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Abstract

In the first year of this contractual effort a
hypo-elastic constitutive model was developed
and shown to have great potential in modeling
the elastic response of parenchyma [19, 20].
This model resides at the macroscopic level of
the continuum. In this, the second year of our
support, an isotropic dodecahedron is employed
as an alveolar model. This is a microscopic
model for parenchyma. A hopeful outcome is
that the linkage between these two scales of
modeling will be a source of insight and inspi-
ration that will aid us in the final year’s activity:
creating a viscoelastic model for parenchyma.

1 Introduction

The literature on modeling of lung parenchyma
is quite substantial, and goes back at least a
century and a half [48]. The well-established
�The project described was supported by Award

Number 5R01HL073598 from the National Heart,
Lung, and Blood Institute to Pacific Northwest
National Laboratory. The content is solely the
responsibility of the authors and does not necessarily
reflect the official views of the National Heart, Lung,
and Blood Institute or the National Institutes of
Health.

�Second annual report to Pacific Northwest Na-
tional Laboratory from Saginaw Valley State Univer-
sity reporting on progress made under grant number
136492.



2

non-linearity of the pressure/volume response
of lung has made work in this field challenging
[30]. Early attempts have, for example, com-
pared the response of lung to finite elasticity
via the stretching of a balloon [32]. But most
studies, both theoretical and experimental, e.g.,
[29, 41], have applied the classical theory of
linear elasticity (which is only applicable for
infinitesimal strains and rotations) to neighbor-
hoods surrounding what are considered to be
quasi-static states of uniform pressure, which
are taken as individual reference configurations.
Literature reviews in lung mechanics include:
Faffe& Zin [12], Fredberg& Kamm [14], Fung
[24, 25], Mead [45], Otis [48, 49], Stamenović
[57], Suki et al. [60, 61], Tschumperlin et al.
[66], Weibel & Gil [68], and West [69].

Before embarking, it is useful to define
some basic concepts. Of primal importance to
lung mechanics is the transpulmonary pressure
P , which is the inflation pressure acting across
the lung. It is the difference between alveolar
pressure (approximately atmospheric pressure)
and pleural pressure. Pleural pressure arises as
the stress of suction imposed upon the external
pleural membrane through its fluidic adhesion
to the ribcage. The volume of the thoracic
cavity changes by contractions occurring in the
diaphragm and the intercostal muscles of the
ribcage [14, 48, 69].

1.1 Methodology

The approach adopted in this study of the me-
chanics of lung parenchyma has a different the-
oretical underpinning than is typically consid-
ered, viz., the finite deformation theory known
as hypo-elasticity [64]. In the first annual re-
port for this project [19], the authors derived
a hypo-elastic theory for parenchyma, whose
findings are published in [20]. The resulting
model is characterized by four material parame-
ters: the two Lamé constants, � and �, and their
hypo-elastic analogs, ˛ and ˇ, which are the so-

hV=V0-dV
dV h0

Applied Load

P=P0

Figure 1: Schematic of the experimental
setup of Lai-Fook et al. [40] taken from Ref.
[20, Fig. 4].

called Fung constants.1 These four parameters
can be characterized by a fairly straightforward
experiment whose fixturing is drawn in Fig. 1,
and whose protocol is described below.

1. Inflate an excised lobe of lung to its total
lung capacity (TLC, �30 cm H2O2, the
volume where pressure plateaus) and allow
it to equilibrate there.

2. Slowly deflate the lobe to a pre-specified
pressure, e.g., P˝ D 20 cm H2O, and
allow it to equilibrate there.

3. Perform a small pressure cycle ˙dP
from this pressure/volume state .P˝ ; V˝/,
thereby causing a small change in volume
dV to occur. Finish by cycling up to TLC,
and slowly deflating back down to P˝ .

4. Apply a small compressive load df to the
lobe of lung while maintaining a constant
pressure P˝ within, as illustrated in Fig. 1.
Record the applied perturbation in axial
stress d� D df=A˝ , with A˝ denoting
the cross-sectional area of the lobe at state
.P˝ ; V˝/. Measure the corresponding ax-
ial stretch � D h=h0 and its displacement
d� D .h � h0/=h0.

1. Y.-C. Fung did not derive the hypo-Fung solid;
Freed [18] did. Rather, his [22] experiments inspired it.

2. Unit conversions: 1 Pa = 1 N/m2 = 10 dyn/cm2

= 0.0102 cm H2O = 0.0075 mm Hg.
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5. Repeat this process at sequentially lower
states of reference pressure P˝ .

1.1.1 Hypo-Elastic Predictions

Three, elastic, tangent responses have been
established by applying this experimental pro-
tocol to our hypo-elastic material model for
parenchyma [19, 20].

The first is a measure of the tissue’s shape
response, where � is the classic shear modulus
from the linear theory of elasticity. This effec-
tive shear modulus is described by [20, Eq. 1]

Q�
:
D

d�

d�=�
D 2

�
�C ˇP

�
; (1)

where d� and d� are both negative valued,
while P is positive valued in Lai-Fook’s exper-
iment.

The second tangent response is a measure
of the tissue’s dilatation, where � D �C 2

3
� is

the classic bulk modulus from the linear theory
of elasticity. This effective bulk modulus is
described by [20, Eq. 48]

Q�
:
D

dP

dV=V
D O� C

�
˛ C 2

3
ˇ � 1

�
P; (2)

where O� D jF j�1� D V0 �=V represents the
bulk modulus of the reference state, viz., �,
pushed forward into the current state as O�, with
V0 denoting the lung’s volume in this initial
reference state, viz., at zero transpulmonary
pressure, i.e., at P D 0. The minus one arises
from the fact that volume change accompanies
pressure change in Step 3 of this experimental
protocol, from which the above relationship
follows.

The third tangent response is a measure
of the tissue’s deformation covariance. This
effective Poisson’s ratio is given by [20, Eq. 51]

Q�
:
D �

d�t=�t

d�=�

D
1

2

3 O� C 3˛.P C d�=2/C 2ˇ.P C d�/

3 O� C 3˛.P � d�=4/C 2ˇ.P � d�=2/
; (3)

where �t is the transverse stretch. Recall that P
is positive valued, while d� is negative valued
in a Lai-Fook experiment; consequently, this
Poisson’s tangent ratio Q� starts out at a half, and
diminishes slowly, in a pressure dependent way,
as the traction jd� j increases.

These predictions only apply for the BVP
that is the Lai-Fook et al. [40] experiment,
which is described in the above protocol.

1.1.2 Experimental Validation

Data acquired from experiments described by
this BVP can be found in the literature, e.g.,
[40, 58, 59]. From these and other published
data, one finds that ˇ D O.1/ and ˛ D O.10/

for parenchyma. Hypo-elasticity predicts a lin-
ear dependence with respect to transpulmonary
pressure for both the shear and bulk responses.
Such behaviors do not have to be artificially
introduced via, e.g., pressure dependent moduli,
as is usually done, cf. e.g., with [10].

The linear prediction of Eq. (1) for describ-
ing the shear response in lung agrees very well
with experimental observations [19], as shown
in Fig. 2. The validity of Eq. (1) requires the
tangent modulus Q� D d�=.d�=�/ to be mea-
sured from incremental excursions according to
Step 4 in the above protocol.

In stark contrast with Eq. (1), the linear
prediction of Eq. (2) for describing the bulk
response of lung, measured from incremen-
tal pressure/volume excursions according to
Step 3, does not capture the whole essence of
the measured bulk response of lung. This is
apparent in the experimental data of Stamenović
& Yager [59, Fig. 2] redrawn here in Fig. 3.
Equation (2) does capture the first-order nature
of this response quite nicely, viz., an increasing
bulk stiffness with increasing pressure, which is
a prediction that classical elastic formulations
cannot make. However, Eq. (2) is incapable
of predicting the second-order excursions from
linearity that prominently appear in Fig. 3. Sta-
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Figure 2: A least squares fit of Eq. (1) for
experimental data taken from Lai-Fook et al.
[40, Fig. 3], with an R2 error of 0.9990. Error
bars are ˙ one standard deviation in sample
error.

menović & Yager report that the idiosyncrasies
of this response likely reside with the affect
that surface tension has on dilatation, and they
offered a solution methodology that addresses
this point.

A further examination of Fig. 3 implies
that the mechanics of breathing may actually

Figure 3: Experimental data of Stamenović &
Yager [59, Fig. 2]. Error bars are˙ one stan-
dard deviation in sample error. The straight
line is indicative of Eq. (2). Deviations from
this line are caused by the surfactant cycle.

Figure 4: Experimental data extracted from
Lai-Fook et al. [40, Fig. 3]. Error bars are
˙ one standard deviation in sample error.

dissipate less energy than had previously been
thought. This can be seen in the departure of
the data from the curve of Eq. (2). The elastic
response from classical theory is a horizontal
line in Fig. 3, while the hypo-elastic theory
predicts a sloped line, which is more represen-
tative of the data. Deviations between elastic
(non-dissipative) predictions and experimental
data are typically interpreted as being caused
by dissipative processes. This has a physical
soundness to it in that Nature tends to prefer
biological designs that conserve as much energy
as is possible.

Theory predicts, for the Lai-Fook BVP,
that the local, effective, Poisson’s ratio will be
somewhere near to a 1/2. Validation of this
expectation is presented in Fig. 4. The Poisson’s
ratio applicable to this BVP is very different
from the one that arises from the simple ex-
tension of a uniform rod, which is given by
Q� D � C ˛�=4.� C �/ [20, Eq. 35], where �
is the true stress, and � D �=2.� C �/ is the
Poisson’s ratio from classical elasticity theory.
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Figure 5: SEM photograph of rat lung.

1.2 Objective

To gain an understanding about how one ought
to proceed in augmenting our hypo-elastic con-
tinuum model to better describe reality we seek,
in this report, insight and inspiration through
a micro-mechanical model, where the physi-
cal effects that control alveolar response are
thought to be more faithfully represented.

2 Structure of Lung

SEM photographs of rat lung, taken by Prof. S.
Shepardson at SVSU over a range in magnifica-
tions, are provided in Figs. 5–8.3

In Fig. 5, the parenchyma is seen to be a
fairly uniform sea of tiny alveolar sacks that
are periodically perforated by alveolar ducts for
transporting the air into and out of the lung.
This photo focuses on a roughly 1 mm � 1 mm
sectioning of lung.

In Fig. 6, zooming in on this alveolar land-
scape, while focusing one’s attention on the
forth quadrant in the photo, one observes that
the alveolar mouths actually comprise a large
area fraction of the wall dimension of alveolar
ducts [68]. These airways are highly perforated.

Continuing to zoom in, in the central region
of Fig. 7, one sees the mouths of several alveo-

Figure 6: SEM photograph of rat lung.

