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SUMMARY

This report presents a methodology developed at the Pacific Northwest National
Laboratory (PNNL) for the Bonneville Power Administration (BPA) for the prediction of
power system balancing requirement and the probability of tail event (large imbalance
between generation and load) in the BPA system. Maintaining sufficient balancing
reserves to match the difference between hourly generation schedule and real-time
variable load and intermittent resources becomes more and more challenging with the
increasing penetration of intermittent energy sources. The presented methodology uses
yearly distributions and hourly distributions of balancing requirement and tail events to
provide a high level look at the issue and show to system operators those hours when
problems are most likely to occur. For real-time prediction, a Bayes net model is
constructed to model the statistical relationships between system imbalance and forecast
errors, generation schedule control errors and other influential factors. The methodology
will be able to provide reference information to system operators in determining the
sufficiency of system balancing reserve and taking appropriate control actions.
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I. INTRODUCTION

Tail event refers to the situation in a power system when unfavorable forecast errors of
load and wind are superposed onto fast load and wind ramps, or non-wind generators
falling short of scheduled output, the imbalance between generation and load becomes
very significant. This type of events occurs infrequently and appears on the tails of the
distribution of system power imbalance; therefore, is referred to as tail events.

With the increasing penetration of intermittent energy sources in the system, including
wind and solar, large imbalance is encountered more frequently than ever. Maintaining
sufficient balancing reserves, both upward and downward, to match the difference
between hourly generation schedule and real-time variable load and intermittent
resources, becomes more and more challenging. This project developed the methodology
at the Pacific Northwest National Laboratory for the Bonneville Power Administration
(BPA) for the analysis and online prediction of system balancing requirement and the
probability of tail event. The objective of this study is to provide reference information to
system operators helping them be aware of those times a tail event is likely to occur and
evaluate the capability of system to deal with the possible amount of imbalance in the
next several operation hours and perform dispatches accordingly. Because BPA uses only
regulating reserve to balance its system under normal conditions, balancing reserve and
balancing requirement will be used interchangeably with regulating reserve and
regulation requirement in the report. For systems also having a real-time dispatch/load
following process, the balancing reserve discussed here is equivalent to the sum of load
following and regulating reserves.

The methodology presented in this report contains three parts:

1. Yearly distributions showing the occurring frequency versus MW level of system
imbalance;

2. Hourly distributions showing the regulation requirement and average MW level of
tail events corresponding to each of the 24 hours of a day;

3. A model to predict the distribution of regulation requirement in real-time
operation and the probability of tail event occurrence in each operation hour for
the next several hours.

Part 1 and 2 uses the approach developed in [1] and [2] out of a previous study for BPA,
providing a high level look at system balancing requirement and the frequency of tail
events at various MW levels. In Part 3, the statistical relationships between system
imbalance and forecast errors, generation schedule control errors and other influential
factors such as weather, temperature, wind speed, etc., are modeled using an approach
called Bayes net (BN). This model preserves the statistical characteristics obtained from
system historical data and uses them as the basis for the prediction of future. It is similar
to the process that an experienced system operator estimates what the difference between
generation hourly schedule and the actual generation need would be in the system, based
on the operating experience he/she has accumulated. The prediction given by the BN
model is simply more quantitative. The model is expected to be able to help system



operators in real-time by determining the sufficiency of regulating reserve of the system
and suggesting appropriate control actions.

In the presented work, it is assumed that the balancing reserve is able to compensate for
99.5% of the system imbalance cases. A tail event is defined as when the balancing
capacity needed is larger than the amount available. The study is focused on capacity
requirements of the regulating reserve; however, other types of requirements, such as
ramp rate and ramp duration [1], can also be analyzed in a similar fashion. All of the
results shown in this paper were generated based on BPA 21-month historical and
forecast data.

The report is organized as follows: In Section II and Section III, the yearly and hourly
distribution plots, i.e., Part 1 and Part 2 of the methodology are described. In Section 1V,
the BN model, i.e., Part 3 of the methodology is introduced for the real-time prediction of
regulation requirements and probability of tail events. Validation of the BN model
prediction results were performed and are reported in Section IV as well. Section V
concludes the report and is followed by references.



