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Summary 

This analysis examines the relationship between energy demand and residential building attributes, 
demographic characteristics, and behavioral variables using the U.S. Department of Energy’s Residential 
Energy Consumption Survey 2005 microdata.  This study investigates the applicability of the smooth 
backfitting estimator to statistical analysis of residential energy consumption via nonparametric 
regression.  The methodology utilized in the study extends nonparametric additive regression via local 
linear smooth backfitting to categorical variables.  

The conventional methods used for analyzing residential energy consumption are econometric 
modeling and engineering simulations.  This study suggests an econometric approach that can be utilized 
in combination with simulation results.  A common weakness of previously used econometric models is a 
very high likelihood that any suggested parametric relationships will be misspecified.  Nonparametric 
modeling does not have this drawback.  Its flexibility allows for uncovering more complex relationships 
between energy use and the explanatory variables than can possibly be achieved by parametric models. 

Traditionally, building simulation models overestimated the effects of energy efficiency measures 
when compared to actual "as-built" observed savings.  While focusing on technical efficiency, they do not 
account for behavioral or market effects.  The magnitude of behavioral or market effects may have a 
substantial influence on the final energy savings resulting from implementation of various energy 
conservation measures and programs.  Moreover, variability in behavioral aspects and user characteristics 
appears to have a significant impact on total energy consumption.  Inaccurate estimates of energy 
consumption and potential savings also impact investment decisions.  The existing modeling literature, 
whether it relies on parametric specifications or engineering simulation, does not accommodate inclusion 
of a behavioral component.  This study attempts to bridge that gap by analyzing behavioral data and 
investigate the applicability of additive nonparametric regression to this task. 

This study evaluates the impact of 31 regressors on residential natural gas usage.  The regressors 
include weather, economic variables, demographic and behavioral characteristics, and building attributes 
related to energy use.  In general, most of the regression results were in line with previous engineering 
and economic studies in this area.  There were, however, some counterintuitive results, particularly with 
regard to thermostat controls and behaviors.  There are a number of possible reasons for these 
counterintuitive results including the inability to control for regional climate variability due to the data 
sanitization (to prevent identification of respondents), inaccurate data caused by to self-reporting, and the 
fact that not all relevant behavioral variables were included in the data set, so we were not able to control 
for them in the study. 

The results of this analysis could be used as an in-sample prediction for approximating energy 
demand of a residential building whose characteristics are described by the regressors in this analysis, but 
a certain combination of their particular values does not exist in the real world.  In addition, this study has 
potential applications for benefit-cost analysis of residential upgrades and retrofits under a fixed budget, 
because the results of this study contain information on how natural gas consumption might change once 
a particular characteristic or attribute is altered.  Finally, the results of this study can help establish a 
relationship between natural gas consumption and changes in behavior of occupants. 
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Acronyms and Abbreviations 

DOE U.S. Department of Energy 
HDD Heating Degree Days 
CDD Cooling Degree Days 
EIA Energy Information Administration 
MBtu million British thermal units 
NG natural gas 
ORC Opinion Research Corporation 
R&D research and development 
RECS residential energy consumption survey 
SBE smooth backfitting estimation 
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1.1 

1.0 Introduction 

There are three main approaches to residential energy demand analysis: engineering, socio-
psychological and econometric.  The engineering approach relies on simulating different types of building 
energy use within an engineering modeling framework such as Energy Plus, DOE-2 and the like 
(Crawley et al. 2004).  These building energy simulation tools construct demand projections by 
performing hourly energy simulations of buildings, air-handling systems, and equipment based on 
building and weather characteristics and an assumed operation schedule.  The second approach evaluates 
the impact of institutions, beliefs and group influences on the long-term trends in energy use.  The 
econometric approach links energy use to prices of energy products and their substitutes, as well as 
household income, demographic characteristics and features of the occupied buildings.  This study fits 
into the third category, exploring the behavioral data on energy consumption at the micro level. 

Detailed studies of energy use at the household level using microeconomic data were conducted by 
Baker et al. (1989), Schmalensee and Stoker (1999), Halvorsen and Larsen (2001), Yatchew and No 
(2001), Nesbakken (2001), Larsen and Nesbakken (2004), Garcia-Cerruti (2000), Holtedahl and Joutz 
(2004), Kamerschen and Porter (2004) and Narayan and Smyth (2005) to name a few.  The reviewed 
econometric studies all estimate energy demand functions; however, the explanatory variables employed 
by these studies differ.  These studies can generally be categorized into two groups.  The first group 
includes economic variables such as fuel prices and income level, as well as climate information.  The 
second group of studies incorporates additional household and demographic characteristics of the 
dwelling into the model.  An extensive overview of econometric analysis of residential energy demand 
predating the above-listed research is included in Madlener (1996). 

The focus of this analysis is residential natural gas (NG) demand.  Space heating is the single largest 
end use of energy in residential buildings, and furnaces fueled by natural gas are the primary source of 
residential heating.  Natural gas also provides fuel for residential water heating, cooking, clothes drying, 
and other miscellaneous uses.  In terms of on-site energy use measured in British thermal units (Btu), in 
2006 the Energy Information Administration (EIA) estimated that natural gas supplied approximately 
65% of 4.4 quadrillion Btu delivered for residential space heating, and approximately 68% of total 
residential site energy for water heating (DOE/EIA 2009).  The primary substitute for natural gas in 
residential homes is electricity (i.e., electric furnaces, heat pumps, electric water heaters, etc.). 

The majority of econometric research on electricity and natural gas consumption relies on a fully 
specified parametric functional relationship between energy use and its conditioning variables.  As a 
result, there is the potential for severe misspecification of the proposed econometric models.  Also, the 
categorical variables, which are typically present in residential microdata, are usually treated either by 
including dummy variables or via sub-sample regression.  Nonparametric modeling is robust to functional 
form misspecification.  Its flexibility allows for uncovering more complex relationships between energy 
use and conditioning variables than can be possibly achieved by parametric models. 

In this study we adopt additive nonparametric modeling for energy consumption, which would be 
estimated using the smooth backfitting procedure of Mammen et al. (1999).  This procedure achieves 
convergence rates equal to this of univariate models thus bypassing the curse of dimensionality.  In 
addition, recognizing that both continuous and categorical variables impact energy demand, this 
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application of backfitting procedure incorporates the kernel smoothing methods of Racine and Li (2003) 
and Racine et al. (2004) for categorical variables. 

The data for this research comes from the Residential Energy Consumption Survey (RECS) designed 
by the U.S. Department of Energy's Energy Information Administration.  The microdata obtained from 
the 2005 survey covers energy consumption for several major fuel types and includes information on 
household characteristics, standard demographics, dwelling characteristics, as well as information about 
televisions and other media devices, personal computers and peripherals, Energy Star labeling, energy 
efficient lighting, window glazing, window replacement, and thermostat usage.  The 2005 survey also 
incorporates questions on behavioral aspects of energy use.  This analysis contributes to existing literature 
by analyzing and quantifying behavioral impacts on residential energy consumption. 

The study is organized into three sections.  A brief description of the smooth backfitting approach is 
presented in Section 2.  Section 3 describes the results of the empirical analysis.  Section 4 provides the 
conclusions of this analysis.  The local linear smooth backfitting estimator (SBE) for continuous and 
mixed variables is described in more detail in Appendix A.  Appendix B contains a complete set of result 
charts. 
 



 

2.1 

2.0 Methodology 

This study investigates the applicability of the smooth backfitting estimator to statistical analysis of 
residential energy consumption via nonparametric regression.  The nonparametric modeling does not 
require an analyst to assume any particular functional relationship between the energy consumption and 
analyzed variables.  This is one of the advantages that nonparametric approach has over traditionally used 
parametric models.  The quality of any parametric results directly depends on how close the assumed 
functional form is to the true relationship.  Household energy usage depends on a complicated set of 
variables whose impact is not fully understood or separated.   

The model used here is a special case of a very broad class of generalized additive models, which are 
gaining significant attention in the current econometric literature.  The utilized methodology extends 
nonparametric additive regression via local linear SBE to categorical variables, which are, in this case, 
attributes of the residential building and demographic characteristics of its occupants.   

The smooth backfitting estimator is a projection of the data on the space of additive functions.  
Projection here is taken with respect to the norm defined by the local polynomial kernel estimator.  This 
particular definition of the estimator allows separating effects (i.e., the effect of natural gas prices versus 
the effect of exterior wall construction, etc.) within complicated multidimensional problems into one-
dimensional effects.  Also the number of controlled variables that can be meaningfully utilized in the 
parametric modeling is usually limited.  SBE method is capable of successfully accommodating a large 
number of explanatory variables.  Nielsen and Spierlich (2005) demonstrated that the SBE method 
produces better results in “extreme cases of complexity and data sparseness” by comparing performance 
in finite samples on a model with 100 correlated variables.  The SBE methodology of Mammen et al. 
(1999) and computational algorithm outlined by Nielsen and Spierlich (2005) are described in detail in 
Appendix A of this report. 