Figure 7: SEM photograph of rat lung.

lar sacs. These annuli have pentagonal shapes,
and are comprised of heavier cords of fiber than
are found elsewhere throughout their structures
[44]. The pentagonal facets that are the alve-
olar walls are shared membranes between two
neighboring alveoli. Random fiber filaments
(elastin and collagen) are seen to thread from

3. Protocol for SEM sample preparation for rat
lung tissue: Primary fixation consisted of 2.5%
glutaraldehyde in a 0.1M phosphate buffer and 1.0%
sucrose + CaCl2, pH 7.2, at 4ıC for 2 hr. Post
fixation was with 1.0% OsO4 in buffer for 1 hr. at
4ıC. Both fixation steps were followed by 4 buffer
washes at 15 min. each. Dehydration was in a graded
series of acetone. Samples were critical point dried
(Denton DCP-1), sputter coated with gold (Denton
Desk II) twice at 40 mAmp and 50 Torr for 2 min.,
and then viewed with the JEOL 5400 SEM at 15kV.
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Figure 8: SEM photograph of rat lung.

the septa, crisscrossing their faces [56].

The final photograph, shown in Fig. 8, and
taken at the same magnification as Fig. 7, does
a nice job of showing the capillary network
that intertwines with the fibrous structure of the
alveolar walls [33]. This is especially visible
in the second quadrant of the image. It is here
that the gas exchange between air and blood
takes place via diffusion across the capillary
walls [68, 69]. All evidence of a coating layer
of surfactant has been removed by the sample
preparation procedure.

It is photographs like these that provide im-
petus for the following micro-modeling effort.

3 Dodecahedral Model

“Constitutive equations are phenom-
enological. They are regarded as
empirical by experimenters, and ax-
iomatic by mathematicians. In bio-
mechanics, we often try to derive
them on the basis of microstructure
: : : in order to gain a better under-
standing, or to get some guidance to
the mathematical form.”

Fung [24, pg. 431]

This is the roadmap adopted here.

Typical alveoli are fourteen sided poly-
hedra with one face being open as its mouth
to an alveolar duct [33]. To capture the
microstructural features of lung, researchers
have modeled both alveoli and alveolar ducts.
Two different geometric shapes are usually em-
ployed when modeling an alveolus: a dodeca-
hedron, as introduced by Frankus & Lee [13];
and a truncated octahedron, as introduced by
Dale, Matthews & Schroter [6]. A dodeca-
hedron is a twelve sided polyhedron with each
face being a regular pentagon. A truncated octa-
hedron is a pair of regular pyramids stacked bot-
tom to bottom, which is an octahedron, whose
six points are then lopped off. This produces
a fourteen sided polyhedron with six faces that
are squares and eight faces that are hexagons,
where like shapes have like dimensions.

The truncated octahedron is volume filling.
It is therefore the preferred geometry to use
whenever one sets out to construct assemblages
of alveoli to build a microstructural model that
is to be solved numerically via a finite element
method. The purpose of such an exercise is
to homogenize the response of an assemblage
of alveoli up to the macroscopic level, i.e.,
the level of a continuum mass point, viz., the
parenchyma [6, 7, 8, 9, 39].

The dodecahedron is an isotropic structure.
It is therefore the preferred geometry to use
whenever a single alveolus is to be used as
a representative volume element (RVE) to be
homogenized, in closed form, up to the macro-
scopic level [4, 36, 37]. Here the isotropy of
the microstructure ensures an isotropic macro
response. Parenchyma, as a tissue, is isotropic
[23, 34]; whereas, lung, as an organ, is a com-
plex, heterogeneous structure [45, 69]. (This
can be seen, e.g., in Fig. 14.) This distinc-
tion has, from time-to-time, lost focus in the
literature, cf. e.g., [10]. For the reasons stated
above, a dodecahedron, drawn in Fig. 9, is
the geometric structure selected for use in this
study.
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Figure 9: Geometric representation of a
dodecahedron. A cube is contained within
a dodecahedron, with one of its five possible
orientations being displayed. This geometry
was introduced by Frankus & Lee [13], and
later adopted by Kimmel et al. [4, 36, 37],
for the purpose of approximating an alveolar
structure in their mathematical modelings of
lung parenchyma.

Only one-third of the cross-sectional area of
a septal fiber, and only one-half of the alveolar
wall thickness, associate with any given do-
decahedron. Specifically, one-third of the total
force carried by a septal fiber associates with
a given alveolus, with the remaining two-thirds
of the transmitted force belonging to the two
adjoining alveoli. Likewise, half of the surface
traction carried along a membranous wall asso-
ciates with a given alveolus, with the other half
of its surface traction belonging to its adjacent
alveolus.

Our ultimate objective is to develop a
computationally efficient continuum model for
lung parenchyma for use as a material model
within a finite volume CFD code, specifically,
OpenFOAM R [28]. To provide better physical
interpretations to such a model’s parameters,
a micro-mechanical model is sought. Specif-
ically, the analytical approach of Kimmel and
his colleagues is selected over the numerical

approach of Schroter and his colleagues for our
purpose: homogenization of an RVE.

3.1 Geometric Scalings

In terms of the spetal lengthL, which associates
with the length of one side of a pentagon, the
area of a regular pentagon in a dodecahedron is

A D 5
4

tan.!/L2

� 1:720L2;
(4)

where the inside angles of a regular pentagon all
measure 108ı D 2!, i.e., the sum of two inside
angles belonging to any neighboring pair of the
five, enclosed, isosceles triangles, each with an
angle !. Utilizing the dodecahedral dimensions
illustrated in Budiansky & Kimmel [4, Fig. 2],
the distance across a pentagon is

D D 1
2

�
tan.!/C sec.!/

�
L

� 1:539L;
(5)

where scaling factors have been truncated at
four significant figures.

The volume of a dodecahedron is

V D 5 tan2.!/ sin.!/L3

D 4 tan.!/ sin.!/AL

� 7:663L3:

(6)

The area of a dodecahedron projected onto a
plane containing one of the pentagonal faces is

NA D 5 tan.!/ sec.!/ cos.˛/L2

D 4 sec.!/ cos.˛/A

� 11:14L2;

(7)

where ˛ D �=20 D 18ı. (There are twenty,
equal, pie-shaped wedges that comprise this
projected area.) The nominal diameter of this
area is

ND D tan.!/
�
1C cos.˛/

�
L

� 2:685L;
(8)
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which is the average of the shortest and longest
diameters across this plane of projection.

All of the above geometric values have
been expressed in terms of the septal boundary
length, i.e., the length along one side of a
pentagon whose self-similar patterning is the
generator for a dodecahedron’s surface. As
a matter of notation, whenever a dimension
applies to both geometries, e.g., a diameter, the
dodecahedral dimension will have a bar placed
over it; whereas, the pentagonal dimension will
not.

To dimension the alveoli of human lung,
Sobin, Fung & Tremer [56] measured the mean
chord lengths, viz., ND, across individual alveoli
sectioned from lungs that were fixed at different
pressures. Samples were taken from 9 lungs
extracted postmortem from individuals between
16 to 89 years of age.4 At a transpulmonary
pressure of 4 cm H2O, the measured mean
chord length from 1423 distinct measurements
was ND D 191 ˙ 86 �m; at a pressure of
10 cm H2O, ND D 202 ˙ 88 �m from 1296
measurements; and at a pressure of 14 cm H2O,
ND D 235 ˙ 99 �m from 1083 measurements.

These data are plotted in Fig. 10. All reported
and drawn error bounds pertain to plus/minus
one standard deviation in the measurements.

3.2 Model Assumptions

Following procedures put forward by Budian-
sky& Kimmel [4, 36], virtual displacements are
imposed onto a dodecahedron. By generalizing
their analysis, the constitutive responses have
been left general, instead of being given a spe-
cific description, as in their works. Boundary
value problems are solved via the principle of
virtual work to hopefully reveal, in our case,
equivalent hypo-elastic moduli that correspond
to such a stimulated continuum.

A microscopic modeling of parenchyma is
put forward that builds upon the following list

Figure 10: Septal length L as a function of
transpulmonary pressure P in human lung.
The alveolar diameters ND and their standard
deviations in error, as reported by Sobin et al.
[56], have been converted into measures of
septal length L via Eq. (8).

of assumptions advanced by Kimmel and his
colleagues, cf. [4, 37]:

� A regular, dodecahedral, space truss rep-
resents the geometry of an alveolus, in an
averaged sense.

� All truss elements are pinned (carry no
moments) and remain in tension.

� The alveolar mouth, with its thicker fibers
and open face, is modeled with a phan-
tom face, and fibers sized like any of the
other eleven pentagonal elements compris-
ing the dodecahedron.5

4. Sobin et al. [56] documented an age effect in
these data that has been averaged over here, i.e.,
ignored.

5. Kimmel & Budiansky [36] address this point via
a private communication they had with Prof. T. A.
Wilson; specifically:

“Professor T. A. Wilson notes that
the present model does not take explicit
account of either alveolar openings or
their fibrous boundaries. Wilson sug-
gests that the elastic resistance of the
ring boundaries tends to make up for the
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� The geometry remains self-similar when-
ever it is subjected to an isotropic state of
stress/pressure.

3.3 Bulk Response

Following the method of analysis laid out by
Budiansky& Kimmel [4, 36], which is in accor-
dance with Step 3 of the Lai-Fook experimental
protocol found on pg. 2, the principle of virtual
work is applied to a dodecahedral space truss
of volume V˝ loaded to a state of hydrostatic
(or transpulmonary) pressure P˝ belonging to
reference state ˝. By imposing their condition
of self-similarity, it follows that identical axial
forces of traction F˝ exist in all 30 of its
members of length L˝ , plus there are identical
equi-biaxial forces of traction T˝ that exist
across all 12 of its faces of area A˝ so that

P˝ıV D 30F˝ıLC 12T˝ıA: (9)

Furthermore, self-similar growth of a dodeca-
hedron under increasing pressure P˝ requires,
via Eqs. (4 & 6), that

ıV

V˝
D 3

ıL

L˝
D
3

2

ıA

A˝
; (10)

so that, when combined with Eq. (9), one gets

P˝V˝ D 10F˝L˝ C 8T˝A˝ : (11)

From Eqs. (4 & 6), this predicts a hydrostatic
alveolar pressure of

P˝ D
8 cos.!/

�2L˝

�
2 cos.!/

� L˝
F˝ C T˝

�
; (12)

where � D 2 sin.!/ is the so-called golden
ratio. This is an equilibrium force balance. It is
therefore independent of any specific constitu-
tive behaviors that enter as functions describing
the axial force F.L˝/ or the surface traction
T .L˝/, wherein the septal length L˝ is the
independent variable.

