
insulating oil quality testing, moisture content measurements, various methods of power factor testing, 
winding resistance and ratio testing, thermography, recovery voltage testing, winding insulating oil 
monitoring, tap changer monitoring, internal temperature measurement, and others (Lapworth et al. 1995; 
Wang et al. 2002).  Several different transformer monitoring techniques are currently being used to 
measure degradation of transformers.  One of the most common and widespread technologies is the 
measurement of dissolved gases within the transformer (Heathcote 1998).  Moisture content, another 
degradation parameter, can often be measured with the same equipment used to perform dissolved gas 
analysis (DGA) (USDI 2003).  Oil quality tests can often discover the chemical breakdown of the oil 
(USDI 2000, 2003), but are less useful than DGA and moisture content measurements because failure 
occurs more frequently as a result of dissolved gases and moisture.  Ultra-high frequency (UHF) 
monitoring is used to measure partial discharge events in transformers (Judd et al. 2004; Catterson et al. 
2008).  Finally, several tests exist to quantify insulation degradation (USDI 2000).   
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Partial discharge (PD) is an electric discharge that only partially bridges the gap between conductors.  
Such discharges can indicate a loss of dielectric strength in the insulation or an increase in electrical 
stress.  UHF monitoring can be used to isolate PD arcing.  UHF sensors may be mounted external to the 
transformer through dielectric windows, which would be straightforward to install during manufacturing 
and may be possible to retrofit to existing transformers in service (Judd et al. 2004).  Researchers at the 
University of Strathclyde have worked to incorporate UHF results in an automated monitoring and fault 
detection system.  Their work focuses on the use of Multi-Agent Systems (MAS) for condition 
monitoring (McArthur et al. 2004).  The system is modular, with separate agents for each task, including: 
data handling agents, isolation agent, classification agents, corroboration agent, engineer assistant agent, 
etc.  The modular nature of the system makes it particularly attractive for combining with agents which 
perform fault detection and diagnostics based on other information, such as DGA or SCADA results 
(Catterson et al. 2005).  The developed on-line monitoring system was deployed on two transformers 
nearing end of life (Catterson et al. 2009).  This system used data collected from 50+ sensors to detect and 
diagnose anomalies.  The MAS system was shown to be flexible and extensible to incorporate output 
from other monitoring and interpretation techniques.   

In addition to detecting PD, UHF sensors can be used for active interrogation of the mechanical 
structure to detect displacement.  After a potentially damaging event, such as through faults, harsh 
loading, or physical deformation, the same UHF sensors installed for PD monitoring could be used to 
determine if the internal structure of the transformer has been permanently altered or has returned to its 
original state (Judd et al. 2004). 

A survey of the literature describing available and developing transformer monitoring techniques 
indicates that it may be possible to perform prognostics using data that can be collected with existing 
transformer monitoring technologies.  Initial investigations in using existing data sources for prognostics 
are reported in Strong et al. (2011) and Coble et al. (2011). 

6.3 Fielded Systems and Systems Currently in Development 

While significant work still exists in many areas of condition monitoring and PHM before it can be 
applied on a large scale in NPPs, several utilities, companies, and other groups have made real progress in 
deploying condition monitoring and health assessment systems on specific subsystems.  In addition to the 
sensor calibration monitoring system deployed at Sizewell B described earlier, several efforts that move 
toward PHM are described below. 

6.3.1 AREVA 

AREVA has worked with health assessment systems since the early 1980s with the Fatigue 
Monitoring System (FAMOS).  FAMOS was developed in response to a requirement by German 
licensing authorities to better understand actual component loadings during plant operation.  Initial 
recordings of thermal loadings indicated that operating conditions of the plant differed from the 
assumptions and predictions made during plant design.  This discovery led to widespread implementation 
of FAMOS in German NPPs and other plants, with deployment in more than 20 NPPs since 1988.  
Additionally, FAMOS is anticipated to be used in the new European Pressurized Water Reactor (EPR) 
(Pöckl and Kleinöder 2007).  FAMOS uses operational loads continuously measured onsite with a 
simplified stress-based fatigue (SSBF) estimation method to evaluate the actual fatigue experienced by 
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key SSCs.  This analysis is performed after every operational cycle; the results of this fatigue monitoring 
and estimation can provide the basis for optimizing operational modes and future fatigue usage (Poeckl et 
al. 2001).   

In addition to fatigue monitoring and estimation suites, AREVA is deploying enabling technologies 
for PHM, including digital I&C systems and OLM suites, in several existing and new reactors.  In 1984, 
AREVA deployed a digitized monitoring and control system for the power and protection control system 
for the reactor core at the Paluel plant.  In 2011, EDF contracted with AREVA to upgrade the monitoring 
and control safety systems for 20 reactors at 8 plants (AREVA 2011).  AREVA is also deploying 
integrated OLM in new, Generation III+ LWRs, such as the new reactors at Olkiluoto in Finland, 
Flamanville 3 in France, and Taishan 1 & 2 in China, and the proposed reactors at Hinkley Point C and 
Wylfa in the U.K. (AREVA 2012). 