2.1 Data and Analysis 

The data for this research comes from the RECS survey designed by DOE-EIA.  The microdata 
obtained from the 2005 survey covers energy consumption for several major fuel types and includes 
information on household characteristics, standard demographics, dwelling characteristics, as well as 
information about televisions and other media devices, personal computers and peripherals, Energy Star 
labeling, energy efficient lighting, window glazing, window replacement, and thermostat usage.  The 
2005 survey also incorporates questions on behavioral aspects of energy use.  This analysis contributes to 
existing literature by analyzing and quantifying impacts of demographic and behavioral variables on 
residential NG consumption. 

Upon close examination of the RECS questions and microdata for 2005, it became apparent that it 
would be an extremely complex task to cover all the end fuel uses for all fuel types included in the 
survey.  The decision was made to investigate the applicability of smooth backfitting by isolating natural 
gas usage and related variables.  RECS data was filtered out to include only households using natural gas, 
resulting in a subset of 1388 observations.  For 1053 of these observations natural gas consumption data 
came directly from the provider company records.  The regressand is natural gas usage in millions of 
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British thermal units (MBtu).  There are 31 regressors,1 which include demographic and behavioral 
characteristics, as well as building attributes related to energy consumption.  The regressors enter the 
model additively in the following way:  

 E(Y|X₁=x₁,..., Xd=xd)=m₀+∑d
j=1mj(xj) 

where E(Y|X₁=x₁,..., Xd=xd) = conditional mean of natural gas energy consumption 
 xj = regional/residential home attributes, behavioral and demographic 

characteristics,  
 m0 = unknown scalar parameter,  
 mj (xj) = unknown function of xj for all j=1,…d, 

Out of the 31 regressors, 8 are continuous variables, 14 are unordered categorical variables, and the 
remaining 9 are ordered categorical variables.  These are described in Table 2.1.   

Individual cross-validated bandwidth values were computed for each regressor.  Although unordered 
categorical regressors have the potential to violate the mean-zero assumption for each direction to meet 
the identification conditions as part of the smooth backfitting algorithm, the results of these regressions 
are reasonable.  The results of the ordered categorical regressions suggest that at least some of them could 
have been treated as continuous variables.  Several directional regressions show rather smooth change, 
which may be suggestive of the particular type of a parametric relationship.  Specific results are discussed 
in Section 3 of this report.     

                                                      
1 Initially the model was to include 44 categorical variables, but cross-validation produced the bandwidth values 
equal to the upper bound of (ct-1)/ct for 13 of the categorical variables.  When the bandwidth takes this upper value, 
it implies that the regressor is irrelevant and, if included, it will effectively be smoothed out. 
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Table 2.1.  List of Variables 

Regressor Description Regressor Code 
(Chart Label) Continuous Unit of Measurement 

Heating degree days Degrees Fahrenheit (sanitized) Direction 1 
Cooling degree days Degrees Fahrenheit (sanitized) Direction 2 
Total house area Square feet Direction 3 
Price of electricity Cents/kWh Direction 4 
Price of natural gas Cents/kBtu Direction 5 
Thermostat setting:  Occupied Degrees Fahrenheit Direction 6 
Thermostat setting:  Unoccupied Degrees Fahrenheit Direction 7 
Thermostat setting:  Sleeping Degrees Fahrenheit Direction 8 
Exterior wall construction Indescribable, brick, wood, siding, stucco, composition, 

stone, concrete, glass, other 
Direction 9 

Garage No garage, garage not heated, yes garage heated Direction 10 
Ownership status Owned, rented, occupied without payment Direction 11 
Cooking fuel Natural gas, propane, electricity, some other fuel Direction 12 
Clothes dryer fuel Natural gas, propane, electricity, no dryer Direction 13 
Secondary heating equipment No secondary heating, furnace, radiant (water), built-in 

floor, built-in room heater, cooking stove 
Direction 14 

Programmable Thermostat Not programmable, yes programmable, no thermostat Direction 15 
Programmable Thermostat set-back:  
night 

Not set-back at night, yes set-back at night, no thermostat 
or not programmable 

Direction 16 

Programmable Thermostat set-back:  
day 

Not set-back during day, yes set-back during day, no 
thermostat or not programmable 

Direction 17 

Main heating fuel Propane, natural gas, fuel oil, kerosene, electricity, wood, 
solar 

Direction 18 

Heating equipment No heating equipment, radiant (water), heat pump, 
central furnace, built-in electric wall, built-in floor, built-
in room heater (gas, oil, kerosene), wood stove, fireplace, 
portable electric heaters, portable kerosene heaters, 
cooking stove 

Direction 19 

Water heating fuel Yes natural gas, do not use natural gas Direction 20 
Billing Household pays all, included in rent, some paid and 

some included in rent, other 
Direction 21 

Occupancy Not occupied typically during day/weekday, typically 
occupied during day/weekday 

Direction 22 

Ordered Categorical Categories 
Regressor Code 
(Chart Label) 

Number of stories One story, two stories, three stories, four or more stories, 
split level, other 

Direction 23 

Basement/crawlspace heat No basement, not heated, part heated, all heated Direction 24 
Attic heat No attic, not heated, partially heated, all heated Direction 25 
Home vintage Before 1940, 1940-49, 1950-59, 1960-69, 1970-79, 

1980-89, 1990-99, 2000-02, 2003, 2004, 2005 
Direction 26 

Number of thermostats Actual number (e.g., 0, 1, 2. . . ) Direction 27 
Number of rooms not heated Actual number (e.g., 0, 1, 2. . . ) Direction 28 
Type of window glass Single-pane, double-pane, double pane with low-e, 

triple-pane glass, triple-pane with low-e 
Direction 29 

Occupants Actual number (e.g., 0, 1, 2. . . ) Direction 30 
Income 5k groupings from 0 to $120,000 or more Direction 31 
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3.0 Results by Attribute 

The results of this study are presented graphically throughout the Section 3 and also in Appendix B of 
this report.  In all cases, the vertical axes on the graph show changes in natural gas consumption in 
million British thermal units (MBtu).  The horizontal axes represent a characteristic, attribute or a variable 
of interest specified below the graph.  Each graph shows an effect of changes in the variable of interest on 
natural gas consumption, holding all other variables in the model fixed.  Throughout the paper the results 
are referred to as directional regression results (or Direction 1, 2, 3, etc) because SBE assumes additive 
separability, thus, we are considering impact of changes only in one direction [dimension] at a time.  
Note, that vertical axes do not show absolute level of consumption, but represent the magnitude of 
deviation from the mean.  For example, Figure 3.1 illustrates relationship between total square footage of 
the house and natural gas consumption.  Zero on the vertical axes stands for the mean NG consumption of 
77.5 MBtu, which corresponds to the house size of approximately 2700 square feet (s.f.).  If we consider 
two identical houses (identical in the sense that all factors that we control for in the model are equal), 
where one is 2,000 s.f. and the other one is 4,000 s.f., the difference between NG consumption of those is 
almost 9 MBtu.   

It should be noted that nonparametric methods produce estimates of a function at every data point 
instead of a functional form itself as it is done in parametric estimation.  Therefore, the results for 
continuous variables are presented as vectors of the same size as data, while bar charts are used to depict 
impact of the categorical variables, where each bar corresponds to a distinct category.  

 
Figure 3.1.  Impact of House Size on NG Use 
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3.1 Weather 

Direction 1, heating degree days, seems to correctly represent the increase in natural gas intensity as 
the number of heating degree days goes up (see Figure 3.2).  Heating degree days are a characterization of 
weather.  It is worth noting that RECS microdataset has sanitized data for heating and cooling degree days 
to prevent identification of survey respondents or specific buildings out of the reported sample.  Even 
with the sanitized data, the overall pattern of dependency is reasonable.  Annual heating degree days 
(HDD) are a measure of how cold a building location is relative to the base temperature.  The daily HDD 
is the numerical difference between a day's average temperature and 65°F, if the average temperature is 
less than 65°F.  Otherwise it is zero.  Annual HDD is the sum of the daily HDD for the year.  If the 
thermal integrity (e.g., insulation levels) of the building is known, it is possible to assess heating 
requirements from this information.  The suggested pattern follows the engineering results that building 
heating requirements are not linear with respect to temperature.  Therefore, natural gas use for heating 
will also have non-linear dependency on temperature.  Although this pattern of dependency is well-known 
from engineering studies, the primary reason for including this variable is to analyze the impact of other 
factors on energy demand, while controlling for weather.  Cooling degree days also contains sanitized 
data, and their impact is shown graphically as Direction 2 in Appendix B.  The cooling degree day pattern 
of dependency observed is consistent with engineering studies and suggests a non-linear decrease in 
natural gas usage as the number of cooling degree days goes up. 

 
Figure 3.2.  Impact of Heating Degree Days on NG Use 

3.2 Fuel and Equipment/Appliance Choice 

Figure 3.3 presents results related to primary heating systems and the choice of fuels (Direction 18).  
As expected, NG as primary heating fuel (category 1) would result in the highest NG intensity.  If the 
heating degree days data were not sanitized, it would have been possible to approximately identify the 
climate zone associated with a particular set of observations.  There is a dependency between the climate 
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zone and choice of fuel for heating that could impact this result.  The lowest NG usage is for the houses 
heated with kerosene or fuel oil.  Natural gas consumption for houses that use electricity as primary fuel 
goes up by 15 MBtu.  This could be explained by the fact that some houses with piped natural gas 
available use electric-source equipment as their primary heating system.  The latter use NG for auxiliary 
heat.  Therefore, in this particular case, NG would be used complimentary to electricity.  A similar 
explanation is valid for increase in NG use by 10 MBtu for dwellings using wood and solar energy as a 
primary heating fuel.  Although these are categorical variables, dotted lines connecting results are added 
on the graphic presented in Figure 3.3 as a visual aid. 