3.3.1 Modulus

Differentiating Eq. (11) gives

V˝dP C P˝dV

D 10
�
L˝dF C F˝dL

�
C 8

�
A˝dT C T˝dA

�
; (13)

from which a local (tangent) bulk modulus can
be defined, as in Eq. (2), via

Q� D
dP

dV=V

ˇ̌̌̌
˝

; (14)

so that, upon combining Eqs. (9, 10 & 13) with
Eq. (14), one is lead to

Q� D 10

�
dF

dL=L
� 2F

�ˇ̌̌̌
˝

dL

dV

C 8

�
dT

dA=A
�
T

2

�ˇ̌̌̌
˝

dA

dV
: (15)

With the aid of Eqs. (4, 6 & 10), the above
expression can be rewritten as

Q� D
16 cos.!/

3 �2L˝

�
cos.!/

� L˝

�
dF

dL=L
� 2F

�ˇ̌̌̌
˝

C

�
dT

dA=A
�
T

2

�ˇ̌̌̌
˝

�
: (16)

Like Eq. (12), Eq. (16) is independent of one’s
choice for constituent response functions de-
scribing a dodecahedron’s individual material
elements.

This micro-model has a direct macro-model
analog in Eq. (2), and therefore is a useful
point of entry to study a potential micro-macro
linkage.

3.4 Axial Response

Here the BVP of the Lai-Fook et al. [40] ex-
periment, illustrated in Fig. 1 and described on

missing surface tension in the holes, so
that neglect of both effects may be self-
compensating.”
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Figure 11: A dodecahedron subjected to a
uni-directional load applied in the k direc-
tion, which can be described in terms of a
set of four displacements fw1; v1; w2; v2g.

pg. 2, is imposed upon a dodecahedral truss
in accordance with the geometric analysis of
Budiansky & Kimmel [4], which is illustrated
in Fig. 11.

It is supposed that an external traction � ,
acting in the k direction, is applied to the twelve
planar faces of a dodecahedron, as oriented
in Fig. 11. Furthermore, it is supposed that
this dodecahedron was previously subjected to
a hydrostatic pressure of P˝ that serves as its
state of reference, with L˝ denoting the length
of each truss element in this isotropic reference
configuration ˝.

In the .P˝ ; L˝/ reference state affixed to
the .i ; j ;k/ Cartesian frame, as depicted in
Fig. 11, one determines that the coordinates for
nodes A, B , C , D, and E (see App. A for

details) are6

A D
�L˝

2

�
� sin.'/;�1=�; � cos.'/

�
;

B D
�L˝

2

�
� sin.'/; 1=�; � cos.'/

�
;

C D
�L˝

2

�
� cos.'/; 1; sin.'/=�

�
;

D D
�L˝

2

�
2 cos.'/; 0;� sin.'/=�

�
;

E D
�L˝

2

�
� cos.'/;�1; sin.'/=�

�
;

(17)

where � D .1C
p
5/=2 is the golden ratio with

! D sin�1.�=2/ D 54ı and ' D tan�1.1=�/ �
31:72ı. The simple set of coordinates put for-
ward in Eq. (17) follow not only from trigonom-
etry, but also from many of the interesting prop-
erties of the golden ratio � that the geometry of
a dodecahedron can be described in terms of,
some of which are presented in App. D.

The displacements of nodes A, B , C , D,
and E from their reference locations in state˝,
as illustrated in Fig. 11, are described by vectors

uA D v1mC w1k;

uB D v1nC w1k;

uC D v2nC w2k;

uD D v2i � w2k;

uE D v2mC w2k:

(18)

Unit vectors m and n, which are directed radi-
ally away from k, pass through nodes A, B , C ,
and E, and are defined by

m D sin.!/ i � cos.!/j ;

n D sin.!/ i C cos.!/j ;
(19)

neither of which rotates in space during the de-
formation of interest, due to the symmetries in-
volved. In other words, the response is radially
isotropic within any plane whose normal aligns
with the direction of the imposed traction, viz.,
the k direction, and whose orientation points
radially outward, as is the case form and n.

6. This is a different coordinate description from
the one used by Budiansky & Kimmel [4].
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3.4.1 Geometric Expansions

From symmetry of the imposed deformation,
there are only three, distinct, line elements,
viz., AB , BC , and CD, with there being ten
of each type in the distorted dodecahedron.
There are also only two, distinct, area elements,
viz., ABCDE and ABFGH , with the top and
bottom pentagons remaining regular, while all
ten of the side pentagons distort from regularity
during the assigned loading. It is assumed that:

� The regular planar pentagons of type
ABCDE deform into distorted planar
pentagons, each composed of an isosceles
trapezoid and an isosceles triangle, with
line CE being held in common.

This differs from the deformed shape assumed
by Budiansky & Kimmel [4]. They considered
the deformed pentagon to be comprised of five
distorted triangles that share a common center
whose height of displacement is the mean of the
five corner displacements.

Budiansky& Kimmel [4] introduced a set of
non-dimensional displacements expressed as yi
(i D 1; 2; 3; 4) that they defined as

y D

8̂̂<̂
:̂
y1
y2
y3
y4

9>>=>>; D
1

L˝

8̂̂<̂
:̂
w1
v1
w2
v2

9>>=>>; ; (20)

which describe the extensional deformation of
a dodecahedron. Their change in variables has
been adopted here, too.

The square of the stretch of each of the
three, independent, bar elements can be ex-
pressed as7

�2AB D 1CAAB � y C
1
2
y �AABy;

�2BC D 1CABC � y C
1
2
y �ABCy;

�2CD D 1CACD � y C
1
2
y �ACDy;

(21)

where �AB D LAB=L˝ , �BC D LBC=L˝ , and
�CD D LCD=L˝ . The A vectors are given

in Eq. (87), while the A matrices are given in
Eq. (88), both being derived in App. A.

The ratios of areas, viz., the areal stretches
of the two, independent, surface elements, can
be expressed via series expansions in the dis-
placement vector y8

�R D 1CBR � y C
1
2
y �BRy;

�D D 1CBD � y C
1
2
y �BDy

CO.y3/;

(22)

where�R D AR=A˝ and�D D AD=A˝ , with

A˝ D
5
4
L2˝ tan.!/ (23)

being the area of each pentagonal face of the
dodecahedron in its reference state, while AR
and AD are the respective areas of the regu-
lar ABFGH and distorted ABCDE pentagon
types in their final shapes. The various B and
B arrays are given in Eqs. (89, 91 & 102), all
being derived in App. B. There it is shown
that BD is actually a quadratic polynomial in y ,
in which matrix equation (102) is the constant
term.

The volume ratio can also be expressed in
terms of displacement vector y; specifically,

� D 1CC � y C 1
2
y �Cy CO.y3/; (24)

where � D V=V˝ with

V˝ D 5L
3
˝ tan2.!/ sin.!/ (25)

being the dodecahedron’s volume in its refer-
ence state. Vector C is given in Eq. (115),
while matrix C is given in Eq. (120), both being
derived in App. C.

7. Budiansky & Kimmel [4] derived an expression
for Lagrangian strain. Here, the square of stretch is
written in terms of displacements y.

8. The surface analysis developed here is substan-
tially different from the areal analysis put forward by
Kimmel & Budiansky [36]. Here, an analytic solution
is derived for vectors BR and BD, and matrices
BR and BD; whereas, in their paper, a numerical
estimate of a Hessian B was used to describe the
collective influence of our two matrices BR and BD,
i.e., they did not distinguish between the pentagons
that remain regular from those that distort.
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3.4.2 RVE Averaged Fields

In their RVE homogenization of a dodecahedral
truss, Budiansky & Kimmel [4, App. C] derived
the following stress potential

� D �V˝f � y; (26)

wherein

f D

8̂̂<̂
:̂

cos.'/
0

cot.!/=.2C �/
0

9>>=>>; ; (27)

whose components here are expressed in a dif-
ferent form, but are numerically equivalent to
those arrived at by Budiansky & Kimmel. In
their analysis, the applied traction �k has units
of force per unit area, as measured in the ref-
erence state of .P˝ ; L˝/. The applied traction
d� in the Lai-Fook experiment will be negative
valued, as compressive perturbative loads are
being applied.

Budiansky & Kimmel volume averaged the
dodecahedron’s strain response in their App. E,
arriving at the following expression for an axial
strain increment

d� D f � dy; (28)

i.e., the rate at which work is being done per
unit reference volume is d�=V˝ D � d�. A
local (tangent) modulus can be established from
this expression via

QE D
d�

d�
D

d�

f � dy
; (29)

which is the elastic stiffness at the reference
state .P˝ ; L˝/. They also derived, in their
App. E, a local (tangent) Poisson’s ratio of

Q� D �
d�

d�T

D �
1

2

 
� dy2 C .1C �/dy4

.1=2 C �/dy1 C
1
2

dy3

!
;

(30)

written here in terms of the golden ratio �.
Consequently, they compute the effective shear
modulus via

Q� D
QE

2.1C Q�/
; (31)

according to the classical theory of elasticity.

It follows then that if one knows what
the incremental change in displacement dy is,
which associates with an imposed increment of
traction d� , then one can quantify homogenized
values for the effective shear modulus Q� and
Poisson’s ratio Q� that pertain to Lai-Fook’s
experiment, which in turn can be compared
directly with their continuum counterparts in
Eqs. (1 & 3) derived from hypo-elasticity.

3.4.3 Kinematic Constraint

In order for the distorted side pentagons to
remain planar, which is a packing constraint
imposed by the neighboring alveoli, and is in
agreement with the assumption stated on pg. 11,
Budiansky & Kimmel [4] derived a scalar val-
ued planar constraint that can be expressed in
terms of the displacements y as

� D g � y C 1
2
y � hy; (32)

wherein vector g has components

g D
sec.!/

2

8̂̂<̂
:̂

1

�

�.1C 2�/

�1

9>>=>>; ; (33)

and matrix h has symmetric components

h D

2664
0 0 0 � � 1

0 0 2C 2� 0

0 2C 2� 0 �.1C 3�/

� � 1 0 �.1C 3�/ 0

3775 :
(34)

Equations (32–34) follow from both their’s
and our’s assumptions regarding how the side
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pentagons distort, which are different assump-
tions. In our case, they arise from equating the
rise-over-run in the trapezoidal and triangular
height expressions found in Eq. (104).

3.4.4 Variational Analysis

Following Budiansky & Kimmel [4, 36], the
principle of virtual work is applied to the con-
stant pressure P˝ experiment of Lai Fook et al.
[40], cf. Fig. 1 and its protocol on pg. 2, to
produce the following variational formulation.

A Lagrange multiplier �P˝V˝ (where �
is distinct from Lamé’s constant �, and P˝V˝
normalizes its effect) is introduced so that the
variational form of the constraint equation (32)
becomes

�P˝V˝ ı� D �P˝V˝
�
g C hy

�
� ıy: (35)

The variational form of Eq. (9), but applied to
the BVP of interest here, therefore becomes

10
�
FABıLAB C FBC ıLBC C FCDıLCD

�
C 2TRıAR C 10TDıAD

C �P˝V˝ ı� D P˝ıV C ı�: (36)

When the series expansions of Eqs. (21, 22, 24,
26 & 32) are substituted into Eq. (36), one gets

5L2˝

�
FAB

LAB

�
AAB CAABy

�
C
FBC

LBC

�
ABC CABCy

�
C
FCD

LCD

�
ACD CACDy

��
� ıy

C 2A˝

�
TR
�
BR CBRy

�
C5TD

�
BD CBDy

��
� ıy

C �P˝V˝
�
g C hy

�
� ıy

D P˝V˝
�
C C Cy

�
� ıy

C �V˝f � ıy; (37)

which must remain satisfied for every ıy .