6.3.2 Ginna Containment Monitoring 

A pilot study of online monitoring of the reactor containment vessel (RCV) at an operating NPP was 
undertaken by EPRI at the Ginna plant.  Currently, fourteen randomly selected containment tendons are 
tested once every five years by measuring lift-off loads.  These tests are expensive (costs of ~$500K/test), 
are manually performed, and have implications for worker safety.  Three monitoring techniques were 
employed at the Ginna plant to monitor post-tensioning tendons: tendon load monitoring through fiber 
optic gages, rebar and concrete strain monitoring, and concrete surface strain monitoring with digital 
image correlation (DIC) (Lindberg 2011).  Fiber optic strain gages were employed to measure tendon 
strain in the RCV by EPRI’s NDE group (EPRI 2011b).  The RCV wall is made of reinforced concrete 
with 160 post-tensioned, ungrouted tendons.  The Ginna RCV has some features not employed at most 
plants; for example, vertical, prestressed tendons connected to rock anchors in the underlying bedrock 
(Shah and Hookham 1998).  Fiber optic strain gages were installed on the shims of 20 tendons to collect 
real-time, continuous tendon force data.  Data were collected at a high sampling rate (1 Hz) for 334 
signals relating to the tendon strain for a period of 12 months.  These data were used to calibrate and test 
an advanced pattern recognition (APR) model using 41 signals, including two temperature-compensated 
strain measurements for each of the 20 measured tendons and the ambient temperature.  The data 
collection for a deployed system is expected to occur on a daily or weekly basis (i.e., one sample is 
collected once per day or once per week) and evaluated quarterly to detect anomalous behavior, but 
higher sampling rates were used for the pilot study to aid in determining the appropriate sampling rate and 
data analysis period.  The results of applying the APR model to test data indicate good predictive 
performance over the range of data collected over the 12-month period; in fact, the model reliably 
predicted sensor values to within 0.5% error.  Currently, optical fiber strain gages are suggested to 
augment the current periodic test, but additional testing and analysis may allow for continuous monitoring 
to replace periodic testing.  This initial study concluded that the fiber optic strain gages can be coupled 
with an APR model for effective monitoring of tendon strain in the RCV. 

6.3.3 Borssele OLM System 

The Borssele Nuclear Power Station (the Netherlands), a two-loop PWR, has been in operation since 
1973 and is currently licensed to operate until 2033 (NIS 2006).  Borssele has provided operational data 
for reactor signal processing algorithm development since 1974.  From 1974 through 1981, off-line signal 
analysis was used to monitor the condition of the plant.  Beginning in 1982, real-time surveillance of 
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Borssele began to monitor for changes in statistical characteristics of sensed signals.  The monitoring 
system was used to estimate physical parameters of the reactor and in-situ testing of safety channel 
instrumentation using online analysis.  Turkcan (1985) describes the use of noise analysis for NPP 
monitoring, including continuous monitoring of primary system vibrations, continuous monitoring of core 
physics parameters (core coolant velocity, reactivity effects, local vibration of in-core instrumentation 
guide tube and core support barrel), and online monitoring of noise power of plant sensors for both short- 
and long-term trending.  This and other well-defined algorithms were used for an online, real-time 
monitoring system until 1997 (Turkcan et al. 1996).  After a major plant upgrade in 1997, a new sensor 
measuring system was developed and deployed in 2001.  The new plant data collection and processing 
system consists of two sub-systems:  (1) 96 DC signals measured at 10 Hz for operational history 
recording, deviation detection, and plant transient analysis, and (2) 32 AC/DC signals for the reactor noise 
diagnostic system.  Core barrel motion is monitored through cross-spectrum analysis of the ex-core 
neutron detectors located around the reactor vessel (Barutcu et al. 2003b).  Additionally, coherence 
function analysis of primary pump vibration signals was used to detect sensor faults, while coherence 
analysis of ex-core neutron detectors, primary system pressures, pressure of primary pumps (Barutcu et 
al. 2003a).  Data from the Borssele plant have been used to develop a variety of monitoring and 
diagnostic routines, although these are not currently deployed at the plant.  Nabeshima et al. (2003) 
describe a monitoring system which employs neural networks for fault detection and an expert system for 
fault diagnosis.  In this work, a PWR simulator is used to model plant anomalies to train and test the 
diagnostic system.  The system is also tested with data from Borssele; the expert system correctly 
recognized operation modes and diagnosed plant status based on the detection patterns predicted by the 
neural networks.  Finally, Ayaz (2008) developed a system of neural networks for monitoring Borssele 
using so-called plant-wide and component-wide models.  The plant-wide model is built using all the 
signals of interest, 62 signals total.  Nine component-wide models are developed for different subsystems: 
core, generator, pressurizer, turbine, condenser, primary volume control system, steam generator 
feedwater system, steam generator I, and steam generator II.  Twenty-three of the 62 signals are best 
monitored by the plant-wide model, while the remaining 39 signals are monitored by their respective 
component-wide (subsystem) models.   

