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Summary

This document provides a detailed study of materials used to shield against the hadronic particles
from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that
minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The
materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the
primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop
the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons,
neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a
complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of
nucleon transport, including hadron interactions and radioactive isotope production. The Monte Carlo
simulation tool Geant4 was used for this study.

This document is structured to explicitly present the data and its analysis for the six different
materials considered. Each material is analyzed according to it geometry, considering ten different
thicknesses of each material plus no material. The intent of this document is to provide practical guidance
in the choice of shielding material for the energy range of interest (20 MeV to 10 GeV) and its particular
configuration. The hydrogenous materials modeled for this study were polyethylene (PE), borated
polyethylene (BPE), and water. The effectiveness of each of these materials in shielding cosmic neutrons,
protons and muons was similarly poor. None of these is therefore recommended as a material to consider
in shielding the detector materials in transport from cosmic rays.

The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic
and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray
components is iron, which has the best combination of primary shielding and minimal secondary neutron
production.
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1.0 Introduction

The MAJORANA Project (Aalseth et al. 2009) will use high-purity germanium (HPGe) in an attempt to
observe the rare nuclear decay process of neutrinoless double-beta decay (Ovpp) and to determine the
mass of the neutrino. To obtain the measurements necessary to complete these tasks, the experiment must
have a low-background radiation environment. In other words, for the success of this experiment “it’s all
about the backgrounds” (Elliott 2011). The contributors to the background can be divided into categories:

» Natural radioactivity in detector components (potassium, uranium, thorium)

«  Cosmogenic radioactivity (*Ge, ®°Co)

e Surface contaminants (a, )

* Muons, fast neutrons

e  2v[BP decay

» Neutrino scattering (reactor, solar, atmospheric, geoneutrinos, supernovae ...)

«  Low-energy backgrounds (*H; low-E Compton from potassium, uranium, thorium, etc.)

This study focuses on the minimization of the cosmogenic activation of the HPGe by analyzing
different shielding materials in the energy range of interest. The cosmic rays generate unstable nuclei
with both short (minutes) and long (years) half-lives. Therefore, the experiment will be carried out
underground to shield against cosmic rays. However, during shipment, particles that would later be
shielded by Earth’s crust can reach the HPGe detector. This makes it necessary to use additional
shielding material that can block these particles during shipment. The two distinct background issues in
this type of experiment are ®®Ge with a half-life of 270 days, for which the cosmogenic production
“clock” starts after enrichment in Russia and ®*Co with a half-life of 5.27 years for which the cosmogenic
production “clock” starts after zone refining and crystal pulling in Oak Ridge, TN. This is an important
distinction in terms of managing cosmogenic activation as the longer half-life ®°Co is effectively
eliminated after the overseas transport of the enriched germanium material.

To determine which particles need to be shielded against during transport, it is necessary to know
what energy is required to activate the germanium, producing the radionuclides of concern, especially
%9Co and *®Ge. Table 1 shows the Q-values for the activation reactions in enriched germanium producing
%8Ge. From these calculated values, one can derive that the energy region of interest for cosmogenic
activation is above 20 MeV. In other words, cosmic ray particles — in particular neutrons — with energy
of 20 MeV or greater can generate ®Ge in germanium, and in the case of ®*Co neutrons with energy
greater than 80 MeV. The Q-values for the activation reactions in enriched germanium producing 60Co
are shown in Table 2. Such unstable nuclei, and their short-lived daughter products, can subsequently
create signals in the same energy regions as Ovpf. One hundred mega-electron volts for the source
particle — in this case, neutrons — is the point where all reactions of concern can occur. Two factors
impact the large uncertainty in production rate: firstly, the number of primary particles drops rapidly
(Ziegler 1998), and secondly, the Geant4 cross section data, which is based on theoretical extrapolation of
beam experiments (usually source neutrons with 20 MeV maximum energy) is not as reliable, and the
production rate calculation becomes more uncertain instead of being based on experimental data. Data
for this energy range is presented in Appendix A.
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Table 1: Calculated Energy Q-values for the Neutronic ®*Ge Reactions

Nuclear Reaction Calculated Q value (MeV)
"Ge (n,3n)%Ge -20.01
"Ge (n,5n)%Ge -38.42
"Ge (n,6n)%Ge -45.29
"Ge (n,7n)%Ge -55.62
®Ge (n,9n)%Ge -71.74

Table 2: Calculated Energy Q-values for the Neutronic ®°Co Reactions

Nuclear Reaction Unbound Q Value (MeV)
°Ge (n,5p 6n)*°Co 83.2
2Ge (n,5p 8n)60C0 -101.3
3Ge (n,5p 9n)60C0 -108.1
“Ge (n,5p 10n)*Co -118.3
-124.8

"®Ge (n,5p 12n)*Co

The background budget of such experiments must account for the potential sources of background
due to cosmic activation in the detector material. Table 3 shows the projected backgrounds for the
MAJORANA DEMONSTRATOR experiment (Detwiler 2011). As seen in Table 3, the cosmogenic *Ge is
responsible for 10% of the background and cosmogenic ®°Co in the germanium detectors is responsible
for 1% of the total background. This shows the importance of limiting the activation of the germanium
material by high energy cosmic rays.
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Table 3: MAJORANA DEMONSTRATOR Background Budget (Detwiler 2011)

Componant Isotope
e
Germanium
Crystals “Co
{enrichad)
NTh
Plastic,
Electronics, el ] B :
Cables
Cryostat, Inner
Cu Shield =1, *Bi
(EFCu)
:mTL 1|4qu
Quiter Cu
Shield “Cg
Pb Shield am, g
Prompt
Cosmogenics (n.*)
Ochor

(=, RA, eXt.y_)

Totals:

Gross Rate,
1.9-3 MaV
[c/module/

muonth]

47 (76)

42

21

0.8
20

05

0l

578 (185)

ROI Background
(DEMONSTRATOR)
[c/ROL/t/y]

038

003

<03

0.20

0.21

0.40

0.02

040

0.18

i8

ROI Background
(tonne scala)
[c/ROL/t/y]

negiigble
negiigble

<03

0.15

045

0.02

e [
negigible
~0.06

0.12

To determine which material would be best for shielding the HPGe during shipping, Geant4, a free
computer toolkit provided by CERN, was used to study the transport shielding problem. Geant4 uses
Monte Carlo calculations to simulate the passage of particles through matter, providing information on
the outbound particles created by cosmic rays traveling through certain materials. The primary
components of cosmic rays (neutrons, protons, and muons) were simulated passing through 0 cm to
100 cm (at 10 cm intervals) of concrete, iron, lead, water, polyethylene, and borated polyethylene. Heavy
concrete seems at first glance to be another material one might consider in shielding applications;
however, its proprietary formulation is not available to the researchers, and so it could not be accurately

simulated in this study.
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2.0 Monte Carlo Tool Description