To determine the local elastic properties
Q� and Q� of such a continuum, one seeks an
incremental solution to the above variational
problem for loading d� , which in turn causes an
incremental displacement dy , with constraint
d�. This solution is valid within a small neigh-
borhood around the reference state .P˝ ; L˝/,
and it takes on a finite-element like form of

K � dy C g d� D f
d�

P˝
;

g � dy D 0;

(38)

where K D K1D C K2D C K3D is the struc-
ture’s stiffness matrix. Equation (38) consists of
five equations in five unknowns: dy1, dy2, dy3,
dy4, and d�.

To construct the stiffness matrix K1D that
associates with the one-dimensional truss el-
ements, one computes the gradients of their
associated terms in Eq. (37), which generalize
to a formula like

d

dy

�
F

L

�
A CAy

��
� dy

D

�
F

L
A C

1

2

�
dF

dL
�
F

L

�
�
.A CAy/˝ .A CAy/

1CA � y C 1
2
y �Ay

)
� dy: (39)

Letting � ! 0, so that L ! L˝ and y ! 0,
one arrives at the desired tangent at .P˝ ; L˝

d

dy

�
F

L

�
A CAy

��ˇ̌̌̌
˝

� dy D

�
F

L

ˇ̌̌̌
˝

A

C
1

2

�
dF

dL
�
F

L

�ˇ̌̌̌
˝

A ˝A

�
� dy: (40)

Pulling everything together, where it is noted
that FAB ! F˝ and dFAB=.dLAB=LAB/ !
dF˝=.dL˝=L˝/ as � ! 0, etc., leads to the
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following stiffness matrix for the line elements

K1D D
8 cos2.!/

P˝L
2
˝�

3

�
F˝

�
AAB CABC CACD

�
C
1

2

�
dF

dL=L

ˇ̌̌̌
˝

� F˝

��
AAB ˝AAB

CABC ˝ABC CACD ˝ACD

��
: (41)

Following the same line of attack, one arrives
at a stiffness matrix for the two-dimensional
surface elements of a dodecahedron, it being

K2D D
2 cos.!/

P˝L˝�2

�
T˝
�
BR C 5BD

�
C

dT

dA=A

ˇ̌̌̌
˝

�
BR ˝BR C 5BD ˝BD

��
:

(42)

Likewise, the stiffness matrix governing the
three-dimensional volume response is simply

K3D D �C : (43)

Quantities for F and T , and there derivatives
dF=.dL=L/ and dT=.dA=A/, are completely
general in this construction. They are to be
supplied by external constitutive expressions.

Because � ! 0 and y ! 0 as � ! 0, the
constraint equation (35) reduces to the second
formula in Eq. (38); consequently, matrix h

does not impact the final variation formulation.

4 Fibers

With only a few exceptions, e.g., in [35] where
the alveolar faces are modeled as membranes,
or in [70] where alveolar ducts are modeled
as hexagonal arrays of springs, most exist-
ing geometric models for the alveolar micro-
structure of lung are constructed as pinned
space trusses, whose bar elements are mod-
eled as fibers loaded in tension. There are,
however, substantial differences between the
force/extension laws that are used, viz., the

constitutive responses assigned to describe the
behavior of the linkages that make up these
space trusses. Here we review those that have
been used, others that could be used, and those
advocated for use.

In terms of the dodecahedral structural
model discussed in §3, it is useful to express
alveolar fiber models in terms of the forces
F they carry, and their local tangent moduli
LdF=dL D dF=d lnL, both of which are
taken to be functions of septal length L. In all
of the models discussed below, except Kimmel’s
model, the fiber’s elastic modulus E is taken to
be the tangent modulus pertaining to the initial
state associated with zero pressure P D 0

and gage length L0. Several of these models
require a second material parameter, which is
denoted as B throughout, but whose physical
interpretations vary from model to model. The
Eulerian (or true) stress carried by a fiber is
quantified by � D �S , where � D L=L0 is
the stretch and S D F=A0 is the Lagrangian
(or engineering) stress, with A0 being the initial
cross-sectional area of the fiber.

4.1 Assumptions

The following assumptions are considered.

� Each fiber in a truss element assumes the
behavior of an incompressible cylinder de-
scribed by its associated material type.

� The force carried by each fiber is shared
equally between the three neighboring
alveoli to which it belongs.

� Elastin is modeled via the hyper-elastic
neo-Hookean solid [1, 67].

� Collagen is modeled via the hypo-elastic
Fung-like solid [16].

� The elastin and collagen fiber networks act
independently [44, 56], their elements are
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loaded in parallel [8], and their physical
dimensions are the same [47, 56].

4.1.1 First Assumption

Although lung is a highly compressible mate-
rial, the constituents that provide its structural
integrity are, to a good approximation, incom-
pressible. What this really means is that the ra-
tio of their shear-to-bulk moduli is smaller than
about one part in a hundred, which is common
amongst soft solids. This being the case, struc-
tural truss elements comprising a dodecahedral
model ought to be taken to be incompressible
materials whose governing equations depend
upon the material that each member is made
from, and the BVP that is imposed upon it.

4.1.2 Second Assumption

This follows from geometric patterning consid-
erations.

4.1.3 Third Assumption

Elastin is a protein that is an isotropic polypep-
tide elastomer built from monomeric units
that have between three and six peptides in
each repeating unit, with a total of about 100
monomers in a typical elastomer chain, plus
elastin is entropic above about 25ıC [67].
Therefore, its physiochemical properties are
compatible with those used to derive the clas-
sical theory of rubber elasticity from statistical
mechanics [1, 63].

The load bearing elastin fibers are located
predominantly along the alveolar septa [47],
i.e., along the pentagonal edges of the dodec-
ahedron. As these are taken to be pinned truss
elements loaded under tension only, it follows
that the elastin fibers in this microstructural
model are described by uniaxially stretched
neo-Hookean rods so that S D �.����2/ [63,
Eq. 5.3]. (Equations 52 & 53 quantify its force

and tangent modulus.) The elastic (Young’s)
modulus E D 3� of single, unswollen, elastin
fibers (5–8 �m diameter) extracted from puri-
fied, bovine, ligamentum nuchae has a value of
1:18˙ 0:03 MPa at 37ıC (glassy modulus) [1].
When osmotically swollen, its elastic modulus
can diminish to 0:17˙0:01MPa (rubbery mod-
ulus) [42]. This is a large span of admissible
values. The neo-Hookean model describes the
experimental data for elastin to about � D 2,
which exceeds the expected stretch along a
septal line in a typical alveolus.

The hypo-elastic Fung model has also been
fit to Aaron & Gosline’s [1] fiber data yielding
parameters of � D 210 ˙ 48 kPa and ˇ D
3:06 ˙ 0:38 [16]. The model describes all of
their data up to fiber rupture, which is around
� � 2:5, with a goodness of fit of R2 D 0:976.

Matsuda, Fung & Sobin [44] measured the
diameter of elastin fiber bundles at the alveolar
mouths in human lung at 7:11˙ 2:93 �m, with
the reported error being plus/minus one stan-
dard deviation from a sample size of 450 taken
from a single lung. Sobin, Fung & Tremer [56]
measured the elastin fiber diameter at De D

1:106 ˙ 0:552 �m in the inter-alveolar septa
from 2030 samples taken from 5 human lungs.

From histological measurements, Oldmixon
& Hoppin [47] determined that four-fifths of all
parenchymal elastin resides at the cable loca-
tions comprising an alveolar unit cell, which
associate with the truss elements in the dodec-
ahedral model, while the remaining one-fifth
of the elastin belongs to the alveolar walls and
septal triple points. They measured the volume
density (fiber volume to alveolar volume) to be
255˙ 28 � 10�6 in canine lung.

4.1.4 Fourth Assumption

Much of the author’s (ADF) research efforts
over the past five years has focused around the
observation that the elastic behavior of collage-
nous materials is well described by the hypo-
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elastic representation of Fung’s law [16, 21].
Collagen, like elastin, contributes to the trans-
mission of tractions along the truss elements
in the dodecahedron, and as such, is modeled
via stretchable uniaxial rods with a material
response of �2dS=d� D E C B�S [16].
(Equations 56 & 57 describe its fiber force and
tangent modulus.)

Matsuda, Fung & Sobin [44] measured the
diameter of collagen fiber bundles at alveolar
mouths in human lung at 4:98 ˙ 2:24 �m,
with the reported error being plus/minus one
standard deviation from a sample size of 3,095
taken from a single lung. Sobin, Fung &
Tremer [56] measured the collagen fiber di-
ameter at Dc D 1:053 ˙ 0:539 �m in the
inter-alveolar septa of 6,902 samples taken
from 14 human lungs. Oldmixon& Hoppin [47]
measured the volume density of collagen fibers
in the cabling locations of alveoli to be 252 ˙
38 � 10�6 for canine lung.

Collagen and elastin fiber dimensions are
observed to be approximately equal in the truss
regions of alveolar geometry. This has been
shown to be true in both the diameter measure-
ments of Sobin et al. [56] and the volume-frac-
tion measurements of Oldmixon& Hoppin [47].
If one considers the fiber diameters for both
collagen and elastin to be 1 �m, as measured by
Sobin et al. in humans, and if one considers the
volume fraction of fiber per unit dodecahedral
cell to be 255�10�6, as measured by Oldmixon
& Hoppin in canines, then one arrives at a
reference pentagonal length of L0 D 63 �m,
and a nominal, alveolar, cell diameter of ND0 D

155 �m at zero transpulmonary pressure. This
result is consistent with the nominal diameters
measured by Sobin et al. in humans, as reported
on pg. 8 and visualized in Fig. 10.

The geometry of our alveolar model is
therefore established; it being summarized in
Table 1, where published dimensions from sim-
ilar models are also tabulated. Data from both
dodecahedron and truncated octahedron models

Reference Df (�m) L (�m) ND (�m)

here 1/1 63 170
[9] 3.35/2.45 45 —
[39] 2 60 185

Table 1: Basic geometric dimensions used to
model lung alveoli. Dimensions correspond
to zero transpulmonary pressure. Df is the
fiber diameter. When two diameters are
given, the first associates with collagen and
the second with elastin. L is the septal
length or distance between septal junctions.
ND is the nominal diameter of an alveolar unit

cell. A dash implies that its value was not
reported.

are presented, which accounts for what might
otherwise be considered to be disparities be-
tween these data.

