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Subsurface Biogeochemical Research (SBR) 
FY11 Second Quarter Performance Measure 

 
The SBR Long Term Measure for 2011 under the Performance Assessment Rating Tool (PART) 
measure is to “Refine subsurface transport models by developing computational methods to link 
important processes impacting contaminant transport at smaller scales to the field scale.”  The 
second quarter performance measure is to “Provide a report on computational methods linking 
genome-enabled understanding of microbial metabolism with reactive transport models to 
describe processes impacting contaminant transport in the subsurface.” Microorganisms such as 
bacteria are by definition small (typically on the order of a micron in size), and their behavior is 
controlled by their local biogeochemical environment (typically within a single pore or a biofilm 
on a grain surface, on the order of tens of microns in size).  However, their metabolic activity 
exerts strong influence on the transport and fate of groundwater contaminants of significant 
concern at DOE sites, in contaminant plumes with spatial extents of meters to kilometers.  This 
report describes progress and key findings from research aimed at integrating models of 
microbial metabolism based on genomic information (small scale) with models of contaminant 
fate and transport in aquifers (field scale). 
 
Background 
 
Subsurface microbiology is a relatively new field of scientific investigation.  As recently as 25 
years ago, it was widely believed that life in the subsurface was limited to soils and perhaps 
shallow unconfined aquifers.  However, during the past two decades there has been an explosion 
of new information about the abundance, spatial 
distribution, and activity of microorganisms in the 
subsurface environment.  In 1987, Dr. Derek Lovley 
discovered a new microorganism, Geobacter 
metallireducens (Figure 1), that was the first organism 
found to oxidize organic compounds to carbon dioxide 
with iron oxides as the electron acceptor. In other 
words, Geobacter metallireducens gains its energy by 
using solid rust-like iron minerals in the same way that 
humans use oxygen. Geobacter metallireducens and 
other Geobacter species that have subsequently been 
discovered provide a model for important iron 
transformations on modern earth and may explain 
geological phenomena, such as the massive 
accumulation of magnetite in ancient iron formations. 
Geobacter species are also of interest because of their 
role in environmental restoration. For example, 
Geobacter species can destroy petroleum contaminants in groundwater by oxidizing these 
compounds to harmless carbon dioxide. Of particular interest to the Department of Energy 
(DOE), Geobacter species are also able to convert radioactive metal groundwater contaminants 
such as uranium into an immobile mineral form, thus inhibiting its movement to environmental 

Figure 1  Geobacter metallireducens.  © Eye of 
Science. 



receptor points such as streams and wells. As understanding of the functioning of Geobacter 
species has improved it has been shown to be possible to use this information to modify 
environmental conditions in order to accelerate the rate of contaminant degradation or 
immobilization. 
 
At a Uranium Mill Tailings Remedial Action (UMTRA) site near the town of Rifle, CO (referred 
to here as the Rifle Site; see Figure 2), a DOE-sponsored research team has been conducting 
field research on the ability of Geobacter species and other subsurface microorganisms to 
immobilize uranium in groundwater and keep it from migrating to the nearby Colorado River. 
 

 
Figure 2  Photograph of the Rifle Site.  The shed and wellheads in the center of the photograph delineate one of the 

experimental field plots at which reductive immobilization of uranium by native microorganisms is being studied.  The Colorado 
River is in the right side of the photograph.  Photo courtesy of Dr. Phil Long, PNNL. 

 
Rifle is the site of a former uranium mine, and exposure of the mine tailings to oxygen leads to 
the release of several oxidized metals including uranium, which can then move with the 
groundwater toward the river.  The Rifle research team, led by Dr. Philip Long, has performed a 
series of field experiments in which they amended groundwater with dilute solutions of acetate.  
This soluble form of organic carbon is utilized as an electron donor by microorganisms, most 
notably Geobacter species which have been observed to “bloom” in response to acetate addition.  
Geobacters use natural iron oxide minerals as their primary electron acceptor, but can also use 



uranium as an electron acceptor.  This microbial reaction process leads to chemical reduction of 
uranium from the U(VI) valence state to the U(IV) valence state, which in turn causes a 
significant reduction in uranium solubility leading to precipitation of uranium minerals in the 
aquifer sediments.  Since U(VI) is relatively soluble and moves with groundwater whereas U(IV) 
is relatively insoluble and immobile, this biogeochemical transformation can significantly reduce 
the amount of uranium transported to the river. 
 