6.3.4 Recent Industry R&D Activities in OLM 

There is an ongoing industry program focused on developing on-line monitoring and sharing best 
practices (EPRI 2010, 2011a), and it is seeking to make advances in diagnostics and prognostics over the 
next 4-5 years.  An early effort in developing prognostic capabilities looked at expanding the information 
contained in the predictive maintenance basis database (PMBD) to include information about possible 
prognostic applications (EPRI 2009a).  A compendium to the PMBD highlights the applicability of 
prognostics and potential prognostic parameters for each class of systems and components contained in 
the PMBD.  

Three separate, but complimentary, programs to support health monitoring of power generation 
systems are being developed.  The Diagnostic Advisor compares actual plant conditions to the stored fault 
signatures in the Asset Fault Signature Database to determine if a fault condition exists and identify 
likely causes.  Plant condition data can also be used by the Remaining Useful Life Advisor to estimate the 
time of failure for systems or components experiencing a fault based on several available prognostic 
models.  Each of the main programs was developed to act either as a stand-alone product or in 
cooperation with the other programs.  The full software suite is designed to perform fault diagnosis and 
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prognosis based on available system data sources.  Data sources can include plant data historians, online 
monitoring and fleet-wide monitoring programs, operator inspection results, etc.  Additionally, these tools 
can serve as a repository for sharing information across the entire fleet of utilities, allowing each utility to 
integrate the operating history of similar plants, similar systems, and similar components.   
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7.0 Enabling Technology 

7.1 Digital Instrumentation and Control Systems 

The nuclear industry is notoriously slow to adopt new technology because of the additional regulatory 
restrictions on changing the technical specifications of NPPs.  Most operating U.S. NPPs still employ the 
1970s era or earlier analog technology that was originally installed during commissioning.  Digital 
upgrades have largely been incremental and applied where digital systems can replace analog systems 
one-to-one.  The first digital I&C system in a U.S. NPP was deployed at Oconee Nuclear Station in 2011 
(Hashemian 2011b).  Fully digital I&C systems have seen more use outside of the United States.  The 
first fully digital I&C systems were deployed in Japan in the Kashiwazaki-Kariwa Unit 6 and Unit 7 
advanced boiling-water reactors (ABWR).  Mitsubishi’s Tomari Units 1 and 2 PWRs also have complete 
digital I&C systems.  Digital I&C systems have also been implemented in NPPs in France, Korea, 
Sweden, the United Kingdom, China, and other countries. 

7.2 Sensors 

Advances in sensors, including smart microsensors, ultrasonic sensors, acoustic emission sensors, 
radio-frequency tags, and multi-sensor modules, enable more reliable and less expensive data collection 
to support PHM.  Sensors used for measurements inside the reactor containment must be resistant to the 
radiation experienced during operation; these sensors are particularly difficult to replace due to their 
location and the resulting exposure to personnel.  Research is ongoing to develop sensors that will be 
robust to these harsh operating environments over longer periods of time; this work is briefly described in 
a later section.  Currently, there is significant interest in deploying wireless sensor networks for 
monitoring NPP SCCs (Hashemian 2011a). 

7.2.1 Wireless Sensor Networks 

The high cost of radiation-resistant instrumentation cable makes wireless sensor networks attractive, 
particularly for aging systems which may require additional sensing capabilities to support OLM or 
replacement of aging instrumentation and cables.  In fact, approximately 80% of respondents in a recent 
survey of I&C personnel at NPPs indicated that they would increase CM if wireless sensor networks 
could be used (Kiger 2010).  Several issues must be resolved before wireless sensor networks are 
ubiquitously adopted in NPPs for safety-related I&C applications, including coexistence, reliability, 
signal propagation, and regulatory impact (Howlader et al. 2010).  Many of these challenges can be 
addressed through thoughtful and deliberate locating of wireless transmitters and receivers.  Of course, 
cyber security is also a significant concern when applying wireless sensors to safety-related equipment 
and for nonsafety-related wireless networks that potentially provide a pathway to critical attacks (Dion et 
al. 2010).  Key issues in wireless security include interference, interception, and fading and multipath.  
Well-established methods for alleviating these concerns include anti-jamming, intrusion detection, and 
accurate channel modeling.  The NRC guidelines for cyber security (10 CFR 73.54 2009; NRC 2010b) 
were not designed with wireless sensors in mind; however, the guidelines can be easily extended to give 
adequate security for wireless networks.   
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Although wireless sensors and networks have not been applied to safety-related applications, wireless 
networks are currently used for wireless local area networks for office use, automated intelligent 
metering, geographical information systems, work management tools, and emissions monitoring.  Voice 
and data communication wireless networks have been implemented on varying scales at select NPPs, 
including Comanche Peak, Arkansas Nuclear One, and South Texas Project, while wireless networks 
intended for condition, process, and environmental monitoring have been deployed at Comanche Peak, 
San Onofre, and River Bend.  

