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Summary 

The widespread adoption of demand response (DR) enabled appliances and thermostats can 

result in a significant reduction to peak electrical demand and provide potential grid stabilization 

benefits. GE Appliances has developed a line of appliances that will have the capability of 

offering several levels of demand reduction actions based on information received from the 

utility grid, often in the form of price or grid status. However due to a number of factors, 

including the number of DR-enabled appliances available at any given time, the reduction of 

diversity factor due to the synchronizing control signal, and the percentage of consumers who 

may override the utility signal, it can be difficult to predict the aggregate response of a large 

number of residences. The effects of these behaviors can be modeled and simulated in the Pacific 

Northwest National Laboratory (PNNL) developed open-source software, GridLAB-D™, 

including evaluation of the appliance controls, improvement to current algorithms, and 

development of aggregate control methodologies. 

This report is the first in a series of three reports describing the potential of GE Appliances’ 

DR-enabled appliances to provide benefits to the utility grid. The first report will describe the 

modeling methodology used to represent the appliances in the GridLAB-D simulation 

environment and the estimated potential for peak demand reduction at various deployment 

levels. The second and third reports will explore the potential of aggregated group actions to 

positively impact grid stability, including frequency and voltage regulation and spinning 

reserves, and the impacts on distribution feeder voltage regulation, including mitigation of 

fluctuations caused by high penetration of photovoltaic distributed generation and the effects on 

volt-var control schemes. 

In Section 2, the effects and potential benefits of appliances on the power system were 

studied by modeling GE Appliances’ DR-enabled appliances in GridLAB-D. GridLAB-D is an 

open-source, state-of-the-art software designed at PNNL for the Department of Energy’s Office 

of Electricity Delivery and Energy Reliability to simulate the complexities of the smart grid from 

the substation down to the end-use load. Multi-state appliance models were used to represent not 

only the baseline instantaneous power demand and energy consumption, but the control systems 

developed by GE Appliances. This enabled the modeled appliances to respond to load reduction 

signals, as well as the change in behavior of the appliance in response to the signal. This 

included the power and energy consumption and the time horizon over which they operate for 

the various operational modes, and how changes in the DR control signal affect load behavior. 

This gives insight into the potential for short term versus longer term reduction in power 

consumption, and allows for exploration of different DR control signals without developing a 

new model for each case. Additionally, it gives insight into how to improve the effectiveness of 

the DR-enabled appliances across various time horizons. 
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The GE Appliances are designed to automatically respond to a control signal (analogous to 

price), while engaging the customer through a visual interface and various override actions. This 

is a key to acceptability with customers, operating under the principle of automating as many 

response actions as possible without circumventing the customer’s freedom to choose to override 

the response strategy and operate normally. Currently, each of the appliances respond to Normal, 

High, and Critical control signals, analogous to a two-rate Time-of-Use (TOU) program with a 

Critical Peak Price (CPP) overlay. In general, when the price of electricity increases, the 

customer is presented with three choices: delay operation to a later time when prices are cheaper; 

enter an Energy Savings mode (ES-mode), but continue operation; or override the load reduction 

and operate normally. When the customer is not present, the appliance defaults to either energy 

savings or delay of operation, depending upon the control signal and particular appliance 

settings. Again, this blends the advantages of automated responses with customer choice. 

This adds a layer of complexity to the simulation of the appliance response; how many 

customers override the DR operation versus delay operation? These were designed as inputs into 

the model. Survey data from GE Appliances’ field studies were used to approximate the 

responsiveness of customers. However for some appliances, a number of scenarios were tested to 

observe the effects of human interaction. 

It was also apparent through the simulation of the appliance models that the methods for 

releasing appliances back to normal operation after a high or critical event was just as important 

as the methods for creating the reduction in the first place. Reduction of appliance load over 

extended time periods (two to six hours) led to a significant decrease in the diversity factor of the 

population of appliances. This led to an increase in load immediately following a reduction in the 

price of electricity, often to a level higher than the original peak. This is commonly referred to as 

a rebound, as all of the appliances which deferred processes attempt to turn back on at the same 

time. Effectively, the price signal acts a synchronizing control signal activating all of the 

appliances at the same time. To mitigate this effect, GE Appliances developed a number of 

“release options” which were explored in the simulation environment. In general, this included 

randomization of restart times across the population (e.g., dryer 1 restarts 5 minutes after the 

price reduction while dryer 2 restarts 10 minutes after) or a transition into an energy savings 

mode, depending upon the type of appliance and the customer’s previous choice. 

To test the response of the appliances to a DR signal, prototypical test feeders available with 

GridLAB-D were used that contained a population of residential building models (single-family 

home). Each home contained a dryer model (and of each of the other appliances), each with their 

own subset of parameters and usage patterns. To create a base case which represented a realistic 

scenario, load shapes from the End-Use Load and Consumer Assessment Program (ELCAP) load 

study are used to estimate the usage pattern of the appliances at different times, during the course 

of an average day. While the confidence in this data source has waned since the end-use 

metering study was performed in the 1980s, most other studies are either unavailable or too small 
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for generalization. As an example, Figure S-1 shows the ELCAP electric dryer load shapes for an 

average winter and summer weekday and weekend. The load shapes are used to “schedule” the 

dryer usage throughout the population of devices, so that the average energy consumed during 

each hour of the simulation approximately equals the average hourly energy consumption of the 

ELCAP load shapes for each season and day type. This means that annual energy consumption 

of the simulated dryers matched annual energy consumption data from the ELCAP load study. 

However, since appliances have generally become more efficient since the ELCAP load study 

was performed, where appropriate, adjustments were made so that annual energy consumption 

matched current information. This resulted in the simulated dryer population matching the 

relative pattern of the ELCAP load shapes for each season (summer vs. winter), day type 

(weekday vs. weekend), and hourly (noon vs. six p.m.) while matching the annual energy 

consumption to available updated information. A more detailed description of the methodology 

to calibrate the simulations to ELCAP load shapes is presented in Appendix B. 

 

 

Figure S-1: ELCAP load shapes for the electric clothes dryer. 

 

As an example, the first model explored was the dryer model. As this was both GE 

Appliances’ introduction to GridLAB-D and its modeling capabilities and PNNL’s introduction 

to GE Appliances’ DR strategies, a number of simulations were performed using a variety of 

inputs and parameters. Figure S-2 shows an example simulation of 544 dryers, where the Normal 
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(or base) case is calibrated to the ELCAP load studies via the previously described method. A 

TOU plus CPP signal is then applied to subsequent cases. In this case, it is assumed that 25% of 

customers delay operation, 70% choose the ES-mode, and 5% choose to override the DR 

operation. Release Option 1 represents the case where all deferred dryer cycles immediately start 

when the price signal returns to Normal. Release Options 2 and 3 show the effects of a uniformly 

randomize restart (0 to 48 minutes and 0 to 72 minutes, respectively). First, notice that the peak 

demand within the High/Critical period has been reduced by approximately 45%. Second, notice 

that without randomization, the rebound peak is over 200% of the original peak, while 

randomization reduces this to less than 135%. This indicates that the release option greatly 

affects the rebound. 

 

Figure S-2: Time series of clothes dryer load, example case 1. 

 

To study the effects of customer interaction, the same case was simulated, except the 

customer behavior is modified. In this case, more customers choose delay (75%), fewer choose 

ES-mode (20%), and the same number override (5%); all other options are held constant. Figure 

S-3 demonstrates the time series results. 
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Figure S-3: Time series of clothes dryer load, increased customer participation. 

 

In this case, since customers have effectively increased their participation in the load 

reduction during the High and Critical price periods, the peak demand during that period has 

been reduced by nearly 75% (as compared to 45% previously). However, the secondary effect is 

that the peak rebound is significantly greater than before, nearly 4 times that of the base case. 

This is due to the greater number of customers who deferred operation during the High and 

Critical price periods. Again, notice that by using randomized release options (Release Option 2 

& 3), the peak rebound can be significantly reduced. 

For each of the appliance models developed, a number of such scenarios were developed. 

These cases are shown in more detail in Section 2, including more detailed descriptions of the 

deferred appliance processes and cases used to test the performance of the appliances using 

various control signals (e.g., TOU versus TOU+CPP). From these tests, conclusions about the 

performance of each appliance were drawn, including possible algorithmic improvements. These 

conclusions are discussed in detail within Sections 2 and 4; a brief discussion is included at the 

end of this summary. 

Section 3 expands the approach in Section 2, and creates a simulation with a more holistic 

and realistic approach. Again, a prototypical distribution circuit is developed. The circuit is 

populated with approximately 600 residential home models, including Heating, Ventilation, and 
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Air Conditioning (HVAC) systems, appliances, and various other parameters. Penetration levels 

of appliances reflect national averages for appliance saturation (e.g., 50% of homes have electric 

water heaters). A series of scenarios were designed to test the response of the appliances to a 

variety of control signals (e.g., two-hour peak prices versus six-hour TOU versus 15-minute 

critical periods), various DR-enabled appliance penetration levels, and the relative effects when 

adding HVAC to the modeled load. Other miscellaneous loads, such as lights and plug loads are 

also included. 

The first set of scenarios are designed to investigate the potential peak load reduction, and 

the resultant rebound, when the penetration levels of DR-enabled GE appliances vary from 0% to 

100%. This looks at the relative effects of the DR-enabled appliances when all of the appliances, 

including HVAC systems, are simulated simultaneously, i.e., does the addition of HVAC 

systems dwarf the load reduction of the appliances. The second scenario studied the addition of 

DR-enabled HVAC systems to the DR-enabled appliances. The third set of scenarios looked at 

similar situations to scenarios 1 and 2, except the weather was that of a more humid climate with 

a higher penetration of electric HVAC systems (Houston, TX versus Los Angeles, CA). 

Scenarios 4 and 5 addressed “worst case” scenarios or the potential rebound when every user 

tries to recover as soon as the critical signal is released, synchronizing all of the delayed loads 

(Release Option 1). 

For example, Section 3.2 studies the appliance response only case (HVACs are present, but 

not responsive to price changes). A six-hour critical signal is applied, and the effects of different 

penetration levels of DR-enabled appliances are observed. Figure S-4 shows an example of a 24-

hour time series of the feeder load on a relatively warm summer day (not hot), with each case 

representing a different penetration level of DR-enabled appliances (0%, 5%, 25%, and 100%). 

The peak reduction within the peak period is approximately 2%, 5%, 15%, respectively, while 

the rebound is only significant in the 100% penetration case. 
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Figure S-4: Time series of total feeder demand, with various DR-enabled appliance penetration levels. 

 

In Sections 3.3 through 3.5, the same cases are used, but different DR signal patterns are 

applied (four hour critical signal, three 15-minute critical signals, and a TOU + CPP signal, 

respectively). As expected, results showed that by shortening the required response period 

progressively from six hours to fifteen minutes, the rebound could be effectively reduced, while 

the peak reduction within the required window held steady. 

Sections 3.6 and 3.7 simulate similar cases, except the HVAC systems are also responsive to 

the price signal. For example, Figure S-5 compares four cases: Normal (base case no response), 

Responsive Appliances (100% of the appliances are DR-enabled, but the HVACs are not), 

Responsive HVAC (100% of the HVACs are responsive, but the appliances are not), and Both 

Responsive (100% of HVACs and appliances respond). Notice that the peak rebound is 

significant immediately following the return to Normal, but that the appliances contribute very 

little to the rebound. Also notice that the amount of peak reduction supplied by the suite of 

appliances is on the same order of peak reduction as the HVAC systems, and that the appliance 

reduction is more evenly sustained throughout the period. The HVAC systems, on the other 

hand, have a very large initial reduction which slowly decays as the internal air temperature of 

the participating homes begins to return to equilibrium and the HVACs run nearly as much as 

they were before. Again, it should be noted that this is relatively warm summer day, but not the 
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hottest of the year. These two sections explore various control signals and HVAC penetration 

levels. As expected, as HVAC penetration levels increase the relative effectiveness of the 

appliances in providing peak reduction is reduced. 

 

Figure S-5: Time series of total feeder demand, including responsive HVAC systems. 

 

Finally, Section 3.8 investigates a “worst” case rebound scenario, with 95% penetration of 

responsive HVACs, 100% penetration of DR-enabled appliances, and all of the appliances accept 

a delay and immediately restart at the end of the Critical period. This is used to explore the 

bounds of the absolute worst case rebound scenario. Figure S-6 demonstrates one of these cases, 

where a six-hour critical price signal is applied. Notice that while the peak reduction is 

approximately 25%, the rebound is nearly two times the original feeder peak. Obviously, this is 

an exaggerated case, but shows the potential for negative affects when not considering the 

release of the controlled appliances. 
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Figure S-6: Time series of total feeder demand, “worst” case scenario. 

 

From the individual appliance simulations presented in Section 2 and the aggregate 

simulations presented in Section 3, conclusions about the effectiveness of the DR control 

strategies can be drawn for each of the appliances. 

Electric clothes dryers: 

 Can provide significant reduction in demand during both high and critical pricing periods 

due to the fact that they have a greater instantaneous demand than other appliances (on 

the order 40-70% of appliance load, or 10s - 100s of kW).  

 Provide very significant short term reductions (on the order of 100s of kW for 15 minutes 

or less) due to the critical signal operational strategy. 

 Because of the ES-mode of operation, energy consumption can be reduced by nearly 10% 

during a high or critical period, while extending the amount of time it takes the clothes to 

dry. 

 Are significantly affected by the addition of a randomization function during the rebound 

period, reducing the peak rebound significantly when applied. Without a control method 

during the rebound period, appliance load can increase by as much as 8.5 times the 

original appliance peak demand, while with built-in mitigation methods this can be 

reduced to three to four times the original appliance peak.  
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 Typically peak in demand during the late morning or early afternoon, which does not 

coincide with typical CPP and TOU time periods, when system demand is greatest. 

Clothes washers: 

 Can provide peak reductions during critical pricing periods (on the order of 50% of the 

appliance load, or a few kW), in addition to the secondary effects of reduced water 

heater load. Secondary effects of reduced water heater load were not explicitly modeled 

in this analysis. 

 Does not directly reduce daily energy consumption, but an indirect reduction may be 

seen due to the reduced water heater load. 

 Can provide additional benefits by helping to control the rebound in demand seen after 

returning to normal operation after a critical pricing period. The addition of a built-in 

randomization function helps to diversify the timing of the return after a customer selects 

the delay option, and reduces the overall rebound from approximately 2.4 times the 

original peak to 1.1 times the original peak. 

 Typically peak in demand is seen during the late morning or early afternoon, and may 

not coincide with standard CPP and high TOU time periods, when system demand is 

greatest. 

Dishwashers: 

 Are effective at reducing demand during both high and critical pricing periods (on the 

order of 80% of the appliance load, or 10s of kW). This is mainly due to the appliance’s 

ability to notify the customer of a higher than normal price, and the customer willingness 

to delay the operation of the appliance until a later, lower price period. 

 Can provide additional rebound management services when built-in randomization 

functions are utilized. Again, due to the willingness of customers to delay normal 

operations, the randomization period can be extended over a longer period of time than 

other appliances (over an hour and a half in these simulations) such that the rebound seen 

is relatively small and shifted much later than other appliances (reduced from 4.7 times to 

2.8 times the original peak). 

Hybrid water heaters: 

 Are extremely effective at reducing demand during both high and critical pricing periods 

by locking out resistive elements and reducing the thermostat setpoint (on the order of 

30-55% of appliance load, or 100s of kW). This is in addition to the reduced demand 

naturally seen by switching from a resistive water heater to a heat pump water heater, 

which was not explicitly simulated. 

 Significantly reduce daily energy consumption (up to 7%) on days with a high or critical 

price, in addition to the reduced energy consumption naturally seen when switching from 
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a resistive water heater to a heat pump water heater, due to reduced use of the resistive 

elements and lowered setpoints. 

 Have no built-in rebound management strategy, but without a built-in strategy, they show 

a rebound in the demand roughly two to three times greater than the original appliance 

peak. However, due to the heat pump being used, rather than resistive load, the rebound 

is relatively small.  

 Typically peak in demand during mornings and evenings, usually coinciding with system 

peaks, providing a greater relative resource during those time periods. 

Electric ranges: 

 Can be divided into two responses, the oven and the cooktop. The dual oven can provide 

significant peak reductions during high and critical pricing periods. This is mainly due to 

the appliance’s ability to notify the customer of a higher than normal price, and the 

customer’s willingness to use the upper oven rather than the lower oven (on the order of 

30% of oven load, or 10s of kW). Cooktops did not provide any significant reduction in 

demand during high or critical time periods (less than 5% of cooktop load). 

 Did not significantly contribute to the peak demand during the rebound period (on the 

same order as the original peak). 

 Typically peaks during the evening, which coincides with standard CPP and high TOU 

pricing periods, when system demand is typically greatest, providing a greater relative 

resource. 

Refrigerators: 

 Provide relatively significant reductions in demand during both high and critical time 

periods (on the order of 30% of appliance load, or 10s-100s of kW), mainly due to the 

shifting of the defrost cycle to a normal price period. 

 Do not have a rebound mitigation strategy, but their contribution to the rebound is 

relatively small (roughly two times the original appliance peak) and is temporally shifted 

from the rest of the appliances due to the pre-chilling requirement at the beginning of the 

defrost cycle. 

 Are relatively unobtrusive to customers in the way that they respond to a high or critical 

signal, only delaying the defrost cycle and allowing internal cavity air temperatures to 

drift slightly. 

 

While the response of a single appliance in a home provides relatively small benefits 

compared to an HVAC system, because of the greater number of appliances in the home, the 

aggregate behavior of a suite of DR enabled appliances is significant. In Section 3, it was shown 

that even at low penetration levels (5% and 25%) of GE DR enabled appliances, the appliances 
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alone are able to provide peak reduction capabilities (1-2% and 4-5%, respectively). For obvious 

reasons, as penetration levels increased, peak reduction capabilities also increased, to as high as 

19% of the system peak by only utilizing the built-in DR capabilities of the GE appliances.  

The increase in reduction capabilities was accompanied by an increase in the peak rebound 

seen immediately after returning to a normal pricing period, as high as 140% of the original 

system peak with 100% penetration of DR enabled appliances, even when using the built-in 

rebound mitigation strategies. Rebounds were significantly lower in the lower penetration cases, 

typically not exceeding more than 2-3% of the original system peak. However, in all cases the 

peak was successfully shifted from the critical pricing period to the normal pricing period. If the 

rebound mitigations strategies were not used, significant rebounds in the peak demand could be 

seen. Of course, if the system operator is concerned about local demand constraints, then the 

rebound may be of concern, but if the operator is focused on the effects to the larger system and 

temporally shifting peak demand from one time period to another, the magnitude of the rebound 

may not be of concern.  

A comparison of the performance of the DR enabled appliances to DR enabled air 

conditioning systems was also performed. The air conditioning system provides a greater overall 

resource due to greater daily energy consumption (on a peak day) than the appliances. But, 

because of the built-in DR controls, the appliances provide increased demand reduction over the 

air conditioners alone, and in some cases, the response of the appliances actually outperformed 

the response of the air conditioning systems. This was due to the appliance controls being 

specifically designed to work with TOU and TOU plus CPP signals. While the air conditioning 

resource was exhausted over the four or six hour critical pricing periods, the appliance load 

reduction was more evenly spread across the critical pricing period. This resulted in an overall 

reduction in demand within the critical pricing period that was significantly increased with the 

addition of DR enabled appliances. 

Additionally, because of the energy conservation modes (ES-mode) that are available in the 

GE appliances during high pricing periods, the appliances provide a reduction in overall energy 

consumption in addition to the peak reduction. This makes the built in controls well suited for 

TOU or TOU plus CPP rate structures, balancing the long term energy shifting goals of a TOU 

program with the peak reduction goals of a CPP program. 
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1 Introduction 

The widespread adoption of demand response (DR) enabled appliances and thermostats can 

result in significant reduction to peak electrical demand and provide potential grid stabilization 

benefits. GE has developed a line of appliances that will have the capability of offering several 

levels of demand reduction actions based on information received from the utility grid, often in 

the form of price or grid status. However due to a number of factors, including the number of 

DR-enabled appliances available at any given time, the reduction of diversity factor due to the 

synchronizing control signal, and the percentage of consumers who may override the utility 

signal, it can be difficult to predict the aggregate response of a large number of residences. The 

effects of these behaviors can be modeled and simulated in the PNNL-developed open-source 

software, GridLAB-D™, including evaluation of appliance controls, improvement to current 

algorithms, and development of aggregate control methodologies. 

This report is the first in a series of three reports describing the potential of GE’s DR-

enabled appliances to provide benefits to the utility grid. The first report will describe the 

modeling methodology used to represent the GE appliances in the GridLAB-D simulation 

environment and the estimated potential for peak demand reduction at various deployment 

levels. The second and third reports will explore the potential of aggregated group actions to 

positively impact grid stability, including frequency and voltage regulation and spinning 

reserves, and the impacts on distribution feeder voltage regulation, including mitigation of 

fluctuations caused by high penetration of photovoltaic distributed generation and the effects on 

volt-var control schemes. 

Section 2 will briefly describe the appliance models and demonstrate the different appliance 

model responses to various DR signals. Section 3 will describe the feeder model with all of the 

appliances operating on a representative feeder; this will describe the potential for peak demand 

reduction utilizing various DR signals and assumptions of customer interaction, and highlight 

potential undesirable consequences as the load returns to normal, where appropriate. Section 4 

will provide overall observations and conclusions. Appendix A will provide detailed information 

about the operational and model characteristics of GE Appliances’ DR-enabled appliances; this 

section will be distributed separately from the main body of this report to protect GE Appliances’ 

intellectual property, as per the non-disclosure agreement between GE and Battelle, as the 

operator of PNNL, CRADA contract number PNNL/299. 
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2 Individual Appliance Model Development 

To study the effects and potential benefits of appliances on the power system, GE’s DR-

enabled appliances were modeled in the GridLAB-D simulation environment [1]. GridLAB-D is 

an open-source, state-of-the-art software designed at PNNL for the Department of Energy’s 

Office of Electricity Delivery and Energy Reliability (DOE-OE) to simulate the complexities of 

the smart grid from the substation down to the end-use load. This allows users to develop and 

simulate models which more accurately predict the behavior of loads, and how they interact with 

the power system, including voltage and temperature dependencies, power system and load 

control functions, and the complex interactions that occur between devices in such an 

interconnected system. Previous work has highlighted the advantages of developing and 

simulating load models as multi-state load models and applying these models in a single 

simulation environment that can represent loads, electrical infrastructure, and energy markets in 

a single solution [2]-[7]. This work will build upon those efforts by developing load models 

which represent the GE DR-enabled appliances as multi-state models with voltage-dependent 

behavior.  

The multi-state appliance models are required to represent not only the baseline 

instantaneous power demand and energy consumption, but the control systems developed by GE 

Appliances to enable their appliances to respond to load reduction signals, and the change in 

behavior of the appliance in response to the signal. This includes the power and energy 

consumption and the time horizon over which they operate for the various operational modes, 

and how changes in the DR control signal affect load behavior. This gives insight into the 

potential for short term reduction in power consumption versus longer term, and allows for 

exploration of different DR control signals without developing a new model. Additionally, it 

gives insight into how to improve the effectiveness of the DR enabled appliances across various 

time horizons. 

The following sections will describe the behavior of each of the appliances in baseline mode 

(e.g., normal operation) and during DR signal events, and present the aggregate effects to a DR 

signal of each appliance on a representative distribution feeder at various penetration levels. 

Different scenarios will be investigated that look at the effects of customer response to the 

behavior of the appliances. Each of the scenarios is simulated on a representative U.S. feeder, 

developed by the Modern Grid Initiative (MGI) as the Taxonomy of Prototypical Feeders [8]. 

Standard static load models, typically found in peak load studies, are replaced with multi-state 

residential house and Heating, Ventilation, and Air Conditioning (HVAC) models via the 

methodology described in [3]-[6]. This led to a distribution feeder model which contained 

individual residences including appliances, each with statistically sampled parameters and 

behaviors.  

Each of the appliance models was calibrated to available data on average hourly and annual 

energy consumption, typically from the End-Use Load and Consumer Assessment Program 

(ELCAP) residential load data [9]. Where additional information was available through GE 
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about energy efficiency improvements or changes in customer behavior since the ELCAP study, 

it was incorporated.  

All appliances manufactured by GE have four levels of control, namely Low, Normal, High 

and Critical. These four signals are analogous to four pricing levels, such as might be seen in a 

three-rate Time-of-Use (TOU) program with a Critical Peak Pricing (CPP) overlay. However, at 

the time of this analysis GE had not fully developed the Low mode of operation. The Low mode 

could be used in the future so that appliances can take advantage of low pricing periods by 

increasing load consumption. Thus, the Low mode is not modeled in the GridLAB-D GE 

appliance models. However, all appliances are modeled for the other three levels of control, 

which correspond to the three levels of Normal, High and Critical.  

Section 2.1 will discuss the metrics used in this study to determine the effectiveness of the 

DR-enabled appliances. Section 2.2 will discuss the HVAC response modeled for the studies. 

Detailed information on the creation and calibration of each of the individual appliance models 

will be described in Sections 2.4 through 2.8. Appendix A, which will be released separately 

from this document, will compare the simulated appliance results to GE’s in-house appliance 

testing, including time series appliance power consumption. 

2.1 Metrics used in analysis 

The metrics that will be used to evaluate the performance of the DR-enabled appliances are 

listed in Table 2-1. Not all metrics will be used with each case analyzed. Details about the 

metrics, including how each metric was calculated and the importance of the metric, are 

described in Appendix B.  
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Table 2-1: Metrics used for analysis. 

Metric Name Unit Description Purpose 

Daily Energy 

Consumption 
kWh 

Total daily energy 

consumption. 

Used to study the energy conservation that can be 

achieved from the appliance responding to DR 

signals. 

Energy Consumption 

during the High and 

Critical period 

kWh 

Total energy consumption 

during the High or Critical 

signal period. 

Used to study the change in energy consumption 

that is achieved when the appliance responds to 

the DR signals during the high or critical period. 

Energy Consumption 

after High and Critical 

period for six hours 

kWh 

Total energy consumption 

after a High or Critical 

signal period. 

Used to study the change in the energy 

consumption that may occur after a high or critical 

signal period. The increase in energy consumption 

can occur due to the appliance delaying processes 

during a DR signal period, and later rebound, or 

due to the appliances entering a higher energy 

consumption mode. 

Peak Demand during 

the High and Critical 

signal periods 

kW 

Peak power during the 

High and Critical signal 

periods. 

Used to study the change in the peak power 

demand that may occur due to appliance response 

to a High or Critical signal. 

Peak demand after 

High and Critical 

signal periods 

(Rebound) 

kW 

Peak power after a High or 

Critical signal period for 

six hours  

Used to determine the extent to which the 

appliance response can cause a change in the peak 

demand following a High or Critical signal period. 

Daily Peak demand kW Daily peak power. 
Used to study the absolute change in the daily 

peak power. 