4.1.5 Fifth Assumption

The extensive histological studies of Matsuda
et al. [44], Oldmixon & Hoppin [47], and of
Sobin et al. [56] provide no discussion of,
nor evidence for suggesting that collagen and
elastin parenchymal fibers are either mechani-
cally or chemically interconnected in any sig-
nificant way. This suggests that these two fiber
types, in a mechanical sense, act in parallel with
one another. This observation has also been
used by others to simplify their mechanical
models of lung, e.g., Denny & Schroter [9],

There are, however, examples in biology
where collagen and elastin have a substantial
mechanical connection, e.g., the ligamentum
propatagiale that supports the leading edge of
skin along avian wings [3]. In these struts,
a central elastin fiber transitions into collagen
ligaments at its two ends. One ligament attaches
to the humerus, and the other attaches to the
radius and ulna. Here Nature has designed
elastin and collagen fibers to be loaded in series;
whereas, Nature has designed the elastin and
collagen fibers in lung parenchyma to carry
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their loads in parallel.

4.2 Models

Here we review material models that have been
used in alveolar truss models, those that we ad-
vocate using, and others that could potentially
be considered.

4.2.1 Hooke’s Law

This well-known elastic law says � D E�, with
� D F=A0 and � D .L � L0/=L0 being the
engineering stress and strain that arise from the
classical theory of linear elasticity. This model
predicts a fiber force of

F D EA0
L � L0

L
; (44)

whose tangent modulus is

dF

dL=L
D EA0 � F (45)

that in the limit as L ! L0 becomes EA0, or
LdS=dLjLDL0 D E, as expected.

4.2.2 Carton’s Model

In the 1962 paper of Carton et al. [5], they
propose a material model for elastin filaments9

where � D �max
�
1� e�S=E�max

�
(in our notation)

that, when cause and effect are switched around,
becomes10

F D �EA0
Lmax � L0

L0
ln

�
Lmax � L

Lmax � L0

�
;

(46)

whose tangent modulus is

dF

dL=L
D EA0

L

L0

Lmax � L0

Lmax � L
; (47)

where Lmax is the maximum, septal, fiber
length, i.e., it’s length at fiber rupture. This is
a model in two parameters: E and Lmax=L0.

4.2.3 Fung’s Law

In 1967 Fung [22] proposed a model very sim-
ilar to the one of Carton et al. [5], but with
the dependent and independent variables being
swapped; specifically, Fung proposed a model,
a.k.a. Fung’s law dS=d� D ECBS , that when
integrated produces the fiber response

F D
EA0

B

�
eB� � 1

�
; (48)

whose tangent modulus is

dF

dL=L
D

L

L0

�
EA0 C BF

�
; (49)

where B and E are the material parameters. In
Fung’s paper, and in the authors’ implementa-
tions of his law, e.g., [18], B is denoted as ˇ.

4.2.4 Kimmel’s Model

In the papers of Kimmel et al. [4, 36, 37], the
tangent modulus for fiber stress is taken to be

dF

F
D B

dL

L
or

dF

dL=L
D BF; (50)

which integrates to

F D

�
L

L0

�B
� 1: (51)

This model has a single material parameter,
viz., B , that relates the logarithmic rates of
traction F to length L. Because the tangent
modulus becomes zero in the reference state,
this model cannot permit F to become zero;
therefore, it necessarily imposes a constraint of
F > 0.

9. Carton et al. say their model is for elastin, but
it actually describes the behavior of collagen.

10. The paper of Dale et al. [6] rewrites the model
of Carton et al. [5] in terms of Eulerian variables for
stress and strain; whereas, Lagrangian descriptions
are used here. Its Eulerian representation is used in
the finite element model of Kowe et al. [39] and in all
of the models of Denny & Schroter [7, 8, 9, 10].
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The units in this integrated form do not
make physical sense. This model lacks a mod-
ulus.

4.2.5 Neo-Hookean Solid

Except for the Hookean solid, which follows
from a more general 3D theory, viz., linear
elasticity, the Carton, Fung, and Kimmel fiber
models are all 1D empirical relationships. Like
the Hookean model, the remaining fiber models
are mathematical consequences arising from
more general 3D theories that solve a 1D BVP
describing the extension of an incompressible
rod.

The first such model to be considered is the
neo-Hookean solid [63] that, in simple exten-
sion, has a force/stretch relationship of

F D
EA0

3

�
L

L0
�
L20
L2

�
; (52)

whose tangent modulus is

dF

dL=L
D EA0

L20
L2
C F; (53)

which has one material parameter: E.

4.2.6 Mooney-Rivlin Solid

A generalization of the neo-Hookean solid is
the so-called Mooney-Rivlin solid [63], whose
governing relation for the 1D extension of a rod
leads to a force response of

F D
EA0

3

�
.1 � B/

�
L

L0
�
L20
L2

�
C B

�
1 �

L30
L3

��
(54)

whose tangent modulus is

dF

dL=L

D
EA0

3

�
.1 � B/

�
L0

L
C 2

L20
L2

�
C 3B

L30
L3

�
; (55)

which has two parameters: E and B , where
E is the elastic modulus at zero force, and B
partitions the response between two, compet-
ing, strain measures. In the literature, these
constants are denoted via C1 D E.1 � B/=3

and C2 D EB=3, which are Mooney’s [46]
coefficients.

4.2.7 Hypo-Fung Solid

This material response is a derived consequence
from a three-dimensional theory [15, 17] based
upon Fung’s empirical law, as presented in
§4.2.3. The theory’s prediction for simple
extension [16] is a power-law, instead of the
exponential that arises from Fung’s empirical
law; specifically,

F D
EA0

B C 1

�
LB

LB0
�
L0

L

�
; (56)

whose tangent modulus is

dF

dL=L
D EA0

L0

L
C BF; (57)

which is a model in two parameters: E and B .

The difference between formulæ (49 & 57)
has to do with how the independent variable L
enters into the right-hand side. This subtlety has
a strong effect on their integrated forms, as we
shall soon see.

Model (56) reduces to the hypo-Hookean
solid whenever B D 1, which is Truesdell’s
[65] theory for an incompressible hypo-elastic
solid of grade zero.
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4.3 Model Comparison

To gain insight into how these various material
models behave, their stretch � D L=L0 vs.
force F responses are plotted in Fig. 12, and
their force F vs. tangent modulus dF=.dL=L/
responses are plotted in Fig. 13.11

These models fall into two groups: the Car-
ton, Fung, and hypo-Fung models are reason-
able formulæ for describing collagen, while the
Hookean, neo-Hookean, hypo-Hookean, and
Mooney-Rivlin models are reasonable formulæ
for describing elastin. Strictly speaking, the
Hookean model should be removed from con-
sideration, because it is derived from a theory
that is applicable only for infinitesimal strains,
which is not the case here. Likewise, the
Fung model should give way to the hypo-Fung
model, as the latter follows from a general
theory, while the former does not. Furthermore,
the hypo-Hookean model is a special case of the
hypo-Fung model, viz., B D 1.

Parametric values that approximate their re-
spective responses for collagen or elastin have
been assigned, with physical dimensions being
assigned according to realistic dimensions in
mammalian alveoli. The collagen responses
were artificially set to coincide with the elastic
response at a stretch of � � 1:5 for comparative
purposes. There is a lot more flexibility in the
hypo-Fung model than there is in the Carton
model at fitting a shape.

5 Membranes

Rods are used to model the truss-work within a
mechanical model for an alveolus, while mem-
branes are reasonable candidates for represent-
ing the alveolar walls. There are twelve mem-
brane panels that comprise a dodecahedron.

5.1 Assumptions

In addition to the modeling assumptions that
apply to the truss elements, others are needed
for the panel elements.

� Each alveolar face is modeled as an incom-
pressible membrane.

� The surface traction carried by each mem-
brane face is shared by the two neighbor-
ing alveoli to which it belongs.

� The surface tension carried by the surfac-
tant film belongs wholly to the alveolus in
which it resides; it is not shared.

� Surface tension  caused by surfactant
has the response of a uniformly stretched,
neo-Hookean membrane whose elastic
modulus varies with concentration � .

� The concentration of surfactant � is gov-
erned by three formulæ: the first describes
its liquid expansion, the second describes
its liquid condensation, and the third de-
scribes its solid-like regime [50].

5.1.1 First Assumption

The arguments that support this assumption
for panel elements are the same as those that
support the corresponding assumption for truss
elements.

5.1.2 Second and Third Assumptions

These follow from geometric patterning consid-
erations.

5.1.3 Fourth Assumption

We can strengthen our case for this assumption
by considering that the surfactant mono-layer is
11. The model of Kimmel is not shown in these figures

because it has no means to assign an elastic modulus.
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predicted by material models (47, 53, 55 & 57) with the geometric parameters set at: L0 D
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a rubberlike material made up of a variety of
macromolecular complexes held in suspension
along the surface layer. These complexes are
comprised of about 95% lipids and 5% proteins
[62]. The disaturated phospholipid dipalmi-
toylphosphatidylcholine makes up about half of
the lipid content, and is primarily responsible
for the surface tension reducing property of the
surfactant [54].

Because the importance of surfactant to the
mechanics of lung is due to its surface tension
properties, not its bulk fluidic properties, one
can consider the ‘skin’ of this fluid as being a
rubberlike membrane, and ignore the affect of
the bulk fluid that resides underneath.

5.1.4 Fifth Assumption

The surface tension carried by a mono-layer of
surfactant at the air/liquid lining along alveo-
lar walls is a complex response governed by
physio-chemical processes through which the
force is modulated [54, 62]. Otis et al. [50] de-
composed the kinetics governing the interfacial
surfactant concentration � into three regimes.

In the first region (the liquid-expanded
regime) the concentration of surfactant at the
liquid/air interface is bounded from above by
� < � ?, with � ? being the maximum equilib-
rium concentration of surfactant at the interface,
i.e., within the surface experiencing tension.
In this regime surfactant migrates between the
bulk fluid and the liquid/air interface that con-
tains it. Here Otis et al. assume that Langmuir
kinetics control the transport of surfactant, as
described by

d.�A/

dt
D A

�
k1C.�

?
� � / � k2�

�
;

D c1�
?A � c2�A;

(58)

where k1 and k2 are the Langmuir adsorption
(bulk ! surface) and desorption (surface !
bulk) diffusion coefficients, with c1 D k1C and

c2 D k1C C k2. Parameter C represents the
concentration of surfactant in the fluid.

In the second region (the liquid-condensed
regime) surfactatant concentration at the liquid/

air interface varies between � ? � � � �max.
Here the surface layer is taken to be insoluble,
i.e., there is no exchange in surfactant between
it and the bulk fluid below it. Otis et al. consider
that the concentration of surfactant can only
change in this domain if the area changes, so
in this regime

� D � ?A
?

A
; (59)

up to a value of � D �max that denotes the
maximum dynamic concentration of surfactant
that can exist at the liquid/air interface.

In the third and final region (the solid-like
regime) the concentration of surfactant within
the air/liquid interface is saturated at

� D �max: (60)

Here the surface tension  is at its minimum.
The lipid mono-layer pancakes up on itself in
this region [62], much like the wind stacking up
ice flows one atop another when the ice goes out
on a large body of water.

Values reported in the literature for these
constants are [9]: c1 D 1:168 s�1 and c2 D
1:184 s�1, with .�max/ D 2 dyn/cm and
.� ?/ D 22:2 dyn/cm.