. YEARLY DISTRIBUTION OF TAIL EVENTS

Yearly distributions are based on the analysis of system regulation requirement, which is
generated from BPA system load and wind data using the methodology developed in [1].
Available system regulating reserve is defined as the MW level that can cover 99.5% of
the cases that have been simulated. Subtracting available regulating reserve from the
regulation requirement, we get the MW shortage of the system. Fig. 1 and Fig. 2 show the
distribution of the regulation capacity requirement and distribution of MW shortage in the
BPA system in 2007 and 2010, respectively. The 2010 results were obtained based on
forecasted load and wind data.
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Fig. 1. 2007 BPA system regulation capacity requirement and tail event distribution
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Fig. 2. 2010 BPA system regulation capacity requirement and tail event distribution

From the distribution of tail events, the number of minutes during the year when the
system will be in shortage of regulation-up or regulation-down capacity at any specific
MW level can be seen. For example, from plot (b) of Fig. 1 and Fig.2 it can be seen that
in 2007, there were only several minutes when the system experienced a shortage of 500



MW regulation-down capacity, while in 2010, the same situation will be occurring for
around 100 minutes in total.

Yearly distribution plots provide a high level look at the regulation requirement and
frequency of tail events in the system under study, enabling a quick estimate of the
degree of risk associated with any given level of regulating reserve.



1. HOURLY DISTRIBUTION OF TAIL EVENTS

Hourly distributions are also generated based on system regulation requirement and
available regulating reserve at 99.5% level. The process contains the following steps:

Data series of regulation capacity requirement are generated using the

methodology developed in [1].
2. A time series representing the MW regulation capacity shortage, both regulation-

1.

from the data series of regulation capacity requirement.
3. The derived data points are then grouped into 24 hours of a day based on when

up and regulation-down, is derived by subtracting the available regulating reserve

the shortage occurred.
4. Data points allocated into the same hour are averaged to represent the average

MW level of regulation shortage.

The hourly distribution provides general information on which hours operators should

watch carefully for the sufficiency of system regulating reserve.

To also show the effect of wind power on the magnitudes of system tail events, scenarios

with wind and without wind in year 2007 (historical year) and 2010 (future year) in the

BPA system are plotted in the same figure, as shown in Fig. 3.
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In Fig. 3, the average tail event MW shortage is shown hour by hour for 24 hours of a
day. The green bars are results for 2007 and red lines for year 2010. The tip points of the
green bars and the red arrows correspond to “with wind” conditions, while the flat end of
the green bars or the red lines correspond to “without wind” conditions. The length of the
bars and the lines indicate the contribution of wind generation to the MW shortage of
regulating reserve. By comparing the tip points of the bars and the lines, one can see the
expected increment of tail event MW level for the corresponding hours.



IV. REAL-TIME PREDICTION OF BALANDING RESERVE
REQUIREMENT AND TAIL EVENTS

4.1 Bayes Net Models

Bayes net (also called Bayesian Network) models can be used to graphically represent the
causal relationships amongst variables in which uncertainty is the predominant
characteristic. The graphical representation consists of nodes and directed links or
arrows. The nodes represent the variables and the arrows show the inter-dependencies
between variables. Arrows point from parent nodes to the child nodes and show the
direction of conditional dependence. The resulting structure of nodes and arrows forms a
directed acyclic graph (DAG). Child nodes are conditionally dependent on their parents
and are conditionally independent of their non-descendents given their parents.

Dynamic systems that change continuously through time, such as power system
operations, can by modeled using a dynamic Bayesian Network (DBN) model where the
state space of the system is modeled on successive time intervals. There are two
simplifying assumptions that are typically used in constructing DBNs. One is
stationarity—the probabilities within each time slice are the same. The other is the
Markov condition—the transition probabilities between time slices depend only on a
finite number of previous time periods. For a first order DBN they would depend only on
the previous time period. Additional information on BN models can be found in [3], [4]
and [5].

4.2 Building a Bayes Net Model for the BPA Power System

A DBN model as a decision support tool for real-time operation of the BPA system was
developed. The objective of this model, shown in Fig. 4, is to forecast the state of system
imbalance (SI) in future time steps conditioned on the state of system components in the
current time step. The uncertain nodes are depicted in the model as ovals. The model also
extends from predicting SI to include decisions that might be made depending on the
forecast system imbalance. These decisions consist of curtailment operations and are
shown as rectangles. The model also identifies two relevant outcomes that result from
system imbalance. These are line congestion and control performance standard (CPS)
violations which are shown as hexagons.

As can be seen in Fig. 4, system imbalance is identified to have three primary causes:
load forecast error (LFE), wind forecast error (WFE), and generator scheduling control
error (SCE). All three are stochastic and have strong serial correlation.

The LFE at time (t+1) is forecasted from the LFE at time (t) as well as the load and
temperature at that time step and the wind/storm. LFE is strongly affected by diurnal and
seasonal cycles, as well as meteorological events such as the passage of cold fronts
(storms) with associated rapid changes in temperature and wind velocity. WFE at time



(t+1) is analogously predicted from WFE, wind power, and storm at time (t). SCE is also
predicted from relevant variables in a previous time step as shown in Fig. 4.

LFE: Load Forecast Error
WEFE: Wind Forecast Error
SCE: Generation Schedule Control Error

Gen Startup
Failure (t)

Transmission
Outage (t)

Transmission

4 Line
Curtailment o . Congestion
(t+1) (t+1)
< B
’ Wind [ : oPs
Curtailment 4 R
System (t+1) ] 4 i Violations
Reserve (t) oad Generation (t+1)
Curtailment Curtailment
(t+1) (t+1)

Fig. 4. Bayes net model for predicting system imbalance.

The system can be perturbed by events such as transmission and generation outages. The
occurrence of these events is unpredictable, but their effects on the system are
deterministic in nature and are incorporated into the model to show their potential impact
on LFE, WFE, SCE and subsequently system imbalance.

The conditional probability hierarchy shown in Fig. 4 shows the dependency relationship
between nodes. Nodes for load, load forecast error, temperature, wind power, and wind
forecast error observed at the current time step (t), are used in forecasting LFE and WFE
in the next time step (t+1). The forecasted values of LFE, WFE and SCE are used in turn
to forecast system imbalance at time (t+1). In application, observed values at the current
time step (t) are entered into the DBN model to generate forecasted values for LFE, WFE
and SCE at the next time step (t+1). Forecast for future system imbalance at (t+n) can be
generated using the hidden Markov model as needed.

Till the time of writing this report, the model shown in red in Fig. 4 has been
implemented. The focus was put on these variables because they have the greatest impact
on system imbalance and should serve well as an initial test of the feasibility of this
modeling approach.

4.3 Preprocessing the Data



The state-spaces for BN nodes were derived from a historical time series of hourly
observations on these components in the BPA system. The data set provided consists of
continuous variables. While it is possible to build a BN model from continuous variables,
the algorithms are much more complicated and the usual practice is to discretize the data.
The process results in a histogram of the data and consists of dividing the data into
discrete intervals that are non-overlapping and mutually exclusive. Data falling into each
of these categories is given state names that correspond to the variable states defined in
the BN model. The resulting discretization is simply a bar-plot of the frequency counts of
observations in each bin. This can be done either using the R programming language, or
in some cases it was done using the GeNle ® software (http://genie.sis.pitt.edu) that was
used to implement the BN model. The GeNIe® program has user friendly utilities for
discretizing data and viewing histograms and pie-charts of the resulting distributions. A
screen shot showing the discretization of the temperature data using GeNle is shown in
Fig. 5.

» Discretize - temp

Method: | Uniform Widths | State ID From To | Count |
) . [0 =1_below_20 20 4
Bncount: [3 =] [s2_20 30 20 174
- =3 3040 90 4072938
Brefic s Cs4_40 50 40 507 5250
T A e [1s5_50_60 50 50 4256
<6 60_70 &0 707 1887

Cs7_70_80 70 80: 618
Discretize »[s2 20 30 80 138
=5 50 up 50 1

Drag boundaries to adjust intervals or edit them directly in the grid above

20%

T

=i !
10 0 30 40 50 60 70 &0 50 100

Bin court for original distibution: 1000 —— J oK | Cancel

Fig. 5. Screen shot of discretized temperature using GeNle software

4.4 Learning Probabilities from the Data

The discretized data is the basis for computing the conditional probability tables (CPT)
for the BN model. For the root nodes (nodes without parents), the prior probability of
being in a particular state is just the relative frequency for which the state occurs. The
conditional probabilities are learned in an analogous fashion. For each combination of
parent states, the proportion of times the child is in each of its states is determined. This



becomes the basis for the learned probabilities. While this is the basic principle, the
algorithm is slightly more complex because of the need to account for combinations of
parent states that did not occur in the data set. These are accounted for in GeNle software
by using the expectation maximization (EM) algorithm [4].

Once the parameters were learned using the BN shown in red in Fig. 4, the probability
distributions were then used to build a DBN as in Fig. 6. System imbalance depends on
WFE and LFE. They each depend on themselves in the previous time period, as shown
by the looping arrow with a “1”. In addition, Temperature at time t is used to predict LFE
at time t+1. The time slices in the temporal plate of GeNle is set to 4, thus one
observation will produce predictions for three time periods in the future. The model can
be exercised with any number of time slices.

To make the four time slice model even more explicit we built a model in which the
variables were duplicated for each of the four time slices. This is shown in Fig. 7. Each
color in the figure represents a single time slice. One can clearly see that this DBN is a
first order Markov model because the probabilities in a given time slice depend only on
the previous time period; i.e., conditionally probability arcs connect successive time
periods. This DBN also has the property of stationarity, meaning the conditional
distributions within time slices are the same across time periods.

Init Conditions Temporal Plate (4 slices) Term Conditions

System
Imbalance

Fig. 6. Screen shot of DBN for predicting system imbalance as implemented in GeNle.
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Fig. 7 First order dynamic Bayes net used to predict system imbalance.

4.5 Generation of Forecast Data

Table 1 shows the initial eleven records used to run the GeNle DBN model shown in Fig.
6. The complete data set consisted of 15,379 records from October 2006 to June 2008.
For each hour, the data for time (t) were entered into the model as evidence and the
model provided a forecast of system imbalance for three subsequent time periods. Fig. 8
is a snapshot of exercising GeNle for one time slice. A program was written in C++ to
read evidence for time (t) and generate predictions for time (t+1), (t+2), and (t+3).

Table 1. Sample of data used to run the BN model

day year hour load.t loaderr.t loaderr.tl wind.t winderr.t winderr.tl sys.t sys.tl temp.t
30 2006 10 MW4500 MWO MWO MW600 MWO MW100 MWO MWO s05_50_60
30 2006 11 MW5000 MWO MWO MW600 MW100 MW_100 MWO MWO s05_50_60
30 2006 12 MW5000 MWO MW_200 MW600 MW_100 MWO MWO MW_200 s05_50_60

30 2006 13 MW4500 MW_200 MW200 MW600 MWO MW_100 MW_200 MW200 s05_50_60
30 2006 14 MW5000 MW200 MW400 MwW400 MW_100 MWO MW200 MW200 s05_50_60
30 2006 15 MW5500 MW400 MW200 MW400 MWO MW100 MW200 MW200 s05_50_60

30 2006 16 MW5500 MW200 MWO MW600 MW100 MWO MW200 MWO s05_50_60
30 2006 17 MW5500 MWO MWO MW600 MWO MW100 MWO MWO s05_50_60
30 2006 18 MW5500 MWO MW_200 MW600 MW100 MWO MWO MW_200 s05_50_60
30 2006 19 MW5500 MW_200 MWO MW600 MWO MWO MW_200 MW_200 s05_50_60
30 2006 20 MW5500 MWO MWO MW600 MWO MWO MW_200 MWO s05_50_60

11



» Mode properties: System Imbalance
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] MwWeDD 0:0.004133063 : 0.040165575 : 0.045360007
] Mwano 0:0.0001023... : 0.0069430... 0020335463
] MW 1000 0 0:0.0005506... :0.0047477...
[ M 1200 0 0: 5.3093873... : 0.0002733...
1
I:I T T
0 1 2 3
lTl Cancel

Fig. 8. Output generated by GeNle for predicting system imbalance.

In Fig. 8, each color band represents a system imbalance state, such as MWO0 (0 MW
imbalance), MW _200 (-200 MW imbalance), etc. The width of the color band at a
particular hour (hour 1, 2 and 3) is the predicted probability of the corresponding state at
that hour. Therefore, the sum of the width of all color bands is equal to “1”.

4.6 Byes Net Model Output

The output of the BN model shown in Fig. 6 is the probability distribution of system
imbalance in future time steps. Because hourly data were used to generate the model,
prediction results have a time step of 1 hour. Fig. 9 and Fig. 10 show the predicted
probability distribution of system imbalance in the next 1 and 2 hours, respectively. If the
system is assumed to have a 500 MW upward regulating reserve and 700 MW downward
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regulating reserve, then system imbalance lower than -500 MW and higher than 700 MW
indicates a tail event. In Fig. 9 and Fig. 10 the bar at -600 MW represents the interval
between -500 MW and -700 MW, and the bar at 800 MW represents the interval between
700 MW to 900 MW. Therefore, the probability of a tail event is calculated by
accumulating the probabilities including and beyond these two bars.

Hour 1 System Imbalance Prediction
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Fig. 9. Prediction of system imbalance for the next hour.

Fig. 9 shows that during the next operation hour, the probability of being short of
generation is 0.16%, and the probability of being over generating is 1.95%. The most
likely state of system imbalance is 200 MW, representing the interval between 100 MW
and 300 MW.

Hour 2 System Imbalance Prediction
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Fig. 10. Prediction of system imbalance for the second hour

Fig. 10 shows that during the next operation hour, the probability of being short of
generation is 0.08%, and the probability of being over generating is 6.95%. The most
likely state of system imbalance is 0 MW, representing the interval between -100 WM
and 100 MW.
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The actual system imbalance is: Hour 0 (present hour) = 132 MW, Hour 1 = 333 MW,
Hour 2 =-162 MW.

4.7 Validation Studies

4.7.1 Comparison with Naive Persistence Forecasts

Validation of the BN forecasts on system imbalance were done in comparison to the
naive persistence (NP) forecast model. The NP model uses the observed system
imbalance at time (t) as the forecast for future times (t+n; n>1). The NP model provides
only a point estimate forecast without any measure of uncertainty. The BN model
provides the Bayesian posterior probability distribution of the forecasted system
imbalance conditioned on all system components in the model, and thus explicitly
provides a measure of uncertainty. Before forecasts from the BN and NP models can be
directly compared, the BN forecast needs to be converted to a point-estimate. BN point
estimates are computed as probability-weighted averages of state-space interval mid-
points. The algorithm for this conversion is diagramed in Fig. 11.

Posterior Probability on
System Imbalance States (S)
S *P(S)
1200*0.004=48

1200

1000*0.004=4

800*0.009=7.2

600*0.027 =16.2

400*0.012=48

200 400 600 800

200*0.019=338

0

0%0.161=0

System States (MW)

-200%0.444=-88.8

-400

-400*0.288 =-115.2

-600*0.026 =-15.6

-800

-800*0.006 =-4.8

[ T T T T T T 1
0.0 01 0.2 03 04 05 0.6 0.7

D> SP(S) = -183.4 MW

Fig. 11. Example demonstrating method for converting BN model forecasts from
posterior probability distribution on system imbalance to point-estimates

Direct comparisons of the BN and NP model forecast accuracy are shown in Fig. 12 and

Fig. 13 for 1-, 2-, and 3-hour forecasts as mean absolute prediction error (MAPE).
Because the significance of system imbalance being negative or positive may be quite
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different in a power system, these two types of cases were compared separately in Fig. 12
and Fig. 13. Errors were computed by subtracting the observed system imbalance from
the NP and BN forecasted system imbalances, respectively. Smaller MAPE values
indicate more accurate forecasts.
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Fig. 12. Mean absolute prediction error comparison between BN and NP models
forecasting at one, two and three hours: positive system imbalance cases
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400
350 A
300 +
250
200
150 A
100 ~

50 4

0 BN Model
@ NP Model

MW

1hr 2 hr
Prediction time horizon

Fig. 13. Mean absolute prediction error comparison between BN and NP models
forecasting at one, two and three hours: negative system imbalance cases

The BN model showed consistently improved accuracy over NP model on the 1-, 2- and
3-hour forecasts. The average improvements over NP model forecast results are 16%,
26% and 31% for 1-, 2- and 3-hour forecasts, respectively.

4.7.2 Prediction of Tail Event Probability

Probability of tail event can be calculated from the BN model output, as described
previously. To validate the prediction results, all cases are grouped based on the
probability of tail event predicted by the BN model, such as 0~0.1, 0.1~0.2, etc. Then in
each group, the number of cases when tail events were observed (regulating reserve is
insufficient) is divided by the total number of cases in that group. The results are deemed
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as the actual probability that tail events occurred. They are shown in Fig. 14 and Fig. 15
for positive imbalance and negative imbalance cases, respectively.

Fig. 14 and Fig. 15 show that the observed probability of tail events does not match very
well with the probability predicted by the BN model. There could be a high false alarm
rate, with the predicted probability always higher than the actual observed. Nevertheless,
there is a significant correlation between the two, which is more obvious in Fig. 15. It
does show that when the BN model predicts a high probability of tail event, the chance of
a tail event actually occurring is also high.
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Fig. 14. Observed probability of tail events vs. predicted probability by the BN model:
positive system imbalance cases
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Fig. 15. Observed probability of tail events vs. predicted probability by the BN model:
negative system imbalance cases

4.8 Potential Improvements on the Bayes Net Model

The current BN model has a time step of 1 hour. In real-time operations, predictions with
higher time resolution are usually preferable because large system imbalance can be
missed in forecasts if the forecasts are averages over long time intervals. Therefore, a BN
model with 5 to 15 minute time interval should be constructed for the use in real time.
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Another potential improvement is to use second or third order Markov process to see the
trends of data series. For example, in the current model (first order Markov process), LFE
at time (t+1) is affected by the temperature at time (t), and is irrelevant to temperature at
and before time (t-1). If a second order Markov process is used, LFE at (t) would be
affected by both the temperature at time (t) and (t-1). The approach may be able to
improve the prediction accuracy of the BN model.

Various techniques can also be explored and tested in dealing with the issue of
insufficient data when forming the transition matrices between different system states.

On the other hand, dimension of the transition matrices for the model increases linearly
with the time resolution and the order of Markov model. Lack of sufficient data will also
become more challenging. These problems need to be taken care of appropriately to
improve the model.
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V. CONCLUSION

This report presents a methodology to analyze and predict the balancing reserve
requirement and probability of tail event for power systems with intermittent resources.
The methodology contains three parts:

1. Yearly distributions of balancing requirement and tail events, which show the level
of system imbalance and the corresponding total period that can be seen in the system,
providing a high level look at the issue and a quick estimate of risks associated with any
particular reserve level.

2. Hourly distributions of balancing requirement and tail events, providing information
on those hours when the sufficiency of balancing reserve should be carefully watched.

3. A model called Bayes net (BN), predicting the real-time need for regulating reserves
of the power system and probability of tail event.

Accumulating system operating experience is a slow and long process for human system
operators. The BN model adopted in the project study essentially “remembers”™ all cases
that have happened in the past and uses this experience and current system status to
generate an estimate of balancing requirements. It is similar to the process of an
experienced system operator giving a prediction based on his own knowledge of the
system, but in a more quantitative fashion. The model should be able to provide good
reference information to system operators.

Based on the prediction of system imbalance, available reserves and system policy, the
BN model can be extended to provide early warnings of load, wind or transmission
curtailment, facilitating the coordination between different parties in the operation of the
power system.

As penetration of intermittent sources increases in the system, the balancing reserve
requirement is more variable. Determining whether the system will have sufficient
reserve capacity in real-time operation becomes more difficult. The methodology
presented in this report will help to address this problem.
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