

PNNL-18679

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

The Wide-Area Energy Storage and Management System – Battery Storage Evaluation

N Lu MR Weimar YV Makarov J Ma VV Viswanathan

July 2009

DISCLAIMER

United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes **any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights**. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401, fax: (865) 576-5728 email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847, fax: (703) 605-6900 email: orders@ntis.fedworld.gov online ordering: <u>http://www.ntis.gov/ordering.htm</u>

This document was printed on recycled paper. (8/00)

PNNL-18679

The Wide-Area Energy Storage and Management System – Battery Storage Evaluation

N Lu, Ph.D.: Senior Engineer, Project Manager MR Weimar, Ph.D.: Chief Economist, Task Lead YV Makarov, Ph.D.: Chief Scientist - Power Systems, Principal Investigator J Ma, Ph.D.: Research Engineer VV Viswanathan, Ph.D., Senior Research Engineer

July 2009

Prepared for California Institute for Energy and Environment and the California Energy Commission under Contract DE-AC05-76RL01830 Related Services

Pacific Northwest National Laboratory Richland, Washington 99352

Abstract

This report presents the modeling approach, methodologies, and results of the sodium sulfur (NaS) battery evaluation study, which was conducted by the Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy by Battelle Memorial Institute for the California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC).

The goal of this research is to investigate technical characteristics and economics of the NaS battery energy st orage us ed for regulation and real-time di spatch (also called *load following*) services in the electricity market operated by the California Independent System Operator (CAISO). This report is part of the deliverables for Phase II of the Wide Area Energy Storage and Management System (WAEMS) project.

The tasks addressed in Phase II are as follow:

- Study the value of the ancillary services that can be provided by the NaS battery for the following two wind energy penetration scenarios: (1) a hypothetical scenario without wind energy resource and (2) a scenario with 20% of CAISO's energy supply being provided by renewable resources including the wind energy resource. Scenario (1) was analyzed to compare the incremental effects of wind power production.
- Evaluate technical and economical characteristics of the NaS battery when it is used to provide regulation and real-time dispatch services.
- Consider di fferent op erational c onditions, f ind limitations, a nd recommend a dditional opportunities for the NaS battery arising in the California energy market.
- Suggest design improvements for the following NaS battery physical characteristics helping to increase the value and expand market opportunities in California: energy capacity, power output, and lifetime.

The results and conclusions of the study are summarized as follows:

- If an NaS battery is operated for 20 years at its rated output 4 MW, operating it at a lower depth of discharge (DOD) results in less cost with the now lifecycle-DOD curve. If manufacturers can improve the NaS battery lifecycles at high DODs, the breakeven prices will drop significantly for high DOD cases.
- Under the *pay-by-energy* scheme for regulation and real-time dispatch services, for a 4 MW, 28 MWh NaS battery to provide regulation and real-time dispatch services, breakeven prices are above 100 \$/MWh, making the operation not economical in the California market.
- Under the *pay-by-capacity* scheme for r egulation services, the battery has a l onger life and a lower cost when it runs at lower DOD. With current technology, the battery rated power output is 4 MW. The results indicate that if the 4 MW battery provides one-directional regulation service, the high-end c ost will be 26 \$/ MW and the low-end c ost will be 16 \$/ MW. In the California market, this means the NaS battery may become marginally profitable.
- If the battery rated power can be increased, the breakeven price will drop significantly because the battery is able to handle a broader range of signals. However, after 12 MW, the price drop is not significant, but the battery life is shortened dramatically. Therefore, based on the current

lifecycle-DOD curve, it is beneficial for the battery manufacturer to increase the battery rated power output up to 8 or 12 MW, which will result in a breakeven price drop of 1/2 to 1/3.

- At higher-rated power, there is a tradeoff between the DOD and battery life. At 4 MW, the DOD does not result in a shortened battery life because the 28 MWh NaS battery is underused when providing the regulation. At 20 MW, however, the battery lives are significantly shorter at higher DODs.
- The NaS battery provides almost the same amount of regulation or real-time dispatch services for the "with 20% renewables" and "without wind" cases. Thus, the breakeven prices were similar. More batteries contribute greater ancillary service capacity and therefore, allow more intermittent generation resources to connect to the power grid. However, the amount of regulation and real-time dispatch services that an individual battery provides depends mainly on its power rating. For the "with 20% renewables" and "without wind" cases, signals sent to the NaS battery are all within its rated power output ±4 MW. For example, although 193 MW are needed for regulation without wind, and 248 MW are needed for regulation with 20% renewable, for the 4 MW NaS battery, it provides s ervices within ±4 MW in both cases; therefore, the amounts of e nergy provided in both cases are similar.
- The NaS battery provides economical and reliable regulation and real-time dispatch services if it responds to a one-directional signal with small variations and close to the battery rated power output. For regulation signals outside the battery's capability, it is recommended that st orage devices with high power outputs but less energy storage capacity such as flywheels provide the regulation service.