5.2 Models

5.2.1 Film

Laplace’s theory for surface tension  relates a
pressure differential �p acting across a bubble-
like surface to the principle radii of curvature
R1 and R2 that describe that surface, cf. [14];
specifically,

�p D 
R1 CR2

R1R2
: (61)
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Consequently, increasing surface tension  in-
creases the bubble size at a fixed pressure dif-
ferential across the surface, and vice versa.

A somewhat naïve adaptation of Laplace’s
physical law to an alveolus is presented below.
Take one principle radius to associate with the
nominal radius of an alveolar sac, and take
the other principle radius to associate with the
nominal radius of an alveolar mouth. If alveoli
behave as thin films, then

PM D 2
D C ND

D ND
; (62)

wherePM is that fraction of the transpulmonary
pressure P which is carried by the surface of
the membrane, D is the nominal diameter of an
alveolar mouth, and ND is the nominal diameter
of an alveolar sac.

As this characteristic pertains to the bulk
response, it follows from Eq. (11) that

PMV D 8TA: (63)

Combining the two above equations leads to the
relationship

T D
V

4A

D C ND

D ND
.� .A//

� 1:138 .� .A//;

(64)

with tangent modulus

dT

dA=A
D

V

4A

D C ND

D ND

d.� /

d�

d� .A/

dA=A
; (65)

where T is the surface tension carried along
a planar pentagonal surface in a dodecahedral
model, while  is the surface tension carried
along a thin film with curvature and a pore
opening. The coefficient, whose value is ap-
proximately 1.138, accounts for their geometric
differences, viz., planar vs. curvalinear.

5.2.2 Neo-Hookean Solid

A neo-Hookean solid placed in plane-stress
equi-biaxial (or isotropic) traction is described

by a uniform state of stress S D �.� � ��5/,
which has units of force per unit area. The
force per unit length along the surface carried
by a membrane is therefore governed by [63,
Eq. 5.7]

T D � t0

�
1 �

A30
A3

�
; (66)

where T is the planar surface tension, and t0
is the initial thickness of the membrane. In the
case of the alveolar wall, the shear modulus �
is taken to be a constant; however, in the case
of the surfactant membrane, the shear modulus
�.A/ is taken to be a function of surface areaA.
From self-similarity, �2 D D2=D2

0 D A=A0 D

�, where D is the mean diameter of a septal
face, while � D A=A0 is its areal stretch. The
relevant tangent modulus obeys

dT

dA=A
D 3

�
� t0 � T

�
C
T

�

d�

dA=A
: (67)

In the case of surfactant, � is given by the
right-hand side of Eq. (64), while d�=.dA=A/
is given by the right-hand side of Eq. (65).

The differential equation (67) is very dif-
ferent from the ones that describe the collagen
and elastin truss members, viz., Eqs. (53 &
57). Equation (67) has a saturation state at
T D � t0, given that d�=.dA=A/ D 0 at
T D � t0, too, while the other two ODEs
describe fiber behavior that continues to stiffen
with deformation. This is a geometric effect,
not a material effect ; specifically, Eqs. (53 &
67) both pertain to neo-Hookean solids. This
is a desirable outcome, as it is an observed
phenomenon of the surfactant film at TLC.

5.2.3 Hypo-Hookean Solid

There is one other material model whose solu-
tion for a uniformly stretched solid has a satu-
rating value, i.e., an apparent ultimate strength;
it is the hypo-Hookean solid, which produces a
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stress state of S D 3�.� � ��1/ [18]. When
written for a membrane, it becomes

T D 3� t0

�
1 �

A0

A

�
; (68)

whose tangent modulus is

dT

dA=A
D 3� t0 � T C

T

�

d�

dA=A
; (69)

which saturates at traction T D 3� t0, provided
that d�=.dA=A/ D 0 at T D 3� t0, too.

These two models saturate at different phys-
ical strengths. The neo-Hookean membrane
saturates whenever the surface tension reaches
the material’s shear strength; whereas, the
hypo-Hookean membrane saturates whenever
the surface tension reaches the material’s elastic
strength. They also follow different .T;�/ tra-
jectories to saturation. The neo-Hookean trajec-
tory has a more abrupt transition into saturation
than does the hypo-Hookean trajectory.

6 Pressure-Volume Curves

To demonstrate where we are headed, discus-
sion is now presented on the heterogeneity of
alveolar response within a single lung. The
models discussed up to this point describe the
response of a single alveolus. This model will
be incorporated into a finite element package to
allow full lung simulations. These simulations
will require verification, just like our single
alveolar models do. To this end, the following
technology is being developed at PNNL by the
authors (DRE, JPC, and REJ).

Global pressure-volume (PV ) curves are
routinely acquired in both laboratory and clin-
ical settings with a plethesmagraph. These
curves represent an integrated response over the
whole lung. However, lung ventilation, and
therefore lung expansion, is markedly hetero-
geneous [53]. Local deviations from nominal

Figure 15: Pressure-time history of a typical
breathing cycle subjected to a rat whose PV
response is displayed in Fig. 14 for one such
loading cycle. CT images were acquired at
0, 150, 300, 550, 700, and 900 ms.

heterogeneity have both clinical and pathologi-
cal implications [30]. Spatially heterogeneous
measurements of local PV relationships are
now possible at realistic breathing rates through
a gated computed tomography.

A pressure P volume-ratio dV=dV0 rela-
tionship at two distinct points in the left and
right lungs of a Sprague-Dawley rat is shown
in Fig. 14. Below, we briefly describe the ac-
quisition and processing of these data. It should
be noted that the recorded pressure, shown in
Fig. 15, is that of the ventilator. Nasal and local
alveolar pressures will, in general, be different.

6.1 Data Acquisition

A 344 g male Sprague-Dawley rat was anes-
thetized with 3.5% isoflurane in oxygen and
orally intubated with a 14 gauge catheter tube.
The rat was then placed in the imaging tray of
the CT scanner (eXplore 120, GE Healthcare)
and connected to a computer-controlled me-
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Figure 14: In vivo P vs. dV=dV0 curve for rat lung determined from a sequence of CT images
acquired over a single breathing cycle. The top row of images relate to inflation. The bottom
row of images relate to deflation. Each cycle begins and ends at the end of expiration.

chanical ventilator (SAR-830/AP, CWE Inc.)
while being maintained on isoflurane. Ventila-
tion parameters were: 50 breaths per minute,
1:1 inhale:exhale ratio, �10 cm H2O peak in-
spiratory pressure, and �3.7 ml tidal volume.
A sigh was automatically incorporated every 30
breaths to a peak pressure of 24 cm H2O and
volume of �9.5 ml. The rat’s body temperature
was maintained at 37 ˙ 1ıC with warm water
circulation.

A gating signal was sent to the CT scanner
at the beginning of each inhalation cycle, except
for each sigh and the three breaths immediately
following. In order to capture the lungs at
various points in the breathing cycle, the CT
scanner was programmed with the following
gating delays (in ms): 0, 150, 300, 550, 700,
and 900 (see Fig. 15). The scanner acquired a
single projection per breath and acquired all six
gating delays (over 6 breaths) before increment-
ing to the next gantry angle. The CT imaging
parameters were set at: 100 kVp, 50 mA, 16 ms

exposure time, 220 projections over over 190ı,
and a 50 micron isotropic resolution. Images
were reconstructed to a 150 micron resolution
to reduce noise and enhance airway contrast.

The short 16 ms exposure time allowed
for projection acquisition during breathing with
minimal blurring, obviating the need for inter-
mediate breath holds and complicated breathing
maneuvers. Total imaging time was approxi-
mately 45 minutes.

Following imaging, the rat was sacrificed
with CO2 asphyxiation and prepared for lung
airway casting, as described by Perry et al.
[51]. Silicone casting material, consisting of
10.5 g Dow Corning 734 flowable sealant, 2.5 g
Dow Corning 200 fluid (20 CS), and �1 ml
Ultravist 300 (Bayer Healthcare) contrast agent,
was thoroughly mixed and degassed under vac-
uum. Approximately 1.5 ml of the mixture was
injected into the lungs. After about 1 hour, the
cast was CT imaged in situ with the following
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parameters: 100 kVp, 50 mA, 20 ms exposure
time, 720 projections over over 360ı, 2 averages
per projection angle, and a 50 micron isotropic
resolution.

6.2 Computation of the Displacement
Field

At different pressures, localized lung movement
is semi-independent of the surrounding tissues
such as the ribcage. To enable accurate calcu-
lations of deformations describing the changes
in volumetric MRI data at different pressures,
the impact of image information outside of
the lung was effectively minimized. This was
accomplished by an automated custom software
script that identified regions with high image
intensities that associate with bone, as-well-as
regions with low image intensities that associate
with air outside the specimen. The image inten-
sities of both these regions were set to match the
median tissue intensity, creating a virtual mask
of the regions outside the lung for the purpose
of deformation error calculations. To reduce the
impact of noise, the images were subjected to
2D Gaussian blurring with a radius of 1.

Using the Drop3d registration tool for
motion estimation based on Markov random
fields (cf. http://www.mrf-registration.
net/; Glocker, Komodakis et al. [26, 38]), 3D
deformation fields were calculated by matching
the zero pressure dataset to each of the datasets
acquired at other pressures. This calculation
was accomplished by minimizing the sum of the
absolute differences between the voxel intensi-
ties of the image datasets.

6.3 Computation of Strain

Reinhardt et al. [52] applied an image registra-
tion technique to gated CT images of sheep lung
from which spatial maps were then constructed
whose local Jacobians describe regional volume

change. Zhong et al. [71] applied finite element
technology to acquire regional volume changes,
where 4-noded tetrahedrons were used for voxel
discretization from CT images taken of humans
with lung cancer.

In this study, discretization is set up in the
undeformed configuration using isoparametric
8-noded hexahedral elements, defined from the
voxel centroids (Fig. 16). Material particles at
the voxel centroidsXa define the initial position
of the element nodes as

X D

nX
aD1

Na.�1; �2; �3/Xa; (70)

where Na are standard isoparametric shape
functions, and n is the number of nodes or,
in our case, voxel centroids. The combination
of rigid-body motion and deformation are fully
described by the current nodal positions xa.t/

x D

nX
aD1

Na.�1; �2; �3/xa: (71)

The deformation gradient F , which is the fun-
damental kinematic quantity for finite deforma-
tion, is given as

F D

nX
aD1

xa ˝rrr0Na; (72)

where rrr0Na D @Na=@X is related to rrr�Na D
@Na=@� by the chain rule

@Na

@X
D

�
@X

@�

��T
@Na

@�
;

@X

@�
D

nX
aD1

Xa ˝rrr�Na:

(73)

Given a definition for the deformation gra-
dient (Eq. 72), the Finger b and Green C

deformation tensors, cf. Freed [18], are easily
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quantified via

bij D

3X
KD1

FiKFjK ;

CIJ D

3X
kD1

FkIFkJ :

(74)

From these deformation fields, the Eulerian e
and Lagrangian E covariant strain tensors of
Almansi [2] and Green [27], both of which
measure a change in separation between a pair
of neighboring material points, are given by

e D 1
2
.I � b�1/;

E D 1
2
.C � I/;

(75)

while the Eulerian e and Lagrangian E con-
travariant strain tensors of Signorini [55] and
Lodge [43], both of which measure a change
in separation between a pair of neighboring
material surfaces, are given by

e D 1
2
.b � I/;

E D 1
2
.I � C �1/:

(76)

Volume change is defined simply as

dV D J dV0; J D det F : (77)

J D dV=dV0 is the quantity displayed in
Fig. 14.