 

 
Figure 3.3.  Impact of Main Heating Fuel Choice on NG Use 

Correlation between the type of heating equipment providing the heat and NG usage is depicted on 
the graph in Figure 3.4 (Direction 19).  The lowest NG usage is suggested where portable electric heaters 
are used to provide most of the heat (category 9).  If the heating load can be met with the portable electric 
heaters, this would indicate that only very little heating is needed and piped NG is used for water heating 
and cooking only.  Similar explanation is valid for heating stoves burning wood (category 7), portable 
kerosene heaters (category 10) and cooking stoves used for heating (category 11).  The suggestion of 
highest NG consumption being characteristic of houses with steam/hot water system and 
radiators/convectors in each room (category 1) is reasonable.  High level of NG consumption shown in 
the graph is expected because this heating system choice impacts natural gas intensity through water-
heating requirements, but it is also a manifestation of the climate zone and age/vintage of the house.  NG 
consumption decreases for houses where heat pump is used as a primary equipment, but it is still higher 
than any other category.  This result can also be explained by complimentary use of NG for the auxiliary 
system that usually turns on as temperatures fall below freezing, as the electric heat pump becomes less 

KEY: 
0 Propane 
1 Natural gas (piped) 
2 Fuel oil 
3 Kerosene 

 
4 Electricity 
5 Wood 
6 Solar 
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efficient at these colder temperatures.  Relatively low NG consumption, according to the regression 
results, is associated with using central warm-air furnace system with ducts to individual rooms.  
Considering that this is one of the more efficient heating distribution systems, this is an expected result.  
Properly designed duct systems have a significant impact on how much heat is lost during delivery.  The 
newest houses have ducts located in the air-conditioned and heated spaces, which results in even more 
efficient distribution of heat, thus reducing NG intensity.  In addition, this is a manifestation of 
multicollinearity between the house age, quality of construction/insulation and income level of the 
household. 

 

 
Figure 3.4.  Impact of Heating Equipment Choice on NG Use 

Results for Direction 20 represents the type of fuel used to heat water for washing or bathing and are 
presented in Appendix B.  As expected, if the primary water heating fuel is NG, its consumption is higher 
than for other fuels.  The overall difference is 24 MBtu. 

Figure 3.5 (Direction 14) shows the dependency between the NG use and the type of secondary 
heating equipment installed in the house.  Typical secondary heating equipment includes central warm-air 
furnace with ducts (category 1), steam/hot water system with radiators/convectors in each room or pipes 
in the floor or walls (category 2), built-in floor/wall pipeless furnace (category 3), built-in room heater 
(category 4) and wood cooking stove used to heat the house (category 5).  Cases of no secondary 
equipment are included as a category with value 0.  The result for this category is intuitive because the 
households with no secondary equipment will have all the heating load provided by the main equipment.  

KEY: 
0 No heating equipment used 
1 Steam/hot water system with 

radiators/convectors in each room or 
pipes in floors/walls 

2 Heat pump 
3 Central warm-air furnace with ducts 
4 Built-in electric units in room 

 
5 Built-in floor/wall pipeless furnace 
6 Built-in room heater burning gas/oil 
7 Heating stove burning wood/coal 
8 Fireplace 
9 Portable electric heater 
10 Portable kerosene heater 
11 Cooking stove used for heating 
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Because the RECS microdataset was filtered to keep only observations with piped natural gas, the result 
that houses equipped with natural gas intake are more likely to use natural gas as their primary heating 
fuel is also intuitive.  Central warm-air furnace with ducts implies a more efficient heat delivery system; 
therefore, reduction of the NG consumption for category 1 is also an expected result.  The resulting 
increase in NG consumption that occurs when the secondary heat as built-in room heaters (option 4) is 
unexpected; however,  it is possible that this result is correlated with thermal integrity of the dwelling, 
because built-in room heaters are more typical for older houses with lower insulation and construction 
quality.  

 
 

 
Figure 3.5.  Secondary Heating Equipment Impact on NG 

The results related to the impact of fuel choice for stovetops (Direction 12) and clothing dryers 
(Direction 13) are presented in Appendix B.  Direction 12 shows the pattern of association between the 
NG intensity and type of fuel used by burners for cooking on the stove.  The peak value is observed for 
the household equipped with piped natural gas for cooking.  There is no difference between using some 
other fuel (category 0) and bottled propane (category 2).  On one hand, these two categories could be 
combined.  However, residents usually refer to both types of fuel (propane and natural gas) generally as 
gas, so it is worth keeping for clarification.  There is a 4 MBtu reduction if the household is using 
electricity for cooking burners, which is a reasonable result.  This result can also be partially attributed to 
multicollinearity in data, namely if the household has piped natural gas, it is expected that burners would 
use NG, but so would the water heaters, clothes dryer and potentially other systems.  The results related to 
clothing dryer fuel choice also suggest multicollinearity in the data, where households without dryers are 
more typical for older neighborhoods with lower construction quality and, therefore, lower thermal 
integrity.     

KEY: 
0 No secondary heating equipment 
1 Central warm-air furnace with ducts  
2 Steam/hot water system with radiators in 

each room or pipes in floor/wall 

 
3  Built-in floor/wall pipeless furnace 
4 Built-in room heater burning gas/oil 
5 Cooking stove used for heating 
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3.3 Controls and Thermostat Settings 

A number of counterintuitive results were observed related to thermostat controls and setting impacts 
on natural gas usage.  Although the reasons for these results are unclear, it is possible that data reporting  
problems from self-reported data, as well as some unexplained behavioral characteristics, may be the root 
cause of these results.  For example, Direction 6 contains data on the temperature setting during the day in 
winter when someone is home.  Natural gas intensity in this direction seems to misrepresent the direction 
of dependency.  As shown in Figure 3.6, the mean of regressor 6 (option 6 in key) corresponds to the 
temperature setting of 70°F.  While there is a positive correlation between temperature setting and energy 
consumption for the range between 55°F and 65°F, there is no reasonable explanation why natural gas 
consumption drops for the ranges from 65°F to 80°F, when the opposite should be observed. 

 
Figure 3.6.  Setting During the Winter Day When Someone is Home 

The same can be said about the Direction 7, which represents the temperature setting during the day 
in winter when no one is home and is shown in Figure 3.7.  The mean for this regressor is 65°F .  The 
base temperature for heating is 65°F, so thermostats set to the mean temperature would mean no 
additional heating is required on a 0 HDD.  Thus, it is not clear why Direction 7 would indicate a drop in 
the natural gas consumption while the temperature setting is going up.  It might be beneficial to replace 
these two variables with one that would represent the difference between temperature setting when 
someone is home and temperature setting when someone is not home.  The higher the delta, the less 
energy is consumed while the building is not occupied.  There is also an additional factor that leads to 
misrepresentation of the relationship for this covariate.  All temperature settings are self-reported.  In fact, 
studies have found that persons often report lower-than-actual thermostat settings, even when they know 
that their settings are being recorded, as shown by Lutzenhiser (1993).  No actual readings of the 
thermostat are taken.  As saving energy becomes a more widely-publicized topic, respondents understate 
heating temperature settings, as well as misreport the way programmable thermostats are used, to fall 
within the range they perceive as socially acceptable.  On the other hand, data on natural gas consumption 
comes directly from the bill and reflects actual consumption levels.  Therefore, even restructuring the 
variable may not produce a desirable result using existing data. 
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Figure 3.7.  Setting During the Winter Day When No One is Home 

Direction 8 represents association between the level of natural gas intensity and temperature during 
the sleeping hours in winter and is presented in Appendix B.  As the setting goes up from 50F to 70F so 
does the NG consumption.  The slight drop in the gas usage around that point is unexpected.  The concern 
with temperature setting being self-reported is pertinent here as well, because the owners tend to 
misreport lowering the thermostat settings.  So the houses that are set at much higher temperatures, but 
underreport to be closer in line with culturally-accepted 65-70°F level, will drive the result for this 
average level much higher than what it should be.  The estimated natural gas consumption will be inflated 
for the misreported temperature and underestimated for the higher temperature intervals that would 
otherwise correspond to that actual heating requirement.  This makes the results to the right of the anchor 
level appear lower than at the average setting, thus erroneously suggesting negative correlation over this 
interval of temperatures. 

