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Summary 

This white paper describes the results of new research to develop an uncertainty characterization 
(UC) process to help address the challenges of regional climate change mitigation and adaptation 
decisions.  This research is being carried out as part of the integrated Regional Earth System Model 
(iRESM) initiative, a new scientific framework developed at Pacific Northwest National Laboratory to 
evaluate the interactions between human and environmental systems and mitigation and adaptation 
decisions at regional scales.  The framework integrates a regional climate model; a regional energy-
economy model; and highly spatially-resolved models of crop productivity, building energy demands, 
electricity infrastructure operation and expansion, and water supply and management.  The iRESM 
framework is intended to help regional stakeholders (scientists as well as decision makers) understand the 
consequences of climate change as well as the consequences of policies to mitigate or adapt to such 
change within regions.   

The initiative has developed the following four science questions to guide its research: 

• How do intrinsic regional characteristics shape, enhance, or constrain regional mitigation and 
adaptation opportunities?  

• How do projected changes in mean climate versus climate extremes affect the development of 
adaptation and mitigation strategies? 

• How might interactions between management decisions and natural processes contribute to rapid or 
nonlinear changes, and do they contribute to climate feedbacks? 

• How will adaptation and mitigation strategies interact in the next few decades in terms of achieving 
their respective goals? 

An important consideration for the iRESM initiative is that Earth system mechanisms and future 
changes are imperfectly understood and in some cases deeply uncertain—especially at the level of 
resolution required for regional analyses and decision making.  The UC process developed for the 
initiative addresses uncertainty by first identifying through sensitivity analysis the key uncertainties in 
data inputs, individual model structures, and coupled models that are important for particular stakeholder 
questions and evaluation criteria.  These key uncertainties are then characterized and propagated to 
determine the robustness of the framework’s results for the particular questions, thereby providing 
insights for researchers and decision makers alike.  The process differs from many traditional applications 
of uncertainty quantification (UQ) because of its focus on stakeholder needs and its allowance for 
qualitative and semi-quantitative methods for describing uncertainty.  The process not only permits the 
dimensionality of the UQ problem to be reduced, it also allows research efforts to be targeted at the 
uncertainties that really matter for the question in hand.  

This decision-specific orientation for UC has multiple implications for the iRESM initiative that will 
continue to be explored, including: the importance of stakeholder interactions and the development of 
methods for communicating results; the development of a flexible model architecture that will facilitate 
the application of the iRESM model components relevant to particular applications; and the identification 
of approaches for reducing model run times to facilitate the UC process, including the development of 
surrogate models.   
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Acronyms and Abbreviations 

AOGCM atmosphere-ocean general circulation model 
BEND Building ENergy Demand 
DCLM Distributed Community Land Model 
DCLM-WM Distributed Community Land Model-Water Management 
D-S Dempster-Shafer 
EMF Energy Modeling Forum 
IPCC Intergovernmental Panel on Climate Change 
IRESM integrated Regional Earth System Model 
LHS Latin Hypercube Sampling 
MELD electricity demand 
MIT Massachusetts Institute of Technology 
OEM electricity operations 
RB Robust Bayes 
RCP representative concentration pathways 
REIF Regional Energy Infrastructure Framework 
RESM Regional Earth System Model 
R-GCAM Regional-Global Change Assessment Model 
RPS renewable portfolio standards 
UC uncertainty characterization 
UP uncertainty propagation 
UQ uncertainty qualification 
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1.1 

1.0 Introduction 

All predictive science entails uncertainty.  It is an awareness of this uncertainty that guides the 
prudent application of mathematical models in real-world decision-making environments.  In decision 
making on climate change adaptation and mitigation at regional scales, uncertainties are profound and 
pervasive, and the stakes are high (Nature 2010). For example, the fates of ecosystems and species and 
human decisions such as those regarding food production, water resource management, and energy supply 
and demand are inextricably linked.  Climate change impacts on natural and human systems and 
adaptation and mitigation actions will affect economic development and financial flows.  Finally, the fact 
that mitigation and adaptation decisions will often require tradeoffs between and among human and 
ecological objectives completes the picture of the daunting challenges facing regional decision makers:  
risks, complexities, uncertainties, and tradeoffs.   

This paper describes the results of new research to develop an uncertainty characterization (UC) 
process to help address the challenges of regional climate change mitigation and adaptation decisions.  
This research is being carried out as part of the integrated Regional Earth System Model (iRESM) 
initiative, a new scientific framework developed at Pacific Northwest National Laboratory to evaluate the 
interactions between human and environmental systems and mitigation and adaptation decisions at 
regional scales.  The framework integrates a regional climate model; a regional energy-economy model;  
and highly spatially resolved models of crop productivity, building energy demands, electricity 
infrastructure operation and expansion, and water supply and management.  The iRESM framework is 
intended to help regional stakeholders (scientists as well as decision makers) understand the consequences 
of climate change as well as the consequences of policies to mitigate or adapt to such change within 
regions.  The initiative has developed the following four science questions to guide its research: 

• How do intrinsic regional characteristics shape, enhance, or constrain regional mitigation and 
adaptation opportunities?  

• How do projected changes in mean climate versus climate extremes affect the development of 
adaptation and mitigation strategies? 

• How might interactions between management decisions and natural processes contribute to rapid or 
nonlinear changes, and do they contribute to climate feedbacks? 

• How will adaptation and mitigation strategies interact in the next few decades in terms of achieving 
their respective goals? 

As pointed out above, an important consideration for modeling any policy addressing either 
mitigation or adaptation is that the mechanisms linking such Earth system changes are imperfectly 
understood and in some cases deeply uncertain.  Therefore, any model or set of models describing 
feedbacks and linkages must include methods for characterizing this uncertainty, quantifying it accurately 
to the extent possible, and depicting it in a manner understood by its intended audience.  In a departure 
from the emphasis of much climate change science, the UC process under development does not focus not 
on improving regional predictions per se.  Rather, it focuses on identifying and characterizing the key 
uncertainties in data inputs, individual model structures, and coupled models to determine the robustness 
of the framework’s results, thereby providing insight for researchers and decision makers alike.  In 
addition, to meet the twin requirements for scientific accuracy and policy relevance, the characterization 
of uncertainty must be accomplished in a computationally feasible, transparent, and defensible manner. 
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This white paper is intended as a resource to establish a common understanding of methodological 
options for UC among investigators from diverse scientific fields and to provide the foundation for a set 
of recommendations regarding an appropriate UC process for the initiative.  The paper is structured as 
follows:  Section 2 first describes a recommended taxonomy of uncertainty for the iRESM framework and 
then summarizes the wide range of methods available for UC, quantification, and propagation.  Section 3 
reviews alternate methods for utilizing UC results in decision making.  Section 4 describes the 
recommended UC process for the iRESM initiative and the results to date from applying the process to 
the first iRESM pilot region.   
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2.0 UC:  Taxonomies and Methods 

2.1 Taxonomies of Uncertainty 

Although all sources of uncertainty affect the stakeholder’s confidence in a prediction, some sources 
are more amenable than others to characterization—particularly quantitative characterization.  Perhaps 
because of this, the phrase “uncertainty quantification” (UQ) is often used interchangeably with 
“uncertainty characterization,” (UC) when it is in fact a subset of the larger UC space (i.e., there are semi-
quantitative and qualitative methods of UC).  Uncertainty propagation (UP) methods are also a subset of 
the UC space, and some methods for UP are also considered UQ methods.  The following definitions are 
provided to clarify the differences between UC, UQ, and UP.  Figure 2.1 provides a Venn diagram to 
illustrate the organization within the UC space and lists some of the specific methods in each subset.   

• UC is any proposition that measures, quantitatively or qualitatively, the degree of uncertainty 
associated with a parameter level, prediction, or other entity for which a true but unknown value or 
outcome exists. 

• UQ is that subset of UC approaches in which quantitative measures are defined over the space of 
possibilities for uncertain parameters, predictions, etc.  Probabilistic characterization is the most 
common means of UQ. 

• UP is the mechanical means of making inferences about the UC of output parameters and predictions 
based on the UC established for input parameters and models. 

 

 
Figure 2.1.  The Relationships Between UC, UQ, and UP 
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In addition to clarifying the UC space as shown in Figure 2.1, distinguishing between uncertainty 
types is helpful for defining and communicating the UC process for the iRESM initiative.  Foremost, a 
distinction made in numerous domains (Paté-Cornell 1996; Kaplan and Garrick 1981) is that of aleatory 
uncertainty versus epistemic uncertainty.  Aleatory uncertainty, sometimes referred to as stochastic or 
random uncertainty, is that which is (as a practical matter) inherent in the system under study.  This 
uncertainty is considered to be an attribute of the system itself and cannot be narrowed through increased 
knowledge on the part of the analyst.  Aleatory variability is perhaps a more suitable phrase since this 
form of uncertainty reflects the random variability in the attributes of the system, such as the behavior of 
the members of a population, random variations between engineered/physical systems, or variations in 
meteorological conditions. 

In contrast, epistemic uncertainty reflects a state of limited knowledge about the system on the part of 
the analyst.  Epistemic uncertainty can, in principle, be narrowed or eliminated through acquisition by the 
analyst of additional information.  For example, the value of a physical parameter (that has a precise, 
objective, but unknown value) entering a model can be subject to epistemic uncertainty. 

As in most taxonomies, the line between these two varieties of uncertainty is not a bright one.  As a 
practical matter, the uncertainty that is ultimately experienced by the analyst or decision maker has the 
same practical implications regardless of whether it is irreducible and inherent in the system or stems 
from limited knowledge.  The treatment of these two types of uncertainty, in a mathematical sense, is 
often similar also.  Probabilities, interpreted in a classical frequentist sense, provide a natural framework 
in which to accommodate aleatory uncertainty, and while non-probabilistic approaches to characterizing 
epistemic uncertainty have been proposed and sometimes adopted (see Section 2.2), probability theory 
also remains the most widely applied framework for epistemic uncertainty.   

However, notwithstanding the dull line between these types of uncertainty, there do exist some forms 
of analysis that incorporate both types and in which the distinction needs to be carefully preserved.  For 
example, climate modelers are aware that short-term forecasts are sensitive to initial conditions and 
inherent climate system variability, which are essentially aleatory, but that longer-term climate forecasts 
are dominated (for given climate forcing assumptions) by uncertainties in model structure and 
parameterizations, which are essentially epistemic.  To account for epistemic uncertainty, perturbed 
physics ensembles are run of individual models with sampled parameter values, and multi-model 
ensembles are used to account for differences in model structure (Tebaldi and Knutti 2007).  For an 
example from human systems modeling, the aleatory variability in the behavior of a population may need 
to be specified as an element of an economic model, yet there may exist epistemic uncertainty about the 
mean and shape of that aleatory distribution.  In this case, uncertainty in the parameters of the aleatory 
distribution (mean and variance, say) may each need to be characterized by epistemic probability 
distributions.   

Going beyond these classical concepts, other taxonomies have sought to address the uncertainties 
associated with use of physical, engineering, and social models to predict the behavior of complex, 
inhomogeneous, self-interacting systems (e.g., Paté-Cornell 1996; Budnitz et al. 1997).  In some technical 
disciplines, uncertainty types and the means by which they are characterized have become so well 
established that uncertainty analysis techniques have become standardized and sometimes even 
proceduralized (ANS/IEEE/NRC 1983; NRC 1990; Budnitz et al. 1997).  Where they exist, standardized 
methods have tended to associate UC methodologies with uncertainty types.  Yet, notwithstanding the 
maturity and routine application of various methodologies in certain domains, there remain outstanding 
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conceptual questions that are frequently debated within technical communities about the most 
appropriate, defensible, and comprehensible means of UC (Shafer 1976; Zadeh 1981; Unwin 1988; 
Helton et al. 2008).   

Climate science is among those domains in which growing attention is being focused on the 
conceptual and practical issues of uncertainty.  Many of these issues mirror discourse in other science, 
engineering, and policy domains, while some have particular significance in the arena of climate 
mitigation and adaptation.  There are several proposed taxonomies of uncertainty in the climate-related 
decision domain (Moss and Schneider 2000; Rotmans and Van Asselt 2001; Katz 2002; Peterson 2006; 
Wilby and Dessai 2010).  For example, Rotmans and Van Asselt (2001) identify the following categories 
in the context of integrated assessment modeling: 

• Social uncertainties:  Those associated with describing social behavior of people in terms of 
demographics, consumption, migration, and urbanization. 

• Economic uncertainties:  Those associated with the production and consumption of resources, capital, 
and labor. 

• Environmental uncertainties:  Those associated with physical, biological, and chemical 
transformation of substances and their penetration of the natural environment. 

• Institutional uncertainties:  Those associated with the gamut of policy options and measures in terms 
of financial measures, legislative measures, education, and research and development programs. 

Moss and Schneider (2000) suggest an uncertainty taxonomy that reflects the accumulation of 
uncertainties in the analytical chain associated with estimation of climate impacts.  The uncertainty 
contributors that “cascade” to produce the overall uncertainty are those associated with:  emission 
scenarios, carbon cycle response, global climate sensitivity, regional climate change scenarios, and 
impacts.  Wilby and Dessai (2010) suggest a different cascading taxonomy of uncertainties comprising 
the following elements:  knowledge of future societies, greenhouse gas emissions, climate modeling, 
defining regional scenarios, assessing impacts, assessing local impacts, and adaptation responses.  Katz 
(2002) refers to a taxonomy that is more reflective of the fundamental uncertainty types discussed below 
for the iRESM framework:  measurement error (classical issues of random and systemic bias in parameter 
estimation), variability (aleatory in the vernacular introduced above), model structure (validity and 
completeness), and scaling aggregation (modeling uncertainty associated specifically with application of a 
model at various spatial and temporal scales).   

It is interesting that in the context of the graphical display of uncertainty, Moss and Schneider (2000) 
also suggest a de facto taxonomy of uncertainty that, while not explicitly tied to climate, does not derive 
from precedent in other domains.  Rather than the typical reductionist/analytic approach of delineating 
sources of uncertainty associated with the elements of an analysis, these authors characterize the net 
uncertainty associated with a study “finding” (a discrete outcome) in terms of simple 10-point scales for 
each of four dimensions (paraphrased):  (1) the extent and strength of theory supporting the finding; 
(2) the availability of supporting model results; (3) the extent of supporting real-world observations; and 
(4) the degree of consensus within the knowledgeable technical community on the underlying theories, 
models, and observations.  Both of Moss and Schneider’s approaches were developed for application in 
expert judgment-based assessments—and while such dimensions would unlikely be distinguished 
explicitly in the analytic propagation of uncertainty, their second taxonomy may provide a conceptual 
framework for the a posteriori attribution of uncertainty factors relevant to the analytical predictions.  
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Finally, Moss and Schneider (2000) also suggest examining sources of uncertainty in continuous 
quantities, grouped according to their origins in data, models, and other miscellaneous sources such as 
definitional imprecision or inappropriate spatial/temporal units.   