In order to have a complete Monte Carlo simulation tool, several pieces of software must be used,
including, at a minimum, one for the physics simulation, one for the radiation source model and one for
the data analysis. This document refers to a hadronic simulation tool developed by our group that was
used to analyze the shielding materials considered herein (Aguayo-Navarrete et al. 2010). This tool is
intended to simulate hadronic interaction of cosmic rays impinging on a radiation shield and has three
components:

o Geant4 Toolkit
o CRY library
e ROQT data analysis tool

Table 4: Software Versions Used in This Work (Aguayo-Navarrete et al. 2010)

Code Version Source
Geant4 9.34 Geant4.cern.ch
CRY 1.6 www.lInl.gov
www-glast.slac.
ROOT 3.10/02 stanford.edu/software/root
/walkthrough/install.htm
Cygwin 1.7.9-1 WWW.Cygwin.com
http://www.microsoft.com/visualstudio/en-
Microsoft Visual Studio 2010 Express us/products/2010-editions/visual-cpp-
express

In Table 4, the tool set for a Monte Carlo application, based on Geant4, is presented as run in a
Windows computing environment.

2.1 Geant4d

Geant4 is a tool kit that uses Monte Carlo methodology to simulate the passage of particles through
matter. It has useful applications in particle physics, nuclear physics, accelerator design, space
engineering, and medical physics. Geant4 was specifically designed, using the C++ programming
language, “to expose the physics models utilized, to handle complex geometries, and to enable easy
adaption for optimal use in different sets of applications” (Agostinelli et al. 2003).

In contrast to codes like Fluka, MCNP, ISABEL and SHIELD, Geant4 is capable of simulating the
whole energy spectrum of interest in these calculations. The identified drawbacks of using this code are
the questionable reliability of neutronic physics, which still has to be verified, and the high configurability
of the code. This work uses the recommended configuration for high-energy physics as well as
calorimetry and shielding applications (all energies) (The Geant4 Collaboration). The studies of test-


http://www.llnl.gov/
http://www.cygwin.com/
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/visual-cpp-express
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beam data currently show that a cascade model is needed for a good description of hadronic showers.

The QGSP_BERT physics list improves agreement with LHC test beam data for the longitudinal and
lateral shower shape and energy resolution. This list is currently chosen by the LHC experiments ATLAS
and CMS as their default physics list, which are two of the largest contributors to the development of
Geant4. This configuration has the most up to date hadronic physics models, and they are being
thoroughly validated.

2.2 CRY

Cosmic-Ray Shower Library (CRY) is free software produced by the Lawrence Livermore National
Laboratory that is used to generate correlated cosmic-ray particle showers as either a transport or detector
simulation code. It generates shower information for muons, neutrons, protons, electrons, and photons at
one of three elevations (sea level, 2100 m and 11300 m) within a specified area (up to 300 m by 300 m).
CRY also generates the time of arrival and the zenith angle of the secondary particles (Hagmann et al.
2008).

2.3 ROOT

ROOT (Kama 2011) is a data analysis toolkit. In conjunction with Geant4, ROOT is used to create
spectra of the data that is simulated with the toolkit. The large amount of data generated by this type of
application makes the use of a data analysis tool imperative. ROOT was developed at CERN to address
the data analysis challenges of large data sets.
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3.0 Material characterization

This section provides details about the simulation results for various materials. The data are
presented for neutron energies of 0-20 MeV, which are below the activation threshold energies of interest
for germanium, >20 MeV and >100 MeV. The data are provided in a similar fashion for protons and
muons. This focus in this section is on attenuation of the incident particle flux, thus the data presented are
principally outgoing flux of the same particle species. The detailed plots in this section also provide flux
of secondary hadrons (neutrons and protons) produced by the primary neutrons, protons and muons.
Section 4 presents direct comparisons of materials and summarizes the implications of these detailed
studies for the design of shielding against cosmogenic activation.

3.1 Iron

3.1.1 Sea Level Neutrons

Iron has an atomic number of 26. The shielding properties of this material against the cosmic neutron
flux are presented in three different energy regions in Figure 1. The same data is presented in Table 5.
For low-energy neutrons, the secondary particle generation increases the outbound flux, breaking this
trend at about 30 cm, where the maximum amount of secondary particle flux is observed. For higher
energy neutrons this effect is not observed, leading to the conclusion that if the end user of the shield is
not concerned with neutrons below 20 MeV, then one can make this assertion: the thicker the shield the
better. The exact simulated spectra for the 11 geometries simulated are presented in Figure 2.



PNNL-20693

Number of Outgoing Neutrons/m?/s

180

160

140

120

100

80

=¢=0-20 MeV  =ll=20 MeV-Max Energy 100 MeV-Max Energy

/ ™~

60 y \ ~
40
20
0 . . . . | , A ok b |
0 10 20 30 40 50 60 70 80 90 100
Thickness (cm)
Figure 1: Cosmic Neutron Flux through Iron
Table 5: Cosmic Neutron Flux through Iron
Outbound Outbound Outbound
Neutrons/m?*/s Neutrons/m?*/s Neutrons/m?*/s
Thickness (cm) 0-20 MeV 20 MeV-10 GeV 100 MeV-10 GeV
0 5.02E+01 6.98E+01 4.26E+01
10 1.16E+02 4.48E+01 2.50E+01
20 1.56E+02 2.96E+01 1.43E+01
30 1.60E+02 1.87E+01 8.29E+00
40 1.50E+02 1.15E+01 4.76E+00
50 1.34E+02 7.01E+00 2.77E+00
60 1.15E+02 4.41E+00 1.66E+00
70 9.74E+01 2.65E+00 9.35E-01
80 8.04E+01 1.78E+00 5.19E-01
90 6.52E+01 1.26E+00 3.01E-01
100 5.52E+01 8.70E-01 1.70E-01
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3.1.2 Sea level Protons

The shielding properties of iron against the cosmic proton flux are presented in Figure 3, comparing
the flux of outbound protons in three different energy regions. The same data is presented in Table 3. To
obtain the data for Figure 3 and Table 6, the simulation data was normalized to reflect the actual
composition of proton flux in cosmic rays. For low-energy protons below 20 MeV, the secondary
generation of protons in 10-cm thick iron increases the outbound flux. However, at 20 cm, the iron starts
to shield more effectively and decreases the number of outbound protons, showing a self shielding effect.
For higher-energy protons this effect is not observed; the iron starts to shield the number of outbound
protons immediately. The combination of these two effects suggests that the thicker the material is, the
more effective the shield will be. The exact simulated spectra for the ten geometries of iron are presented
in Figure 4. The secondary neutron generation for each geometry can be found in Table 22.
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Figure 3: Cosmic Proton Flux through Iron