Wireless sensor networks have been deployed in two facilities for equipment condition monitoring 
data transmission as part of a U.S. Department of Energy (DOE) Small Business Innovation Research 
(SBIR) project:  Comanche Peak Nuclear Power Plant in Texas and the High Flux Isotope Reactor 
(HFIR) at Oak Ridge National Laboratory (ORNL) (Hashemian 2011a; Hashemian et al. 2011).  The 
objectives of this project are two-fold:  first, to evaluate and expand the technical basis for condition 
monitoring of active components and, second, to address challenges in deploying wireless sensor 
networks in NPPs.  Challenges addressed include installation issues, electromagnetic and radio-frequency 
interference, network issues, data acquisition and qualification algorithms, analysis of wireless data, and 
interpretation of the results.  Results of these pilot applications indicate that well-developed wireless 
sensor networks offer an effective method for measuring and transmitting data related to key equipment 
and process conditions, thereby improving the safety, reliability, and efficiency of NPPs.  Concerns over 
interference, data acquisition, and data security can be addressed and accommodated to provide reliable, 
secure transmission of sensed data.  Additionally, the integration of signals from existing wired sensors 
and new wireless sensors in existing LWRs can provide a holistic view of the health of SSCs and 
processes, further improving safety and performance in legacy plants. 

7.3 Monitoring the PHM Hardware and Validating Data 

Accurate detection of faults and estimation of RUL depend on accurate data from the OLM and ISI 
systems.  Before the results of PHM algorithms are used for decision making and O&M planning, the data 
fed into these systems must be validated.  Much of the technology needed to monitor the hardware 
(sensors, cables, etc.) and data for the PHM system has already been developed.  Existing sensor 
calibration monitoring methods can be used to validate the sensed data needed for PHM systems.  
Existing and developing cable monitoring methods can be employed to ensure that data transfer has not 
been compromised.  Additional data validation routines, such as data reconciliation, can be employed to 
increase confidence in measurements used for health monitoring.  It is important to leverage existing 
technology developed to monitor the physical system (i.e., NPP) to also monitor the monitoring system.  
Uncertainty in the measurements and data used by the PHM algorithms will inflate the uncertainty in the 
results of each module – monitoring and detection, diagnostics, and prognostics.  By monitoring hardware 
and validating PHM data, this uncertainty can be managed, improving the confidence in PHM results and 
in using these results for decision making and O&M planning. 

7.4 Prognostic Architectures (Software) 

A recent review of commercially available software products for supporting PHM systems (Lybeck et 
al. 2011) found a number of integration architectures currently available for deployment of PHM.  
Development of each of the modules in a full PHM system for deployment in an NPP is both costly and 
time-consuming.  An existing software framework can be leveraged to demonstrate the use of PHM in an 
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existing NPP with reduced development time and cost.  Thirteen products identified through literature and 
internet searches were evaluated based on a consistent set of criteria: open, modular architecture; platform 
independence; graphical user interface for system development and/or results viewing; web-enabled tools; 
scalability; and standards compatibility.  The thirteen products were classified into four rough groups of 
software:  research tools, PHM system development tools, deployable architectures, and peripheral tools.  
Eight software tools fell into the deployable architectures category.  Of those eight, only two employ all 
six modules of a full PHM system.  Five systems did not offer prognostic estimates, and it is unclear how 
easy it would be to incorporate third-party prognostic algorithms.  Both OSyS and Impact Technologies 
provide a pair of tools that can fulfill all six modules when used in tandem:  AOC and EHM, and 
SignalPro and ReasonPro, respectively.  Depending on the purpose of the applied system, each of these 
products has its own advantages and disadvantages.  Complete details of the software review can be 
found in the original report.  
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8.0 Codes and Standards 

The Nuclear Energy Standards Coordination Collaborative (NESCC) reviews the codes and standards 
relevant to nuclear energy applications (ANSI).  Codes and standards covering several topics are of 
particular interest to PHM in NPPs.  The NRC only accepts NDE methods endorsed by the ASME Boiler 
and Pressure Vessel Code for monitoring large passive structures in NPPs.  This Code currently only 
endorses AE for monitoring passive components, and even then only under specific conditions.  The Code 
will need to be continually updated to reflect the current state of the art in NDE methods as it progresses. 