 

 

2.2 Heating, Ventilation, and Air Conditioning 

To protect GE Appliances’ intellectual property, descriptions of the various appliance 

models, and their operational DR modes, cannot be provided in great detail. In following 

sections, general descriptions of standard appliance operation and DR specific functions will be 

discussed, but the specific modes of operation will not be described. These will be discussed in 

Appendix A, released separately from this document. To help aid in the discussion, detailed 

descriptions of models available in the open-source version of GridLAB-D (constant impedance, 

current, and power models, also known as ZIP models, and HVAC models), which are not 

dependent upon GE Appliances proprietary controls, are used to demonstrate the principles 

behind multi-state load modeling and why they are needed. This is found in Appendix B and is 

intended to demonstrate the complexity that went into the development of each of the GE 
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appliance models, including the DR control functions, without revealing GE Appliances 

proprietary information. 

The DR mechanism used for the HVAC systems in this study is similar to the design used in 

the Pacific Northwest GridWise
TM

 Testbed Demonstration Project [11]. The automated 

thermostat design was chosen due to its previous success in field demonstrations and an 

understanding of the distribution of customer responsiveness found during the field experiments.  

Figure 2-1 graphically illustrates the behavior of the automated thermostat implemented in 

this analysis. Cooling response is used as an illustration, but the same effects can be achieved 

with heating. Essentially, the thermostat translates the current price of electricity into a shift in 

the temperature setpoint of the system. If price is relatively high, the cooling setpoint is adjusted 

upward. Conversely, if the price is relatively low, the cooling setpoint is adjusted downward. 

Customers have full control over the level of responsiveness of their individual system, defining 

the maximum downward and upward deviations (Tmin and Tmax) from their desired setpoint 

(ΔT=0), the rate at which they respond (the slope of the line), and whether they wish to pre-cool 

the home. For simplicity, all of these parameters are mapped to a “slider setting”. Customers can 

choose a value between 0 and 100%, where 0% equates to “maximum comfort” (or standard, 

non-price response thermostat operation) and 100% equates to a pre-defined “maximum 

savings”. For this analysis, a distribution of typical customer participation levels or slider 

settings was determined from the Pacific Northwest GridWise Demonstration [11]. This 

distribution was found to be best fit by a normal distribution centered on 45% with a standard 

deviation of 20% participation. Values below 0 were set to 0%, while values chosen above 100% 

were re-chosen under the original distribution. This leads to a distribution with an approximate 

mean of 45% tailing off to 100%, but with a large population of customers who did not 

participate at all (0% setting). A plot of this distribution is shown in Figure 2-2. This was similar 

to results from the Pacific Northwest GridWise Demonstration Project.  

 

Figure 2-1: Graphical representation of automated thermostat response. 
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Figure 2-2: Distribution of slider settings. 

 

Additionally, pre-cooling and pre-heating were not used in this analysis, as they are not 

appropriate for this type of price response due to the potential for a significant increase in energy 

consumption during relatively low price periods. More detailed descriptions about the operation 

of the automated thermostat can be found at [11]-[13]. It is important to note that when prices are 

continuous, such as those found in retail Real-Time Pricing (RTP) programs, the mapped 

response of setpoints to price is a continuous function. However, in the case of TOU or CPP, 

there are only two or three discrete prices which map to two or three discrete setpoint deviations. 

For this analysis, a Critical signal results in customers responding at their maximum selected 

deviation from their normal setpoint, which is defined by the slider setting. A High signal results 

in customers responding at a lesser deviation, also related to their slider setting. A Normal signal 

results in normal thermostat operation. Note, that by randomly varying the slider setting, each 

customer responds through customized offsets of a different amount. For example, a 100% slider 

setting equates to a 5 degree offset during a Critical signal and a 2 degree offset during a High 

signal, while a 50% slider setting equates to 2.5 degree and 1 degree offset during a Critical and 

High signal, respectively.  

The HVAC model and DR capabilities of the HVAC model developed in GridLAB-D has 

been used to illustrate the type of modeling required in the GridLAB-D environment, especially 

when considering the effects of a DR signal on appliance behavior. The other appliances have all 

been modeled using this general approach described in Appendix B. The level of detail of the 

model for each appliance was dependent upon the level required to capture the dynamic behavior 

of the loads. The details of each of the appliance models can be found in Appendix A. But to 
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protect GE Appliances proprietary operational strategies, the following sections will summarize 

the methods used for each appliance, while Appendix A is reserved for detailed discussion of the 

implementations. 

 

2.3 Electric Clothes Dryer 

The electric clothes dryer consists of three major power consuming elements - two electric 

resistance heating coils and a drum drive motor. The elements heat the air in the dryer, while the 

motor tumbles the clothes within the drum to dry the clothes. Sensors are used to determine 

when the moisture content has been reduced to an acceptable level, at which point the dryer is 

turned off. A multi-state load model of the electric clothes dryer was developed in GridLAB-D to 

capture the behaviors of the different operational states. The model was designed on the basis of 

inputs and watt traces from laboratory testing and inputs provided by GE Appliances. The 

developed dryer model states were modeled and calibrated such that the power output, energy 

per state, time in state, and rules for state transitions for one dryer approximately matched the 

inputs provided by GE Appliances. Each of the dryer states was designed with different ZIP 

fractions for the heating coils and the motor; these values are listed in Table 2-2.  

 

Table 2-2: Dryer model ZIP fractions. 

 Z I P 

Heating Coils 1.0 0.0 0.0 

Motor 0.0 0.0 1.0 

   

Similar to all DR-enabled GE appliances, the electric clothes dryer has three modes of 

operation that, for the purpose of this study, can be classified as the Normal, ES-High, and ES-

Critical modes. These modes correspond to signals provided by the utility, which for the purpose 

of this study will be called Normal, High, and Critical. These can be thought of as being 

analogous to a TOU rate structure with a CPP overlay, with a lower off-peak rate (Normal), a 

higher on-peak rate (High), and a much higher emergency rate (Critical).  

If a dryer starts during a Normal signal, it operates in the Normal mode until the completion 

of the cycle, unless a High or Critical signal arrives during its operation. If the dryer is started 

during a High or Critical signal, the dryer display alerts the customer that the price of electricity 

is currently higher than normal. At this point, the customer has three options. In the first option, 

which is also the default option, the customer can choose to delay the start of the dryer until the 

price returns to Normal, avoiding all consumption during the higher than normal price period. 

The second option allows the customer to enter an Energy Savings (ES) mode, or a reduced 

power or energy consuming mode of operation. When the signal is High and the customer 

chooses to enter the reduced consumption mode, or ES-High, the dryer reduces instantaneous 

power demand and overall energy consumption while extending the run time of the cycle. The 
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clothes are still dried, but the dryer runs for a longer period of time. When the signal is Critical 

and the customer chooses to enter the reduced consumption mode, the dryer enters the ES-

Critical mode. This mode is similar to the ES-High mode, except that demand is reduced to near 

zero during the first part of the operation while the heating elements are turned off but the drum 

continues to tumble the clothes (e.g., 10-20 minutes). After this time period, the dryer then 

operates in exactly the same way as the ES-High mode until the clothes are dry. In the third 

option, the customer can always choose to ignore the signal and operate in Normal mode. The 

consumer is presented with the same options if a High or Critical signal arrives while the dryer is 

currently operating. These operational modes, including the transitional states, were modeled in 

GridLAB-D to capture the appliance behavior on a distribution feeder circuit, and to study the 

effects of these appliances on a distribution system.  

In the dryer model, the total cycle time, or how long it takes to dry the clothes, was 

determined using two separate methodologies. In the first method, the energy used in all three 

modes of operations by the dryer model was taken as a fixed value across all appliances in a 

population. Since the energy usage of the dryer depends upon the time it takes to dry the clothes, 

or the cycle time of the dryer, the cycle time of the dryer model was more or less fixed. The 

power and energy consumption of the dryer are voltage-dependent, so while the energy 

consumed by the dryer is fixed, the cycle times vary with the voltage as the heating elements are 

resistive.  

In the second method, the energy used by a population of dryer models varied over two 

distinct distributions, one for the Normal mode and one for ES-High and ES-Critical modes. The 

parameters of this distribution were developed through inputs based on GE Appliances’ survey 

data which collected different dryer run times reported by users. A distribution was determined 

from this data. GE Appliances provided a mean for the distribution, as well as a 90% confidence 

interval, and a skew for the distribution. This distribution was then used to determine the energy 

used by a dryer in the Normal, ES-High, and ES-Critical modes of operation, which in turn was 

used to determine the cycle time for these modes of operation. Each dryer in a population of 

devices receives a different energy consumption requirement to dry the clothes, analogous to the 

fact that every batch of clothes has different moisture content, weight, and drying times. More 

details on the distribution of cycle times and appliance operation can be found in Appendix A. 

One further option was included in the dryer model. As will be shown in the following 

section, when a large percentage of customer’s delay their operation and re-start at the same 

time, a significant rebound in the demand can occur. In the simulations, various re-start methods 

were compared to explore whether built-in controls can mitigate the rebound. In one case, the 

dryers that delay their operation start in the Normal mode immediately after the signal returns to 

Normal. In a second case, the dryers that delay their operation start in the Normal mode after a 

certain amount of time has passed since the signal returns to Normal. In a population of dryers, 

this delay time is randomized so that all of the dryers do not start operation at exactly the same 
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time. In the following section, different delay time distributions are used to demonstrate the 

effectiveness of managing the load during the rebound period. 

 

2.3.1 Electric Clothes Dryer Simulation Results 

To test the response of the electric clothes dryer to a DR signal, a test feeder was created that 

contained a population of dryers, each simulated with their own subset of parameters. All of the 

following simulations were run on a prototypical distribution feeder, R1-1247-2 [8], containing 

544 single family homes, each fitted with a GE dryer (100% penetration of GE dryers). To create 

a base case which represented a realistic scenario, load shapes from the ELCAP load study are 

used to estimate the usage pattern of the electric clothes dryers at different times, during the 

course of an average day [9]. For example, Figure 2-3 shows the ELCAP electric dryer load 

shapes for an average winter and summer weekday and weekend. The load shapes are used to 

“schedule” the dryer usage throughout the population of devices, so that the average energy 

consumed during each hour of the simulation approximately equals the average hourly energy 

consumption of the ELCAP load shapes for each season and day type. This meant that annual 

energy consumption of the simulated dryers matched annual energy consumption data from the 

ELCAP load study. However, since appliances have generally become more efficient since the 

ELCAP load study was performed, where appropriate, adjustments were made so that annual 

energy consumption matched current information. This resulted in the simulated dryer 

population matching the relative pattern of the ELCAP load shapes for each season (summer vs. 

winter) and day type (weekday vs. weekend), while matching the annual energy consumption to 

available updated information. A more detailed description of the methodology to calibrate the 

simulations to ELCAP load shapes is presented in Appendix B. After the base case was 

calibrated and simulated, a DR signal was applied to the population of dryers to study the effects 

on their behavior and the interactions with the distribution circuit. The DR signal used in this 

section is shown in Table 2-3. Additionally, a number of dryer scenarios were simulated to 

explore various cases of user interaction and delay release options. These will be described in 

further detail below. 
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Figure 2-3: ELCAP load shapes for the electric clothes dryer. 

  

Table 2-3: DR signal used in the dryer simulations. 

 Time 

Critical 18:00-20:00 

High 15:30-18:00, 20:00-21:00 

Normal all other times 

 

Apart from inputs from GE Appliances from initial field studies, no survey data was 

available to determine the percentage of customers who will accept a delay, use the ES-mode, or 

override a DR signal. However, the expected benefits from the appliance response are highly 

dependent upon the level of consumer interaction. As such, it is important to explore a number of 

user response cases. For this study, two cases of user behavior were simulated as developed from 

inputs from GE Appliances survey data. These cases are shown in Table 2-4. 
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Table 2-4: Customer behavior cases used in the dryer simulations. 

 

Accept 

Delay 

Use ES-

mode 

Override all 

DR options 

Customer Case A 25% 70% 5% 

Customer Case B 75% 20% 5% 

 

One of the goals of this study was to examine different dryer design scenarios, and how 

built-in controls can be used to mitigate the rebound of demand often seen after the release of a 

DR signal. In Table 2-5, scenarios are shown which explore one aspect of this rebound. The 

“Rebound Mode” describes the mode of operation which the dryer uses after it has delayed its 

operation when a customer selects delay during a High or Critical signal, either Normal or ES-

High. The ES-High mode is used to decrease instantaneous power and energy consumption 

immediately following the return to Normal to help alleviate some of the increased demand 

during the rebound period. Additionally, the length of the simulated dryer cycle times is also 

explored. This is used to explore the effects of assuming that all dryers in a population have a 

fixed cycle length versus a distribution of cycle lengths. 

 

Table 2-5: Scenarios used to explore built-in dryer controls during rebound period. 

 

Rebound 

Mode 
Cycle Times 

Scenario 1 Normal Fixed 

Scenario 2 Normal Distributed 

Scenario 3 ES-High Fixed 

Scenario 4 ES-High Distributed 

 

Again, to explore the effects of built-in dryer controls to help mitigate the rebound in 

demand immediately following the return to the Normal signal, a series of DR release options are 

explored. Instead of immediately entering the Normal or ES-High mode upon return to the 

Normal signal after the delay option has been chosen, each dryer randomly selects an additional 

delay time so that all dryer loads do not become synchronized. Different randomization functions 

are explored, and are described in Table 2-6. While the randomization functions are not exactly 

like those currently used in the GE appliances, they are representative and capture the overall 

effects of additional release options when the appliances are released after a delay. 
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Table 2-6: Built-in release options explored in dryer simulations. 

 

Additional Delay Time 

Distribution 

DR Release 

Option 1 

None – All delayed dryers start 

immediately. 

DR Release 

Option 2 

Uniform distribution between 0 

and 48 minutes. 

DR Release 

Option 3 

Uniform distribution between 0 

and 72 minutes. 

 

The following results represent different combinations of Customer Cases, Scenarios, and 

Release Options, leading to a total of 24 different DR cases (2 x 4 x 3); for brevity, only a few 

cases will be presented here. Figure 2-4 shows the simulation results for the different DR release 

options. The case being examined is using Customer Case A (25% dryers accept delay) and 

Scenario 1, observing the differences between the various DR release options. As can be noted 

from Figure 2-4, DR Release Option 1 has the highest rebound while DR Release Option 3 has 

the lowest rebound of the three DR release options, indicating that as the additional delay time is 

increased, the peak rebound is decreased. Thus, as the average delay time is extended, the peak 

rebound on the system is reduced due to the aggregate dryer load. 
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Figure 2-4: Time series of dryer load for Customer Case A and Scenario 1 on a winter weekday.  

 

Figure 2-5 shows the simulation results for the different DR release options using Customer 

Case B (75% dryers accept delay) and Scenario 1. As can be seen again, DR Release Option 1 

has the highest rebound while DR Release Option 3 has the lowest rebound of all three cases. 

Customer Case B, as opposed to Customer Case A, has a larger percentage of dryers that accept 

delay during the DR signal period. Thus, while all DR release options show reduced energy 

consumption and peak demand during the DR signal period, the rebound observed in all of the 

DR release options in Customer Case B are considerably greater. This is meant to highlight the 

effects of assumptions made about the way users will interact with this system. Currently, this is 

a relatively unknown quantity that will significantly impact the behavior of the system. Further 

consumer studies may provide more definitive conclusions. As can also be noted from Figure 

2-5, as soon as the Critical signal starts, all dryers in operation immediately enter the ES-Critical 

mode of operation (which consumes less energy and power) for a fixed duration or until the 

completion of the dryer cycle, which ever happens first. 
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Figure 2-5: Time series of dryer load for Customer Case B and Scenario 1 on a winter weekday. 

  

Figure 2-6 and Figure 2-7 show the simulation results for the different DR release options 

for Customer Cases A and B, using Scenario 3. In this case, the ES-High mode of operation is 

engaged during the rebound period and consumes less power and energy than the Normal mode 

of operation. Thus, the rebound observed in both Customer Cases A and B in Release Options 1, 

2, and 3 are lower than the rebound observed in Scenario 1. Other results are consistent with 

previous statements. 
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Figure 2-6: Time series of dryer load of Customer Case A and Scenario 3 on a winter weekday.  

 

Figure 2-7: Time series of dryer load of Customer Case B and Scenario 3 on a winter weekday.  
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Figure 2-8 and Figure 2-9 show the simulation results for the different DR release options 

for Customer Cases A and B respectively, in this case, using Scenario 2. As can be observed 

from Table 2-7 and Table 2-8, the peak demand rebound of all the DR release options in 

Scenario 2 (both Customer Cases A and B) have a lower peak demand rebound than the 

corresponding DR release options in Scenario 1. This is because the cycle times of the dryer vary 

over a wider range than in the case of Scenario 2. Again, Customer Case B has a higher rebound 

than Customer Case A in Scenario 2 due to more customers accepting a delay in operation.  

 

 

Figure 2-8: Time series of dryer load of Customer Case A and Scenario 2 on a winter weekday.  
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Figure 2-9: Time series of dryer load of Customer Case B and Scenario 2 on a winter weekday. 

 

Table 2-7: Comparison of peak rebound for release options in Customer Case A and Scenarios 1and 2. 

 

  

Table 2-8: Comparison of peak rebound for release options in Customer Case B and Scenarios 1and 2. 

Rebound Peak for Customer Case B 

 Scenario 1 Scenario 2 

Normal 150.70 120.14 

DR Release Option 1 1312.60 716.14 

DR Release Option 2 746.74 398.10 

DR Release Option 3 605.28 308.92 

 

Figure 2-10 and Figure 2-11 show the simulation results for the different DR release options 

for Customer Cases A and B respectively, in this case, using Scenario 4. As was previously 

Rebound Peak for Customer Case A 

 Scenario 1 Scenario 2 

Normal 150.70 120.23 

DR Release Option 1 650.59 349.10 

DR Release Option 2 366.03 214.52 

DR Release Option 3 312.48 207.22 
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stated, the ES-High mode of operation consumes less power and energy than the Normal mode 

operation, thus, the rebound observed in both Customer Cases A and B in Scenario 4 are lower 

than the rebound observed in the two cases in Scenario 1. Also, as was observed in Scenario 2, 

Customer Case B has a higher rebound than Customer Case A in Scenario 4.  

 

  

Figure 2-10: Time series of dryer load for Customer Case A and Scenario 4 on a winter weekday. 
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Figure 2-11: Time series of dryer load for Customer Case B and Scenario 1 on a winter weekday. 

 

As previously discussed, peak reduction during high pricing periods is often considered a 

significant benefit of DR. Table 2-9 compares peak power during the DR signal period for all of 

the DR release options normalized against the Normal mode. Significant reduction in the peak 

demand occurs under both Customer Case A and Case B. Since Scenario 1 and Scenario 3 only 

differ in the appliance response after the DR signal period, the peak power observed for 

Customer Case A (and B) is the same for both scenarios. While the peak power seen during the 

DR Signal for Customer Case A is approximately 54% of the peak power seen in the Normal 

case, the peak power seen in Customer Case B is even lower, that is, it is 25% of the peak power 

seen in the Normal case. Table 2-10 compares peak power during the DR signal period for all 

DR release options normalized against the Normal mode. The peak power observed during the 

DR signal period for Customer Case A is 61% of the peak power observed in the Normal case 

and the peak power observed in Customer Case B is 27% of the peak power observed in the 

Normal case.  
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Table 2-9: Comparison of peak demand during the DR signal period for Scenarios 1 and 3. 

Peak Power During DR signal period, Normalized against the Normal Case 

  Normal 

DR Release 

Option 1 

DR Release 

Option 2 

DR Release 

Option 3 

Scenario 1 - Customer Case A 1.00 0.54 0.54 0.54 

Scenario 1 - Customer Case B 1.00 0.25 0.25 0.25 

Scenario 3 - Customer Case A 1.00 0.54 0.54 0.54 

Scenario 3 - Customer Case B 1.00 0.25 0.25 0.25 

 

Table 2-10: Comparison of peak demand during the DR signal period for Scenarios 2 and 4. 

Peak Power During DR signal period, Normalized against the Normal Case 

  Normal 

DR Release 

Option 1 

DR Release 

Option 2 

DR Release 

Option 3 

Scenario 2 - Customer Case A 1.00 0.61 0.61 0.61 

Scenario 2 - Customer Case B 1.00 0.27 0.27 0.27 

Scenario 4 - Customer Case A 1.00 0.61 0.61 0.61 

Scenario 4 - Customer Case B 1.00 0.27 0.27 0.27 

 

Table 2-11 shows the energy consumption during the DR signal period for both customer 

cases of Scenarios 1 and 3. Table 2-12 shows the energy consumption during DR signal period 

for both Scenarios 2 and 4. In all four of the scenarios, Customer Case A results in a lesser 

reduction of energy consumption during the DR signal hours as compared to Customer Case B. 

This is expected, as in Customer Case A, fewer dryers accept delay, “choosing” instead to run 

during the DR signal hours.  

 

Table 2-11: Comparison of energy consumption during the DR signal period for Scenarios 1 and 3. 

Energy Consumption during DR signal period, Normalized against Normal case 

 
Normal 

DR Release 

Option 1 

DR Release 

Option 2 

DR Release 

Option 3 

Scenario 1 – Customer Case A 1.00 0.62 0.62 0.62 

Scenario 1 – Customer Case B 1.00 0.23 0.23 0.23 

Scenario 3 – Customer Case A 1.00 0.62 0.62 0.62 

Scenario 3 – Customer Case B 1.00 0.23 0.23 0.23 
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Table 2-12: Comparison of energy consumption during the DR signal period for Scenarios 2 and 4. 

Energy Consumption during DR signal period, normalized against Normal case 

 
Normal 

DR Release 

Option 1 

DR Release 

Option 2 

DR Release 

Option 3 

Scenario 2 – Customer Case A 1.00 0.62 0.62 0.62 

Scenario 2 – Customer Case B 1.00 0.22 0.22 0.22 

Scenario 4 – Customer Case A 1.00 0.62 0.62 0.62 

Scenario 4 – Customer Case B 1.00 0.22 0.22 0.22 

 

As previously discussed, the peak power during the rebound period, i.e., peak power after a 

DR signal period, may be considered an undesirable effect of DR. Table 2-13 shows the peak 

power in the rebound period for both customer cases for Scenarios 1 and 3. Table 2-14 shows the 

peak power during the rebound period for both customer cases of Scenarios 2 and 4. In all the 

four scenarios, Customer Case A has the smaller peak power during the rebound period as 

compared to Customer Case B. This is expected, as in Customer Case A, fewer dryers accept 

delay, “choosing” instead to run during the DR signal hours. Hence, after a DR signal period, 

fewer dryers start operation as compared to Customer Case B in all four of the scenarios. Also, 

from Table 2-13 and Table 2-14, across all scenarios, DR Release Option 3 has the lowest peak 

power during the rebound period, followed by DR Release Option 2. The highest peak power 

during the rebound period is observed in DR Release Option 1. In DR Release Option 3, after a 

DR signal period, the dryers re-start over a longer time period as compared to the other two 

release options. Hence, staggering the re-start of the dryers over a longer time period can 

mitigate some of the peak rebound effects. 

 

Table 2-13: Comparison of the peak power after a DR signal period for Scenarios 1 and 3. 

Peak Rebound - Peak Power after DR signal period, Normalized against Normal case 

 
Normal 

DR Release 

Option 1 

DR Release 

Option 2 

DR Release 

Option 3 

Scenario 1 – Customer Case A 1.00 4.32 2.43 2.07 

Scenario 1 – Customer Case B 1.00 8.71 4.96 4.02 

Scenario 3 – Customer Case A 1.00 2.88 1.95 1.74 

Scenario 3 – Customer Case B 1.00 4.93 3.97 3.10 
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Table 2-14: Comparison of the peak powers after a DR signal period for Scenarios 2 and 4. 

Peak Rebound - Peak Power after DR signal period, Normalized against Normal case 

 
Normal 

DR Release 

Option 1 

DR Release 

Option 2 

DR Release 

Option 3 

Scenario 2 – Customer Case A 1.00 2.90 1.78 1.72 

Scenario 2 – Customer Case B 1.00 5.96 3.31 2.57 

Scenario 4 – Customer Case A 1.00 2.02 1.76 1.54 

Scenario 4 – Customer Case B 1.00 3.63 2.60 2.22 

 

If achieving maximum peak reduction is the most important objective, then the most optimal 

scenario for the dryer appliance would be when a greater percentage of consumers choose to 

delay the operation of their dryer’s during a DR signal period. If reducing peak demand while 

mitigating the rebound peak effects is the most important objective, then delaying a large 

percentage of dryers during the DR signal and re-starting them over a longer period after the DR 

signal in the ES-High mode could be the best scenario for the electric clothes dryer. As will be 

observed in Section 3, the aggregated dryer peak demand does not align with the feeder peak (or 

system peak in this study). Hence, peak demand within the rebound period of the dryer response 

may not necessarily be the biggest factor for deciding the best dryer scenario. Depending upon 

the load shifting versus load reduction requirements for a particular system or feeder, the best 

method for running the dryer appliance can be decided. It can also be noted from the plots and 

the tables above that the response obtained from the dryer appliance can provide significant peak 

and energy reduction and hence can provide significant load shifting or load leveling benefits, 

again depending upon how the timing of the dryer load aligns with the load reduction needs of 

the system. 

 

2.4 Clothes Washer 

The GE clothes washer operates in the following manner –– the unit is filled with water and 

there is an agitation period where the clothes and water are tumbled in alternating directions with 

a pause in between. At the end of the wash cycle, the clothes are spun out to remove the 

soapy/dirty water. Then, fresh rinse water is added, tumbled, and a second spin occurs to remove 

the diluted water. After that, a second round of fresh water is added followed by more tumbling, 

and there is a final spin cycle which has the following sequence. There is a preliminary low 

speed spin period to remove most of the water and then the partially “de-watered” clothes are 

tumbled to redistribute them in the drum. Then, the final high speed spin is run which 

progressively increases in speed until it reaches the final high spin speed. This final high speed 

spin reduces the remaining moisture content of the clothes to a pre-set level. 

The clothes washer model in GridLAB-D was designed as a multi-state load model, similar 

to that used to describe the HVAC system, to represent the operation of the GE clothes washer. 
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The different states, and transitions between states, were designed on the basis of the GE 

Appliances provided current traces from laboratory testing, as well as inputs from GE 

Appliances as described in this section. The states were modeled and calibrated such that the 

simulated power output, energy per cycle and cycle time for one clothes washer cycle closely 

matched the values from the provided current traces. The power output for any state was 

approximately equal to the power calculated from the average current observed in the current 

traces for the state cycle with an average voltage of 119 V, as determined from GE Appliances 

test data. The ZIP components for each state were modeled as 100% constant current. This is 

because the GE Appliances Watt traces showed a fairly constant value of current for the different 

clothes washer states.  