As for the examples above, the taxonomy of uncertainty recommended for the iRESM initiative needs 
to address the challenges of its specific domain.  The iRESM framework will couple a regional Earth 
system model of atmosphere, land, and ocean processes (RESM) with a regional integrated assessment 
model of socioeconomics, the energy economy, water supply and demand, and land use/land cover 
change.  Depending on the research question, these models will interact with one or more spatially 
explicit sectoral models.  These sectoral models include climate-sensitive building energy demand, energy 
infrastructure expansion and operation, crop productivity, and water supply/management.  Due to this 
architecture, the UC process must address the sources of uncertainty in the individual models as well as in 
the coupled models.   

In exercising a model or set of coupled models—as in the iRESM framework—to make predictions 
about real-world events, there are several fundamental reasons for questioning the accuracy of those 
predictions for uncertainty.  These reasons are associated with the following questions: 

1. Are the model input parameters accurately quantified? 

We can represent a model as a function or mapping f that associates the values of some vector of 
input parameter values X, to some vector of output parameter values (the predictions) Y: 

 Y = f(X). (1) 

To exercise this mapping, the input parameters (X) need to be quantified, perhaps empirically or 
based on upstream models.  Uncertainty as to whether these parameters have been accurately estimated is 
the first general source of uncertainty about the accuracy of the model outputs (Y).  Limited confidence in 
the quantification of input parameters may be rooted in the fact that the supporting data are sparse, noisy, 
ambiguous, or possibly processed through data analysis models of uncertain validity.   

The aggregate uncertainty associated with quantification of the input parameters constitutes this first 
class of uncertainty.  This, of all forms of uncertainty, is generally the most accessible to quantification 
and analysis (to be discussed below). 

2. Is the model skillful? 

The question underlying this contribution to uncertainty is:  Given the scope of the analysis and the 
phenomena and factors it is intended to account for, is the model an accurate one?  In terms of Equation 1, 
this can be reiterated as the question of whether f is an accurate mapping between X and Y, representing 
valid science or statistical relationships.  In general, a model would be considered valid if the mapping 
accurately mirrors the relationship between X and Y that would, in principle, be produced experimentally 
or through real-world observation (although this is not often a practically implementable criterion for 
assessing validity).  For instance, the validity of a model built on data generated under conditions that 
differ from those relevant to the predictive problem (e.g., historic conditions used to assess future 
scenarios) is uncertain.  Another consideration is that, depending on the nature of the model, the effect of 
aleatory variability in the real-world system needs to be discounted before meaningful comparison can be 
made with model predictions.  That is, where a model does not explicitly address aleatory variability 
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(through, say, the construction of stochastic probability distributions), then the uncertainties implicit in 
the predictions of the model must at least exceed the irreducible aleatory variability of the subject system, 
regardless of the model’s skills.  Insights into the skillfulness and even the completeness of models (the 
“known unknowns” part—see item 3, below), as well as the scope of aleatory variability versus epistemic 
uncertainty, can sometimes be obtained through intermodel comparisons that run “competitor” models of 
processes or phenomena with the closely matched assumptions.  (See Section 2.2.2.6.)   

The notion of prediction accuracy cannot always be completely disentangled from the vagueness 
inherent in the model outputs.  That is, the precision with which a model output parameter can be 
identified with a real-world measurable influences the degree of uncertainty associated with the model’s 
validity.  So, for instance, a model that predicts, or is interpreted as predicting, “high market damage” 
would be considered to have uncertainty characteristics that differ from one intended to attach greater 
quantitative precision to the predicted degree of market damage.   

3. Is the model complete? 

This third form of uncertainty is associated with the question of whether the model (or model suite) 
has captured all the phenomena and factors necessary to produce accurate predictions, given the intended 
scope of application.  The completeness issue has two components, which were memorably articulated in 
another context by a U.S. Secretary of Defense as the Known Unknowns and the Unknown Unknowns.  
The former category would capture phenomena and factors that are known to be absent from the model 
but that are perhaps not sufficiently understood to allow their incorporation into the analysis.  The latter 
category, in effect, simply contains the acknowledgement that the modelers may not have thought of 
everything that could influence outcomes.  This type of uncertainty is the most problematic from a UC 
perspective in that it is, in principle, beyond analytic resolution. 

While these categories are generally accepted across technical communities as the principal 
contributors to uncertainty in system modeling, there is a strong case for one additional category, 
particularly in the context of large, complex computer-implemented models: 

4. Is the model accurately implemented?  

This form of uncertainty is rooted in the question of the veracity of the calculations underlying 
implementation of a model or model suite.  That is, have the calculation elements implied by the model 
and by the bridging requirements between models been executed in accordance with the intent of the 
modelers and analysts?  The more complex and extensive a set of models, the greater the likelihood that 
software errors, hardware faults, and analyst mistakes will occur.  Inability to confidently verify all such 
aspects of a large, interacting set of calculations is the source of this fourth form of uncertainty. 

These, then, are the four fundamental categories of uncertainty associated with system modeling.  
Note that they are germane to characterizing confidence in the values of the immediate modeling outputs 
and to derivative insights gained from comparison of model inputs and outputs.  For instance, while we 
might expect insights such as “the value of X4 strongly influences the value of Y6” or “the directional 
influence of X2 on Y3 is positive” to be more robust than predictions of output parameter levels, they are 
insights that can nevertheless be subject to the four sources of uncertainty.  For this reason, even where 
the objective of a modeling effort is confined to gleaning insight concerning the relationships between 
elements of a system (such as complex human-environmental systems) rather than making predictions of 
system behavior, the robustness of those insights under uncertainty cannot generally be guaranteed.  
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Therefore, there are few circumstances under which analytic uncertainties need not be systematically 
characterized to gain valid and defensible insight, particularly for complex systems.   

Having identified these four general uncertainty sources, it should be noted that, in a practical setting, 
there is not always a crisp boundary that separates them.  For instance, uncertainty regarding the validities 
of competing sub-models may often be treated in an analysis by establishing a single parameter in the 
parent model, the value of which is varied to represent the competing sub-models.  In this way, the 
modeling uncertainty is treated as a parametric uncertainty.  Similarly, issues of model completeness are 
not always distinguishable from those of model validity.  Despite these issues, these four sources of 
uncertainty represent the taxonomy recommended for the iRESM UC process as shown in Figure 2.2.   

 
Figure 2.2.  Taxonomy for Uncertainty Source Identification in iRESM 

2.2 Methods for UC  

Having identified a taxonomy of uncertainty for iRESM, the question arises of how to characterize 
these uncertainty types within the modeling framework and, ultimately, how to convey them to 
stakeholders.  This section identifies prospective means of UC and discusses the candidate mathematical 
and structural schema in which uncertainty might be represented.   

Again, there exist numerous reviews of prospective bases for UC (Apostolakis 1989; Unwin 1989; 
Dubois 2006; Helton et al. 2006), some specifically addressing the climate domain (Rotmans and Van 
Asselt 2001; Katz 2002; Webster et al. 2003; Morgan et al. 2009; Swart et al. 2009).  Here, the intent is to 
provide a brief overview of UC methods that are potentially applicable to climate and integrated 
assessment modeling.  Our ultimate objective is identification of the appropriate mix of UC methods for 
iRESM.  The following is a list of questions to be answered during methods selection.  Keeping these 
questions in mind, the description of each UC method to follow includes a brief summary of strengths, 
weaknesses, and other considerations germane to the iRESM environment. 

• Which approaches to UC are more attuned to specific sources and types of uncertainty inherent in the 
illustrative policy decisions, and when is UQ a robust means of UC? 
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• What levels of arbitrariness (real or perceived), defensibility, and reproducibility are associated with a 
specific approach to UC?  How transparent is a given approach to UC?  How will it be comprehended 
and interpreted by a decision maker?  

• What has been the experience with particular approaches to UC across domains for similar policy 
decisions, good or bad? 

• What constraints does the need to integrate across multiple sources and characteristics of uncertainty 
place on the selection of UC methods?  

• What are the computational implications of particular approaches to UC—is a given approach 
practical given the nature of the iRESM model suite?  How can the computational and analytic 
requirements of UC help inform software engineering and model development choices?  

• What methods are available for eliciting a reasonable range of values and probabilities for 
quantitative relationships in models, and on what bases should they be selected given the nature of 
iRESM?   

• What decision strategies, frameworks, or methods complement each approach to UC for the 
illustrative policy decisions, and how might they address incomplete confidence on the part of a 
decision maker in a given approach to UC?   

2.2.1 Non-Quantitative Methods for UC 

2.2.1.1 Bounding Analysis 

Bounding analysis is a simple, conservative, non-quantitative method for UC that requires an 
uncertainty range to be established for each input parameter to a model.  These ranges are then propagated 
through the model to establish the corresponding ranges on the output parameters.  No measures are 
attached to the ranges (such as probability densities), and propagation consists of establishing the full 
range of each output parameter that can be generated by varying the input parameters over their respective 
ranges (constrained by any dependences between inputs).  Where the relationships between outputs and 
inputs are pairwise monotonic, establishment of the output ranges can be straightforward; otherwise, 
some sampling methodology is required.  Cast in the notation of Equation 1, the upper and lower ends of 
the range of output parameter Yi, Yiu, and Yil, respectively, can be expressed as 

 Yiu = supX fi(X) (2a) 

 Yil = infX fi(X) (2b) 

where the supremum (smallest upper bound) and infimum (greatest lower bound) operations are effected 
over the uncertainty ranges of the input vector X.  Where there is uncertainty regarding the validity of the 
model f(X) itself and competing models exist, then the evaluation of the output uncertainty ranges may 
incorporate switching between models also. 
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Strengths 

The limited amount of information needed to characterize uncertainty is the principal strength of this 
approach.  It places no demand on an analyst to produce highly structured representations of uncertainty 
(such as a probability density), requiring only the establishment of uncertainty bounds on each parameter.   

Weaknesses 

The weakness of the approach lies in the questionable interpretation of the uncertainty bounds.  Such 
bounds on the input parameters are sometimes interpreted as the range that, with reasonable or high 
certainty, captures the true value of the parameter.  However, since the propagation mechanism is a 
simple bounding process, then whatever interpretation is placed on the input parameter ranges is not 
preserved in the output parameter bounds.  That is, if we hypothetically placed a probabilistic 
interpretation on reasonable certainty (0.95 probability, say, of capturing the true parameter value) then 
the nonprobabilistic nature of the UP precludes a similar interpretation of the output ranges.  Indeed, this 
methodology tends to produce highly conservative (i.e., wide) output uncertainty ranges as a consequence 
of a process in which conservatisms are progressively compounded during the propagation process.   

While bounding analysis can often form a basis for real-world, every-day decision making in 
noncomplex problems involving limited numbers of variables, this type of approach is seldom preferred 
in technical, analytical contexts, although there is some precedent for its use (see Lipinski et al. 1985).  
Nevertheless, there may be a rationale for blending aspects of simple bounding analysis into a broader 
framework of UC where, for example, there is limited basis for the assignment of probabilities to 
competing models. 

2.2.1.2 Scenario Analysis 

Scenario analysis is an approach to UC that is often used in the climate change domain.  Promulgated 
by the Intergovernmental Panel on Climate Change (IPCC 2000), it involves the identification of a set of 
scenarios that, in combination, characterize a range of alternative futures.  Each scenario is structured 
around a narrative, or storyline, that relates a coherent combination of future conditions.  Elements of a 
storyline for the IPCC emission scenarios, for instance, include a projection of population size and 
demographics, the pace of economic growth, the rate of development of energy-efficient technologies, the 
distribution of energy resources, and the mix of land use.  Each scenario is defined as a combination of 
quantitative point estimates for these factors and is intended to portray a consistent possible future.  
Subsequent analysis of climate impacts is then subject to the boundary conditions defined by each 
scenario. 

A scenario analysis shares with bounding analysis the feature that there is no attempt to 
probabilistically weight the defining scenario conditions; however, it differs in important respects also.  
While a bounding analysis is intended to encapsulate the predictions associated with a large (in principle, 
infinite) set of combinations of model input parameters, the scenario approach is one in which specific 
combinations of projected conditions are selected a priori to, in some sense, span a range of possible 
futures.  In fact, the probability associated with any one future is infinitesimally small since it reflects a 
combination of point values of key parameters.  Nevertheless, the intent is that any conclusions drawn 
with regard to individual scenarios are interpolatable to address intermediate but unarticulated scenarios.   
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Strengths 

The strength of the scenario approach is, first, a computational one.  Through the a priori 
identification of a manageable number of discrete scenarios, this approach  avoids combinatorial 
problems associated with the range of possible futures, and thus the analytical burden in predicting future 
conditions is substantially reduced.  A second advantage is that the storylines inherent in the scenario 
definitions are more easily communicated to stakeholders than future conditions that are the product of a 
sampling algorithm applied to the entire space of possibilities.   

Weaknesses 

If viewed purely as a means of UC, as opposed to a narrative device for relating a range of possible 
futures, the scenario approach has significant flaws.  Scenario definition is heuristic rather than 
systematic. Unless it is accompanied by a detailed review of the literature to identify ranges and 
distributions for key driving forces and outcomes, there is no basis for confidence that the resultant 
scenario set captures the range of possible climate impacts or uncertainty that would be necessary to 
support decision making.  Moreover, in picking combinations of point estimates from a high-dimensional 
space of parameter possibilities, it is unlikely that the potential synergies between factors and the resultant 
range of predicted outcomes will be acceptably complete.   

2.2.2 UQ Methods 

There has been a uniform appreciation that the source and type of an uncertainty dictates the degree to 
which various means of quantitative characterization are useful and practical.  For instance, uncertainty 
associated with the question of whether a model is a complete representation of potentially important 
phenomena is a form of uncertainty that is the most resistant to systematic characterization.  With 
increasing mathematical sophistication, a variety of quantitative frameworks for representing uncertainty 
have been proposed and advocated over the past 40 years.  Yet, while mathematical models such as the 
Dempster-Shafer (D-S) Theory of Evidence (Dempster 1968) and Zadeh’s Possibility theory (Zadeh 
1978) have been put forth to remedy the perceived shortcomings of probabilistic methods, it is probability 
theory that remains the prevalent and most familiar (in most technical communities) methodological basis 
for addressing uncertainties.   