Numerical Simulation of Microbially-Mediated Metal Reduction 
 
The SBR Program supports a long-term PART measure to "provide sufficient scientific 
understanding such that DOE sites would be able to incorporate physical, chemical and 
biological processes into decision making for environmental remediation and long-term 
stewardship."  Scientifically sound decisions rely in part on our ability to quantitatively predict 
the future outcomes of a set of alternative management options under consideration, and define 
uncertainties associated with those predictions, based to the extent possible on fundamental 
understanding of the physical, chemical, and biological processes involved.  Ideally, such 
simulations could also be used to design an optimal strategy for remediation and monitoring of a 
contaminated site.  In the context of scientific research, numerical simulations can also be used 
to support experimental design (pre-modeling) and to integrate large and diverse data and 
information into a quantitative framework that supports interpretation of experimental 
observations and hypothesis testing (post-modeling). 
 
A variety of quantitative models of groundwater flow, solute transport, and biogeochemical 
reactions have been posed and formulated into numerical computer codes.  At the Rifle Site, the 
code HYDROGEOCHEM has been applied to Rifle Site field experiments (Yabusaki et al., 
2007; Fang et al., 2009).  This code can incorporate mathematical representations of a variety of 
processes including physical processes (e.g., water flow and advective solute transport, 
dispersion, aquifer recharge at surface and wells), chemical processes (e.g., aqueous 
complexation reactions, grain surface sorption of uranium and other chemical species, abiotic 
reduction/oxidation reactions) and microbial processes (e.g., microbial attachment to and 
detachment from grain surfaces, microbially-mediated iron, uranium, and sulfate reduction).  
These mathematical representations typically take the form of a set of differential equations in 
space and time, which are subsequently solved by numerical approximation methods.  Of 
particular interest here are those equations describing the microbially-mediated redox reactions 
(terminal electron accepting processes or TEAPs).  These reactions are usually slow relative to 
aqueous geochemical speciation reactions and relative to transport processes (advection and 
dispersion), so must be treated as kinetic reactions.  This requires specification of rate 
formulations for TEAPs.  Conventionally, these are treated using various forms of Monod rate 
laws, which depend in non-linear fashion on the concentration of key substrates such as the 
electron donor (e.g., dissolved organic carbon) and electron acceptor (e.g., solid phase iron 
oxides).  For example, Yabusaki et al. (2007) use the following rate law to describe the 
utilization rate of acetate (injected soluble electron donor). 
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where NeA = number of terminal electron acceptors, Cc = acetate concentration, CeA = terminal 
electron acceptor concentration, m,eA = acetate oxidation rate coefficient for the terminal 
electron acceptor, Ks,C = half-saturation coefficient for acetate, and Ks,eA = half-saturation 
coefficient for the terminal electron acceptor. eA is an indicator variable that turns each TEAP 
on and off at various times in the simulation, and depends on the concentration of the next most 
favorable electron acceptor. This rate law is formulated as a summation, where each term in the 
series represents one particular TEAP. The rate of acetate utilization associated with iron 
reduction, for example, is one term in this series and can be written as: 
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The two parenthetical terms on the right-hand-side are the Monod terms, with the first term 
representing the effect of the acetate concentration and the second term the effect of the ferric 
iron (Fe(III)) concentration.  Three constant parameters are defined: The two half-saturation 
coefficients in the Monod terms (Ks,C and Ks,Fe) and the acceptor-specific acetate rate coefficient 
(m,Fe).  The Fe term is a binary function (0,1) of the concentration of the next most favorable 
electron acceptor and is also empirically specified.  Yabusaki et al. (2007) describe a stepwise 
calibration approach in which these model parameters/functions were selected in order to match 
field observations from an initial field experiment.  
 
The above approach is very sophisticated and complex, has been successfully implemented at the 
Rifle Site and other sites, and represents the currently accepted state-of-the-art in 
biogeochemically reactive transport modeling.  However, the approach does have some well-
known limitations that we aim to address through new developments: 

1. The representation of the microbial reactions uses a single rate law form and a single set 
of parameters over all conditions.  However, we know that microorganisms have encoded 
in their genome many alternative metabolic pathways, each of which can be activated or 
deactivated depending on the local environment that a particular organism experiences.  
For example, many Geobacter species have the ability to fix inorganic nitrogen, but can 
also use ammonium if it is available.  Since nitrogen fixation is a metabolically expensive 
process, the local concentration of ammonium can be expected to significantly impact the 
overall metabolic rate and biomass yield of microbial acetate oxidation.  The potential 
switching between these two pathways is not represented in the conventional model 
approach. 