Figure 3.8 (Direction 15) describes the relationship between NG consumption and the controls 
installed in the house.  There seems to be no difference in NG consumption if there is a programmable 
(category 1) or non-programmable (category 0) thermostat in the house.  These two categories are 
associated with increased NG demand.  The result for category 3 is counterintuitive because it suggests 
that absence of thermostats is characterized by a significant reduction in NG consumption.  Both the 
direction of change and the magnitude of 16 MBtu are counterintuitive.  The explanation might be that 
absence of thermostat is dictated by a warm climate zone and is an indicator of a non-heated dwelling or 
very little heating is needed.  Although the sample was filtered to retain only the residential buildings that 
are heated, houses that are in need of very little heating and may not be equipped with thermostats are 
included in the sample. 
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Figure 3.8.  Impact of Thermostat and Programmable Thermostat on NG Use 

Behavioral information is contained in Directions 16 and 17, which deal with programming 
thermostats to lower temperature for heat setting at night and, correspondingly, when no one is home.  
The results of these regressions are found in Appendix B.  The result of Direction 16 is counterintuitive 
because it suggests that programming the thermostat to lower temperature automatically is associated 
with higher NG use.  Neither the direction of change, nor magnitude (3 MBtu) are intuitive.  Direction 17 
also produced a counterintuitive pattern.  It indicates that the highest NG consumption is for the houses 
with thermostats preprogrammed to lower settings when no one is home during the day.  Then it drops by 
about 1 MBtu for the houses that have no thermostats, and drops down even further for houses where the 
temperature is not lowered.  For detailed analysis of these two variables, more refined data is needed.  To 
separate the behavioral impact, it is necessary to also account for climate.  Thermal integrity of the 
building usually is strongly correlated with the climate.  In turn, in more severe climate conditions, where 
NG intensities are the highest, the inhabitants are more likely to adjust thermostats up or down from the 
base setting. 

Figure 3.9 (Direction 27) shows the impact that the number of thermostats in the house (from zero to 
six) has on NG use.  The drop in the NG consumption between the category with no thermostat and one 
thermostat by 1 MBtu is reasonable.  Then the consumption increases by 17 MBtu for houses with two 
thermostats.  The highest level is registered for three-thermostat houses, leading the previous group by 
about 2 MBtu.  This could be explained by the fact that this variable contains redundant information 
because number of thermostats is linked to the house size.  In addition, the number of thermostats might 
be a representation of inefficient heating systems with individual dials in each room in older houses.  For 
each additional thermostat after three, the consumption drops. 

KEY: 
0 Thermostat in house, but not programmable 
1 Programmable thermostat in house 
2 No thermostat in house 
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Figure 3.9.  Impact of Number of Thermostats on NG Use 

3.4 Prices and Billing Structure 

The modeling results suggest a positive relationship between electricity price and NG use (Direction 
4), which is expected considering that electricity is the primary NG substitute in residential buildings.  
Increases in electricity prices encourage switching to NG as the primary fuel for the household.  The 
results for own price effect (i.e., price of NG) on NG (Direction 5) is negative, as expected.  Increased NG 
price results in reductions of NG consumption.  Both of these price effects are shown in Appendix B. 

Direction 21 is of particular interest because it provides some insight on the relationship between the 
method of how NG is billed and its consumption level.  As shown in Figure 3.10, if the household sees 
the full bill and pays it all, it seems to suggest the lowest result among all categories.  Paying the utility 
bill in full corresponds to category 0.  The consumption increases significantly, on the order of 16 MBtu, 
if all of the payment gets included in rent (category 1) or the household faces only a portion of the total 
bill for rented dwelling (category 2).  This increase could be attributed to differences in willingness to pay 
for various technology options or invest in energy efficiency between the renters and the owners residing 
in the house.  The result also suggests the difference in NG consumption resulting from the signal of NG 
prices not reaching the consumer, or a behavioral difference resulting from the "paid for" attitude of the 
consumer that pays a lump sum irrespective of the actual usage.  Such a result is consistent with currently 
ongoing research on residential energy efficiency. 
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Figure 3.10.  Impact of How NG is Paid on NG Use 

3.5 Home Construction Attributes  

3.5.1 Building Shell 

Figure 3.11 (Direction 9) shows the impact of the exterior wall construction material on NG use.  All 
other things held equal, the change of the wall type variable leads to the expected change in the NG 
intensity.  The lowest NG consumption is shown for stucco, concrete block and stone.  By stucco, 
residents usually refer to either the synthetic cladding that is applied over polystyrene panels, which 
provide extra insulation, or to cement plaster (lime sand and Portland cement).  If installed properly, the 
latter seals the house, but not as thoroughly as synthetic systems.  Concrete block and stone will serve as 
thermal mass storage, slowing down heat loss.  The highest NG consumption is shown for houses with 
aluminium/vinyl/steel siding or wood shingles.  This is consistent not only with the properties of each 
material and construction methods associated with it, but also with the vintage of the homes that would 
have these materials installed.  In turn, there is a strong correlation between house vintage and quality of 
wall insulation. 

KEY: 
0 HH pays all 
1 All utilities included in rent/fee 
2 Some gas paid, some included in rent 
3 Other 
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Figure 3.11.  Secondary Heating Equipment Impact on NG   

Direction 29 analyzes the building shell component heat load contributions by looking at the windows 
with various glazing and insulating characteristics.  In Figure 3.12, the left side of the chart shows the 
increase in the natural gas consumption across the first three categories (single-paned glass, double-paned 
glass and double-paned glass with low-E coating).  This result is somewhat counterintuitive because it 
would be expected that number of window panes (e.g., single-paned versus double-paned) should be 
negatively correlated with energy demand, because improved windows have higher energy efficiency.  
One possible explanation might be the size difference between older single-paned windows and newer 
double-paned.  There is a trend to increase size of windows or incorporating additional windows when 
retrofits are implemented.  Also, newer houses tend to have a higher number of windows, which would 
also increase heat loss and result in the higher NG consumption.  In addition, this can also be affected by 
the climate.  Unfortunately the information on window quantity and sizes is not available to test either one 
of the assertions.  Climate information is not included either.  NG consumption goes down for categories 
with triple-pane glass (category 3) and triple-pane glass with low-E coatings (category 4 and 5), which is 
expected. 

KEY: 
0 Indescribable 
1 Brick 
2 Wood 
3 Siding (Aluminum, vinyl, or steel) 
4 Stucco 

 

 
5 Composition (Shingle) 
6 Stone 
7 Concrete or concrete block 
8 Glass 
9 Other 
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Figure 3.12.  Impact of Type of Window Glass on NG Use   

3.5.2 Size and Design 

Figure 3.1 (Direction 3), which is described in detail at the beginning of the results section, shows the 
dependency between NG intensity and the total square footage of the house.  The suggested relationship 
is linear over the range of square footage where the most observations are concentrated.  So the natural 
gas demand grows linearly for households between 900 and 6000 s.f.  Consumption plateaus after 8000 
s.f.; however, this occurrence should not be given much emphasis because there are very few points in 
this range. 

Direction 10 examines the impact of whether or not a home has a garage or heated garage on NG use.  
The results of the Direction 10 regression were reasonable and are presented in Figure 3.13.  Category 0 
corresponds to the house with no garage.  Category 1 represents the houses where there is a garage, but it 
is not heated.  Attached garage provides additional buffer between the heated part of the house and the 
environment, thus slowing down heat loss.  The results suggest that heating the garage will increase 
natural gas consumption by up to 14 MBtu.  Complete interpretation of this increase also depends on 
whether garage space is included in the total square footage of the house.  Also, this regressor is picking 
up additional effects impacting NG use.  Absence of a garage is more typical of older neighborhoods with 
lower housing prices.  They often share similar quality of construction, amount of insulation and level of 
equipment.  Therefore, fairly high NG intensity for houses with no garage is not an unexpected result. 

KEY: 
0 Single-pane glass 
1 Double-pane glass 
2 Double-pane with Low-E coating 

 
3 Triple-pane glass 
4 Triple-pane glass with Low-E coatings 
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Figure 3.13.  Impact of Heating Garage on NG Use 

Direction 23 characterizes the impact from the number of stories in the building, and the results are 
presented in Appendix B.  The lowest NG consumption is for the one-story building, followed by the split 
level house and two-story structure.  The highest level is for the three-story dwellings.  As the number of 
stories increases, the structure design tends to change towards narrower buildings.  This leads to a much 
higher exchange surface, which explains higher NG intensity for buildings in this category.  It is 
necessary to note that all apartment complexes were excluded from the sample.  The results cover only 
single-family detached housing units. 

Direction 24 produced rather interesting results that are shown in Figure 3.14.  Category 3, where the 
entire basement is heated during winter shows highest NG consumption.  The second highest demand for 
NG is shown for the houses that have a basement but do not heat any portion of it (category 1).  It is 
followed by the houses where there is a basement and portion of it is heated.  This result appears 
counterintuitive, but may have reasonable explanation.  Unheated basements are typical for older houses 
with unfinished basements.  If a portion of it is heated, it is likely that the thermal integrity of the 
basement has been improved.  The difference between these two categories is 2 MBtu.  This directional 
result could be different if the regressor is restructured as a binary versus ordered categorical variable, 
such that it does not attempt to account for a particular portion of the basement which measurement is not 
defined.  Also, if the retrofit information were available, it would be possible to analyze its correlation 
with the vintage of the house. 