There are sound reasons for the retention of probabilistic methods (familiarity being among them); 
yet, there are aspects of uncertainty and its measurement that are not shared by the measurables typically 
encountered in other technical domains.  While researchers seek to quantify uncertainty, it is a quantity 
that is not objectively measurable.  Probability, as a characterization of uncertainty, is generally 
interpreted in the so-called Bayesian sense.  That is, a probability ultimately measures an analyst’s (or 
some aggregate of analysts’) conception of uncertainty, interpreted as a degree of belief that some 
uncertain proposition is true, such as the proposition that the value of a physical parameter lies within 
some specified quantitative range.  While there exist theoretical bases for the systematic incorporation of 
objective data into the formulation of probabilities, sparseness of available data or ambiguity in its 
interpretation generally renders probabilities highly subjective.  It is certainly the case that the so-called 
frequentist interpretation of probability—in which probabilities are associated with the outcomes of 
repeated, random trials—finds little scope for application in most real-world decision environments, 
including the climate arena. 
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2.2.2.1 Probabilistic Analysis 

Probabilistic approaches to uncertainty analysis are, by now, sufficiently prevalent and conventional 
that the term uncertainty quantification is often considered synonymous with probabilistic analysis.  The 
history of probability theory as a basis for what we would now term uncertainty analysis spans four 
centuries; however, the advent of the so-called Bayesian interpretation of probability in the mid-20th 
century has resulted in a significant expansion of the use of probabilistic methods.  Unlike classical 
statistical methods that revolve around the availability of stochastic sampling models to produce and 
propagate classical confidence intervals, the Bayesian interpretation (de Finetti 1972; Martz and Waller 
1982) has permitted probabilities to be employed as the means of expressing informed opinions and 
uncertainty in problem domains for which classical statistical models are unavailable.  Probabilities that 
reflect the beliefs of an informed individual, or set of individuals, and thus represent epistemic 
uncertainty, are the cornerstone of probabilistic uncertainty analysis.  In brief (and with some caveats), a 
probability density P(x) defined over some parameter space reflects the relative weight of belief assigned 
by the expert(s) that the true value of the parameter X is about x.  Similarly, probabilities can be assigned 
to competing models of a phenomenon (NRC 1990; Budnitz et al. 1997). 

Expressed mathematically, the probability distribution reflecting uncertainty in a model output 
parameter Yi is related to the joint distribution over model input parameters by (referring to Equation 1) 

 P(Yi) = ∫ P(X) . δ[Yi-fi(X)] . dX (3) 

where δ is the Dirac delta function.  However, this simple conceptual expression generally belies a 
resource-intensive, numerical process for its realization involving statistical sampling from the input joint 
probability distribution, propagation of inputs through a series of complex models, and reconstitution of 
the model’s results to produce the output probability distributions.  (Issues associated with the 
propagation of probabilities through complex models are addressed in Section 2.3.)  

There also exist less-quantitative methodologies for UC that are, nevertheless, founded in 
probabilistic principles.  Rather than seeking to establish full probability distributions or assign precise 
probability values to alternative hypotheses, these semi-quantitative approaches define coarse probability 
categories that may be defined on scales such as Very High, High, Medium …, or as order-of-magnitude 
probabilities, such as One in a Thousand Chance.  To allow such probabilistic characterizations to be 
propagated through models (generally simple models in these cases), combinatorial rules are established 
that reflect an underlying probabilistic logic.  Such methods often find application in hazard studies of 
engineered systems and simplified risk assessments (CCPS 2008).   

Strengths 

As noted, probabilistic uncertainty analysis has been a core methodology in numerous application 
domains, including climate and integrated assessment modeling (Reilly et al. 1987; Scott et al. 1999; 
Sokolov et al. 2009; Webster et al. 2009).  A key strength of Bayesian probabilistic methodology—one on 
which its mathematical foundations rests—is the conceptual relationship between probability and the 
notion of event frequencies.  Even though the Bayesian interpretation explicitly rejects the notion that 
event frequencies (pertaining to the outcomes of stochastic events, such as the toss of a coin) are the 
appropriate conceptual basis for interpreting probabilities, stochastic concepts nevertheless help 
standardize the measure of probability.  So, for instance, a Bayesian probability of one-sixth can be still 
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be gauged by an appreciation of the chances of any one side of a die landing face up.  So, while Bayesian 
probabilities reflect degree of belief but not the relative frequencies of the outcomes of random events, an 
association with frequentist notions helps standardize the meaning and appreciation of numerical 
probabilities.  This ability to interpret probability is a critically important attribute both for the generation 
of probabilities by analysts and for their comprehension by stakeholders. 

A further and pragmatic advantage of probabilistic methods lies in the wealth of methods and 
supporting tools for the elicitation of probabilities from subject matter experts (addressed in Section 
2.2.2.5 ) and for the propagation of probabilities through complex models (Wojtkiewicz et al. 2001; 
Helton et al. 2006). 

Weaknesses 

The principal weakness of Bayesian probabilistic methods resides in the common perception that 
there is a lack of defensibility and a degree of arbitrariness in the formulation of probabilities.  This is an 
acute problem when the insights of an analysis are sensitive to the probability distributions selected. 

There has always existed an uncomfortable tension between, on the one hand, the notions 
promulgated by Bayesian philosophers/theoreticians and, on the other, the practical needs of those who 
seek to incorporate probabilistic analysis into public policy and decision making.  Viewed as a means for 
an individual to order and systematize his/her beliefs to support personal decision making, the 
defensibility and transparency of probability assignments is de-emphasized.  Therefore, the prevalent 
belief among Bayesian philosophers—that probabilities cannot be wrong as they express personal weights 
of belief and that two individual confronted by the same evidence need not necessarily be expected to 
produce similar probabilities—are not serious indictments of the method.  However, in the arena of public 
decision making, such views have serious implications for the acceptability and value of probabilistic 
methods.   

The community of Bayesian analysts who put these methods to practical application in, for instance, 
risk analysis and related decision making (e.g., Kaplan 1990) tend to hold a view that contrasts with the 
community of more abstract thinkers.  Particularly, the notion that a given body of objective evidence 
should lead all rational analysts to produce similar probabilistic characterizations of uncertainty is a 
necessary perspective if probabilistic methods are to have practical public value.  Therefore, much of the 
research and methods development in uncertainty analysis revolves around the means of establishing 
defensible, transparent, and scrutable processes for formulating probability distributions and their 
dependences (correlations for the purposes of Monte Carlo sampling) based on the elicitation and 
processing of informed opinion (Unwin et al. 1989; Wheeler et al. 1989; Budnitz et al. 1997; see also 
Section 2.2.2.4.).  Parallel tracks in research focus on the question of how the results of a probabilistic 
analysis may be most confidently applied such that the insights are robust to changes in the input 
probabilities (Regan et al. 2005; Lempert and Collins 2007).  Also, much of the methodology 
development revolving around alternative, nonprobabilistic means of UC (to be addressed) has been 
motivated by these perceived weaknesses in Bayesian methods.    

Finally, a practical weakness of probabilistic analysis lies in its computational demands.  The 
numerical implementation of Equation 3 generally demands Monte Carlo techniques involving multiple 
implementations of underlying models (from hundreds to hundreds of thousands of model runs, 
depending on the number of variables and complexities of the models).  When the models have 
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significant run times, random sampling of the inputs can be impractical—and while there exist more 
economic sampling methodologies (discussed in Section 2.3.1), there will likely remain computational 
challenges for iRESM given the nature of the model inventory.   

2.2.2.2 D-S Theory of Evidence 

The D-S theory of evidence, which emerged in the 1970s (Dempster 1968; Shafer 1990), is touted by 
many analysts as providing a more natural framework than the Bayesian one to represent informed 
opinion and epistemic uncertainty.  To the  mathematician, D-S is a generalization of probability theory, 
while to the practical analyst, it is a framework that has the benefit of being less demanding on the 
provider of informed opinion, not requiring probability distributions that even the provider may consider 
arbitrary.  The mathematics of D-S theory will not be expounded here; rather, some of the salient features 
that may render it an attractive approach to UC are outlined below.   

Consider some parameter that may take on one of several discrete values (based, perhaps, on the 
predictions of competing models) where there is uncertainty as to which is the true (or at least the best) 
value.  Assume there is maximal ignorance; that is, no apparent reason to favor any one of the estimates.  
In probability theory, this would demand the assignment of equal probability to each estimate.  However, 
this is an arbitrary characterization of uncertainty since the parameter space might easily have been 
discretized differently (e.g., grouping models of certain types together to produce averaged results over a 
given class of models).  (Note that this arbitrariness would be manifested in continuous parameter spaces 
as the question of how to choose the space metric—a flat probability distribution differs from a log-flat 
distribution.) 

The fundamental quantity in D-S theory is the probability mass, in contrast to the more conventional 
probability of Bayesian analysis.  Like a probability, a probability mass represents a weight of evidence.  
However, whereas conventional probability theory requires a normalized probability to be attached to 
every member of the set of possibilities (i.e., parameter values), D-S methods require only the attachment 
of normalized probability masses to selected subsets (i.e., combinations of possibilities) as dictated by the 
evidence.  That is, there is no obligation to distribute the probability mass among the subset members.  If 
there is complete ignorance as to which parameter value should be preferred, then all the probability mass 
can be applied to the set of values as a whole, without the need to distribute probability masses to the 
individual values.   

Once probability masses have been assigned to selected subsets (these subsets are the so-called focal 
elements of the full set of possible values) via whatever inferences the experts make based on the 
evidence, then two new types of belief measures can be defined that apply to each individual value in the 
set of possibilities:  Support and Plausibility.  These two measures are calculated from the probability 
masses.  Support of a given parameter value is interpreted as the degree to which the evidence points 
towards that specific value (or the model that produced it).  Plausibility is the degree to which the 
evidence is consistent with that value; or, equivalently, the degree to which the evidence fails to point 
away from the value.  This bifurcation of belief metrics is not present in Bayesian probability theory and 
is argued by proponents of D-S to more closely reflect the way we form uncertain beliefs.   

Support and Plausibility are sometimes referred to as lower and upper probability measures (since, in 
theory, they bound the hypothetical probability of a parameter value that would have been generated from 
the same evidence), but this is inappropriate terminology in that they do not behave in accordance with 
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the mathematics of probability.  Indeed, it is the so-called Dempster Combination Rule, applied to the 
underlying probability masses, that dictates the appropriate propagation mechanism in D-S theory. 

Figure 2.3 shows a hypothetical D-S representation of uncertainty in CO2 emission levels for the year 
2095 in the form of complementary cumulative belief curves.  For comparison, the figure also shows a 
hypothetical Bayesian representation of uncertainty.  Note that the stepwise nature of the D-S 
representations reflects the (hypothetical) fact that probability masses have been attached to various input 
parameter ranges rather than to individual parameter levels within each range. 

 
Figure 2.3. Hypothetical D-S and Bayesian Representations of Uncertainty:  2095 CO2 Emissions Level 

D-S has found application in numerous domains such as climate modeling (Luo and Caselton 1997; 
Sadiq et al. 2006), homeland security (Unwin and Fecht 2009), industrial reliability analysis (Parikh et al. 
2001) and natural disaster risk assessments (Park 2010), to mention a few. 

Strengths 

As already noted, the proponents of D-S theory cite as its principal strength the capability to more 
naturally (compared to Bayesian probability theory) accommodate the characterization of epistemic 
uncertainty (Shafer 1990; Dubois 2006).  It does not demand the attachment of probabilities to every 
member of the set of possibilities or, equivalently, does not require the formulation of probability 
distributions over the parameter spaces.  Thus, a principal concern about the probabilistic approach—that 
of the degree of structure required to characterize uncertainty and the arbitrariness associated with the 
resultant probability distributions—is obviated.   
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Weaknesses 

D-S is not a panacea.  One critical drawback revolves around standardization of the D-S belief 
metrics.  While the frequency analog of probability lends to the intuitive interpretation of a given 
probability level, this analogy does not exist for Support and Plausibility metrics (also measured on the 
interval 0 to 1).  That is, an analysis that determines the Plausibility of a given outcome to be 0.75 is not 
easily interpretable, particularly for a stakeholder who was uninvolved in the analysis.  This raises the 
more general concern of the degree to which a relatively arcane methodology will be understood and 
trusted by a decision maker.   

There exist analytical challenges to D-S also.  Since probability masses are defined on the set of 
subsets of the space of possibilities, and a set with n elements has 2n subsets, then the computational 
challenges of probabilistic analysis (noting that Monte Carlo methods are applicable to D-S also [Helton 
et al. 2006]) could potentially be exceeded in D-S approaches. 

Finally, it should be noted that D-S theory is considerably less mature than Bayesian probability 
theory, and this is reflected not only in a general lack of familiarity among most technical communities 
with D-S methods, but also in aspects of the theory itself.  So, while there is a well defined algebra 
associated with the mathematics of probability, there is more than one prospective mechanism for the 
combination and propagation of D-S measures.  While the Dempster Combination Rule has traditionally 
been the basis for the propagation of probability masses, deficiencies in that rule have been identified 
(that is, nonintuitive properties) and a series of optional algorithms have been suggested (Sentz and 
Ferson 2002; Smarandache 2004).  Consequently, the basis for picking one rule over another would 
introduce a measure of arbitrariness to which probabilistic analysis is not subject.   

2.2.2.3 Possibility Theory 

Another framework for UC is Possibility Theory (Zadeh 1978; Dubois and Prade 1995).  Unlike D-S 
theory, this method is not routed in probability theory or its generalizations, but finds its basis in fuzzy set 
theory (Zadeh 1965).  Like D-S, proponents of possibility theory argue that it can provide a more natural 
framework in which to accommodate epistemic uncertainty and informed opinion.  Again, the argument 
in favor of possibility theory revolves around the notion that it places more realistic demands on the 
providers of informed opinion than the Bayesian approach.  While, like probabilistic methods, it does 
require the construction of quantitative distributions over parameter spaces, a possibility measure—again 
defined on the interval of 0 to 1—does not seek to characterize the relative likelihood of a given 
parameter value being true but, rather, only reflects the consistency of that value with evidence.  (Note 
that this is a similar notion to plausibility in D-S theory.  Note also that there exists a fuzzy set-theoretic 
equivalent to the D-S support measure called necessity, which need not be discussed further here.)  This 
metric is viewed as a more credible measure to elicit from experts than an opinion on the relative 
likelihood of a given parameter value.  So, while there are some conceptual and theoretical connections 
between possibility and probability measures (Unwin 1986; Dubois 2006), the assignment of possibilities 
does not demand probabilistic thinking. 