2. Calibrated reaction rate parameters provide for descriptive modeling of prior field 
observations, but their applicability in a predictive sense (that is, to simulate behavior 
under conditions or at time and length scales other than those for which they were 
calibrated) is unclear.  

3. The conventional models do not take advantage of dramatic recent advances in genomic 
and proteomic characterization of subsurface microorganisms. 

 



The genomes of several Geobacter species and other relevant subsurface microorganisms have 
recently been sequenced, and computer simulations (so-called “in silico models”) of microbial 
metabolism based on genome-scale information have been developed.  Our goal in this work is 
couple these explicit genome-scale simulations of microbial metabolic processes with standard 
flow and geochemical reactive transport models, thus replacing the empirical, descriptive Monod 
models currently in use with mechanistically-based, predictive models.   This report describes 
the significant progress we have made to date toward this goal, and outlines ongoing and future 
extensions of this work. 
 
Constraint-Based Genome-Scale In Silico Models of Microbial Metabolism 
 
The field of environmental microbiology has recently taken a quantum leap through 
developments in molecular biology such as high-throughput multiplex sequencing, high-density 
microarrays and environmental proteomics; these technologies provide a deluge of information 
on the nature and function of microbial communities in natural systems.  One development of 
particular significance to this work is the capability to construct chemical reaction networks that 
describe the fundamental metabolic pathways of bacteria. These reaction networks are based on 
annotation of genome maps (identification of specific gene sequences with known functional 
expression), verified and refined through laboratory experimentation (Thiele and Palsson, 2010). 
As depicted in Figure 3, particular portions of the genome sequence, when expressed through the 
RNA transcription process, lead to generation of proteins that catalyze specific reactions. 
Identification of the major reactions encoded in an organism’s genome provides a means to 
characterize the set of metabolic pathways that are available to the organism (Covert et al. 2001).  
 

 
Figure 3  Schematic depiction of the process used to identify reactions in the metabolic network of an organism. 

 
To date, full genome-scale reconstructions have been developed for over 30 organisms, and this 
number is expected to increase rapidly (Thiele and Palsson, 2010). Mahadevan et al. (1996) used 
this approach to characterize the metabolism of Geobacter sulfurreducens, an iron-reducing 
organism commonly found in subsurface environments. The resulting metabolic model contains 
over 500 reactions and 500 metabolites (reactants), including reactions central to the reduction of 
iron oxides coupled to acetate oxidation (a critical process at the Rifle Site).  Application of this 
metabolic model to predict the response of G. sulfurreducens to specific environmental 
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conditions is, however, very challenging.  Each of these 500 or so reactions is kinetic in nature, 
with the reaction rates of each being dependent on which pathways are active and to what 
relative degree.  Specification and parameterization of kinetic rate models for all 500 reactions 
under a wide range of conditions is not feasible.  Other investigators have taken a kinetic 
network approach to simulating microbial function, but have utilized a reduced reaction network 
(King et al. 2009).  Since one of our goals is to reduce or eliminate the use of empirical model 
parameters, we seek an alternative approach.  One approach that allows the rates of reactions in 
the metabolic network to be predicted rather than prescribed is the constraint-based flux balance 
approach (Varma and Palsson, 1994; Price et al., 2003; Kauffman et al., 2003), which has been 
shown to be an effective strategy for predicting the response of organisms to environmental 
conditions.  This approach formulates the reaction network in terms of a stoichiometric matrix 
Sij, where each column of the matrix represents one reaction and each row contains the 
stoichiometric coefficients of a particular metabolite in each reaction.  The approach is based on 
a steady-state flux balance, which can be applied under dynamic conditions under the assumption 
that shifts in microbial reaction occur quickly relative to changes in the external environment 
(typically a reasonable assumption in subsurface systems in which transport is controlled by slow 
groundwater flow and diffusion processes).  We impose the requirement that at steady state, the 
fluxes consuming metabolites and protons must be balanced, which can be written in linear 
algebraic terms as: 
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Where ࢜ሬሬԦ is a vector of fluxes of metabolites (reaction rates) through each of the i reactions in the 
stoichiometric matrix.  The solution to this equation is non-unique, but can be uniquely defined 
by imposing constraints on the system.  In particular, the constraint-based approach applies 
constraints on thermodynamic directionality and enzyme capacities consistent with the 
organism’s physiology, and additional constraints based on the maximum fluxes (uptake rates) of 
key metabolites through the cell membrane.  The latter constraints provide a connection to the 
external environment of the cell, because the maximum uptake rates are a function of the 
external concentration.  In the case of the G. sulfurreducens model, one such constraint is the 
uptake rate of acetate as a function of the local external concentration of acetate.  Figure 4 shows 
experimentally measured acetate uptake rates in a chemostat with pure culture of G. 
sulfurreducens, and indicates the existence of two distinct membrane transport mechanisms, one 
relatively fast and the other slower.  The data in Figure 4 are fitted with Michaelis-Menten 
functions.  These experimental functions, and similar functions for other critical extracellular 
metabolites such as iron oxide and ammonium, form constraints on the overall metabolic 
network.  Solution of a linear system of equations subject to constraints is a standard 
optimization problem that can be solved using linear programming techniques.  Optimization 
provides a unique solution, but requires specification of an objective function. For the case of 
metabolic networks, it is reasonable to assume that evolutionary pressures enforce optimal 
utilization of resources, which translates to an objective of maximizing growth yield for a given 
set of extracellular concentrations (the environment experienced by a cell).  Yield is the fraction 
of energy gained from the metabolized substrate (acetate) that goes toward constructing cellular 
biomass (with the remainder of the energy going toward maintenance energy requirements).  In 
other words, the cell is expected to allocate fluxes through its available network pathways in 