Executive Summary

This report presents the modeling approach, methodologies, and results of the sodium sulfur (NaS) battery evaluation study, which was conducted by the Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy by Battelle Memorial Institute for the California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC).

Background

California has set the goal of reaching 20% renewable energy by 2012. Moving quickly towards this goal, t he C alifornia I ndependent S ystem O perator (CAISO) ne eds t o find w ays t o mitigate t he intermittence and fast-ramp that occurs at higher penetration levels of intermittent resources, the majority of w hich a re w ind and s olar pow er. P umped-hydro pow er pl ants, ba tteries, f lywheels, distributed generation resources, and de mand side m anagement are f lexible ene rgy st orage opt ions that cou ld potentially prov ide t he ne eded fast r esponsive anc illary ser vice r esources. Pacific G as and Electric (PG&E) is planning to build a 4 MW, 28 MWh NaS battery storage. To evaluate operational, market, and regulatory opportunities and limitations concerning the use of the PG&E Battery Storage Facility, PNNL proposed this research to CIEE and CEC.

Ford M otor Company pioneered the NaS battery in the 1960s to power early-model electric cars; NGK and Tokyo Electric refined it for the power grid. The benefits of the NaS battery are its high energy density, efficiency, and long-term durability [1][2]. For example, its energy density is approximately three times larger than lead-acid batteries. Furthermore, the battery can be charged and discharged over periods of 7 hours or stored indefinitely if the temperature is maintained at 600 degrees Fahrenheit. The cycle life of NaS batteries is based on depth of discharge and environmental factors. However, when a battery is providing regulation or real-time dispatch services, the battery capacity may not be fully used, resulting in a low utilization factor. Whether or not the services are economical is unknown. We expect that this research will lay a solid foundation for an extensive energy storage evaluation study, which will include the economics of all energy storage options for both the energy and ancillary services.

Objectives

The goal of this research is to investigate technical characteristics and economics of the NaS battery energy st orage us ed for regulation and real-time di spatch (also called *load following*) services in the electricity market operated by the California Independent System Operator (CAISO). This report is part of the deliverables for Phase II of the Wide Area Energy Storage and Management System (WAEMS) project.

The tasks addressed in Phase I are as follow:

- Evaluate and compare available energy storage options. Review the world experience. Identify the top three technologies that can meet the needs of this project.
- Design and evaluate configurations and integration schemes of t he energy st orage, generation resources, their combinations, and other options. Identify the most promising configurations and their benefits.

- Analyze the technical and market c ompatibility of the proposed integration s chemes with the existing regulation and load following systems at Bonneville Power Administration (BPA) and CAISO.
- Collect data needed for experiments at BPA and CAISO.
- Develop algorithms f or the en ergy s torage a nd generation c ontrol. I mplement t hem a s MATLABTM codes.
- Conduct experiments using the MATLABTM model and collected data.
- Carry out the cost benefit analyses based on simulation results.
- Provide a summary of results and recommendations for possible continuation of the project.

The tasks addressed in Phase II are as follow:

- Study the value of the ancillary services that can be provided by the NaS battery for the following two wind energy penetration scenarios: (1) a hypothetical scenario without wind energy resource and (2) a scenario with 20% of CAISO's energy supply being provided by renewable resources including the wind energy resource. Scenario (1) was analyzed to compare the incremental effects of wind power production.
- Evaluate technical and economical characteristics of the NaS battery when it is used to provide regulation and real-time dispatch services.
- Consider di fferent op erational conditions, f ind limitations, a nd recommend additional opportunities for the NaS battery arising in the California energy market.
- Suggest design improvements for the following NaS battery physical characteristics helping to increase the value and expand market opportunities in California: energy capacity, power output, and lifetime.

Approach

The modeling framework is shown in Figure 1. The regulation and real-time dispatch signals were simulated us ing 2006 C AISO hi storical data s ets. The battery model was developed based on battery depth of discharge characteristics. The methodology us ed in P hase I of this project was improved by considering the physical characteristics of the NaS battery storage so that the number of battery lifecycles and annual energy provided are realistic. The battery performance was simulated by feeding the simulated minute-to-minute r egulation a nd real-time di spatch signals i nto t he battery model. To ev aluate t he efficacy of the N aS battery s torage i n m itigating t he i ntermittence br ought by t he h igher levels of penetration of renewable energy, a scenario was studied with 20% of the CAISO load being supplied by renewable energy resources including wind generation, and compared it against a scenario with zero wind generation.