Table 6: Cosmic Proton Flux through Iron

PNNL-20693

Outbound Outbound Outbound
Protons/m?/s Protons/m?/s Protons/m?/s
Thickness (cm) 0 MeV-20 MeV 20 MeV-10 GeV 100 MeV-10 GeV
0 8.92E-02 3.71E+00 3.05E+00
10 1.32E-01 3.32E+00 2.53E+00
20 8.23E-02 2.01E+00 1.58E+00
30 3.93E-02 1.27E+00 9.81E-01
40 2.58E-02 6.78E-01 5.39E-01
50 1.27E-02 4.52E-01 3.61E-01
60 9.75E-03 2.68E-01 2.21E-01
70 1.50E-03 1.42E-01 1.15E-01
80 5.61E-03 9.27E-02 7.20E-02
90 1.12E-03 5.70E-02 4.01E-02
100 3.79E-04 3.76E-02 2.93E-02
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3.1.3 Sea Level Muons

Iron, being a high-Z material, shields muons with relative efficiency. Outbound muon flux was
categorized into the three energy regions seen in Figure 5.

Table 7 shows that there are very few muons under 100 MeV. Iron effectively shielded high-energy
muons (100 MeV to 10 GeV). Iron of a thickness of approximately 97 cm shielded 50% of outbound
muons. No muons were produced at any thickness by cosmogenic flux. Iron would be a highly
recommended shielding material for cosmic ray muons. The exact simulated spectra for the ten
geometries of iron are presented in Figure 6. In the spectra shown in Figure 4 a spike appears in the
outgoing neutron flux ~10 MeV and increases with material thickness. This feature is attributed to the
Giant Dipole Resonance (GDR) and the so called ‘Quasi-Deuteron’ region (Araujo et al. 2005).
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Figure 5: Cosmic Muon Flux through Iron
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Table 7: Cosmic Muon Flux through Iron

Outbound Outbound Outbound
Muons/m*/s Muons/m*/s Muons/m’/s
Thickness (cm) 0 MeV-20 MeV 20 MeV - 10 GeV 100 MeV - 10 GeV

0 1.18E-01 1.70E+02 1.68E+02
10 1.74E-01 1.64E+02 1.62E+02
20 1.92E-01 1.59E+02 1.57E+02
30 2.46E-01 1.52E+02 1.50E+02
40 2.26E-01 1.44E+02 1.41E+02
50 2.22E-01 1.34E+02 1.32E+02
60 1.97E-01 1.24E+02 1.22E+02
70 1.97E-01 1.14E+02 1.12E+02
80 1.97E-01 1.03E+02 1.01E+02
90 1.62E-01 9.32E+01 9.14E+01
100 1.35E-01 8.45E+01 8.29E+01
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3.2 Lead
3.21 Sea Level Neutrons

Lead shows shielding properties comparable to those of iron, as one can observe by comparing Figure
7 below to Figure 1. The trend of each energy range is similar, although there is a larger spike in
generated low energy neutrons for small thicknesses through lead. Note that for lead, even after 100 cm
the secondary generation shows still more low-energy neutrons. However, there is an exponential decay
of outbound high energy neutrons, except for a slight uptick at 100 cm for neutrons in the 20 MeV-
10 GeV energy range. The data for this graph is located in Table 8, divided into three energy regions, and
each of the 11 spectra is in Figure 8.
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Figure 7: Cosmic Neutron Flux through Lead
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Table 8: Cosmic Neutron Flux through Lead

Outbound Outbound Outbound
Neutrons/m2/s Neutrons/m2/s Neutrons/m2/s
Thickness (cm) 0 MeV-20 MeV 20 MeV - 10 GeV 100 MeV - 10 GeV

0 5.03E+01 6.97E+01 4.26E+01
10 2.36E+02 4.57E+01 2.50E+01
20 3.45E+02 2.90E+01 1.47E+01
30 3.91E+02 1.80E+01 8.64E+00
40 4.06E+02 1.14E+01 5.03E+00
50 3.89E+02 7.72E+00 3.10E+00
60 3.55E+02 5.68E+00 1.69E+00
70 3.23E+02 5.68E+00 1.06E+00
80 2.81E+02 5.78E+00 5.92E-01
90 2.44E+02 6.42E+00 3.91E-01
100 2.05E+02 6.50E+00 2.60E-01
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3.2.2 Sea level Protons

Lead has an atomic number of 82. The shielding properties of this material against the cosmic proton
flux are presented in Figure 9, which compares the flux of outbound protons in three different energy
regions. The same data in table form is presented in Table 9. To obtain the data for Figure 9 and Table 7,
the simulation data was normalized to reflect the actual composition of proton flux in cosmic rays. For
low-energy protons below 20 MeV, the interactions of the cosmic proton flux with the lead at 10 cm
produce more secondary protons than the lead shields. However, at 20 cm, the lead starts to shield more
effectively and decreases the flux of outbound protons. For higher energy protons this effect is not
observed; the lead starts to shield the number of outbound protons immediately. The combination of
these two effects implies that the thicker the material is the more effective the shield will be. The exact
simulated spectra for the 10 geometries of lead plus no material are presented in Figure 10.
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Figure 9: Cosmic Proton Flux through Lead
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Table 9: Cosmic Proton Flux through Lead

Outbound Outbound Outbound
Protons/m’/s Protons/m?/s Protons/m?/s
Thickness (cm) 0 MeV-20 MeV 20 MeV — 10 GeV 100 MeV — 10 GeV

0 8.84E-02 3.71E+00 3.05E+00
10 1.06E-01 2.29E+00 1.77E+00
20 5.92E-02 1.31E+00 1.01E+00
30 3.00E-02 7.09E-01 5.70E-01
40 1.43E-02 4.72E-01 3.67E-01
50 8.99E-03 2.34E-01 1.79E-01
60 7.49E-03 1.32E-01 1.04E-01
70 7.59E-04 6.60E-02 7.80E-02
80 2.26E-03 4.66E-02 3.35E-02
20 1.12E-03 3.46E-02 2.18E-02
100 0.00E+00 1.44E-02 1.06E-02
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3.2.3 Sea Level Muons

Lead, like iron, is also a high-Z material. Many of the same conclusions that were made for iron can
be made for lead. Outbound muon flux was categorized into the three energy regions seen in Figure 11.
Table 10 shows that there are very few muons under energies of 100 MeV. High-energy muons
(100 MeV to 10 GeV) were shielded effectively. Lead with a thickness of approximately 98 cm shields
50% of incoming muons. No muons were produced at any thickness by cosmogenic flux. Lead would be
a highly recommended shielding material for cosmic-ray muons. The exact simulated spectra for the 10
geometries of iron are presented in Figure 12.
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Figure 11: Cosmic Muon Flux through Lead