The clothes washer can respond in various ways to three signal levels: Normal, High, and 

Critical. The clothes washer responds to signals based on the value of the signal level at the time 

that the consumer attempts to start the washer. If the clothes washer is started and the signal is at 

the Normal level, the washer executes a Normal wash cycle, even if the signal changes during 

active cycle. However, if a High or Critical signal is being sent at the time the clothes washer is 

started, it alerts the user and recommends that the operation be delayed. The delay mode is the 

default option under High or Critical signal levels, and if the consumer does not override the 

controls, the unit will delay operation until the end of the High or Critical signal, whichever 

occurs last.  

If the clothes washer recommends a delay due to a High or Critical signal, the consumer has 

the option to override and still use the washer. In the first option for the customer, the clothes 

washer can make use of the ES-mode, or ES-High, which is a cold water only wash which 

eliminates the energy use associated with heating of the water. When a Critical signal is 

received, the ES-Critical mode also extends the cycle to reduce the average power consumption 

in addition to only using cold water. If the consumer does not wish to accept the ES mode of 

operation, they can completely override both the delay and the ES mode and proceed with a 

standard cycle of their choice. The usage of hot water by the Normal mode of operation of a 

clothes washer in a house would need to be modeled as an extra load demand on the water heater 

modeled for the same house. However, since such a connection between the appliance loads 

(water heater plus clothes washer) has not yet been modeled in this study, only the direct 

electrical consumption is modeled. It should be noted that the equivalent electric energy to heat 

the water for an average warm cycle is approximately 40% of the energy label value per load. All 

of the modes of operation, including the Normal, ES-High, and ES-Critical modes consume 

approximately the same amount of electric energy (exclusive of water heating) to complete one 

clothes washer cycle. 

In the GridLAB-D model, there are assumptions regarding the consumer behavior when the 

units are started during either a High or Critical event. The assumptions are based on GE 

Appliances’ expected consumer response to either of these signals; that is what percentage will 

accept delay, what percentage will choose the ES–High or ES-Critical override, and what 
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percentage will choose a full override and run in a Normal mode. For the clothes washer these 

assumptions were that 75% would accept a delay during a High or Critical signal, 20% would 

choose the ES-High or ES-Critical mode, and 5% would choose a complete override. 

Additionally, as was seen in the dryer simulations, various randomization functions were tested 

to determine the effectiveness of built-in clothes washers controls in mitigating a peak rebound 

when the customer chooses to delay their operation. 

 

2.4.1 Clothes Washer Simulation Results 

The GridLAB-D model of the clothes washer was validated against available GE Appliances 

data. A model was then created which populated a representative distribution feeder containing 

544 individual residences, each with statistically sampled parameters and behaviors, and each of 

the residences contained a clothes washer. To create a base case which represented a realistic 

scenario, load shapes from the ELCAP load study, shown in Figure 2-12, are used to estimate the 

usage pattern of the clothes washer at different times of the day, during the course of an average 

day [9]. Again, updated information for annual energy consumption was used to create a case 

which more accurately represented actual appliance usage patterns, while still using the overall 

shape from the ELCAP studies. More details on the calibration process can be found in 

Appendix B.  

 

 

Figure 2-12: ELCAP load shapes for the clothes washer. 
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Additionally, two DR cases were simulated and compared to the base case. The DR signal 

used for testing the clothes washer model is shown in Table 2-15. Table 2-16 shows the 

percentage of customers who interact with the DR signal via the three pre-defined options. 

Notice, in this case, the assumptions during the High signal indicate that none of the customers’ 

will accept a delay, but 95% will switch to the ES-mode. This has the effect that there will be no 

net reduction of clothes washer load during the High signal, only reduction in water heater load, 

which is not currently captured by this model. Again, these are inputs into the model, and can be 

adjusted to meet a variety of assumptions. Table 2-17 shows the two release option cases 

explored, ranging from no additional delay where all of customers which accepted delay 

immediately re-start when the Normal signal returns, to a uniform distribution of time equal to a 

Normal clothes washer cycle length following the return to a Normal signal. 

 

Table 2-15: DR signal used in the clothes washer simulations. 

 Time 

Critical 18:00-20:00 

High 16:00-18:00, 20:00-22:00 

Normal all other times 

 

Table 2-16: Customer behavior cases used in the clothes washer simulations. 

 

During the High Signal During the Critical Signal 

Accept 

Delay 

Use ES-

mode 

Override all 

DR options 

Accept 

Delay 

Use ES-

mode 

Override all 

DR options 

Customer Case A 0% 95% 5% 75% 20% 5% 

 

Table 2-17: Built-in release options explored in clothes washer simulations. 

 
Additional Delay Time Distribution 

DR Release 

Option 1 

None – All delayed clothes washers start 

immediately. 

DR Release 

Option 2 

Uniform distribution between 0 minutes and the 

length of time of a normal clothes washer cycle.  
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Figure 2-13 shows the time series of the daily power consumption of all of the clothes 

washers for all three cases (Normal, DR Release Option 1, and DR Release Option 2). Table 

2-18 compares the data from the three cases. Also note that until the ends of the DR signal 

periods, DR Release Options 1 and 2 have identical demand; the difference in the two cases is 

not evident until the return to the Normal signal. Again, note that this simulation does not take 

into account the secondary effects of reduced water heater loads. 

 

 

Figure 2-13: Time series comparison of clothes washer load on a winter weekday. 
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Table 2-18: Comparison of results for DR and Normal case on a winter weekday. 

Metric Normal 
DR Release 

Option 1 

DR Release 

Option 2 

Daily Energy Consumption (kWh) 122 122 119 

Energy Consumption during DR 

signal period (kWh) 
38 27 27 

Energy Consumption during Critical 

signal period (kWh) 
15 5 5 

Energy Consumption after the DR 

signal period (kWh) 
12 22 19 

Peak during DR signal period (kW) 12 12 12 

Peak during the Critical signal period 

(kW) 
9 5 5 

Peak Rebound after the DR signal 

period (kW) 
9 29 13 

Daily Peak Power (kW) 12 29 13 

 

As can be seen from Table 2-18, DR Release Option 1 has the highest daily peak power 

value at 29 kW, which occurs during the rebound period when all of the clothes washers that 

accepted delay during the Critical signal period start as soon as the Normal signal arrives. This 

rebound peak is more than twice the daily peak observed in the Normal case (12 kW). This is not 

surprising, considering that in DR Release Option 1, the delayed clothes washers (75% of the 

total population in these simulations) simultaneously start their operation when the Normal 

signal arrives, temporarily decreasing diversity within the system. However, if the clothes 

washers that accepted a delay during the Critical signal period randomize their restart time 

following the return to the Normal signal, the rebound effect is less severe, as can be seen from 

DR Release Option 2; this value is reduced to 13 kW.  

During the High and Critical signal periods (DR signal period), the peak demand is nearly 

identical for all the three cases (~12 kW), and occurs at the very end of the final High period. 

This is indicative of the fact that certain loads are not coincidental with system peaks. However, 

since the clothes washer load changes in response to the Critical signal, the peak within the 

Critical period is still reduced. As can be noted from Table 2-18, the peak during the Critical 

signal period for the two release options is only 5 kW, as compared to the 9 kW for the Normal 

case. Similarly, the energy consumed during the Critical signal period is only 5 kWh in both DR 

Release Options as compared to 15 kWh in the Normal case.  

As can be observed in Table 2-18, there is a 29% reduction in energy consumption in both 

of the DR Release Options during the DR signal period in comparison to the energy consumed in 

the Normal case during the DR signal period. Daily energy consumption for DR Release Option 

2 is shown as reducing daily energy consumption (119 kWh) as compared to the other two cases 

(122 kWh); however this is strictly a consequence of how the metric is determined. Some clothes 

washers specifying a delay for the start of their operation do not complete their cycle before the 
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end of the day (midnight). Hence the energy required to complete their cycle does not get added 

to the daily calculations presented in Table 2-18. Indications are that there are no direct energy 

savings, except where the reduced hot water usage decreases water heater demand. 

 

2.5 Dishwasher 

A dishwasher is equipped with two motors, a main pump supplying the spray arms of the 

washer, a small drain pump to pump the water out of the unit, a heating element, control 

switches, and thermostats. Wash cycles, drying cycles, and temperature selection can be 

performed using selector switches. The heating element is used to heat the water for wash cycles 

to a pre-set value (120°F) and if selected provides heat to dry the dishes. When the unit is started, 

the unit fills with water and the main pump starts pumping water to the spray arms and the 

heating element heats the water to the pre-set value if it is below the desired temperature. There 

are several pre-wash spray cycles followed by dispensing of the detergent and additional 

wash/spray cycles. The unit is drained using the drain pump, refilled, and a rinse cycle takes 

place. Once the rinse cycle is complete, the motor drains the last rinse water and the heating 

elements heat the air in the dishwasher to dry the dishes. 

The dishwasher model developed in GridLAB-D is a multi-state load model. These states 

are defined by the level of their electricity consumption and are discussed in more detail in 

Appendix A. GE Appliances developed DR control strategies for dishwasher operation based on 

control signals: Normal, High, and Critical. When the operator starts a unit during a High or 

Critical signal, the default mode is for the dishwasher to be delayed. If the consumer chooses to 

override the dishwasher during the High or Critical signal, the unit can be operated in a reduced 

energy or ES-mode. This reduced energy setting operates by consuming less energy than the 

Normal cycle by eliminating the heated dry stage of the dishwasher cycle. The customer always 

has the option to completely override the DR signal and run the dishwasher in Normal mode. If 

the operation of the dishwasher is delayed, then the entire process, including the mechanical 

energy and the hot water energy, both in terms of the hot water heater and the inline dishwasher 

water heater, will be delayed until the signal returns to Normal. The basic assumption made in 

the GridLAB-D implementation of the dishwasher model is that for each mode, the amount of 

energy needed by a dishwasher is constant. As the actual value of the distribution feeder voltage 

continuously changes, ZIP fractions are used in dishwasher model in order to capture how the 

energy consumption of dishwashers vary with respect to the distribution feeder voltage. The ZIP 

values used for this model are shown in Table 2-19. 
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Table 2-19: Dishwasher model ZIP fractions. 

 Z  I  P  

Main pump motor 0.1 0.1 0.8 

Drain pump motor 0.1 0.1 0.8 

Heating coil 1.0 0.0 0.0 

 

 

2.5.1 Dishwasher Simulation Results 

To estimate the potential benefits of GE dishwasher in reducing the peak demand, detailed 

time series simulations were conducted in GridLAB-D using a prototypical feeder, R1-1247-2 

[1], with 646 residences, each containing a DR-enabled GE dishwasher. Note, that this is a 

different distribution feeder (with a different number of residences) than previous simulations. In 

preparation for an “all appliances” simulation, the test feeder circuit was changed to a 

prototypical feeder from the West Coast. The individual appliance simulations are performed on 

two different feeder circuits, though only a single one is used for each appliance, while in the 

final analysis in Section 3 only a single circuit model is used. 

 Load shapes from the ELCAP load study are used to estimate the usage pattern of 

dishwashers at different times, during the course of an average day to create an initial base case 

[9]. Figure 2-14 shows the ELCAP dishwasher load shapes for each day type. Again, updated 

information on annual energy consumption was used to create a more realistic simulation. 

However, the general shape of the ELCAP load shapes were used to dispatch the appliance 

usage. The calibration methodology for matching ELCAP load shapes to GridLAB-D aggregate 

simulations is presented in Appendix B. 
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Figure 2-14: ELCAP dishwasher load shape. 

 

The response of the dishwasher was tested against a series of DR signals, as shown in Table 

2-20. Table 2-21 shows the assumptions for what percentage of customers accept a delay versus 

use the ES-mode, versus override the DR options and operate in Normal mode when receiving a 

High or Critical signal. Table 2-22 shows the two built-in release options tested for the 

dishwasher, after returning to a Normal signal after a High or Critical signal. 

 

Table 2-20: DR signal used in the dishwasher simulations. 

 Time 

Critical 18:00-20:00 

High 15:30-18:00, 20:00-21:00 

Normal all other times 

 

Table 2-21: Customer behavior cases used in the dishwasher simulations. 

 

Accept 

Delay 

Use ES-

mode 

Override all 

DR options 

Customer Case A 90% 10% 0% 
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Table 2-22: Built-in release options explored in dishwasher simulations. 

 
Additional Delay Time Distribution 

DR Release 

Option 1 

None – All delayed dishwashers start 

immediately. 

DR Release 

Option 2 

Uniform distribution between 0 and 5000 

seconds. 

 

Figure 2-15 shows the time series power consumption of the population of dishwashers 

(Normal, Release Options 1 and 2) to the shown DR signal on a winter weekend as compared to 

the base case. As per the GE Appliances’ DR strategies for dishwashers, the aggregate 

dishwasher loads consume less energy during the High and Critical periods. However, much of 

the reduction during the High and Critical periods can be attributed to the acceptance of the 

delayed start of 90% of the users. The reduction in the average energy consumption per 

dishwasher for the day, in response to the DR signal, is 2.07%. This is due to the 10% of 

dishwashers that do not accept delay and run in ES-mode.  

At the end of the High period, however, a significant rebound in the demand can be seen as 

the signal returns to Normal. The rebound peak in this scenario is significantly greater than the 

original peak, but for only a short period of time. The peak power consumption of dishwashers 

after the signal drops from High to Normal are 472.94% (72.3 kW) and 285.27% (43.6 kW) 

higher than that of normal operation (15.3 kW), for Release Options 1 and 2, respectively. This 

rebound is due to the fact that all of the dishwashers which accepted delay start running in 

Normal mode when the Normal signal arrives after the end of the High period. The advantage of 

using the randomized re-start (Release Option 2) is that the peak power consumption of the 

dishwashers, after the end of the High signal, is 39.7% (28.7 kW) lower than that in Release 

Option 1 (without random re-start).  
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Figure 2-15: Time series of load for the dishwashers on a winter weekend. 

 

Table 2-23 shows the peak power consumption of dishwashers during and soon after the 

signal drops from High or Critical to Normal. The change in peak power demand of the 

dishwashers in response to the DR signal (in percentage) with respect to normal consumption is 

also shown. 

 

Table 2-23: Peak power demand of dishwashers on a winter weekday. 

Case name 
Base 

DR Release  

Option 1 

DR Release 

Option 2 

(kW) (%) (kW) (%) (kW) (%) 

Peak power during High/Critical 

pricing (kW) 
18.3 100.0 4.0 21.9 4.0 21.9 

Peak power after High/Critical 

period (kW) 
15.3 100.0 43.6 285.3 72.3 472.9 

 

The total energy consumptions of all of the dishwashers for the Normal and two release 

options are shown in Table 2-24. The change in energy consumptions of population of 

dishwashers in response to the DR signals (in percentage), with respect to Normal energy 

consumption on a winter weekday are also shown in Table 2-24. 
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Table 2-24: Energy consumption of dishwashers on a winter weekday. 

Case 

Energy consumption (kWh) Total energy consumption 

Before High or 

Critical pricing 

During High or 

Critical pricing 

After High or 

Critical pricing 
(kWh) (%) 

Normal 74 43 27 143 100.0 

DR Release 

Options 1 and 2 
74 3 63 140 97.9 

 

 From the previous results, it can be observed that the GE dishwasher DR strategies are 

effective at reducing energy consumption, as well as reducing peak power demand, during the 

High and Critical period, mainly by shifting the actual dishwasher cycle from a High or Critical 

period to the Normal signal period. However, the rebound in the load due to DR operations can 

be significant, and thought should be given to controlling the recovery period. In the presented 

case, this was done by introducing a delay or randomization operation to increase the diversity 

factor of the appliances, but other methods may be equally effective. Additionally, it should be 

noted that the assumptions used for customer participation (i.e., 90 % of people accept delay and 

10% run in ES-mode during High/Critical signal) will greatly affect these results, and are built as 

inputs into the model to test various other test scenarios.  

 

2.6 Hybrid Water Heater 

The GE Appliances hybrid water heater (HWH), also called the Geospring™ hybrid water 

heater, like most water heaters, is equipped with two resistance heating elements, each rated at 

4500 W. The GE Appliances hybrid hot water heater includes a heat pump in addition to the 

standard coils, and operates on the same basic principle of heat transfer as that seen in an air-

source heat pump for space heating drawing 500-550 watts to provide approximately 2.3 

(seasonally adjusted energy factor) times larger equivalent amount of thermal energy per electric 

energy applied. The heat pump has the same basic components as the refrigerator: coils to carry 

refrigerant gas, a compressor, and fans. The fans draw the surrounding air to pass across the coils 

to draw heat from the ambient air. The compressor pressurizes the gas in the coil, raising the 

temperature even higher, in order to transfer this heat to the tank and thereby heat the water.  

Additionally, to help consumers reduce peak electricity usage at home, the DR module has 

been developed. When the signal is Normal, the water heater uses the Normal cycle. During a 

High or Critical signal, the water heater runs in ES-mode. This setting operates by consuming 

less energy than that required by the Normal mode. The GE Appliances HWH temperature 

settings, and thus the energy consumption, vary based on the level of the signal. During a High 

or Critical period, the temperature setpoint is decreased from its normal operating setpoint and 
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the resistive heating elements are locked out from use. During the High period, the temperature 

setpoint is reduced to 110°F, while in the Critical period the temperature setpoint is lowered even 

further to 100°F. The base temperature setpoints and the allowable setpoint deltas during High or 

Critical events are controlled electronically from a control panel on the water heater through a 

digital user interface, rather than a classical mechanical thermostat. In other words, all of the 

responses are automated, either by default from the factory, or as the customer programs the 

response. The GE Appliances control strategies for HWH are discussed in detail in Appendix A.  

The GridLAB-D model uses a common two-element design with the possibility of inverted 

thermostat settings, wherein the upper element maintains a higher temperature than the lower 

element. The following assumptions were made:  

1) Thermal stratification in the tank is not directly modeled. Depending on the situation, the 

water will be considered to be either of uniform temperature throughout the tank or 

lumped into two temperature regions (hot and cold layers).  

2) The injection of cold inlet water at the bottom of the tank results in either complete 

mixing with the hot water in the tank or no mixing at all, depending on the volumetric 

flow rate.  

3) The hybrid hot water heater model is a temperature based model rather than energy based 

one. This means that the duration of the ON period of the heating elements and heat 

pump depends on the temperature setpoints and the current water temperature.  

The GridLAB-D implementation of the HWH model simulation uses two very different 

models depending on the state of the tank at any given moment [14]. The two models are:  

1) One-Node Model – This is a simple, lumped-parameter electric analogue model that 

considers the entire tank to be a single “slug” of water at a uniform temperature. This 

model tracks the temperature of the water at any given time and the time required for the 

temperature to move between two specified points.  

2) Two-Node Model – This model, which applies when the heater is in a state of partial 

depletion, considers the tank to consist of two slugs of water, each at a uniform 

temperature. The upper “hot” node is near the heater’s setpoint temperature, while the 

lower “cold” node is near the inlet water temperature. This model tracks the location of 

the boundary between the hot and cold nodes, calculating the movement of that boundary 

as hot water is drawn from the tank and/or heat is added to the tank. 

It was determined that a one-node model with an additional damping factor more accurately 

matched laboratory testing data from GE Appliances, and is used to model the HWH. The model 

uses the inputs presented in Table 2-25 for all of the simulations. The temperature dampening 

concept is borrowed from the oscillatory system dampening. This damping is a force that applies 

opposite to direction and proportional to the slope based on thermodynamic energy balance [15]. 

This is discussed in more detail in Appendix A. 
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Table 2-25: Hybrid hot water heater simulation inputs. 

Variable name Units Value 

Specific heat (Cp) BTU/(lb * deg F) 1 

Water density lb/ft
3
 62 

Volume of tank Gallons 45.5 

Heating efficiency Constant 2.4 

Inlet temperature deg F 56.5 

Output temperature deg F 135 

Starting temperature deg F 131.5 

Water demand Gallons 79.2 

Damping factor Constant 1.25 

 

Because the actual value of the distribution feeder voltage continuously changes, ZIP 

fractions are used in the HWH model. This enables an understanding of how the energy 

consumption of HWHs varies with respect to the power system it is attached to. The ZIP values 

used in this model are listed in Table 2-26.  

 

Table 2-26: HWH model ZIP fractions. 

 Z  I  P  

Heat pump 0.1 0.1 0.8 

Heating element 1.0 0.0 0.0 

 

2.6.1 Hybrid Water Heater Simulation Results 

To estimate the potential benefits of HWH model in reducing peak demand, detailed time 

series simulations were conducted in GridLAB-D using prototypical feeder R1-12.47-2 [1]. The 

system was modeled from the substation, to the secondary service transformer, down through the 

triplex service line, into single family residence. In these simulations, 544 single family 

residences were populated with GE Appliances’ DR-enabled HWHs. The tank temperature is set 

to 135 ºF as long as the DR signal is Normal. If the water temperature drops to half of the 

thermostat deadband below the desired setpoint, either the heat pump, the heating elements, or 

both turn on to reheat the water in the water heater and maintain the storage tank water 

temperature. Although, the heat pump runs longer to reheat the water, on an average, it consumes 

62% lesser energy than that by the heating elements.  

As per GE Appliances’ recommendation, the Canadian Standards Association (CSA) [16] 

schedules were used to determine the number of gallons of water consumed by each HWH per 
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day. For a population of HWHs in each of the simulations, approximately 50% of the HWHs use 

the CSA B (~59.5 gallons/day) and the remaining use CSA C (~79.3 gallons/day). However, the 

actual water draw schedules were designed using a modified version of the ELCAP water heater 

load shapes to create a distribution of water draw schedules across the population. The load 

shapes were constructed to generate a sequence of modulated pulses (water demand) by using the 

ELCAP water heater load shape, so that each appliance received an individualized water draw 

schedule. However, while each appliance received a randomized schedule, the energy 

consumption of the population matched the relative pattern of the ELCAP load shape, while also 

consuming the amount of hot water dictated by the CSA schedules. Of course, daily and annual 

energy consumption was not matched to the ELCAP load shapes, as the HWH uses considerably 

less energy than a standard resistance heating element. To illustrate this process, Figure 2-16 

shows the ELCAP load shapes for a water heater, while Figure 2-17 shows two individual water 

heater draw schedules for a winter day and Figure 2-18 shows the total draw of the entire 

population of 544 water heaters over the course of a single winter day. The average water 

demand is approximately 68 gallons/day/HWH.  

 

 

Figure 2-16: ELCAP water heater load shape. 
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Figure 2-17: Sample water demand schedule from two separate HWHs (one minute resolution). 

 

 

Figure 2-18: Total water demand per day for all of the HWHs on a winter weekday. 
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A base case scenario was created from these inputs, using the functionality of the GE HWH 

in the Normal mode of operation. It should be noted that the energy consumption of the base case 

is already reduced from that of a standard water heater, as the heat pump water heater consumes 

less electrical energy to heat the water than a conventional resistance element (only) water 

heater. However, for the purposes of this study, the Normal mode of operation of the GE HWH 

will be considered the base case. Additionally, a number of DR signals were created to test the 

DR functions in GE HWH; those selected for discussion are listed in Table 2-27. It should be 

noted, that unlike previous appliances, no release options were studied. 

 

Table 2-27: DR signals used for the simulation of the HWH model. 

 

Time 

DR Signal 1 DR Signal 2 

Critical 18:00-20:00 none 

High 15:30-18:00, 20:00-21:00 16:00-20:00 

Normal all other times all other times 

 

Figure 2-19 shows the time series output of the HWHs in response to the DR Signal 1 on a 

typical winter day, which is used to represent a utility TOU with CPP overlay rate structure. The 

average daily energy consumption per HWH, in response to DR Signal 1, is 9.17 kWh, versus 

9.78 kWh in normal operation. The decrease in average energy consumption, with respect to 

normal energy consumption, is 6.27% (0.61 kWh). Due to the response of the GE HWHs, the 

peak demand during the Critical and High periods, in response to DR Signal 1, is reduced from 

273 kW, in the Normal case, to 212 kW, or a reduction of approximately 22%. This is due to the 

fact that, during High and Critical period, the temperature setpoints are decreased from the 

normal operating setpoint and the two heating elements are locked out. However, at the end of 

the High period, a significant rebound in the demand can be seen, and is significantly greater 

than the original peak. The peak power consumption of the HWHs after the signal drops from the 

High period in this scenario is 233% (637 kW) higher than in normal operation. This rebound is 

due to the fact that the thermostat setpoints are moved back to their normal settings when the 

Normal signal arrives at the end of the High period, temporarily synchronizing the loads within 

the system and often kicking in the backup resistance heating elements (which are no longer 

locked out). Additionally, there is an increase in power consumption (a small “blip” before the 

beginning of the Critical signal) for a period of time during the High signal. This is because some 

of the heat pumps begin to turn on during the High signal in order to keep the water temperature 

near to the new setpoint. In other words, the resource used for reducing load, gained by setting 

the thermostats back to 110 °F, is being exhausted and water heaters are starting to activate to 
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maintain the water temperature. As the water setpoint temperature is further reduced during the 

Critical signal, the heat pumps that are on during the High signal are turned immediately turned 

off. Notice that the load is increased for nearly eight hours (until 4:00 am), as the heat pumps 

slowly increase the water temperature back to the normal setpoint without using the resistive 

elements (as is done immediately following a return to the Normal signal). 

 

 

Figure 2-19: Time series of load for all HWHs in response to DR Signal 1 on a typical winter day. 

 

DR Signal 2 is used to observe the GE HWH response to a four hour High signal to estimate 

how long the HWH resource is available due to the setback of the thermostat setpoint. This type 

of TOU signal covers a shorter time frame than it takes for the temperature to drift down to the 

new setpoints in all of the units. A time series of the load for the Normal and DR Signal 1 cases 

are shown in Figure 2-20. The average daily energy consumption per HWH in response to DR 

Signal 2 is 9.32 kWh. The decrease in average energy consumption, with respect to the normal 

energy consumption is 4.72%, or 0.46 kWh. Due to the response of GE HWHs, the peak demand 

during the High period, in response to DR Signal 2, is reduced from 273 kW to 128 kW, or a 

reduction of approximately 53%. However, at the end of the High period, a significant rebound 

in the demand can be seen. The rebound peak in this scenario is significantly greater than the 

original peak (although not as great as that seen in the DR Signal 1 case). The peak power 

consumption of all of the HWHs soon after the signal drops from the High period in this scenario 

is 138.8%, or 379 kW, higher than that in normal operation. This rebound is due to the fact that 
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the water temperature setpoints move back to their normal settings when the Normal signal 

arrives at the end of the High period temporarily synchronizing the loads within the system and 

activating the resistive elements. Again, notice that load is increased for nearly eight hours 

following the return to a Normal signal. 

 

 

Figure 2-20: Time series of load for all HWHs in response to DR Signal 2 on a typical winter day. 