Reflective of the substantially different interpretations of possibility and probability measures, the 
mathematical means of propagating possibilities is very distinctive from that of probability (although 
Helton et al. [2008] have investigated the use of Monte Carlo methods in the context of possibility 
theory).  Indeed, fuzzy set theory provides the underlying combinatorial logic for possibility theory.  So, 
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for example, the possibility of the proposition “model A provides the best description of phenomenon 1 
and Model B provides the best description of phenomenon 2” is equal to the lesser of:  the possibility that 
“model A provides the best description of phenomenon 1” and, the possibility that “Model B provides the 
best description of phenomenon 2.”  That is, reflective of its fuzzy set theoretic underpinnings, the 
propagation algebra of possibility measure is based on minmax logic.  With reference to Equation 1, the 
overall propagation logic could be stated as: 

 Po(Yi) = maxc minXic,Yi=fi(Xc) [Po(X1c), … Po(XNc)] (4) 

where Po is the possibility measure of its argument, the min operation is taken over the possibility 
measures associated with a combination of input parameter levels that produce the output value Yi, and 
the max operation is taken over all such input combinations.  This expression would be generalized to 
address uncertainty in the model, f, itself. 

Figure 2.4 augments Figure 2.3 with a hypothetical possibilistic representation of uncertainty in year 
2095 CO2 emissions levels. 

 
2095 CO2 Emissions Level 

Figure 2.4.  Hypothetical Possibilistic, D-S, and Bayesian Representations of Uncertainty 

Possibility theory and variants based in fuzzy set theory have been applied in numerous domains to 
date (Dubois and Prade 2003; Darby 2009), including climate-related research (Duong 2003; Hall et al. 
2007).   

Strengths 

Like D-S theory, proponents of possibility theory cite as its principal strength the capability to more 
naturally (compared to Bayesian probability theory) accommodate the characterization of epistemic 
uncertainty.  As noted earlier, possibility measures do not demand an assessment of relative likelihoods of 
events but, rather, require only that the consistency of a model or parameter value with evidence be 
assessed on a quantitative scale.   
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Weaknesses 

Possibility theory, like D-S theory, suffers from the absence of a sound basis for the standardization 
of measures.  That is, how can uniform meaning be attached to some measure of possibility (what does a 
possibility of 0.65 mean?) and how can that meaning be conveyed to a stakeholder?  Like D-S theory, 
possibility theory would be viewed as arcane in most technical communities, and certainly so in 
stakeholder communities.   

While the touted strength of possibility theory lies in its distinctive character from Bayesian 
probability theory, this also presents disadvantages.  In particular, there exists no mature, unique basis for 
updating possibility distributions in light of emerging statistical data.  In contrast, Bayesian probability 
theory provides well established mechanisms for the fusion of informed opinion with statistical data. 

2.2.2.4 Imprecise Probabilities and Robust Bayes Methods 

As noted under the Weaknesses of probabilistic methods, notwithstanding the Bayesian philosophical 
position that probabilities are themselves representations of uncertainty, concerns about the “uncertainty,” 
or perhaps more accurately the perceived arbitrariness, associated with the selection of probability 
distributions are often expressed in public decision-making environments.  Against this background, the 
notion has been promulgated that where probabilities cannot be uniquely specified, then less-precise 
representations of uncertainty are preferable.  One such representation revolves around the concept of 
imprecise probability.  Here, rather specifying the probability (P) of an event as a single number, it is 
replaced by a doubleton that represents the bounds on that probability:  [PLower, PUpper].  This mathematical 
entity, representing the range of probabilities considered consistent with the underlying uncertainty, then 
possesses its own combinatorial algebra (Williamson and Downs 1990).  (Note that other frameworks 
also adopt the term imprecise probability.) 

There are several means of operationalizing such a UC framework (see, for example, Ferson et al. 
2003).  Among these is the Robust Bayes (RB) approach.  The RB concept is that uncertainty in, for 
example, the magnitude of a physical parameter is represented not by a single probability distribution, but 
by a set of distributions.  Members of this distribution set may be subject to one or more common 
constraints that reflect some state of knowledge about the uncertain parameter.  For instance, all the 
distributions may be required to have the same mean if there is some a priori rationale for constraining 
the mean.  The idea is that there is no basis by which to establish preferences among the members of this 
distribution set, and so the set itself represents the state of uncertain knowledge.  Imagine now that there 
is a distribution set associated with each input parameter to a model and that each possible combination of 
input distributions is then propagated through the model.  Since each single combination of input 
distributions produces a single probability distribution over a given output parameter, then executing all 
combinations of input distributions results in a set of probability distributions over that output parameter.  
This set then represents the uncertainty in that output. 

The relationship between imprecise probabilities and the distribution sets generated by RB methods is 
as follows.  Consider the distribution set associated with a single parameter (either input or output).  If all 
the probability distributions in that set were plotted in, say, complementary cumulative form, then the 
bounding hull (that is, the envelope) of these distributions would represent the imprecise complementary 
cumulative probabilities associated with the parameter (see Figure 2.5).  This figure is a so-called 
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probability box or p-box representation of uncertainty (the heavy lines representing the sides of the box).  
The RB approach can, in a sense, be viewed as a sensitivity analysis to alternative input distributions. 

 
Figure 2.5.  Hypothetical p-Box Representations of Uncertainty:  2095 CO2 Emissions Level 

Although beyond the scope of this review, it can be shown that the imprecise probability/p-box 
representation of uncertainty is closely related to the D-S representation (which might be intuited from a 
comparison of Figure 2.3 and Figure 2.5). 

Strengths 

The principal strength of this approach is that it obviates concerns associated with the defensibility of 
selecting any one Bayesian probability distribution to represent an uncertainty.  In this method, a set of 
distributions is selected, with each member of the set considered to be consistent with the underlying 
uncertainty.  A second advantage associated with RB methods is that the core mechanism for propagating 
uncertainties is a familiar, probabilistic one to which conventional Monte Carlo methods can be applied.   

Weaknesses 

While this method removes some of the arbitrariness associated with probabilistic UC, there 
nevertheless remains the residual issue of which probability distributions to include in the set.  The more 
distributions selected, the greater the computational challenge associated with propagating uncertainty.  
That is, the familiar, practical impediments to Monte Carlo analysis associated with long model run times 
is exacerbated in this current approach by the requirement that multiple combinations of input probability 
distributions be propagated.  It may be possible in some circumstances to alleviate such problems by the 
use of faster running surrogate models (such as response surfaces or reduced-order models) or the use of 
other computational approximations in UP. 
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2.2.2.5 Elicitation of Informed Opinion 

Where historical data or statistical information is deemed incomplete or insufficient to represent 
uncertainty in a classical, statistical sense, the formal and structured elicitation of informed judgment has 
substantial precedent as a basis for augmenting sparse or ambiguous data.  Where the means of UC is 
Bayesian, this can take the form of the direct elicitation of probabilities associated with, for example, the 
likelihoods of parameter values, events, scenario outcomes, or model skills.  A subjective probability 
assessment translates an expert’s understanding of uncertainty (i.e., his/her state of information) into a 
quantitative form—a probability distribution.  Expert elicitation has been widely applied in engineering 
and environmental risk analyses, including climate change (see, e.g., Morgan and Henrion 1990; Morgan 
et al. 2001), and is recognized as a standard practice for quantifying uncertainty by the IPCC (IPCC 2001) 
although the IPCC has yet to actually apply the method in preparation of its reports.  It should be noted, 
however, that expert elicitation is usually time consuming and costly (especially if multiple experts must 
be interviewed).  In a standard Bayesian decision analysis process, expert elicitation is only undertaken 
for those parameters or events whose uncertainty has been identified as significant for the decision based 
on a deterministic sensitivity analysis of the underlying model or on preliminary assignments of tentative 
probabilities. 

Expert elicitation methods were first developed in conjunction with the development of decision 
analysis techniques in the late 1960s and early 1970s (Spetzler and von Holstein 1975 is recognized as the 
seminal work).  Since then, they have become standard—and in some domains, proceduralized—tools for 
UC (e.g., Wheeler et al. 1989; Budnitz et al. 1997).  The methods have drawn extensively from research 
in cognitive psychology (Tversky and Kahneman 1974; Kahneman et al. 1982) showing that, when 
unaided, individuals tend to use various heuristics when making judgments about uncertainty, resulting in 
systematic biases in their assessment, such as overconfidence.  If these biases are not identified and 
managed by the interviewer in the elicitation process, then the resulting probability assessment will suffer 
accordingly.  Other challenges in expert elicitation arise from common mistakes made in causal reasoning 
and conditional probability, even by those trained in probability and statistics (e.g., the “Monty Hall 
Dilemma”; see Herbranson and Schroeder 2010).  Awareness of these pitfalls has been shown to be 
insufficient for self-correction, although providing experts with some training in probability elicitation 
prior to a formal assessment has been shown to facilitate the elicitation process and increase expert 
confidence in the results (Keeney and von Winterfeldt 1991).  The overall objective of elicitation is not 
necessarily to encode the beliefs of the specific expert participants but to use those participants as 
surrogates for the wider technical community with the goal of capturing the center and breadth of 
knowledgeable opinion. 

While various practitioners have developed specific protocols for different research topics and 
numbers of experts (e.g., Morgan and Henrion 1990; Keeney and von Winterfeldt 1991; Hora 1996), the 
core of the individual expert interview has five steps designed to address systematic biases and to produce 
a distribution that the expert agrees properly represents his/her state of information: 

1. motivating 

2. structuring 

3. preconditioning 

4. encoding 

5. verifying. 
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In the motivating step, the interviewer strives to uncover and then remove any motivational biases 
that may affect the expert’s judgment.  Motivational biases are typically caused by the fear of 
consequences, the promise of rewards, or the desire for objectivity.  An expert might want to suppress any 
expression of uncertainty to appear knowledgeable, for example, or resist participating in the elicitation in 
favor of “objective models” or “hard data.”  The primary strategy in this step is to explain the importance 
of the elicitation (e.g., show the sensitivity analysis results) and stress that what is being asked for is the 
breadth of knowledge, not a prediction or a point estimate.  Point estimates about the future are almost 
certain to be wrong, whereas a thoughtfully constructed probability distribution is very likely to contain 
the future outcome.  In some cases, the interviewer may need to disqualify the expert if the motivational 
issues appear insurmountable. 

In the structuring step, the variable to be assessed must be precisely defined and in terms the expert is 
comfortable with.  For example, if the parameter is the capital cost of utility-scale wind farms in 2020, 
then the precise units must be clarified (e.g., $/kW or $/kW-yr), what the cost includes (e.g., equipment 
only, grid interconnection, etc.), whether the cost is in real or nominal dollars, and so on.  It is also in this 
step that any key conditioning assumptions should be drawn out by the interviewer.  For example, is the 
expert’s judgment about future wind farm capital costs conditioned on an assumption that the 
U.S. Government will be subsidizing advanced turbine research over the next X years?  Is it based on 
assumptions about the progress of wind turbine development in China and Europe?  When such 
assumptions are identified, it may be necessary to elicit multiple distributions, conditional on the 
outcomes from these underlying uncertainties, unless the expert is also knowledgeable about these 
influential events.  Influence diagrams are often used to assist in the decomposition of conditional 
probability. 

The preconditioning step is the part of the process that addresses cognitive biases, that is, 
unintentional heuristics that can result in an assessment that does not reflect all of the expert’s 
information.  Four types are common:  availability, adjustment and anchoring, representativeness, and 
implicit conditioning.  Availability bias occurs when judgment is influenced by how “available” 
information is to recall.  Information is more available when it is dramatic, recent, redundant, certified, 
imaginable, and so on.  For example, a non-aided assessment of the annual likelihood of a Katrina-
magnitude hurricane made during the month after the Katrina hurricane would likely have been far 
different than an assessment made the month before.  The interviewer must ask the expert for his/her 
sources of information and engage in a discussion of complementary events if availability bias is 
suspected. 

The adjustment and anchoring bias occurs when the expert anchors on an initial estimate and adjusts 
inadequately for uncertainty.  This bias is almost always present to some extent, as most discussions of 
uncertainty tend to revolve around the “most likely,” or “base case” value.  The most effective interview 
technique to counter this bias is for the interviewer to avoid mentioning any possible parameter values to 
the expert and to ask the expert to describe extreme outcomes.  Essentially, this technique takes advantage 
of the availability bias to compensate for anchoring. 

Representativeness bias results from the heuristic that says an event is likely to the extent that it is 
consistent with the evidence.  It reflects a situation in which the expert is not considering the full range of 
causes for an event and judges its likelihood based on the narrow evidence at hand.  This bias can be 
fairly complex to resolve, as it may require the expert to consider the implications of Bayes’ theorem in 
his/her probability assessment. 
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The final bias addressed in the preconditioning step is implicit conditioning.  This occurs when the 
expert assigns a high probability to an event but is unconsciously conditioning the event on a set of 
unstated assumptions that, in reality, would have a low likelihood of simultaneous occurrence and should 
therefore reduce the likelihood of the event being assessed.  As with the other types of biases, the 
interviewer must carefully question the expert and attempt to draw out such unstated assumptions.   

Once the preconditioning step is complete, the interviewer proceeds to the actual encoding.  
Typically, the process is to assess points on the cumulative probability distribution.  In keeping with the 
desire to combat biases, the interviewer begins the encoding by asking the expert to consider extreme 
values for the parameter in question and to describe the scenarios that could lead to these extreme events.  
This dialogue allows the interviewer to define the low and high extremes of the distribution.  The 
interviewer then proceeds to assess individual points on the distribution, keeping the evolving distribution 
out of sight of the expert to guard against efforts to ensure consistency. 