The secondary neutron flux is mainly below 20 MeV; thus they do not contribute to activation (see
Appendix A).
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Table 10: Cosmic Muon Flux through Lead

PNNL-20693

Outbound
Muons/m’/s Outbound Muons/m%/s  Outbound Muons/m?/s
Thickness (cm) 0 MeV-20 MeV 20 MeV - 10 GeV 100 MeV - 10 GeV

0 1.18E-01 1.70E+02 1.68E+02

10 2.33E-01 1.65E+02 1.63E+02

20 2.12E-01 1.60E+02 1.57E+02

30 1.99E-01 1.53E+02 1.50E+02

40 1.88E-01 1.43E+02 1.41E+02

50 2.39E-01 1.34E+02 1.31E+02

60 1.94E-01 1.24E+02 1.22E+02

70 1.69E-01 1.14E+02 1.12E+02

80 1.69E-01 1.03E+02 1.01E+02

920 1.57E-01 9.38E+01 9.20E+01
100 1.18E-01 8.39E+01 8.23E+01
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3.3 Polyethylene
3.3.1 Sea Level Neutrons

Neutron flux in polyethylene (PE) decreases proportionately with increase in thickness, compared
with iron and lead, which demonstrate a maximal neutron flux around 30 cm. Figure 13 demonstrates
that there is a constant decrease in neutron flux for an increase in thickness. It does not, however, provide
better shielding for high-energy neutrons. Table 11 provides the data for this graph. One can observe that
100 cm of polyethylene provides less shielding against high-energy neutrons than 30 cm of iron or lead
(Table 5 and Table 9). The spectra for each of the 11 simulations are in Figure 14.
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Figure 13: Cosmic Neutron Flux through Polyethylene
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Table 11: Cosmic Neutron Flux through Polyethylene

Outbound Outbound Outbound
Neutrons/m?/s Neutrons/m?*/s Neutrons/m?/s
Thickness (cm) 0 MeV-20 MeV 20 MeV - 10 GeV 100 MeV - 10 GeV

0 5.00E+01 7.00E+01 4.28E+01
10 2.44E+01 6.13E+01 3.87E+01
20 1.47E+01 5.47E+01 3.51E+01
30 1.11E+01 4.90E+01 3.16E+01
40 9.38E+00 4.34E+01 2.85E+01
50 8.06E+00 3.87E+01 2.55E+01
60 7.00E+00 3.45E+01 2.30E+01
70 5.81E+00 3.07E+01 2.06E+01
80 5.21E+00 2.66E+01 1.80E+01
920 4.45E+00 2.40E+01 1.62E+01
100 4.02E+00 2.12E+01 1.45E+01
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3.3.2 Sea level Protons

The shielding properties of PE against the cosmic proton flux are presented in Figure 15, comparing
the flux of outbound protons in three different energy regions. The same data is presented in Table 12.
For low-energy protons (below 20 MeV), the PE appears to provide very little to no shielding effect
against protons. For higher-energy protons, the interactions of the protons with the PE create more
secondary protons that are self shielded at about 60 cm. After 60 cm, the PE works to shield higher-
energy protons. The combination of these two effects implies that if the shield is to block protons with
energy greater than 20 MeV it must be thicker than 60 cm. Therefore, PE does not make an effective
shield against low-energy protons. The exact simulated spectra for the 10 geometries of PE are presented
in Figure 16. This figure features a spike in the outgoing neutron flux slightly below 10 MeV that
increases with material thickness. This phenomenon warrants further investigation.
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Figure 15: Cosmic Proton Flux through Polyethylene
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Table 12: Cosmic Proton Flux through Polyethylene

Outbound Outbound Outbound
Protons/m?/s Protons/m’/s Protons/m’/s
Thickness (cm) 0 MeV-20 MeV 20 MeV - 10 GeV 100 MeV - 10 GeV

0 8.81E-02 3.71E+00 3.07E+00
10 1.30E-01 4.43E+00 3.39E+00
20 1.33E-01 4.49E+00 3.45E+00
30 1.29E-01 4.48E+00 3.48E+00
40 1.33E-01 4.18E+00 3.25E+00
50 9.73E-02 4.13E+00 3.21E+00
60 7.68E-02 3.73E+00 2.91E+00
70 8.31E-02 3.35E+00 2.62E+00
80 7.08E-02 3.12E+00 2.46E+00
20 6.66E-02 2.83E+00 2.26E+00
100 5.50E-02 2.52E+00 1.99E+00
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3.3.3 Sea Level Muons

Polyethylene is a low-Z material which shields cosmic rays poorly. Outbound muon flux was
categorized into the three energy regions seen in Figure 17. PE with a thickness of 100 cm shielded 29%
of the incoming muons. Table 13 shows that up until a thickness of 40 cm, almost no muons are
attenuated. No secondary muons were produced at any thickness by cosmogenic flux. PE is the worst
low-Z material for shielding muons and is therefore not recommended for muon shielding. The exact
simulated spectra for the 10 geometries of iron are presented in Figure 18.
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Figure 17: Cosmic Muon Flux through Polyethylene

30



PNNL-20693

Table 13: Cosmic Muon Flux through Polyethylene

Outbound Outbound Outbound
Muons/m’/s Muons/m?/s Muons/m’/s
Thickness (cm) 0 MeV-20 MeV 20 MeV - 10 GeV 100 MeV - 10 GeV

0 1.03E-01 1.70E+02 1.68E+02
10 1.54E-01 1.69E+02 1.67E+02
20 1.52E-01 1.68E+02 1.66E+02
30 1.99E-01 1.66E+02 1.64E+02
40 1.77E-01 1.63E+02 1.61E+02
50 1.63E-01 1.58E+02 1.56E+02
60 1.90E-01 1.52E+02 1.50E+02
70 1.86E-01 1.44E+02 1.43E+02
80 1.85E-01 1.38E+02 1.36E+02
0 1.63E-01 1.29E+02 1.27E+02
100 1.79E-01 1.22E+02 1.20E+02
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3.4 Borated Polyethylene
3.4.1 SealLevel Neutrons

There is little difference between the effect of borated polyethylene (BPE) on neutrons and that of PE.
It is likely one would add boron to the polyethylene specifically for additional neutron shielding (because
of boron’s neutron capture effects), however, this boron doping does not affect attenuation properties of
the material at the energies of interest, so there was little difference in the outbound neutron flux of the
two materials. Figure 19 presents the shielding effects of BPE on neutrons, while the data is presented in
Table 14. The separate spectra for each simulation are in Figure 20.
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Figure 19: Cosmic Neutron Flux through Borated Polyethylene
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Table 14: Cosmic Neutron Flux through Borated Polyethylene

Outbound Outbound Outbound
Neutrons/m?*/s Neutrons/m?/s Neutrons/m?/s
Thickness (cm) 0 MeV-20 MeV 20 MeV - 10 GeV 100 MeV - 10 GeV