 

The total energy consumption of all of the HWHs in the Normal, DR Signal 1, and DR 

Signal 2 cases are compared in Table 2-28. The change in energy consumption of the HWHs due 

to the DR 1 and DR 2 signals (in percentage), with respect to the Normal energy consumption, 

are also shown. Table 2-29 gives the peak power demand of the HWHs during and immediately 

after the signal drops from High or Critical to Normal. The change in peak power demands of the 

HWHs to DR Signal 1 and 2 (in percentage), with respect to the Normal peak demand, are also 

shown.  
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Table 2-28: Energy consumption of the HWHs. 

Case 
Energy consumption 

(kWh) (%) 

Normal 5319.5 100.0 

DR1 4986.1 93.7 

DR2 5068.3 95.3 

 

Table 2-29: Comparison of peak load due to HWHs. 

Case name 
Base DR Signal 1 DR Signal 2 

(kW) (%) (kW) (%) (kW) (%) 

Peak power during High/Critical 

pricing (kW) 
273 100.0 212 77.7 128 46.9 

Peak power after High/Critical 

period (kW) 
273 100.0 910 333.6 652 238.6 

  

From the results obtained, it is observed that the response of the HWHs to DR Signal 1 

(three rate pricing) and DR Signal 2 (two rate pricing), lead to a decrease in the average daily 

energy consumption, when compared to the normal daily energy consumption. This is due to the 

fact that, during the High and Critical periods, the temperature setpoints are lowered from the 

normal operating setpoint while the heating elements are locked out. The heat pump alone is on 

during that period. However, the rebound in the load due to DR operations could be significant, 

and thought should be given to control during the recovery period. Additionally, it should be 

noted that the duration of DR signal and setpoint temperatures of HWH during Normal, High, 

and Critical periods will greatly affect these results. 

 

2.7 Electric Range 

The GE Appliances electric range has a dual cavity oven (upper and lower oven) and has an 

electronic control for the resistance element cooktop. The upper and lower oven models are 

based on the assumption that for each mode of operation, the amount of energy needed for an 

oven, as a function of voltage, for a particular state is constant. The cooktops (both normal 

operation and DR operation) are timer-based models, implying that the operating time of the 

cooktops depends on timed settings rather than on energy consumed. Unlike previous 

simulations, only the High signal is used to test the electric range, as the operation of the GE 

range during both High and Critical signals is identical.  

During High and Critical signals, the range runs in the ES-mode. This setting operates by 

consuming less energy or average power than that in the Normal mode. During a DR signal, the 

range uses only the upper oven and “locks out” the lower oven while the cooktop enters the ES- 
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mode. The upper oven consumes less energy than the lower oven, whereas the cooktop ES-mode 

settings cause the cooktop to restrict the power below the maximum. Thus for a given cooking 

task the elements will run longer and consume slightly more energy than in the Normal mode. 

However, cooktop the ES setting consumes less instantaneous power than normal cooktop 

operation. When the control signal reaches High or Critical, the first option the user has is to 

delay the operation of the unit until after the end of the period. If overridden, the unit enters ES-

mode. Of course, the customer always has the option to override the DR signal and run the range 

in the Normal mode. The range model developed in GridLAB-D treats the oven and the cooktop 

power consumptions separately, and the sum of the two is the total range consumption. The ZIP 

components for each state were modeled as 100% constant impedance. A detailed description of 

the approach for the range model is presented in Appendix A. 

 

2.7.1 Electric Range Simulation Results 

To estimate the potential of the DR control strategies designed for the GE Appliances 

electric range, in reducing peak demand, detailed time series simulations are conducted in 

GridLAB-D on a representative feeder, R1-12.47-2 [1]. The system is modeled from the 

substation, to the secondary service transformer, down through the triplex line, into the single 

family residence. There are 544 single family residences, each with a GE range able to receive a 

DR signal (100% penetration). ELCAP load shapes are used to estimate the usage pattern of 

ranges at different times during the course of an average day and across different seasons [9]. 

Figure 2-21 shows the ELCAP electric range load shapes for summer and winter weekends and 

weekdays. However, as ELCAP data is somewhat outdated, only the usage pattern is used to 

simulate the aggregate demand behavior of the range. To effectively determine the amount of 

load on the system due to range events or how often each component is used, GE Appliances 

survey data was used. The average number of bake events per household, as provided by GE 

Appliances, is 133 events per year. The average number of cooktop events per household, as 

provided by GE Appliances, is 360 events per year. By incorporating these averages, in 

conjunction with the ELCAP load shape pattern, an individualized usage schedule was 

determined for each appliance in the population to create a base case. 
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Figure 2-21: ELCAP load shape for electric ranges. 

 

To test the response of the ranges to a DR signal, a number of scenarios were explored. The 

DR signal used to test the response is shown in Table 2-30. Table 2-31 discusses the assumptions 

used in how customers will interact with the appliance, both in terms of what percentage will use 

the upper and lower ovens during Normal operation versus during a DR event, and what 

percentage of customers will accept a delay versus using the ES-mode. Notice that the 

percentage of customers that are believed to be amenable to a delay action in the range operation 

is much lower than previous appliances. Table 2-32 shows two release options explored for their 

effects on the rebound period as the signal returns to Normal. These scenarios are used in the 

aggregated simulations that are discussed in Section 3.  

 

Table 2-30: DR signal used in the range simulations. 

 Time 

Critical none 

High 15:30-21:00 

Normal all other times 
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Table 2-31: Customer behavior cases for range simulations. 

Case 

During Normal signal During High or Critical signal 

Oven Cooktop Oven Cooktop 

Use 

Upper 

Use 

Lower 
Base 

ES-

mode 

Use 

Upper 

Use 

Lower 

Accept 

Delay 
Base 

ES-

mode 

Accept 

Delay 

Normal 65% 35% 100% 0% 65% 35% 0% 100% 0% 0% 

Customer 

Case A 
65% 35% 100% 0% 90% 0% 10% 0% 90% 10% 

 

Table 2-32: Built-in release options explored in range simulations. 

 
Additional Delay Time Distribution 

DR Release 

Option 1 
None – All delayed ranges start immediately. 

DR Release 

Option 2 
Uniform distribution between 0 and 40 minutes. 

 

Figure 2-22 compares the aggregated simulation outputs of all ovens of the Normal, DR 

Release Option 1, and DR Release Option 2 cases. The total energy consumption of all ovens in 

both DR Release Options 1 and 2 is 9.3%, or 18.6 kWh, lower than that of the Normal case. This 

is due to the fact that more of the ranges use the upper oven (90%) during High signal, as 

opposed to during Normal operation (65%). The daily energy consumption of all of the ovens 

and cooktops are given in Table 2-33.  
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Figure 2-22: Time series of load for all ovens on a winter weekday comparing release options. 

 

Table 2-33: Comparison of energy consumption for range simulations. 

 
Total energy consumption (kWh) 

Normal 

DR Release 

Option 1 

DR Release 

Option 2 

Oven 199.9 181.3 181.3 

Cooktop 285.1 298.2 298.2 

Range 485.1 479.5 479.5 

 

The peak demand of the ovens after the DR signal period in DR Release Options 1 and 2 are 

395.8% (47.1 kW) and 279.8% (33.3 kW) higher than that of the Normal case. The peak power 

consumption in the DR Release Option 1 is higher than that in DR Release Option 2; this is due 

to the fact that in DR Release Option 1 all ranges which accepted delay start immediately after 

the Normal signal arrives at the end of the High signal period, while in DR Release Option 2, the 

delayed ranges randomize their start over a period of 40 minutes when the Normal signal arrives. 

The peak demand during the High or Critical signal period in DR Release Options 1 and 2 is the 

same, and is equal to 68.6% (34.2 kW) of the peak demand of the Normal case during the DR 

period. A comparison of the peak power of the ovens on a winter day is given in Table 2-34.  
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Table 2-34: Peak power demands of ovens on a winter weekday. 

Case name 
Normal DR Release Option 1 DR Release Option 2 

(kW) (%) (kW) (%) (kW) (%) 

Peak power during High period 49.9 100.0 34.2 68.6 34.2 68.6 

Peak power after High period 11.9 100.0 47.1 395.8 33.3 279.8 

 

Figure 2-23 compares the aggregated simulated load of all cooktops for the Normal, DR 

Release Option 1, and DR Release Option 2 cases. The peak demand during the High signal 

period for both DR Release Options 1 and 2 is the same, and is equal to 95.6% of Normal 

operation during the DR period, or a 2.4 kW reduction in demand. A comparison of the peak 

demand of the cooktops on a winter day is given in Table 2-35. The peak power demand of 

cooktops, after the High or Critical period, for DR Release Options 1 and 2 are 523% (65.9 kW) 

and 250.8% (31.6 kW), respectively, when compared to the peak power in the Normal case. The 

energy consumption of the cooktops in both DR Release Options 1 and 2 is 104.6% of the 

Normal case, or 298.2 kWh, as shown in Table 2-33. This is due to the fact that more of the 

cooktops use the ES-mode settings during the High signal, which reduce instantaneous power but 

increase energy consumption.  

 

 

Figure 2-23: Time series of cooktop demand on a winter weekday. 
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Table 2-35: Peak power demands of cooktops on a winter weekday. 

Case name 
Normal DR Release Option 1 DR Release Option 2 

(kW) (%) (kW) (%) (kW) (%) 

Peak power during High/Critical 

pricing (kW) 
54.4 100.0 52.0 95.6 52.0 95.6 

Peak power after High/Critical 

period (kW) 
12.6 100.0 65.9 523 31.6 250.8 

 

Figure 2-24 compares the demand of the range (oven plus cooktop) simulations for the 

Normal case and both release options. The peak demand of the ranges is the highest during 

Release Option 1, because all of the delayed oven and cooktop events during the High signal 

period start as soon as the Normal signal arrives after the end of the High signal period. The 

cumulative effects of the oven and cooktop events cause a rebound in the demand. Peak power 

demands of all ranges on a winter day are given in Table 2-36. The peak power demand 

reduction in both release options is the same because the number of ranges that use the ES-mode 

versus the Normal setting of the cooktops, and upper and lower ovens are the same. For the same 

reason, peak power demand during High or Critical period in both release options is the same, 

and is equal to 82% (79 kW) of the peak demand of the Normal case during the DR period.  

 

 
Figure 2-24: Time series of demand of all ranges on a winter weekday. 



 

48 

Table 2-36: Peak power demands of ranges on a winter weekday. 

Case name 
Normal DR Release Option 1 DR Release Option 2 

(kW) (%) (kW) (%) (kW) (%) 

Peak power during High/Critical 

pricing (kW) 
96.3 100.0 79.0 82.0 79.0 82.0 

Peak power after High/Critical 

period (kW) 
23.8 100.0 110.1 462.6 60.8 255.5 

 

From the results obtained, it is observed that total energy consumption is reduced by the 

ovens during a DR signal, whereas the total energy consumption of all the cooktops is slightly 

increased. This is due to the fact that more of the cooktops, in both of the release options use the 

ES-mode settings during the High signal, and that more of the ranges use the upper oven during 

the High signal. Peak demand reduction of over 20%, or approximately 17 kW, is also obtained 

when using the DR settings, however, nearly all of this is obtained from the ovens rather than the 

cooktop response. The peak during the rebound period is greatly affected by the type of strategy 

used in releasing the ranges after the High signal period. The use of a randomized delay period 

significantly reduces the coincidental peak rebound. Additionally, it should be noted that the 

assumptions used for customer participation (i.e. 65% of people use the upper oven during the 

Normal signal versus 90% during DR) will greatly affect these results. 

 

2.8 Refrigerator 

The largest power consuming components of refrigerator operation include a compressor 

which cycles on and off to maintain the internal air temperature of the refrigerator and freezer 

cavities, and a defrost cycle which prevents ice build-up on the evaporative coils. Additional 

components are also used, but consume relatively low amounts of energy. The specific 

components in the GE refrigerator and the details of these cycles are further discussed in 

Appendix A.  

Additionally, the refrigerator door openings affect the refrigerator model. Door openings 

increase energy consumption by allowing the cold air to escape the cavity (increasing the duty 

cycle of the compressor) and also play a part in determining the frequency of the defrost cycle 

for the freezer, as a door opening can increase the humidity within the cavities.  

A refrigerator is continuously in use, and is not driven by a customer activating it like many 

of the other appliances such as the clothes washer or dryer. User behavioral changes, or a shift in 

when the appliance is used by the consumer, cannot be used in the case of refrigerators. Hence, 

the response of the refrigerator needs to be technology driven, and for the most part, automated 

without the need for human interactions. In fact, at this stage, GE Appliances’ DR module for the 

refrigerator is not accessible by the customer and does not have an override like other appliances. 
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The refrigerator model in this study is designed as a multi-state load model. The refrigerator 

cycles discussed above (and in further detail in Appendix A), such as the compressor on, the 

compressor off, and the various components of the defrost cycles, were modeled as independent 

states within the refrigerator model. Apart from these, the GE Appliances-specific cycles were 

also modeled as states. The different refrigerator states were also designed and modeled based on 

other inputs and refrigerator watt traces from laboratory testing provided by GE Appliances. The 

different states were calibrated such that the power output, energy per cycle and cycle time for 

each state in the GridLAB-D model approximately matched the watt traces provided by GE 

Appliances. The power output modeled for a refrigerator state was roughly equal to the average 

power observed in the watt traces for that state cycle. The states were modeled as 90% constant 

current and 10% constant impedance. The state transition rules were modeled as per cycle 

transition inputs from GE Appliances.  

At the start of the DR signal period, the refrigerators stop compressor operation for a limited 

duration. During a High or Critical signal period, the duty cycle of the compressor unit changes 

such that less energy is consumed by the refrigerator, as opposed to what is consumed during 

Normal operation. The refrigerators also postpone defrost cycles until the Normal signal arrives 

when a High or Critical signal is present. As per inputs provided by GE Appliances, the defrost 

cycle is modeled as a function of a certain number of door openings. A door opening causes the 

moisture content inside the refrigerator to increase. Since the frost formed on the evaporator coils 

in the freezer is formed due to the moisture content of the air in the unit, the amount of moisture 

is to large degree driven by the number of door openings; hence, door openings and other 

parameters are used by some refrigerator manufacturers as a metric for initiating the defrost 

cycle. The GE Appliances refrigerator model created in GridLAB-D also uses the door openings 

as one of the metrics for initiating a defrost cycle. Hence, for this refrigerator model, modeling of 

the door openings is an important aspect. More details on the state transition rules and the DR 

rules can be found in Appendix A.  

One of the significant issues with the refrigerator modeling in this study is that while the 

energy used by the refrigerator during the DR signal period is reduced, the energy used after the 

DR signal period is not increased as is evident in the watt traces provided by GE Appliances of 

the refrigerator. During the DR signal period, the thermostat setpoint is temporarily raised to 

reduce demand. After the DR signal period, the refrigerator consumes extra energy to bring the 

refrigerator temperature back to temperature levels around the normal thermostat setpoint 

established by the consumer. This effect is not currently captured in this model, as a temperature 

based model was considered too complicated to be implemented with the DR strategies for this 

analysis. Also, since the extra energy consumption was deemed relatively minor compared to all 

the overall energy used by the refrigerator, it was decided to not explicitly model it. However it 

is important to note that this extra energy consumption will change the daily energy consumption 

calculations of the GE Appliances’ refrigerators. GE Appliances testing indicates that there is no 

appreciable difference in energy consumption between normal usage and a four-hour DR event. 
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2.8.1 Refrigerator Simulation Results 

Using the appliance model developed in the previous section, a representative feeder model 

was used to simulate the effects on the electrical power grid of the response of a population of 

refrigerators to DR signals. The distribution feeder model contained 646 individual residences, 

each with statistically sampled parameters and behaviors. Each of the residences contained a 

refrigerator. The aggregated response of the 646 refrigerators is presented here. Table 2-37 lists 

the DR signal used for the refrigerator model testing. As was seen in previous appliances, the 

refrigerator does not have a release option or additional customer cases to explore; only Normal 

operation and a single DR case will be explored. 

 

Table 2-37: DR signal used in the refrigerator simulations. 

 Time 

Critical 18:00-20:00 

High 15:30-18:00,20:00-21:00 

Normal all other times 

 

The watt traces provided by GE used a particular door opening schedule while recording the 

watt traces. As per this schedule, a door opening event was timed to occur every 30 min, with no 

time of day dependence upon the frequency of the openings. This door opening schedule was 

initially the basis for the door opening schedule used in the GridLAB-D refrigerator model. 

Figure 2-25 shows the results of the refrigerator model to the Normal and DR signal.  
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Figure 2-25: Time series comparison of the refrigerator load for a winter day using the timed door opening. 

 

From the simulation result shown Figure 2-25, the aggregated refrigerator load is fairly 

constant through the day of simulation. However, this does not match observed refrigerator 

consumption patterns from ELCAP studies as shown in Figure 2-26 [9]. The aggregated 

refrigerator load is not constant during the course of a day, and there are variations between the 

daily maximum and daily minimum loads of the refrigerator. 
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Figure 2-26: ELCAP load shapes for the refrigerator. 

 

To correct this, the ELCAP load shape for the refrigerators was incorporated to help define 

the daily cycles of the customer usage patterns. Note that the ELCAP load shape was not used to 

define the energy consumption of the refrigerator model, but rather to help define the daily cyclic 

patterns of the refrigerator. The refrigerator has a base cyclic load in form of the compressor on 

and compressor off cycles. The other refrigerator states are the defrost cycle and the door 

openings. However, the defrost cycle is not a base load and occurs depending on the design of 

the refrigerator (in the case of GE appliances, the number of door openings). The door openings 

also are not a constant base load and occur as per human interaction patterns. Thus, the variations 

observed in the refrigerator ELCAP data from a ‘near constant’ base load, can be interpreted to 

occur due to either the defrost cycle power or due to the power consumed by door openings 

events. As previously mentioned, in the refrigerator model used in this study, the defrost cycle is 

dependent on the number of refrigerator door openings. So it is important to model the door 

openings as realistically as possible. Thus, to make the door opening schedule realistic, the 

refrigerator ELCAP data was taken as the basis for modeling the door opening schedule.  

From the refrigerator ELCAP hourly data for the given day, the lowest value of the ELCAP 

data was determined. This value is taken was taken as the base value of the refrigerator ELCAP 

data, representing the relatively constant, cyclic demand from the compressor cycle. It can be 

observed from Figure 2-26 that this base value is approximately equal to 0.14 kWh/h. This base 

value was then subtracted from all 24 ELCAP data points for the day. After the base value of the 

ELCAP data was subtracted from all of the hourly ELCAP data points, the non-base variations in 
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the refrigerator ELCAP data were obtained for a day. These non-base variations in the ELCAP 

data thus obtained were then used as one of the inputs for modeling the schedule for the daily 

door openings.  

The other important parameter that was used to model the door opening schedule was the 

total number of door openings per day. The total number of refrigerator door openings per day, 

along with non-base ELCAP data, was used to model the number of door openings of a 

refrigerator at any given hour of the refrigerator simulation.  

Thus a new simulation of the refrigerator model was designed utilizing this new door 

opening schedule. This is not designed to test in a way similar to federal testing standards, but to 

be a more realistic representation of average customer usage. As discussed above, the new door 

opening schedule was designed such that, the number of door openings in any hour was a 

function of both the non-base ELCAP data for that hour and the total number of daily door 

openings modeled for a refrigerator. The total daily door opening values for all refrigerators in a 

given simulation were modeled from a normal distribution. The mean of this normal distribution 

was taken as 48 door openings per day and the standard deviation was taken as 16 door openings. 

As mentioned previously, in the watt traces provided by GE, a door opening event was timed to 

occur every 30 min. This gives a total of 48 door openings per day and it was decided to use this 

number as the mean number of daily door openings. The daily door openings were also limited 

within three standard deviations of this distribution. Thus all refrigerators were modeled with 

daily door openings between 0 and 96 door openings per day. The time of occurrence of the door 

openings within an hour are also randomized during the course of that hour using a uniform 

distribution.  

The simulation results using the new door opening schedules are shown in Figure 2-27, 

using the previously described aggregate model. As can be seen from the figure, the daily pattern 

of the refrigerators more closely follows the refrigerator ELCAP load shape. Figure 2-27 shows 

the simulation results of the aggregate load of the refrigerators responding to the previously 

described DR signal. Of note, is the fact that the peak rebound does not occur immediately 

following the return to the Normal signal, but rather in two steps, with the highest peak on the 

order of one and a half hours later. The initial rise in demand at the transition is due to the 

delayed compressors turning on to pre-cool the refrigerators prior to the actual defrost operation. 

The second rise is due to the synchronization of the defrost operation. This is interesting to note 

because this indicates that the rebound peak does not coincide with the timing of most of the 

other appliances. 
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Figure 2-27: Response of refrigerator load for a winter day using the ELCAP door opening schedule. 

 

Table 2-38: Comparison of results for the DR and Normal Cases. 

Case Name Normal DR Case 

Daily Energy Consumption (kWh) 1452 1380 

Energy Consumption during the 

High or Critical Period (kWh) 
354 197 

Peak demand during the 

High/Critical signal period (kW) 
80 54 

 Peak (Rebound) after a 

High/Critical Signal period (kW) 
76 216 

Daily Instantaneous Peak (kW) 80 216 

 

From the results shown Table 2-38, in the DR case, energy consumption during the DR 

signal period is reduced by 44% (197 kWh in the DR case compared to 354 kWh in the Normal 

case) in comparison to the Normal case within the time period of the Critical and High signals. 

Additionally, it is observed that the daily energy consumption in the DR Case is reduced to 1380 

kWh as compared to the energy consumption of 1452 kWh in the Normal case; however, as 

mentioned in the previous section, the model does not fully account for extra energy 
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consumption after a DR signal period and hence the reduction in daily energy consumption may 

not be a fully accurate measure for daily energy conservation. GE Appliances’ preliminary field 

tests indicate that returning the freezer to its normal operating regime results in the DR operation 

being somewhat energy neutral, as the decreased energy losses across the freezer walls due to the 

reduced temperature difference is quite small, and is lost in the normal operational noise (e.g., 

door openings, hot food additions, etc.). 

The peak demand during the DR signal period reduces from 80 kW to 54 kW, a reduction of 

32%, which shows that the refrigerator is capable of significant demand reduction during the DR 

signal period. However, the instantaneous peak power during the rebound period and the 

instantaneous daily peak power in the DR case (216 kW) is more than twice that of the Normal 

case (80 kW). Hence, while there is a considerable reduction in peak demand during the DR 

signal period, there is a significant demand rebound after the DR signal period. However, as 

previously mentioned, this peak would not coincidental with the peaks from other appliances. 
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3 Aggregate Appliance Model Simulation 

While the previous section focused on the response of a single class of DR-enabled 

appliance to understand the class behavior in response to a DR signal, this section will focus on a 

more holistic approach to estimate the aggregate benefit of GE’s appliances. A number of 

penetration and pricing scenarios were developed and simulated to estimate the ability of DR-

enabled appliances to reduce peak demand. Table 3-1 gives the scenarios discussed in this 

section. The first set of scenarios (1a-1d) are designed to investigate the potential peak load 

reduction, and the resultant rebound, when the penetration levels of DR-enabled GE appliances 

vary from 0% to 100% on a representative feeder model of an electrical distribution system.  

The second scenario (2) will study the addition of responsive HVAC systems to the 

appliances that respond to a DR signal. The third set of scenarios (3a, 3b, 4 and 5) will look at 

similar situations to scenarios 1 and 2, except the weather will be that of a more humid climate 

with a higher penetration of electric HVAC systems (Houston, TX versus Los Angeles, CA). 

Scenarios 4 and 5 will address “worst case” scenarios or the potential rebound when every user 

tries to recover as soon as the critical signal is released, synchronizing all of the delayed loads. 

Table 3-2 shows the penetration levels of the appliances and Table 3-3 shows the pricing signals 

used in the aggregated simulation, indicating when they start and when they end during 

weekdays and weekends for summer, and winter. 

 

Table 3-1: Demand response scenarios for aggregated appliance model. 

Scenario 

Responsive 

GE Appliance 

Penetration
 

HVAC 

Penetration 

HVAC 

Responsive 
DR Signal(s)

 Response 

Case
1 Region 

1a 0% 75% 0% 1, 2, 3, 4, 5 none Los Angeles 

1b 5% 75% 0% 1, 2, 3, 4, 5 I Los Angeles 

1c 25% 75% 0% 1, 2, 3, 4, 5 I Los Angeles 

1d 100% 75% 0% 1, 2, 3, 4, 5 I Los Angeles 

2 100% 75% 100% 2, 5 I Los Angeles 

3a 0% 95% 0% 2, 5 none Houston 

3b 100% 95% 100% 2, 5 I Houston 

4 100% 95% 100% 1, 6 II Houston 

5 100% 95% 0% 1 II Houston 

1 
None means that all appliances are unresponsive. Response case I assumes that all of the appliances which 

accepted delay randomize their start time when the normal signal arrives; in case II the appliances start 

immediately after receiving the normal signal.  
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Table 3-2: Electric appliance penetration levels. 

Appliance Penetration Level 

Refrigeration 100% 

Electric Water Heater 50% 

Electric Range 59% 

Clothes Washer 83% 

Electric Dryer 61% 

Dishwasher 58% 

 

Table 3-3: Pricing signals used in aggregate analysis. 

Signal 

Summer Winter 

Weekday Type Weekend Weekday Type Weekend 

DR 

signal 1 
9:00 – 15:00 Critical 10:00 – 16:00 16:00 – 22:00 Critical 16:00 – 22:00 

DR 

signal 2 
9:00 – 13:00 Critical 11:30 – 3:30 17:00 – 21:00 Critical 17:00 – 21:00 

DR 

signal 3 

10:00 – 10:15 

12:15 – 12:30 

14:30 – 14:45 

Critical 

Critical 

Critical 

10:00 – 10:15 

12:15 – 12:30 

14:30 – 14:45 

16:30 – 16:45 

18:45 – 19:00 

21:00 – 21:15 

Critical 

Critical 

Critical 

16:30 – 16:45 

18:45 – 19:00 

21:00 – 21:15 

DR 

signal 4 
7:00 – 17:00 High 7:00 – 17:00 

6:00 – 12:00 

17:00 – 23:00 

High 

High 

9:00 – 14:00 

17:00 – 23:00 

DR 

signal 5 

9:00 – 9:30 

9:30 – 13:00 

13:00 – 15:00 

High 

Critical 

High 

10:00 – 11:0 

11:00 – 15:00 

15:00 – 16:00 

16:00 – 17:30 

17:30 – 20:00 

20:00 – 22:00 

High 

Critical 

High 

16:00 – 17:30 

17:30 – 20:00 

20:00 – 22:00 

DR 

signal 6 
9:00 – 11:00 Critical 12:00 – 14:00 18:00 – 20:00 Critical 18:00 – 20:00 

 

The following scenarios are simulated on a prototypical distribution feeder, representative of 

a moderately populated suburban and rural area, mainly composed of single family residences, 

with a small amount of light commercial [8]. For these simulations, the circuit is populated with 

buildings using a distribution of physical properties described in [4], with electric HVAC 

penetration of 75% to 95%, depending upon case, indicative of the West coast of the United 

States. In total, there are 544 single family homes on the circuit, with electric appliances 

randomly selected to populate the homes using the penetration levels from Table 3-2. This leads 
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to a peak demand of approximately 1.4 MW. TMY2 data from Los Angeles and Houston is used 

to represent the climate. Because of the nature of TMY2 data (average months stitched together), 

the peak load in both climate regions occur in early September, typically around the noon hour, 

rather than a more typical example of peak demand, usually seen in the afternoon in June 

through August. 

 

3.1 Individual appliance scenarios  

The individual appliance scenarios used for the aggregated simulations will be discussed, in 

order to investigate the potential benefits and effects of the GE Appliances control strategies on a 

distribution feeder. These scenarios were selected to explore the most likely, the worst, and the 

best cases for DR capabilities on the system in terms of how the appliance controls affect the 

demand during the Critical or High price periods, and during the rebound period. 

Each of the appliances was simulated using the calibration methodologies described in 

Section 2. The result is that the aggregate population of appliances roughly matches the ELCAP 

load shapes and the most up-to-date information on annual energy consumption. Each residence 

with an appliance follows its own probabilistic nature in when the appliances are used, resulting 

in an aggregate simulation which provides a realistic representation of an actual feeder circuit. 

This means for some residences, multiple operations of an appliance will occur per day, while 

for other residences it may be several days between events. 

Three clothes washer scenarios were used in the aggregated simulations, using the DR 

functions described in Section 2.4. DR Case A is used to describe the “best” case, in terms the 

peak demand during the rebound period, while DR Case B is used to describe the “worst” case, 

by leaving the rebound unmanaged. This is common throughout each of the appliance scenarios. 

Table 3-4 shows the various clothes washer scenarios used. 

 

Table 3-4: Clothes washer cases used for aggregated simulations. 

Case 

During Normal signal During DR signal
 

Delay 

Period 

Used in 

scenarios Normal 

mode 
ES-mode 

Normal 

mode 
ES-mode Delay 

Normal 100% 0% 100% 0% 0% Zero 1a, 1b, 1c, 3a 

DR Case A 100% 0% 5% 20% 75% 
One clothes 

washer cycle 
1b, 1c, 1d, 2 

DR Case B 100% 0% 5% 20% 75% Zero 3a, 3b, 4, 5 
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Three dishwasher scenarios were used in the aggregated simulations, and are described in 

detail in Section 2.5. A summary of the dishwasher cases that are used in the aggregated 

simulations are listed in Table 3-5. 

 

Table 3-5: Dishwasher cases used for aggregated simulations. 

Case 

During Normal signal During DR signal
 

Delay 

Period 

Used in 

scenarios Normal 

mode 
ES-mode 

Normal 

mode 
ES-mode Delay 

Normal 100% 0% 100% 0% 0% Zero 1a, 1b, 1c, 3a 

DR Case A 100% 0% 0% 10% 90% 1 XDW 1b, 1c, 1d, 2 

DR Case B 100% 0% 0% 10% 90% Zero 3a, 3b, 4, 5 

 

Three electric clothes dryer scenarios were used in the aggregated simulations using DR 

operational strategies discussed in Section 2.3. Table 3-6 shows the various electric clothes dryer 

scenarios simulated.  

 

Table 3-6: Dryer cases used for aggregated simulations. 

Case 

During Normal 

signal 
During DR signal

 

Delay 

Period 

Used in 

scenarios Normal 

mode 

ES-

mode 

Normal 

mode 

ES-

mode 

Accept 

Delay 

Normal 100% 0% 100% 0% 0% Zero 1a, 1b, 1c, 3a 

DR Case A 100% 0% 5% 20% 75% 3 XDRYER 1b, 1c, 1d, 2 

DR Case B 100% 0% 5% 20% 75% Zero 3a, 3b, 4, 5 

 

Two different HWH scenarios are used in the aggregated simulations. Since the HWH did 

not have a built-in function for mitigating the peak rebound, both DR Case A and DR Case B are 

the same. A summary of the HWH cases that are used in the aggregated simulations are listed in 

Table 3-7. 
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Table 3-7: HWH cases used for aggregated simulations. 

Case 

During Normal signal During DR signal
 

Used in 

scenarios 
Setpoint temperature Setpoint temperature 

Normal 135 ºF 135 ºF 1a, 1b, 1c, 3a 

DR Case A 

DR Case B 
135 ºF 

110ºF when signal is High 

100ºF when signal is Critical 

1b, 1c, 1d, 2, 

3a, 3b, 4, 5 

 

Three range scenarios were used in the aggregated simulations, using the scenarios 

described in Section 2.7. A summary of the range cases that are used in the aggregated 

simulations are listed in Table 3-8. 

 

 Table 3-8: Range cases used for aggregated simulations. 

Case 

During Normal signal During DR signal 

Delay 

Period 

Used in 

scenarios 

Oven Cooktop Oven Cooktop 

Upper Lower Base Upper Lower 
Accept 

Delay 
Base 

ES-

mode 

Accept 

Delay 

Normal 65% 35% 100% 65% 35% 0% 100% 0% 0% Zero 
1a, 1b, 

1c, 3a 

DR 

Case A 
65% 35% 100% 90% 0% 10% 0% 90% 10% Zero 

1b, 1c, 

1d, 2 

DR 

Case B 
65% 35% 100% 90% 0% 10% 0% 90% 10% 

40 

min 

3a, 3b, 4, 

5 

 

Two refrigerator scenarios were used in the aggregate simulation. Both cases use the 

refrigerator door openings are modeled as per the refrigerator ELCAP data as discussed in 

Section 2.8. The first scenario, which is normal operation, provides a base case, as shown in 

Table 3-9. The second scenario uses the DR characteristics described in Section 2.8, and is used 

for both the “best” and “worst” case scenarios (DR Case A and DR Case B). 
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Table 3-9: Refrigerator cases used for aggregated simulations. 

Case During Normal signal During DR signal
 Used in 

scenarios 

Normal Normal Operation Normal Operation 1a, 1b, 1c, 3a 

DR Case A 

DR Case B 
Normal Operation 

Reduced Compressor Usage 

Delayed Defrost Cycles 

1b, 1c, 1d, 2, 

3a, 3b, 4, 5 

 

The HVAC scenarios that were used in the following simulations are shown in Table 3-10. 

The setpoints are selected from a distribution of setpoints as indicated by data from the EIA 

website [17], where each residence is assigned a unique heating and cooling setpoint, and a 

unique daily setback (daytime settings versus nighttime settings). A more detailed description on 

how these distributions are formulated can be found at [4]. Each residence is also assigned a 

unique thermostat setback during a DR signal, following the distribution of slider settings shown 

in Figure 2-2. This equates to a range of setbacks (ΔT) from 0 to 2°F during a High signal and 0 

to 5°F during a Critical signal, depending upon what level of participation is assigned to the 

residence. This is used to represent a smart thermostat which allows the customer to choose their 

amount of setback during each DR event, and automatically adjusts the thermostat setpoints 

during a price change. 

 

Table 3-10: HVAC cases used for aggregated simulations. 

Case 

During Normal signal During DR signal 
Used in 

scenarios 
Normal High (ΔT) Critical (ΔT) 

Normal 
Distribution of cooling and 

heating setpoints from EIA data. 
no change no change 

1a, 1b, 1c, 

1d, 3a 

DR Case A 

DR Case B 

Distribution of cooling and 

heating setpoints from EIA data. 
0 – 2°F 0 – 5.0°F 2, 3b, 4, 5 

 

Lights and other miscellaneous loads are also simulated. These are represented as a simple 

load shape based off of ELCAP data, and are scaled as a function of square footage of the 

residence. The load shapes do not respond to changes in the price signal. The load shapes used 

are shown in Figure 3-1, as defined for a 2500 square foot home. More information about the 

scaling factor and the ELCAP load shape used can be found at [4]. 

 



 

62 

 

Figure 3-1: ELCAP load shapes for lights and other miscellaneous devices. 

 

3.2 Response of appliances to DR Signal 1 

The aggregated simulation results being presented here use DR Signal 1 (six hour Critical 

period only). Critical pricing signals are used by utilities to achieve demand reduction on the 

most extreme peak demand days of the year. Annual peak demand values for a utility are used to 

determine whether future capacity must be added, often leading to significant capital investment. 

However, values close to the annual peak are usually observed roughly 40 to 60 hours spread 

throughout the year and across roughly 10 to 15 days of the year. Hence, the capacity usually 

built into a utility system is used to its maximum value only for about 60 hours in the entire year, 

which is less than 1% of the hours [18]-[20]. A case for DR for utilities is to curtail the demand, 

such that underutilized excess capacity is never needed by the system. Also, future capacity 

upgrades can be performed at a less aggressive rate and postponed further, if the load during the 

peak hours of the year could somehow be curtailed to a requisite value.  

Studying the capabilities and effects of a critical pricing period on appliance DR thus 

becomes critical in this study. Most regulations and rules however do not allow utilities to call on 

critical pricing periods for more than four to six hours during a day [19][20]. Hence, in this 

study, the effects of aggregated appliance response to a four hour and a six hour critical pricing 

period will be examined. This section discusses the six hour critical pricing period effects, while 

section 3.3 discusses the four hour critical pricing period effects. In this section, only summer 

results are discussed, as most of the peak days occur during the summer time frame. 
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The timing of the Critical price signal varied per the season and type of day being simulated. 

This was done because of the seasonal and weekday/weekend variations that are observed in the 

daily load pattern (as can also be observed from the ELCAP data). Such variations in seasonal 

and weekday/weekend load patterns lead to variations in the peak period of electricity usage 

observed on any given day. Thus, in this study, the period of the Critical signal was adjusted as 

per the season and type of day being simulated. This signal is analogous to a CPP period of six 

hours, typically used by utilities 10-15 times per year to reduce peak demand. While it is not 

common for CPP programs to include weekends, these events were simulated for completeness. 

The Critical signal used in this simulation is shown in Table 3-11. The individual appliance 

scenarios considered in this scenario are as described in Section 3.1. In this scenario, HVACs are 

simulated, but they are not price responsive. As mentioned previously, three different GE DR-

enabled appliance penetration levels are being considered, namely 5%, 25% and 100%. In the 

figures and tables below, the penetration cases are identified as 5% GE, 25% GE and 100% GE, 

while the base case, when appliances are not responding to a signal, is identified as Normal.  

 

Table 3-11: Six hour pricing signal. 

Season Weekday Weekend 

Summer 9:00 – 15:00 10:00 – 16:00 

Winter 16:00 – 22:00 16:00 – 22:00 

 

  In Figure 3-2, the total demand at the feeder substation for the Normal case and the three 

DR cases for a summer weekday are compared, including HVAC, all appliances, miscellaneous 

end use and lighting loads, and system losses. The DR signal used has also been plotted for 

reference. As can be observed, the daily peak has both shifted in time and reduced in magnitude 

in all DR cases as compared to the Normal case, but is particularly significant in the 100% 

penetration of GE DR-enabled appliances case. 
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Figure 3-2: Time series comparison of total load on a summer weekday. 

 

Table 3-12 compares the aggregated daily energy consumption, the aggregated energy 

consumption during the DR signal period, and the aggregated energy consumption after the DR 

signal period. As can be observed from Table 3-12, there is a significant reduction in the energy 

consumption during the DR signal period in the 100% GE case as compared to the Normal case. 

The energy consumption during the critical pricing period reduces to 6,478 kWh from 7,525 

kWh if all appliances on this feeder went from being unresponsive appliances (Normal case) to 

GE DR-enabled appliances. This is a nearly 14% reduction in the energy consumption during the 

DR signal period due to the appliances entering the ES-mode of operation, or a reduced energy 

consumption mode during the High and Critical signal periods. It can also be observed that with 

a 25% penetration of GE appliances, there is a 3% reduction in DR signal period energy 

consumption, and with a 5% penetration of GE appliances there is a less than 1% reduction in 

energy consumption during the DR signal period.  
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Table 3-12: Comparison of the energy consumption on a summer weekday. 

 

Case name 

Normal 5% GE 25% GE 100% GE 

kWh % kWh % kWh % kWh % 

Daily Energy 

Consumption (kWh) 
18,937 100.00 18,924 99.93 18,849 99.53 18,539 97.90 

Energy Consumption 

during the High/Critical 

Period (kWh) 

7,525 100.00 7,478 99.37 7,278 96.72 6,478 86.08 

Energy consumption after 

High/Critical period for 

six hours (kWh) 

4,696 100.00 4,722 100.57 4,839 103.05 5,281 112.46 

 

Table 3-13 compares the daily peak, peak demand during the DR signal period and the 

maximum observed demand, or rebound, after a DR signal period. As previously mentioned, in 

the simulation outputs, the daily peak has both shifted in time and reduced in magnitude in all 

cases as compared to the Normal case due to the GE appliances reducing demand during the DR 

signal period. The daily peak reduces from 1,428 kW in the Normal case to 1,335 kW in the 

100% GE case, a reduction of approximately 6.5%. There is a 4.7% and 2.2% reduction in the 

daily peak in the 25% GE case and 5% GE case, respectively, in comparison to the daily peak of 

the Normal case. These results indicate that smart appliances can provide significant DR, and as 

expected they provide higher DR at higher penetrations. In fact, if this were compared to a feeder 

with standard resistance hot water heaters (rather than hybrid hot water heaters), the reductions 

would be even greater, both in terms of peak demand and energy consumption. 

 

Table 3-13: Comparison of the peak demand on a summer weekday. 

Case name 
Normal 5% GE 25% GE 100% GE 

kW % kW % kW % kW % 

Daily Instantaneous Peak (kW) 1,428 100.00 1,396 97.76 1,361 95.32 1,335 93.49 

Peak in demand during 

High/Critical period (kW) 
1,428 100.00 1,396 97.76 1361 95.32 1,217 85.26 

Maximum rebound peak after 

High/Critical period (kW) 
1,086 100.00 1,091 100.40 1,132 104.24 1,335 122.87 

  

When the feeder peak load coincides with the system wide peak, utilities may require a 

reduction of feeder peak power during the high pricing period with limited concern as to the load 

during the rebound period. The peak observed during the high/critical pricing period is of 

significant interest to see the decrease in the feeder peak during a system peak period. From 

Table 3-13, it can clearly be seen that the feeder peak during DR signal period reduces to 1,217 

kW from 1,428 kW, a reduction of 14.7% for the 100% penetration case, while the 25% and 5% 

penetration cases provide a 4.7% and 2.2% reduction, respectively.  
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Loss reduction is often described as a benefit of DR and peak reduction. The results in the 

simulation study here are consistent with this statement. The time series of loss values in kW, 

recorded from the simulation, are presented in  Figure 3-3. As can be observed, the losses follow 

the load values in terms of the profile. Hence, there is a clear reduction in losses due to responses 

from the DR enabled appliances. As can be observed from Table 3-14, the reduction in daily 

losses in the 100% GE case in comparison losses to the Normal case is about 13 kWh. It should 

be noted however, that when analyzed with respect to the total load of the respective cases, the 

losses in terms of percentage remain approximately the same. In the simulations presented, the 

losses are approximately 4% of the total system daily load.  

 

 

 Figure 3-3: Time series comparison of energy losses on a summer weekday. 

 

Table 3-14: Comparison of the energy losses for a summer weekday.  

Case name Normal 5% GE 25% GE 100% GE 

Daily Losses (kWh) 737 736 733 724 

Losses during the High/Critical 

Period (kWh) 
243 242 237 217 

Losses after High/Critical period till 

end of day (kWh) 
39 40 40 46 
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Figure 3-4 shows the time series load values for the Normal case and the DR cases for a 

summer weekend. The DR signal used is again plotted for reference. 

 

 

Figure 3-4: Time series comparison of total load on a summer weekend. 

 

Table 3-15 compares the aggregated daily energy consumption, the aggregated energy 

consumption during the DR signal period, and the aggregated energy consumption after the DR 

signal period. As can be observed, there is a 25% reduction in energy consumption during the 

critical pricing period for the 100% GE case in comparison to the Normal case.  

 

Table 3-15: Comparison of energy values for a summer weekend. 

 

Case name 

Normal 5% GE 25% GE 100% GE 

kWh % kWh % kWh % kWh % 

Daily Energy Consumption 

(kWh) 
13,786 100.00 13,773 99.90 13,692 99.32 13,355 96.87 

Energy Consumption during the 

High/Critical Period (kWh) 
4,361 100.00 4,316 98.97 4,112 94.27 3,241 74.32 

Energy consumption after 

High/Critical period for six hours 

(kWh) 

3,885 100.00 3,911 100.68 4,030 103.72 4,519 116.33 
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However as can be observed from Table 3-16, this reduction also comes with a penalty of a 

rebound peak which is higher than the peak observed in the Normal case by 33%. Thus, for a 

summer weekend, while the goal of shifting the daily peak was achieved, the daily peak 

increased in magnitude. This may or may not be a problem if the utility imposing the critical 

pricing has more than one feeder in its system and the feeder peaks do not align. In such a 

scenario, unless the feeder has other capacity constraints, such an increase in peak due to the 

rebound may not cause any serious issues. In the best case, it may also help in leveling the total 

utility system load.  

 

Table 3-16: Comparison of peak demand values for a summer weekend 

 
Case name 

Normal 5% GE 25% GE 100% GE 

kW % kW % kW % kW % 

Daily Instantaneous Peak (kW) 828 100.00 827 99.84 784 94.84 996 126.95 

Peak in demand during 

High/Critical period (kW) 
828 100.00 827 99.84 784 94.84 649 82.81 

Maximum rebound peak after 

High/Critical period (kW) 
741 100.00 741 100.09 747 100.75 996 133.32 

  

Table 3-17 compares the loss values. As can be observed, the total daily losses in the DR 

cases are lower than the Normal cases, with the lowest losses occurring in the 100% GE Case. In 

the 5% GE case there is only a small reduction in the daily peak and there is also a relatively 

small peak rebound after the DR signal in comparison to the Normal case. In the 25% case, there 

is a 5% reduction in energy used during the DR period, while there is a <1% peak rebound after 

the DR signal. As can be noted, in percentage terms, the response from the appliances in the 

summer weekend case is higher than the corresponding value in the summer weekday case. Also, 

the energy reduction in the summer weekend case in terms of percentage is significantly lower 

than the summer weekday case. In percentage terms, the rebound after the Critical signal is also 

higher for the summer weekend case as opposed to the summer weekday case. Thus, it can be 

concluded that peak load on a summer weekend is due to a higher percentage of appliance load 

than during the summer weekday.  

Table 3-17: Comparison of energy losses for a summer weekend. 

Case name Normal 5% GE 25% GE 100% GE 

Daily Losses (kWh) 631 630 629 626 

Losses during the High/Critical 

Period (kWh) 
171 170 167 155 

Losses after High/Critical period till 

end of day (kWh) 
29 29 29 35 
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Thus, GE appliances, in conjunction with a six hour critical pricing signal, can significantly 

help reduce peak load during the Critical pricing period. It can also help reduce the overall daily 

peak in certain cases, as was observed in the summer weekday case. 

 

3.3 Response of appliances to DR Signal 2  

The aggregated simulation results being presented here use DR Signal 2 (four hour Critical 

period). As mentioned in the previous section, critical pricing signals are used by utilities to 

achieve a greater extent of demand reduction on some of the very high peak days of the year. 

Studying the benefits and issues with using such a critical pricing period on appliance DR 

becomes critical in this study. The previous section discusses a six hour critical pricing period 

effects, while this section focuses on the effects of a four hour critical pricing period. Again, only 

summer results are discussed in this section. 

For reasons discussed in the previous section, the timing of the Critical signal varied per the 

season and type of day being simulated. Thus, in this study, the period of the Critical signal was 

adjusted as per the season and type of day being simulated. This signal is analogous to a CPP 

period of four hours, typically used by utilities 10-15 times per year to reduce peak demand. The 

simulated DR signal is shown in Table 3-18. While it is not common for CPP programs to 

include weekends, these events were simulated to provide a complete set of possible responses. 

The individual appliance scenarios considered in this scenario are as described in Section 3.1. In 

this scenario, no price responsive HVACs are considered. As mentioned previously, three 

different GE DR-enabled appliance penetration levels are being considered, namely 5%, 25% 

and 100%. 

 

Table 3-18: Four hour pricing signal. 

Season Weekday Weekend 

Summer 9:00 – 13:00 11:30 – 3:30 

Winter 17:00 – 21:00 17:00 – 21:00 

 

In Figure 3-5, the total load at the feeder substation for the Normal case and the three DR 

cases (5%, 25% and 100% GE) for a summer weekday are compared. The DR signal used has 

also been plotted for reference.  
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Figure 3-5: Time series comparison of total load on a summer weekday. 

 

Table 3-19 compares the aggregated daily energy consumption, the aggregated energy 

consumption during the DR signal period, and the aggregated energy consumption after the DR 

signal period. Table 3-20 compares the daily peak, maximum observed demand during a DR 

signal period and after the DR signal period.  

 

Table 3-19: Comparison of the energy values for a summer weekday. 

 
Case name 

Normal 5% GE 25% GE 100% GE 

kW % kW % kW % kW % 

Daily Energy Consumption 

(kWh) 
18,937 100.00 18,929 99.96 18,899 99.80 1,8727 98.89 

Energy Consumption during the 

Critical Period (kWh) 
5,190 100.00 5,154 99.32 5,018 96.69 4,443 85.61 

Energy consumption for six 

hours after Critical period (kWh) 
4,085 100.00 4,115 100.73 4,198 102.77 4,517 110.57 
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Table 3-20: Comparison of the peak demand values for a summer weekday. 

  

As can be observed from Figure 3-5, there is a significant reduction in the energy 

consumption during the DR signal periods in the 100% GE case as compared to the Normal case. 

As can also be observed, the daily peak has both shifted in time and reduced in magnitude in the 

100% GE Case as compared to the Normal case. The energy consumption during the DR signal 

period reduces to 4443 kWh from 5190 kWh in the 100% GE case as compared to the Normal 

case. During the critical pricing period, energy consumption is reduced by 14.4% if all 

appliances on this feeder went from being unresponsive appliances to GE Smart appliances. It 

can also be observed that with a 25% penetration of GE appliances, there is a 3.3% reduction in 

energy consumption during the DR signal period and with a 5% penetration of GE appliances 

there is a less than 1% reduction in energy consumption.  

The daily peak is reduced by 2.2% in the 5% GE case and by 4.7% in the 25% GE case in 

comparison to the Normal case. Because of a significant demand rebound after the DR signal, 

the daily peak in the 100% GE case is only reduced by 1.2% in comparison to the Normal case. 

Hence, when a four hour Critical signal is imposed on a feeder where there is high penetration of 

GE demand responsive appliances, there is shift in the time that the peak occurs, but only a 1% 

decrease in magnitude of the peak. This is different from what was observed in the previous 

scenario, where a six hour critical period led to both a shift in time and a significant decrease in 

the magnitude of the daily peak value. As can be seen from Table 3-1, the six hour Critical signal 

covers most of the hours of observed peak load in the base case. Hence, the rebound peaks in the 

DR cases occur during the off-peak period. The same does not happen in the four hour Critical 

signal case, where the rebound peak occurs while the system load is still relatively high. Hence, 

the rebound in the four hour Critical signal case is higher than the daily peak. In cases where a 

Critical signal cannot be imposed for more than four hours, and if the observed peak load is 

longer than four hours, like is observed in this summer weekday example, a three period pricing 

signal, with a High signal imposed on the remaining peak hours can be used. More details on a 

three period pricing signal’s effect on the system response will be discussed in section 3.5 below. 

For reasons discussed in the section 3.2, the peak observed during the High and Critical 

pricing periods is of significant interest. From Table 3-20, it can be seen that in the 100% GE 

case, the feeder peak during the DR signal period reduces to 1,217 kW from 1,428 kW, a total 

Case name 
Normal 5% GE 25% GE 100% GE 

kW % kW % kW % kW % 

Daily Instantaneous Peak 

(kW) 
1,428 100.00 1,396 97.76 1,361 95.32 1,411 98.84 

Peak demand during 

Critical period (kW) 
1,428 100.00 1,396 97.76 1,361 95.32 1,217 85.26 

Maximum peak demand 

after Critical period (kW) 
1,245 100.00 1,255 100.78 1,279 102.77 1,411 113.37 
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reduction of 14.7%. This reduction is identical with the reduction observed in the six hour 

critical signal case (DR Signal 1). The peak rebound in this case is 13.4% higher than what is 

observed in the Normal case. In the 5% GE case, there is a 2.2% reduction in the peak seen 

during the DR signal period as compared to the Normal case and the rebound peak is less than 

1% greater that the peak demand value observed in the Normal case after the DR signal period. 

In the 25% GE case, while there is a reduction of 4.7% in the peak value observed during the DR 

signal period, there is an increase in the peak demand of 2.7% after the DR signal value, when 

compared to the values of the Normal case. 

In Figure 3-6, the total load at the feeder substation for the Normal case and the three DR 

cases for a summer weekend are compared. The DR signal used has also been plotted for 

reference.  

 

 

Figure 3-6: Time series comparison of total load on a summer weekend. 

 

Table 3-21 compares the aggregated daily energy consumption, the aggregated energy 

consumption during the DR signal period, and the aggregated energy consumption after the DR 

signal period.  
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Table 3-21: Comparison of the energy values for a summer weekend. 

 
Case name 

Normal 5% GE 25% GE 100% GE 

kW % kW % kW % kW % 

Daily Energy Consumption 

(kWh) 
13,803 100.00 1,3793 99.93 13,749 99.61 13,559 98.23 

Energy Consumption during 

the High/Critical Period 

(kWh) 

3,028 100.00 2,992 98.81 2,855 94.28 2,313 76.39 

Energy consumption after 

High/Critical period for six 

hours (kWh) 

5,444 100.00 5,467 100.42 5,559 102.12 5,912 108.59 

  

Table 3-27 compares the daily peak, maximum observed demand during a DR signal period 

and after a DR signal period. 

 

Table 3-22: Comparison of the peak demand values for a summer weekend. 

 
Case name 

Normal 5% GE 25% GE 100% GE 

kW % kW % kW % kW % 

Daily Instantaneous Peak 

(KW) 
828 100.00 827 99.82 797 96.24 826 99.69 

Peak in demand during 

High/Critical period (kW) 
828 100.00 827 99.82 797 96.24 673 81.24 

Maximum peak in demand 

after High/Critical period 

(kW) 

663 100.00 665 100.26 670 100.97 826 124.50 

  

As can be seen from Table 3-21 and Table 3-22, as compared to the Normal case the 100% 

GE case has a 23.6% reduction in energy consumption during the DR signal period and an 18.8% 

reduction in the peak value observed during the DR signal period. There is, however, an increase 

of 24.5% in the peak demand observed when compared with peak value of the Normal case after 

the DR signal period. The daily peak observed in the 100% GE case, however, is lower than the 

daily peak observed in the Normal case. In the 25% GE case, there is a 5.7% reduction in energy 

use from the Normal case and a 3.7% reduction in the peak during the DR signal period. In the 

5% GE case, there is a 1.1% reduction in energy consumption during the DR signal period and 

less than 1% reduction in the peak observed during the DR signal case. There is a less than 1% 

peak rebound in both the 25% GE and 5% GE cases. 

Hence, depending on the penetration level of appliances, significant demand response can be 

obtained from GE DR-enabled appliances during the four hour critical signal period. Higher 

penetrations of the appliances result in greater reduction during the signal period, but typically 

result in a greater peak rebound. However, with a four hour critical signal, this peak rebound 
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does not worsen the original daily peak of the system in the case of a summer simulations 

observed here. The shorter critical signal period leads to fewer appliances delaying operation 

than during the six hour period. This means that fewer appliances turn on during the recovery 

period, leading to a reduced rebound in the demand when the signal returns to normal. In other 

words, the longer the aggregate appliances are asked to reduce demand, the greater the rebound 

at the end of the reduction period. 

 

3.4 Response of appliances to DR Signal 3  

The aggregated simulation results being presented in this section are for DR Signal 3. DR 

Signal 3 was designed to represent a 15 minute regulating or load following signal. Short term 

DR resources are often discussed as a means for providing spinning reserve and for load 

following or regulation needs of a system [21]-[24]. Thus, the analysis here is being performed 

to assess the spinning reserve, downward load following and downward regulating capabilities of 

GE DR enabled appliances at different penetration levels. The control signal was designed as 

three Critical signals of 15 min duration each, with a two hour Normal signal period between 

these Critical signals. The Critical signals used in this analysis are shown in Table 3-23. The 

individual appliance scenarios examined in this scenario are as described in Section 3.1. As 

mentioned previously, three different GE appliance penetration levels are being considered, 

namely 5%, 25% and 100%.  

 

Table 3-23: Fifteen minute Critical pricing signals. 

Season 

Weekday and Weekend 

First Critical 

Signal 

Second Critical 

Signal 

Third Critical 

Signal 

Summer 10:00-10:15 12:15-12:30 14:30-14:45 

Winter 16:30-16:45 18:45-19:00 21:00-21:15 

 

In Figure 3-7, the total system load at the feeder substation for the Normal case and DR 

cases (5%, 25% and 100% GE case) for a summer weekday are compared. The DR signal used 

has also been plotted for reference. Figure 3-8 shows a “zoomed in” version of the plot shown in 

Figure 3-7. As can be seen from Figure 3-8, there is a 13%-15% (~140-200 kW) reduction in 

load for the 15 min period in the 100% GE case in comparison to the Normal case. The actual 

load reductions are shown in Table 3-24. The percentage reduction in load for the three fifteen 

minute Critical price signals for the different DR cases is as shown in the figure. As can be 

noted, the 25% case on an average has a reduction of ~2.5%-5%. The 5% case has a reduction of 

~1%-2% for the first two 15 min Critical price signal periods. During the third 15 min signal, 

there is an increased load noticed as compared to the Normal case.  
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Figure 3-7: Time series comparison of total load on a summer weekday. 

 

Figure 3-8: Zoomed-in portion of time series comparison of total load on a summer weekday. 
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There is no significant rebound observed after any of the Critical signal periods. The 

reduction in load is greater when the load is higher. Thus, these simulation results show that 

there is a significant short term spinning reserve capability that could be provided by the use of 

smart appliances and this benefit should be further examined. However it is important to note 

that the spinning reserve capabilities of GE appliances at lower penetrations (like 5%) must be 

further examined, as the simulation results show there may not be a decrease in load for a 15 min 

Critical signal in certain cases; this may be due to a lack of diversity in the lesser number of DR-

enabled appliances available for response. 

 

Table 3-24: Percent reduction in load observed due to 15 min Critical signals. 

 
5% GE 25% GE 100% GE 

% % % 

First 15 min period 1.79 4.47 14.55 

Second 15 min period 1.13 3.79 14.25 

Third 15 min period -0.41 2.48 12.84 

 

However, for providing both upward and downward load following or regulation services, 

the appliances would not only need to reduce consumption during the Critical or High price 

periods, but also increase energy consumption during periods of time when more energy 

consumption is needed (Low price period). Since the appliance models implemented in this study 

are not designed to consume higher energy during Low pricing periods (as mentioned previously, 

the low control mode has not been implemented in the appliances), a perfect assessment of the 

load following and regulation capabilities of smart appliances cannot be made. However, based 

on these simulations results, it can be concluded that GE DR enabled appliances could provide 

significant load following and regulation capabilities in the downward direction, i.e. when 

overall system load needs to be reduced, and this benefit should be further examined. Currently 

frequency effects cannot be implemented in GridLAB-D and an assessment cannot be made on 

the frequency regulation capabilities of these appliances. However, the 15 minute signal does 

give an indication of the magnitude of the available frequency regulation resources from the DR 

appliances.  

 

3.5 Response of appliances to DR Signal 5 

The previous scenarios examined the responses of the appliances to a Critical price signal. 

However, as was discussed in Section 2, all appliances in this study, except for the clothes 
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washer, have been modeled with a High price signal response (ES-High mode of operation). The 

ES-High mode of operation for all of the appliances is different and less aggressive in terms of 

energy reduction than the ES-Critical mode of operation, while typically reducing the apparent 

effects to the customer. Hence, it is important to look at the appliance response to the High signal 

as well. Additionally, utilities are in most cases restricted from the number of days and hours that 

a Critical signal (CPP pricing) can be imposed. However, the same restriction does not apply to a 

High pricing signal. Many utilities have a rate structure that has a two rate pricing program for 

all days of the year. One of the important points to note is that CPP pricing is mostly used for 

curtailing loads during extremely high peak power periods. However, the high pricing, or TOU 

structure, is mostly used as a methodology for load shifting and/or load leveling.  

Some utilities may combine a two rate pricing program with the CPP pricing to obtain the 

benefits of both. This can be done in two ways. Utilities can choose to have a two rate pricing 

structure during all of the days of the year except for a few peak days where the utility could 

impose a CPP pricing. Alternatively, the utilities could have a three rate pricing structure for 

certain high peaks days of the year. The utilities could impose the CPP for a few hours of the top 

peaks days and have two rate pricing for the other hours of the same peak days and two rate 

pricing for all the other days of the year. As discussed in section 3.2, this may also help in 

situations when the number of hours a Critical signal can be imposed is smaller than the number 

of hours peak load is observed on the system. This three rate pricing structure for certain peak 

days of the year is commonly used to curtail load during extremely high peak power periods and 

helps shift the load away from peak periods to the off-peak periods during all days of the year. 

Hence, the appliance response to a three rate pricing scheme is examined here.  

For reasons discussed in Section 3.1 the timing of the High and Critical signal varied as per 

the season and type of day being simulated and is shown in Table 3-25. Note that while it is not 

common for CPP programs to include weekends, these events were simulated for completeness. 

In this scenario, HVAC systems are simulated but are not price responsive. Three different GE 

DR-enabled appliance penetration levels are being considered, namely 5%, 25% and 100%. 

 

Table 3-25: DR Signal 5 price periods. 

Signal 

Summer Winter 

Weekday Type Weekend Weekday Type Weekend 

DR 

signal 5 

9:00 – 9:30 

9:30 – 13:00 

13:00 – 15:00 

High 

Critical 

High 

10:00 – 11:0 

11:00 – 15:00 

15:00 – 16:00 

16:00 – 17:30 

17:30 – 20:00 

20:00 – 22:00 

High 

Critical 

High 

16:00 – 17:30 

17:30 – 20:00 

20:00 – 22:00 
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In Figure 3-9, the loads for the Normal case and the three DR cases for a summer weekday 

are compared. The DR signal used has also been plotted for reference. Table 3-26 compares the 

aggregated daily energy consumption, the aggregated energy consumption during the DR signal 

period, and the aggregated energy consumption after the DR signal period. Table 3-27 compares 

the peak demand for the entire day, within the DR signal period, and immediately following the 

DR period.  

 

 

Figure 3-9: Time series comparison of total load for DR Signal 5 on a summer weekday. 

 

Table 3-26: Comparison of the energy values for DR Signal 5 on a summer weekday. 

Case name 
Normal 5% GE 25% GE 100% GE 

kWh % kWh % kWh % kWh % 

Daily Energy Consumption 

(kWh) 
18,937 100.00 18,923 99.93 18,851 99.54 18,567 98.04 

Energy Consumption during 

the High/Critical Period 

(kWh) 

7,525 100.00 7,484 99.46 7,298 96.98 6,589 87.56 

Energy consumption after 

High/Critical period for six 

hours (kWh) 

3,183 100.00 3,212 100.94 3,308 103.94 3,653 114.78 
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Table 3-27: Comparison of the peak demand values for DR Signal 5 on a summer weekday. 

Case name 
Normal 5% GE 25% GE 100% GE 

kW % kW % kW % kW % 

Daily Instantaneous Peak 

(kW) 
1,483 100.00 1,466 98.85 1440 97.07 1,330 89.68 

Peak in demand during 

High/Critical period (kW) 
1,428 100.00 1,396 97.76 1,372 96.10 1,229 86.08 

Maximum peak in demand 

after High/Critical period 

(kW) 

1,160 100.00 1,186 102.24 1,201 103.59 1,330 114.70 

  

As can be observed from Figure 3-9, there is a significant reduction in the energy usage 

during the DR signal periods in the 100% GE case as compared to the Normal case. The daily 

peak has both shifted in time and reduced in magnitude in the 100% GE Case as compared to the 

Normal case. 

As can be seen in Table 3-26, the energy consumption during the DR signal period reduces 

to 6589 kWh from 7525 kWh if all appliances on this feeder went from being unresponsive 

appliances to GE Smart appliances. This is a 12.4% reduction in the energy consumption during 

the DR signal period. It can also be observed that with a 25% penetration of GE appliances, there 

is a 3% reduction in energy consumption during the DR signal period and with a 5% penetration 

of GE appliances there is a less than 1% reduction in energy consumption during the DR signal 

period.  

Table 3-27 compares the daily peak, peak power during DR signal and the maximum 

demand after the DR signal period. In the GE 5% case, there is a reduction in the daily peak 

value of 1.1%, while in the 25% GE, the daily peak is reduced by approximately 2.9%. In the 

100% GE Case, the daily peak reduces to 1330 kW from 1483 kW, a reduction of 10.3%. In the 

100% GE case, the daily peak is also shifted to the hours after the DR signal period. Hence, at 

higher penetrations of GE appliances, for a summer weekday and with a three rate pricing 

structure, a shift and decrease in the daily peak is observed. It can also be seen that the feeder 

peak during the DR signal period reduces to 1229 kW from 1428 kW, a total reduction of 13.9% 

in the 100% GE case. The feeder peak during the DR signal period reduces by approximately 

3.9% in the 25% GE case and 2.2% in the 5% GE case. Hence, significant reduction in peak can 

be achieved from smart appliances responding to a three rate pricing program. Since the daily 

peak is reduced in all of the DR cases, the rebound is lower than the daily peak of the base case 

in all DR cases for the simulation of a summer weekday. 

In Figure 3-10, the Normal case and the three DR cases for a summer weekend are 

compared. The DR signal used has also been plotted for reference.  
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Figure 3-10: Time series comparison of total load for DR Signal 5 on a summer weekend. 

 

Table 3-28 compares the aggregated daily energy consumption, the aggregated energy 

consumption during the DR signal period, and the aggregated energy consumption after the DR 

signal period. Table 3-29 compares the peak demand for the entire day, within the DR signal 

period, and immediately following the DR period.  

 

Table 3-28: Comparison of the energy values for DR Signal 5 on a summer weekend. 

 
Case name 

Normal 5% GE 25% GE 100% GE 

kWh % kWh % kWh % kWh % 

Daily Energy Consumption 

(kWh) 
13,786 100.00 13,768 99.87 13,688 99.29 13,363 96.93 

Energy Consumption during 

the High/Critical Period 

(kWh) 

4,361 100.00 4,327 99.21 4,114 94.33 3,341 76.60 

Energy consumption after 

High/Critical period for six 

hours (kWh) 

2,460 100.00 2,479 100.78 2,592 105.37 2,964 120.51 
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Table 3-29: Comparison of the peak demand values for DR Signal 5 on a summer weekend. 

 
Case name 

Normal 5% GE 25% GE 100% GE 

kW % kW % kW % kW % 

Daily Instantaneous Peak 

(KW) 
872 100.00 889 101.95 828 94.92 957 109.64 

Peak in demand during 

High/Critical period (kW) 
828 100.00 824 99.46 781 94.26 742 89.58 

Maximum peak in demand 

after High/Critical period 

(kW) 

666 100.00 673 101.08 733 110.09 957 143.69 

  

As can be observed Table 3-29, for the 5% GE case as compared to the Normal case, there is 

very little reduction in the peak during the DR signal (0.54%). There is also no significant peak 

rebound after the DR signal period in the 5% GE case (0.08%). In the 25% GE case, there is a 

5.6% reduction in the peak during the DR signal period as compared to the Normal case and a 

peak rebound of 10.1% of the Normal case. In the 100% GE case, there is a 10.4% reduction in 

the peak during the DR signal period as compared to the Normal case and a peak rebound of 

43.7% of the Normal case. Hence, as compared to the Normal case, there is a noticeable rebound 

in the 25% GE case, while in the 100% GE case, there is significant rebound observed. The 

100% penetration case shows a rebound which is higher than the daily peak observed in the 

Normal case. This higher rebound peak however, need not be a concern if this new peak does not 

violate any feeder constraints. Hence, if the goal is to move the peak to different time frame, and 

a new peak is not an issue on the feeder for a summer weekend, then higher penetrations of GE 

appliances can give significant reduction in peak during the DR signal hours to a three rate 

pricing program.  

The three rate pricing structure can take advantage of the load shifting/load leveling 

capabilities of the two rate pricing scheme and the load curtailment benefit of a CPP pricing 

scheme. Also, as mentioned before, most utilities can only impose a CPP for a fixed number of 

days and for a fixed number of hours. However, for most utilities, the same restriction does not 

apply to a high price signal. Hence a combination of the two programs can be used by utilities 

for obtaining maximum DR benefits. 

 

3.6 With (75%) responsive electric air conditioning 

Previous scenarios have looked at the potential for peak reduction while only utilizing a 

suite of specific DR enabled GE appliances. However, a more realistic DR deployment scenario 

would likely also control the HVAC system of a residence. The following scenarios will simulate 

the effects of DR appliances, including HVAC systems, on a distribution feeder during peak 

loading. For this scenario, 75% of the homes include electric air conditioning, all of which are 

responsive to the DR signal as described in Section 2.2, and 100% of the appliances are 
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responsive to the signal (at the penetration levels described in Table 3-2). The simulations were 

conducted with two kinds of DR signals, during both summer weekends and weekdays. The first 

DR signal is a four hour critical pricing period as shown in Table 3-30, and the simulation results 

are discussed in Section 3.6.1. The second DR signal evaluated is a three rate pricing structure, 

and the simulation results are discussed in Section 3.6.2. 

In this scenario, four cases were considered; one with unresponsive GE appliances and air 

conditioning (Base), the second one is unresponsive GE appliances and 100% responsive air 

conditioning, the third one is 100% responsive GE appliances with 100% responsive air 

conditioning, and the last case is 100% responsive GE appliances and unresponsive air 

conditioning. The following observations are made from the time series simulations of a peak 

summer weekday. 

 

3.6.1 Four hour critical pricing signal 

Table 3-30 describes the four hour critical pricing signal used in this scenario. In order to 

investigate the effects of responsive air conditioning and GE appliances on distribution feeder 

during high pricing period, time series simulations were conducted in GridLAB-D.  

 

Table 3-30: Four hour pricing signal. 

Season Weekday Weekend 

Summer 9:00 – 13:00 11:30 – 3:30 

Winter 17:00 – 21:00 17:00 – 21:00 

 

From the simulation results shown in Figure 3-11, it is observed that the daily energy 

consumption of responsive air conditioning case with unresponsive GE appliances (Normal with 

responsive air conditioning) is 1.05% (199 kWh), less than that of the unresponsive air 

conditioning case with unresponsive GE appliances (Base). This reduction is because the 

temperature setpoints of air conditioners are lowered from normal operating setpoints during the 

Critical signal, temporarily reducing air conditioning load. By adding 100% penetration of 

responsive GE appliances to the same case (Normal with responsive air conditioning) the daily 

energy consumption is further reduced by 1.21% (227 kWh) when compared to unresponsive GE 

appliances and responsive air conditioning (Normal with responsive air conditioning). This is 

due to the fact that some of the GE appliances accept delay and some of them run in ES-mode 

(Energy Saver mode).  
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Figure 3-11: Time series comparison of total load on a summer weekday for a four hour critical pricing. 

 

The total energy consumption during Critical pricing period with both appliances and air 

conditioning responding to the signal is 16.74% (754 kWh) lower than with only responsive air 

conditioning. The energy consumption after the Critical pricing period (except for the Base 

case), which is the recovery or rebound period, may be more than that deferred in the peak 

period. In this scenario, the energy consumption after the Critical pricing period, when both 

appliances and air conditioners respond, is 9.14% (418 kWh) more than is consumed with only 

the air conditioning responding. This is because all of the GE appliances that are delayed during 

the Critical signal randomize their start with some delay when the Normal signal arrives after the 

end of the Critical period. A comparison of the energy consumption for each of the four cases is 

shown in Table 3-31. 
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Table 3-31: Comparison of energy consumption on a summer weekday for a four hour Critical pricing. 

Case name 

Unresponsive air conditioning Responsive air conditioning 

Normal (Base) 100% GE Normal 100% GE 

(kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%) 

Daily Energy 

Consumption (kWh) 
18,937 100.0 18,727 98.9 18,738 98.9 18,511 97.7 

Energy Consumption 

during the High/Critical 

Period (kWh) 

5,190 100.0 4,443 85.6 4,504 86.8 3,750 72.2 

Energy consumption after 

High/Critical period till 

end of day (kWh) 

4,085 100.0 4,516 110.6 4,575 112.0 4,993 122.2 

 

A comparison of the peak demand of the base case and the three DR cases with a 75% 

penetration of air conditioning on a summer weekday for a four hour Critical pricing is shown in 

Table 3-32. Due to the response of the air conditioners and GE appliances, the peak demand 

during the critical period is reduced from 1,428 kW, in the base unresponsive case, to 1,153 kW, 

in the case with both responsive air conditioning and appliances, or a reduction of approximately 

19%. There is a 14.8% reduction in the peak demand during the Critical period in the responsive 

appliance only case versus an 8.3% reduction in the responsive air conditioning only case. This 

is because in all the cases, excepting the Base case, some population of GE appliances responds 

to Critical pricing and/or the air conditioning units lower their setpoint temperatures from the 

normal setpoints. Notice that a greater portion of the peak reduction within the signal period was 

provided by the appliances rather than the air conditioners (14.8% versus 8.3%). While the air 

conditioning resource is a greater portion of the reduction at the beginning of the critical period, 

as evident by the initial drop-off in the load in Figure 3-11, notice that after roughly two hours, 

the appliance only reduction is greater than the air conditioning reduction (orange line versus the 

black line). This is due to the fact that the air conditioner resource is exhausted as time 

progresses as the internal air temperature of the residence returns to equilibrium around the new 

thermostat setpoint. This is a common phenomenon associated with thermostat setback programs 

[4], that as time progress during the signal period, fewer air conditioning resources become 

available for reduction. The appliance demand, however, can be reduced at a fairly consistent 

rate throughout the time period, providing an overall greater reduction of demand within the DR 

signal time frame. 
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Table 3-32: Peak demand comparison on a summer weekday for a four hour Critical pricing. 

Case name 

Unresponsive air conditioning Responsive air conditioning 

Normal (Base) 100% GE Normal 100% GE 

(kW) (%) (kW) (%) (kW) (%) (kW) (%) 

Daily Instantaneous 

Peak (kW) 
1,428 100.0 1,411 98.8 2,155 150.9 2,189 153.3 

Peak demand during 

Critical period (kW) 
1,428 100.0 1,217 85.2 1,310 91.7 1,153 80.7 

Peak demand after 

Critical period (kW) 
1,245 100.0 1,411 113.3 2,155 173.1 2,189 175.8 

 

A comparison of the peak power demands on a summer weekday for a four hour Critical 

pricing are shown in Table 3-32. Due to the DR of the air conditioners and GE appliances, the 

peak demand during critical period is reduced from 1,428 kW, in the unresponsive air 

conditioning and GE appliances case (Base), to 1,153 kW, in comparison to the responsive air 

conditioning and GE appliances case, which is a reduction of approximately 19%. There are 

14.8% and 8.3% reductions in the peak demand during Critical period in the unresponsive air 

conditioning and responsive appliances, and responsive air conditioning and unresponsive 

appliances cases, respectively, in comparison to the base case. This is because in all the cases, 

excepting the base case, some population of the GE appliances responds to the Critical pricing 

and/ or the air conditioning units lower their setpoint temperatures from the normal setpoints. 

The DR operation of the responsive appliances and air conditioning can create a rebound after 

the end of the Critical pricing signal. The rebound may create a new peak load that is much 

higher than the original load, which lasts for a few minutes. However, this depends on the level 

of participation of the individual GE appliances and air conditioning units. The peak demand of 

the system, soon after the signal drops from the Critical pricing, in the responsive air 

conditioning only case is 173% (2,155 kW) of the unresponsive base case. This is because all of 

the air conditioning units that are running at higher temperature setpoints than normal, during the 

Critical pricing, return to their normal temperature setpoints soon after the Normal signal returns 

after the Critical pricing. The peak demand of the system, soon after the signal drops from 

Critical pricing, with both appliances and the air conditioning responding is 175% (2,189 kW) of 

the unresponsive base case. Notice that this is roughly the same as the case with only the air 

conditioning, indicating that the appliances did not significantly contribute to the peak rebound 

immediately following the change of the signal. This is because all of the GE appliances that are 

delayed during the Critical signal start with a small random delay when the Normal signal arrives 

after the end of the Critical period.  
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In this scenario, daily losses with both appliances and air conditioning responding are 0.55% 

(4 kWh), less than that with unresponsive appliances and air conditioning responding. Losses 

during the Critical pricing period with both responsive appliances and air conditioning are 0.46% 

(0.69 kWh) lower than that of unresponsive appliances and responsive air conditioning. The 

changes in system losses are fairly minimal compared to changes in energy consumption. 

Comparisons of losses for the DR cases on a summer weekday are listed in Table 3-33. 

 

Table 3-33: Loss comparison on a summer weekday for a four hour critical pricing. 

Case name 

Unresponsive air conditioning Responsive air conditioning 

Normal (Base) 100% GE Normal 100% GE 

(kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%) 

Daily Losses (kWh) 737 100.0 730 99.1 734 99.6 730 99.1 

Losses during the 

High/Critical Period (kWh) 
167 100.0 148 88.6 149 89.0 148 88.6 

Losses after High/Critical 

period till end of day (kWh) 
340 100.0 353 103.8 356 104.7 353 103.8 

   

3.6.2 Three rate pricing signal 

Similar to the previous section, four cases were simulated; however, a different price signal 

was applied to the loads. The simulations were conducted in GridLAB-D with a three rate 

pricing signal analogous to a TOU rate overlaid with a CPP signal. Table 3-34 describes the 

three rate pricing signal used in this scenario. 
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Table 3-34: Three rate pricing signal. 

 Normal High Critical 

Summer-

Weekday 

00:00 – 9:00 

15:00 – 23.59 

9:00 – 9:30 

13:00 – 15:00 

9:30 – 13:00 

 

Summer-

Weekend 

00:00 – 10:00 

16:00 – 23.59 

10:00 – 11:00 

15:00 – 16:00 

11:00 – 15:00 

 

Winter-

Weekday 

00:00 – 16:00 

22:00 – 23.59 

16:00 – 17:30 

20:00 – 22:00 

17:30 – 20:00 

 

Winter-

Weekend 

00:00 – 16:00 

22:00 – 23.59 

16:00 – 17:30 

20:00 – 22:00 

17:30 – 20:00 

 

 

From the simulation results shown in Figure 3-15, it is observed that the daily energy 

consumption of the responsive air conditioning and unresponsive appliance case is 1.3% (246 

kWh) less than that of the unresponsive base case. This reduction is because the temperature 

setpoints of the air conditioners are increased from their normal operating setpoints during the 

Critical signal, temporarily decreasing air conditioning load. Adding 100% responsive GE 

appliances to the same case further reduces daily energy consumption an additional 386 kWh to 

a total reduction of 3.3%. This is due to the fact that some of the GE appliances accept delay and 

some of them run in ES-mode, decreasing overall energy consumption.  
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Figure 3-12: Time series comparison of total on a summer weekday for a three rate pricing signal. 

 

A comparison of the energy consumptions during different periods of the day for the four 

cases is shown in Table 3-35. The total energy consumption during the High and Critical pricing 

periods with appliances and air conditioning responding is 18.6% (1,403 kWh) less than that of 

the no response case, while the appliance response is 12.4% (936 kWh) less and the air 

conditioning response is 6.1% (458 kWh) less than the no response case. This indicates that the 

appliances provide a greater energy reduction during the signal period than the air conditioning. 

For the energy consumption after the DR signal is released, during the rebound period, the 

increase is 11.3%, 8.3%, and 3.1% for the responsive appliance and air conditioning, responsive 

appliance, and responsive air conditioning cases, respectively. Note that the required recovery 

energy for the appliances is greater than the energy needed for recovery in the air conditioners. 

This is because the air conditioners controls actually have two recovery periods, one during the 

transition from Critical to High, and another from High to Normal. The controls for the GE 

appliances, however, are such that when moving from a Critical to High signal, the appliances 

still operate in an energy saver mode, decreasing the likelihood of creating a coincidental peak 

rebound while still in the High price period. 
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Table 3-35: Comparison of energy consumption on a summer weekday for a three rate pricing signal. 

Case name 

Unresponsive air conditioning Responsive air conditioning 

Normal (Base) 100% GE Normal 100% GE 

(kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%) 

Daily Energy Consumption 

(kWh) 
18,937 100.0 18,567 98.0 18,691 98.7 18,305 96.7 

Energy Consumption 

during the High/Critical 

Period (kWh) 

7,525 100.0 6,589 87.6 7,067 93.9 6,122 81.4 

Energy consumption after 

High/Critical period till 

end of day (kWh) 

6,873 100.0 7,440 108.3 7,087 103.1 7,646 111.3 

 

A comparison of the peak demands of the four cases on a summer weekday for three rate 

pricing signal is shown in Table 3-36. Due to the DR of the air conditioners and GE appliances, 

the peak demand during critical period is reduced from 1,428 kW, in the unresponsive base case, 

to 1,136 kW in case where both air conditioners and appliances response, which is a reduction of 

approximately 20.5%. There is a 13.9% and 8.0% reduction in the peak demand during the 

Critical period in the responsive appliances only and responsive air conditioning only cases, 

respectively. Again, notice that the appliances actually provide a greater overall reduction than 

the air conditioners (13.9% versus 8.0%) due to the ability of appliances to maintain a fairly 

consistent reduction throughout the Critical period.  

The rebound seen after the Normal signal returns, or the Critical signal returns to High, 

creates a new peak load that is much higher than the original load, lasting for a few minutes. 

However, the magnitude of this rebound depends on the level of participation of the individual 

GE appliances and air conditioning units. The peak power consumption of the total load, soon 

after the signal drops from Critical to High pricing in the responsive air conditioning only case is 

160.2% of the unresponsive base case, while the responsive air condition and appliance case is 

150.4%. This indicates that the energy reduction strategy of the GE appliances during the return 

to the High signal actually helps buffer against the air conditioning rebound, and reduces the 

observed rebound peak. The peak power consumption of the total load, soon after the signal 

drops from High to Normal pricing in the responsive air conditioning only case is 155.5% of the 

unresponsive base case, while the responsive air conditioning and appliance case is 165.5%. 

While the appliances do not help buffer the rebound in this case, they do contribute far less to the 

rebound than the air conditioners, as the random restart of the appliances tempers the response. 
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Table 3-36: Comparison of peak demand on a summer weekday for a three rate pricing signal. 

Case name 

Unresponsive air conditioning Responsive air conditioning 

Normal (Base) 100% GE Normal 100% GE 

(kW) (%) (kW) (%) (kW) (%) (kW) (%) 

Daily Instantaneous Peak 

(kW) 
1,428 100.0 1,269 88.9 1,994 139.6 1,872 131.0 

Peak demand during 

Critical period (kW) 
1,428 100.0 1,229 86.0 1,314 92.0 1,136 79.6 

Peak demand after 

Critical period (before the 

end of High period) (kW) 

1,245 100.0 1,141 91.6 1,994 160.2 1,872 150.4 

Peak demand after High 

period (kW) 
1,086 100.0 1,269 116.9 1,689 155.5 1,797 165.5 

 

Comparisons of losses for the four cases on a summer weekday for the three rate pricing 

signal are listed in Table 3-37. Again, note that while loss reduction is significant in all DR cases 

during the Critical and High signals (as much as 9.7%), the overall daily losses are only reduced 

by 1.8%, or 13 kWh, on a day where 18,000 kWh are consumed and total losses are 

approximately 737 kWh. 

 

Table 3-37: Comparison of on a summer weekday for a three rate pricing signal. 

Case name 

Unresponsive air conditioning Responsive air conditioning 

Normal (Base) 100% GE Normal 100% GE 

(kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%) 

Daily Losses (kWh) 737 100.0 724 98.2 731 99.2 724 98.2 

Losses during the 

High/Critical Period (kWh) 
240 100.0 219 91.3 228 95.0 219 91.3 

Losses after High/Critical 

period till end of day (kWh) 
301 100.0 310 103.0 307 102.0 310 103.0 
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3.6.3 Summary  

A total of four different cases (combinations of responsive and unresponsive GE appliances 

and air conditioning) were simulated using a four hour critical signal and a three rate pricing 

signal. The goal was to compare the performance of the DR enabled appliances to a DR enable 

air conditioning system. The air conditioning system provides an overall greater resource due to 

the overall demand being greater than the appliances, but because of GE’s DR algorithms 

specifically designed to work with TOU and TOU/CPP signals, the appliances can provide 

greater demand reduction than the air conditioners alone. Specifically, due the exhaustion of the 

air conditioning resource and the appliance load reduction being more evenly spread across the 

time interval, demand reduction within the Critical signal is significantly increased with the 

addition of DR enabled appliances. Additionally, energy saver controls in the GE appliances 

during High signal periods help alleviate some of the peak rebound seen during the transition 

from a Critical signal to a High signal. Overall, the DR enabled appliances significantly 

contribute to the peak demand reduction within a critical period, while mitigating a number of 

the side effects during the recovery periods. 

 

3.7 With higher penetration of responsive electric air conditioning  

This scenario will look at similar situations to scenarios in Section 3.6, except that the 

weather will be hotter and more humid with a higher penetration of electric air conditioning 

systems (Houston, TX). The motivation for considering this scenario is to observe the influence 

of higher penetration of air conditioners on feeder load during peak periods along with GE 

appliances. The simulations were conducted in GridLAB-D with two kinds of DR signals. The 

first DR signal simulated was a four hour critical pricing period, and the simulation results with 

this pricing signal are discussed in Section 0. The second DR signal simulated was a three rate 

pricing signal and is discussed in Section 3.7.2. 

In this scenario, 95% of residences contain an electric air conditioning system. It is assumed 

that during the DR cases, all of these residences use a DR enabled thermostat control, responding 

at the rate described in Section 2.2. Appliance penetration in the residences is again described by 

Table 3-2. This leads to three cases: a base case with no response, a case where only the air 

conditioning units respond, and a case where both the air conditioner and the appliances respond. 

Detailed time series simulations were conducted in GridLAB-D with a four hour critical pricing 

period during summer weekdays. In order to investigate the effect of DR response of air 

conditioners and GE appliances on distribution feeder during Critical period, time series 

simulations were conducted in GridLAB-D for winter and summer. 
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3.7.1 Four hour critical pricing signal 

Table 3-30 in Section 3.6.1 describes the four hour Critical pricing signal used in this 

scenario. Figure 3-13 compares time series demand of the three cases on a summer weekday. A 

comparison of the energy consumption of the three cases on a summer weekday is shown in 

Table 3-38. Table 3-39 compares the peak demand of the three cases. 

 

 

Figure 3-13: Time series comparison of total on a summer weekday for a four hour critical pricing. 

 

Results are relatively similar to those seen in Section 3.6.1 in terms of energy consumption, 

peak reduction, and rebound, so a detailed discussion of the individual results will not be 

presented here. However, a few points of interest can be discussed in relation to the previous 

75% HVAC penetration case. Of course, daily energy consumption and peak demand are 

increased in the base case, from 18,937 kWh to 23,296 kWh and 1,428 kW and 1,706 kW, 

respectively. This is due the increased penetration of the air conditioners and the increased duty 

cycle due to the increased air temperature and more humid air. This means that the air 

conditioner is a larger percentage of the DR resource in the 95% air conditioner penetration case 

versus the 75% case, making the appliance resource relatively smaller. Because of this, peak 

demand during the critical period is not reduced as much relative to the 75% case (18.0% 

reduction in the 95% penetration case versus 19.3% in the 75% case) and the reduction in the 

overall energy consumption is lower (2.0% versus 2.3%). However, it also leads to a greater 
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increase the peak rebound. In the 95% penetration case, the peak after the critical signal 

increases from 1,661 kW to 2,785 kW, while in the 75% penetration case, it increases from 1,245 

kW to 2,189 kW. Because of the higher penetration of air conditioners, the rebound is greater 

and the appliance rebound is further dwarfed by the air conditioner rebound. Overall, in the 

higher air condition penetration case, the appliances are not able to provide as much of a leveling 

ability during the critical period and have a lesser effect on the rebound peak as opposed to the 

lower air conditioner penetration case. 

 

Table 3-38: Comparison of energy consumption on a summer weekday for a four hour critical pricing. 

Case name 

Unresponsive air 

conditioning 
Responsive air conditioning 

Normal (Base) Normal 100% GE 

(kWh) (%) (kWh) (%) (kWh) (%) 

Daily Energy 

Consumption (kWh) 
23,296 100.0 23,044 98.9 22,822 98.0 

Energy Consumption 

during the High/Critical 

Period (kWh) 

6,105 100.0 5,065 83.0 4,331 70.9 

Energy consumption after 

High/Critical period till 

end of day (kWh) 

5,836 100.0 12,981 222.4 13,493 231.2 

 

Table 3-39: Comparison of peak on a summer weekday for a four hour critical pricing. 

Case name 

Unresponsive air 

conditioning 

Responsive air conditioning 

Normal (Base) Normal 100% GE 

(kW) (%) (kW) (%) (kW) (%) 

Daily Instantaneous 

Peak (kW) 
1,706 100.0 2,763 162.0 2,785 163.2 

Peak demand during 

Critical period (kW) 
1,706 100.0 1,568 91.9 1,399 82.0 

Peak demand after 

Critical period (kW) 
1,661 100.0 2,763 166.4 2,785 167.7 
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3.7.2 Three rate pricing signal 

Table 3-34 describes the three rate pricing signal used in this scenario, analogous to a TOU 

pricing program with CPP overlay. A time series of the demand of the three cases are shown in 

Figure 3-14. A comparison of the energy consumption for each of the cases on a summer 

weekday is shown in Table 3-40. Table 3-41 compares the peak demand on a summer weekday 

for the three rate pricing signal. 

Results are relatively similar to those seen in Section 3.6.2 in terms of energy consumption, 

peak reduction, and rebound, so a detailed discussion of the individual results will not be 

presented here. However, a few points of interest can be discussed in relation to the previous 

75% HVAC penetration case. Again, daily energy consumption and peak demand are increased 

in the base case, from 18,937 kWh to 23,296 kWh and 1,428 kW and 1,706 kW, respectively. 

This is due the increased penetration of the air conditioners and the increased duty cycle due to 

the increased air temperature and more humid air. Because of this, the peak demand during the 

critical period is not reduced as much relative to the 75% case (9.1% reduction in the 95% 

penetration case versus 20.4% in the 75% case) and the reduction in the overall energy 

consumption is lower (3.0% versus 3.3%). However, it also leads to a greater increase the peak 

rebound in both the period following a transition from a Critical signal to a High signal and a 

High signal back to Normal. In the 95% penetration case, the peak after the Critical signal 

increases from 1,661 kW to 2,526 kW, while in the 75% penetration case, it increases from 1,245 

kW to 1,994 kW. The peak after the High signal increases from 1,530 kW to 2,506 kW in the 

95% case, while it only increases from 1,086 kW to 1,797 kW in the 75% case. Because of the 

higher penetration of air conditioners, the rebound is greater and the appliance rebound is further 

dwarfed by the air conditioner rebound. Overall, in the higher air condition penetration case, the 

appliances are not able to provide as much of a leveling ability during the critical period and 

have a lesser effect on the rebound peak as opposed to the lower air conditioner penetration case. 
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Figure 3-14: Time series comparison of total on a summer weekday for a three rate pricing signal. 

 

Table 3-40: Comparison of energy consumption on a summer weekday for three rate pricing signal. 

Case name 

Unresponsive air 

conditioning 
Responsive air conditioning 

Normal (Base) Normal 100% GE 

(kWh) (%) (kWh) (%) (kWh) (%) 

Daily Energy 

Consumption (kWh) 
23,296 100.0 22,990 98.7 22,592 97.0 

Energy Consumption 

during the High/Critical 

Period (kWh) 

9,240 100.0 8,573 92.8 7,654 82.8 

Energy consumption after 

High/Critical period till 

end of day (kWh) 

9,059 100.0 9,418 104.0 9,940 109.7 

  

  



 

96 

Table 3-41: Comparison peak demand on a summer weekday for three tier pricing signal. 

Case name 

Unresponsive air 

conditioning 
Responsive air conditioning 

Normal (Base) Normal 100% GE 

(kW) (%) (kW) (%) (kW) (%) 

Daily Instantaneous Peak 

(kW) 
1,706 100.0 2,644 155.0 2,526 148.0 

Peak demand during Critical 

period (kW) 
1,706 100.0 1,711 100.3 1,550 90.9 

Peak demand after Critical 

period (before the end of 

High period) (kW) 

1,661 100.0 2,644 159.0 2,526 152.0 

Peak demand after 

High period (kW) 
1,530 100.0 2,390 156.0 2,506 163.8 

 

3.8 “Worst” case rebound scenario 

This scenario uses similar penetration of air conditioners and appliances as discussed in 

Section 3.7, with a 95% penetration of air conditioning and 100% penetration of GE DR enabled 

appliances. However, to simulate the “worst” case during the rebound period, it is assumed that 

the GE appliances that accepted delay during the critical signal will start immediately after the 

normal signal arrives without randomizing the start times as was done in the previous sections. 

This leads to considerable synchronization of the appliance loads, and should represent the 

largest rebound that could be seen on this feeder due to both the appliances and the air 

conditioning units. Both a six hour and two hour critical price signal are simulated. The 

simulation results using the six hour critical price signal are discussed in Section 3.8.1 and the 

simulation results for the two hour critical price signal are discussed in Section 3.8.2. 

 

3.8.1 Six hour critical pricing signal 

Table 3-42 shows the six hour critical pricing signals’ start and end times during weekdays 

and weekends for a summer simulation. 

Table 3-42: Six hour critical pricing signal. 

 
Weekday Weekend 

Critical Period 9:00 – 15:00 10:00 – 16:00 
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Figure 3-15 compares the time series demand of the two cases for a six hour Critical price 

period on a summer weekday. A comparison of the energy consumption of the three cases is 

shown in Table 3-43. Table 3-44 compares the peak demand of the three cases across three time 

intervals: daily, during the DR signal, and immediately following the DR signal. Detailed results 

for each of the metrics will not be discussed in this section. However, there are a couple of points 

of considerable note that can be discussed. Of obvious note is the magnitude of the peak during 

the rebound period, as all of the appliance and air conditioning loads synchronize. This produces 

a peak which is nearly two times greater than the original peak on the feeder, and is roughly 600 

kW greater than any case looked at previously. This is caused by two major factors. First, the 

critical period has been extended to six hours causing a greater number of appliances to delay 

their start times as more and more consumers use the delay option. Second, no mitigating 

controls were used to help ease the transition into the rebound period; every load which delayed 

action, immediately tried to recover as soon as the critical period ended. While it is understood 

that most utilities use reasonable actions to mitigate rebounds (such as dividing customers into 

different signal groups), this example is used to highlight the possible negative effects were this 

control strategy to be implemented without thought of the consequences. 

Of final note is the behavior of the load during the critical price period. Notice that there is a 

significant reduction of demand during the first hour or two, but by hour three, the reduction has 

decreased to relatively steady value of about half of what was seen at the beginning of the period. 

Again, this is due to the exhaustion of the air conditioning resources as customers’ internal air 

temperatures reach equilibrium around their new, higher setpoint. After about hour three, most of 

the reduction is coming from the appliance load. Again, this is indicative of the fact that while air 

conditioning units are not able to provide prolonged reduction without considerable customer 

dissatisfaction (high internal air temperatures), the appliance loads are far more capable of 

providing extended, consistent reduction in demand. 
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Figure 3-15: Time series demand on a summer weekday for a six hour critical period. 

 

Table 3-43: Comparison of energy consumption on a summer weekday for a six hour critical period. 

 Normal (Base) Responsive 

 (kWh) (%) (kWh) (%) 

Daily Energy Consumption 

(kWh) 
23,296 100.0 22,468 96.4 

Energy Consumption during 

the High/Critical Period 

(kWh) 

9,240 100.0 6,986 75.6 

Energy consumption after 

High/Critical period till end 

of day (kWh) 

9,059 100.0 10,484 115.7 
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Table 3-44: Comparison of peak demand on a summer weekday for a six hour critical period. 

 Normal (Base) Responsive 

 (kW) (%) (kW) (%) 

Daily Instantaneous 

Peak (kW) 
1,706 100.0 3,160 185.2 

Peak demand during 

Critical period (kW) 
1,706 100.0 1,598 93.7 

Peak demand after 

Critical period (kW) 
1,530 100.0 3,160 206.5 

 

3.8.2 Two hour pricing signal 

Table 3-45 lists the two hour critical pricing signals’ start and end times during weekdays 

and weekends for a summer simulation. 

 

Table 3-45: Two hour critical pricing signal. 

 
Weekday Weekend 

Critical Period 12:00 – 14:00 12:00 – 14:00 

 

Figure 3-16 compares the time series demand of the two cases for a two hour critical pricing 

on a summer weekday. A comparison of the energy consumption of the three cases is shown in 

Table 3-46. Table 3-47 compares the peak demand of the two cases across three time intervals: 

daily, during the DR signal, and immediately following the DR signal. Detailed results for each 

of the metrics will not be discussed in this section. However, there are a couple of points of 

considerable note that can be discussed. Of obvious note is the magnitude of the peak during the 

rebound period, as all of the appliance and air conditioning loads synchronize. This produces a 

peak which is nearly 70% greater than the base case, but far less than in the six hour critical 

period case. Since the critical period has been shortened to two hours, fewer appliances have had 

to delay their start times and fewer air conditioners have been exhausted. No mitigating controls 

were used to help ease the transition into the rebound period and every load which delayed action 

immediately tried to recover as soon as the critical period ended, and since fewer resources had 

been exhausted or delayed within the shorter critical period, the rebound is significantly less than 

in the six hour case.  

Again, of note is the behavior of the load during the critical price period. Notice that there is 

a significant reduction of demand during the first hour which steadily reduces, but does not reach 
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a consistent reduction by the end of the second hour. The reduction indicates exhaustion some of 

the air conditioning resources as customers’ internal air temperatures reach equilibrium around 

their new, higher setpoint. However, since a consistent reduction is not reached, it indicates that 

some air conditioning resource is still available. During the shorter critical signal period, the air 

conditioning systems are able to provide a fairly substantial reduction as compared to the 

appliance load.  

 

 

Figure 3-16: Time series of demand for a two hour critical period. 
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Table 3-46: Comparison of energy consumption on a summer weekday for a two hour critical period. 

 Normal (Base) Responsive 

 (kWh) (%) (kWh) (%) 

Daily Energy Consumption 

(kWh) 
23,296 100.0 23,081 99.0 

Energy Consumption 

during the High/Critical 

Period (kWh) 

3,258 100.0 1,831 56.2 

Energy consumption after 

High/Critical period till 

end of day (kWh) 

11,393 100.0 12,395 108.8 

  

Table 3-47: Comparison of peak demand on a summer weekday for a two hour critical period. 

 Normal (Base) Responsive 

 (kW) (%) (kW) (%) 

Daily Instantaneous 

Peak (kW) 
1,706 100.0 2,861 167.7 

Peak demand during 

Critical period (kW) 
1,706 100.0 1,500 87.9 

Peak demand after 

Critical period (kW) 
1,619 100.0 2,861 176.7 
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4 Conclusions 

The widespread adoption of demand response enabled appliances and thermostats can result 

in a significant reduction in the peak electrical demand. GE has developed a line of appliances 

that will have the capability of offering several levels of demand reduction actions based on 

information from the utility grid, often in the form of price. The levels of demand reduction are 

roughly designed to correspond to a TOU plus CPP overlay pricing structure, reducing demand 

significantly during a critical pricing period, and less so during a high TOU pricing period. 

Outside of these time periods, the price is considered normal and the operation of the appliance 

is standard operation. The operation and system effects of these appliances were modeled and 

simulated in open-source software, GridLAB-D, including evaluation of appliance controls, 

improvement to current algorithms, and development of aggregate control methodologies. 

From the individual appliance simulations presented in Section 2, conclusions about the 

effectiveness of the DR control strategies can be drawn for each of the appliances. 

Electric clothes dryers: 

 Can provide significant reduction in demand during both high and critical pricing periods 

due to the fact that they have a greater instantaneous demand than other appliances (on 

the order 40-70% of appliance load, or 10s - 100s of kW).  

 Provide very significant short term reductions (on the order of 100s of kW for 15 minutes 

or less) due to the critical signal operational strategy. 

 Because of the ES-mode of operation, energy consumption can be reduced by nearly 10% 

during a high or critical period, while extending the amount of time it takes the clothes to 

dry. 

 Are significantly affected by the addition of a randomization function during the rebound 

period, reducing the peak rebound significantly when applied. Without a control method 

during the rebound period, load can increase by as much as 8.5 times the original 

appliance peak demand, while with built-in mitigation methods this can be reduced by a 

factor of two to three.  

 Typically peak in demand during the late morning or early afternoon, which does not 

coincide with typical CPP and TOU time periods, when system demand is greatest. 

Clothes washers: 

 Can provide peak reductions during critical pricing periods (on the order of 50% of the 

appliance load, or a few kW), in addition to the secondary effects of reduced water 

heater load. Secondary effects of reduced water heater load were not explicitly modeled 

in this analysis. 

 Does not directly reduce daily energy consumption, but an indirect reduction may be 

seen due to the reduced water heater load. 

 Can provide additional benefits by helping to control the rebound in demand seen after 

returning to normal operation after a critical pricing period. The addition of a built-in 
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randomization function helps to diversify the timing of the return after a customer selects 

the delay option, and reduces the overall rebound from approximately 2.4 times the 

original peak to 1.1 times the original peak. 

 Typically peak in demand is seen during the late morning or early afternoon, and may 

not coincide with standard CPP and high TOU time periods, when system demand is 

greatest. 

Dishwashers: 

 Are effective at reducing demand during both high and critical pricing periods (on the 

order of 80% of the appliance load, or 10s of kW). This is mainly due to the appliance’s 

ability to notify the customer of a higher than normal price, and the customer willingness 

to delay the operation of the appliance until a later, lower price period. 

 Can provide additional rebound management services when built-in randomization 

functions are utilized. Again, due to the willingness of customers to delay normal 

operations, the randomization period can be extended over a longer period of time than 

other appliances (over an hour and a half in these simulations) such that the rebound seen 

is relatively small and shifted much later than other appliances (reduced from 4.7 times to 

2.8 times the original peak). 

Hybrid water heaters: 

 Are extremely effective at reducing demand during both high and critical pricing periods 

by locking out resistive elements and reducing the thermostat setpoint (on the order of 

30-55% of appliance load, or 100s of kW). This is in addition to the reduced demand 

naturally seen by switching from a resistive water heater to a heat pump water heater, 

which was not explicitly simulated. 

 Significantly reduce daily energy consumption (up to 7%) on days with a high or critical 

price, in addition to the reduced energy consumption naturally seen when switching from 

a resistive water heater to a heat pump water heater, due to reduced use of the resistive 

elements and lowered setpoints. 

 Have no built-in rebound management strategy, but without a built-in strategy, they show 

a rebound in the demand roughly two to three times greater than the original appliance 

peak. However, due to the heat pump being used, rather than resistive load, the rebound 

is relatively small.  

 Typically peak in demand during mornings and evenings, usually coinciding with system 

peaks, providing a greater relative resource during those time periods. 

Electric ranges: 

 Can be divided into two responses, the oven and the cooktop. The dual oven can provide 

significant peak reductions during high and critical pricing periods. This is mainly due to 

the appliance’s ability to notify the customer of a higher than normal price, and the 

customer’s willingness to use the upper oven rather than the lower oven (on the order of 
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30% of oven load, or 10s of kW). Cooktops did not provide any significant reduction in 

demand during high or critical time periods (less than 5% of cooktop load). 

 Did not significantly contribute to the peak demand during the rebound period (on the 

same order as the original peak). 

 Typically peaks during the evening, which coincides with standard CPP and high TOU 

pricing periods, when system demand is typically greatest, providing a greater relative 

resource. 

Refrigerators: 

 Provide relatively significant reductions in demand during both high and critical time 

periods (on the order of 30% of appliance load, or 10s-100s of kW), mainly due to the 

shifting of the defrost cycle to a normal price period. 

 Do not have a rebound mitigation strategy, but their contribution to the rebound is 

relatively small (roughly two times the original appliance peak) and is temporally shifted 

from the rest of the appliances due to the pre-chilling requirement at the beginning of the 

defrost cycle. 

 Are relatively unobtrusive to customers in the way that they respond to a high or critical 

signal, only delaying the defrost cycle and allowing internal cavity air temperatures to 

drift slightly. 

 

While the response of a single appliance in a home provides relatively small benefits 

compared to an HVAC system, because of the greater number of appliances in the home, the 

aggregate behavior of a suite of DR enabled appliances is significant. In Section 3, it was shown 

that even at low penetration levels (5% and 25%) of GE DR enabled appliances, the appliances 

alone are able to provide peak reduction capabilities (1-2% and 4-5%, respectively). For obvious 

reasons, as penetration levels increased, peak reduction capabilities also increased, to as high as 

19% of the system peak by only utilizing the built-in DR capabilities of the GE appliances.  

The increase in reduction capabilities was accompanied by an increase in the peak rebound 

seen immediately after returning to a normal pricing period, as high as 140% of the original 

system peak with 100% penetration of DR enabled appliances, even when using the built-in 

rebound mitigation strategies. Rebounds were significantly lower in the lower penetration cases, 

typically not exceeding more than 2-3% of the original system peak. However, in all cases the 

peak was successfully shifted from the critical pricing period to the normal pricing period. If the 

rebound mitigations strategies were not used, significant rebounds in the peak demand could be 

seen. Of course, if the system operator is concerned about local demand constraints, then the 

rebound may be of concern, but if the operator is focused on the effects to the larger system and 

temporally shifting peak demand from one time period to another, the magnitude of the rebound 

may not be of concern.  
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A comparison of the performance of the DR enabled appliances to DR enabled air 

conditioning systems was also performed. The air conditioning system provides a greater overall 

resource due to greater daily energy consumption (on a peak day) than the appliances. But, 

because of the built-in DR controls, the appliances provide increased demand reduction over the 

air conditioners alone, and in some cases, the response of the appliances actually outperformed 

the response of the air conditioning systems. This was due to the appliance controls being 

specifically designed to work with TOU and TOU plus CPP signals. While the air conditioning 

resource was exhausted over the four or six hour critical pricing periods, the appliance load 

reduction was more evenly spread across the critical pricing period. This resulted in an overall 

reduction in demand within the critical pricing period that was significantly increased with the 

addition of DR enabled appliances. 

Additionally, because of the energy conservation modes (ES-mode) that are available in the 

GE appliances during high pricing periods, the appliances provide a reduction in overall energy 

consumption in addition to the peak reduction. This makes the built in controls well suited for 

TOU or TOU plus CPP rate structures, balancing the long term energy shifting goals of a TOU 

program with the peak reduction goals of a CPP program. 
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Appendix A: Detailed Procedure for Appliance Model Development 

This appendix has been released as a separate document to protect GE Appliances 

intellectual property. It includes very detailed procedures for developing the appliance models, 

and proprietary laboratory testing data. Please contact GE Appliances’ representatives to request 

further documentation. 
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Appendix B: Metrics for Simulation Studies 

Daily energy consumption  

This metric will be used to study the change in energy consumption due to the appliances 

responding to a DR signal. Depending upon the case studied, this may be defined as the energy 

consumed by the appliances only, or it may be the entire distribution feeder load at the 

substation. The daily energy value is reported in kWh.  

 

Energy consumption during the High and Critical periods 

This metric is used to study the change in energy consumption due to the appliances 

responding to a signal during the High and Critical periods. This metric measures the total 

energy consumed by the appliances, or the entire distribution circuit depending upon the case, 

when responding to a DR signal. When using only a Critical or High signal, the energy 

consumption during the Critical or High signal is measured. When both a Critical and High 

signal are used in conjunction (e.g., during a CPP event overlaying a high TOU signal), the 

energy consumption is measured as energy during both the High and Critical time periods. 