Depending on the expert’s comfort level with probability distributions, several techniques and tools 
have been developed to facilitate this process.  For experts accustomed to working with probability 
distributions, a direct assessment of the distribution is usually preferred and can represent a significant 
time savings (see Morgan et al. 2001).  For others, the fixed value method and the fixed probability 
method are the most common assessment approaches.  In the fixed value method, the interviewer assesses 
a cumulative probability for a specific (fixed) value.  The most commonly used tool for this approach is 
the probability wheel.  Its purpose is to provide a visual representation of the relative likelihood of an 
event.  The probability wheel is like a roulette wheel but with two complementary colors (usually blue 
and orange) instead of a circle of numbers.  Complementary colors are used so that neither color is 
visually dominant.  The relative sizes of the two colors are adjustable.  The back of the wheel indicates 
the numerical probability corresponding to the relative size of the adjustable color.  Questions are posed 
to the expert about the cumulative probability of a specific point on the cumulative distribution in the 
following form:  ‘What do you think is more likely:  that the value of the parameter is less than or equal to 
X or that a random spinner would land in the blue section of this wheel?’  By adjusting the size of the 
blue section appropriately and asking the question repeatedly, the interviewer finds the point at which the 
expert is indifferent between the two events.  The relative size of the blue section (numerically interpreted 
on the back of the wheel) therefore corresponds to the cumulative probability of x ≤ X.  This process is 
repeated for different parameter values, with the interviewer being careful to vary the section of the 
distribution that is being assessed to prevent the expert from trying to control the shape of the distribution.  
Typically, 10 or so points are assessed in this manner.  In practice, some experts have found the wheel 
unnecessary after a few points and preferred to provide probabilities directly (Morgan and Henrion 1990).   

The fixed probability method involves assessing values corresponding to specific fractiles on the 
distribution.  The interval technique is the most common form of the fixed probability method.  Like the 
probability wheel, this technique also uses a spatial representation of uncertainty, but it is specifically 
targeted at producing the median and the quartiles of the distribution and is a helpful check on the result 
produced with the probability wheel.  It involves drawing a horizontal line and bisecting it with a tick 
mark and asking the expert for what parameter value is it equally likely that the future value could be less 
than or greater than that value.  This value is then noted as the 50th percentile value on the cumulative 
distribution and written below the tick mark for the expert to see.  The 25th percentile is then assessed by 
asking the expert to consider solely the area to the left of the median tick mark and to provide the value in 
this range for which the future value is equally likely to be above or below it.  A parallel approach is 
taken for the 75th percentile. 
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The final step in the elicitation is verification.  This all-important step involves asking the expert to 
verify that he/she agrees with the implications of the distribution.  The distribution is either sketched out 
by hand, or one of various software tools can be used to create a continuous distribution based on the 
elicitation results.  Verification questions are then created based on the resulting distribution.  For 
example, “your distribution says you believe that the likelihood that this parameter is less than or equal to 
X is 80%.  Do you agree?” and so on.  Another important verification addresses the implications of the 
extremes of the distribution:  “Do you believe that the probability this parameter (exceeds Y) (is less than 
or equal to Z) is zero?”  Sometimes the verification process will reveal inconsistencies (e.g., the assessed 
points cannot be resolved into a continuous curve) and/or unstated assumptions (e.g., a bimodal 
distribution) and requires a new assessment. 

When multiple experts are involved, subjective probability assessment provides a means to measure 
the importance of differences in expert opinion.  Experts may disagree on point estimates but be shown to 
be largely in agreement when their probability distributions are compared.  Sharing the underlying 
information and assumptions revealed through the elicitation process may result in a consensus, but if 
disagreements remain, their importance can be tested through probabilistic sensitivity analysis.  The 
Delphi method is a process to manage communication among multiple experts.  It involves circulating 
conflicting opinions anonymously and then providing the experts the opportunity to revise their views and 
comment on those of others.  Successive iterations of this technique have been shown to produce 
consensus (Linstone and Turoff 1975).  Variations of the Delphi method have been used to resolve expert 
inconsistencies resulting from the subjective probability assessment process (Morgan and Henrion 1990; 
Keeney and von Winterfeldt 1991; Hora 1996). 

As an elicitation method set is developed for the iRESM, a principal consideration will be the trade-
off between the level of elicitation formality, the resources required to implement the process (time, cost, 
and number of participants), and the benefits in terms of information quality.   

2.2.2.6 Model Inter-Comparison Methods 

Model inter-comparison projects can be a valuable tool for assessing the level of agreement or 
disagreement among similar models.  These projects typically run a group of models under the same or 
similar assumptions to produce a common set of comparable outputs.  The comparison may be done 
either with or without Monte Carlo methods.  Monte Carlo assessments rarely have been performed with 
large climate models (coupled atmosphere-ocean general circulation models or AOGCMs) because of 
their high dimensionality and long run times.  Careful assessments of the results often show how different 
specific empirical formulation of equations or slightly different choices of phenomena or variables among 
the suite of models influence results and point out key sensitivities.   

Climate model inter-comparisons such as the World Climate Research Program’s Coupled Model 
Intercomparison Project provide a standard experimental protocol for studying the output of AOGCMs 
and a systematic way of testing and evaluating models.  The Coupled Model Intercomparison Project 
provides climate community-based infrastructure in support of climate model diagnosis, validation, inter-
comparison, documentation and data access (WCRP 2011).  Of particular relevance to the iRESM 
initiative are inter-comparison projects focused on dynamically downscaled or regional climate models 
such as the North American Regional Climate Change Assessment Program (see 
http://www.narccap.ucar.edu/) and the COordinated Regional climate Downscaling EXperiment (see 
http://www.meteo.unican.es/en/projects/CORDEX), “a [World Climate Research Program]-sponsored 

http://www.narccap.ucar.edu/
http://www.meteo.unican.es/en/projects/CORDEX
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program to organize an international coordinated framework to produce an improved generation of 
regional climate change projections world-wide for input into impact and adaptation studies” (CORDEX).   

There is widespread recognition that different models emphasize different parts of the climate system, 
that all models are somewhat sensitive to their initial boundary conditions, that some processes are well 
understood but must be approximated because of scaling and computational issues, and that for other 
phenomena, lack of understanding is the constraint.  Knutti (2008) describes the existing set of AOGCMs 
as a family of coexisting models that sample to some extent the uncertainty in describing the system.  As 
Knutti et al. (2010) observe, 

the “multimodel” approach provides a sensitivity test to the models’ structural choices.  
Additionally, an implicit assumption exists that multiple models provide additional and more 
reliable information than a single model, and higher confidence is placed on results that are 
common to an ensemble [of runs of different models], although in principle all models could 
suffer from similar deficiencies. 

Ensembles are used at least partly because the mean of results from an ensemble of models better 
matches present-day observed values than those of individual models in the ensemble.  There has been a 
substantial effort to understand both the match of individual model and the mean of the ensemble of 
forecasts (weighted or unweighted) to observed data.  Weighting the results of individual models using 
Bayesian model averaging has been done for probabilistic weather forecasting models (Raferty et al. 
2003) and for AOGCMs (Tebaldi et al. 2005).  Less formally, AOGCM results have also been combined 
using Reliability Ensemble weighted averaging, with weights based on bias in historical forecasts (Giorgi 
and Mearns 2002).   

To some extent, the spread of forecasts from the individual models and a standardized group of 
scenarios has been used as a proxy for overall uncertainty in climate variables for the future.  However, 
some individual modeling groups have shown that the spread of forecasts using a set of standard scenarios 
in a Monte Carlo experiment with a single model may have a different mean and a wider variance than 
the ensemble of non-Monte Carlo runs from multiple models using the same standard set of scenarios, 
thus calling both the mean and variance of these ensembles into question (Webster et al. 2009).   

Including others, Knutti et al. (2010) caution that matching model results to present-day climate is 
only weakly connected to the ability to forecast well.  Delsole and Shukla (2010) define “fidelity” as 
measure of how well the climatology of forecasts replicate the observed climatology (a measure of the 
difference between two distributions over space—spatially averaged relative entropy) and “skill” as a test 
of the match to a forecast (a spatially averaged mutual information between the forecast and 
corresponding verification—e.g., from a short out-of-sample forecast).  Because discrepancies in 
climatological means are typically much greater, models that more closely replicate the observed 
climatological mean tend to have better skill in forecasting. 

Model inter-comparability studies of integrated assessment models have been done regularly by the 
Integrated Assessment Modeling Consortium and Energy Modeling Forum (EMF).  The Integrated 
Assessment Modeling Consortium is focused on developing a new set of standard assumptions and 
scenarios to guide model analyses for both integrated assessment and climate modeling communities 
(representative concentration pathways or RCPs; see Moss et al. 2010).  The consortium is also concerned 
with  socioeconomic scenarios that are compatible with the RCPs and usable by the integrated modeling 
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and vulnerability, impact, and adaptation communities (IAMC 2011).  EMF has conducted a series of 
studies, each with an ad hoc working group of 50-100 members, organized to examine a single topic to 
which many existing models can be applied.  Topics besides integrated assessments related to climate 
change are studied; however, four of the five most recent studies (EMF 21, 22, 24, and 25) all addressed 
climate-related topics (EMF 2010).  These studies include: 

• EMF-21, Multigas Mitigation and Climate Change 

• EMF-22, Climate Change Control Scenarios 

• EMF-24 ,Technology Strategies for Achieving Climate Policy Objectives 

• EMF-25, Energy Efficiency and Climate Change Mitigation. 

Most commonly, these modeling exercises do not require Monte Carlo projections.  The results, 
however, provide insights into the importance of certain model completeness, sensitivity, and structural 
differences, as well as likely difficulties in following certain policies or emission paths that they model.  
EMF 14 did examine approaches for performing uncertainty analysis in large scale policy/economic 
models and conducted a model comparison with three uncertain parameters (climate sensitivity, warm 
climate damages, and discount rate), but this appears to have been done using a few model runs rather 
than a Monte Carlo analysis (Manne 1996).   

Another example of intermodel comparison with a sectoral and impact emphasis is the Agriculture 
Model Intercomparison and Improvement Project, “a distributed climate-scenario simulation exercise for 
historical model inter-comparison and future climate change conditions with participation of multiple 
crop and world agricultural trade modeling groups around the world” (Rosenzweig 2010).  Both historical 
testing against observations and assessment of future mitigation and adaptation strategies will be tested.   

2.3 UP Methods 

Means of UP can be either quantitative or qualitative in nature.  In quantitative analysis, the general 
means of propagation is dictated by the algebra of the measures (such as probabilities) used to 
characterize uncertainty (already discussed in Section 2.2.2).  It is the nature and complexity of the 
underlying models, however, that dictate the practical and specific means of quantitative UP.  For 
instance, analytic propagation of uncertainty is generally impractical and Monte Carlo methods must be 
used. 

2.3.1 Quantitative UP 

Quantitative methods have conventionally included Bayesian characterization of the uncertainties of 
inputs and key parameter values in the linked models used in the analysis.  Uncertainty is propagated by 
Monte Carlo methods involving multiple implementations of the models using input values sampled from 
subjective probability distributions.  These distributions are  derived from scientific literature and directly 
elicited from domain experts.  These distributions may be sampled independently, but it is generally 
considered better practice to account for known dependencies among input variables through sampling 
correlations.   
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Generally, a Monte Carlo approach that involves random sampling of input distributions can be 
problematic when the run time of the underlying model is substantial.  In these cases, multiple 
implementations of the model may be impractical, particularly if the sample size required to achieve 
unbiased output distribution estimates is in the thousands, or tens of thousands.  Therefore, much 
attention has been focused across numerous domains on the development of statistical methods that 
reduce the required sample size for a given model.  Latin Hypercube Sampling (LHS; Helton and Davis 
2003) is one of the more established methods for improved Monte Carlo analysis.  It is a so-called 
stratified sampling approach that ensures the full breadths of the input distributions are sampled and that 
the output distributions are sufficiently unbiased for a sample size much smaller than would be required 
for the same output properties using conventional random sampling.  LHS-based methodologies also exist 
to allow required correlations to be imposed on the input marginal distributions (Iman and 
Davenport 1982).   

Importance sampling (Swiler and West 2010) is another alternative to random sampling in which the 
more influential portions of the input parameter space can be preferentially sampled to produce a more 
accurate UC for the output ranges of interest.  For instance, the analyst’s interest may be focused on 
extreme output temperature predictions, in which case importance sampling provides a means of focusing 
on the regions of the input space that most influence these extreme predictions.  Again, this approach 
allows an economy of sample size, in this case by focusing on the parameter space region of most interest.   

Another class of sampling methodologies is Markov Chain Monte Carlo (Gelfand and Smith 1990).  
Unlike the methods previously identified, a given sample member in Markov Chain Monte Carlo is 
randomly selected based on the value of the previous sample member.  That is, the entire input sample is 
not drawn a priori, but is generated sequentially throughout the analysis process with the objective of 
reaching an equilibrium distribution that closely estimates the actual output distribution.  The sampling 
process is continued until the stable output distribution is produced.  Tao et al. (2009) have applied this 
sampling methodology in the context of climate and crop productivity.   

An alternative to sampling economy as a means of addressing long model run times is to create 
surrogate models that emulate the behaviors of the detailed models while having substantially shorter run 
times.  There are numerous approaches available for the development of surrogate models, the most 
conventional being the development of so-called response surfaces, which are generally constructed from 
statistical regression fits between model inputs and outputs based on a limited number of model runs 
(Iman and Conover 1980).  These response surfaces, which have minimal run times, are then used as the 
basis for conducting the full uncertainty analysis in lieu of the original model.  Note, however, that, 
depending on the goodness of fit of the surrogate, uncertainty can be introduced around the accuracy with 
which the source model is being emulated.   

In recent years, improved bases for creating model surrogates for the purposes of Monte Carlo 
sampling have been developed.  These include so-called stochastic expansion methods, such as 
Polynomial Chaos Expansion and Stochastic Collocation (Eldred et al. 2008).  In these approaches, the 
surrogate model is expressed as an expansion in orthogonal polynomials of which the arguments are 
random variables.  The coefficients in the expansion can be determined by limited sampling of the 
underlying science model.  The advantage of these stochastic expansion methods is that they demand 
relatively small sample sizes as the basis for UP.  As these new methodologies are explored, some 
disadvantages are also being addressing associated, for example, with the scalability of the surrogate 
models. 
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Among analysis packages that allow implementation of a broad range of sampling and surrogate 
model methods is the Design Analysis Kit for Optimization and Terascale Applications tool developed by 
Sandia National Laboratories (Adams et al. 2010).   

The most commonly used sampling methodology in the climate community has been LHS, which 
might typically achieve about the same accuracy as random sampling for an LHS sample size of about 
10% or less of the required random sample size.  Advantages of LHS include its broad validation through 
extensive use, conceptual simplicity; the availability of associated global sensitivity analysis procedures 
(Iman and Conover 1980); and effectiveness as a model verification tool, especially as compared with 
decomposition of variance and other techniques (Helton and Davis 2003).   