Additionally, a large number of disparate standards exist which pertain to prognostics and PHM 
systems.  Sheppard, Kaufman, and Wilmering (2008) review the relevant standards in IEEE and other 
organizations related to prognostics and highlight the importance of predicting RUL as a key feature of 
prognostics; however, they propose no single, unifying standard.  An effort is currently underway to 
develop an IEEE standard for prognostics, led by researchers at the Center for Advanced Life-Cycle 
Engineering (CALCE) at the University of Maryland; however, the timeline and intended content for this 
standard is currently unclear. 

ISO 13374 is a collection of standards that define a general condition monitoring architecture 
(framework) for machines.  Part 1 (ISO 2003) focuses on general procedures; Part 2 (ISO 2007) focuses 
on data processing; and Part 3 (ISO 2012) covers communication.  MIMOSA OSA-CBM is an 
implementation of the ISO-13374 functional specification (Walter 2006).  OSA-CBM uses the Unified 
Modeling Language (UML) to define the standard, separating the information from the technical 
interfaces used to exchange or communicate the information.  This implementation allows vendors and 
integrators to implement the most appropriate technologies for their application.  ISO 13381 (ISO 2004) 
provides general guidelines for the development of machinery prognostics, addressing terminology, 
concepts, uncertainty, and degradation modeling (Tobon-Mejia et al. 2010).  ISO 18435 (ISO 2009) 
describes an integration model and interfaces to facilitate integration of CBM related information with 
operating and environmental information to support optimal decision-making for effective and efficient 
manufacturing (Carnahan et al. 2005).  

The development of a standard covering PHM for electronic systems was recently approved by the 
Institute of Electrical and Electronics Engineers (IEEE).  While the proposed standard focuses on 
electronic systems, it can provide a framework for developing a general standard for PHM for any 
complex engineering system, as well as specific standards for active and passive nuclear SSCs (IEEE). 

Standards for condition monitoring, prognostics, PHM, and NDE techniques exist, but these are 
largely not specific to the nuclear industry and have not been reviewed by the NRC for application to 
NPPs.  Work is needed to develop nuclear-applicable standards for advanced NDE and PHM techniques 
and to have these standards reviewed and endorsed by the NRC.   
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9.0 Research Needs and Opportunities to Support 
PHM in NPPs 

Prognostics and health management is a key need for improving the safety and economy of nuclear 
power generation moving forward with both LTO and new builds.  Several general areas of further 
development needs exist to bring PHM from the research arena to deployment in NPPs.  Some of these 
needs are specific to the application to NPPs and nuclear components, including high-fidelity physics-of-
failure models, experimental failure and aging data, and optimal sensor placement (particularly for 
passive components) to give adequate coverage at reasonable cost.  Some areas of research are more 
general to the PHM community as a whole (uncertainty analysis and propagation, online performance 
metrics, verification and validation of PHM algorithms and models, etc.), and ongoing research in other 
fields can likely be leveraged to address these needs for NPPs.  Finally, well-defined methods for 
incorporating the results of PHM algorithms into a more holistic view of plant operation, maintenance, 
and decision making are needed to provide a practical advantage for the use of PHM in terms of safety 
and economics. 

9.1 Exemplar Data and Models 

Individual prognostic algorithms require a population of exemplar degradation paths for each fault 
mode of interest for model training and validation.  These exemplar degradation paths can be sensed data, 
collected in situ or through well planned experiments, or simulated with high fidelity physics of failure 
models.  Aging, degradation, and failure data are rare for safety-critical and high value systems, such as 
NPPs, because these systems are rarely allowed to run to failure once degradation has been detected.  
Development of high-fidelity physics of failure models is expensive and time consuming.  The underlying 
physics of some failure modes, such as SCC, remain too poorly understood for development of these 
models.  Realistically, both experimental data and physics models will be needed to fully describe the 
variety of failure modes of interest in active and passive SSCs. 

9.2 PHM for Transient Operation 

Many proposed PHM algorithms presume that operation is (at least nominally) steady-state to support 
application of statistical analysis techniques.  Of the techniques that can be applied to non-stationary 
signals, none were developed specifically for transient operation.  However, additional information about 
equipment health can be gleaned from transient operations, such as during start-up or power ramping, 
when stressors are often much greater than those seen during steady-state operation; these increased 
stressors may provide earlier, more accurate indications of incipient faults.  Initial research into transient 
prognostics is ongoing (EPRI 2011d).  Two exploratory projects investigating transient prognostics have 
been initiated at the University of Tennessee (as of 2012).  The first project investigated transient 
prognostics for small transfer pumps (Sharp et al. 2010); the second investigates motor degradation 
(Sharp et al. 2011, 2012).  For both of these systems, there are clearly additional stresses seen by the 
equipment during start-up, and statistical analysis methods are being explored and developed to extract 
information from the non-stationary signals collected during these transients (Strong and Hines 2012).  
The statistical analysis methods developed for transient prognostics may be of particular interest for 
SMRs, which will likely be load-following and will experience more operational transients than base load 
NPPs. 
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9.3 Sensor Design and Placement 