0 4.99E+01 7.01E+01 4.28E+01
10 3.03E+01 6.11E+01 3.86E+01
20 1.99E+01 5.43E+01 3.47E+01
30 1.54E+01 4.89E+01 3.16E+01
40 1.27E+01 4.36E+01 2.85E+01
50 1.07E+01 3.88E+01 2.55E+01
60 9.29E+00 3.42E+01 2.21E+01
70 7.97E+00 3.03E+01 2.01E+01
80 7.14E+00 2.66E+01 1.77E+01
0 5.92E+00 2.32E+01 1.55E+01
100 5.31E+00 2.05E+01 1.38E+01
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3.4.2 Sea level Protons

The shielding properties of BPE against cosmic proton flux are presented in Figure 21, comparing the
flux of outbound protons in three different energy regions. The same data is presented in Table 15. To
obtain the data for Figure 21 and Table 13, the simulation data was normalized to reflect the actual
composition of proton flux in cosmic rays at sea level. For low-energy protons (below 20 MeV) the BPE
appears to have very little or no shielding effect against protons. For higher-energy protons, the
interactions of the protons with the BPE create more protons than are shielded up to a thickness of about
40 cm. After 40 cm, the BPE works to shield against higher-energy protons. The combination of these
two effects implies that if the shield is to block protons with energy greater than 20 MeV it must be
thicker than 40 cm; therefore BPE is considered a poor shield against low-energy protons. The exact
simulated spectra for the 10 geometries of BPE are presented in Figure 22.
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Figure 21: Cosmic Proton Flux through Borated Polyethylene
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Table 15: Cosmic Proton Flux through Borated Polyethylene

Outbound Outbound Outbound
Protons/m?*/s Protons/m?*/s Protons/m?*/s
Thickness (cm) 0 MeV-20 MeV 20 MeV - 10 GeV 100 MeV - 10 GeV

0 8.62E-02 3.71E+00 3.07E+00
10 1.52E-01 4.21E+00 3.22E+00
20 1.41E-01 4.24E+00 3.21E+00
30 1.12E-01 4.12E+00 3.14E+00
40 1.19E-01 3.89E+00 2.97E+00
50 9.28E-02 3.62E+00 2.79E+00
60 9.21E-02 3.31E+00 2.56E+00
70 1.09E-01 3.05E+00 2.36E+00
80 8.09E-02 2.85E+00 2.23E+00
20 8.08E-02 2.43E+00 1.90E+00
100 7.30E-02 2.40E+00 1.90E+00

37



PNNL-20693

CRYbench Borated Poly shield | | P )| CRYbench Borated Poly shield | | _Pro®ns || CRYbench Borated Poly shield | Protons

Eefres 10007 Cotres 90001

[Ermes 10001
gﬂ'-_ TMeas 348 o ~ Mean 1808 of {Mess W22
o Orr L wra : Lat] - F 3 a4
Out-going Pr e { 4 Out-going Neutrons T ? : LI.Oul-gaing Neutrons — =

‘N ‘o Primary Protons R «— Pdl‘l‘lal’y Prow' | b | « Primary Prot

Jut g Progons

e
-

Vertical Infensity [1/m"/s/sr/Me

CRYbench Borated Poly shield |

a.
]
|

« Primary ProﬁLns

ng ¥r

ons

Verticajdntensity [1/m’/s/siiMeV)

CRYbench Borated Poly shield

il
;

s s 3ol

3 | el | -

E , J Ed i ¢+ Out-going Neut
go £« Outgoing Neutrons  [Ememm: g b Out-going Neutrons e —-— g 9 ut-going Neutrons = o
| I bons e | « Primary Protons |’s | , < Primary Protons
i il rondf |
5 snsl € rogons L.
$ook | —io el

80 cm
CRYbench Borated Poly shield

3

b
| -
L

Vertical iatensity [1/m’/s/sriMaV]

1

[ ‘
|
r « Seconda :
0% n]. | [
1

PEETRaATY SN 2
3
10 107 pL J’o‘
90 cm 100 cm

Figure 22: Simulated Spectra for Cosmic Protons through 0 cm to 100 cm of Borated Polyethylene

38



PNNL-20693

3.4.3 Sea Level Muons

Borated polyethylene is a low-Z material, which shields cosmic ray muons poorly. Outbound muon
flux was categorized into the three energy regions seen in Figure 23. At a thickness of 100 cm, the BPE
shielded 31% of all incoming muons. Table 16 shows that up to a thickness of 20 cm, almost no muons
were shielded. No muons were produced at any thickness by cosmogenic flux. BPE would not be
recommended as a shielding material against cosmic ray muons. The exact simulated spectra for the 10
geometries considered impinging on iron are presented in Figure 24.
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Figure 23: Cosmic Muon Flux through Borated Polyethylene
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Table 16: Cosmic Muon Flux through Borated Polyethylene

Outbound Outbound Outbound
Muons/m’/s Muons/m?/s Muons/m?/s
Thickness (cm) 0 MeV-20 MeV 20 MeV - 10 GeV 100 MeV - 10 GeV

0 1.03E-01 1.70E+02 1.68E+02
10 2.12E-01 1.69E+02 1.67E+02
20 2.41E-01 1.67E+02 1.65E+02
30 1.71E-01 1.65E+02 1.63E+02
40 1.44E-01 1.61E+02 1.59E+02
50 2.10E-01 1.56E+02 1.54E+02
60 1.93E-01 1.50E+02 1.47E+02
70 2.05E-01 1.42E+02 1.40E+02
80 2.12E-01 1.34E+02 1.32E+02
20 1.90E-01 1.25E+02 1.23E+02
100 2.05E-01 1.18E+02 1.16E+02
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3.5 Water
351 Sea Level Neutrons

Water is often used as a moderator for neutrons. The effects of water on neutron flux are displayed in
Figure 25, with the data in Table 17. Despite water’s low density, its ability to shield neutrons is
comparable to the other materials tested in this investigation with the exception of iron and lead. Figure
26 presents the individual spectra for each simulation.