such a way so as to maximize its growth given the constraints imposed by conditions outside the 
cell.  

 
Figure 4  Measured acetate uptake rates in Geobacter sulfurreducens as a function of the extracellular concentration. 

The constraint-based flux balance analysis approach has been successfully tested using a number 
of well-studied organisms.  Useful predictions of the effects of gene deletions, preferences for 
particular growth substrates, and optimal growth patterns have been obtained from such models, 
with a success rate on the order of 70-90% (Price et al. 2003).  Genome-scale metabolic 
reconstruction is now a very useful element of a wide range of applications (Oberhardt et al. 
2009).  For example, in the manufacturing of biologically-generated products, computer 
simulations of microbial metabolism (so-called in silico experiments, as they are conducted on a 
silicon chip in a computer) can take the place of a large number of in vitro laboratory 
experiments that would be otherwise needed for optimal process engineering design.   
 
Coupling Genome-Scale In Silico Models of Microbial Metabolism with Subsurface 
Reaction Transport Simulations 
 
The approach used to integrate the genome-scale model of Geobacter sulfurreducens with a 
reactive transport model of uranium at the Rifle Site is shown schematically in Figure 5. 
 

 
Figure 5  Schematic diagram showing the coupling of a conventional reactive transport simulator (right) with a genome‐scale in 

silico model of microbial metabolism (left).  Modified from Scheibe et al. (2009). 



Field-scale reactive transport simulators usually perform numerical approximation of partial 
differential equations using grid-based techniques such as finite difference, finite volume, or 
finite element.  Typical processes represented in a subsurface reactive transport model include 
groundwater flow, advection (movement of solutes with flowing groundwater), dispersion 
(spreading of solutes associated with diffusion and unresolved velocity fluctuations), aqueous 
geochemical reactions between dissolved chemical species (typically treated as equilibrium), 
interactions of solutes with grain surfaces (sorption), and microbiological reactions (treated 
kinetically as discussed above).  For an example at the Rifle Site, see Yabusaki et al. (2007) and 
Fang et al. (2009).  Here, we endeavor to replace the empirically-based Monod-type kinetic rate 
formulations discussed above with direct simulation of microbial metabolism using a constraint-
based genome scale model.  To do so, we need to compute fluxes (reaction rates) through 
relevant reactions using the in silico model, specific to given environmental conditions that are 
posed in terms of concentrations of key reactants.  These concentrations are known, for each grid 
cell, from the reactive transport simulator considering all non-microbial transport and reaction 
processes.  For each grid cell at a given time step, these concentrations are passed to the in silico 
model as constraints and the in silico model is solved (a linear programming optimization 
problem) to determine the fluxes through the microbially-mediated reactions.  These reaction 
fluxes are the rates that replace the Monod-based kinetic rate formulations in the conventional 
model, and are passed back to the reactive transport simulator to perform the microbial reaction 
simulation stage. This process is then repeated at each time step over the time period to be 
simulated. 
 