Novel methods for ISI of passive components are needed, particularly to support online condition 
monitoring of Class 1 and in-vessel components, to provide more effective inspection of complex 
geometries and inaccessible components.  In particular, sensors that can withstand the harsh environment 
inside the pressure vessel are needed, although there is ongoing research in this area in the case of 
piezoelectric ultrasonic sensors (Parks and Tittmann 2011).  Currently used remote visual cameras are 
radiation-hardened but are still incapable of surviving for more than a few hours in the radiation 
environment.  There is also a need to develop methods to transfer measurements from inside containment 
to the outside without compromising structural integrity.  

Another challenge to applying PHM to NPPs is sensor placement, particularly for passive 
components.  While active components can, in many cases, be monitored using the measurands currently 
collected for the existing I&C systems, some additional instrumentation (such as permanent vibration 
monitors) would improve model accuracy and robustness.  Research in optimal sensor placement for fault 
observability and reliability of active components has looked at application to the IRIS reactor (Li and 
Upadhyaya 2011; Upadhyaya and Li 2011), though the methodologies employed are more widely 
applicable.  The algorithms used in this work could easily be extended to incorporate the information 
already available from the plant I&C system, further minimizing the cost associated with deploying 
additional sensors specifically for active component health monitoring.  Additionally, legacy systems do 
not have the instrumentation required for continuous, online prognostics of passive components.  The 
proposed NDE methods for monitoring passive components offer limited coverage for each scan; multiple 
measurements at different locations (and perhaps multiple types of measurements) will be necessary to 
provide coverage of an entire passive structure.  Due to cost concerns of deploying many sensors (either 
through retrofitting legacy reactors or embedded in new plant designs), it may not be feasible to provide 
100% coverage of every important passive structure.  Risk analyses such as FMECA may be used to 
determine the components and locations of most interest in monitoring for degradation in order to reduce 
the monitoring burden.  Research in sensor placement for detecting sub-surface cracks in aircraft 
structures found that the selection of frequency and placement could only be determined with a good 
understanding of the failure mechanisms and application problem (Teo et al. 2009); the research in 
physics of failure models described above will be necessary for accurate sensor placement, particularly 
for passive components. 

9.4 Uncertainty Quantification and Propagation 

Additional research needs are generic to the development and deployment of PHM systems.  The 
research in quantifying prognostic uncertainty was described above, but this field is still evolving.  In 
addition to understanding and evaluating uncertainty in RUL estimates, we need to understand how 
uncertainty in each module of a PHM system propagates to later modules and how to control this 
uncertainty.  For example, uncertainty in the data collected from a system will contribute to uncertainty in 
the fault detection, the diagnosis, and the eventual prognosis.  The uncertainty calculated at each stage 
needs to account for the uncertainty in the stage(s) before it.  Additionally, the uncertainties for specific 
components will propagate through to subsystems, systems, and the plant as a whole.  Some of this may 
be addressed by prognostic-informed PRA analysis, which will be described later.   
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9.5 Online Prognostic Model Performance Assessment 

Uncertainty quantification can give some indication of prognostic performance metrics, but additional 
measures are needed to characterize the performance of a prognostic model online.  Online performance 
measures for monitoring, fault detection, and fault diagnostics are well established and understood (Hines 
et al. 2008a), but performance metrics for prognostics have largely focused on offline analysis of 
algorithms as opposed to online analysis of a particular implementation (as described in Section 4.4.2).  
Many of these metrics rely on the actual failure time as ground truth data for comparison; obviously this 
information is not available during online prognosis.  Methods to evaluate the accuracy, robustness, and 
confidence level of RUL predictions as they are made will be necessary to determine if the results provide 
actionable information for O&M planning. 

9.6 Verification and Validation 

Many prognostic algorithms have been developed and tentatively applied to a variety of systems with 
varying levels of success, but there currently is little attention paid to verification and validation (V&V) 
of prognostic algorithms.  In order to apply prognostics to NPPs, a rigorous V&V method must be 
developed and approved by the NRC.  Some research has begun to address V&V for prognostic 
algorithms, though none specific to the nuclear industry; a review of V&V research to date is given by 
Liu et al. (2011).  A web-based V&V tool was developed specifically targeted at the JSF, which provided 
V&V metrics for detection, diagnostics, and prognostics (Orsagh et al. 2005).  Some of the verification 
methods used by meteorologists, climatologists, and hydrologists for forecast verification can be extended 
to prognostic forecasting, namely the concepts of skill, value, and reference predictions (Liang et al. 
2011).  Skill quantifies the performance improvement of the prognostic model over some reference model 
(perhaps scheduled maintenance), while value incorporates the cost savings of applying the prognostic 
method over the reference.  One significant challenge in V&V for NPP PHM systems is the lack of 
statistically sufficient data for testing the variety of algorithms applied across all SSCs.  A rigorous V&V 
methodology which utilizes available data and high-fidelity models specific to nuclear applications is 
needed with endorsement by the NRC.  