=== 0-20 MeV =20 MeV-Max Energy =100 MeV-Max Energy
80

70 \
50

40 -

30

- \
10 — .,

O T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100

Number of Outgoing Neutrons/m?/s

Thickness (cm)

Figure 25: Cosmic Neutron Flux through Water
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Table 17: Cosmic Neutron Flux through Water

Outbound Outbound Outbound
Neutrons/m?/s Neutrons/m?*/s Neutrons/m?/s
Thickness (cm) 0 MeV-20 MeV 20 MeV - 10 GeV 100 MeV - 10 GeV

0 4.99E+01 7.01E+01 4.28E+01
10 3.01E+01 6.16E+01 3.87E+01
20 2.02E+01 5.49E+01 3.50E+01
30 1.53E+01 4.90E+01 3.13E+01
40 1.26E+01 4.34E+01 2.79E+01
50 1.14E+01 3.86E+01 2.50E+01
60 9.75E+00 3.39E+01 2.22E+01
70 8.54E+00 3.01E+01 1.99E+01
80 7.32E+00 2.66E+01 1.76E+01
0 6.49E+00 2.33E+01 1.55E+01
100 5.50E+00 2.03E+01 1.35E+01
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352 Sea level Protons

The shielding properties of water against the cosmic proton flux are presented in Figure 27 and Table
18, comparing the flux of outbound protons in three different energy regions. To obtain the data for Table
18, the simulation data was normalized to reflect the actual composition of proton flux in cosmic rays at
sea level. For low-energy protons (below 20 MeV), the water appears to have virtually no shielding
effect against protons. For higher-energy protons, the interactions of the protons with the water create
more protons than are shielded up to about 50 cm. At thicknesses greater than 50 cm, the water works to
shield against higher-energy protons. The combination of these two effects implies that if the shield is to
block protons with energy greater than 20 MeV it must be thicker than 50 cm, making water an
ineffective shield against low-energy protons. The exact simulated spectra for the 10 geometries of water
are presented in Figure 28.
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Figure 27: Cosmic Proton Flux through Water
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Table 18: Cosmic Proton Flux through Water

PNNL-20693

Outbound Outbound Outbound
Protons/m?*/s Protons/m?/s Protons/m?/s
Thickness (cm) 0 MeV-20 MeV 20 MeV-10GeV 100 MeV - 10 GeV

0 8.81E-02 3.71E+00 3.07E+00
10 1.59-01 4.40E+00 3.37E+00
20 1.57E-01 4.59E+00 3.48E+00
30 1.40E-01 4.33E+00 3.36E+00
40 1.22E-01 4.21E+00 3.28E+00
50 1.20E-01 3.97E+00 3.06E+00
60 1.18E-01 3.64E+00 2.83E+00
70 8.55E-02 3.32E+00 2.65E+00
80 7.42E-02 3.10E+00 2.46E+00
20 7.08E-02 2.95E+00 2.35E+00
100 5.88E-02 2.47E+00 1.98E+00
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3.5.3 Sea Level Muons

Water is a low-Z material which shields cosmic ray muons poorly. Outbound muon flux was
categorized into the three energy regions shown in Figure 29. At a thickness of 100 cm, water shielded
29% of all incoming muons. No muons were produced at any thickness by cosmogenic flux. The Table
19 shows that up until 40 cm of thickness, almost no muons are shielded. Water would not be suggested
as a shielding material against cosmic-ray muons. The exact simulated spectra for the 10 geometries
considered impinging on iron are presented in Figure 30.
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Figure 29: Cosmic Muon Flux through Water
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Table 19: Cosmic Muon Flux through Water

PNNL-20693

Outbound Outbound Outbound
Muons/m*/s Muons/m’/s Muons/m?/s
Thickness (cm) 0 MeV-20 MeV 20 MeV - 10 GeV 100 MeV - 10 GeV

0 1.03E-01 1.70E+02 1.68E+02
10 1.38E-01 1.69E+02 1.67E+02
20 1.21E-01 1.68E+02 1.67E+02
30 1.79E-01 1.66E+02 1.64E+02
40 1.68E-01 1.63E+02 1.61E+02
50 1.82E-01 1.58E+02 1.56E+02
60 1.84E-01 1.52E+02 1.50E+02
70 1.87E-01 1.44E+02 1.43E+02
80 1.90E-01 1.37E+02 1.35E+02
20 1.72E-01 1.30E+02 1.27E+02
100 1.53E-01 1.22E+02 1.20E+02
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3.6 Concrete
3.6.1 Sea Level Neutrons

Concrete offers neutron shielding similar to PE, BPE, and water. Figure 31 suggests that the flux of
neutrons through concrete steadily declines with material thickness, due to the low secondary generation
in this material. However, the concrete’s efficiency at shielding the neutrons decreases at greater

thicknesses. Table 20 presents the data for Figure 31, while Figure 32 displays the spectra for each of the
11 simulations.
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Figure 31: Cosmic Neutron Flux through Concrete
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Table 20: Cosmic Neutron Flux through Concrete

Outbound Outbound Outbound
Neutrons/m?*/s Neutrons/m?*/s Neutrons/m?/s
Thickness (cm) 0 MeV-20 MeV 20 MeV - 10 GeV 100 MeV - 10 GeV

0 5.01E+01 6.99E+01 4.28E+01
10 2.49E+01 6.15E+01 3.90E+01
20 1.60E+01 5.49E+01 3.54E+01
30 1.31E+01 4.92E+01 3.20E+01
40 1.18E+01 4.40E+01 2.90E+01
50 1.04E+01 3.86E+01 2.55E+01
60 8.82E+00 3.47E+01 2.32E+01
70 8.10E+00 3.06E+01 2.05E+01
80 7.16E+00 2.69E+01 1.82E+01
20 6.13E+00 2.32E+01 1.57E+01
100 5.61E+00 2.06E+01 1.40E+01

52



PNNL-20693

CRYbench Concrete shield | | Neutrons CRYbench Concrete Shisld | Neutrons CRYbench Concrete Shield | Neatrons
Ertras 100000 Eatras 100000 Ertras 100000
f bt e Mean 628 Masn  NLT
1 } L2 wh LAY 4 4 L] LiF]

-

Fhe st trme was 381 4

Tow wirnanbed res wan 4114 &

g~
s «~ Primary Neutrons

+ Out-going Neutrons

\;\ Out-going Neutrons

'A"""\‘\;‘r Primary Neutrons

s
@

45NN, . primary Neutrons

« Out-going Neutrons

[
o

(3
=]

(3

. Vertical Intensity [1/m’/s/sriMeV]
. Vertical Intensity [1/m/s/seMeV]

3 Vertica} mnmméﬂm'mumv]
by 8

- Secondiify|

TS

10 cm

CRYbench Concrete Shield CRYbench Concrete Shield CRYbench Concrete Shield
Ertrien 100000
g | 5
g1 1 £
] v F
2 e o Pl LT _5 Toa S e wes 3134 )
E E £
S S0 S "
> 0y > W N
H _~pigey + Primary Neutrons % Primary Neutrons g \ Primary Neutrons
3 I3 < AN
£ E Out-going Neutrons £
-310*‘ 07 e 310*
£ + Out-going Neutrons o £ « Out-going Neutrons
3 H 3
10° 107 10°
18 I : ‘.«-.mgi' . Sq
IR I .l Lol o L L el sl ] 1| A
1 10 10’ 10’ 10" 0* 1 10 10 10’ 10* 0* 1 10 10
Energy (“'Jl Energy (Hﬂ\}]
30 cm 40 cm 50 cm
CRYbench Concrete Shield | Neutrons. CRYbench Concrete Shield ] CRYbench Concrete Shield
Entries 100000
Mean "war
; 1: RMS ans i 1 i 1
i | 3 5
.! t e a—— et S E AT -~ _(_TX.0 -.3 LT — LT t_O0
g—w‘: E«n“— 5-m"
Z £ z W
g | [ [ \ Primary Neutrons
g | £ £ “
30| 3o 7
“E I g 3 Out-going Neutrons
g | $ $
107} 10° 10°