It is worth mentioning another class of methodologies that is oriented largely to model sensitivity 
analysis, but potentially usable in the context of UP.  These involve so-called intrusive methods that 
demand modifications to the underlying science models (as opposed to Monte Carlo methods that leave 
the science models intact but require multiple implementations).  One of the more established of such 
approaches is the Adjoint method (Cacuci and Schlesinger 1994).  This involves the incorporation of 
adjoint equations into the underlying model that reflect relationships between the derivatives of the basic 
model parameters.  The solutions to the adjoint equations then measure the model input/output 
sensitivities.  These sensitivity measures can be used to form input/output Taylor expansions that are the 
basis for propagating distribution moments through the model.  While such methods are well established 
for linear models, the basis for their application to nonlinear systems is more formative. 

There is a growing body of literature on multi-model propagation of uncertainty in integrated 
assessment models that attempts to estimate the impacts of future climate, energy technology, and policy 
on certain human and natural systems.  Recent efforts include Tomassini et al. (2010) for global climate, 
Groves et al. (2008) for water resources, Tao et al. (2009) for crop productivity, Heinrich et al. (2007) for 
electric system expansion, and Webster et al. (2008, 2009) and Sokolov et al. (2009) for impacts and costs 
of climate policy.  Efforts to date have tended to be international or national in scope and have paid 
relatively little attention to regional impacts and regional energy, environmental, and climate policy.   

For example, Tomassini et al. (2010) investigate the sensitivity of the probability of exceeding 2°C by 
the year 2100.  They do this with IMAGE model version 2.3, an integrated assessment model, using five 
climate stabilization scenarios that span a variety of climate forcings (without probabilities attached).  
IMAGE output was used to feed the Bern2.5D climate model of “intermediate complexity” to perform 
probabilistic climate projections.  The analysis considered only the uncertainty in climate model 
parameters but not uncertainty in the economic development (for a fixed scenario) or short-term climate 
uncertainty in emissions.  Massachusetts Institute of Technology’s (MIT’s) Integrated Global System 
Model, which couples an emissions model with a climate model of intermediate complexity, has been 
used in a similar fashion with Monte Carlo methods.  It has been used to investigate the uncertainty in 
global emissions and climate change (e.g., air temperature and sea level rise) in the absence of climate 
policy (Sokolov et al. 2009) and with the emissions part of the model turned off, the consequences for 
climate of specific standardized mitigation scenarios (Webster et al. 2009).   

Among the specific sector impact analyses, Groves et al. (2008) presented a method for developing 
large ensembles of local daily weather that reflect a wide range of plausible future climate change 
scenarios while preserving many statistical properties of local historical weather patterns.  The technique 
was applied to water utility service area in southern California, and water resources consequences of 
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climate change were evaluated.  In the Washington State Climatic Change Impacts Assessment (CIG 
2009; for a summary, see Miles et al. 2010), scenarios with statistically downscaled climate change from 
multiple AOGCMs (temperature and precipitation) were developed at the 1/8° level and run through a 
hydrology model and reservoir management model to determine water availability for irrigation.  Water 
availability, precipitation and temperature forecasts were then used to generate yields from irrigated crops 
and these results are used in turn used to calculate farm profitability.  All of the steps in the analysis used 
distributions of outputs from the upstream steps.  Tao et al. (2009) ran a process-based general crop 
model with 10 climate scenarios (combinations of five AOGCMs and two emissions scenarios) and 60 
sets of crop model parameters to obtain probabilistic projections of maize (corn) productivity on a grid of 
a large growing area in China.  The effort was described as a super-ensemble-based probabilistic 
projection Bayesian probability inversion and a Markov Chain Monte Carlo technique was applied to the 
crop model.  For evaluation, 55,000 sets of parameter values were compared with flowering dates, 
maturity dates, and yields; for forecasts, 18,000 sets of simulation results were derived for the 2020s, 
2050s, and 2080s.  Statistics of outputs and cumulative density functions were derived.   

Heinrich et al. (2007) make use of Multi-Attribute Value Theory(MAVT)  (a type of multi-criteria 
decision analysis) and Monte Carlo techniques to derive preferred expansion paths for electric energy 
generation in South Africa, giving explicit consideration to global impacts such as climate change and 
regional impacts such as local air quality (due to South Africa’s high coal plant density region 
[Mpumalanga]) and water consumption (due to national water shortages).  The analysis emphasized 
“robust” solutions (i.e., a solution will perform well under numerous future values of parameters) and 
“flexible” solutions (i.e., a solution can be adapted at a future point in time).  An uncertainty distribution 
was defined for each technology, for each of the uncertainty parameters (investment cost, operations and 
maintenance cost, fuel cost, and emission factors).  Performance was specified against alternative 
uncertain scenarios using cross-criterion indifference judgments to estimate partial value functions.  This 
analysis only traded off cost against CO2 emissions; however, it is possible to further rate the technologies 
in terms of water use or efficiency for different climate outcomes and develop an integrated solution.  In 
either case, propagation of uncertainty from climate policy and climate constraints is straightforward. 

2.3.2 Qualitative Methods 

Qualitative means of UP also exist.  In Section 2.2.1.1 the approach of simple bounding analysis was 
outlined, involving the intuitive covariation of model input parameters to assess the range of output 
values.  The inherent weaknesses and problems of interpretation associated with this approach were also 
identified.  Methods sometimes described as semi-quantitative or semi-qualitative also exist.  In such 
approaches, uncertainty scales such as a 1 to 10 ranking, or high, medium, low are established and 
attached to elemental uncertainties of the analysis, and those uncertainties are then propagated or 
combined by means of a pre-established heuristic.  For instance, an output parameter that results from the 
input of two input parameters, each assigned medium uncertainty, might be assigned a high uncertainty.  
The underlying models to which such uncertainty methods are applied are generally sufficiently simple 
that a UP heuristic can be intuited (see, for example, CCPS 2008). 
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3.0 Decision Making Under Uncertainty 

Decision science is a mature and multi-faceted discipline that might even be argued to have been an 
antecedent of the mathematics of uncertainty.  It has evolved as a richly structured set of methodologies 
that broach a wide variety of decision problems.  The stable of methods address, to pick a few examples, 
the basis for meeting pre-established acceptance criteria (such as risk goals), the ranking of decision 
options by risk or uncertainty criteria, cost-benefit analysis, and comparison of decision options across 
disparate, multi-attribute criteria.  Leveraging the accelerating capability in computational and 
communications technologies, decision science has more recently subsumed the challenge of creating 
information-rich environments that support shared and communal decision making, relying on 
advancements in data analytics, serious gaming, and data visualization (Sanfilippo et al. 2009).  However, 
our focus here is not on the specific methods and technologies of decision science but rather on 
consideration of broad decision strategies—particularly those currently being considered as means of 
addressing uncertainties in climate policy—to make sure that the models, analytical capabilities, and UC 
methods developed by the iRESM team will meet the needs of policy-makers.   

3.1 Methods 

The issue of the subjectivity and defensibility of quantitative uncertainty measures—a question that 
extends beyond probabilistic approaches—has led the community of risk and decision analysts to 
consider decision methods that enjoy some measure of robustness to the specifics of UQ.  That is, rather 
than focus exclusively on the means of enhancing the defensibility of a particular UQ, attention is shifted 
to devising decision strategies that are less sensitive to the choice in UQ.  Thus, notions of robust and 
adaptive decision-making have been expounded, particularly in the climate arena, to manage risk while 
avoiding the placement of unjustified confidence in any one set of quantitative uncertainty characteristics.   

Against this backdrop of evolving UQ methods and decision frameworks, the diverse set of policy 
questions, science uncertainties, and modeling issues associated with climate research provide a 
challenging test environment for methodological advances. 

There have been several reviews of prospective decision strategies in the arena of climate mitigation 
and adaptation (Toth et al. 2001; Bell et al. 2003; Morgan et al. 2009; Means et al. 2010).  We will not 
reproduce the insights and conclusions of those reviews here but, rather, will identify some of the key 
decision strategies that have been identified and then briefly discuss what constraints support of those 
strategies might place on the UC methods developed for iRESM.   

3.1.1 Classical Decision Methods 

In this family of methods, the expected utilities (probabilistically weighted figures of merit) 
associated with the outcomes of each decision option are compared, and the option with the greatest 
expected utility is selected (see, for example, Aleskerov et al. 2007).  Since the identities of the preferred 
decisions are sensitive to the input probability distributions (which can be contentious—see Section 2.2), 
there is often some reluctance in real-world settings to adopt such methods wholesale.  Against that 
background, alternative strategies have been proposed (see Section 3.1.2 through Section 3.1.5).   
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Since these classical decision methods are founded on probabilistic principles, the prospect of using 
iRESM results to support such decision strategies favors the use of probabilistic UC methods—at least to 
the extent demanded by specific decision problems.  However, the generalization of utility optimization 
models to non-probabilistic UC environments is an area that continues to receive attention (Dubois and 
Prade 1990; Caselton and Luo 1992), and anticipation of some level of adoption of classical decision 
concepts would not likely constrain the iRESM UC methodology to a purely probabilistic one.   

3.1.2 Robust Strategies  

The intent underlying use of this family of decision methods is to produce preferred decisions that are 
less sensitive to the selected input probability distributions than in the case of classical decision 
methodology (Lempert et al. 1996; Regan et al. 2005; Lempert and Collins 2007).  Robust strategies 
capture a range of methods.  In the conservative extreme, the decision strategy can be completely 
decoupled from the choice of input probabilities, in which the preferred decision option is the one that 
results in the least severe worst-case outcome (this being the worst case given the range of outcome 
uncertainty associated with the option). 

Intermediate approaches that draw a balance between this extreme and classical decision methods 
include one in which the classically optimal decision first is identified based on best-estimate 
probabilities. Next, it is determined how the expected outcomes of that decision would change if the input 
probabilities were adjusted in an adverse way.  Alternative decision options are then identified that reduce 
the expected consequences associated with the more adverse set of input probabilities.  In effect, this 
approach sacrifices maximized outcome utilities (with respect to best estimate probabilities) to hedge 
against the adverse consequences associated with more pessimistic input probabilities.  Other robust 
methodologies, with the common feature of reduced sensitivity to the UC, have also been proposed. 

While robust decision strategies have largely been defined in terms of probabilistic UC 
methodologies (reflecting the prevalence of probabilistic UC), the intent to support robust decision 
methods does not confine iRESM to any one means of UC.  Indeed, the motivation for nonprobabilistic 
uncertainty methods has been the enhanced robustness of the UC (see Section 2.2), and thus of the 
decisions to which it is applied.   

3.1.3 Adaptive Strategies  

Adaptive approaches to decision making can be viewed as a subset of the robust methodologies in 
which the basis for hedging against potentially contentious input probabilities is to distribute decisions 
along the timeline; that is, to base current decisions on the assumption that future corrective actions can 
be taken as conditions unfold and uncertainties narrow.  Such approaches balance the risk of irrevocably 
adverse impacts associated with a delay in critical decisions against the advantage of postponing some 
decisions until the uncertainties have narrowed.  Lempert et al. (1996) demonstrate that for a specific 
climate policy problem set, the performance of adaptive strategies is superior to that of a classical non-
adaptive approach.  Practically, we would expect any real-world decision policy, or at least decision 
practice, to be based partially on adaptive strategy.  While the performance of adaptive decision making 
has been demonstrated in a probabilistic setting (Lempert et al. 1996), no particular UC methodology is 
inherent in such strategies, and thus the prospect of supporting adaptive decision making does not 
significantly constrain the iRESM choice in UC methods.   
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3.1.4 Non-Algorithmic Decisions 

Notwithstanding the abundance of literature and the sound theoretical bases for formal decision 
methodologies, the reality is that public and private decisions—by national policymakers, regulators, 
corporate officers, military commanders, or other decision makers—are seldom, if ever, based exclusively 
on decision algorithms.  At best, the products of formal decision methods constitute one set of data points 
among those considered in the deliberations of a decision maker.  Some of the reasons for reluctance to 
incorporate decision-theoretic methods wholesale into decision making—such as limited confidence in 
the completeness of the UC or perceived arbitrariness in the assignment of probabilities to future 
conditions—have already been discussed in Section 2.1 and Section 2.2.  Another reason is that the 
decision makers are often ill at ease with the complexity of decision models and of the science models 
that support them, and this impedes their confident use in decision making.  While such impediments can 
to some extent be overcome through effective stakeholder communication, it is nevertheless unlikely that 
decision algorithms will ever provide a comprehensive basis for decision making.   

What is important, therefore, is that the results and insights of a scientific analysis, independently of 
the decision methods that might be proposed, be coherent, transparent (to the degree practical), and 
conveyable to the decision makers.  That is, effective decision support by iRESM requires the use of a 
quantitative framework in which predictions, consequences, and associated uncertainties can be 
systemically and consistently cast in a comprehensible, defensible, and unambiguous way.  These are 
among the criteria against which alternative UC methods were assessed in Section 2.2. 

3.1.5 Conclusions on Decision Methods 

Section 3.1 briefly outlines the major categories of decision strategies that have been proposed and 
discussed in the climate mitigation and adaptation literature.  While the bases for the preference of one 
class of decision model over another have been expounded by the proponents, formal decision models are 
seldom, if ever, the sole or principal basis for public decision making.  Regardless of decision 
methodology, it is crucial that the approach to UC adopted by the iRESM team creates a decision 
environment that is information-rich, comprehensible, defensible, and, to the extent practical, complete.  
The considerations in Sections 2.2 and 2.3 can help make sure the iRESM approach to UC meets these 
criteria.   

3.2 Interpretation of Results/Visualization 

If uncertainties in model results are used to inform policy, it is important that users and decision 
makers be provided a useful view of the uncertainties in model inputs and outputs and a sense of how 
decisions are likely to be affected by these uncertainties.  This section provides a brief discussion of a few 
visual tools that have proven useful in depicting uncertainties in model inputs and outputs.   

3.2.1 Sensitivity:  Radar Graphs and Tornado Diagrams 

Radar graphs can be used to show how changes in a wide variety of variables or conditions contribute 
to a single outcome.  Figure 3.1a is from the human settlements chapter of the IPCC third assessment 
report (McCarthy et al. 2001). It  uses a subjective 5-point scale to estimate and combine four dimensions 
of expert confidence concerning the projected level of climate change impact on future water supplies.  
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The (nominally independent) rating dimensions were: 1) the degree of consensus among experts, 2) the 
strength of the underlying theory , 3) quality of model results predicting water shortages, and 4) the 
consistency of predicted impacts with observations.  The overall impact confidence level was based on 
the area of the shaded polygon, computed from the individual confidence levels. Figure 3.1b is a different 
type of radar graph showing the impacts of a number of policy approaches on several competing policy 
objectives.  This is a “likeliest impact” chart and could repeated for “high” (0.95 probability) and “low” 
(0.05 probability) impacts on any of the dimensions. 