9.7 PHM Results Integration 

In addition to the research needed to fully develop and deploy accurate, reliable, robust PHM systems 
for NPPs, there is a need for research into how these results can be applied for practical improvements in 
plant safety, operations, and economics.   

Traditional probabilistic risk assessment (PRA) is used to evaluate the risks associated with plant 
operations, such as taking a redundant system offline for maintenance.  PRA can be used for risk-
informed decision making, such as planning inservice testing, inservice inspection, and maintenance 
actions (Kafka 2002).  There are two shortcomings in traditional PRA analysis that can be improved 
through the integration of PHM results.  First, traditional PRA assumes that component failure rates are 
constant and do not depend on operating conditions, age, or unit-to-unit variation.  However, a cursory 
review of the industry-reported data in the Reliability and Availability Data System (RADS) suggests that 
industry-wide values for the reliability and probability of failure for key plant components may not 
accurately reflect the reality at a specific plant (Rasmuson et al. 2005).  Probability of failure distributions 
resulting from prognostic algorithms for both active and passive SSCs could be used to give a more 
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accurate picture of overall risk for a specific plant.  Second, PRA analysis currently does not incorporate 
most passive SSCs in risk analysis.  As plants look at extended operating lives, these SSCs become more 
important to overall risk, especially when the relative difficulty and expense of replacing or repairing 
large passive structures is considered.  Unfortunately, incorporating passive structures into PRA is not 
trivial.  Early work in incorporating aging effects into PRA tended to focus on specific aging degradation 
mechanisms in only a few SSCs (Smith et al. 2001; Trifanov 2007).  Initial research by Unwin et al. 
(2010; 2011b) looked at methods to intelligently incorporate the most risk-significant passive structures in 
PRA through expert analysis of features such as susceptibility (of a specific component to a specific 
degradation mechanism) and confidence (in the assessment of susceptibility).  The modeling of aging 
passive component reliability was demonstrated for a dissimilar weld in a PWR primary coolant system 
(Unwin et al. 2011a).  As monitoring and prognostic methods for passive components mature, accurate, 
component-specific reliability estimates can be used to better inform PRAs for passives.  

In addition to incorporating PHM results into PRA for NPPs, RUL estimates can be used for O&M 
planning and automated control.  Integrating prognostics into control strategies and planning has been 
widely proposed (e.g., Gertsbakh 2000; Jardine and Tsang 2006; Liang et al. 2010b), but algorithms for 
effectively doing so have only recently been suggested (Liang et al. 2006; Tang et al. 2007; Liang et al. 
2008; Edwards et al. 2010).  In NPPs, safety is the primary goal in planning operations and maintenance.  
However, it is economically attractive to perform maintenance only at scheduled, convenient 
opportunities, such as planned refueling outages.  The results of PHM systems could be incorporated into 
O&M planning by determining if a faulted component can be operated under planned or reduced loads 
until the next convenient maintenance opportunity without affecting the safety margins of the plant.  If the 
life of a faulted component would be extended, it would be beneficial to operate a plant at a reduced 
power output until the next planned outage rather than to shut down immediately for repairs to provide for 
full power capacity during operation.  
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10.0 Conclusions 

Recent years have seen a resurgence of nuclear power worldwide, with interest in maintaining and 
extending the safe, economic operation of the approximately 436 reactors currently in service (as of 
March 2012), 61 new reactors being constructed, and as many as 162 under consideration.  The operating 
U.S. fleet includes 104 light water reactors.  In addition, there are now (as of May 2012) four new 
AP-1000 nuclear plants under construction in the United States and two delayed plants being completed 
by the Tennessee Valley Authority.  There is also interest in the United States in SMRs, most of which 
have longer operating periods between planned refueling and maintenance outages than currently 
operating LWRs.  Renewed worldwide interest in nuclear power has been somewhat tempered by the 
March 2011 incident at Fukushima Dai-ichi in Japan.  However, nuclear power is still considered a key 
element in meeting future worldwide sustainable energy, energy security, and emissions goals.  Currently, 
three separate thrusts to safe and economic nuclear power development for energy security are being 
pursued in the United States:  (i) longer term operation for the legacy fleet, considering operating lives of 
60–80 years; (ii) near-term new nuclear plants with a 60-year design life; and (iii) small modular reactors, 
which are expected to employ light water reactor technology at least in the medium term.  Within these 
activities, attention is turning to enhanced methods for plant component and structural health 
management.   