This approach was used by our team in the first known effort to couple a constraint-based 
metabolic model with a reactive transport simulator, and is described in detail in Scheibe et al. 
(2009).  We applied our approach to a one-dimensional flow and reactive transport model of 
uranium bioremediation at the Rifle Site, based on the original conventional model published by 
Yabusaki et al. (2007) that simulated an experiment performed as described in Anderson et al. 
(2003).  The layout of injection and monitoring wells used for the subject field experiment is 
shown in Figure 6.  The one-dimensional model essentially 
collapses the system behavior down to a function of 
distance from the injection gallery, and neglects the effects 
of local three-dimensional variability in physical and 
biogeochemical aquifer properties.  Using the same 
description of flow and transport as used by Yabusaki et al. 
(2007), we replaced the Monod rate formulation for iron 
reduction with our in silico model of G. sulfurreducens.  
We considered three constraining environmental 
concentrations, that of 1) acetate (electron donor), 2) iron 
oxides (electron acceptor), and 3) ammonium (nitrogen 
source).  In this work, we used an indirect coupling 
approach in which the in silico model was run for a large 
number of scenarios prior to execution of the reactive 
transport simulator.  In this case, ten values of 
concentration of each of the three constraining chemical 
species were considered, giving a total of 1000 
combinations that spanned the range of expected 

Figure 6 Layout of injection wells (solid circles) 
and monitoring wells (three rows, open 

symbols) at the Rifle Site for the experiment 
simulated. 



concentrations in the simulated period.  For each of these combinations, the constrained flux 
balance was calculated and reaction fluxes were stored in a lookup table.  Then, during the 
reactive transport simulation, instead of calling a subroutine to calculate the Monod-based 
reaction rates, the reactive transport code was modified to interrogate the lookup table, linearly 
interpolating the reaction rates based on local concentrations (at a grid cell and time step) of 
acetate, iron oxide, and ammonium. Use of the lookup table approach eliminates the need to call 
the in silico model for each grid cell and time step; since many conditions will be similar from 
one time step or location to another, this eliminates a significant amount of potentially redundant 
computation.  We compared our simulation results to the results obtained by Yabusaki et al. 
(2007) as shown in Figure 7. 

 

Figure 7  Comparison of simulation results obtained using the genome‐scale model of G. sulfurreducens (dashed/dotted curves) 
with simulation results of Yabusaki et al. (2007; solid curves) and field observations from Anderson et al. (2003; colored 

symbols).  The top plots represent the row of monitoring wells closest to the injection gallery; middle plots the second row, and 
bottom plots the third row)  

Results are presented for two dissolved chemical species (acetate and oxidized uranium U(VI)) 
over the first forty days of the experiment (the iron reduction stage during which Geobacter 
species were dominant).  As can be seen in the plots, both models reproduce the general trends of 
the observations in an average sense.  Discrepancies between simulation results and individual 
data points represent the effects of three-dimensional heterogeneity that are not considered in 
these one-dimensional averaged models.  The simulation results of Yabusaki et al. (2007), which 
use a conventional Monod-kinetic approach to microbial reactions, fits the observations as well 
as or even better than the simulations based on genome-scale modeling of microbial metabolism.  



However, the model of Yabusaki et al. (2007) requires a multi-stage calibration process with 
many fitted model parameters to describe the reaction rate laws. In contrast, the simulations 
based on the genome-scale model use a minimum of parameter modification to obtain these 
results.  It was necessary to prescribe the initial biomass concentration, since no direct 
measurements were available, but the value used was within the range typically observed in 
shallow subsurface systems.  Also, because of heterogeneity and local diffusion gradients at the 
pore scale, solutes are not fully mixed at the field scale as they are in the chemostat experiments 
on which microbial uptake rates were based. In general, because of local depletion of nutrients 
the concentrations in the immediate cell vicinity will be lower than those averaged overa a larger 
volume. Therefore, we reduced the uptake rates for acetate, iron and ammonium by one order of 
magnitude to generate the look-up table used for the field-scale simulation. The results of this 
initial model application suggest that genome-scale metabolic models can be effectively coupled 
with reactive transport models to describe bioremediation processes.  The constraint-based 
metabolic modeling approach has the key advantage, compared to conventional approaches, that 
the growth and activity of microorganisms are predicted from detailed physiological information 
rather than empirically-derived rate formulations.  Because of this, we expect the genome-scale 
modeling approach to be applicable to a wider range of environmental conditions, and to have 
greater predictive power, than conventional calibrated models. Further details and interpretations 
of this model application are provided in Scheibe et al. (2009). 
 