KEY: 
0 No garage 
1 Non-heated garage 
2 Heated garage 
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Figure 3.14.  Impact of Basement/crawl space on NG Use 

Direction 25 describes the portion of the attic that is warm, and the results are reasonable.  It suggests 
a linear relationship between the fraction of attic that is heated and NG consumption, and the results are 
shown in Appendix B.  The difference between a house with no attic versus a house with an unheated 
attic is approximately 4 MBtu.  Usually no attic implies a flat roof with not much room for insulation.  
Just the presence of an attic has a favorable effect, because it provides a buffer zone slowing down the 
heat loss in addition to allowing better insulation.  This is followed by the partially heated attic with 
increase in NG demand by about 8 MBtu.  The highest NG consumption is shown for fully heated attic, 
which would be expected. 

No particular pattern of dependency between number of rooms not heated during the winter and the 
NG demand can be derived from the results of Direction 28 (see Figure 3.15).  On the surface it would 
seem likely that this variable should have an inverse impact on NG consumption, because more rooms 
that are unheated in winter would imply that less NG should be consumed.  However, any unheated space 
that is not zoned appropriately can contribute to the heating load of a house.   

KEY: 
0 No basement 
1 Basement not heated 
2 Basement partially heated 
3 All basement heated 
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Figure 3.15.  Impact of Number of Rooms Not Heated on NG Use 

3.6 Vintage 

Regression results for house vintage and NG use (Direction 26) are reasonable, and are presented in 
Figure 3.16.  The highest NG consumption is shown for category 0 that represents houses built before 
1940.  NG demand decreases for the houses built in the 1940s by about 10 MBtu, which is followed by 
the 1950s vintage.  There is an increase in the NG consumption of housing built between 1960 and 1969, 
up from the level shown for 1950 vintage by 5 MBtu, which may be attributable to changes in 
construction practices.  For houses built between 1970 and 1989, the NG consumption decreases by 8 
MBtu, which corresponds to improvements in thermal integrity.  This trend reverses for dwellings built 
after 1990, which can be attributed to several factors.  First and foremost, this is the period when houses 
with high ceilings gained popularity.  In addition, this market trend was accompanied by a shift in the 
design away from standard rectangular houses to designs with less conventional angles and additional 
coves.  The latter contributes to lower overall energy efficiency of the house, and the effect is reinforced 
by the ceiling height, leading to even more drastic efficiency loss. 
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Figure 3.16.  Impact of House Age on NG Usage 

3.7 Home Ownership 

Figure 3.17 (Direction 11) identifies the relationship between the NG intensity and ownership of the 
house.  The result is reasonable because owned houses have lower energy consumption compared to 
rented (the middle) and occupied without payment (the highest).  The difference between three categories 
is around 4 MBtu, with delta between the second and the third category being over 1 MBtu.  This is 
consistent with previously documented results of the Caravan Opinion Research Corporation (ORC) 2007 
surveys.  These surveys showed a higher willingness to invest in the energy-saving solutions and high 
overall concern about the energy efficiency of the residential structure being more typical for the 
landlords than the renters.  There is also a difference in investment decisions associated with primary 
dwellings versus rentals or additional houses used by relatives or friends without rent payment. 

KEY: 
1. Before 1940 
2. 1940-49 
3. 1950-59 
4. 1960-69 
5. 1970-79 
6. 19780-84 

 
7. 1990-94 
8. 200-2002 
9. 2003 
10. 2004 
11. 2005 
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Figure 3.17.  Impact of Ownership/Rental Status on NG Use 

3.8 Occupancy 

Direction 22 picks up the difference in the natural gas intensity because of someone staying at home 
the whole day versus the house being unoccupied during working hours.  There is approximately a 1.5 
MBtu delta resulting from someone reportedly occupying the house during the day.  The results are 
shown in Appendix B.   Figure 3.18 (Direction 30) describes the relationship between NG consumption 
and number of people living in the house.  The result is reasonable considering that NG demand would 
likely increase with each consecutive inhabitant.  The magnitude of change is also reasonable because 
marginal change decreases with each consecutive occupant.  Gas consumption drops by 3 MBtu as the 
number of inhabitants grows from 5 to 7, suggesting that results could plateau after a certain number of 
residents representing economies of scale in NG usage -- a reasonable result considering heating 
requirements would not change with each consecutive inhabitant and natural gas consumption associated 
with water heating, cooking and dryer use would go up at a smaller rate. 

KEY: 
0 Home is occupied by owners 
1 Home is occupied by renters 
2 Home is occupied without payment 
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Figure 3.18.  Impact of Number of Occupants on NG Use (0 = none, up to 10 occupants) 

3.9 Income 

Direction 31 links the income level with the natural gas consumption of the household, and the results 
are shown in Figure 3.19.  It can be concluded that based on the number of categories, this variable should 
be treated as continuous.  Initially there is a slight drop in NG intensity as the income grows from less 
than $2500 to approximately $25,000.  As income grows, an increase in NG consumption is observed.  
Categories 11 through 18 correspond to the income interval from $45,000 to $85,000.  Income at these 
levels would at least be partially linked to the type of the house, quality of construction, level of insulation 
and types of equipment serving the household, and this would likely be another representation of the 
multicollinearity in the data.  This increase is followed by a drop in NG consumption for income 
categories in excess of $85,000.  It can be attributed not only to the direct effect caused by a change in 
willingness to invest in the energy-efficient solutions, but also a change in level of education and 
environmental considerations, as well as the shift in the initial quality of occupied homes. 
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Figure 3.19.  Impact of Income on NG Use   

 

KEY: 
0 Less than $2,500 
1 $2,500 to $4,999 
2 $5,000 to $7,499 
3 $7,500 to $9,999 
4 $10,000 to $14,999 
5 $15,000 to $19,999 

 
6 $20,000 to $24,999 
7 $25,000 to $29,999 
8 $30,000 to $34,999 
9 $35,000 to $39,999 
10 $40,000 to $44,999 
11 $45,000 to $49,999 

 
12 $50,000 to $54,999 
13 $55,000 to $59,999 
14 $60,000 to $64,999 
15 $65,000 to $69,999 
16 $70,000 to $74,999 
17 $75,000 to $79,999 
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4.0 Conclusions 

This study employs an econometric approach to analyzing natural gas consumption intensity of 
residential buildings that can be used in combination with simulations for describing the impact of various 
household and structure attributes on energy demand.  The econometric approach employed uses a local 
linear smooth backfitting estimator, which is extended to include categorical variables.  Satisfactory 
results were obtained for the majority of the covariates, and the estimation technique was able to 
accommodate a correlated set of mixed data. 

Nonparametric regression estimation revealed patterns of dependency that could not have been 
achieved by parametric analysis.  Some of the results were suggestive of particular parametric 
relationships.  However, these relationships were only sustained over a portion of the regressor range, 
because the overall result has the appearance of several superpositioned parametric associations 
depending on what interval of the regressor support is considered. 

This analysis could be extended by combining smooth backfitting regression with stochastic frontier 
estimation via the method suggested by Fan, Li and Weersink (1996) and, more importantly, by using the 
generalized profile likelihood framework of Severini and Wong (1992).  The comparison can be done 
across residential buildings or groups of residential buildings based on the ranked efficiency score.  The 
regression portion of the analysis would provide the ability to interpret the efficiency scores from the 
energy management view point because a combination of efficiency scores along with each directional 
regression result allows further investigation of possible causes.  This approach could also provide 
information on the selection of building technologies and engineering and behavioral solutions that could 
potentially improve the level of energy intensity of residential buildings.  One of the issues with using the 
suggested approach is to clearly understand how a production frontier can be defined within the context of 
natural gas usage by residential buildings.  If it was possible to isolate only the information that is related 
to heating, then the thermostat setting could be used as a proxy for the output.  The efficiency of 
maintaining the dwelling at that temperature while all other inputs, attributes and characteristics vary 
could be compared through ranking.  Clusters of houses with similar ranking would provide an insight 
into what primary features, behavioral characteristics, and house attributes impact the ability to maintain 
residential buildings at a set temperature. 

The benefit of the current analysis is three-fold.  The main result, which is the directional impact of 
each covariate, can be utilized for in-sample prediction to approximate energy demand of a residential 
building whose characteristics are described by the regressors used in this analysis, but a certain 
combination of their particular values does not exist in the real world.  The only caution is that the best 
estimates are for the interior of the intervals, where the regressors take values.  The closer the values are 
to the end-points of the regressor range, the less accurate the results. 

The second benefit is the information on how natural gas demand might change once a particular 
characteristic or attribute is altered.  For continuous variables, the local linear framework applied in this 
study produces the values of the slope at each observation as part of the estimation procedure.  As far as 
the categorical variables are concerned, the slope estimates are not calculated as part of the procedure, but 
they can be easily computed by comparing change in the natural gas usage while moving from one 
category to another for each of the regressors.  For example, results on wall construction material suggest 
that the natural gas consumption goes down by about 8 MBtu for houses with composite (shingle) siding 
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versus houses with vinyl siding.  Properly installed stucco siding may reduce the gas consumption even 
further (by about 10 MBtu).  Jointly with the cost estimates of such improvements, these results can be 
used as a quick tool for benefit-cost analysis of residential upgrades and retrofits under a fixed budget. 