 

  
a. Confidence Ratings for Impacts of Climate Change on 
Human Settlements:  Water Supplies.  Source:  McCarthy 
et al. 2001. 

b. Multi-dimensional rating of alternative approaches to 
managing a riverine habitat.  Source:  
USCOE/USBR/NMISC 2007.   

Figure 3.1. Examples of Radar Graphs that Depict Many Variables’ Contribution to a Single Outcome 
and Alternative Strategies to Fulfilling Competing Objectives 

Tornado graphs are another means to show the relative contribution of uncertainty to overall 
uncertainty of a model outcome.  Figure 3.2 (from Webster et al. 2008) shows the decomposition of 
variance in the MIT Emissions Prediction and Policy Analysis model and shows how variation in several 
groups of uncertain parameters explain the variance in the cost-controlling CO2 emissions (carbon price) 
for two different forecast periods.  Note that a handful of variables (<5) explain the overwhelming 
percentage of overall variance, but the ranking of the variables changes over time.  Analyses of this type 
depict sensitivity of the model to various underlying assumptions and identify “what matters” for policy 
analysis.  Sensitivity analyses can be done as in Figure 3.2 using relative variance or by using a common 
fixed percentage change across variables to isolate the marginal effect of changes in single variables as 
was done by Scott et al. (1999).   
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Figure 3.2. Percentage of Variance in Carbon Prices in (a) 2020, (b) 2060 Explained by Uncertain 

Parameter Under a 550 ppm Stabilization Case.  The percentage variance is calculated as the 
ratio of the partial sum of squared errors to the total sum of squared errors from the results of 
an analysis of variance.  Source:  Webster et al. (2008).   

3.2.2 Uncertainty Box and Whisker Plots, Scatter Plots 

Box and whisker plots are economical ways of summarizing and depicting results of uncertainty 
analyses.  As illustrated in Figure 3.3, it is possible to efficiently show several elements of uncertainty at 
once.  From an uncertainty analysis using the MiniCAM model (Scott et al. 1999), this figure 
simultaneously compares the impact of model uncertainty over time on atmospheric CO2 for the IS92 base 
case and three policy scenarios.  The figure demonstrates that simultaneous very low-probability “tail 
values” of certain input variables can result in very high CO2 concentrations and, that while all three of 
the proposed control polices show similar median concentration pathways, two out of the three do a much 
better job of preventing worst-case scenarios.   
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Figure 3.3. Comparison of Flat Carbon Tax, Hotelling Carbon Tax, and Contingent Carbon Tax in 

Controlling the CO2 Concentration in the Atmosphere Relative to a Business-As-Usual Case.  
Source:  Scott et al. (1999); copyright permission pending.  

Where there is a lot of information available concerning the specific shape of distributions of values, 
it can be useful to show the density function directly or the cumulative density function derived from it.  
The example from Figure 3.4 is a set of density distributions of CO2 concentrations and the corresponding 
cumulative probability density function for temperature under a base case and four carbon policy 
scenarios from the MIT Integrated Global Systems Model (IGSM) (Webster et al. 2009).  Moreover, 
where these outcomes vary by location within the iRESM region, these figures can be shown as a family 
of figures (e.g., 14 of them for individual states in the iRESM region).   

 

  
a. Frequency distributions, and medians and 95% 
bounds, of CO2 concentrations averaged for the decade 
2091-2100.  Horizontal lines with three circles indicate 
range of reported results from Clarke et al. (2007), and 
circles indicate the point estimates from the three 
models. 

b. Cumulative probability distributions of global mean 
temperature change from decadal average for 1861-1870 
(preindustrial) to the decadal average for 2091-2100. 
Source:  Webster et al. (2009) 

Source:  Webster et al. (2009). 

Figure 3.4. Uncertainties in Model-Estimated CO2 Concentrations for a Baseline and Four Policy Cases 
Computed by the MIT IGSM Model 



 

3.7 

Scatter plots also are sometimes valuable in depicting the distribution of outputs or inputs and can be 
structured to simultaneously depict several elements or dimensions of information concerning output.  For 
example, Figure 3.5a shows how inputs for a sample of 400 realizations of climate sensitivity and ocean 
heat uptake are associated with each other in the IGSM integrated assessment model; it also shows their 
range and the implicit values required to match outputs of global general circulation models.  Figure 3.5b 
shows how control costs and energy consumption vary across portfolios of carbon control technologies 
and control levels in Pacific Northwest National Laboratory’s Global Change Assessment Model.  The 
methods illustrated in Figure 3.5a could be applied to show, for example, the impacts of different growth 
rates in regional population or trade coefficients for the iRESM region for total emissions of CO2, while 
the method in Figure 3.5b could be used to evaluate the impacts of regional technology combinations on 
CO2 emissions under various policy assumptions.   

 

 
 

a. The marginal posterior probability density function 
for climate sensitivity (S) and ocean heat uptake(Ky).  
The shading and thick contours denote rejection 
regions for significance levels of 10% and 1%, 
respectively.  Green circles and triangles indicate 
mode and a median on the distribution, respectively.  
Black diamonds indicate values of the parameters of 
the MIT climate model needed to represent behavior 
of different AOGCMs in the simulations with 1% yr-

1 increases in the CO2 concentration.  Red dots show 
values for Ky and S from 400 samples.   
Source:  Sokolov et al. 2009.   

b. Cost and energy consumption results for 768 
combinations of control technologies.  Diagonal clusters A-
F are formed by common end-use technology level 
combinations, combinations are noted with and without 
nuclear and with and without carbon capture and storage for 
control goals of 450 and 550ppm. 
Source:  McJeon et al. 2010. 

Figure 3.5.  Graphically Depicting Multiple Elements of Uncertainty 

3.2.3 Spatial Variation 

Spatial variation in output from forecasts adds an additional element of uncertainty.  To pick one well 
known example, climate modelers know that different plausible models of atmospheric processes and/or 
geographic downscaling schemes can produce different changes in mean temperature and other climate 
variables at locations of interest on the ground.  However, uncertainty within and between models 
concerning location of climate impacts could influence regional decision making.  Figure 3.6 shows how 
uncertainty of regional allocation of climate impacts can be portrayed visually on a gridded map 
landscape.  (In iRESM, the grid would be much finer [10-25 km] but over a much more limited 
geographic area.)  The techniques involved can be applied in principle to other sub-regional geographic 
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entities, such as counties, states, or utility service nodes.  Figure 3.6 is a figure generated by MAGICC/ 
SCENGEN 5.3 (Wigley 2008), which allocates policy-driven changes in forecasted global temperature, 
precipitation, and other variables to a global 2.5° × 2.5° latitude-longitude grid according to the relative 
allocations implicit in 24 different coupled AOGCMs.  The variation in model outcomes can be depicted 
by use of a color palette as simply the standard deviation in forecasted values for a large number of 
realizations for a single AOGCM (Figure 3.6a) or as the standard deviation of realizations for an average 
of allocation schemes among several models (Figure 3.6b).  While MAGICC/SCENGEN itself depends 
on model-based geographic downscaling schemes (AOGCMs in particular), virtually any other set of 
spatial comparisons for any kind of geographically allocated variable (for example, the difference in 
standard deviations of total water consumption at each county) can be depicted in this manner.    

 

  
a. Example of percent inter-annual standard deviations in 
geographic temperature change within a specific 
allocation scheme at the year 2050 (CCSM30 Model, 
1.64° C global impact)  
Source:  Wigley (2008) 

b. Example of inter-annual standard deviations in 
geographic temperature impact within an average of 
18 specific climate allocation schemes. 
Source:  Wigley (2008) 

Figure 3.6.  Variability in Geographic Distribution at the Year 2050 of Standard Deviations in 
Temperature Changes from A1TMES Scenario Within the MAGICC/SCENGEN 5.3 Model 
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4.0 Recommended UC Process for iRESM 

In the previous sections, technical approaches to UC have been outlined along with strengths and 
shortcomings considered relevant to iRESM.  While the methodologies identified are not exhaustive, and 
there are variations of approach within methods sets, we have captured the principal methodological 
groups that have found application in practical problem domains.  Ultimately, however, the merit of an 
approach to UC must be measured by the technical validity and level of stakeholder comfort associated 
with incorporation of that UC into a decision process.   

The UC process developed for iRESM is predicated on the importance of helping stakeholders 
(i.e., researchers and decision makers) understand the robustness of results provided by iRESM, that is, 
which uncertainties have the biggest influence on key decision criteria or other research metrics.  This 
means that the stakeholder context necessarily provides the organizing principles for UC.  The UC 
process has the following ten steps represented in Figure 4.1 below. 

 
Figure 4.1.  UC Process for iRESM 

The implications of this process represent a profound change from the typical UQ approach that 
focuses on characterizing all the uncertainty in all parameters of a single model.  Not only is such an 
approach very likely to be computationally infeasible for an integrated model suite with significant run 
times, but the level of effort required to produce defensible UCs on every parameter is also very likely to 
be beyond any reasonable project scope.  The remainder of this section describes each of these steps in 
detail.  The first four steps of the process were exercised in FY 2011 in a limited application to develop 
the process, learn how to interact with policy stakeholders and modeling teams, and determine how to 
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approach the full design for UC going forward.  A significant inter alia result of this activity is that the 
UC process with some slight modifications and additions has strongly influenced the overall design for 
the entire iRESM project, thereby demonstrating that the needs of the process for adequately 
characterizing uncertainty for robust decision making are very nearly identical to the needs for good 
model development and good analysis. 

4.1 Identify Stakeholder Decision Support Needs 

The first step in this process is to identify one or more decisions or research questions to be addressed 
with the framework.  The research into stakeholder decision support needs in the 14-state Midwest pilot 
region has been initiated and indicates the following decisions and issues are of first importance (Rice 
et al. 2010): 

• Mitigation-related: 

– The impacts of renewable portfolio standards (RPS) on regional electricity costs, land use, water 
use, and transmission needs 

– The consistency of regional RPS policy requirements across the region 

– The sustainability, cost, and performance of renewables and sequestration opportunities 

• Adaptation-related: 

– Climate change impacts on water availability, temperature, and precipitation (changes in means 
and extremes) 

– Ecosystem and human health impacts due to these changes 

• General: 

– Land and water use conflicts arising from mitigation and adaptation decisions 

– Energy-water nexus (e.g., the impact of increased renewables market penetration on water 
conflicts, and the interactions between water use and energy use).  

This list will be updated as additional input is received from the continuing stakeholder interaction 
process that is part of the iRESM study, but it provides a useful starting point to begin characterizing 
relevant decision contexts in the pilot region. 

The next step in the process is to consider this region-specific list in light of the broader research 
questions defined for the iRESM framework (see Section 1).  The research team produced the synthesis 
shown in Table 4.1 indicating key intersections between Midwest stakeholder decision support needs and 
iRESM’s research questions.   



 

4.3 

Table 4.1.  Intersection of Key Midwest Issues and iRESM Research Questions 

 iRESM Science Questions 

Stakeholder Issues 

Regional 
Opportunities for 

Constraints on 
Mitigation and 

Adaptation 

Impact of Uncertainty 
in Mean vs. Extremes 
of Climate Change on 

Mitigation and 
Adaptation 

Mitigation and 
Adaptation Causing 
Non-Linear Changes 

and Climate 
Feedbacks 

Intersections Between 
Mitigation and 

Adaptation Affecting 
Their Outcomes 

Regional RPS Policy 
Requirements X X   

Climate Change 
Impacts on Water, 
Temperature and 
Precipitation 

 X  X 

Sustainability, Cost 
of Renewables, 
Sequestration 

X X X X 

Land and Water Use 
Conflicts X X X X 

Energy-Water Nexus X X  X 
Ecosystem and 
Human Health 
Impacts 

 X   

     

Based on an examination of this table, the iRESM team decided that the initial Midwest region pilot 
study should explore the sustainability, cost, and performance of renewables and sequestration 
alternatives necessary to meet RPS requirements and to focus on potential land and water use conflicts.  
These crosscutting issues address the breadth of the iRESM research questions.  More specifically, the 
team decided to propose the following mitigation question for the pilot region’s first UC analysis: 

What are the impacts of different levels of renewable portfolio standards on key outcomes such as 
regional electricity prices, emissions, land use conflicts, water use conflicts, agricultural land use 
decisions, and electric infrastructure needs? 

4.2 Establish Research Metrics/Decision Criteria 

This step involves establishing the research metrics or decision criteria of concern to stakeholders.  
These metrics/criteria should be quantitatively defined so that they can be mapped to output variables 
from the iRESM framework component models, shown in Figure 4.2 .  Table 4.2 lists a set of potential 
criteria consistent with the RPS decision described above and indicates the iRESM component models 
that produce outputs relevant to these criteria.  To make this decision context more tractable for the initial 
demonstration of the UC process, the scope of outcomes was narrowed to focus exclusively on UC with 
respect to regional electricity prices.   
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Figure 4.2.  iRESM Framework 

Table 4.2.  Potential Decision Criteria for Regional RPS Decision 

Potential Decision Criteria Relevant iRESM Model(s) Relevant Model Output 
Regional GHG emissions (by species) R-GCAM, REIF R-GCAM:  CO2 and other long-lived 

GHG broken out by energy, land use. 
REIF:  Electric sector CO2 emissions  

Fossil fuel consumption (oil, gas, coal) R-GCAM Consumption of coal and refined fuels 
by type 

Electricity prices R-GCAM, REIF R-GCAM:  Average marginal price of 
new generation, overall average price. 
REIF:  Overall average price, 
locational marginal prices 

Grid reliability REIF Unserved energy, locational marginal 
price 

Cost of new transmission infrastructure 
requirements 

REIF Total miles and cost of new grid 
interconnections by voltage level; 
where major system upgrades are 
needed 

Transportation fuel prices R-GCAM Fuel price index, TBD breakout for 
biofuels 

Food prices R-GCAM Prices for major crops; aggregate 
prices for others  

Land use/land cover change R-GCAM % change by category 
Water availability DCLM, DCLM-WM Sub-basin water supply and allocation 

by use type 
   

4.3 Identify Necessary Model Components of iRESM Framework 

Figure 4.3 identifies the component models of the iRESM framework that would be involved in the 
determination of regional electricity prices.  RESM provides the daily climatology utilized by the 
downstream models to drive energy demand and natural resource availability for energy supply needs.  