10’”' 10’

60 cm 70 cm
CRYbench Concrete Shield CRYbench Concrete Shield ]

Mean "
s RMS 802 =
39 é )
H e ) 3
% €
S0'L ; i
z N z )
E «- Primary Neutrons E
—_:-w" i E\D“'
"E’ Out-going Neutrons %
$ >
10° 10°
- Secol I
e i o* 1 10 107 10’ 10t g0°
0 o Enelgy (MeVf Entrgy MoV

90 cm 100 cm
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3.6.2 Sea Level Protons

The shielding properties of concrete against the cosmic proton flux are presented in Figure 33,
comparing the flux of outbound protons in three different energy regions, with the same data presented in
Table 21. To obtain the data for Figure 33 and Table 21, the simulation data results were normalized to
reflect the actual composition of proton flux in cosmic rays. For low-energy protons (below 20 MeV), the
concrete appears to have little to no shielding effect against the cosmic proton flux. For higher-energy
protons, the thicker the concrete, the more effectively it shields against protons. Therefore the best
concrete shield will be made as thick as possible to block the most protons. Concrete does not make an
effective shield against low-energy protons. The exact simulated spectra for the 10 geometries of PE are
presented in Figure 34.
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Figure 33: Cosmic Proton Flux through Concrete
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Table 21: Cosmic Proton Flux through Concrete

PNNL-20693

Outbound Outbound Outbound
Protons/m?*/s Protons/m?/s Protons/m?/s
Thickness (cm) 0 MeV-20 MeV 20 MeV-10GeV 100 MeV — 10 GeV

0 8.46E-02 3.72E+00 3.05E+00
10 1.66E-01 3.85E+00 2.89E+00
20 1.35€-01 3.85E+00 2.88E+00
30 1.32E-01 3.74E+00 2.80E+00
40 1.20E-01 3.49E+00 2.61E+00
50 9.39E-02 3.25E+00 2.47E+00
60 9.05E-02 3.14E+00 2.35E+00
70 7.04E-02 2.87E+00 2.19E+00
80 7.67E-02 2.43E+00 1.83E+00
20 5.72E-02 2.30E+00 1.79E+00
100 4.23E-02 1.95E+00 1.51E+00
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3.6.3 Sea Level Muons

Concrete, is a low-Z material which shields cosmic ray muons poorly. Outbound muon flux was
categorized into the three energy regions seen in Figure 35. At a thickness of 100 cm, 33% of all
incoming muons were shielded. No muons were produced at any thickness by cosmogenic flux. Table
22 shows that up to a 20 cm thickness, almost no muons are shielded. Although concrete would not be
recommended as a shielding material against cosmic ray muons, it is the best of the low-Z shielding
materials. The exact simulated spectra for the 10 geometries of iron are presented in Figure 36.
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Figure 35: Cosmic Muon Flux through Concrete
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Table 22: Cosmic Muon Flux through Concrete

PNNL-20693

Outbound Outbound Outbound
Muons/m2/s Muons/m2/s Muons/m2/s
Thickness (cm) 0 MeV-20MeV 20 MeV — 10 GeV 100 MeV — 10 GeV

0 1.23E-01 1.70E+02 1.68E+02
10 1.39€-01 1.68E+02 1.67E+02
20 1.47E-01 1.67E+02 1.65E+02
30 1.95E-01 1.64E+02 1.62E+02
40 1.49E-01 1.60E+02 1.58E+02
50 1.92E-01 1.54E+02 1.52E+02
60 1.74E-01 1.47E+02 1.45E+02
70 1.76E-01 1.39E+02 1.37E+02
80 1.73E-01 1.31E+02 1.29E+02
%0 2.19E-01 1.23E+02 1.21E+02
100 2.01E-01 1.14E+02 1.13E+02
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Figure 36: Simulated Spectra for Cosmic Muons through 0 cm to 100 cm of concrete
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4.0 Results

4.1 Twenty Mega-Electron Volt to Ten Giga-Electron Volt Energy
Range of the Cosmic Flux

This section presents graphs and tables combining all the results presented in the previous sections, in
order to facilitate the comparison between cosmic-ray shower shielding materials, in particular the
neutronic and protonic components. Figure 37 shows the outbound flux for neutrons above 20 MeV,
which is the energy range of interest for activation shielding purposes. One can observe that high-Z
materials demonstrate much greater effectiveness. However, iron is considered a superior shielding
material because it generates far fewer secondary neutrons than lead. Lead’s secondary neutron
generation is responsible for the increased flux of outbound neutrons compared to iron at thicknesses
greater than 60 cm. The results show that this is not the case with cosmic proton flux. Similar
conclusions can be drawn from Figure 38 about high-Z materials, which are the best attenuators for
protons above 20 MeV. The same data is presented in Table 23, whose statistical calculations yield an
accuracy of 3% due to Monte Carlo methods used. Cosmic neutrons dominate outbound neutrons at
energies greater than 20 MeV for all shielding scenarios, while in-bound protons contribute less than 10%
of total outbound neutron flux, and the contribution from muons is negligible.
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Table 23: High-Energy Cosmic Particle Flux through Different Materials per Primary Particle
Material Thickness (cm) 20 50 100
Outbound Outbound Outbound Outbound Outbound Outbound
Neutrons/m>/s Protons/m?/s Neutrons/m>/s Protons/m?/s Neutrons/m’/s Protons/m?/s
Incoming
Protons 1.33+0.05 0.745+0.016 0.5840.02 0.124+0.003 0.136+0.005 0.0177+0.0004
Incoming
Iron Neutrons 28.229 1.42 6.37 0.35 0.65 0.02
Incoming
Muons 0.02 0.00 0.05 0.00 0.08 0.00
Total 29.56 2.17 7.01 0.48 0.87 0.04
Incoming
Protons 1.28+0.05 0.61+0.01 0.51+0.02 0.07710.00 0.59+0.02 0.013+0.00
Incoming
Lead Neutrons 27.71 0.85 7.14 0.17 5.86 0.00
Incoming
Muons 0.020 0.00 0.06 0.00 0.05 0.00
Total 29.01 1.43 7.72 0.25 6.50 0.02
Incoming
Protons 0.910.3 1.95+0.03 1.0+0.3 0.95+0.02 0.610.2 0.25+0.00
Incoming
Concrete Neutrons 54.02 231 37.62 2.50 20.03 1.76
Incoming
Muons 0.02 0.00 0.02 0.00 0.01 0.00
Total 54.89 4.26 38.61 3.45 20.63 2.00
Incoming
Protons 0.47+0.02 2.77+0.01 0.74+0.04 1.731£0.01 0.67+0.03 0.86+0.00
Incoming
Water Neutrons 54.42 2.40 37.85 2.60 19.61 1.79
Incoming
Muons 0.00 0.00 0.00 0.00 0.01 0.00
Total 54.89 5.17 38.59 4.33 20.28 2.65
Incoming
Protons 0.4110.01 2.79+0.02 0.6910.02 1.75+0.02 0.76+0.02 0.88+0.01
Incoming
PE Neutrons 54.27 2.28 37.97 2.74 20.41 1.82
Incoming
Muons 0.00 0.00 0.00 0.00 0.00 0.00
Total 54.68 5.07 38.67 4.50 21.17 2.70
Incoming
Protons 0.5310.02 2.40£0.02 0.9040.04 1.31+0.01 0.8310.04 0.61+0.00
Incoming
BPE Neutrons 53.76 2.34 37.89 2.57 19.69 1.92
Incoming
Muons 0.00 0.00 0.00 0.00 0.00 0.00
Total 54.30 4.73 38.79 3.90 20.52 2.53
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Energy ranges below 20 MeV and above 100 MeV were not of direct interest to this study; data for these energy
ranges are presented in Appendix A.
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5.0 Conclusions