Over the years, operational experience has shown that greater situational awareness of the state of 
safety-critical nuclear plant systems, structures, and components is necessary, particularly as they age 
over time due to exposure to harsh service conditions.  While replacement of a subset of components is 
possible, it may be economically prohibitive to replace several of the larger components, such as the 
reactor pressure vessel or primary piping.  Thus, detection, management, and mitigation of aging-related 
degradation in these critical components become important to maintain safety margins.  In this context, 
the technical challenges related to detecting, characterizing, monitoring, and managing materials 
degradation need to be identified and addressed.  The key technology developments necessary for 
detecting and managing degradation in reactor components are:  (1) nondestructive measurement and 
analysis methods to detect degradation and anomalies, (2) algorithms to characterize and monitor the 
degradation state of the component, and (3) algorithms that use the degradation state information to 
determine remaining useful life (RUL) and probability of failure (POF) of the component.  The POF 
information may then be used in a probabilistic risk assessment (PRA) model to assess the risk 
significance of the degradation and the corresponding reduced safety margin.  Component health 
information may also be used to optimize operations and maintenance scheduling.  Predictions of 
degradation growth rates can be coupled with prognostic algorithms and potential operation profiles to 
extend the life of degraded SSCs to the next convenient maintenance opportunity.  Together, these 
technologies constitute prognostics and health management (PHM) systems.  Ideally, degradation 
detection should occur early in the degradation development lifecycle to enable the application of 
appropriate mitigation or repair actions, thereby maintaining the necessary safety margins.  Appropriate 
PHM systems therefore can potentially preclude serious consequences due to aging-related faults. 

Prognostics and health management is a key need for improving the safety and economy of nuclear 
power generation moving forward with both LTO and new builds.  The development of PHM systems to 
date has been largely driven by non-nuclear industries and applications, and adapting these developments 
to NPPs (either LWRs or advanced reactor designs) faces significant challenges.  Several technical gaps 
exist, including in the area of sensors that can measure the features necessary to assess the health of SSCs; 
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available data and first-principles models describing the complex degradation mechanisms in nuclear 
components; uncertainty quantification for sensor measurements, models, and RUL estimations; online 
assessment of prognostic model performance; and verification and validation of advanced models for 
PHM.  Additionally, well-defined methods for incorporating the results of PHM algorithms into a more 
holistic view of plant operation, maintenance, and decision making are needed to provide a practical 
advantage for the use of PHM in terms of safety and economics.  While some of these gaps are relevant to 
other areas and industries, the unique operational framework and licensing requirements of nuclear power 
pose additional challenges. 

The domestic and international nuclear power industry poses a unique challenge for application of 
health management systems.  NPPs worldwide are closely regulated by national and international 
licensing bodies, and application of PHM systems which may impact safety-critical systems will require a 
clear licensing basis outlining appropriate algorithms, architectures, and applications.  In the United 
States, the licensing basis is developed by utilities; however, evaluation of such a licensing basis is the 
responsibility of the Nuclear Regulatory Commission (NRC).  As PHM research and development 
progresses in the nuclear industry, it will be increasingly important to engage the NRC and other 
appropriate licensing and oversight bodies to enable deployment of these advanced methods in operating 
and future plants. 

Clearly, PHM technologies can be beneficial to NPP operations, potentially providing improvements 
in safety, uptime, operations and maintenance optimization, and plant economics.  These benefits are not 
unique to the operating fleet of LWRs, as the next generation of nuclear power reactors is expected to 
have similar needs in terms of managing and mitigating degradation; therefore, it is likely that any 
technology developed for detecting and characterizing degradation in aging LWRs will have applications 
beyond the current fleet.  Additionally, some Gen III/III+, Gen IV, and SMR reactor designs will 
potentially have increased monitoring needs due to extended fuel cycles, reduced access to critical 
components, and remote siting with reduced maintenance staff.  Lessons learned in operating and 
maintaining the existing fleet of NPPs indicates that new reactors will benefit from including advanced 
monitoring, fault detection, diagnostic, and prognostic infrastructure from initial design through end-of-
life.  It is likely that PHM systems in new reactor designs will need to be incorporated in the design phase 
instead of retrofitting health monitoring systems to existing plants, as this is more costly and likely more 
complicated.  However, inclusion of PHM in new reactor designs will likely include additional challenges 
due to unique features of these advanced designs.  While significant research has been performed in the 
areas of prognostics and health management, several gaps, both technological and regulatory, will need to 
be addressed before these methods are deployed in NPPs.  In spite of these challenges, in both existing 
and future plants, the potential safety and economic incentives of applying PHM technologies are 
compelling.  
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