The fields derived here are applicable for
finite deformation analysis.

6.4 Hysteresis

In the line drawing of Fig. 14, one readily sees
the hysteresis of breathing. This hysteretic area
represents the work or cost of breathing; it is the
energy expended per breath taken. Hysteresis in
thePV curve is a well-known phenomenon that
Harris [30] attributes to four separate causes:
i) recruitment/derecruitment, ii) surfactant, iii)
stress relaxation, and iv) gas absorption.

i

j

k X3 , x3

X1 , x1 X2 , x2

Figure 16: Finite element discretization of an
image.

Recruitment can mean two different things
in the lung literature. Each has to do with
one of the two plateau regions in a typical S
shaped PV curve. To the clinician, e.g., [31],
recruitment means the engaging of alveoli over
the volume of lung as each begins to inflate
from its deflated (even possibly collapsed) state
at the end of expiration. This mechanism con-
tributes to the low-pressure plateau observed
in typical PV curves. To the biomechanician,
e.g., [60], recruitment means the engaging of
individual collagen fibrils by their straightening
from an unloaded crimped state via extension.
This enables them to carry load, and thereby
stiffens the overall tissue response. This mech-
anism contributes to the high-pressure plateau
observed in typical PV curves. The former
is a heterogeneous structural response in that
individual alveoli are recruited as if a wave
were passing over the lung. The later is a
homogeneous material response in that collagen
recruitment is an alveolar characteristic.

Surfactant plays an important role in reduc-
ing the surface tension of individual alveolar
sacs so that they do not collapse when the lungs
are deflated. The concentration of surfactant
along the air/liquid interface varies over each
breath cycle in a complicated physiochemical
way [50].
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The structural constituents of alveoli are
predominantly collagen and elastin [44, 56] in
roughly equal volume fractions [47]. Both
are viscoelastic, but with very different char-
acteristic times. The characteristic time of
elastin is so short that it basically behaves as
a rubbery viscoelastic solid; specifically, as a
neo-Hookean material [1]. The characteristic
time of collagen, however, is on the same order
as normal physiologic processes [11], so its
viscoelastic attributes play an important role in
lung mechanics.

Lungs are predominantly gas exchangers,
with different gases transporting in different
directions according to their partial pressures
[69]. The pressure within an alveolar sac is
therefore subject to the mass rate of exchange
in gases via the gas law.

Harris [30] concludes his 2005 review on
PV curves by saying:

“If the P -V curve is to become a
useful clinical tool, there are still a
number of problems to solve. Cur-
rently, there is no standard method to
obtain the curve or volume history.
... To make matters worse, we still
do not understand how alveoli deform
during inflation and deflation in hu-
man ARDS, so that inferring from a
P -V curve what is protecting alveoli
or damaging them is exceedingly dif-
ficult. ... A bigger issue, perhaps, is
that regional mechanical differences
are obscured by the P -V curve of the
whole lung, and this may be the most
important piece of information clini-
cians need to know. Finally, it is dif-
ficult to interpret P -V curves without
an absolute measure of lung volume.
... For now it appears that the P -V
curve must remain a research tool, or
in the clinical situation, reserved for
selected patients when it is necessary
to try to understand alterations in lung

mechanics.”

Several of the needs outlined by Harris’ are
addressed in this research project.
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A Linear Elements

There are twenty vertexes in a dodecahedron whose
coordinates are most simply expressed as

.˙1;˙1;˙1/;

.0;˙1=�;˙�/;

.˙1=�;˙�; 0/;

.˙�; 0;˙1=�/;

(78)

when written in terms of a Cartesian reference frame
.i 0; j 0;k0/ whose origin is located at the center
of the dodecahedron. The first set of coordinates
associate with an inscribed cube, cf. Fig. 9. The
other three sets of coordinates locate the remaining
vertexes belonging to the twelve pentagons, with
each side having length L0 D 2=�. Parameter �
is known as the golden ratio, and is defined by

� D
1C
p
5

2
D 2 sin.!/ � 1:618;

1

�
D

2

1C
p
5
D
1

2
csc.!/ � 0:618:

(79)

The dihedral angle (the angle between any two
pentagons in a dodecahedron) is 2 tan�1.�/.

There are three distinct line elements, viz., AB ,
BC , and CD in Fig. 11, with there being ten of
each type in the dodecahedron for the mode of
deformation being addressed here. The coordinates
of locations A, B , C , D, and E in this figure,
as specified in Eq. (17), do not correspond with
the coordinates of Eq. (78). To get the coordinate
in Eq. (17), one needs to rotate the coordinates in
Eq. (78) via the orthogonal transformation

8<:
X
Y
Z

9=; D
24 cos.'/ 0 sin.'/

0 1 0

� sin.'/ 0 cos.'/

358<:
X0

Y0

Z0

9=; ; (80)

where ' D tan�1.1=�/ is the angle of rotation
(about the �j 0 axis) required to make k normal to a
pentagonal surface, as drawn in Fig. 11.
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A.1 Reference State

The three, independent, line elements mentioned
above are described by three spatial vectors

�!

AB˝ D L˝UAB ;

�!

BC˝ D L˝UBC ;

�!

CD˝ D L˝UCD;

(81)

that, in accordance with Eq. (17), can be expressed
in terms of three unit vectors with components

UAB D

8<:
0

1

0

9=; ;
UBC D

1

2

8<:
cos.'/
tan.'/
�2 cos.'/

9=; ;
UCD D

1

2

8<:
sin.'/
� cot.'/
�2 sin.'/

9=; ;
(82)

where kUABk D kUBC k D kUCDk D 1, with
vector UAB pointing from A towards B , etc.

A.2 Deformed State

The change in variables introduced in Eq. (20)
allows the three, independent, line elements of
Eq. (81) to be written in their deformed state as

�!

AB D L˝.UAB C�AB/;

�!

BC D L˝.UBC C�BC /;

�!

CD D L˝.UCD C�CD/;

(83)

wherein

�AB D

8<:
0

2 cos.!/ y2
0

9=; ;
�BC D

8<:
sin.!/.y4 � y2/
cos.!/.y4 � y2/

y3 � y1

9=; ;
�CD D

8<:
�
1 � sin.!/

�
y4

� cos.!/ y4
�2y3

9=; ;
(84)

are the nodal displacements caused by traction �k.

The stretch in each member relative to state
.P˝ ; L˝/, e.g., �AB D LAB=L˝ , is quantified by
their respective vector norms

�AB D kUAB C�ABk;

�BC D kUBC C�BC k;

�CD D kUCD C�CDk:

(85)

However, it is the square of stretch that is used via

dL

L
D

d�2

2�2
; (86)

because, as noted by Budiansky & Kimmel [4],
the square of stretch can be expressed as an exact
quadratic polynomial of the displacements y .

From the above descriptions one can fill out
Eq. (21), which expresses the square of stretch as a
quadratic equation in y . The vectors in Eq. (21) for
the three independent stretches have components

AAB D 4 cos.!/
˚
0 1 0 0

	T
;

ABC D 2 cos.'/

8̂̂<̂
:̂

1

�1=�

�1

1=�

9>>=>>; ;
ACD D 2 sin.'/

˚
0 0 2 1

	T
;

(87)

while the matrices in the above expansions have
elements

AAB D

2664
0 0 0 0

0 8 cos2.!/ 0 0

0 0 0 0

0 0 0 0

3775 ;

ABC D

2664
2 0 �2 0

0 2 0 �2

�2 0 2 0

0 �2 0 2

3775 ;

ACD D

2664
0 0 0 0

0 0 0 0

0 0 8 0

0 0 0 4
�
1 � sin.!/

�
3775 :

(88)

The properties of �, upon which angles ! and '
depend, allow for the simplifications presented in
the above components.
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B Areal Elements

The top and bottom pentagonal areas remain regular
and planar during a uniaxial perturbation in loading;
however, the ten side pentagons distort from regu-
larity. The following derivation for computing the
surface area of a deforming dodecahedron is exact.
In the end, the series expansion for areal stretch is
truncated to O.y3/ accuracy for use in Eq. (22).

Unlike App. A & C, which only differ slightly
from the formulation of Budiansky & Kimmel [4],
the derivation of this appendix is completely orig-
inal. Kimmel & Budiansky [36] used numerical
methods to approximate values that are analytically
derived herein.

B.1 Regular Pentagons

With the area of regular pentagon ABFGH in
Fig. 11 being given by Eq. (23), it follows that
the ratio of its current to reference areas A=A˝ is
equal to the ratio of its characteristic lengths squared
L2=L2˝ . Consequently, from Eqs. (21 & 22), it
follows that

BR D AAB and BR D AAB ; (89)

where AAB and AAB are found in Eqs. (87 & 88),
respectively.

B.2 Distorted Pentagons

In order for the series expansion for areal stretching
� D A=A˝ stated in Eq. (22) to be compatible
with the variational bulk response of Eqs. (9 & 10)
whenever � D 0 and y D 0 for an arbitrary ıy , it
follows that

5BD CBR D 2
�
AAB CABC CACD

�
; (90)

so one determines from Eq. (89) that

BD D
1
5

�
AAB C 2.ABC CACD/

�
: (91)

All that remains to be found is matrix BD . Differ-
entiating Eq. (22) twice gives

BD D
1

A˝

d2AD
dy dy

; (92)

reducing the problem to finding the above Hessian.
In the analysis that follows, it is determined that BD
is itself a quadratic polynomial in y .

B.2.1 The Hessian

The area of a trapezoid is the average length of its
two parallel sides times their height of separation.
So, for trapezoid ABCE, the two parallel sides
have reference lengths AB˝ D L˝ and CE˝ D
2L˝ sin.!/ with their height of separation being
H˝ D L˝ cos.˛/, where ˛ D 2! � �=2. When
collected together, the area of this trapezoid is

AABCE˝ D L
2
˝

�
1=2 C sin.!/

�
cos.˛/; (93)

while the triangle CDE has an area of

ACDE˝ D L
2
˝ sin.!/ cos.!/; (94)

so that when added they become 5
4
L2˝ tan.!/,

which is the area of each of the 12 regular pentagons
of a dodecahedron in its isotropic reference state of
.P˝ ; L˝/. Recall that ! D 54ı and ˛ D 18ı.