REIF

Building 
Electricity Demands

Ag and LU

R-GCAM
Regional 

Integrated 
Assessment

Crop Productivity

Land Use/Land 
Cover, Sub-basin

Water Supply

Irrigation Supply/Demand

Hydropower, Cooling 
Water Supply/Demand

Sectoral
Water 
Supply/
Demand

BEND
Building Energy 

Demands

EPIC
Crop 

Productivity

DCLM
Hydrology

DCLM-WM
Water 

Management

SITE and EOM
Power Plant Siting, 

Operations, and Grid 
Interconnection

RESM
Regional 
Climate

Building Stock

Climate

Crop Demand

Electric
Infrastructure

Supply/DemandClimate

Climate

Climate

Climate

Transportation, Ind’l
Electricity Demands

Agricultural Land Cover

All Land Cover

All Land Cover

Building Energy 
Demands

MELD
Electricity Demand



 

4.5 

BEND, the Building ENergy Demand model, calculates climate-dependent demands for heating, 
ventilation, and cooling services in the residential and commercial building sectors.  BEND develops 
hourly energy demands based on detailed building energy use simulations for a wide range of different 
building types.  These results are aggregated to the sub-regional, or utility zonal, spatial resolution so that 
they can be calibrated to actual utility loads and be used in the electricity operations simulation.   

 
Figure 4.3.  iRESM Component Models Determining Electricity Prices 

BEND is integrated with R-GCAM, the Regional-Global Change Assessment Model, which 
simulates the impact of socioeconomic change, climate, climate policy, technological change, and 
resource availability on energy and agricultural technology selection, land use change, and the prices of 
primary and secondary energy sources (e.g., oil and electricity) and agricultural products through a 
market-based, economic equilibrium approach.  R-GCAM provides BEND with the change in building 
stock characteristics over time along with energy prices, and BEND determines building energy demands 
in response.  R-GCAM’s simulation of electricity markets is performed at the state level using annual 
load duration curves and annualized assumptions for electricity generation cost and performance.  R-
GCAM outputs annual average electricity prices by state.   

The final model in the framework involved in the calculation of electricity prices is REIF, the 
Regional Energy Infrastructure Framework.  REIF provides a more highly temporally and spatially 
resolved picture of the electricity system than is possible with R-GCAM.  REIF is a check on the 
feasibility of the R-GCAM results as well as a more detailed examination of the impact of climate and 
climate policy on the electric grid.  REIF has three components: the Model of Electricity Demand 
(MELD), a regional siting model for electric generation and transmission infrastructure (SITE), and the 
Electricity Operations Model (EOM).  MELD receives the climate-dependent hourly building electricity 
demands from BEND and electricity demand from other sectors from R-GCAM, and it calculates total 
hourly electricity demand by utility zone.  The GIS-based SITE model determines if and where the R-
GCAM capacity expansion plan can be sited across the utility zones within the region.  SITE addresses 
land suitability, water resource availability, grid interconnection costs, and the marginal value of new 
generation in each utility zone (provided by EOM) to simulate siting decisions. EOM optimizes power 
plant operations given the hourly supply, demand, and transmission constraints within the region.  Among 
several other results, REIF outputs the hourly marginal price of electricity in each utility zone.   
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4.4 Identify Sources of Uncertainty in Models and Model Couplings  

In this step, the UC team met with the RESM, BEND, R-GCAM, and REIF model development 
teams to identify the sources of uncertainty in their models with respect to the determination of electricity 
prices.  The taxonomy of uncertainty presented earlier (see Figure 2.2) describing the four main sources 
of uncertainty (input quantification, model skill, model completeness, and integration and 
implementation) served as the basis for the discussions.  Table 4.3 summarizes the results of these 
meetings and includes each team’s a priori judgment about which uncertainty sources are likely to be 
sensitive.  Note that, due to the frequent overlap between model skill and model completeness issues, the 
results for these categories have been combined in the table.  Also, the discussions focused on the 
individual models and did not address the integration aspects.  Finally, the REIF discussion focused 
exclusively on the sources of uncertainty in the SITE model.   

Table 4.3.  Summary of Uncertainty Source Identification for Electricity Prices 

Mode Input Quantification Model Skill/Model Completeness 
a priori Judgment of Sensitive 

Uncertainty Sources 
RESM • Different physics 

parameterizations 
• Boundary conditions 

(Community Earth System 
Model ensemble members) 

• RESM initial conditions 

• Different physics representations 
• Bias correction may not be 

appropriate for future climate 
• Possible issues with interactions 

between the physics and the scale 
of the model 

• Unknown unknowns 

• Alternate physics more important 
than aleatory uncertainty over long 
run (the opposite in the short run)  

• Land surface processes 
• Cloud processes 

BEND • Count of building types in a 
region 

• Building stock 
characteristics 

• Necessary spatial resolution 
• Inputs from RESM and R-

GCAM 

• Representativeness of locations 
chosen to represent the region 

• Count of buildings by building 
type is calibrated to reproduce 
base year total annual energy 
demand and hourly electricity 
profiles  

• Uncertainty in climate likely to 
dominate uncertainties in base year 
building inventory 

• Demand response to price changes 
(interactions with R-GCAM) 

• Technological change (from R-
GCAM) 

R-GCAM • Socioeconomics 
• Policy 
• Resource base 
• Technologies 
• Climate (from RESM) 

• Market clearing approach not 
consistent with electric system 
regulatory framework or water 
rights framework 

• Model assumes decisions are 
made rationally  

• Electricity system not modeled 
explicitly 

• Industrial sector not modeled at 
same detail as energy, 
transportation, agriculture 

• Policy  
• Resource base 
• Technology characteristics 
• Climate 
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SITE • Criteria used to mask 
unsuitable land including 
policy and social issues 

• Parameters LMP-based 
siting and grid 
interconnection cost 
algorithms 

• GIS layers are from 
different dates and 
resolutions 

• Technology siting 
requirements 

• Inputs from upstream 
models 

• Technology siting order, mix 
affects results 

• Choice of objectives for siting 
algorithms to simulate regional 
planning 

• May overstate or understate 
restrictions on suitable land 

• Choice of spatial resolution—
finer resolution better represents 
land-based constraints 

• Details of local policies not 
captured 

• Future policies, technology 
requirements are unknown 
unknowns 

• Suitability criteria 
• Parameters and structure of siting 

algorithm 
• Future land and technology policy 
• Water availability 

    

4.5 Select UC Methods 

As discussed in Section 2, the appropriate UC methods depend upon the nature of the uncertainties 
identified and the nature of the decisions to be addressed by the iRESM models.  The uncertainties have 
not yet been fully identified and are expected to emerge as experience is gained with running the 
individual models.  However, examples can be provided concerning how the process of selection will 
work in the case of the models shown in Table 4.3.  Research in FY 2011 shows that uncertainty in 
physics representations within climate models (RESM) and uncertainty in public policy toward carbon 
emissions (R-GCAM) will be major drivers of uncertainty in those models.  The impact of physics 
uncertainties has been addressed by the climate community by running ensembles of multiple climate 
models and then developing distributions of output from the model runs (either unweighted or weighted 
by model performance in backcasting actual historical climate) to quantify and describe the uncertainties 
involved.  The iRESM team is actively investigating how best to characterize uncertainties from this 
source.  Multiple boundary conditions may be available to run RESM, and the results of those runs can be 
used to characterize the impacts of boundary conditions.  To characterize the impacts of public policy 
toward carbon emissions, the iRESM team is discussing the development of a number of numerical 
experiments.  These experiments will demonstrate the impacts on electricity demand of emissions 
scenarios that are consistent with IPCC RCPs.  Uncertainties in this case may be partially quantified using 
descriptions of ranges or overlapping distributions of scatterplots of scenario outcomes as described in 
Section 3.2.2.   

4.6 Perform Screening/Sensitivity Analysis 

In FY12, a particular coupling of iRESM component models and one or more decision criteria will be 
selected for a demonstration of the UC process.  After performing the uncertainty source identification 
and UC methods selection steps as described above in Section 4.1 through Section 4.5, the team will 
perform a structured sensitivity analysis to determine the subset of the uncertainty sources that are the 
biggest drivers of the uncertainty of each criterion (e.g., electricity prices).  This is a deterministic process 
that requires the team to develop bounds for the sources of uncertainty amenable to quantification (e.g., 
high and low values for the U.S. population growth rate during 2050-2100 consistent with IPCC scenario 
RCP4.5 [Moss et al. 2010]).  Ideally, these bounds would be estimated to represent the 5th and 95th 
percentiles on a cumulative probability distribution, but other criteria may be used.  Once the bounds have 
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been developed, a separate simulation of the coupled models needs to be performed for each uncertainty 
bound. 

As an example of a screening analysis, one energy-economy experiment will isolate the impact of 
climate change on R-GCAM.  Two R-GCAM simulations for 2005-2100 will be run and compared:  both 
will incorporate socioeconomic and policy assumptions consistent with RCP4.5, but one will be driven by 
the RCP4.5 climate and the other will have no climate drivers at all (essentially assuming a static climate 
over the simulation horizon).  The goal of this deterministic experiment, however, is to understand the 
impact of including climate drivers (or not) on R-GCAM’s simulation of the evolution of the regional 
energy-economy.  A second experiment will couple BEND and R-GCAM to explore the results of their 
interactions under RCP4.5.  This coupling will cause BEND’s calculations to respond to technological 
change and population growth as well as to energy price changes (demand response).  The BEND outputs 
will replace R-GCAM’s calculation of the pilot region’s BEND (based on heating and cooling degree-
days).   

4.7 Characterize/Quantify Uncertainty in Sensitivity Drivers 

After the simulations for the sensitivity analysis are complete, the results will be analyzed to rank the 
uncertainty sources in terms of their relative impact on the variation in the evaluation metrics, similar to 
the method shown in Figure 3.2.  The uncertainties with the largest impact on the metric (i.e., the 
“sensitive variables”) are candidates for quantification with probability distributions.  This process will 
draw as appropriate on the techniques and methods described in Section 2, quantifying uncertainties 
where possible. 

4.8 Design UP Approach 

Methods for propagation are described in Section 2.3, with different methods being appropriate for 
different types of uncertainty.  Uncertainty that can be quantified is typically propagated by Monte Carlo 
methods through multiple implementations of the coupled models. However, as described in Section 2.3, 
semi-quantitative and qualitative methods are also available and will be used where appropriate.  
Probability distributions may be sampled independently, but it is generally considered better practice to 
account for known dependencies among input variables through sampling correlations, and this has been 
done in uncertainty evaluation of predecessors to R-GCAM, for example (Scott et al. 1999).  Latin 
Hypercube-based methodologies exist to allow required correlations to be imposed on the input marginal 
distributions (Iman and Davenport 1982; Swiler and West 2010).  Propagation will require software to 
support and facilitate UP, as discussed in Section 2.3. 

Due to the large number of simulations likely to be required for a sufficient sample size, it is possible 
that run time issues may arise in propagating uncertainties across the coupled models of the framework.  
Initial work done during FY 2011 suggests that run times may be extremely long (running to months on a 
parallel processing platform with ~2000 cores available) for fully integrated runs of the complete iRESM 
suite.  The team will investigate flexible architectural approaches to shortening run times by running 
component codes on a coarser grid and/or using larger time steps.  In addition, the team will investigate, 
as necessary, the use of fast-running surrogate models based on reduced-form processes or statistically 
derived response surfaces to emulate the behaviors of the detailed component models while having 
substantially shorter run times.  In addition, the new computing resources available through a recent 
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institutional computing investment (14,000+ cores available) may resolve some or all run time issues for 
UP. 

4.9 Perform UP 

This step in the process is the execution of the UP strategy designed in the previous step.  In general, 
it is expected that the number of simulations and run times needed for UP will be highly variable and 
dependent on the relevant model couplings and the number of sensitive variables.  The UC experiment 
defined in FY12 will move into the UP phase in FY13.  The lessons learned from this experiment 
regarding the selection of UP engine, surrogate models, and so on, will be incorporated into the evolving 
iRESM platform architecture. 

4.10 Evaluate and Interpret Results 

The results of the UP will be analyzed and reviewed to determine the most effective ways in which to 
depict and communicate them.  There are a variety of known psychological barriers and communication 
challenges surrounding uncertainty and scenarios in general.  The preliminary work done in FY 2011 on 
stakeholder needs (Rice et al. 2010) by the iRESM Focus Area 3 team is being expanded into a broader 
and deeper stakeholder engagement research project.  Research is being done in the iRESM initiative to 
facilitate application of regional modeling frameworks to adaptation and mitigation decisions and to add 
to the range of tools available for facilitating communication of uncertainty to stakeholders through 
participatory scenario simulation exercises.  Uncertainty regarding alternate/preferred means of 
communicating uncertainty analysis results will be incorporated into the analysis and visualization of the 
results. 

 



 

5.1 

5.0 Conclusion 

This paper has described a new research approach to the process of UC to help address the challenges 
of regional climate change mitigation and adaptation decisions.  The iRESM initiative is developing a 
prototype suite of models to facilitate integrated assessments related to sustainable economic and energy 
development in the context of climate change, specifically addressing potential conflicts between this 
development and various uses of land and water resources.  The iRESM project has adopted as a 
fundamental principle that any model or set of models addressing either climate mitigation or adaptation 
must include as a fundamental element of its design methods for characterizing this uncertainty, 
quantifying it to the extent possible, and depicting it in a manner understood by its intended audience.  
The UC process under development focuses on identifying and characterizing the key uncertainties in 
data inputs, individual model structures, and coupled models to determine the robustness of the 
framework’s results.  A key aspect of the process is to focus both modeling and UC on specific 
information needs of stakeholders (for example, the decision criteria that will be considered by decision 
makers in evaluating different options).  Without such focus, UC can devolve into an unbounded and 
unhelpful process that, in practice, is difficult if not impossible to complete.  This decision-specific 
orientation for UC has multiple implications for the iRESM initiative that will continue to be explored in 
the work of iRESM Focus Area 3, including:  the importance of stakeholder interactions and the 
development of methods for communicating results; the development of a flexible model architecture that 
will facilitate application of subsets of the iRESM model components relevant to particular applications; 
and the identification of approaches for reducing model run times to facilitate UQ, including development 
of surrogate models.   
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