The third and the most obvious result follows along the lines of the previously discussed benefit, but 
with a very particular implication.  It shapes the message that changing, for example, the thermostat 
temperature setting several degrees up or down while holding everything else fixed has a very tangible 
effect on natural gas usage and related household energy expenditures.  Another behavioral result is the 
relationship between natural gas consumption and billing method.  Seeing the full bill and paying it in full 
corresponds to the lowest energy consumption level.  The consumption increases significantly if a 
household faces only portion of the bill, or if the full payment is included in rent and the actual consumer 
never sees either the amount of natural gas consumed, or associated monthly expenditures.  The link is 
obvious, the link is measurable, and the result is produced by a nonparametric estimation procedure 
without imposing a particular specification on the shape of that relationship. 

The primary objective of this analysis was to investigate the applicability of a particular 
nonparametric methodology to quantifying the impact of behavioral variables using econometric methods.  
Behavioral aspects of energy usage are largely treated by traditional parametric models as an 
unobservable effect.  If good-quality microdata is available on behavioral aspects of energy usage, it is 
possible to extend this nonparametric analysis to a larger number of regressors and encompass the 
relationship between behavioral changes and energy usage at a more refined level. 

General Conclusion 

This study investigated the relationship between natural gas demand and characteristics of the 
dwelling, demographic characteristics of occupants and behavioral variables.  The existing modeling 
literature, whether it relies on parametric specifications or engineering simulation, does not accommodate 
inclusion of a behavioral component.  This study attempts to bridge that gap and investigate the 
applicability of additive nonparametric regression to this task.  The results of this analysis can be used for 
three primary purposes.  The first one is an in-sample prediction for approximating energy demand of a 
residential building whose characteristics are described by the regressors in this analysis, but a certain 
combination of their particular values does not exist in the real world.  The second potential application is 
for benefit-cost analysis of residential upgrades and retrofits under a fixed budget, because the results of 
this study contain information on how natural gas consumption might change once a particular 
characteristic or attribute is altered.  The third purpose is to establish a relationship between natural gas 
consumption and changes in behavior of occupants.  Although information on behavioral variables is 
generally limited, results of the analysis identify what information would be helpful to further research. 
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Appendix A 
 

Detailed Methodology 





A.1 Smooth back�tting for continuous data

The regression model considered here is of the following form:

E(Y jX1 = x1; :::; Xd = xd) = m0 +

dX
j=1

mj (xj)

where (Y;X1; :::; Xd) is a random vector in Rd+1 and we assume that there is a random sample
fyi; xi1:::; xidgni=1 of (Y;X1:::; Xd), m0 is an unknown scalar parameter, mj (xj) is a suf�ciently
smooth function for all j, and �j is the �rst order derivative of mj (xj). Also, for identi�cation
purposes, E (mj (xj)) = 0.
LetKh (xij � xj) = 1

hK
�
xij�xj
h

�
be a kernel function such that

R
K (�) d� = 1,

R
�K (�) d� =

0,
R
�2K (�) d� = 1. Bandwidth is de�ned as h = h(n) such that h! 0 and nh!1 as n!1;

and conditions B(1), B(2')-B(4') of Mammen et al. (1999) are met. The back�tting estimator is
obtained by minimizing the following objective function

Z nX
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24yi �m0 �
dX
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mj(xj)�
dX
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352 � dY
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Kh (xij � xj) dx

The minimization is done with respect tom0; m1...md and all �rst derivatives �j(xj).
Let

bpj(xj) = n�1 nX
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Kh (xij � xj) ; bpjj(xj) = n�1 nX
i=1

Kh (xij � xj) (xij � xj) ;

bpjjj (xj) = n�1 nX
i=1

Kh (xij � xj) (xij � xj) (xij � xj) ;

bpjk(xj ; xk) = n�1 nX
i=1

Kh (xij � xj)Kh (xik � xk) ;

bpkjk(xj ; xk) = n�1 nX
i=1

Kh (xij � xj)Kh (xik � xk) (xik � xk) ;

bpjkjk(xj ; xk) = n�1 nX
i=1

Kh (xij � xj)Kh (xik � xk) (xij � xj) (xik � xk) ;

2
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Let

A =

n�1
nP
i=1
Kh (xij � xj) yi

bpj(xj) �
dX
k 6=j

Z emk(xk)
bpjk(xj ; xk)bpj(xj) dxk

�
dX
k 6=j

Z e�k(xk)bpkjk(xj ; xk)bpj(xj) dxk � fm0(xj);

B =

n�1
nP
i=1
Kh (xij � xj) (xj �Xij) yi

bpjj(xj) �
dX
k 6=j

Z fmk(xk)
bpjjk(xj ; xk)bpjj(xj) dxk

�
dX
k 6=j

Z e�k(xk)bpjkjk(xj ; xk)bpjj(xj) dxk � fm0(x)

C =
bpjj(xj)bpj(xj) ; D =

bpjjj (xj)bpjj(xj)
The smooth back�tting estimates of fm0; fmj and e�j are obtained by iteratively solving the two

equations below for each regressor j = 1; :::; d

fmj(xj) = A� e�j(xj)C; e�j(xj) = A�B
C �D

As a consequence of imposing normalization condition, fm0 = n
�1

nP
i=1
yi:

A detailed discussion establishing the asymptotic properties of the smooth back�tting estimator
for the case of only continuous regressors is presented in Mammen et al. (1999). Their �nal result is
summarized as the convergence in distribution that holds for any x1; :::xd with compact support:

n2=5

0BB@
em1(x1)�m1(x1) + vn;1

...emd(xd)�md(xd) + vn;d

1CCA d��! N

2664
0BB@
c2h�1(x1)

...
c2h�d(xd)

1CCA ; diag f�j(xj)gdj=1
3775 ;

�j(xj) =

R
u2K(u)du

2

�
mj

00(xj)�
Z
m00
j (xj)pj(xj)dxj

�
;

vn;j =

Z
mj(xj)Kh(xj � u)pj(u)du dxj ;

�j(xj) = c
�1
h ck�

2
j (xj)=pj(xj);

with ck =
R
K(u)2du; ch is a constant such that n1=5h ! ch. Second derivative of mj(xj) is
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represented by mj
00(xj); pj(u) is the marginal density, and �2j (xj) = var[Y � m(x)jXj = xj ]

can be consistently estimated from the residuals e"i = yi � em(xi); i = 1:::n:
n2=5 (em(x)�m(x)) d��! N

8<:c2h
dX
j=1

�j(xj);
dX
j=1

�j(xj)

9=; ;
where em(x) is a smooth back�tting estimator of m(x) = m0 +

dP
j=1

mj (xj) de�ned as em(x) =
fm0 +

dP
j=1

fmj (xj) :

A.2 Smooth back�tting estimator for mixed data

In a wide variety of applications, especially dealing with microdata, one of the essential fea-
tures of a regression estimator is its capability to accommodate continuous and categorical con-
ditioning variables. Traditional approaches for estimating the categorical components have relied
either on introducing these variables parametrically or implementing a frequency-based estimation.
The major drawback of the �rst approach is a loss of �exibility induced by a fully nonparametric
framework, as well as high likelihood of misspeci�cation. The weakness of the second method
stems from the requirement to divide the data into cells corresponding to the values taken by the
discrete variables. This necessitates fairly large sample size in order for each cell to contain a
reasonable amount of data as described in Li and Racine (2007).
Alternative procedures, such as smooth estimation of joint distributions and smooth regression

for discrete data, are based on kernel estimation proposed by Aitchison and Aitken (1976). This lat-
ter method received attention in the recent literature as kernel smoothing methods have been gaining
popularity. Li and Racine (2003) proposed a re�ned nonparametric kernel approach for estimating
an unknown distribution de�ned over mixed discrete and continuous variables. Nonparametric esti-
mation of regression functions was investigated by Racine and Li (2004), where speci�c smoothing
techniques were considered for treatment of ordered and unordered categorical data. Structure of
the proposed estimator is similar to that of Nadaraya-Watson local constant estimator, but with a
different kernel employed for smoothing discrete variables. Li and Racine (2004) expanded the
regression framework further by constructing a local linear nonparametric estimator for mixed data
and investigating the theoretical properties of cross-validated bandwidth selection. In addition, they
derived the rate of convergence of the cross-validated bandwidths and established asymptotic nor-
mality of the resulting nonparametric regression estimator. These results provide a foundation for
incorporating categorical regressors into the local linear smooth back�tting estimator (SBE) and
using least squares cross-validation to select bandwidth for both continuous and categorical regres-
sors.

A.3



Let xj , j = 1; :::; d, denote continuous regressors and xt, t = 1; :::T denote the categorical
variables. Discrete xit, i = 1; :::n, takes values f0; 1; 2; :::; ct � 1g. For the local linear regression
estimator Li and Racine (2004) propose using a variation of the Aitchison and Aitken (1976) kernel
de�ned as

L(xit; xt; �t) =

(
1, if xit = xt
�t; if xit 6= xt

t = 1; :::T:

This weight function does not add up to one, which cannot support the interpretation of marginal

density pt(xt) estimated by bpt(xt) = n�1 nP
i=1
L (xit; xt; �t) as a proper density. It has been shown

by Li and Racine (2004) that it is not the kernel shape, but rather the selection of the bandwidth
parameter that has critical impact on the quality of resulting estimates. Therefore, to accommodate
interpretation of weighting functions in smooth back�tting estimation as densities, another option
is to use the kernel shape suggested by Aitchison and Aitken (1976) for the distribution estimation,
namely

L(xit; xt; �t) =

(
1� �t, if xit = xt
�t= (ct � 1) ; if xit 6= xt

t = 1; :::T

for unordered categorical regressors: The range of �t is [0; (ct � 1) =ct]. This weight function adds
up to one. When �t assumes its upper value of (ct � 1) =ct, the kernel becomes L(xit; xt; �t) =
1=ct regardless of whether Xit = xt or not. The resulting density estimator becomes unrelated to
xt thus smoothing it out. Alternatively, it is possible to use the weighting function that does not add
up to one along with the normalization p = pt(xt)=

P
pt(xt). For ordered categorical variable xt

the kernel of Li and Racine (2004)

L(xit; xt; �t) =

(
1, if xit = xt
�t
jxit�xtj; if xit 6= xt

is utilized along with the above-mentioned normalization. The range of �t for ordered variables is
[0,1]. If �t takes its upper value the kernel becomes a uniform weight function. If �t = 0; the kernel
turns into an indicator function. An alternative is to use the kernel

L(xit; xt; �t) =

(
1� �t, if jxit � xtj = 0
1��t
2 �t

jxit�xtj; if jxit � xtj � 1
;

where xt is a categorical variable and xit, i = 1; :::n, takes values f0; 1; 2; :::; ct � 1g, as proposed
by Wang and van Ryzin (1981).

The multivariate discrete data kernel is de�ned as
TQ
t=1
L(xit; xt; �t), with joint density of discrete

variables being estimated by bp(x1; :::xT ) = n�1
nP
i=1

TQ
t=1
L(xit; xt; �t). The multivariate kernel for
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mixed data is

W (xij ; xj ; h; xit; xt; �t) =
nX
i=1

dY
j=1

Kh (xij � xj)
TY
t=1

L(xit; xt; �t):

The local linear estimator for continuous and discrete data suggested by Li and Racine (2004) has
the following structure:

bs(x) =

" bm(x)b�(x)
#
=

"
nX
i=1

W (xij ; xj ; h; xit; xt; �t)

 
1 (xij � xj)

(xij � xj) (xij � xj)2

!#�1

�
nX
i=1

W (xij ; xj ; h; xit; xt; �t)

 
1

(xij � xj)

!
yi;

where s(x) = (m(x); �(x)0)0, �(x) = r�(x) = [@m(x)=@x1; ::::@m(x)=@xd]0. The partial deriva-
tive is taken only with respect to continuous variables. This estimator has the local constant shape
for the discrete variables and local linear shape for the continuous variables.
The local linear smooth back�tting estimator for mixed continuous and categorical data is a

projection of the local linear estimator for mixed regressors onto the space of additive functions.
The mixed data local linear smooth back�tting estimator em�(x) is de�ned as the argument that
minimizes the following objective function

Z nX
i=1

24yi �m0 �
dX
j=1

mj(xj)�
TX
t=1

mt(xt)�
dX
j=1

�j (xij � xj)

352

�
dY
j=1

Kh (xij � xj)
TY
t=1

L(xit; xt; �t)dx;

where the categorical regressors are indexed by t. Derivation of the �rst order conditions for this
setting follows the same logic as for the continuous regressors, where the minimization is performed
overm0;mj(xj)andmt(xt) while preserving mean zero restriction, and over �j(xj) for the contin-
uous components only.
Using similar notation as before
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fmj(xj) =

n�1
nP
i=1
Kh (xij � xj) yi

bpj(xj) �
dX
k 6=j

Z fmk(xk)
bpjk(xj ; xk)bpj(xj) dxk

�
TX
t=1

Z fmt(xt)
bpjt(xj ; xt)bpj(xj) dxt �

dX
k 6=j

Z e�k(xk)bpkjk(xj ; xk)bpj(xj) dxk

�fm0(x)� e�j(xj)bpjj(xj)bpj(xj) ;

fmj(xj) =

n�1
nP
i=1
Kh (xij � xj) (xij � xj) yi

bpjj(xj) �
dX
k 6=j

Z fmk(xk)
bpjjk(xj ; xk)bpjj(xj) dxk

�
TX
t=1

Z fmt(xt)
bpjjt(xj ; xt)bpjj(xj) dxt �

dX
k 6=j

Z e�k(xk)bpjkjk(xj ; xk)bpjj(xj) dxk

�fm0(x)� e�j(xj)bpjjj (xj)bpjj(xj) ;
where fm0(x) is the same as in continuous SBE setting. The iterative equations are shown

below:

fm�
j (xj) = A�

TX
t6=j

Z fmt(xt)
bpjt(xj ; xt)bpj(xj) dxt � e��j (xj)C

= A� � e��j (xj)C

fm�
j (xj) = B �

TX
t6=j

Z fmt(xt)
bpjjt(xj ; xt)bpjj(xj) dxt � e��j (xj)D

= B� � e��j (xj)D
e��j (xj) =

A� �B�
C �D :
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Iterative equation for discrete regressors xt, t = 1; :::; T is

fm�
t (xt) =

nP
i=1
L (xit; xt; �t)yi

bpt(xt) �
dX
j=1

Z fmj(xj)
bpjt(xj ; xt)bpt(xt) dxj � fm0(x)

�
TX
k 6=t

Z fmk(xk)
bpkt(xk; xt)bpt(xt) dxk �

dX
j=1

Z e�j(xj)bpjjt(xj ; xt)bpt(xt) dxj :

The last four equations jointly with the zero-mean condition describe the solution. Analogously
to the continuous regressor densitiesbpt(xt) = n�1 nP

i=1
L (xit; xt; �t);

bpjt(xj ; xt) = n�1 nP
i=1
Kh (xij � xj) L (xit; xt; �t);

bpjjt(xj ; xt) = n�1 nP
i=1
Kh (xij � xj) L (xit; xt; �t) (xij � xj) :

The algorithm for computation is as follows:

1. Compute the univariate bpj(xj); bpt(xt) for all regressors xj and xt; j = 1; :::d; and t = 1; :::T ;
compute bpjj(xj); bpjjj (xj) only for continuous components. Compute bivariate densities.

2. Compute univariate unrestricted cmt(xt) = (
nP
i=1
L (xit; xt; �t)yi)�bpt(xt) for all discrete vari-

ables and pairs (bmj(xj);b�j(xj)) for all continuous data. Save the results as variables mold

and �old.

3. Set the number of smooth back�tting iteration iter to 1.

(a) For j = 1 compute expressions A�, B�, C, D. Obtain fm�
j (xj) and e��j (xj), save asmnew

and �new. Repeat this step for the rest of continuous variables j = 2; :::d. To compute
expressions A� and B�, use updated values from mnew and �new for k < j. If k > j;

use corresponding values frommold and �old.

(b) Perform computation for discrete variables in a similar manner, with the conditional
mean of categorical xk in A being taken only over unique categories of xk.

4. De�ne a convergence criteria for all j as

nP
i=1

h
m̂new
j (xj)�gmold

j (xj)
i2

nP
i=1

h gmold
j (xj)

i2
+�

< �:

5. Set iter = iter + 1, Set mold =mnew and �old=�new; then go to step 3a. Iterate steps 3a
through 5 until the convergence criteria is met.
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If
R d
pj;kj;k(xj ; xk)dxk =

d
pjj;k(xj) does not hold, it is necessary to include the norming for fm�

j (xj)

such that gm�;n
j (xj) = fm�

j (xj)�
R fm�

j (xj) bpj(xj)dxj after every iterative step for each j = 1; :::T:
When the value of overall summ0 +

dP
j=1

mj(xj) +
TP
t=1
mt(xt) is the primary point of interest, this

normalization could be omitted as suggested in Mammen et al. (1999).

A.3 Bandwidth selection

Several different methods for selecting bandwidths for SBE estimation were analyzed recently.
Mammen and Park (2005) introduced a bandwidth selection method for smooth back�tting based on
minimizing penalized sum of squares residuals. They also compared two additional plug-in methods
for local linear SBE. It was suggested that the penalized sum of squared residuals was asymptotically
equivalent to cross-validation because this holds true for the classical nonparametric regression, as
in Hardle et al. (1988).
Leave-one-out least squares cross-validation is recommended for bandwidth selection by Nielsen

and Sperlich (2005). It has an implementation advantage for local linear smooth back�tting if the
underlying relationship is additive. In this case, the cross-validation procedure can be simpli�ed be-
cause the SB estimator has additively separable bias and variance. Bandwidth selection is based on
minimizing mean-integrated squared errorMSE(h1; :::hd; �1; :::�d) =

R
E [em(x)�m(x)]2 p(x)dx:

Because of separability of bias and variance, the mean-integrated squared error for overall regres-
sion can be de�ned as

MSE(h1; :::hd; �1; :::�d) =

d+TX
j=1

MSEj(xj);

whereMSEj(xj) is mean-integrated squared error for each regression directionmj(xj). Thus, the

cross-validation problem of minimizing CV =
nP
i=1

�
yi � em�i(x)

�2
; where em�i(x) is the leave-

one-out estimator with observation (yi; xi) excluded from the computation, can be separated. It
reduces to performing an optimal bandwidth search for each directional regression sequentially.
Nielsen and Sperlich (2005) suggest taking starting bandwidths h1; :::hd that undersmooth for each
direction and running the initial SBE estimation. Then the cross-validation criteria is minimized
with respect to hj only, where hj is the bandwidth for direction j, by using a one-dimensional
grid search. Bandwidths for all other directions are kept at their starting values. This is repeated
for each direction j individually. It is not necessary to use leave-one-out estimators for all other
directionsmk(xk); k 6= j, while searching for the optimal bandwidth for the estimation ofmj(xj).
In addition, all fmk(xk) do not need to be estimated at their optimal bandwidth. As shown by
Mammen and Park (2005), this procedure results in bandwidths that are optimal for the estimation
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of the overall regression. If the primary focus of the estimation is accuracy of each single additive
component, Mammen and Park (2005) suggest using plug-in bandwidths that minimize average
weighted squared error (ASE) for each direction de�ned as

ASEj(xj) = n
�1

nX
i=1

w�ij (xj)
hfmj(xj)� em�i

j (xj)
i2
;

where em�i
j (xj) is the leave-one-out estimator ofmj(xj) and wj is a weight function.