The area AD of pentagon ABCDE, distorted
by traction �k, equates with the area of an isosce-
les trapezoid ABCE, which lies above line CE,
summed with the area of an isosceles triangle CDE,
which lies below line CE, viz.,

AD D AABCE C ACDE ; (95)

that we express as

AABCE D L
2
˝BH & ACDE D L

2
˝bh; (96)

where B is the average length of the two parallel
edges of the trapezoid withH being its height, while
b is the base length of each right triangle (there
are two right triangles that make up an isosceles
triangle) with h being their height, all of which are
scaled against the septal length L˝ so that

B˝ D 1=2 C sin.!/;

H˝ D cos.˛/;

b˝ D sin.!/;

h˝ D cos.!/;

(97)

which describe their reference dimensions. The
deformed lengths of these four variables can be
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written as polynomials in the displacement vector
y; specifically, let

B D B˝ CD � y;

H 2
D H 2

˝ CE � y C
1
2
y �Ey;

b D b˝ C F � y;

h2 D h2˝ CG � y C
1
2
y �Gy;

(98)

where vectors D, E , F , G and matrices E , G

are all constant valued. It turns out that the base
lengths b and B can be written exactly as linear
polynomials in y; whereas, the heights h and H
cannot be expressed as finite polynomials; however,
like the stretches, their squares h2 and H 2 can be
represented as quadratic polynomials in y .

From the above definitions, it follows that the
Hessian BD of Eq. (92), in light of Eqs. ( 95 & 96),
is quantified via the following matrix equation

BD D
L2˝
A˝

�
dB

dy
˝

dH

dy
C

dH

dy
˝

dB

dy

C B
d2H

dy dy
CH

d2B

dy dy

C
db

dy
˝

dh

dy
C

dh

dy
˝

db

dy

C b
d2h

dy dy
C h

d2b

dy dy

�
:

(99)

From the polynomial expansions described in
Eq. (98), the vector derivatives in Eq. (99) are

dB

dy
D D;

dH

dy
D

1

2H

�
E CEy

�
;

db

dy
D F ;

dh

dy
D

1

2h

�
G CGy

�
;

(100)

while the matrix derivatives in Eq. (99) are

d2B

dy dy
D 0;

d2H

dy dy
D

1

2H

�
E

�
1

2H 2

��
E CEy

�
˝
�
E CEy

���
;

d2b

dy dy
D 0;

d2h

dy dy
D

1

2h

�
G

�
1

2h2

��
G CGy

�
˝
�
G CGy

���
;

(101)

where the chain rule has been used.

The above formulation for BD is a quadratic
function in y whose value at y D 0 is

BDjyD0 D
L2˝
A˝

(
1

2H˝

�
D ˝E CE ˝D

�
C

B˝

2H˝

 
E �

1

2H 2
˝

E ˝E

!

C
1

2h˝

�
F ˝G CG ˝ F

�
C

b˝

2h˝

 
G �

1

2h2˝
G ˝G

!)
:

(102)

What remains to quantify are the four vectors and
two matrices present in the above expression, see
Eqs. (107 & 110–114).

B.2.2 Vectors & Matrices of Deformation

From the reference coordinates (17) and their dis-
placements (18), one determines that the base
lengths referred to in Eq. (96) for the deformed
ABCE trapezoid and CDE triangle have dimen-
sionless lengths of

B D B˝ C cos.!/.y2 C y4/;

b D b˝ C cos.!/y4;
(103)
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with squared heights of

H 2
D
�
1
2

cos.'/C 1
2
�.y4 � y2/

�2
C
�
cos.'/C y1 � y3

�2
;

h2 D
�
1
2

sin.'/C .1 � �=2/y4
�2

C
�
sin.'/C 2y3

�2
;

(104)

which are most easily envisioned by projecting the
ABCDE surface onto the i ^ k plane, where it
becomes a segmented line.

Expanding the above expressions according to
their definitions allows the components of the above
defined vectors and matrices to be quantified. Vector
D, which belongs to the trapezoidal base length B
of Eq. (98), has components

D D

8̂̂<̂
:̂

0

cos.!/
0

cos.!/

9>>=>>; : (105)

Vector E and matrix E , which belong to the trape-
zoidal height squared H 2 of Eq. (98), have compo-
nents

E D cos.'/

8̂̂<̂
:̂

2

��=2

�2

�=2

9>>=>>; ; (106)

and

E D

2664
2 0 �2 0

0 �2=2 0 ��2=2

�2 0 2 0

0 ��2=2 0 �2=2

3775 : (107)

Vector F , which belongs to base length b for the
right triangle in Eq. (98), has components

F D

8̂̂<̂
:̂

0

0

0

cos.!/

9>>=>>; : (108)

And vector G and matrix G , which belong to the
square of this triangle’s height h2 via Eq. (98), have
components

G D sin.'/

8̂̂<̂
:̂

0

0

4

1 � �=2

9>>=>>; ; (109)

and

G D

2664
0 0 0 0

0 0 0 0

0 0 8 0

0 0 0 2.1 � �=2/2

3775 : (110)

Inserting Eqs. (23, 97 & 105–110) into Eq. (102)
allows matrix BD in Eq. (22) to be quantified. The
nature of the vector outer products that are involved
are such that a simple final expression is not to be
had. Nevertheless, the symmetric forms of these
outer products can be substantially simplified due to
the properties of the golden ratio �, specifically

1
2

�
D ˝E CE ˝D

�
D

1

2

2664
0 1 0 1

1 ��=2 �1 0

0 �1 0 �1

1 0 �1 �=2

3775 ; (111)

1
2

�
E ˝E

�
D

cos2.'/

2

�

2664
4 �� �4 �

�� �2=4 � ��2=4

�4 � 4 ��

� ��2=4 �� �2=4

3775 ; (112)

1
2

�
F ˝G CG ˝ F

�
D

1

2

2664
0 0 0 0

0 0 0 0

0 0 0 2=�

0 0 2=� 1=� � 1=2

3775 ; (113)

and

1
2

�
G ˝G

�
D

sin2.'/

2

�

2664
0 0 0 0

0 0 0 0

0 0 16 4.1 � �=2/

0 0 4.1 � �=2/ .1 � �=2/2

3775 :
(114)
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C Volume Elements

The distorted dodecahedron is segmented into a
collection of tetrahedra for computing its volume.
Given vertexes described by position vectors a, b
and c, with the forth vertex being located at the
origin, the volume of a tetrahedron is proportional
to its scalar triple product, viz., V D 1

6
ja � .b � c/j,

which describes a cubic polynomial in y . Care must
be taken to change the sign whenever the scalar
triple product yields a negative number. This is most
easily checked at y D 0. All total, we decompose
the distorted dodecahedron into seventy individual
tetrahedra that belong to four shape types.

In order for the series expansion for volumetric
stretching � D V=V˝ stated in Eq. (24) to be
compatible with the variational bulk response of
Eqs. (9 & 10) whenever � D 0 and y D 0 for an
arbitrary ıy , it follows from Eq. (21) that

C D 1
2

�
AAB CABC CACD

�
; (115)

which agrees (in numeric value) with the equivalent
C vector derived by Budiansky & Kimmel [4]. This
is the linear coefficient for y in Eq. (24). We now
seek the quadratic coefficient that is matrix C .

A single tetrahedron can be used to describe
the volumes whose outer surfaces associate with
the regular pentagons on the upper and lower faces,
there being ten associated tetrahedra overall. The
quadratic term in the volume expansion for this
grouping reduces to

5
3
L3˝

�
� y1y2 C

1
4
�3y22

�
: (116)

The triangular face used to compute the volume of
a tetrahedron from this grouping has corners located
at ABW , where A and B are quantified in Eq. (17),
while W has coordinates L˝

�
0; 0; �2 cos.'/=2

�
in

the reference state .P˝ ; L˝/, cf. Fig. 11.

The CDE isosceles triangle is made up of two
right triangles of equal area. There are 20 such trian-
gles on the surface of a dodecahedron. The twenty
tetrahedra that associate with these triangular faces
have a quadratic term in their volume expansion of

5
3
L3˝

�
�.2C�/y3y4C

1
4
.1C 2=�/y24

�
: (117)

The right triangle used to compute the volume of a
tetrahedron from this grouping has corners CDX ,
where C and D are quantified in Eq. (17), while
X has coordinatesL˝

�
�2 cos.'/=2; 0; sin.'/=2

�
in

the reference state .P˝ ; L˝/.

The ABCE isosceles trapezoid is made up of
three triangles. The outer two triangles, AXE and
BCX , are equal in area due to symmetry. The inner
triangle ABX can be further divided into two right
triangles of equal area, viz., AYX and BXY . There
are 20 of these outer triangles that appear on the
surface of a dodecahedron. The volume of these
twenty tetrahedra has a quadratic term in its series
expansion of

5
3
L3˝

�
�2y1y4 �

1
2
�2y2y3

�
1
4
y2y4 �

1
2
� y3y4 C

1
4
�3y24

�
: (118)

There are also 20 such inner right triangles that
appear on the face of a dodecahedron. The volume
of these twenty tetrahedra has a quadratic term in its
series expansion of

5
3
L3˝

�
1
2
�2y1y2 C

1
2
� y1y4

�
1
4
y22 � � y2y3 C

1
4
�3y2y4

�
: (119)

Y has coordinates L˝
�
�2 sin.'/=2; 0; cos.'/=2

�
in

the reference state .P˝ ; L˝/.
Summing the above expressions, which collec-

tively describe the quadratic contribution to volume
change in a uniaxially distorted dodecahedron when
normalizing by the reference volume V˝ given in
Eq. (25), leads to the following expression for ma-
trix C in Eq. (24), i.e.,

C D
2

3 tan2.!/

�

2664
0 1C �=2 0 1=2 C �

1C �=2 1 �.1C �=2/ 1=2
0 �.1C �=2/ 0 3=2 C �

1=2 C � 1=2 3=2 C � 2

3775 :
(120)

This matrix is slightly different from the analogous
one derived by Budiansky & Kimmel [4]; however,
the constant and linear terms in our series expan-
sions for � D V=V˝ , cf. Eq. (24), are the same.
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The fact that our formulations differ in their
quadratic contributions is not unexpected, because
of the different assumptions imposed on the shape
of the deformed dodecahedron. They represented
each pentagonal face distorted from regularity with
five planar triangles sharing a common center node
whose displacement is the mean of the pentagon’s
vertexes; whereas, we represent each distorted pen-
tagonal face with a planar isosceles triangle and a
planar isosceles trapezoid sharing a common edge.

D Geometric Identities

The geometry of a dodecahedron can be expressed
in terms of the golden ratio � of Eq. (79), cf. App. A.
There are numerous identities between this ratio and
the various angles that can be used to describe a
dodecahedron, some of which are cataloged below.

sin.!/ D �=2;

tan.'/ D 1=�;

cos.'/ cos.!/ D 1=2;

� sin.'/ cos.!/ D 1=2;

�2 cos2.'/ � sin2.'/ D �;

2 tan.!/
�
1 � sin.!/

�
D sin.'/;

�2 � 1=� D 2;

�2 C 1=� C 2=�2 D 4:


