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Abstract 

The power system balancing process, which includes the scheduling, real time dispatch (load 
following) and regulation processes, is traditionally based on deterministic models. Since the 
conventional generation needs time to be committed and dispatched to a desired megawatt level, the 
scheduling and load following processes use load and wind and solar power production forecasts to 
achieve future balance between the conventional generation and energy storage on the one side, and 
system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the 
other side.  Although in real life the forecasting procedures imply some uncertainty around the load and 
wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation 
dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from 
their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable 
resources) whether the system would be actually able to meet the conventional generation requirements 
within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to 
the real time, and what additional costs would be incurred by those needs.  

To improve the system control performance characteristics, maintain system reliability, and minimize 
expenses related to the system balancing functions, it becomes necessary to incorporate the predicted 
uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. 
It is also important to address the uncertainty problem comprehensively by including all sources of 
uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects 
of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the 
imbalance) and generation ramping requirement must be taken into account. The latter unique features 
make this work a significant step forward toward the objective of incorporating of wind, solar, load, and 
other uncertainties into power system operations. 

Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated 
with random generator outages and unexpected disconnection of supply lines, are not taken into account 
in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of 
upcoming events of power imbalance.  In this project, funded by the U.S. Department of Energy (DOE), a 
framework has been developed for incorporating uncertainties associated with wind and load forecast 
errors, unpredicted ramps, and forced generation disconnections into the energy management system 
(EMS) as well as generation dispatch and commitment applications.  

A new approach to evaluate the uncertainty ranges for the required generation performance envelope 
including balancing capacity, ramping capability, and ramp duration has been proposed. The approach 
includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, 
and prediction of future grid balancing requirements for specified time horizons and confidence levels. 
Assessment of the capacity and ramping requirements is performed using a specially developed 
probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both 
continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) 
nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead 
required generation performance envelope for the worst case scenario within a user-specified confidence 
level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.  
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To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid 
operation, a framework for integrating the proposed methods with EMS systems has been developed 
through collaboration with AREVA’s specialists.  AREVA has been subcontracted with Pacific 
Northwest National Laboratory (PNNL) to facilitate the actual integration onto their software platform. 
Collaboration with software vendors such as AREVA will make PNNL’s tools and methodologies 
developed under this DOE-funded project accessible to a large number of power industry customers.  
Demonstration through integration with an actual EMS system will prove the applicability of the 
developed tools and methodologies for actual grid operation and pave the road for integration with EMS 
systems from other vendors.  

The California Energy Commission (CEC) sponsors a parallel project where these ideas and tools 
have been leveraged so that they will be integrated into the California Independent System Operator 
(CAISO) market and EMS systems. These efforts aim to bring the wind and load uncertainty information 
into CAISO’s grid operation environment.  
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Executive Summary 

The work reported herein was performed by the Pacific Northwest National Laboratory (PNNL) and 
funded by the U.S. Department of Energy Office of the Energy Efficiency and Renewable Energy (DOE 
EERE).  

Because conventional generators need time to be committed and dispatched to a desired megawatt 
level, scheduling and load following processes use load and wind power production forecasts to achieve 
future balance between conventional generation and energy storage on the one side and system load, 
intermittent resources (such as wind and solar generation), and scheduled interchange on the other side.  
The power system balancing process, which includes scheduling, real-time dispatch (load following), and 
regulation processes is traditionally based on deterministic models. 

Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as 
well as system loads, are not reflected in existing energy management systems (EMS) and tools for 
generation commitment, dispatch, and market operation.  With the growing penetration of intermittent 
resources, these uncertainties could result in significant unexpected load following and dispatch problems, 
and pose serious risks to control and operation performance characteristics as well as reliability of a 
power grid. Without knowing the risks posed by the uncertainties, system operators have limited means to 
weigh the likelihood of occurrence and the magnitude of problems to mitigate adverse impacts caused by 
them. Some important questions need to be addressed in counteracting the impact of uncertainties. For 
instance, when and if should one start more units to balance against possible fast ramps in the future over 
a given time horizon? 

Furthermore, these uncertainties could require procuring additional costly balancing services. Major 
unexpected variations in wind power, unfavorably combined with load forecast errors and forced 
generator outages, could cause significant power mismatches, which could be essentially unmanageable 
without knowing these variations in advance.   

Because the actual load and intermittent generation can deviate from forecasts, it becomes 
increasingly unclear (especially with the increasing penetration of renewable resources) whether the 
system would be actually able to meet the conventional generation requirements within the look-ahead 
horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what 
additional costs would be incurred by those needs.  

In order to improve the system control performance characteristics, maintain system reliability, and 
minimize expenses related to the system balancing functions, it becomes necessary to incorporate the 
projected uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation 
processes. This need has been realized already, and some wind forecast service providers offer the 
uncertainty information for their forecasts. Works are in place to develop methodologies and tools to 
incorporate these uncertainties into power system operations. Unfortunately, in many cases, these efforts 
are limited to wind generation uncertainties only and ignore the fact that there are additional sources of 
uncertainty such as system loads and forced generation outages. Most of these works are considering only 
the uncertainty ranges for the megawatt imbalances and do not address additional essential characteristics 
such as ramps and ramp duration uncertainties. 
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It is very important to address the uncertainty problem comprehensively by including all sources of 
uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspect 
of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the 
imbalance) and generation ramping requirement must be taken into account. The latter unique features 
make this work a significant step forward toward the objective of incorporating of wind, solar, load, and 
other uncertainties into power system operations. 

Some of the existing works are also targeting similar objectives. At the same time, these works 
primarily concentrate on the wind generation uncertainties, whereas the other important sources of 
uncertainty are not addressed. This limited consideration could be misleading to power system operators 
responsible for system reliability and control performance characteristics. 

In this project, all uncertainties associated with wind power generation forecasting, load demand 
forecasting, and generation supply interruptions caused by forced outages are taken into account in the 
evaluation of uncertainty ranges for the required generation performance envelope including balancing 
capacity, ramping capability, and ramp duration. A probabilistic algorithm, based on the proposed 
histogram analysis to assess the capacity and ramping requirements, is presented. Preliminary simulation 
was performed using California Independent System Operator (ISO)’s system model and data. This report 
presents these simulation results confirming the validity and efficiency of the proposed solutions. 

The work pursues the following objectives:  

• Develop a probabilistic model to evaluate uncertainties of wind and load forecast errors and to 
provide rapid (every 5 minutes) look-ahead (up to 5-8 hours ahead) assessments of their uncertainty 
ranges. 

• Elaborate similar models to evaluate uncertainties caused by generator random forced outages, 
failures to start up, and contingency reserve activation processes. 

• Create an integrated tool that consolidates the above-mentioned continuous and discrete random 
factors, contributing to the overall uncertainty, to evaluate look-ahead, worst-case balancing 
generation requirements (performance envelopes) in terms of the required capacity, ramping 
capability, and ramp duration.  

• Build a methodology and procedures for self-validation of the predicted performance envelope for 
each look-ahead interval. 

• Develop visualization displays to communicate information about the expected ramps and their 
uncertainty ranges. 

• Implement a prototype unit commitment program incorporating future uncertainties. 

• Integrate the developed tools with the AREVA EMS system 

• Use actual California ISO data to perform simulation.  

The following results have been achieved in this work: 

• Innovative methodology and prototype tools that are capable of evaluating future generation 
requirements,  including the required capacity, ramping capability, and ramp duration capability 
(performance envelope)  in view of uncertainties caused by wind generation and load forecast errors 
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as well as unexpected generation outages, have been developed. The approach includes three stages: 
(1) statistical and actual data acquisition, (2) statistical analysis of retrospective information, and 
(3) prediction of future grid balancing requirements for specified time horizons and confidence 
intervals. Assessment of the capacity and ramping requirements is performed using a specially 
developed probabilistic algorithm based on a histogram analysis incorporating all sources of 
uncertainty and parameters of a continuous and discrete nature. 

• A “flying brick” method has been developed to assess the look ahead worst case performance 
envelope requirement to be able to ensure the system capability to balance against the uncertainties 
with certain specified degree of confidence. The “flying brick” approach idea is to include 
simultaneously the ramp rate, ramp duration, and capacity requirements directly into the balancing 
process.  

• A self-validation approach has been proposed. The purpose of the self-validation algorithm is to 
verify that the uncertainty ranges predicted based on retrospective information are valid for the future 
dispatch intervals. 

• A MATLAB prototype of the new probabilistic tool has been developed and tested. 

• Simulations using real life data from California ISO have been carried out. The data was provided by 
the California ISO engineering support team created for this project. Simulation results have shown 
that the proposed methodology is quite accurate and efficient. 

• The concept of probabilistic tool integration into EMS has been developed. The concept includes 
three levels of integration: a passive level, an active level, and a proactive level. The passive 
integration level implies integration of wind forecast information and its visualization without 
introducing any changes to the EMS algorithms. On the active level, the unit commitment (UC) and 
economic dispatch (ED) procedures are repeated several times for every dispatch intervals to 
determine whether the system can meet extreme generation requirements caused by uncertainties for 
certain confidence level. The system “break points” are communicated to the user. The proactive 
level requires some modifications of the UC and ED algorithms in order to directly incorporate 
uncertainties into these procedures. In this case, the generation units will be committed and 
dispatched, so that these uncertainties would not create “breaking points.” 

• A framework of probabilistic tool integration with AREVA’s EMS has been developed. 

• An industrial software prototype and specification.  

The following recommendations for next phase have been made: 

• Integrate PNNL’s tool with an existing power grid operation software platform such as AREVA’s 
EMS or California ISO EMS. 

• Conduct real-time simulation using the integrated system package with test systems. 

• Continue development of the proactive integration approach. 
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Glossary 

Abbreviation Term Meaning 
AS Ancillary 

Services 
Services that are necessary to support the transmission of 
capacity and energy from resources to loads while 
maintaining reliable operation of the power system in 
accordance with Good Utility Practice. Ancillary services 
include scheduling, system control and dispatch, reactive 
supply and voltage control from generation sources, 
regulation and frequency response, energy imbalance, 
operating reserve – spinning, and operating reserve – 
supplemental.  

AGC Automatic 
Generation 
Control 

Generation equipment that automatically responds to signals 
from the EMS control in real time to control the power output 
of electric generators within a prescribed area in response to a 
change in system frequency, tie line loading, or the relation of 
these to each other, so as to maintain the target system 
frequency and/or the established interchange with other areas 
within the predetermined limits. 

BPA Bonneville 
Power 
Administration 

A U.S. government electric utility in the Pacific Northwest.  

CAISO California 
Independent 
System 
Operator Corp. 

Independent system operator controlling most of the 
California electric power system. 

CEC California 
Energy 
Commission 

California's primary energy policy and planning agency. 

CDF Cumulative 
Distribution 
Function 

Describes the probability distribution of a real-valued random 
variable. 

COPT Capacity 
Outage 
Probability 
Table 

A table that contains all the capacity states in an ascending 
order of outages magnitude. Each outage (capacity state) is 
multiplied by its probability. If the system contains identical 
units, binomial distribution can be used. If the units are not 
identical, then an appropriate procedure is used. 

CV Columbia Vista Columbia Vista Corporation 
DAM Day Ahead 

Market  
The market for energy for the following day, or more 
specifically, the market for energy 24 hours in advance of a 
given time in any day. 

DOE Department of 
Energy 

U.S. Department of Energy 

EERE Energy 
Efficiency and 
Renewable 
Energy 

Office of Energy Efficiency and Renewable Energy within 
the U.S. Department of Energy 

EFORd Equivalent 
Forced Outage 

A measure of the probability that a generating unit will not be 
available due to forced outages or forced deratings when there 
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Rate demand is a demand on the unit to generate. Used in the calculation of 
unforced capacity rating of wholesale electrical generating 
plants. 

EMS Energy 
Management 
System 

A computer control system used by electric utility dispatchers 
to monitor the real-time performance of the various elements 
of an electric system and to control generation and 
transmission facilities. 

FOP Full Outage 
Probability 

The probability of full outage. 

FOR  Forced outage 
rate 

This expresses the probability of outage of generating units 
(not operating). 

FORd Forced Outage 
Rate demand 

The forced outage rate equals the historical percentage of the 
generator's maximum output lost to forced outages when such 
output is demanded. 

GADS Generating 
Availability 
Data System 

A database produced by the North American Electricity 
Reliability Council. GADS is the main source of power 
station outage data in North America. It comprises the 
generating unit availability for over 90% of the total installed 
generating capacity of the continent, and tracks a large 
number of variables, providing detailed descriptions of unit 
operations and outage conditions. One example of such detail 
is that in its data pertaining to forced outages and unplanned 
unit failures, it makes the fine distinction between immediate, 
delayed, and postponed outages. 

HAS Hour Ahead 
Scheduling  

A process for trading hourly energy and ancillary services 
based on bids submitted up to 75 minutes ahead of a trading 
hour. 

HE Hour Ending This is used to define the trading interval. 
IEEE Institute of 

Electrical and 
Electronics 
Engineers 

An international non-profit, professional organization for the 
advancement of technology related to electricity. IEEE is the 
world’s largest professional association advancing innovation 
and technological excellence for the benefit of humanity. 

ISO Independent 
System 
Operator 

Independent system operators operate the power system under 
their jurisdiction. 

MATLAB MATLAB 
Software 

A numerical computing environment and programming 
language. 

MRTU Market 
Redesign and 
Technology 
Upgrade 

New market design at the California ISO. 

MTTF  Mean Time To 
Failure 

An estimate of the average, or mean time, until a design's or 
component's first  failure, 

MTTR  Mean Time To 
Repair 

Basic measure of the maintainability of repairable items, it 
represents the average (mean) time required to repair a failed 
component or device. 

NERC North America 
Electric 
Reliability 
Corporation 

NERC’s mission is to improve the reliability and security of 
the bulk power system in North America. To achieve that, 
NERC develops and enforces reliability standards; monitors 
the bulk power system; assesses future adequacy; audits 



 

xiii 

owners, operators, and users for preparedness; and educates 
and trains industry personnel. NERC is a self-regulatory 
organization that relies on the diverse and collective expertise 
of industry participants. As the Electric Reliability 
Organization, NERC is subject to audit by the U.S. Federal 
Energy Regulatory Commission and governmental authorities 
in Canada. 

NRTO Near Real Time 
Optimizer 

An optimizer running near real time. 

PDF  Probability 
Density 
Function 

A real-valued function whose integral over any set gives the 
probability that a random variable has values in this set. Also 
known as density function; frequency function. 

PNNL Pacific 
Northwest 
National 
Laboratory 

A U.S. Department of Energy national laboratory located in 
the Pacific Northwest. The Laboratory is operated by Battelle 
Memorial Institute.  

RTED Real Time 
Economic 
Dispatch 

A market for trading imbalance energy and dispatching 
ancillary services at regular intervals. 

RTM Real Time 
Market 

Real time market (RTM) at California ISO is a market for 
trading energy and ancillary services in real time. 

RTO Regional 
Transmission 
Organization 

A Regional Transmission Organization (RTO) in the United 
States is an organization that is responsible for moving 
electricity over large interstate areas. Like a transmission 
system operator (TSO), an RTO coordinates, controls, and 
monitors an electricity transmission grid that is larger with 
much higher voltages than the typical power company's 
distribution grid. TSOs in Europe cross state and provincial 
borders like RTOs. 

RTUC Real Time Unit 
Commitment 

RTUC looks out between four and seven 15-minute intervals 
to ensure there is sufficient capacity to meet the demand. 
RTUC commits and de-commits short start units and procures 
additional AS. 

RUC Residual Unit 
Commitment 

The RUC process provides a reliability backstop for the 
California ISO to commit additional units in order to meet its 
reliability requirements. The California ISO performs RUC 
during its DAM and RTM mainly to commit additional 
resources. 

STUC Short Term Unit 
Commitment 

A reliability function for committing short and medium start 
units to meet the California ISO forecast of California ISO 
demand. The STUC function is performed hourly, in 
conjunction with RTUC, and looks ahead up to three to five 
hours beyond the trading hour. 

UC Unit 
Commitment 

A program used to commit an appropriate number of 
generating units for each hour for an elongated period (e.g., 
24 hours) so that demand and ancillary services can be met at 
minimum cost, taking into account resource and operating 
constraints. 

UR Uncertainty 
Range 

Defines an interval within which a numerical result is 
expected to lie within a specified level of confidence.  
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VSTLP Very Short-
Term Load 
Predictor 

Load forecast in a very short term. 

WECC Western 
Electricity 
Coordinating 
Council 

WECC is responsible for coordinating and promoting electric 
system reliability in the Western Interconnection. WECC 
supports efficient competitive power markets, ensures open 
and non-discriminatory transmission access among members, 
provides a forum for resolving transmission access disputes, 
and provides an environment for coordinating the operating 
and planning activities of its members as set forth in the 
WECC Bylaws. 
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1.0  Introduction 

The work described in this report was performed by the Pacific Northwest National Laboratory 
(PNNL) and funded by the Office Energy Efficiency and Renewable Energy, U.S. Department of Energy 
(DOE-EERE).  

Because conventional generators need time to be committed and dispatched to a desired megawatt 
(MW) level, the scheduling and load following processes use load and wind power production forecasts to 
achieve future balance between the conventional generation and energy storage on the one side, and 
system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the 
other side.  The power system balancing process, which includes the scheduling, real time dispatch (load 
following) and regulation processes, is traditionally based on deterministic models. 

Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as 
well as system loads are not reflected in existing energy management systems (EMS) and tools for 
generation commitment, dispatch and market operation.  With the growing penetration of intermittent 
resources, these uncertainties could result in significant unexpected load following and dispatch problems, 
and pose serious risks to control and operation performance characteristics as well as the reliability of a 
power grid.  Without knowing the risks posed by the uncertainties, the system operators have limited 
means to weigh the likelihood of occurrence and the magnitude of problems to mitigate adverse impacts 
caused by them.  Some important questions need to be addressed in counteracting the impact of 
uncertainties.  For instance, when and if should one start more units to balance against possible fast ramps 
in the future over a given time horizon? 

Furthermore, these uncertainties could require procuring additional costly balancing services.  Major 
unexpected variations in wind power, unfavorably combined with load forecast errors and forced 
generator outages could cause significant power mismatches, which could be essentially unmanageable 
without knowing these variations in advance.   

Because the actual load and intermittent generation can deviate from the forecasts, it becomes 
increasingly unclear (especially, with the increasing penetration of renewable resources) whether the 
system would be actually able to meet the conventional generation requirements within the look-ahead 
horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what 
additional costs would be incurred by those needs.  

In order to improve the system control performance characteristics, maintain system reliability, and 
minimize expenses related to the system balancing functions, it becomes necessary to incorporate the 
projected uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation 
processes.  This need has been realized already, and some wind forecast service providers offer the 
uncertainty information for their forecasts.  Works are in place to develop methodologies and tools to 
incorporate these uncertainties into power system operations.  Unfortunately, in many cases, these efforts 
are limited to wind generation uncertainties only, and ignore the fact that there are additional sources of 
uncertainty such as system loads and forced generation outages.  Most of the works are considering only 
the uncertainty ranges for the MW imbalances, and do not address additional essential characteristics such 
as ramps and ramp duration uncertainties. 
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It is very important to address the uncertainty problem comprehensively, by including all sources of 
uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration.  All aspects 
of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the 
imbalance) and generation ramping requirement must be taken into account.  The latter unique features 
make this work a significant step forward toward the objective of incorporating of wind, solar, load, and 
other uncertainties into power system operations. 

Some of the existing works are also targeting similar objectives.  For instance, AWS Truewind [1] 
and 3TIER [2] companies developed the wind generation forecasting tools with build-in capability to 
assess the wind generation production uncertainty.  Similar works are performed in Europe.  In the 
framework of the European Union project, ANEMOS, a tool for on-line wind generation uncertainty 
estimation based on adapted resampling or quantile regression is developed [3].  The German company 
Energy and Meteo Systems developed a tool for wind generation forecasting and assessing the uncertainty 
ranges associated with wind forecast and also capable to predict the extreme ramping events [4].  Interval 
forecast of wind generation using quantile method is given in [5].  Prediction error of wind generation 
forecast using standard deviation based statistical analysis is used in [6].  These works primarily 
concentrate on the wind generation uncertainties, whereas the other important sources of uncertainty are 
not addressed.  This limited consideration could be misleading to power system operators responsible for 
system reliability and control performance characteristics.  

In this project, the uncertainties associated with wind power generation forecasting, load demand 
forecasting, and generation supply interruptions caused by forced outages are taken into account in the 
evaluation of uncertainty ranges for the required generation performance envelope, including balancing 
capacity, ramping capability and ramp duration.  A probabilistic algorithm, based on the proposed 
histogram analysis to assess the capacity and ramping requirements, is presented.  Preliminary simulation 
was performed using California ISO’s system model and data.  This report presents these simulation 
results confirming the validity and efficiency of the proposed solutions. 

A probabilistic software tool capable of determining the impact of wind, load and generation 
uncertainties on the power grid is currently under development.  In the research, an assessment of 
generation capacity requirements means evaluation of uncertainty ranges of generation requirements in 
order to meet the power system balance. 

 The objectives of the work reported in this report include the following developments:  

• A probabilistic model to evaluate uncertainties of the wind and load forecast errors and to provide 
rapid (every 5 minutes) look ahead (up to 5-8 hours ahead) assessments of their uncertainty ranges. 

• Similar models to evaluate uncertainties caused by generator random forced outages, failures to start 
up, and contingency activation processes. 

• An integrated tool that consolidates abovementioned continuous and discrete random factors 
contributing to the overall uncertainty to evaluate look ahead worst-case balancing generation 
requirements (performance envelopes) in terms of the required capacity, ramping capability, and 
ramp duration.  

• A methodology and procedures for self-validation of the predicted performance envelope for each 
look-ahead interval. 
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• Visualization displays to communicate information about the expected ramps and their uncertainty 
ranges. 

•  A prototype unit commitment program incorporating future uncertainties. 

• Integration of the developed tools with the AREVA’s EMS system 

• Use of the actual California ISO (CAISO) data to perform simulation.  

• Review of the actual dispatch scheduling processes in CAISO and Bonneville Power Administration 
(BPA).  

The proposed approach to evaluate the uncertainty ranges for a required generation performance 
envelope, including the balancing capacity, ramping capability and ramp duration, consists of the 
following three stages (Figure 1.1): 

1. The first stage deals with acquiring statistical data.  Retrospective information for a user-specified 
moving window (e.g., for one month), such as forecasted system load and its actual values, wind and 
solar generation forecasts and its actual values, as well as generation schedules, are needed to perform 
the proposed statistical analysis and to build a projection of the balancing requirements into the 
future. 

2. The second stage is a statistical analysis of the retrospective information acquired at the first stage.  It 
consists of the following parts: 

• Capacity requirements analysis based on an empirical statistical analysis of forecast errors 

• Ramping requirements analysis based on the “swinging door” algorithm. 

• Generation forced outage analysis based on the Markov chain reliability model. 

3. The third stage is an evaluation of future generation requirements for specified time horizons, e.g., 5 
or 8 hours ahead.  Examples of generation requirements that can be evaluated are regulation and load 
following capacity requirements, ramping requirements, contingency reserve requirements, etc., for 
different confidence levels such as 80, 85, 90 and 95% (as shown in Figure 1.1).These requirements 
can be compared against the actual generation capability of generators that are currently or will be 
online within the look-ahead horizon and that are performing relevant services.  If the actual 
generation capability is not matching the requirements, a warning will be issued to system operators.  
This would constitute a “passive” integration of wind related uncertainties into the system operations.  
In a proactive approach, the look-ahead generation requirement information will be fed back into the 
generation commitment and dispatch procedures in order to modify them and to make sure that the 
generators are committed on time and dispatched to be able to meet the capacity, ramping and ramp 
duration requirements with certain level of confidence for the entire look-ahead period. 

The report is organized as follows.  Section 2 evaluates uncertainties associated with the system load 
forecast and wind generation forecast using different statistical methods.  Section 3 presents generator 
forced outage model recognizing that these are discrete events.  Section 4 reviews the current operating 
processes and schedules followed by the CAISO and the BPA.  Section 5 shows how the probabilistic 
tool developed in Sections 2 and 3 can be integrated with an EMS system.  Three modes of integration 
have been developed.  These are “passive,” “active,” and pro-active integration.  It also offers ISOs a 
choice while integrating the probabilistic tool with their security constrained unit commitment program.  
Section 6 presents a unit commitment method based on genetic algorithm optimization technique used in 
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this study to simulate EMS integration techniques.  Section 7 presents software prototype design and 
testing, Section 8 provides conclusions and future work, and a list of references is provided in Section 9. 

 
Figure 1.1.  Methodology Concept 
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2.0 Load and Wind Generation Uncertainties Evaluation 

 This section describes an innovative methodology that is capable of evaluating future generation 
requirements including the required capacity, ramping capability, and ramp duration capability (these 
characteristics form the so-called performance envelope).  The methodology incorporates uncertainties 
caused by wind generation and load forecast errors as well as (potentially) uninstructed generation 
deviations of conventional generation.  These tools meet the industry need in a more robust (that is, 
more reliable for a range of possible future operating conditions) assessment of the balancing reserves 
required in a control area. 

The previous works discussed in the introduction [1]–[6], address only a single source of 
uncertainty: the one related to wind generation.  Because the influence of the other sources of 
uncertainty is not reflected in the assessment, the resulting confidence intervals could be misleading 
for the system operators.  Unlike these existing approaches, the methodology developed in this report 
addresses all sources of uncertainty including the uncertainties surrounding the load forecasts, 
uncertainties associated with the forced generator outages, and uncertainties caused by forced 
generation outages (see Section 3.0). 

A “flying brick” method was developed in this study to assess the look ahead worst-case 
performance envelope requirements and to be able of ensuring the system capability to balance against 
the uncertainties with certain specified degree of confidence.  The “flying brick” approach idea is to 
include the ramp rate, ramp duration, and capacity requirements simultaneously and directly into the 
balancing process, and then look for the worst combinations of these parameters located along the 
vertices’ trajectories of the “flying brick.”  

2.1 Generation Reserves 

According to the Western Electricity Coordinating Council (WECC), standard power systems are 
required to maintain the following types of reserves [7]: 

Operating reserve – is the generation capacity above the one needed to supply firm system 
demand that is required to provide for regulation, to balance against the load forecasting error and 
equipment forced and scheduled outages, and to maintain local area reliability.  It consists of spinning 
reserve and non-spinning reserve.  

Spinning reserve – Unloaded generation that is synchronized, automatically responsive to 
frequency deviations, and ready to serve an additional demand.  It consists of regulating reserve and 
contingency reserve.  

Non-spinning reserve – 1.  The generating reserve, which is not connected to the system but 
capable of serving the demand within a specified time from its activation.  2. Loads or exports that can 
be removed from the system in a specified time. 

Regulating reserve – An amount of reserve responsive to automatic generation control (AGC), 
which is sufficient to provide normal regulating margin.  
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Contingency reserve – The capacity available to be deployed by a balancing authority (BA) to 
meet the North America Electric Reliability Corporation (NERC) and WECC contingency reserve 
requirements.  Increasing penetration of wind and solar generation leads to growing uncertainties in 
the reserve requirements.  

In the study, the term “assessment of generation capacity requirements” refers to the evaluation of 
uncertainty ranges for generation requirements needed to achieve the power system balance.  These 
uncertainty ranges define intervals within which the future generation requirement is expected to lie 
with a specified level of confidence. 

Uncertainties associated with wind and solar intermittency, electrical load variability, and 
unexpected generation outages are considered in this report.  These uncertainties affect the load 
following needs as well as regulating and contingency reserve requirements.  Details regarding the 
load and wind/solar generation uncertainties are given in this section; description of the generation 
forced outage model is presented in Section 3.0.  In general, the generation capacity allocation is 
performed by the unit commitment (UC) process, as shown in Figure 2.1 [8].  

To integrate the probabilistic tool into an EMS system, it is necessary to take into account the 
operating practices of the given power system.  In Section 4.0 details of the operating practices in 
CAISO and BPA are presented.  

 

Figure 2.1.  Allocation of Generation Unit Capacity 
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forecast error is presented in Figure 2.2(b).  One can see that day-ahead load forecast varies within the 
±8% range.  What is also important is the fact that the system load is normally more significant than 
wind or solar generation, so that even if the load forecast is more accurate than the forecast for the 
intermittent resources (in terms of the percentage error), the MW values of the errors can be quite 
comparable. 

 
a) 

 
b) 

Figure 2.2. Load Fluctuation and Uncertainty: a) Load Forecast vs. Actual Load; b) Load Forecast 
Error 
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2.3 Net Load Uncertainty 

Wind and solar generation and power system load demand have a number of similar features: 

• Wind/solar generation and most of the load are non-dispatchable resources; 

• They both have cycling behavior; 

• They both depend on the weather conditions; 

• They deviate from the forecast, etc. 

Actually, wind generation has more in common with electrical load, than with traditional 
(dispatchable) generation.  Therefore, wind generation can be considered as a negative load.  At the 
same time, electrical load and wind/solar generation cannot be considered as independent statistical 
variables.  The correlation between load and wind generation forecast errors is shown in [9], [10].  To 
address this issue, the net load concept is commonly used in wind integration studies to assess the 
impact of load and wind generation variability on the power system operation.  The net load has the 
following definition: net load is total electrical load minus total wind generation output minus total 
solar generation output plus the interchange. 

2.4 Statistical Methods to Evaluate the Forecast Uncertainty 

There are different approaches that can be used for the uncertainty analysis of the forecast errors.  
In this work, we analyzed two methods in terms of their applicability for the purpose of this project: 
distribution fitting and empirical probability. 

2.4.1 Distribution Fitting Approach 

Probability distributions are based on assumptions about a specific standard form of random 
variables; for example, normal, uniform or Poisson distributions.  Based on the standard distributions 
and selected set of its parameters, they assign probability to the event that the random variable takes 
on a specific, discrete value, or falls within a specified range of continuous values, [11].  

Selecting a distribution model means choosing a standard probability distribution and then 
adjusting its parameters to fit the data [11].  For example, in [9] it is assumed that the load and wind 
forecast errors are described by the truncated normal distribution (TND). 

The probability density function (PDF) of the truncated normal distribution is: 
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 where   µ is the mean value of the non-truncated normal distribution; 
              σ is the standard deviation of the non-truncated normal distribution; 
              a, b are upper and lower limits of the non-truncated normal distribution; 
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The cumulative distribution function  of the truncated normal distribution is: 
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An example of the load forecast error distribution is presented in Figure 2.3.  The blue bars 
represent the histogram of the real load forecast error.  The red curve depicts the TND of the load 
forecast error. 
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Figure 2.3.  Load Forecast Error Histogram 

2.4.2 Empirical Probability Approach 

When data or statistics do not follow any standard probability distribution, so-called 
nonparametric models based on empirical probability distribution models become more appropriate.  
These models make no assumptions about the form of the underlying distribution, so no parameter 
estimates are needed [11].  An advantage of estimating  probability distributions using the empirical 
modeling approach is that this procedure is relatively free of assumptions. 
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The idea behind building the empirical CDF is relatively simple.  This is a function that assigns 
probability 1 over n to each of n observations in the analyzed dataset.  The CDF for any specific 
parameter’s value in the analyzed dataset is calculated by adding all probabilities for the samples with 
smaller values of the parameter of interest.  Its graph has a stair-like appearance.  If a sample comes 
from a parametric distribution (such as a normal distribution), its empirical CDF will resemble the 
parametric distribution.  If not, the empirical distribution still gives an estimate of the CDF for the 
distribution [11].  An example of an empirical distribution (net load forecast error distribution and 
empirical CDF) are presented in Figure 2.4. 
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a)                                                                             b) 

Figure 2.4. Net Load Forecast Error Distribution (CAISO data, June-August, 2007): a) Histogram; 
b) Empirical CDF 

2.5 Assessment of the Generation Capacity Uncertainty 

A statistical approach based on the time-varying empirical probability density function (PDF) is 
used in the study to determine the combined uncertainty ranges of the wind/solar and load forecast 
errors, as well as the effect of the forced generation outages.  In this section, we only consider the 
wind and load forecast error uncertainties.  The solar forecast error can be included into the 
consideration in the same way as the wind forecast error.  The methodology to incorporate the 
generator forced outages uncertainty will be given in the following sections. 

In our approach, wind and load forecast errors are summed together for each dispatch interval in 
the past within a sliding window.  The sliding window size is selected to collect sufficient statistical 
information regarding the forecast errors.  The information can be accumulated separately for each 
forecast horizon; for instance, for the hour-ahead forecast, two hours ahead forecast, and so on.  Based 
on the collected statistics, the approach evaluates the percentile intervals (also called confidence 
intervals or uncertainty ranges) for each forecast horizon and different level of confidence.  These 
intervals are assumed to be the same in the future dispatch interval; that is, for the next hour, the hour 
after that, and so on.  
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An example of wind generation forecast statistical characteristics for different look-ahead dispatch 
intervals (1, 2, 3, 4, and 5 hours ahead) for a real power system is presented in Figure 2.5. Figure 2.5 
(a) shows the empirical probability density function and Figure 2.5 (b) shows the empirical CDF. 

 
a) 

 
b) 

Figure 2.5. Wind Generation Forecast Statistical Characteristic for Different Look-Ahead Period: a) 
PDF; b) Empirical CDF 
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solutions of the inverse CDF function corresponding to the desired percentiles on both ends of the 
distribution.  The definition of the inverse CDF is the following: 

If the CDF is strictly increasing and continuous, then the inverse CDF function  
1( ), [0,1]CDF p p− ∈  is the unique real number x such that CDF(x) = p.  The inverse of the CDF is 

called the quantile function.  An evaluation of the quantile functions often involves special numerical 
methods. 

Our task is to find the forecast error range x1…x2 to the given level of confidence P 
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Inverse CDF functions for wind generation forecast errors for different look-ahead periods are 
presented in Figure 2.6.  The uncertainty ranges are evaluated at 95% confidence level.  The 95% 
uncertainty range corresponds to the 2.5 to 97.5 percentile of the distribution reflecting the uncertainty 
(Figure 2.6).  It is obvious that the size of uncertainty ranges depends on the look-ahead time.  It can 
be seen from Figure 2.6 that for the longer look-ahead periods, the uncertainty range becomes larger. 

Figure 2.6. Wind Generation Forecast Inverse CDFs for Different Look-Ahead Intervals and 95% 
Uncertainty Ranges 
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2.5.1 Enhancement of Capacity Uncertainty Assessment 

Statistical characteristics of wind generation forecast essentially depend on the level of predicted 
wind generation.  For simplicity, all levels were combined in Figure 2.5.  Therefore, the accuracy of 
uncertainty ranges evaluation model can be improved if the level of predicted wind generation is taken 
into account. 

To enhance the uncertainty analysis methodology described above, the wind generation forecast 
can be divided into several intervals, depending on the level of predicted wind power production.  The 
empirical statistical analysis is performed separately for each wind production level.  Figure 2.7 shows 
an example of inverse CDFs of wind generation forecast errors calculated for different levels of wind 
generation forecast.  Five intervals of wind generation forecast are considered: ”low wind,” ”below 
average wind,” ”average wind,” ”above average wind,” and ”high wind” levels. 

Figure 2.7.  Inverse CDFs for Different Levels of Wind Generation Forecast 
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the normal distribution, and that is varying within a ±20% range.  The error distribution of the “high 
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forecast, the actual wind generation is mostly less than forecasted. 

0 0.1 0. 0. 0.4 0.5 0. 0.7 0.8 0. 1 -40 

-30 

-20 

-10 

0 

10 

20 

30 

Probability 

W
in

d 
Fo

re
ca

st
 E

rro
r, 

%
 

  

  

Low Wind 

Below Average Wind 
Average Wind 
Above Average Wind 
High Wind 

High Wind 

Low Wind 

Above Average Wind 

Average Wind 

Below Average Wind 



 

2.10 

2.6 Assessment of Ramping Uncertainties 

Assessment of ramping requirements is very important in case of integration of high amounts of 
wind generation into a power system.  Sudden wind generation ramps can happen frequently and cause 
additional need in fast responsive generation units available on-line. 

The required ramping capability needed to follow the net load curve, which covers all system 
imbalances, can be derived from the shape of the regulation and load following curves – see details in 
[10].  The “swinging door” algorithm is proposed for this purpose [10].  

Figure 2.8 demonstrates the idea of the “swinging door” approach.  A point is classified as a 
“turning point” whenever, for the next point in the sequence, any intermediate point falls out of the 
admissible accuracy range ±ε∆G.  For instance, for point 3, one can see that point 2 stays inside the 
“door” abcd.  For point 4, both points 2 and 3 stay within the “door” abef.  But for point 5, point 4 
goes beyond the ”door,” and therefore, point 4 is marked as a turning point. 

Based on this analysis, we conclude that points 1, 2, and 3 correspond to the different magnitudes 
of the regulation signal, π1, π2 and π3, whereas the ramping requirement at all of these points is the 
same, ρ1-3 (see Figure 2.9) The swinging door algorithm also determines the ramp duration δ. 
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Figure 2.8.  The Idea of "Swinging Door" Algorithm 
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Figure 2.9.  "Swinging Door" Algorithm – Obtaining Capacity, Ramps, and Their Duration 

The regulation capacity and ramping requirements are inherently related.  Insufficient ramping 
capability could cause additional capacity requirements.  A multivariable statistical analysis can be 
applied to provide a concurrent consideration of the regulation and load following capacity, ramping, 
and ramp duration requirements.  For the regulation/load following requirement curve, the “swinging 
door” algorithm is applied to determine the sequences of its magnitudes and ramps, ,..., 21 ππ  , 

,..., 21 ρρ , and 1 2, ,...δ δ .  The triads ( ), ,i i iπ ρ δ  can be used to populate the three-dimensional space 
of these parameters (Figure 2.10).  Let us define a rectangular box in the space that contains certain 
percentage of the points.  If a point lies outside the box, the regulation/load following requirements are 
not met at this point.  We will require that this probability must be below a certain minimum 
probability, Pmin.  Our task is to find a position of the walls of the probability box that corresponds to a 
given Pmin.  For given ranges of these three parameters, ρπ ∆∆ ,  and δ∆ , a box can be plotted in this 

space, so that some triads are inside the box ( inN ), some are outside ( outN ).  This approach helps 
determine the probability of being outside the box, 

 inout

out
out NN

Np
+

=

 (2.4) 

For example, assume that the confidence level for the analysis is established at 94%.  Then for 
each dimension of the box, we can request that the probability of finding a point outside the box due to 
any of several possible reasons such as insufficient generation capacity (incremental or decremental), 
insufficient ramping capability (upward and downward), or insufficient ramp duration capability, is 
equal.  This results in a requirement that only 1% of the points should be left on the outside on both 
sides of the box along any of the analyzed coordinates while adjusting its walls.  Of course, it is 
desirable to eliminate double or triple counting of points that are found outside of the box due to more 
than one reason.  The resulting size of the box determines the ranges of the generation requirements 
for the capacity, ramp, and ramp duration characteristics that are sufficient to meet the system needs in 
94% of the cases. 
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Figure 2.10.  Concurrent Consideration of the Capacity, Ramping and Duration Requirements 

2.6.1  “Flying Brick” Method 

A method called “flying brick” is proposed in this study to analyze the time-varying extreme 
(worst-case) requirements applied to the look-ahead generation capacity, ramping capability and ramp 
duration.  The “flying brick’s” idea is to include a worst-case (for a given confidence level) 
combination of the ramp rate, ramp duration, and capacity requirements into the generation scheduling 
and dispatch processes.  The three requirements are visualized as a three-dimensional probability box.  
Figure 2-11 demonstrates the idea of the “flying brick” method.  The blue curve in the center is the 
expected generation requirement curve that meets the expected net load.  The pink is the actual net 
load, which can deviate from its expected values.  The generator requirement ranges with 95% and 
93% confidence levels are also shown in Figure 2.11.  

Suppose t0 is the current time point.  At this point, we apply the probability box algorithm to the 
1-hour-ahead forecast errors.  The three dimensions of the box are the capacity, ramp rate, and ramp 
duration requirements’ ranges.  The worst combinations of these parameters shown by the vertices of 
the probability box set a criterion for the generation characteristics needed to meet the system needs 
with a certain level of confidence.  For example, the edge could correspond to the maximum capacity, 
maximum ramp, and maximum ramp duration within the covered uncertainty range for these 
parameters.  For each time interval, the “flying brick” box is built based on the three-dimensional 
CDFs reflecting the ranges of the analyzed parameters induced by the forecasting errors.  

Figure 2.12  presents the ramping requirement PDFs for different ramp durations.  Inverse CDF 
functions of the ramp rate distribution for different ramp durations, obtained using the “flying brick” 
approach, are presented in Figure 2.13.  Uncertainty range evaluation for ramping requirements is 
similar to capacity requirement evaluation (see Figure 2.6).  Ramping requirement uncertainty ranges 
evaluated at the 95% confidence level are shown in Figure 2.13.  It can be observed that the ramping 
ranges depend on ramp durations, and ramping requirements become lower for longer ramp durations. 
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Figure 2.11.  Idea of the “Flying Brick” Method 

Figure 2.12.  Ramping Requirement PDFs for Different Ramp Durations 
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Figure 2.13. Ramping Requirement Inverse CDFs for Different Ramp Durations and 95% 
Confidence Intervals 

2.7 Evaluation of Generation Requirements  

Evaluation of generation requirements includes an assessment of generation capacity requirements 
and generation ramping requirements.  Evaluation of balancing capacity requirements is shown in.  
The blue line corresponds to the generation schedule.  The hour-ahead schedule with 1-hour resolution 
is considered in this example.  Uncertainty ranges are calculated for each scheduling (dispatch) 
interval using individual statistical characteristics for a specified look-ahead horizon and taking into 
account the level of predicted wind generation, as it is obtained by the statistical analysis of 
retrospective information. 

The following information, taken from a real system, was used in the example: 

• Load 

– Actual  load  

– 1(2,3,4,5)-hour-ahead load forecast 

• Wind generation 

– Actual wind generation 

– 1(2,3,4,5)-hour-ahead wind generation forecast 

• Hour-ahead generation schedule. 
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The process of building the resulting uncertainty characteristics is a repetitive process.  The 
generation schedule, load and wind generation forecasts, and statistical characteristics of the 
retrospective data are updated each hour.  A sliding window with a 1-hour refreshment rate was used 
to acquire continuously updated statistical information.  Details on the data acquisition process and 
data requirements are given in Section 5.2 of the report.  The uncertainty ranges are also updated 
hourly, taking into account changing generation schedules, load forecast, and wind generation forecast 
and their statistical characteristics. 

 

Figure 2.14.  Evaluation of Capacity Requirements 

2.8 Uncertainty Range Validation Approach 

To validate the accuracy of the generation requirements uncertainty model, a validation approach 
is developed in this project.  It is based on comparing the predicted uncertainty ranges against the 
actually observed ranges for the same dispatch intervals.  The algorithm includes the following steps. 

1. Acquire retrospective statistical information using the sliding window technique.  The sliding 
window is updated hourly (or according to some other specified refreshment rate).  Details can be 
found in Section 5.2 

2. Perform a statistical analysis of the data acquired at step 1.  The derived statistical characteristics 
are also updated hourly (or according to some other specified refreshment rate).  See Sections 2.5 
for details. 
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3. Evaluate uncertainty intervals for the future generation requirements using the statistical 
characteristics obtained at step 2.  Uncertainty intervals are also updated according to a specified 
refreshment rate.  See Section 2.7 for details. 

4. When the predicted dispatch interval is reached, overlay the actual generation values over the 
previously forecasted uncertainty intervals, as shown in Figure 2.15, and determine which 
predicted uncertainty interval the actual generation value belongs to.  Put this information into the 
validation table (Table 2.1).  Note that for different look-ahead forecasted intervals, different 
tables should be used. 

At the end of simulation, the following calculations are made: 

1. Count how many points belong to the predicted intervals with a specified confidence level, and 
calculate the percentage of points found within the intervals (Table 2.1).  

2. Compare the obtained percentages with targeted percentage values.  The targeted percentages 
correspond to the confidence level of the interval.  For example, for the 0 to 80% confidence 
interval, the targeted value is equal to 80%, and for 80 to 85% uncertainty interval, the targeted 
value is equal to 5%, etc (see Table 2.1).  

The uncertainty algorithm is validated if the calculated percentages and the targeted percentages 
are close. 

Table 2-1.  Example of Validation Table (1- Hour Ahead Forecast) 

Interval 

Day 1 … Day N 
Total 
Points 

Percentage, 
% 

Objective 
Values, 

% 1h 2h 3h 4h …. 24h … … … 1h 2h 3h … 24h 
0-80%               803 80.3 80 

80-85%               46 4.6 5 
85-90%               51 5.1 5 
90-95%               49 4.9 5 

95-100%               51 5.1 5 
Total 1000 100%  
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Figure 2.15.  Validation Procedure 

2.9 Simulation Results for Capacity Requirements 

Simulations were performed using a probabilistic prototype tool developed in MATLAB [11] 
based on the validation approach presented in previous section.  The MATLAB prototype interface is 
presented in Figure 2.16. 

The actual system data from the Western interconnection were used.  

• Simulation period: 70 days 

• Sliding window length: 21 days 

• Sliding window refreshment rate: 1 hour 

• Generation schedule: Hour-ahead schedule (one hour resolution) 

• Wind and load forecasts: 1 hour resolution, updated hourly, over a 5-hours time horizon 

Results of the model validation runs for a real system are presented in Figure 2.17.  The 
percentage numbers, labeled on the pie chart, are the confidence intervals.  The targeted percentages 
are the intervals indicated in the legend.  The blue slice of the pie has a targeted percentage of 80%, 
and the other colored portions correspond to 5% each.  It can be seen from Figure 2.17 that the 
uncertainty validation procedure confirms the fact that the developed uncertainty prediction method 
provides a quite an accurate prediction of uncertainties. 
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Figure 2.16.  MATLAB Prototype Interface 
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Figure 2.17.  Results of Model Validation 
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3.0 Generator Forced Outage Model 

This Section presents the generator forced outage model.  The term “generator forced outage” 
usually refers to the shutdown of a generating unit for emergency reasons or a condition in which the 
generator unit is unavailable for supplying the load because of an unanticipated breakdown.  Generator 
outage is a discrete event and may or may not happen in any given dispatch interval.  This 
characteristic contrasts with the continuous nature of wind and load variations.  Also, the size of the 
power mismatch caused by a forced outage depends on the generator that is disconnected and the 
generators’ load at the moment of the event.  Any of the generators that are online within a dispatch 
interval could be forced out.  The main challenge that has been overcome in this development was to 
combine the uncertainty information on continuous parameters (such as the generation capacity 
requirement) with discrete information (such as forced generation outages).  This challenge has been 
successfully met in this project. 

Forced outages of system generators cause temporary imbalances that must be eliminated within 
10 minutes by activating the contingency reserve.  Within this 10-minute interval, the system is 
exposed to an imbalance that can be as much as 1000 MW (the size of the largest generation unit in 
the system).  The system inertia, governor response, and automatic generation control act to minimize 
the system power mismatch during the first seconds and minutes after the disturbance.  Therefore, the 
generation controls and generation characteristics needed to balance the system must be sufficient to 
mitigate these possible mismatches.  Again, there is an uncertainty associated with this process 
because the timing and the size of the forced outages are not known ahead of time and the contingency 
reserve activation process is not a deterministic process (for example, it depends on the characteristics 
of activated generators and type of activated reserve – spinning or non-spinning).  

The project develops a methodology that evaluates additional uncertainty caused by forced 
generator outages and incorporates this information into the overall framework.  This advanced feature 
constitutes a significant step forward in handling the uncertainty information in the modern EMS 
systems.  As a result, the system reliability and control performance can be additionally improved. 

Generator forced outages are stochastic events.  Modeling statistical characteristics of generator 
forced outages is important for a correct evaluation of the future generation requirement.  In the 
following sections, two types of generator forced outage models, i.e., the two-state Markov model and 
four-state Markov model, are described.  The capacity outage probability table (COPT) and an 
example of COPT calculation are provided.  Simulation results on forced outage model are also 
provided.  The forced outage model is incorporated in the contingency reserve activation model 
developed by the University of Washington team subcontracted by PNNL in this project (Dr. Richard 
D. Christie and Scott D. James Macpherson).  Details of the contingency reserve activation model can 
be found in Appendix B. 

3.1 Forced Outage Rate Calculation  

A generator outage is a discrete event and may or may not happen in any given hour.  This feature 
contrasts with the continuous nature of the wind and load variations [12]. 
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The simplest type of the generation unit model is a two-state Markov model as shown in Figure 
3.1.  Here the unit is assumed to always be in one of the two states: “up” – fully available, running, 
and subject to a possible failure; or “down” – totally unavailable, not running, and undergoing repair 
[13], [14]. 

Here, μ (repairs/year) is the repair rate, r=1/ μ (years) is the mean downtime due to a forced 
outage (mean time to repair - MTTR), λ is the failure rate, (failures/year), and m=1/ λ is the mean up 
time between failure events (mean time to failure - MTTF).  The unit’s forced outage rate (FOR) is the 
probability that the unit is down: 
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rFOR
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+
=

+
=

µλ
λ

 (3.1) 

where FOH is the forced outage duration within a year, (hours), and SH is the service hours within a 
year. 

 

Figure 3.1.  Two-State Markov Model 

The two-state model is a valid representation for base load units but does not adequately represent 
intermittent operating units used to meet peak load conditions.  The two-state model for a base load 
unit has been extended to the four-state peaking unit model shown in Figure 3.2, which is widely used 
in practice [14],[15].  The model assumes that the generating unit is either fully available or totally 
unavailable, but also considers that the unit may be either needed or not needed [14]. 
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Figure 3.2.  IEEE Four-State Markov Model 

The frequency balance equations for the four-state model shown in Figure 3.2 are as follows [13], 
[14]: 
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where Pi is the probability of the state i,  i = 0…3. 

According to [14], P1 and P3 can be calculated using the following equations:  

 M
mPDTrP s )(2

1
+

=

 (3.3) 
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D is the average in-service time per 
occasion of demand; 

T is the average reserve shutdown 
time between periods of need; 

r is the average repair time per forced 
outage occurrence; 

m is the average in-service time 
between occasions of forced outage 
when needed; 

Ps is the probability of a starting 
failure resulting in inability to serve 
load during all or part of a demand 
period. 
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Demand factor f can be expressed as the function of the parameters given in Figure 3.2 as follows 
[14]: 
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 (3.5) 

The factor f serves to weight the FOH to reflect the time the unit was actually on forced outage 
when in demand by the system [13].                                      

Forced outage rate demand (FORd) can be evaluated as follows:  

 SHFOHf
FOHfFORd

+×
×

=

 (3.6) 

FORd is the probability that a generating unit will not be available when required. 

Equivalent forced outage rate demand (EFORd) [13]: 

 SHFOHf
EFDHfFOHf

EFORd p

+×
×+×

=

 (3.7) 

where fp is the partial outage factor and EFDH is the equivalent forced derating hours. 

EFORd can be found in the NERC Generating Availability Data System (GADS) [17],[18].  The 
difference between EFORd and FORd is that EFORd also includes derated states of the generator. 

The full outage probability (FOP) of a unit is the probability that the unit will stop providing all of 
its current output in an hour period.  Here, it is assumed that the trip causes the unit’s output to be 
instantaneously unavailable.  The hourly FOP of a unit can be related to the FOR and MTTR as 
follows [12]: 

 i

i
i MTTR

FORFOP =

 (3.8) 

In the case of peaking units, EFORd can be used instead of FOR in (3.8). 
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3.2 Capacity Outage Probability Table 

The capacity adequacy evaluation of generation systems requires the creation of a generation 
capacity model, known as the capacity outage probability table (COPT).  COPT gives the probability 
of occurrence for each possible outage capacity level [13]. 

Let us assume that the system has n independent generating units and that unit i has mi discrete 
states with outage capacity Cij and individual probability pij = p(Xi = Cij), where j = 1…mi [16].  Outage 
states of unit i are arranged in ascending order.  The COPT contains N + 1 discrete states, where N = 
Cmax/Δ,  Cmax is the installed capacity of the system and Δ is the resolution of the COPT.  The new 
individual state probabilities, after unit i is added to the system, can be calculated using the following 
recursive algorithm [16]: 
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where p(·) is individual state probabilities after unit i is added; 
    p’(·) is individual state probabilities before unit i is added; 
    k is an index of discrete state. 

The recursive convolution process starts with the initial values: p(0) = 1 and p(k) = 0, k = 1,2 ,... N. 
Note that p(k) = 0 if k < 0. 

In summary, the recursive convolution procedure for building a COPT has the following basic 
steps [16]: 

1. Read unit data, determine Δ and N = Cmax/Δ; 

2. Set initial values: p(0) = 1 and p(k) = 0, k = 1,2 ,... N; 

3. Add unit i to the system, calculate p(k), k = 0,1,2 ,... ,N using (3.9); 

4. Repeat Step 3 for all the units. 

Usually, the table obtained by (3.9) is simplified by rounding the COPT to selected discrete 
capacity levels.  The size of the round-off increment depends on the desired accuracy.  

The cumulative probability of having kΔ MW to be forced out can be calculated using the 
following equation: 
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3.3 Example of COPT Calculation 

Let the system consist of two generators.  The first generator has a capacity of 100 MW and 
outage probability 10%, and the second generator has a capacity of 50 MW and outage probability 
20%.  Assume that generating units has only two states: operating state and forced out state. 

Then, the capacity matrix is: 
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where c11 = 0 and c21 = 0 – correspond to operating states of generators one and two (no forced outage) 
and c12 = 100 and c22 = 50 – correspond to forced out states (nominal generator capacity). 

Individual probability matrix is defined as: 
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where p11 = 0.9 and p21 = 0.8 are probabilities of operating state of generators one and two; 

           p12 = 0.1 and p22 = 0.2 are probabilities of the forced out state. 

The installed system capacity is Cmax = 150MW, and the COPT resolution is Δ = 50MW.  
Therefore COPT contains four discrete states. 

Let us set initial probability values p(k)in the COPT (Table 3.1). 

Table 3-1.  COPT (Initial Values) 

State, k Capacity, c(k) (MW) Probability, p(k) 
0 0 1 
1 50 0 
2 100 0 
3 150 0 

Now we will add unit one to the system and calculate new capacity outage probabilities using 
(3.9) - see Table 3.2. 
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Table 3-2.  COPT (Unit One Added) 

State, k Capacity, c(k) (MW) Probability, p(k) 
0 0 0.9 
1 50 0 
2 100 0.1 
3 150 0 

The next step is adding the unit two and update values of COPT (Table 3.3): 
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Table 3-3.  COPT (Unit Two Added) 

State, k Capacity, c(k) (MW) Probability, p(k) 
0 0 0.72 
1 50 0.18 
2 100 0.08 
3 150 0.02 

Figure 3.3 and Figure 3.4 show the capacity discrete outage PDF and CDF based on the calculated 
COPT. 

 

Figure 3.3.  Discrete Probability Density Function 

 

Figure 3.4.  Cumulative Distribution Function 
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3.4 Preliminary simulation results (Forced Outage Model) 

An example of a CAISO generation schedule is presented in Table 3.4, and generation unit 
performance statistical characteristics taken from GADS [17] are presented in Table 3.5. 

COPTs are calculated to each hour, taking into account the generators’ schedule.  Figure 3.5 and 
Figure 3.6 show the capacity outage PDF and CDF functions for a 1-hour look-ahead period. 

Table 3-4.  Generation Schedule 

Number UNIT_ID Unit Type 1h 2h 3h 4h 5h 
1 Unit1 STUR 16 16 16 16 16 

2 Unit2 STUR 20 20 20 20 20 

3 Unit3 HYDR 16 16 16 16 16 

4 Unit4 GTUR 0 0 0 0 0 

….. … …… … … … … … 

516 Unit516 STUR 3 3 3 3 3 

517 Unit517 WIND 10 10 10 10 10 

 Total Generation  17792.9 16512.06 16113.22 15813.15 15811.15 

 Wind  1344 1310.28 1313.55 1299.14 1256.3 

Table 3-5.  Annual Unit Performance Statistic 

GEN_TYPE GEN_TECH FUEL_TYPE FOR Service Hours Number of Occurrences 
T STUR GEOT 0.5 8500 3.6 

T GTUR GAS 46.33 270 3 

T STUR GAS 8.29 2750 4 

H HYDR WATR 4.92 4981 3 

T WIND WIND - - - 

T CCYC GAS 7.33 3673 9 

H PTUR WATR 3.71 2634 3.86 
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Figure 3.5.  Capacity Outage Discrete PDF 
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Figure 3.6.  Capacity Outage CDF 
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4.0 Review of Current Operating Practices at CAISO and BPA 

To incorporate the proposed probabilistic tool into the real EMS systems, we need to know the actual 
generation scheduling and dispatch procedures used by the balancing authorities where this integration 
can take place.  In this Section, the operating practices at the CAISO and BPA are briefly reviewed.  

CAISO runs different generation schedules in their day-ahead market and real-time market to make 
sure that the energy and reserve requirements including regulating up, regulation down, and ramping 
requirements are ultimately met in real-time operation.  BPA’s generation scheduling, load following and 
regulation requirements as well as hydro optimization procedures are also reviewed here. 

4.1 Scheduling Process at CAISO  

Figure 4.1 shows the CAISO market timeline.  The CAISO scheduling process includes day-ahead 
market (DAM), real-time unit commitment (RTUC), short-term unit commitment (STUC), and real-time 
economic dispatch (RTED).  Although regulation (REG) capacity is procured in the day-ahead market, it 
is controlled by the EMS AGC system, rather than the market software [19].  

The regulation capacity is procured day-ahead for each operating hour of the next operating day.  The 
additional ancillary services (AS) also can be procured in the real-time market (RTM) to meet additional 
AS requirements.  The AS include: regulation up reserve, regulation down reserve, spinning reserve and 
non-spinning reserve.  Temporal characteristics of the scheduling and dispatch processes are given in 
Table 4.1. 

 
Figure 4.1.  CAISO Timelines 
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Table 4-1.  Time Characteristics of the Scheduling Process at CAISO 

Element Acronym Start time Interval Frequency Time horizon 
Day-Ahead 

Market 
DAM Closes at 

10:00 on the 
day before 

1h Every day 24h 

Short-Term 
Unit 

commitment 

STUC 75 min before 15 min hourly 5 hours 

Real-Time Unit 
commitment 

RTUC - 15 minute 15 minutes 4 to 7x15 
minute interval 

Real-Time 
Economic 
Dispatch 

RTED 7.5 min before 5 min Every 5 min 65 min 

Regulation REG - 4s 4s - 
      

The CAISO RTM consists of several applications, three of which including STUC, RTUC, and 
RTED, work together.  The STUC and RTUC applications ensure there is enough on-line capacity to 
meet a 5-minute demand.  The STUC is performed in the RTM to commit units and balance the system 
resource and demand while enforcing transmission constraint.  STUC is run once an hour and looks out 5 
hours to commit resources that have start up times greater than 90 minutes. 

The RTUC application runs every 15 minutes and looks out between four and seven 15-minute 
intervals to determine if short-start and fast start units need to be committed or de-committed. 

The RTED process runs every 5 minutes to meet the imbalance energy requirements of the CAISO.  
This process looks ahead 65 minutes to ensure that enough capacity is on-line to meet real-time demand.  
It is expected that wind variability and the lack of accurate wind forecast could create challenges for the 
RTED application.  RTED is the lowest granularity of dispatch in the ISO market except for regulating 
reserves, which is procured in the RTM, but is dispatched through the EMS AGC system every 4 seconds. 

Figure 4.2 represents the CAISO market design generation schedules.  In the day-ahead (DA) 
timeframe, wind and solar resources are not required to bid directly into the CAISO markets.  This fact 
can significantly impact the unit commitment process in the DA timeframe because the CAISO must 
forecast the expected hourly production in the DA to ensure that enough resources are committed for next 
day operation.  Similarly, the CAISO load forecast is done in the DA and RT timeframes.  In the DAM, 
the forecast of the CAISO’s hourly demand is done for three days in advance.  The DA schedule is an 
hourly block energy schedule that includes 20-minute ramps between hours.  It is provided at 10.00 a.m. 
the day prior to the operating day.  The real-time schedule is based on STUC/RTUC timelines.  The RTM 
closes 75 minutes before the actual beginning of an operating hour as shown in Figure 4.1.  RTED is 
provided 7.5 minutes before the dispatch operating target (DOT) and is based on real-time forecasts.   
Symmetrical ramping is used, which means that by dispatching for the average, the DOT ends in the 
center of the interval.  In the RTM, the CAISO automatic load forecasting system (ALFS) provides a load 
forecast for each 15-minute and 5-minute interval.  Load and wind forecasting errors can cause the RTM 
application to dispatch incorrect amounts of imbalance energy needs.  RTED results are 5-minute 
dispatch instructions and advisory notices for the look-ahead timeframe. 
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Thus, the load following or supplemental energy dispatches are the difference between RTED and 
STUC/RTUC curves.  This is an instructed deviation caused by real time dispatches.  Regulation is the 
difference between the actual demand and the RTED curves (see Figure 4.2). 

 

Figure 4.2.  Generation Dispatch Components 

Because of the load and wind (as well as solar) forecasts errors, there are uncertainties in the ranges 
of regulation and load following requirements.  Figure 4.3 and Figure 4.4 show regulation and load 
following uncertainty ranges, where the actual demand (dotted line) is unknown. 

 

Figure 4.3.  Regulation Uncertainty 
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Figure 4.4.  Load Following Uncertainty 

4.2 Operating Practices at BPA  

BPA normally has a sufficient range of load following, regulation, and ramping capabilities under 
many conditions but not at all times.  Because of the constraints of the hydro system, BPA could run out 
of available range under the following conditions: 

• During spring runoff, load following, and regulation down is limited. 

• Throughout summer, range on the lower Columbia River is limited due to salmon run requirements. 

4.2.1 Generation Schedules 

The generation scheduling process at BPA is based on bulk hourly energy schedules and includes 
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ahead forecast completed 20 minutes before the hour of delivery and implemented by adjusting 
generation units base point settings.  Figure 4.5 shows the timeline for the pre-schedule and real time 
schedule procedures. 

Within-hour load balancing is achieved mainly through the adjustment of several federally owned 
hydro plants responding to AGC signal.  There is not yet a separate automated load following process to 
dispatch generations following intra-hour load variations.  
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Figure 4.5.  BPA Scheduling Timeline 

4.2.2 Load Following 

Load following is the use of online generation equipment to track the intra- and inter-hour changes in 
customer loads.  There is not a within-hour scheduling process, or load following, in the BPA system 
presently.  Load following in the current BPA system may be interpreted as the process of manual 
adjustment of the generation base points when the deviation of the regulating units from their base points 
exceeds certain threshold.  This adjustment can be repeated any 30 minutes by BPA real-time dispatches 
if needed.  A within-hour scheduling process with 10-minute intervals is being considered for 
implementation in the BPA system in the future.  

4.2.3 Regulation 

Regulation service in the BPA system, which follows the moment-to-moment changes in load, is 
accomplished by committing on-line generators responding to the AGC signal.  The outputs of these 
generators are raised or lowered based on the difference between generation schedule and actual load.  
The transmission customers must either purchase this service from the BPA or make alternative 
arrangements to satisfy its regulation and frequency response obligation.  

4.2.4 Hydro Optimization 

BPA has two hydro optimization models: Columbia Vista, which optimizes generation and loads the 
next hour, next day, weekly and seasonally and the near real time optimizer (NRTO) that optimizes 
generation to meet loads within the hour [20]. 

Columbia Vista is primarily used by short-term planners to determine: 

• Use of H2O (Basin optimization) 

• Use of machines (Plant optimization). 
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Vista is the software system for hydropower scheduling.  It determines the global optimum generation 
schedule for a cascade or group of cascades over the long term (one or more years) as well as the short-
term planning horizon of one to two weeks on a one-hour time resolution [21].  

The NRTO is primarily used by plant operators and duty schedulers to determine use of machines 
(plant optimization).  NRTO has been developed by Synexus Global Inc. in cooperation with the BPA 
[22].  The software tool enables hydropower operators and schedulers to assess system parameters and 
optimize operations on a near real-time basis.  NRTO now serves as a tool to evaluate the Columbia River 
hydro system's distribution of generation on a within-hour basis.  

NRTO works as a stand-alone application or in conjunction with the Synexus Vista decision support 
system ("Columbia Vista"), which has recently been installed and customized for BPA.  The NRTO 
model allows users to evaluate unit dispatch options while simultaneously meeting generation requests 
and observing imposed operating constraints.  For example, a project operator can look half an hour ahead 
(in six 5-minute “snapshots”) and determine the best way to meet the distinct generation requirements 
anticipated for each interval while minimizing the number of unit-commitment changes that would be 
required over the half-hour period.  Factors such as constraints on unit dispatch order, unit operating 
efficiencies, and the effects on head of the generation decision are all taken into account [22].  
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5.0 EMS Integration of Probabilistic Tools 

This Section describes how the developed probabilistic tool (see Sections 2 and 3) can be 
integrated with existing EMS systems consistently with their application designs and requirements (as 
discussed in Section 4).  Depending on the desired sophistication level, three modes of integration 
have been proposed: “passive,” “active,” and “proactive.” “Passive” integration is the first step of 
integration, which brings awareness of wind and load forecast uncertainties into control center 
software tools through information visualization and alarming.  “Active” integration uses the 
uncertainty information to modify existing grid operation functions such as unit commitment.  
“Proactive” integration develops new grid operation functions enabled by the uncertainty information.  
For example, a new probabilistic unit commitment process can be defined with the wind and load 
forecast uncertainty being an additional constraint.  As part of the integration, choices are offered 
regarding how the balancing authorities prefer to integrate the probabilistic tool with their security 
constrained unit commitment program and other tools. 

5.1 Conceptual Design of Probabilistic Tool Integration  

Integration of probabilistic tools with an EMS system should take into account operating practices 
of specific power systems.  Figure 5.1 shows the conceptual view of the capacity requirements 
uncertainty evaluation based on the CAISO scheduling process.  The RTED, STUC, and DAM 
scheduling tools (described in Section 4.1) use various forecasts, such as those that provide forecasts 
with different dispatch intervals for different time horizons, and those with different resolutions.  
Therefore, these forecasts have different accuracies, statistical characteristics, and uncertainty ranges 
associated with them.  Figure 5.1 shows the uncertainty ranges as color bars for different time 
horizons.  Different shades of colors indicate different levels of confidence.  For the first 65-minute 
time horizon, when the scheduling is done by RTED, the uncertainty range is smaller as the forecast is 
more accurate compared to longer-term forecasts such as those for the 5-hour horizon and the 24-hour 
horizon, when the scheduling is done by STUC and DAM, respectively.  RTED runs every 5 minutes, 
so the uncertainty needs to be evaluated at a 5-minute interval.  For the 5-hour STUC and the 24-hour 
DAM, uncertainty can be evaluated for a look-ahead interval of 30 minutes up to hours.  To ensure 
reliable supply of generation, scheduling or dispatch at different time horizons needs to cover the 
predicted uncertainty ranges.   

Figure 5.2 shows a conceptual view of capacity requirements evaluation based on the BPA 
operating practices.  BPA has day-ahead and hour-ahead scheduling processes that are based on day-
ahead and hour-ahead forecasts, respectively.  BPA’s scheduling process looks relatively simpler 
because most of the scheduling is for its hydro units.  But again, at the two different time horizons – 
hour-ahead or day-ahead–the uncertainty associated with wind and load forecasts as well as other 
factors needs to be evaluated at different intervals.  
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Figure 5.1.  CAISO Generation Schedule and Capacity Requirements Uncertainty Evaluation 

 
Figure 5.2.  BPA Generation Schedule and Capacity Requirements Uncertainty Evaluation 
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1. Level I - “Passive” Integration.  

Passive integration is the initial step and the simplest way of integration.  In this case, the 
probabilistic uncertainty will be only visualized as part of the desktop application for grid dispatchers.  
Displays with look-ahead capacity and ramping requirements are provided to a real-time dispatcher.  
The displays help the dispatcher to assess balancing needs in real time so as to take right actions to 
mitigate potential energy deficit or surplus situations.  The decision on actions to take is part of the 
short-term generation scheduling.  Details on visualization screen design are given in Section 5.5. 

2. Level II - “Active” Integration  

Active integration of the tool is a more advanced level of integration.  The uncertainty tool 
interacts with the EMS environment, especially the unit commitment and economic dispatch 
processes.  The uncertainty information is used as a constraint in the unit commitment and economic 
dispatch processes, which results in different generation schedules to meet different confidence levels.  
In addition to uncertainty visualization displays, the uncertainty tool also displays alerts about 
potential threats to the power system due to deficit in reserve or over-generation and provides 
advisories to the dispatcher what actions can be taken to avoid any undesirable scenarios.  Details on 
active interaction with unit commitment are given in Section 5.3.1. 

3. Level III - “Proactive” Integration  

Proactive integration is the most advanced level of integration.  It requires not only interaction 
with the EMS, unit commitment, economic dispatch and other systems; it also requires modification of 
current operating practices and algorithms.  For instance, new constrains based on uncertainties 
evaluations can be incorporated into the unit commitment process, or probabilistic unit commitment 
can be developed based on the uncertainty information.  Details are given in Section 5.3.2.  
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Figure 5.3.  Software Flowchart 
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5.2 Data Acquisition 
In order to model the statistical uncertainty information, large volumes of historical and real-time 

data are needed.  As shown in Figure 5.4, a sliding window is used for acquiring continuous statistical 
information on system load, wind and solar power generation, generation schedules, and so on.  
Table 5.1 lists the data needed for the uncertainty evaluation process.  The time frame size and 
refreshment rates of sliding windows are tuned for different systems depending on their individual 
characteristics.  This study uses a one- to two-month time frame and a one-hour refreshment rate. 

 Figure 5.4 represents a typical structure of the load or wind generation forecasts.  The forecast 
resolution is the time interval between two consecutive data records.  The time horizon is the length of 
the look-ahead interval, and the forecast update interval is the time interval for updating the forecast. 

Besides the statistical information, actual measurements are also acquired.  The full list of required 
data for the CAISO system is shown in Table 5.1.  It includes five categories of data: Category A – 
conventional generation information; B – load information; C – wind and solar generation 
information; D – actual measurements; and E – static information.  

 

Figure 5.4.  Example of Wind Generation or Load Forecast Structure 
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Table 5-1.  List of Required Data for the CAISO System 

Items# Data Resolution Time Horizon Frequency 

A  

Generation and 
Interchange 
Schedules 

A1 
Day-ahead Generation Schedule 
(total and for each individual 
generator) 

1 hr 24 hr Every day at 10:00 a.m. 

A2 
Short-Term Unit Commitment 
(total and for each individual 
generator) 

15 min 5 hr Each 15 min , 
75 min before 

A3 Pumped Hydro Schedule 1 hr 24 hr – 

   A4 
Real-Time Economic Dispatch 
(total and for each individual 
generator) 

     5 min     65 min 
Every 5 min, provided 7.5 
min before the beginning of 
a 5-min dispatch interval 

   A5 Day-ahead  
Interchange Schedule (total)        1hr      24 hr – 

   A6 Hour-ahead  
Interchange Schedule (total)     15 min       5 hr  – 

Dynamic 
Schedules 

A7 
Day-ahead  
(total and for each individual 
generator) 

1 hr 24 hr Every day at 10:00 a.m. 

A8 
Short-Term Unit Commitment 
(total and for each individual 
generator) 

15 min 5 hr Each 15 min , 
75 min before 

A9 
Real-Time Economic Dispatch  
(total and for each individual 
generator) 

5 min 65 min 
Every 5 min, provided 7.5 
min before the beginning of 
a 5-min dispatch interval 

Operating 
Reserves (total 
and for 
individual 
generators) 

A10 Regulation Up  
Procurement 1 hr 24 hr – 

A11 Regulation Up  
(available) 5 min – – 

A12 Regulation Down 
Procurement 1 hr 24 hr – 

A13 Regulation Down 
(currently available) 5 min – – 

A14 Spinning Reserve 1 hr 24 hr Procured day-ahead 

A15 Non-Spinning Reserve 1 hr 24 hr Procured day-ahead 
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Table 5.1. (contd) 

Items# Data Resolution Time Horizon Frequency 

B  

Load Forecast 

B1 Day-Ahead Load Forecast 1 hr 24 hr Every day before 10 am 

B2 Hour-Ahead Load Forecast 30 min 24 hr 30 min 

B3 Real time Load Forecast 5 min 60 min 5 min 

C  

Wind 
Generation 
Forecast 
(total and per 
generation 
zone) 

C1 Day-ahead Wind Forecast 1 hr 24 hr Every day before 10 am 

C2 Hour-ahead Wind Forecast 5 min 8 hr 5 min 

C3 Real Time Wind Forecast 5 min 65 min 5 min 

Solar 
Generation 
Forecast 

C4 Day-ahead Solar Forecast 1 hr 24 hr  Every day before 10 am 

C5 Hour-ahead Solar Forecast 5 min 8 hr 5 min 

C6 Real Time Solar Forecast 5 min 65 min 5 min 

D  

D1 Actual Load 5 min – 5 min 

D2 
Actual Generation  
(total and for each individual 
generator) 

5 min – 5 min 

D3 Actual Wind Power Generation  
(total and per generation zone) 5 min – 5 min 

D4 Actual Solar Power Generation  
(total and per generation zone) 5 min – 5 min 

D5 Actual Interchange 
(total) 5 min – 5 min 

D6 
Actual Regulation  
(total and for each individual 
generator) 

1 min – 1 min 

D7 
Actual Load Following  
(total and for each individual 
generator) 

5 min – 5 min 
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Table 5.1. (contd) 

Items# Data Resolution Time Horizon Frequency 

E  

E1 
Generator Type (Hydro, Nuclear, 
Gas Turbine, Combined-cycle, 
Wind, Solar, … ) 

– – – 

E2 Ramp Rate – – – 

E3 Regulation Ramp Rate – – – 

E4 Startup Time – – – 

E5 Startup Cost – – – 

E6 Maximum Capacity – – – 

E7 Minimum Capacity – – – 

E8 Minimum Run Time – – – 

E9 Minimum Down Time – – – 

E10 Failure to Start Up  
(% of startups) – – – 

E11 Production Cost Characteristic 
(piecewise linear characteristics) – – – 

E12 Force Outage Rate (FOR) – – – 

E13 In Service Hours – – – 

E14 Out of Service Hours  
(due to Forced Outages)  – – – 

E15 Number of Occurrences  
(per year for forced outages) – – – 

E16 Must-Run Units (Yes/No) 1 hr 24 hr Determined before 10 am 
for the next operating day 

E17 Availability for Redispatch  
(Yes/No) 1 hr 24 hr Determined before 10 am 

for the next operating day 

E18 Availability for Unit 
Commitment (Yes/No) 1 hr 24 hr Determined before 10 am 

for the next operating day 
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Figure 5.5 shows an example (a snapshot) of forecasted and actual wind power generation.  The 
red bold line represents the actual wind generation during a three week period.  The other curves 
represent the forecast wind generation with different look-ahead time horizons (1,2,3,4,5- hours ahead) 
for the same time period.  It can be observed that the longer the horizon is, the less accurate the 
forecast becomes.  The statistical analysis can be applied to the forecast errors, and histograms for 
different look-ahead time horizons can be used to generate forecast PDFs and CDFs.  
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Figure 5.5.  Example of Forecast and Actual Wind Generation in a Three-Week Period 

5.3 Integration with Unit Commitment 

In restructured power systems, security-constrained unit commitment (SCUC) is utilized by an 
independent system operator/regional transmission organization (ISO/RTO) to clear the day- or week-
ahead market.  The objective of SCUC is to minimize the system operating cost while meeting the 
prevailing constraints such as power balance, system spinning and operating reserve requirements, 
minimum on/off time limits, ramping up/down limits, limits on state and control variables including 
real and reactive power generation, controlled voltages, settings of tap-changing, and phase-shifting 
transformers [23].  Wind and load forecast uncertainty information adds to the complexity of the unit 
commitment process as the system also needs to mitigate the variations in wind and load.  One way to 
achieve that is to commit the right units at the right time so the system has enough margins for 
ramping up or ramping to balance energy needs.  This section uses the unit commitment process to 
demonstrate the concept of “active” and “proactive” integration of uncertainty information.  
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5.3.1 “Active” Integration 

The active integration approach with the unit commitment (UC) procedure does not imply any 
modification in current operating practices.  In this approach, the uncertainty evaluation tool will 
interact with and use the existing UC engine with the objective to monitor the sufficiency of available 
balancing resources within the uncertainty range of system requirements and to generate alternative 
generating schedules (advisories) in case of potential threats to the power system reliability. 

A simple example of how the active integration with UC could be achieved is given below.  

1. Run unit commitment and economic dispatch (standard UC) optimization problems with nominal 
forecast values of wind generation and load demand. 

2. An existing UC engine uses various input information such as demand forecasts, generating unit 
characteristics, different constraints, market bids, as input (see Figure 5.6).  As a result of the UC 
problem, a generation schedule is produced.  In Figure 5.7, an example of generation schedule is 
presented.  The hour-ahead schedule (HAS) shown in the figure corresponds to BPA’s scheduling 
process. 

3. Perform an evaluation of the generation requirement according to the methodology proposed in 
Section 2.0.  As a result, we get the uncertainty ranges for the generation requirements.  

4. Figure 5.8 shows the uncertainty range as colored blocks. 

5. Evaluate currently available balancing capacity, including regulating reserves and available 
redispatch ranges1

6. No actions are needed if a sufficient balancing capacity is available (i.e., if the uncertainty range is 
found within the available redispatch range).  Otherwise, if balancing capacity is not sufficient, i.e. 
there is probability that the system would experience balancing problems, proceed to the next step.  

 from the generation schedules determined in step 1.  

In Figure 5.8, one can see that at the hour ending by 2:00 (HE2) and HE4 there is no sufficient 
available balancing capacity to meet the demand with the 95% confidence.  

                                                      
1 Operating practices of specific power systems (balancing authorities) should be taken into account. 
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Figure 5.6. Flowchart of a Unit Commitment Process Considering Wind and Load Uncertainties for 
the “Active” and “Proactive” Integration Approaches 

 
SCUC 

Load Forecast 

Wind Forecast 

Solar Forecast 

Units’ 
characteristics 

Pmin 

Pmax 

Ramp Rate 

Start up time 

…. 

Bids/production cost: 

Energy 

Regulation 
Up/Down 

Spinning Reserve 

Non-spinning 
Reserve 

Constrains/Requirements 

Transmission Constrains 

Reserve Requirements 

Ramping Requirements 

….. 

Generation Schedule 

On-line units 

Available Reserves 

 

Uncertainty Tool 
Visualization Advisory 

“Active” 

“Proactive
 



 

5.12 

 

Figure 5.7.  Unit Commitment for the Case With Nominal Wind and Load Forecast Values 

 
1. Run UC optimization again (UC2) to follow the upper bound of the desirable confidence interval.  

• The same UC engine is run again to attempt to follow the extreme generation requirement, 
corresponding to the boundary of the confidence interval.  A specific aspect of the UC 
optimization process for uncertainty range boundaries is that the available on-line generators 
committed during standard UC optimization should be taken into account.  UC2 only commits 
additional units if there is insufficiency of balancing resources or de-commits some units in case 
of potential over-generation.  CAISO uses the similar UC engine in RTUC/STUC optimization 
process. 

• Figure 5.8 shows that to provide a sufficient balancing capacity at HE2, it is necessary to start up 
an additional unit (unit 4) 30 minutes before the HE2 begins.  At HE4, UC2 optimization could 
not find any solution.  This means that it would be necessary to curtail a part of the load or procure 
additional balancing services from other balancing authorities. 
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Figure 5.8.  Unit Commitment for the Upper Uncertainty Range Boundary 

1. Display real-time alerts and advisories to the dispatcher. 

Different advisories and alerts can be shown on the dispatcher’s screen.  Alerts can have different 
grades reflecting the level of risk to the system.  

In Figure 5.9, two examples of advisories are presented:  

• At HE2, there is a 10% chance that the balancing resources will not be sufficient, and the 
recommended solution would be to start up unit 4 at hour 00:30. 
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• At HE4 there is a 15% chance that the balancing resources will not be sufficient.  The 
recommended solutions are to procure 100 MW of additional capacity or be ready to curtail 
100MW of load. 
 

 

Figure 5.9.  Example of Advisories 

5.3.2 “Proactive” Integration 

Proactive integration approach requires some modifications of the current UC optimization 
procedures and potentially the operating practices.  This is the most comprehensive type of integration.  
Only initial studies are performed in the course of this work.  Further research is required in the next 
phase of this project. 

The initial idea of proactive integration is to use the output of the uncertainty tool as a new 
constraint in the existing unit commitment process, or as an input to run a probabilistic unit 
commitment process.  For example, the uncertainty range of the capacity requirement can be used as 
part of the reserve requirements in the UC optimization procedure (see Figure 5.6).  In addition, the 
uncertainty range of the ramping requirement could be incorporated into the UC process.  Today’s 
SCUC process considers ramps between consecutive hours, but within-the-hour ramping requirements 
are not part of SCUC yet.  Therefore, a modification of the SCUC optimization engine will be 
required.  Generally, the proactive integration of uncertainty information into the UC process results in 
fundamental changes to the unit commitment algorithm.  
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5.4 EMS Integration Design 

We developed the framework for integrating the probabilistic uncertainty evaluation tool with 
EMS systems. Figure 5.10 shows the overall design of the integration.  The uncertainty evaluation tool 
(labeled as “Wind/Load Uncertainty Assessment”) is a standalone module outside of the EMS 
environment.  It needs data from the EMS in addition to wind forecast information, as shown in the 
figure.  The output of the uncertainty tool can then be used to drive other grid operation functions such 
as unit commitment and its associated economic dispatch, which will be our focus of the 
implementation though other elements such as contingency analysis (CA) and reserve sharing are 
shown for the completeness of the design.  The integration consists mainly of four elements: 

1. Data export from the EMS 

2. Data management for the uncertainty tool 

3. Data import to the EMS 

4. Integration with the unit commitment and economic dispatch processes.  

The following subsections give detailed specifications of the four elements using AREVA’s EMS 
software as an example. To demonstrate the probabilistic uncertainty evaluation tool and its 
applicability to actual grid operation environments, we implemented the data export and data 
management elements as well as integration with unit commitment and economic dispatch. A 
prototype tool is introduced in Section 7.0. It lays a solid foundation for future full integration with 
EMS systems.  

 

  

EMS – energy management system; 
UC – unit commitment; ED – 

economic dispatch; AGC 
– automatic generation 

control; CA – contingency analysis; 

SE – state  

Figure 5.10.  Concept of PNNL Tool Integration with EMS systems 
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5.4.1 Data Export from the EMS Environment  

The data export interface is based on HABConnect, an interface provided in the suite of AREVA’s 
EMS tools.  A flat buffer structure will be used for data export.  The data to be exported from the EMS 
are shown in Figure 5.10.  

The wind forecast data are shown to be provided by a third-party forecast service company 
external to the EMS.  This is based on the fact that current EMS environments do not have interface to 
wind forecast information.  However, considering wind forecast would be directly linked to the EMS 
in the future, the design can be slightly altered to have the uncertainty tool receives wind forecast 
information using the same HABConnect-based data export interface.  

Load forecast information is generated by e-terraloadforecast module, containing hourly mid-
term load forecast data for seven days and short-term load forecast data at a 5-minute interval for next 
hour.  For the purpose of uncertainty evaluation, only the mid-term load forecast data are required,so 
the HABConnect buffer only provides the mid-term load forecast.  Unit commitment results are from 
e-terracommit module and will be part of the HABConnect structure.  Actual measurement data are 
available from the SCADA module.  Specific data points will be identified in the HABITAT database 
during the implementation phase.  

The data export interface is designed to be configurable regarding transfer rate, forecast window 
length, forecast interval, number of confidence intervals and their percentages.  The configuration and 
data exchange sequence numbers and timestamps are used to ensure that the data exchanged between 
the EMS and the uncertainty tool is properly synchronized.  

5.4.2 Data Management for the Uncertainty Tool  

As stated in the previous subsection, significant amounts of data will be received from the EMS 
through the HABConnect-based interface.  These data need to be stored in a structured manner for a 
certain length of history so the statistical analysis can be preformed.  Data exported from the EMS will 
be read into a specially designed Microsoft SQL Server database structure.  Interface between the SQL 
database and the uncertainty tool will be designed so historical data of a specified length can be 
retrieved for analysis.  Output from the uncertainty tool will be sent to the SQL database for archiving 
and for packaging into XML format for import to the EMS.  

A display of the uncertainty information will be developed in associated with the database table.  
The display can be generated externally by the uncertainty evaluation tool and integrated into the EMS 
through an active serve page mechanism, or it can generated internally as part of the EMS.  

5.4.3 Data Import to the EMS Using an XML Interface  

The data to be imported back to the EMS HABITAT database include confidence intervals and 
associated uncertainty ranges as well as derived ramping requirements.  The data import is done via a 
FTP transfer of an XML file.  The format of the XML file will be designed during the implementation 
phase.  
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Once the data reaches the HABITAT database, a specially designed table will be used to store the 
data.  This database table will have an interface to other functions in the EMS environment, such unit 
commitment and economic dispatch.  The economic dispatch is part of the UC optimization process, 
which is different from the real-time economic dispatch at a 4-second interval.  

The data export interface is designed to be configurable regarding transfer rate, uncertainty 
evaluation time horizons and resolutions, number of confidence intervals, and their percentages.  The 
configuration and data exchange sequence numbers and timestamps are used to ensure that the data 
exchanged between the EMS and the uncertainty tool is properly synchronized. 

5.4.4 Integration with the Unit Commitment and Economic Dispatch Process 

This phase of the project will implement the active level of integration stated in Section 5.3.  The 
UC optimization process including unit commitment and economic dispatch is performed in the 
e-terracommit module.  The existing UC engine is not modified but run multiple times for multiple 
uncertainty boundaries at different confidence levels as well as for the nominal forecast wind and load 
values.  The process is repeated at a configurable interval such as an hour or five minutes.  Special 
attention will be paid to the fact that e-terracommit is unaware of the distinctions between these 
different runs.  The e-terracommit solution will always be written back to the same buffer in the 
HABITAT database, so it is important to handle multiple outputs within the database to ensure they 
are not overwritten.  The output of the multiple UC runs will then be exported to the uncertainty tool 
to produce alerts or advisories as stated in Section 5.3.  The displays of the alerts and advisories can be 
either external to the EMS or integrated into the EMS through an active serve page mechanism.  

The final outcome of the implementation is an integrated tool of wind/load uncertainties and 
improvement of unit commitment and economic dispatch.  The tool is to be at a prototype level 
capable of demonstrating the impact of wind/load uncertainties on power grid operations.  

5.5 User Interface Conceptual Design 

Information representation is an important aspect in the integration, in order to provide easy-to-
understand, real-time information to dispatchers.  The design of several displays is presented in this 
section.  

5.5.1 Capacity Requirements Screen 

A conceptual view of capacity requirement screen is shown in Figure 5.11.  Capacity requirement 
screen contains the following information: 

• Generation schedule to a specified time horizon (five to eight hours); 

• Capacity requirements uncertainty ranges with different confidence levels associated with the 
generation schedule; and 

• Alerts and advisories. 
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The screen is updated in a specified interval, shown hourly in Figure 5.11.  It can be as short as 
five minutes.  As the screen is updated, the confidence intervals as well as any alerts or advisories will 
be updated as well.  

 

Figure 5.11.  Capacity Requirement Screen 

5.5.2 Ramping Requirement Screen 

There are several options to represent the requirements of ramp rates and ramp durations.  Some of 
them are shown in Figure 5.12.  Software interface should be flexible and allow dispatchers to get any 
desirable representation of the requirements in a real time manner.  For example, they should be able 
to change the number of confidence levels, the percentages of confidence levels, time horizons, and 
enabling/disabling alerts or advisories. 
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Figure 5.12. Displays of Ramp Rate and Ramp Duration Requirements: A) Ramp Rates vs. Ramp 
Durations; B) Ramp Rates vs. Confidence Levels 
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Ramping requirements screen will contain the following information: 

• Uncertainty range of ramp rate requirements for a specific time horizon; 

• Ramp duration requirements; and  

• Alerts and advisories. 

5.6 Contingency Reserve Activation Model 

Contingency reserve activation model (CRAM) was developed in cooperation with the University 
of Washington.  Detailed information, mathematical model and preliminary simulation results of 
CRAM are given in the report produced by the University of Washington.  This report can be found in 
Appendix B. 

A flowchart reflecting interaction of software tool internal blocks interaction is shown in  
Figure 5.13.  The capacity outage probability table produced by the forced outage model (see 
Section 3.0 for details) is an input of CRAM.  

The output of CRAM is the contingency reserve deficiency probability distribution (histogram).  
This histogram can be combined with net load uncertainty histogram.  As a result the combined 
probability distribution of generation requirements can be calculated.  Based on this information 
uncertainty ranges for generation requirements with any user-specified confidence level can be 
produced. 
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Figure 5.13.  Software Blocks Interaction 
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6.0 Genetic Algorithm Based Unit Commitment 

The UC problem is to allocate the start up and shut down schedules of generation units to meet 
load demand for a future period.  The objective is to minimize the system cost while satisfying certain 
constraints.  Various optimization techniques have been applied to solve the US problem.  The most 
frequently used technique is the mixed integer programming method.  In recent years, artificial 
intelligence techniques, such as the genetic algorithm (GA) and the artificial neural network methods 
have emerged as possible candidate approaches for solving the UC problem.  GA is a search algorithm 
combining genetic operators (such as crossover and mutation) with survival of the fittest genes.  In this 
section, a genetic unit commitment solver is presented.  The algorithm has been developed and 
implemented to autonomously test the proposed uncertainty analysis methodologies, EMS integration 
ideas, and (in the future) to implement and examine high level integration concepts, namely, the active 
and proactive integration principles. 

6.1 Problem Formulation 

6.1.1 Objective Function 

The UC determines the optimal commitment and decommittment sequences for generation units.  
The aim is to minimize the system total costs while satisfying various constraints.  The UC problem 
can be mathematically formulated as a constrained discrete nonlinear optimization problem.  The 
objective function can be given as: 
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where M is the number of units; T is total scheduling period in hours; Pcost is the production cost; Scost 
is the start-up cost; Dcost is the shut-down cost; uij is status of unit i at time j, ON (‘1’)/OFF (‘0’); 
Ci(Pij) is fuel cost of unit i for generating power Pij at time j, where 2)(

ijiijiiiji
PcPaaPC ++= , and ai, bi , 

ci are cost coefficients of unit i; Pij is output of generator i at time j; Sij is start-up cost of unit i at time 

j, where /(1 )
OFF

ij iT
ij i iS e τσ δ −= + −  and σi and δi are start-up cost coefficients of unit i; 

OFF

ijT−  is the unit 

off time, and Dij is shutdown cost of unit i at time j.  In this study, the shutdown cost is considered as a 
constant to simplify the problem.  The sum of start-up and shut-down cost is the transition cost.  

6.1.2 Constraints 

Two types of constraints, i.e., system constraints and unit constraints are considered in the unit 
commitment problem.  System constraints include real power balance constraints, spinning reserve 
constraints, energy constraints, etc.  Unit constraints include generation output limits, ramp rate limits, 
minimum, up- and down-time constraints, turbine and pump operating constraint, unit initial status 
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constraints, unit must-run constraints, etc.  Among these constrains, ramp rate limits, minimum, up- 
and down-time constraints, unit initial status constraints, and unit must-run constraints are time-
dependent constraints.  Others are time-independent constraints.  

In this study, the following constraints are taken into account.  

1. Power balance constraints 

The total output of on-line generators must be equal to the system load demand in each of the 
planned time period, i.e. 
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where PDj is system load demand at time j; and Ploss is the power losses. 

2. Generation output limits  

At normal system operation situations, the generation output of each individual unit must be 
within its allowable lower and upper generation limits, i.e.: 
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where min
i

P  is minimum generation limit of unit i; and max
i

P  is maximum generation limit of unit i. 

3. Unit minimum up time constraints 

The unit must maintain on status for a minimum up time period after being started up. 
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where MUTi is minimum up time of unit i; and ON
ij

T  : ON period of unit i at time j. 

4. Unit minimum down time constraints 

The unit must maintain off status for a minimum down time period after being shut down. 
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where MDTi is minimum down time of unit i; and OFF
ij

T  is OFF period of unit i at time j. 
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5. Ramp rate limits  

Because of the physical restrictions on generators, the rate of generation change must be limited 
within a certain range, which confines unit’s power output changes between adjacent hours.  

 ijiji
RUPP ≤−

−1,,

 (6.6) 

 ijiji
RDPP ≤−

− ,1,

 (6.7) 

Where RUi is ramp-up rate limit for the unit i; and RDi is ramp-down rate limit for the unit i. 

6. Spinning reserve constraints 

If generation forced outages are not considered, the spinning reserve constraint can be given as: 
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If the generator outages are taken into account, the spinning reserve constraint is: 
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where pi is probability of unit i operated in normal operating state. 

7. Must run/down constraints 

The must run/down constraints force units in or out of service due to the fuel factors or short-term 
maintenance. 

8. Unit initial status 

Some units may have initially committed as on or off before the planned time period, the unit 
initial status need to be considered for some situations.  

To sum up, the objective of UC problem is to minimize the objective function (6.1), subject to the 
constraints (6.2)–(6.9). 
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6.2 Solving Unit Commitment Problem Using Genetic Algorithm  

In this study, GA is selected to solve the UC problem.  A genetic algorithm contains four main 
components: choosing chromosome syntax, interpretation of a chromosome, evaluation of a 
chromosome, and operators on chromosomes.  

Figure 6.1 shows the basic procedure of applying the GA to solve the UC problem.  

 Start 

Random Generation of 
Population of x Units 

Determine Feasibility of the Solutions 
(Generation > Load) 

Economic Dispatch Evaluation 

Genetic Operation (selection, crossover, 
mutation) 

Convergence Criterion?  

End 

N 

Y 

 
 

Figure 6.1.  Flowchart of the GA-Based UC Solver 

Representing chromosomes by binary vectors has been widely used in GA.  This is because 
applying operators to binary vectors, evaluating and interpreting binary chromosomes become easy to 
implement functions.  To convert a chromosome to a solution, an appropriate syntax needs to be 
applied.  The chromosome could be either feasible or infeasible.  A feasible chromosome yields a 
solution that lies in the feasible region (the region where all constraints are satisfied) of the solution 
space of a given problem.  Infeasible chromosomes yield a solution that lies outside of the feasible 
region.  Every chromosome must be evaluated against the objective of the problem.  This evaluation is 
done by calculating the fitness function, that is the UC objective function. 

Genetic operators in the reproduction stages of a GA include random operators, crossover 
operators, and mutation operators.  Random operators can be used to create an initial population.  The 
crossover operators combine features of any two parent chromosomes to form two offspring by 
swapping corresponding segments of the parents.  The mutation operators are used to generate new 
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populations by changing two or more bits of the chromosome.  The selection process is used to choose 
the chromosomes to produce offspring based on the fitness assignment.  Each chromosome in the 
selection pool receives a reproduction probability depending on their fitness, and the fitnesses of all 
other individuals in the selection pool.  Roulette wheel selection is used in this paper.  

6.3 Simulation Results 

In this section, the UC solver based on GA is applied to solve a unit commitment problem of 
committing and decommitting 10 generators in a period of 24 hours.  Crossover (also called 
recombination) and/or mutation is used to generate a second generation population of solutions from 
those selected through genetic operators.  These processes ultimately result in the next generation 
population of chromosomes that is different from the initial generation.  If the difference between 
current solution and the previous one is less than the converge criterion, the GA stops.  If the number 
of iterations is greater than the maximum number, the GA stops.  

The genetic algorithm uses the following parameters: 
Selection scheme  :  Roulette wheel 
Population size  :  25 
Crossover rate  :  0.6 
Mutation rate  :  0.001 
Converge criterion  :  0.0001 
Number of iterations :  3000 

The unit commitment problem uses the following parameters:  
Number of generators :  10 
Scheduled hours  :  24 hours 
Startup cost   :  $2900 
Shutdown cost  :  $1600 
Ramp rate   :  200 MW/hr 
Reserve percentage  :  10% of load demand 
Startup/shutdown time :  4 hours 

All the parameter settings are saved in a configuration file.  The C++ program reads the 
parameters from the configuration file.. Users can solve their own UC problem by modifying the file. 
The structure of the configuration file is described as follows. 

Line 1:   Total number of generation units  (int) 
Line 2:   Total number of stages  (int) 
Line 3:   Mutation rate  (double) 
Line 4:   Crossover rate  (double) 
Line 5:   Population size  (int) 
Line 6:   Convergence criterion  (double) 
Line 7:   Number of iterations  (int) 
Line 8:   Percentage of reserve  (double) 
Line 9:   Generator start-up cost  (double) 
Line 10:  Generator shut-down cost  (double) 
Line 11:  Ramp rate  (double) 
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Line 12:  Load demand offset, control the GA converge speed (double) 
Line 13:  Consider generator start up/shut down time constraint?  (1 - yes, 0 - no) (int) 
Line 14:  Consider generator initial status constraint?  (1 - yes, 0 - no) (int) 
Line 15:  Consider generator must-run constraint?  (1 - yes, 0 - no) (int) 
Line 16:  Consider ramp rate constraint?  (1 - yes, 0 - no) (int) 
Line 17:  Write the GA results into files?  (1 - yes, 0 - no) (int) 
Line 18:  Generators’ start up/shut down time  (hrs), (2, 3, or 4) 
Line 19:  Generators’  initial status,  (1 - on, 0 - off) (int) 
Line 20:  Generators’ must run flag,  (1 - must run, 0 - no) (int) 
Line 21:  Generating units’ coefficients - cost function factors, “a”  (double) 
Line 22:  Generating units’ coefficients - cost function factors, “b”  (double) 
Line 23:  generation unit coefficients - cost function factors, c  (double) 
Line 24:  Minimum generation output  (double) 
Line 25:  Maximum generation output  (double) 
Line 26:  Load demand  (double) 

Table 6.1 shows the generator initial status and must-run status.  The initial status refers to the on 
and off status of generators at the end of previous scheduling plan.  Must-run flags demonstrate 
whether the generator must be kept “ON” during the scheduled period.  In this case study, generators 
1, 2, 3, and 4 are scheduled as must-run during the 24 hour period.  Table 6.2 shows the load demand 
in the 24 hour period.  Usually, the future load demand is predicted by load forecasting procedures.  
Table 6.3  shows the unit commitment solution obtained by the developed GA-based UC solver.  In 
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Table 6.3, the scheduled generation for each generator unit in 24 hour period is provided.  The total 
generation is obtained by taking into account both the load demand and contingency reserve.  Total 
cost is calculated by the objective function of the GA-based UC solver.  

Table 6-1.  Generator Settings 

Units 1 2 3 4 5 6 7 8 9 10 

Unit Initial Status on on on on on on off off on on 
Must-run (Y/N) yes yes yes yes no no no no no no 
Max Generation 625 625 600 500 625 525 500 550 605 625 
Min Generation 100 100 75 75 100 100 85 85 90 90 

Table 6-2.  Load Demand (MW) 

Hours 1 2 3 4 5 6 7 8 9 10 11 12 

Demand 1200 1295 1490 1530 1690 1730 1900 1930 2090 2230 2200 2190 
Hours 13 14 15 16 17 18 19 20 21 22 23 24 

Demand 2210 2090 1950 1880 1710 1680 1550 1500 1285 1210 1285 1490 
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Table 6-3.  Unit Commitment Solution 

Units 
→ 

Hours 
↓ 1 2 3 4 5 6 7 8 9 10 

Total 
Generation 

(MW) 
Total 

Cost ($) 

1 121.1 105.1 88.3 84.6 330.4 252.5 0 0 173.6 173.7 1329.2 16963.18 
2 212.4 160.6 201.8 199.6 272.4 109.1 0 0 132.3 142.3 1430.5 17729.91 
3 105.6 341.7 145.3 131.9 322.7 129.5 0 139.5 95.0 235.4 1646.8 23357.64 
4 236.0 267.8 177.1 226.6 187.2 149.4 0 157.7 177.1 108.8 1687.9 20370.38 
5 361.2 160.0 354.2 342.5 0 0 0 175.5 208.3 257.4 1859.1 26253.00 
6 560.9 348.4 293.6 290.6 0 0 133.7 279.5 0 0 1906.7 29564.68 
7 586.5 356.6 404.0 314.7 0 0 162.1 267.7 0 0 2091.6 26171.05 
8 608.6 499.8 305.9 214.6 0 0 183.6 317.7 0 0 2130.2 26733.64 
9 477.2 464.9 383.4 361.2 134.4 175.6 307.7 0 0 0 2304.5 36457.67 

10 391.5 437.7 338.8 465.5 277.1 318.9 0 0 107.6 116.1 2453.2 38227.04 
11 283.2 328.4 186.9 422.7 403.3 374.2 0 0 203.3 226.5 2428.4 30372.35 
12 173.4 358.7 95.5 302.2 582.9 461.9 0 0 201.3 238.5 2414.4 31530.16 
13 339.7 198.0 161.7 170.1 416.6 409.1 0 185.0 379.9 173.7 2433.9 33747.76 
14 204.2 133.4 313.6 156.8 244.2 312.7 162.9 318.6 458.0 0 2304.5 34040.30 
15 297.6 171.8 303.9 233.3 410.5 0 155.2 160.5 413.2 0 2145.9 29752.22 
16 294.5 109.8 336.7 383.3 191.3 0 155.6 167.7 435.9 0 2074.8 27417.69 
17 401.8 112.3 295.1 270.3 0 0 234.7 0 570.8 0 1885.0 29565.93 
18 500.8 172.4 217.7 142.3 0 0 233.1 0 588.4 0 1854.6 26298.82 
19 600.9 151.3 81.2 296.4 0 0 0 0 390.0 186.2 1706.1 27452.17 
20 476.7 272.9 226.4 280.2 0 105.0 0 0 0 293.4 1654.7 24703.01 
21 545.5 131.8 168.9 264.0 0 158.6 0 0 0 153.8 1422.6 17608.37 
22 414.6 145.7 78.6 289.4 0 152.3 0 132.3 0 126.6 1339.5 19145.98 
23 227.8 270.9 116.1 157.7 174.4 127.0 0 236.8 0 110.4 1421.0 19761.67 
24 341.7 118.0 160.7 203.4 283.7 0 133.7 184.5 0 215.5 1641.2 24663.61 

In this section, a genetic algorithm based unit commitment solver is described.  The developed 
genetic algorithm based unit commitment solver is incorporated in the EMS Wind Integration system.  
In the unit commitments solvers, the considered constraints include power balance,  generation output 
limits, unit minimum up time, unit minimum down time, ramp rate limits, spinning reserve, must 
run/down and unit initial status constraints.  A unit commitment case study of 10 machines 24 hours is 
applied to show the effectiveness of the unit commitment solver.  
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7.0 Software Prototype Design and Testing 

The software prototype of generation requirements uncertainty evaluation tool has been developed 
within the framework of the CAISO project sponsored by CEC.  The plan is to install the prototype at 
the CAISO control room.  The tool is based on the methodology developed in this project. 

At the first phase the prototype is planned to be operated in the testing mode as a stand-along tool 
for approximately 6 months.  It corresponds to the passive level of integration (see Section 5.0 for 
details).  During the testing period, the CAISO specialists will evaluate the efficiency and the 
usefulness of the tool.  Testing will be based on analysis of retrospective data collected from different 
sources of information, like CAISO’s SCADA/EMS systems, CAISO’s market system, CAISO’s 
master file, CAISO’s wind forecast provider, etc.  The prototype can help CAISO to evaluate the 
balancing capacity needed to mitigate negative impacts, caused by unpredicted deviations of wind 
generation, as well as due to inaccurate load forecast and generation forced outages.  In case of 
successful testing, a decision will be made by the CAISO on a possibility of the actual integration of 
the tool into the CAISO’s EMS system. 

7.1 Prototype Design and User Interface 

Microsoft Visual Studio 2008 was used for the tool development.  The developed tool is deployed 
on the Microsoft Windows platform and .NET Framework.  The prototype consists of three major 
modules: the database, the uncertainty evaluation module and the display for results and alerts.  The 
database is implemented in Microsoft SQL Server. Data exchange with CAISO systems will be 
performed via the XML protocol.  Flowchart reflecting the interactions among different prototype 
blocks, database and EMS system is presented in Figure 7.1.  

 

Figure 7.1.  Software Flowchart 

At the first phase of integration the used CAISO data are shown in Table 7.1.  Database structure 
details are given in Appendix A. 
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Table 7-1.  CAISO Data Used in the First Phase of the Project 

 Day-ahead 
Forecast(schedule) 

Hour-Ahead 
forecast(schedule) 

Real-time 
forecast(schedule) 

Actual 

Load     
Wind Generation     

Interchange     
Generation  DAM STUC RTED  

Currently, the prototype can operate in three modes: 

1. Static mode 

• In the static mode, the user can select any required date and time to display information on the 
forecasted and actual parameters in the tabular or graphical form.  This information includes: 

– Load forecast  

– Wind Generation forecast  

– Interchange schedule  

– Generation requirements forecast – Load forecast minus wind generation forecast and minus 
interchange schedule. 

– Generation schedule 

– Actual load 

– Actual wind generation 

– Actual interchange 

– Actual generation requirements 

• The user can select the desired uncertainty ranges with any required level of confidence.  The  
ranges are reflecting the uncertainty in generation requirements caused by different sources: wind, 
load, etc.  Screenshots shown in Figure 7.2–Figure 7.4 are examples of the software user interface.  
In Figure 7.2 the uncertainty visualization display is given.  Uncertainty analysis display is shown 
in Figure 7.3.  Using this tool, one can analyze statistical characteristics of forecast errors, plot 
different histograms and CDF functions.  Figure 7.4 shows the database display that provides 
access to the SQL database for the user. 
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Figure 7.2.  Screenshot of Uncertainty Visualization Display 

 

Figure 7.3.  Screenshot of Uncertainty Analysis Display 
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Figure 7.4.  Screenshot of Database Display 

2. Simulation mode  

In the simulation mode an hour by hour simulation for a specified time interval can be performed.  
It is needed to validate the accuracy of uncertainty evaluation model.  Details of self validation 
algorithm are given in Section 2.8.  

During the simulation, the user sees an animated picture reflecting changing of the current 
conditions of the system.  The speed of simulation can be specified by the user.  

3. Real-time mode (under development)  

In real-time mode the prototype will link to the real-time system operation.  The tool will receive 
information in real-time and update the uncertainty prediction every 5 minutes.  

7.2 Test Plan for the Ramp Tool Prototype 

A comprehensive  plan to test the tool prior to release has been developed.  It includes functional, 
requirements and performance testing of the database, database loading, analytical, and GUI. 

A server will be initialized by installing the test database with no data.  It will then be updated 
using the data loading software and examined for correct loading.  One or more standard PC 
workstations, configured with needed supporting software, in accordance with the Prototype Hardware 
and Software Requirements and Prototype Data Specification, will then be loaded and tested using 
procedures in the test tool. 
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Testing will be performed using the database running on a separate workstation as a server and 
with the database running on the local workstation.  TestLink reporting tools will be used to generate 
testing repots.  TestLink enables easily to create and manage test cases as well as organizes them into 
test plans [24].  These Test plans allow team members to execute test cases and track test results 
dynamically, generate reports, trace software requirements, prioritize and assign tasks. 

Items to be tested: 

• Prototype analytics and GUI. 

• SQL database loading tool. 

• SQL database performance testing. 

Features to be tested: 

All user controls will be tested.  Conformance with software requirements will be tested.  Details 
of the testing will be included in the TestLink test project. 

7.2.1 Statistical Analysis Module Test 

To validate the statistical analysis module developed by PNNL using Visual Studio 2008 IDE, 
results produced by this module were compared with standard results obtained from a professional 
statistical package.  MATLAB statistical toolbox was used as the standard statistical package [11].  

Figure 7.5 depicts the day-ahead net load forecast error.  The length of time series is 30 days.  This 
test time series is used as an input for the statistical analysis module.  A comparison of histograms and 
empirical CDFs for the test time series, obtained using PNNL tool and MATLAB statistical toolbox 
are presented in Figure 7.6–Figure 7.7.  One can see that results produced by PNNL tool coincide with 
the MATLAB toolbox results. 
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Figure 7.5.  Net Load Error Forecast (Day-Ahead) 
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Figure 7.6.  Histograms Comparison: a) PNNL Tool; b) MATLAB Statistical Toolbox 
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Figure 7.7.  Empirical CDFs Comparison: a) PNNL Tool; b) MATLAB Statistical Toolbox 

7.2.2 Uncertainty Evaluation Model Test 

To validate the accuracy of the uncertainty evaluation model, a self validation algorithm was 
developed and used (see Section 2.8 for details).  CAISO’s real statistical information for year 2007 
was used in this test.  Figure 7.8 shows the uncertainty range evaluation for the day-ahead schedule 
produced on August 1st, 2007, at 6 a.m.  The ranges for 90% and 95% level of confidence are shown.  
Blue curve represents the day-ahead generation schedule.  The red curve represents the actual 
generation requirements (actual load minus actual wind generation and minus actual interchange). 

The developed set of self validation tests were performed.  Different time periods were analyzed.  
The length of studied intervals is 1 month.  Some results of self validation test are presented in  
Figure 7.9.  For example, in Test I (Figure 7.9), the uncertainty ranges with 90% and 95% confidence 
were evaluated for the time period from August 1 until August 30.  The percentage of the actual 
generation requirements points found within 90% confidence interval is about 91%, and within 95% 
confidence interval is about 95%.  Similarly, Test II and Test III compare the results for 70, 85, 99, 
and 100% confidence levels.  Thus the uncertainty evaluation model tests have confirmed the 
adequacy of the proposed uncertainty evaluation algorithm as well as the proper operation of 
developed prototype tool.  
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Figure 7.8.  Example of Uncertainty Ranges Evaluation (August 1, 2007 at 6 am) 

(Test I)                                    (Test II)                                        (Test III) 

  

Figure 7.9.  Self Validation Results 
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8.0 Conclusions and Future Work 

A methodology capable of evaluating the impact of wind generation and load uncertainties, as 
well as unexpected generation outages on the balancing resources requirements has been developed.  
As a result, the uncertainty ranges for the required generation performance envelope can be evaluated 
for a look-ahead period.  The generation performance envelope includes the required balancing 
capacity, ramping capability and ramp duration capability.  

The proposed methodology includes the following elements: 

• Evaluation of the capacity and ramping requirements using a specially developed probabilistic 
algorithm based on the histogram analysis, and incorporating all sources of uncertainties of both 
continuous (wind and load forecast errors) and discrete (forced generator outages and start-up 
failures) nature. 

• Evaluation of the look-ahead generation performance requirements envelope using a “flying 
brick” technique for the worst case scenario within a user specified confidence level.  

• A self-validation algorithm to assess the accuracy of the predicted uncertainty ranges 

A MATLAB prototype of a probabilistic tool based on the proposed methodology has been 
developed.  Preliminary simulation studies using the MATLAB prototype and actual CAISO data have 
been performed.  Study results have shown that the methodology of the generation requirements 
evaluation for uncertainty management is quite accurate and efficient. 

The operating practices at CAISO and BPA have also been studied.  The concept of integrating the 
probabilistic tool with CAISO and AREVA EMS environments has been developed taking into 
account their current operating practices.  To demonstrate the validity of the developed uncertainty 
evaluation methodology and the impact of uncertainties on grid operation, the initial design of 
probabilistic tool integration with AREVA’s EMS has been developed through collaboration with 
AREVA’s specialists. 

As part of the efforts in evaluating the impact of uncertainties on grid operation, a unit 
commitment model based on the genetic algorithm optimization technique has been developed and 
tested on multi-machine cases. 

Besides the integration with the AREVA EMS, the probabilistic tool will be integrated with the 
CAISO EMS and market systems collaboration with CAISO’s team, with additional financial support 
from California Energy Commission. 

Among the tasks that could be performed in the next phase of the project, a development of the 
proactive integration approach for the probabilistic tool into an EMS environment will be a focus.  It 
can contribute to the development of a novel probabilistic grid operation philosophy. Future work also 
includes refinement of the uncertainty assessment tool by integrate more sources of uncertainties and 
developing alternative methods for uncertainty assessment, integration of the uncertainty assessment 
tool with market systems to demonstrate the economic impact of uncertainties, integration of the 
uncertainty assessment tool with wind forecasting services, and pilot demonstration of the uncertainty 
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assessment tool with EMS platforms towards the goal of operator acceptance of the tool in the control 
room. 
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Appendix A 

Prototype Data Specification 

This appendix describes the data specification for the first phase of prototype integration into the 
California ISO EMS system. 

Table A.1.  Load – Day-Ahead Forecast 

Field Name SQL Server data type Allow Nulls Comment 

Time Stamp Date/Time No Primary key 
Hour_01_MW real Yes First hour ending megawatts forecast 
Hour_02_MW real Yes  
Hour_03_MW real Yes  
Hour_04_MW real Yes  
Hour_05_MW real Yes  
Hour_06_MW real Yes  
Hour_07_MW real Yes  
Hour_08_MW real Yes  
Hour_09_MW real Yes  
Hour_10_MW real Yes  
Hour_11_MW real Yes  
Hour_12_MW real Yes  
Hour_13_MW real Yes  
Hour_14_MW real Yes  
Hour_15_MW real Yes  
Hour_16_MW real Yes  
Hour_17_MW real Yes  
Hour_18_MW real Yes  
Hour_19_MW real Yes  
Hour_20_MW real Yes  
Hour_21_MW real Yes  
Hour_22_MW real Yes  
Hour_23_MW real Yes  
Hour_24_MW real Yes  
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Table A.2.  Load – Hour-Ahead Forecast 

Field Name SQL Server data type Allow Nulls Comments 

Time Stamp Date/Time No Primary key 
Interval_01_MW real Yes First interval MW forecast 
Interval_02_MW real Yes Next interval MW forecast 
Interval_03_MW real Yes  

…… …… ……  
 Interval_10 _MW real Yes  

Table A.3.  Load – Real-Time Forecast 

Field Name SQL Server data type Allow Nulls Comments 

Time Stamp Date/Time No Primary key 
Interval_01_MW real Yes First 5 min. ending MW forecast 
Interval_02_MW real Yes Next 5 min. ending MW forecast 
Interval_03_MW real Yes Next 5 min. ending MW forecast 

……………………    
Interval_13 _MW real Yes Last 5 min. ending MW forecast 

Table A.4.  Load – Actual 

Field Name SQL Server data type Allow Nulls Comments 

Time Stamp Date/Time No Primary Key 
MW_ActualLoad  real Yes Interval ending mw actual load 

Table A.5.  Wind Generation – Day-Ahead Forecast 

Field Name SQL Server data type Allow Nulls Comments 

Time Stamp Date/Time No Primary Key 
Interval_01_MW real Yes First Interval ending MW forecast 
Interval_02_MW real Yes  
Interval_03_MW real Yes  
Interval_04_MW real Yes  
Interval_05_MW real Yes  
Interval_06_MW real Yes  
Interval_07_MW real Yes  
Interval_08_MW real Yes  
Interval_09_MW real Yes  
Interval_10_MW real Yes  
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Table A.5 (contd) 

Field Name SQL Server data type Allow Nulls Comments 

Interval_11_MW real Yes  
Interval_12_MW real Yes  
Interval_13_MW real Yes  
Interval_14_MW real Yes  
Interval_15_MW real Yes  
Interval_16_MW real Yes  
Interval_17_MW real Yes  
Interval_18_MW real Yes  
Interval_19_MW real Yes  
Interval_20_MW real Yes  
Interval_21_MW real Yes  
Interval_22_MW real Yes  
Interval_23_MW real Yes  
Interval_24_MW real Yes  

Table A.6.  Wind Generation – Hour-Ahead Forecast 

Time Stamp Date/Time No Primary Key 

Interval_01_MW real Yes First Interval ending MW forecast 
Interval_02_MW real Yes  

……. …..   
Interval_XX  _MW real   

Table A.7.  Wind Generation – Real-Time Forecast 

Time Stamp Date/Time No Primary Key 

Interval_01_MW real Yes First Interval ending MW forecast 
Interval_02_MW real Yes  

……. …….   
Interval_XX _MW real No  

Table A.8.  Wind Generation – Actual 

Time Stamp Date/Time No Primary Key 

ActualGeneration real Yes Interval ending MW actual generation 
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Table A.9.  Interchange – Day-Ahead Schedule 

Time Stamp Date/Time No Primary Key 
Tie ID nvarchar(16) No Primary Key 

Hour_01_MW real Yes First hour ending MW scheduled 
Hour_02_MW real Yes  
Hour_03_MW real Yes  
Hour_04_MW real Yes  
Hour_05_MW real Yes  
Hour_06_MW real Yes  
Hour_07_MW real Yes  
Hour_08_MW real Yes  
Hour_09_MW real Yes  
Hour_10_MW real Yes  
Hour_11_MW real Yes  
Hour_12_MW real Yes  
Hour_13_MW real Yes  
Hour_14_MW real Yes  
Hour_15_MW real Yes  
Hour_16_MW real Yes  
Hour_17_MW real Yes  
Hour_18_MW real Yes  
Hour_19_MW real Yes  
Hour_20_MW real Yes  
Hour_21_MW real Yes  
Hour_22_MW real Yes  
Hour_23_MW real Yes  
Hour_24_MW real Yes  

Table A.10.  Interchange – Hour-Ahead Schedule 

Time Stamp Date/Time No Primary Key 

Interval_01_MW real Yes First interval ending MW scheduled 
Interval_02_MW real Yes  
Interval_03_MW real Yes  
…….    
Interval_XX_MW  real Yes  
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Table A.11.  Interchange – Actual 

Time Stamp Date/Time No Primary Key 

ActualNetFlow_MW real Yes  

Table A.12.  Generation – Day-Ahead Schedule 

Time Stamp Date/Time No Primary Key 

Hour_01_MW real Yes First hour ending MW scheduled 
Hour_02_MW real Yes  
Hour_03_MW real Yes  
Hour_04_MW real Yes  
Hour_05_MW real Yes  
Hour_06_MW real Yes  
Hour_07_MW real Yes  
Hour_08_MW real Yes  
Hour_09_MW real Yes  
Hour_10_MW real Yes  
Hour_11_MW real Yes  
Hour_12_MW real Yes  
Hour_13_MW real Yes  
Hour_14_MW real Yes  
Hour_15_MW real Yes  
Hour_16_MW real Yes  
Hour_17_MW real Yes  
Hour_18_MW real Yes  
Hour_19_MW real Yes  
Hour_20_MW real Yes  
Hour_21_MW real Yes  
Hour_22_MW real Yes  
Hour_23_MW real Yes  
Hour_24_MW real Yes  

Table A.13.  Generation – Short-Term Unit Commitment (STUC) Schedule 

Time Stamp Date/Time No Primary Key 

Interval_01_MW real Yes First interval ending MW scheduled 
Interval_02_MW real   
……..    
Interval_20_MW real   
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Table A.14.  Generation –Real-Time Economic Dispatch ( RTED) 

Time Stamp Date/Time No Primary Key 

Interval_01_MW real Yes First interval ending megawatts scheduled 
Interval_02_MW real Yes  
…………………..    
Interval_13_MW real Yes  

Table A.15.  Generation – Actual 

Time Stamp Date/Time No Primary Key 

PGen real Yes  
QGen real Yes  
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