Indirectly coupling reactive transport and microbial metabolism models using the lookup table 
approach is effective for the simple case considered above.  However, in general one may wish 
to simulate the activity of multiple species as impacted by several chemical substrates, in which 
case the static lookup table approach is cumbersome.  Therefore, we have also pursued a direct 
coupling approach in which the reactive transport simulator directly executes the constraint-
based metabolic optimization for each grid node and time step.  To avoid redundant 
computations while maintaining accuracy and generality, a constraint-based model solution pool 
(i.e., a dynamic lookup table) is generated during the simulation process.  Each time a constraint-
based solution is generated, it is stored for potential future use, indexed by the values of the 
constraining chemical species concentrations.  When another constraint-based solution is needed, 
the existing pool is searched for a similar solution using an efficient tree-based search algorithm.  
If the set of constraining solutions is within a specified distance (tolerance) of a previously-
simulated point in the solution pool, the solution at that point is used.  Otherwise, the full linear 
optimization of the metabolic network is performed and the new point is added to the solution 
pool.  Details of the direct coupling approach, and its demonstration using some example 
problems, are presented in Fang et al. (2011). 
 
Simulating the Effects of Electron Capacitance in Geobacter on Uranium Reduction 
 
One intriguing aspect of Geobacter physiology that has been elucidated by genome-scale studies 
is the existence of reduced extracytoplasmic c-type cytochromes in planktonic cells (those not 
associated with a solid mineral surface) as observed by Esteve-Nunez et al. (2008). Those 
authors hypothesized that these cytochromes may serve as miniature capacitors, providing an 
extracytoplasmic sink for electron transfer and allowing Geobacter metabolism to continue 
during periods in which the microbes are not in contact with an Fe(III) oxide mineral surface.  
This is related to the observation that Geobacter species express flagella for motility to aid in 



their search for new sources of Fe(III) oxide once they have locally depleted a microsite 
(Childers et al. 2002), since the use of cytochromes as temporary electron capacitors may allow 
continuation of energy generation (metabolic activity) even when the organisms are temporarily 
out of contact with Fe(III) oxide surfaces (Lovley, 2008).  
 
We have incorporated a model of electron capacitance into a reaction network describing 
uranium reduction mediated by Geobacter sulfurreducens (Zhao et al., 2010).  This novel model 
divides planktonic cells into two states: Electron-loaded and electron-unloaded.  A kinetic model 
of electron loading linked to acetate oxidation provides a rate of transfer between these two 
states.  Simulations of an example problem based on the Rifle Site experiments were performed 
to evaluate the effect of including electron capacitance on the degree of uranium reduction.  
Incorporation of the electron loading-unloading cycle into the model led to increased rates of 
uranium reduction, and provides an explanation for the correlation of high rates of uranium 
reduction with high fractions of planktonic cells as has been observed at the Rifle Site.  Global 
sensitivity analysis was applied to the model to determine the relative importance of a number of 
geochemical and microbial processes involved in Geobacter growth and uranium reduction.  The 
results of the sensitivity analysis strongly suggests that electron capacitance in Geobacter, and 
the associated partitioning of microbes between planktonic and attached states, is critical to the 
efficiency of uranium bioremediation. 
 
Continuing Research and Extensions 
 
The work described above, aimed at integrating genome-scale models of microbial metabolism 
with reactive transport simulations of field-scale bioremediation, is groundbreaking in its 
utilization of new genome-scale understanding.  These new approaches have the potential to 
transform the way in which microbially-mediated reactions are represented in numerical models 
of subsurface systems.  Importantly, these developments are a significant step toward the 
implementation of a more predictive approach to reactive transport simulation that reduces 
reliance on empirical representations and parameter fitting.  We are continuing research along 
these lines, focused on a number of extensions of the approach described above.  This continuing 
research is described briefly here; results will be presented in future research publications 
generated by our research team and collaborators. 
 
Simulation of Community Dynamics using Genome-Scale Models 
 
At the Rifle Site, Geobacter species have been observed to dominate the microbial community 
during the iron reduction phase of bioremediation.  However, other organisms and/or functional 
groups play a significant role in later phases.  Most notably, sulfate-reducing organisms were 
observed to dominate after approximately forty days of acetate amendment, and this shift in 
community composition led to a decrease in uranium reduction rates (Anderson et al. 2003).  It is 
clear that in most cases the simulation of a single species’ metabolism such as has been presented 
here will not be sufficient to capture the complex behavior of subsurface microbial communities 
and their impact on contaminant transport.  Therefore, a significant emphasis of our ongoing 
research is on developing multi-organism models and testing the ability of the genome-scale 
modeling approach to simulate community dynamics in multi-organism systems.  To enhance 
our understanding of microbial community interactions, we have developed a new kinetic model 



for Anaeromyxobacter dehalogenans (a uranium reducer with diverse electron acceptor 
utilization capability) and are integrating this with the previously developed kinetic model of 
Desulfobacter, the genus of sulfate reducers that most actively competes with Geobacter species 
for added acetate at the Rifle Site.  A new genome-scale constraint-based model of a related 
Geobacter species (Geobacter metallireducens) has recently been published (Sun et al. 2009), 
and models of other organisms are currently in development. A list of genome-scale metabolic 
network reconstructions that have been converted into predictive genome-scale models and 
whose predictive power has been validated against experimental data is maintained by the 
Systems Biology Group at the University of California San Diego (see 
http://gcrg.ucsd.edu/In_Silico_Organisms/Other_Organisms).  
 
Testing of Genome-Scale Models of Field-Scale Transport using Proteomic Observations 
 
The genome-scale model of Geobacter sulfurreducens has been applied to simulation of 
bioremediation at the Rifle Site as described above.  This model provides predictions of which 
metabolic pathways are active at particular locations and times within the simulation domain.  
Experimental observations of the proteins expressed by microorganisms have been used to 
document the microbial physiology of Geobacter community members during acetate 
amendment at the Rifle Site (Wilkins et al. 2009).  In collaboration with Rifle Site investigators, 
we are currently working on implementing the Geobacter sulfurreducens genome-scale model 
within three-dimensional reactive transport simulations of the Rifle Site and comparing the 
spatial and temporal distribution of simulated metabolic status with the observations of expressed 
proteins.  This will provide an opportunity to further test the genome-scale modeling approach 
(preliminary results have been favorable), and will provide unique insights into the connections 
between spatially- and temporally-variable environmental conditions and microbial activity 
during bioremediation. 
 
Incorporation of Genome-Scale Models into Pore-Scale Simulations 
 
Microorganisms, because of their small size, respond to environmental conditions within a very 
localized spatial domain, probably on the order of a few tens of microns in size.  However, 
reactive transport models typically simulate average concentrations over much larger grid blocks.  
In the most sophisticated models using high-performance computers, grid resolution typically is 
on the order of tens of centimeters or larger, and in more typical cases groundwater simulations 
utilize grid resolutions of tens to hundreds of meters.  Successful implementation of genome-
scale models (which operate on the scale of individual cells) must therefore consider the effects 
of variability in solute concentrations at multiple length scales on effective metabolic rates.  One 
means of exploring these scale relationships is pore-scale modeling of microbial function, in 
which local microenvironments can be explicitly represented.  In a pore-scale model, the specific 
geometry of solid grains and pore spaces is explicitly characterized, and processes are resolved 
on a very fine grid, often as fine as a few tens of microns.  We are drawing on other research by 
one of the co-PIs in which methods were developed and tested for pore-scale simulation of 
biomass dynamics (Tartakovsky et al., 2009).  In that work, standard Monod kinetic formulations 
were used to describe rates of microbial substrate utilization and growth.  We are now extending 
that model to incorporate the genome-scale model of iron reduction coupled to acetate oxidation 



by Geobacter sulfurreducens, and using the pore-scale model to test effects of pore-scale 
variability on larger-scale apparent rates. 
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