This paper adopts a simpler method for bandwidth selection. Because smooth back�tting re-
quires computing the unrestricted regression estimates, as well as univariate and bivariate densities
for continuous and categorical data, we use four different bandwidth selection routines. To esti-
mate densities for categorical variables we use the cross-validation method of Li and Racine (2007),
where the bandwidth � is chosen separately for each regressor to minimize

CVp(�) =
X
xc2Sc

[bp (xc)]2 � 2n�2 nX
i=1

nX
v 6=i

L�;iv;

where L�;iv is the previously de�ned kernel with observation v = i excluded from the computation,
Sc = f0; :::ct�1g is the support of xc and c is the category index. For unrestricted regression estima-
tion for categorical variables, the cross-validation of Li and Racine (2007) is employed. Bandwidth
is chosen to minimize

CVreg(�) = n
�1

nX
i=1

[yi � cmj
�i(xj)]

2

for each j, where cmj
�i(xj) is the leave-one-out Nadaraya-Watson estimator of mj(xj) de�ned

as cmj
�i(xj) =

nP
v 6=i
yv L�;iv

,
nP
v 6=i
L�;iv For continuous variables the rule-of-thumb bandwidth

selection was used both for estimation of unrestricted univariate regression, as well as densities.
Namely, the bandwidth for regression estimation was selected as

hregj = n�1=5

8<:s22p� (max(xj)�min(xj)) �
"
1

n

nX
i=1

�bb3 + bb4xj + 0:5bb5x2j�2
#�19=;

1=5

;

where b3; b4 and b5 are estimates of coef�cients in regressing the dependent variable y on �1 +
�2xj+�3(0:5x

2
j )+�4(

1
6x
3
j )+�5(

1
24x

4
j ), and s2 is estimated in a usual manner based on the residual

estimates of this regression. The bandwidth for density estimation was computed as hdensj =
(n�1=5) � 1:01a (2

p
�)
�1=5

; and a = q75(xj) � q25(xj); where q75 and q25 are upper and lower
quartiles of xj ; correspondingly.
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Figure B.1.  Heating Degree Days: Base 65, 01 to 12-2005 (Inoculated) 
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Figure B.2.  Cooling  DegreeDays: Base 65, 01 to 12-2005 (Inoculated) 

 
Figure B.3.  Total House Area 
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Figure B.4.  Price of Electricity 

 
Figure B.5.  Price of Natural Gas, Cents/kBtu 
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Figure B.6.  Setting During the Winter Day When Someone is Home 

 
Figure B.7.  Setting During the Winter Day When No One is Home 
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Figure B.8.  Setting During Sleeping Hours in Winter 
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Figure B.9.  Exterior Wall Construction Material 

          0   Indescribable 
          1   Brick 
          2   Wood 
          3   Siding (Aluminum, vinyl, or steel) 
          4   Stucco 
          5   Composition (Shingle) 
          6   Stone 
          7   Concrete or concrete block 
          8   Glass 
          9   Other 
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Figure B.10.  Is the Garage Heated 

          0   No garage 
          1   Not heated 
          2   Yes 

 
Figure B.11.  Dwelling Owned or Rented 

          0   Own 
          1   Rent 
          2   Occupied w/out payment 
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Figure B.12.  Fuel Used by the Burners 

          0   Some other fuel 
          1   Natural gas from underground pipes, 
          2   Propane (bottled gas), or 
          3   Electricity 

 

 
Figure B.13.  What Fuel Does Clothes Dryer Use 

          0   No dryer 
          1   Natural gas from underground pipes, 
          2   Propane (bottled gas), or 
          3   Electricity 
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Figure B.14.  Combined All Secondary Heating Equipment 

          0   No secondary heating equipment 
          1   Central warm-air furnace with ducts to individual rooms other than a heat pump 
          2   Steam/hot water system with radiators/convectors in each room or pipes in the floor or walls 
          3   Built-in floor/wall pipeless furnace 
          4   Built-in room heater burning gas, oil, or kerosene 
          5   Cooking stove used to heat your home as well as to cook 

 
Figure B.15.  Is That Thermostat Programmable 

          0   No 
          1   Yes 
          2   No thermostat 
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Figure B.16.  Programmable Thermostat Lowers Heat at Night 

          0   No 
          1   Yes 
          2   No thermostat or not programmable 

 

 
Figure B.17.  Programmable Thermostat Lowers Heat During the Day 

          0   No 
          1   Yes 
          2   No thermostat or not programmable 
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Figure B.18.  Main Fuel Used for Heating Home 

          0   Natural gas from underground pipes 
          1   Propane (bottled gas) 
          2   Fuel oil 
          3   Kerosene 
          4   Electricity 
          5   Wood 
          6   Solar 
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Figure B.19.  Type of Heating Equipment Provides the Heat 

 
          0   No heating equipment used 
          1   Steam/hot water system with radiators/convectors in each room or pipes in the floor or walls 
          2   Central warm-air furnace with ducts to individual rooms other than a heat pump 
          3   Heat pump 
          4   Built-in electric units in each room installed in walls, ceiling, baseboard, or floor 
          5   Built-in floor/wall pipeless furnace 
          6   Built-in room heater burning gas, oil, or kerosene 
          7   Heating stove burning wood, coal, or coke 
          8   Fireplace 
          9   Portable electric heaters 
          10   Portable kerosene heaters 
          11   Cooking stove that is used to heat your home as well as to cook 
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Figure B.20.  Natural Gas Used for H2O 

          0   No 
          1   Yes 

 
Figure B.21.  How Natural Gas is Paid 

          0   HH pays all 
          1   All in rent/fee 
          2   Some paid, some included in rent 
          3   Other 
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Figure B.22.  Is Someone at Home All Day on a Typical Weekday 

          0   No 
          1   Yes 

 
Figure B.23.  Reported Stories in Housing Unit 

          0   One story 
          1   Two stories 
          2   Three stories 
          3   Four or more 
          4   Split level 
          5   Other 
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Figure B.24.  Basement/Crawl Space Heated 

          0   no basement 
          1   none 
          2   part 
          3   all 

 
Figure B.25.  How Much of the Attic is Warm 

          0   no attick 
          1   none 
          2   part 
          3   all 
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Figure B.26.  Year Home Built 

          0   before 1940 
          1   1940-49 
          2   1950-59 
          3   1960-69 
          4   1970-79 
          5   1980-84 
          6   1985-89 

 

          7   1990-94 
          8   1995-99 
          9   2000-02 
          10   2003 
          11   2004 
          12   2005 

 

 
Figure B.27.  How Many Thermostats Overall 
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Figure B.28.  Number of Rooms Not Heated Last Winter 

 

 
Figure B.29.  Type of Window Glass 

          0   Single-pane glass 
          1   Double-pane glass 
          2   Double-pane glass with low-e coating 
          3   Triple-pane glass 
          4   Triple-pane glass with low-e coating 
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Figure B.30.  How Many People Normally Live In This Household 

             0= none, up to 10 
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Figure B.31.  Total Combined Income in the Past 12 Months 
 

          0   Less than $2,500 
          1   $2,500 to $4,999 
          2   $5,000 to $7,499 
          3   $7,500 to $9,999 
          4   $10,000 to $14,999 
          5   $15,000 to $19,999 
          6   $20,000 to $24,999 
          7   $25,000 to $29,999 
          8   $30,000 to $34,999 
          9   $35,000 to $39,999 
          10   $40,000 to $44,999 
          11   $45,000 to $49,999 
          12   $50,000 to $54,999 
          13   $55,000 to $59,999 
          14   $60,000 to $64,999 
          15   $65,000 to $69,999 
          16   $70,000 to $74,999 
          17   $75,000 to $79,999 
          18   $80,000 to $84,999 
          19   $85,000 to $89,999 
          20   $90,000 to $94,999 
          21   $95,000 to $99,999 
          22   $100,000 to $119,999 
          23   $120,000 or more 
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