Figure B-1 shows an example using a Critical period (within the dotted box), which will be the 

time frame used for calculating the energy value. Note that only a Critical signal is shown in the 

Figure B-1. Energy consumption during the High and/or Critical period is reported in kWh.  

 

 

Demand response case

Base case
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Critical period

Normal price
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 Figure B-1: Calculation of the energy consumption during the Critical period. 

 

Energy consumption after High and Critical periods 
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This metric is used to study the change in the energy consumption that may occur after the 

DR signal period. This increase in aggregate energy consumption can occur due to the appliance 

delaying processes during a DR signal period, and a later “payback”, or due to a larger number 

of appliances being operated during time periods where appliance is normally lower. This means 

that the energy consumption was shifted from the High or Critical signal periods to the Normal 

signal period. For a utility or system operator, this can mean the potential for deferment of 

buying energy at a high price, and buying it at a lower price instead. The total energy 

consumption of the appliance, or distribution circuit depending upon the case, is measured for 

the six hours immediately following the return to a Normal signal, whether the DR signal was 

High or Critical. A six hour period was chosen as the simulation results indicated that the 

demand of the appliances during the DR cases typically settled back to the base case values 

within six hours. Hence, a six hour period was chosen as the “payback” period. Figure B-2 

shows an example of the time frame (within the dotted box) that is used for calculating this 

value. Again, the energy consumption is reported in kWh.  
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 Figure B-2: Calculation of the energy consumption after the High/Critical period. 

 

Peak demand during the DR period 

This metric is used to study the effect that the appliance response to pricing signals have on 

the peak system load during the DR signal period. There can be many objectives for trying to 

reduce the system and/or feeder peak load. When the system load exceeds the physical limits of 

the system, system reliability and life expectancy can be reduced. Hence, one objective of 

reducing the peak load using DR can help increase the system reliability. Another key reason for 

reducing peak load is that the cost of energy ($/kWh) is highest during system peaks. Thus 

decreasing peak load can result in a significant reduction in overall system costs at both the 
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Independent System Operator or Regional Transmission Organization (ISO or RTO) and the 

retail level. When this metric is applied to study the reduction in the feeder load during DR 

signal periods, the purpose is to study the extent to which the feeder load can be reduced during 

system peak periods. When several feeders are present in a system, a particular feeder peak need 

not align with the system peak. Figure B-3 shows an example of the time frame (within the 

dotted box) that is used for calculating this value. The peak values to be determined are 

represented in the figure by the dotted circles, and may not be correspond to the same time step 

across various cases, as the peak load may shift in time. The value is reported in kW and is the 

maximum load observed during the High and Critical signal time periods. 
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Figure B-3: Calculation of the peak demand during a Critical period. 

 

Peak demand after DR signal period 

One of the possible detriments to adopting certain DR strategies has been the concern that 

after a DR period, a short term increase in the demand is observed in the system caused by a 

reduced diversity factor of the system loads. This is often referred to as a “payback” or 

“rebound”. The purpose of this metric is to determine the extent to which the appliance response 

can cause an increase in demand following a DR signal period. This metric is measured as the 

greatest load value of the appliances, or of the distribution circuit depending upon the case, 

during a six hour period following the return to a Normal signal. A six hour period was chosen as 

the simulation results indicated that the DR case responses settled to the base case values 

typically within a period of six hours. It should be noted this “rebound” is a function of the 

control strategy chosen to “release” the appliances from their delay status. If the start-up of the 

delayed appliances when the normal signal is received is randomized over a given period, the 

peak of the rebound can be reduced and spread over the subsequent period; however this also 
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causes a larger inconvenience to the consumer by delaying the operation of their appliance 

beyond the critical/high period. Figure B-4 shows an example of the time frame (within the 

dotted box) that is used for calculating this value. The peak values to be determined are 

represented in the figure by the dotted circles. The value is reported in kW, and is the maximum 

load observed after the High or Critical signal periods.  
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Figure B-4: Calculation of the peak demand after a Critical period. 

 

Daily peak demand 

The purpose of this metric is to study the change in the daily peak power. Peak demand is 

used to study future capacity building requirements. It is important to size system equipment 

optimally to account for this peak demand value. Oversized equipment can result in unnecessary 

capacity cost investment and under-utilization of the equipment. Undersized equipment can 

result in reduction of system reliability. Utilities use the greatest daily peak demand value to 

balance their economic and reliability objectives. Figure B-5 shows an example of the time 

frame (within the dotted box) that is used for calculating this value. The peak values to be 

determined are represented in the figure by the dotted circles. The value is reported in kW, and is 

the maximum load observed during the 24-hour period of the simulation. 
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Figure B-5: Calculation of the daily peak demand. 
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Appendix C: ZIP and HVAC Load Models 

ZIP Models 

ZIP models are two-state models: energized and de-energized. When energized, there is only 

a single operational state and the energy consumption can be determined using (C-1) for real 

power, (C-2) for reactive power, and (C-3) as a constraint [7]. 
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where: 

Pi : real power consumption of the i
th

 load 

Qi: reactive power consumption of the i
th

 load 

Va: actual terminal voltage  

Vn: nominal terminal voltage  

Sn: apparent Power consumption at nominal voltage 

Z%: percent of load that is constant impedance 

I%: percent of load that is constant current 

P%: percent of load that is constant power 

Zθ: phase angle of constant impedance component 

Iθ: phase angle of constant current component 

Pθ: phase angle of constant power component 

 

In a time-variant load representation, the coefficients of the ZIP model, Vn, Sn, Z%, I%, P%, 

Zθ, Iθ, and Pθ, remain constant, but the power consumption, Pi and Qi, of the i
th

 load varies with 

the actual terminal voltage, Va. The ZIP model is similar to the polynomial representation used 

in many commercial software packages. In the polynomial representation of the ZIP load, the 

constant coefficient is equivalent to P%, the linear coefficient is equivalent to I%, and the 

quadratic coefficient is equivalent to Z%. The ZIP model only varies the power consumption as a 

function of actual terminal voltage, Va.  

In (C-1) and (C-2), there are 6 constants that define the voltage-dependent behavior of the 

ZIP load:   ,   ,   ,   ,   , and   . Because the actual value of the distribution feeder voltage 
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continually changes, it is critical to understand how the energy consumption of end use loads will 

vary. Specifically, what are the six constants that accurately reflect various end use loads? For 

loads such as a heating element, it is clear that the load is 100% Z, but for more complicated 

loads, such as a liquid crystal display (LCD) or compact florescent light (CFL), the proper ratios 

are not as apparent. 

As part of the 2010 DOE report on Conservation Voltage Reduction (CVR), a number of 

laboratory tests were conducted to determine the six constants for various end use loads [10]. 

Figure C-1 is an example of the laboratory testing that was conducted on a 13W compact 

florescent light bulb. 

 

 

Figure C-1: Voltage-dependent energy consumption of 13W CFL. 

 

In traditional distribution analysis, ZIP models are generally not developed for every 

individual load; instead models are developed for load classes such as residential, commercial, 

and industrial. Every load within a given load class then uses the same ZIP values, with the 

exception of the apparent power consumption at nominal voltage, Sn. The value of Sn for each 

load may change at 1-hour intervals to generate a daily load profile at the feeder level. The use of 

similar ZIP values for each load class, which only change at 1-hour intervals, is not able to 

represent coincidental load peaks that occur at the distribution level, especially due to exogenous 

signals that may modify the natural behavior of the load. 

Heating, Ventilation, and Air Conditioning Model 

When the energy consumption of an end-use load is a function of variables other than 

terminal voltage, the use of a ZIP model is no longer adequate. This is true of any load with an 

external control system or an internal control loop. To illustrate this issue, the air conditioning 

system of a single family residence is examined while in the cooling mode. As with the ZIP 

model, an air conditioning system is a two-state model (ON or OFF), but only has a single 

operational state. 
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 Because a cooling system operates to maintain internal air temperature within a band, 

parameters such as near term history of operation, time of year, outside air temperature, building 

construction, and terminal voltage will impact the instantaneous power consumption, as well as 

the energy consumption. To examine these issues, a physical model of the cooling system and 

the structure of the building is constructed using an equivalent thermal parameter (ETP) model 

[2]. Because the ETP model has been shown to be an accurate representation of residential and 

small commercial building instantaneous power draw, as well as energy consumption, it will be 

used for the formulation of the physical model. 

Figure C-2 is a diagram showing the heat flow for the ETP model of a single family 

residence, i.e., a house. While the heating/cooling system can be one of any numerous types, for 

the purposes of this paper, it is assumed that the system is a heat pump in the cooling mode. In 

addition to the heat removal of the heat pump while cooling and the heat gain through the 

building exterior, there are two additional significant flows of heat within a house: incident solar 

radiation and internal gains from waste heat generated by end-use loads. These sources and sinks 

of heat constitute the total heat energy exchange in the house. This flow of heat is then divided 

between the air in the house and the mass of the house, i.e., walls and furniture. A portion of the 

incident solar energy shining through a window will heat the interior air of the house, while the 

remaining incident energy will be absorbed by the walls, floors, and furniture. A similar division 

occurs with the waste heat from end-use loads. The internal air temperature of the house is 

thermally coupled to the internal mass temperature, and the internal air temperature is then 

thermally coupled to the outside air temperature through the thermal envelope of the house. 
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Figure C-2: The ETP mode of a residential heating/cooling system. 
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where,  

Cair:  air heat capacity (Btu/°F) 

Cmass:  mass heat capacity (Btu/°F) 

UAenv: external gain/heat loss coefficient (Btu/°F-h) 

UAmass: internal gain/heat loss coefficient (Btu/°F-h) 

Tout:  air temperature outside the house (°F) 

Tair:  air temperature inside the house (°F) 

Tmass:  mass temperature inside the house (°F) 

Tset:   temperature setpoints of HVAC system (°F) 

Qair:  heat rate to house air (Btu/h) 

Qgains: heat rate from appliance waste heat (Btu/h), 

Qhvac:  heat rate from HVAC system (Btu/h), 

Qmass:  heat rate to house mass (Btu/h), and 

Qsolar:  heat rate from solar gains (Btu/h). 

 

Equation (C-4) is the second order differential equation that describes the heat flows shown 

in Figure C-2 [2]. Its solution determines the time-varying temperature of the house, both air and 

mass, given the thermal inputs. With the inside air temperature, Tair, known, the thermal behavior 

of the heat pump system in response to the defined thermostatic setpoint, Tset, can be determined.  

dcT
dt

dT
b

dt

Td
a air

airair 
2

2

 (C-4) 

where, 

mass

airmass
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CC
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envUAc   

 outenvairmass TUAQQd   

 

With the temperature of the house known from (C-4) and the occupant-controlled setpoint 

fixed, the operation of the cooling system can be determined. Based on these values, the cooling 

system will operate long enough to remove the heat necessary to maintain the inside air 

temperature, Tair, within the desired range. The electrical input energy to the motor, Scomp-motor, 

necessary to provide the thermal heat energy is a function of two elements: the heat flow through 

the cooling unit, Qhvac, and the electrical losses of the compressor motor, Slosses, as shown in (C-

5) [2].  
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    TlossesTouthvacmotorcomp VSCOPVTQS  ,,  (C-5) 

 

The coefficient of performance (COP) is a scalar value that relates the cooling rate of the 

heat pump unit to the mechanical power delivered by the compressor as a function of 

temperature and operation time. A higher value of COP indicates less electrical power is 

necessary to remove a given amount of heat from the air. VT is the terminal voltage of the system 

compressor motor. Additionally, it should be noted that Qhvac is expressed in terms of British 

thermal units (Btu) consistent with the conventions of the heating/cooling industry in the United 

States and the derivation of the ETP model of [2], while Slosses is expressed in SI units. As a 

result, the two terms of (C-5) must be converted using the conversion of 1.0 Btu/h = 0.2931 W.  

Because both of the elements of (C-5) are voltage-dependent, changes in line voltage will 

cause a change in power consumption. The cooling system's heat removal rate, Qhvac, can be 

solved using heat transfer equations based on the available mechanical torque of the compressor 

[2]. When (C-5) is implemented in a time series simulation, the result is a model that determines 

the energy consumption, both real and reactive, of the cooling system as a function of the outside 

air temperature, the inside air temperature, equipment parameters, terminal voltage, and 

occupant-controlled setpoint.  

Unlike ZIP models that apply the same values to each load in a given load class, physical 

models are specific to each individual load. The values of physical models vary on a 1-second or 

1-minute basis to capture the true time-variant nature of the end-use load. This physical model 

has examined a heat pump in the cooling mode, which is one of multiple operational states. 

Because of the design of heat pumps, their energy consumption varies according to their current 

operational state. To properly capture the energy consumption it is necessary to construct a 

multi-state load model.  

A multi-state, time-variant load model uses more than one state to describe the energy 

consumption of an end-use load. Each state is governed either by a ZIP model and/or a physical 

model, with transitions between states determined by either internal state transition rules or 

external signals. For example, a typical heat pump has four normal operating states: State 1 (off), 

State 2 (cooling), State 3 (heating-normal), and State 4 (heating-emergency). State 2 operates as 

described in the previous section, and State 3 follows a similar description but with different 

values that represent the change in the heating cycle, i.e., heat is added instead of removed. State 

4 operates as State 3, except that the COP is 1.0 and the load is a ZIP model. There are other 

abnormal states, such as “stalled compressor motor” or "low refrigerant charge", but they will 

not be examined in this paper. Additionally, there are numerous heat pump types and many 

differing thermostatic controllers that are commercially available, but this paper will discuss a 

“typical” design. Because a heat pump has two heat-flow configurations, the value of Tset must be 

split into a heating setpoint, Tlow, and a cooling setpoint, Thigh. These setpoints determine the 
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mode of operation of the heat pump system at any given time: off, cooling, heating-normal, or 

heating-emergency, as shown in Figure C-3.  

For a simple single state simulation, the heat pump system would be operating to either heat 

or cool the house, as discussed in the previous section. For a time series simulation, the multi-

state model captures the transitions between states. While a heat pump system may not transition 

through all operational states in a single day, it is likely that it will transition through more than 

one state in any given day. For example, on a mild autumn night, the heat pump may operate to 

heat the house, then as the sun heats the house during the day, it may be necessary to switch to 

cooling.  

State 1:

Off

State 2:

Cooling

State 3:

Heating-Normal

State 4:

Heating Emergency

 

 Figure C-3: Multi-state load model. 

 

To be in States 2, 3, or 4, the heat pump unit must be turned “on” with defined setpoints, 

both occupant-controlled and internal. The occupant-controlled setpoints are Thigh and Tlow. If the 

internal air temperature Tair rises above Thigh plus a dead band, DBhigh, then the heat pump will 

start cooling. If Tair decreases below Tlow minus a dead band, DBlow then the heat pump will start 

heating normally. If Tout decreases to a temperature, Taux, where the heat pump efficiency 

becomes too low to effectively heat the home, the system will start heating in the emergency 

state using resistive heating elements. In addition to the internal control parameters of Taux, the 

DBlow and DBhigh are internal parameters that are not occupant-controlled, but are included to 

prevent the heat pump from cycling excessively. Table C-1 gives the logic for the allowable state 

transitions shown in Figure C-3. 
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Table C-1: Heat pump state transition logic. 

From State To State Transition Rule 

1 2 Tair > (Thigh + DBhigh) 

1 3 Tair < (Tlow – DBlow) 

1 4 
Tair < (Tlow – DBlow) and 

Tout < Taux 

2 1 Tair < (Thigh – DBhigh) 

3 1 Tair > (Tlow + DBlow) 

3 4 Tout < Taux 

4 1 Tair > (Tlow + DBlow) 

 

Each of the four discrete states of operation has a different set of characteristics that 

determine the instantaneous power consumption. In State 1, there is no power draw because the 

system is off. In State 2 and State 3, there is an electric fan motor plus a compressor motor. 

Similar to State 3, State 4 provides heating with an associated electric fan for ventilation but with 

the difference that heating is provided by resistive heating elements and not a heat pump. The 

instantaneous power draw of the four states shown in Figure C-3 is given by (C-6)-(C-9). 

 

State 1: Off  

0HVACS  (C-6) 

State 2: Cooling  

motorcompmotorfanHVAC SSS     (C-7) 

State 3: Heating-Normal  

motorcompmotorfanHVAC SSS    (C-8) 

State 4: Heating-Emergency  

elements

T
motorfanHVAC

R

V
SS

2

   (C-9) 

 



 

121 

where,  
Sfan-motor: apparent power of ventilation fan motor (VA) 

Scomp-motor: apparent power of compressor motor (VA) 

VT:  terminal voltage of the heat pump unit (V) 

Relements: resistance of the heating coil elements (Ω) 

 

While the power consumption for State 2 and State 3, given by (C-7) and (C-8) respectively 

appear to be the same, there are different internal models for Qhvac, particularly with respect to 

the COPs. With the instantaneous power draw determined by (C-6)-(C-9), the time necessary to 

heat or cool the house to within the occupant-controlled setpoints is determined by the solution 

to (C-4). The result is that variations in temperature, voltage, and efficiency are translated into a 

variable duty cycle of the heat pump. This information can then be used to determine the 

instantaneous power demand and the energy consumption of the heat pump over time. 

  



 

122 

Appendix D: Appliance Demand Calibration 

The ELCAP (End-Use Load and Consumer Assessment Program Residential Base Study) 

documents what are referred to as “load shapes” for different residential end-use appliances 

(“loads”) from multiple years through the late 1980s [9]. These load shapes indicate the usage 

patterns for different appliances during the course of an average day. The usage patterns are 

specified by a list of average power levels (kW) by time of day (e.g., hourly) and optionally, by 

day of a week and/or season of the year. The ELCAP load shapes were derived from interval-

metered, end-use data, where the measured load during each metered time interval is averaged 

over a year or over a season to estimate the average load during that interval. For example, 

Figure D-1 shows the ELCAP dryer annual, summer, and winter load shapes. In this case, the 

average energy consumed during each hour of the day is computed by averaging the metered 

load during a particular hour annually, or over the winter months, or summer months; and is 

specified as kWh. 

 

Figure D-1: ELCAP dryer load shape. 

 

For this project, given the absence of any other recent data, the ELCAP load shapes are used 

to estimate the usage pattern of different appliances at different times during the course of an 

average day to study the impact of their aggregate behavior on the power grid using the 

GridLAB-D smart grid simulation software platform. GridLAB-D is an agent based system in 

which each appliance’s response is independent of all the other appliances in a population of 

appliances. Hence, in order to get a population of appliances to respond as per a given load shape 
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collectively, it is required to model the collective or aggregate response of a given number of 

appliances of a particular type to match the corresponding ELCAP load shape.  

It should be emphasized that it is not each individual appliance of a particular brand or 

model, but rather, the collective response of an arbitrarily large population of such appliances 

that follow the appliance’s ELCAP load shape. An appliance like a dryer for example, uses a 

defined amount of energy per cycle as determined by its manufacturer rating. The key modeling 

challenge that arises then is to ‘fit’ a curve representing the average aggregate load of all the 

appliances of a particular type, so as to match the appliance’s ELCAP load shape. 

The approach used in this analysis is to model every appliance such that the model has 

embedded within it, the knowledge of the collective appliance load shape, so that the model 

when simulated, can interact with GridLAB-D in a manner such that from a GridLAB-D 

perspective, the collective load of an arbitrary number of appliances of a particular type as a 

function of time matches the corresponding appliance’s ELCAP load shape. The details of our 

approach are presented below and are based on the more general approach discussed in [25].  

The model presented here is applicable for simulating appliances whose operation is 

characterized by ‘random-pulses’ such as clothes washers, clothes dryers, and dishwashers; these 

will be referred to as pulsed-load appliances. In other words, each cycle of operation involves a 

certain power draw (kW) from the power grid over the duration from start to finish. Furthermore, 

the rate of appliance usage or demand, i.e., the average number of cycles per day is stochastic 

around some average value (to mimic the fact that in real life, demand for the usage of an 

appliance is driven by appliance user’s behavior).  

Given an arbitrary number of appliances, N, whose operation is characterized by random 

pulses, let Di, i = 1, 2, 3, …, N denote the demand in cycles per day of appliance i. Note that 

depending on the value of Di, a given appliance could turn on more than once or not at all during 

a given day’s simulation of that appliance.  

For each appliance i, and each simulation time step kT, k = 1, 2, 3, …, where T is the 

simulation sampling interval, the variable queuei(k) can be defined as 

 

      ( )         (   )      (      )⁄  
(D-1) 

      ( )           

 

where Ek denotes the energy consumed by the appliance over the k
th

 time step as specified by the 

ELCAP data (integral of an ELCAP curve such as the one shown in Figure D-1 between (k-1)T 

and kT), and Etot denotes the total energy consumed by the appliance over the course of a day as 

specified by ELCAP. The ratio Ek / Etot gives a measure of the percentage of daily appliance 

consumption over the k
th

 time step, and a plot of Ek / Etot as a function of kT gives the normalized 
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ELCAP appliance load shape. The difference equation (D-1) is initialized to a random number 

qi0 for each i chosen from an exponential distribution with parameter λ. The rationale for this 

choice for the qi0 (including the precise value of λ) is presented later. 

Note that there is an interesting physical interpretation of queuei(k). Basically, each 

appliance i is placed in its ‘queue’ denoted by queuei(k), and awaiting its turn to be turned on. 

And after each simulation time step of duration T, queuei(k) is incremented by an amount that is 

proportional to its daily demand. In other words, each appliance’s “queue” is being built up or 

accumulated. And the rate at which the ‘queue’ is accumulated depends on the normalized load 

shape Ek / Etot. Thus, a higher value of Ek / Etot would result in a higher rate at which an 

appliance’s “queue” is accumulated, and the following logic is utilized to determine when to turn 

on a particular appliance 

If for some k = k*, queuei(k*) > δ for some threshold δ > 0, appliance i is turned on 

And once turned on, its ‘queue’ is re-set as 

queuei(k* + 1) = queuei(k*) - δ 

and accumulated again in accordance with (D-1) to be turned on again at some later time. 

Intuitively, it is clear that the probability that a given appliance i is turned on depends on its 

daily demand Di, and the value of the normalized appliance load shape Ek / Etot at any given time 

kT. The higher these quantities are the higher is the probability of the given appliance turning on. 

Also, as the aggregate number of appliances N goes up, the number of times a given appliance is 

likely to be turned on is lower. 

To complete the model description, a realistic demand Di for each appliance needs to be 

specified for use in (D-1). If it were possible, the most obvious and straightforward choice for 

each appliance’s daily average demand Di would be the daily average demand for that appliance 

as estimated by the ELCAP data. But this is not possible for the following reason: the ELCAP 

data specified as kWh/h estimates the average energy consumed by an appliance during each 

hour of a day, while the daily demand Di in (D-1) is specified as the average number of appliance 

cycles/day. To circumvent this problem, two constants, µ and σ, are chosen to model each Di as  

 

                       (D-2) 

 

where randi, i = 1, 2, 3, …, is a random number drawn from a standard normal distribution of 

zero mean and stand deviation 1. How µ and σ are chosen is explained below, but, as explained 

earlier, each Di is modeled as a random number around some average value to account for the 

difference in demand arising from each appliance user’s behavior. 

The constants µ and σ are determined as follows. In this methodology, this step is referred to 

as “appliance model calibration”, and takes place “off-line”, i.e., prior to actually simulating the 

appliances in GridLAB-D. First, let EELCAP denote the average energy consumed per day as per 
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ELCAP data by an appliance over a certain time period TELCAP. Note that TELCAP could cover a 

month, or a season, or a year; long enough to capture day-to-day and weekday-to-weekend 

variations. For example, for the month of January, the ELCAP data gives a dryer average daily 

energy consumption of 2.42 kWh/day. Over the time period TELCAP, compute the mean, µ*, and 

standard deviation, σ*, of the normalized ELCAP data. 

For the given number of appliances (pulsed-loads) N, the usage (turning on) of each 

appliance is simulated based on (D-1) and (D-2) with µ = µ* and σ = σ*. Let the simulation time 

period be denoted by Tsim, where Tsim is at least one day, starting at midnight. Typically, in the 

simulations presented, Tsim was chosen to be at least one week per season to get a large data set, 

and to cover both weekdays and weekends and both winter and summer. Once turned on, how 

long each appliance is simulated to run is based on the energy consumed per cycle (e.g., for GE 

Appliances’ driers, the energy per cycle in normal mode of operation is 2.2 kWh).  

At the end of the simulation time period Tsim, the net energy consumed by all of the 

appliances is tabulated. Again, note that some appliances may run more than once, and some 

may not run at all. Also, it could be the case that towards the end of the time period Tsim, some 

appliances that were turned on, may not have completed their cycle. Finally, the net energy 

consumed divided by (N * Tsim) gives the average energy consumed per appliance per day, say 

Esimulated_average. If |Esimulated_average - EELCAP| < ε for some small tolerance ε > 0, then the final 

values of µ and σ are µ* and σ* respectively and appliance model calibration is complete. If 

however, |Esimulated_average - EELCAP| < ε, then µ* and σ* are incremented or decremented (this is 

determined through trial and error), and the simulation re-run, until the convergence criterion in 

is achieved. The final converged values of µ* and σ* are then used in (D-2), and combined with 

(D-1), the appliances are simulated in GridLAB-D to reproduce the ELCAP load shapes. 

It should be noted, however, that the daily or annual energy consumption values denoted by 

the ELCAP load shapes are 30 years out-of-date. Standards for appliance energy consumption 

have been driven towards more efficient units. So, where information was available from the 

EIA database [17], GE Appliances, or other standard sources, EELCAP was replaced with a more 

up-to-date value. 

Trial and error experience indicates that efficacy of the above algorithm in forcing the 

aggregate behavior of a large population of ‘pulsed-loads’ (dryers, clothes washers, and dish 

washers) to follow a given ELCAP load shape depends crucially on the initial condition qi0 

specified in (D-1). Recall that each qi0, i = 1, 2, 3, …, N, is a random number chosen from an 

exponential distribution with parameter λ. This was determined through trial and error, and after 

experimenting with different choices, it was heuristically found that the best choice (in the sense 

of reproducing an ELCAP load shape through the above algorithm) for each qi0 is a random 

number chosen from an exponential distribution with parameter λ. Furthermore, for N = 646 GE 

dryers, the optimal choice for λ turned out to be λ = 1.5. With this choice, it was found that 

through the above algorithm, µ* and σ* converged to µ* = 8.5 and σ* = 1.5 respectively, the 

average load from 646 GE smart dryers running in normal mode is shown in Figure D-2, which 
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closely matches the ELCAP load shape shown in Figure D-1. Notice that the simulated average 

energy consumption of the dryer for each hour matches the load “shape” from ELCAP, but 

consumes less energy than that of the ELCAP load shapes. Again, this reflects the fact that 

standards for appliance have dictated reduced energy consumption since the ELCAP load 

studies. 

 

Figure D-2: ELCAP dryer load shape versus simulated load of 646 GE dryers. 
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