The simulations presented herein analyze the shielding properties of six commonly used shield
materials against the protonic, neutronic and muonic components of cosmic-ray showers. The analysis is
presented in a geometrical progression in terms of thickness, from no material to 100 cm of material, in
increments of 10 cm. The simulations were performed using a simple slab of each material exposed to the
simulated cosmic particle shower. The relevant physics processes were considered in the Monte Carlo
simulation.

Our analysis concludes that the common belief that more material is better holds up well when
considering low-Z hydrogenous materials for cosmic shields. The hydrogenous materials modeled for
this study were polyethylene (PE), borated polyethylene (BPE), and water. The effectiveness of each of
these materials in shielding cosmic neutrons, protons and muons was similarly poor. None of these is
therefore recommended as a material to consider in shielding the detector materials in transport from
cosmic rays.

In the case of high-Z materials, such as iron and lead, a significant contribution of secondary neutrons
to the total outbound flux begins at 30 cm, the threshold thickness at which attenuation of the outbound
neutrons is achieved. Iron proves to be optimum better material than lead since it has a lower rate of
secondaryneutron production. Figure 39 shows the total neutron outbound flux in the energy range of
interest for all the materials considered in this analysis. For a given thickness, iron outperforms lead by a
factor of 5 and hydrogenous materials on average by a factor of 20, making it the shielding material of
choice for neutrons above 20 MeV.
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Appendix A: Low- and Very High-Energy Ranges
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A.1 Low-Energy Range (1 MeV — 20 MeV) of Cosmic Flux

Figure 40 shows the outbound flux for neutrons below 20 MeV, which is the energy range of interest
for activation shielding purposes. One can observe that high-Z materials do not show much greater
efficiency in this energy range. Low Z materials perform much better in the attenuation of the low-energy
components of the cosmic ray shower. This effect is not observed in shielding against the cosmic proton
flux. Similar conclusions can be made from Figure 41, which shows that high-Z materials are the best
attenuators for protons below 20 MeV. The statistics for low energy measurements are poor compared
with the rest of data presented in this document. This is obvious, especially for the hydrogenous materials
studied. One reason for this decrease in the statistics of the results is that the number of protons at low
energies in the cosmic ray shower simulated is lower. The error bar is not shown in this graph but is
contained in Table 24.
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Table 24: Low-Energy Cosmic Particle Flux through Different Materials per Primary Particle

Thickness
Material (cm) 20 50 100
Outbound Outbound Outbound Outbound Outbound Outbound
Neutrons/m’/s Protons/m?/s Neutrons/m>/s Protons/m2/s Neutrons/m>/s Protons/m?*/s
Incoming 8.29+0.15 0.008+0.00 9.34+0.17 0.00+0.00 5.00+0.09 0.00£0.00
Protons
Incoming 143.88 0.076 115.87 0.011 39.56 0.00
Iron Neutrons
Incoming 3.67 0.00 8.91 0.00 10.63 0.00
Muons
Total 155.84 0.084 134.11 0.013 55.19 0.00
Incoming 24.8+0.7 0.01+0.00 30.940.9 0.00+0.00 18.140.5 0+0
Protons
Incoming 316.52 0.06 349.62 0.01 176.58 0.00
Lead Neutrons
Incoming 3.284 0.00 8.81 0.00 10.12 0.00
Muons
Total 344.64 0.060 389.33 0.01 204.79 0.00
Incoming 1.35+0.03 0.02+0.00 1.88+0.05 0.01+0.00 1.05+0.03 0.00+0.00
Protons
Incoming 14.30 0.12 7.80 0.09 3.92 0.04
Concrete Neutrons
Incoming 0.33 0.00 0.73 0.00 0.64 0.00
Muons
Total 15.99 0.14 10.41 0.095 5.61 0.043
Incoming 0.36+0.02 0.024+0.00 0.42+0.02 0.014+0.00 0.27+0.01 0.0140.00
Protons
Incoming 19.80 0.14 10.95 0.11 5.22 0.055
Water Neutrons
Incoming 0.045 0.00 0.04 0.00 0.02 0.00
Muons
Total 20.21 0.16 11.41 0.12 5.51 0.06
Incoming 0.24+0.02 0.02+0.00 0.25+0.02 0.01+0.00 0.23+0.02 0.00+0.00
Protons
Incoming 14.42 0.12 7.80 0.09 3.78 0.053
PE Neutrons
Incoming 0.00 0.00 0.02 0.00 0.01 0.00
Muons
Total 14.65 0.14 8.06 0.10 4.02 0.06
Incoming 0.22+0.01 0.01+0.00 0.2740.02 0.01+0.00 0.17+0.01 0.01+0.00
Protons
Incoming 19.65 0.13 10.41 0.09 5.13 0.068
BPE Neutrons
Incoming 0.00 0.00 0.00 0.00 0.00 0.00
Muons
Total 19.87 0.14 10.68 0.09 5.31 0.07
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A.2 Very High-Energy Range (100 MeV — 10 GeV) of the Cosmic Flux

This section presents graphs and tables combining all the results presented in the previous section, in
order to facilitate the comparison between shield materials against cosmic showers, in particular their
neutronic and protonic components. Figure 43 shows the outgoing flux for neutrons above 100 MeV.
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