To provide regulation or real-time dispatch service, an NaS battery can run at either the bi-directional or one -directional m ode. I n t he b i-directional m ode, t he battery r esponds to both " up" a nd " down" signals. In the one-directional mode, the battery responds to the "up" signal when it is discharging and the "down" signal when charging. The one-directional operation scheme was selected and modeled in detail in this study because the one-directional operation allows the NaS battery to have a longer service life and is easier to implement compared to bi-directional operation schemes.

In the benefit study, the economics of the four services in terms of breakeven¹ costs were evaluated and compared for different device performance characteristics and operation mechanisms to find the best options. Net present value (NPV)² was not calculated because the service's breakeven costs were not low enough t o pr ovide a positive NPV g iven a ssumed CAISO market pr ices for regulation a nd r eal-time dispatch services. There were two sets of breakeven prices considered: the high-end cost and the low-end cost. The high-end cost was obtained by applying pessimistic estimations of input variables, and the lowend cost was obtained by applying the optimistic ones.

Two payment methods were studied for the regulation service: *pay-by-capacity* and *pay-by-energy*³. For the real-time dispatch service, only the *pay-by-energy* method was considered.

Figure 1: The modeling framework

Results and Conclusions

The modeling r esults a re summarized in Table 1 to Table 3, which a re c olor s caled f or be tter visualization. The greener the color, the better the value. The results and c onclusions of the study are summarized as follows:

• Improved lifecycles: I f an Na S battery is operated f or 20 y ears at i ts r ated out put, 4 M W, operating it at a lower depth of discharge (DOD) results in less cost with the current lifecycle-

¹ The break-even [3] point for a product is the point where total revenue received equals the total costs associated with the sale of the product.

² Net present value (NPV) or net present worth (NPW) [4] is defined as the total present value (PV) of a time series of revenues - costs.

³ Pay-by-capacity means that a unit is paid by the capacity that it bids into the market regardless of the actual energy that it provides to the grid. Pay-by-energy means that a unit is paid by the actual energy that it provides to the grid.

DOD curve, as shown by the blue line in Figure 2. However, if manufacturers can improve the NaS battery's number of lifecycles at high DODs, as shown by the red line in Figure 2, the breakeven prices will drop significantly for high DOD cases. The results are compared in Figure 3 and Table 1.

- As s hown in Table 2, under the *pay-by-energy* scheme for r egulation and real-time di spatch services, for a 4 MW, 28 MWh NaS battery to provide regulation and real-time dispatch services, breakeven prices are above \$100/MWh, making the operation not economical in the California market.
- As shown in Table 3, under the *pay-by-capacity* scheme for regulation services, the battery has a longer life and a lower cost when it runs at lower DOD. With current technology, the battery rated power output is 4 M W. The r esults indicate that if the 4 MW battery provides on e-directional regulation service, the high-end cost will be \$26/MW and the low-end cost will be \$16/MW. In the California market, this means the NaS battery may become marginally profitable.

Wit	Base (Case technology	High End Bre (\$/M	akeven Price Wh)	Low End Bre Price (\$/M	akeven Wh)
Life	DOD	Life (cycle)	0% Profit	8% Profit	0% Profit	7% Profit
20	5%	379208	15.22	23.12	7.61	11.84
20	10%	125092	23.08	35.04	11.54	17.94
20	20%	41265	34.98	53.11	17.49	27.19
20	30%	21569	44.61	67.74	22.31	34.68
20	40%	13612	53.02	80.51	26.51	41.22
20	50%	9525	60.61	92.04	30.31	47.12
20	60%	7115	67.62	102.68	33.81	52.57
20	70%	5560	74.17	112.63	37.08	57.66
20	80%	4490	80.36	122.03	40.18	62.48
20	90%	3719	86.24	130.96	43.12	67.05
20	100%	3142	91.87	139.51	45.94	71.43
Tec Prolonged	hnology In d Lifecycle	nprovement s at Higher DODs	High End Bre (\$/M	akeven Price Wh)	Low End Bre Price (\$/M	akeven Wh)
Tec Prolonged Life	hnology In d Lifecycle DOD	nprovement es at Higher DODs Life (cycle)	High End Bre (\$/M 0% Profit	akeven Price Wh) 8% Profit	Low End Bre Price (\$/M	akeven Wh) 7% Profit
Tec Prolonged Life 20	hnology In d Lifecycle DOD 5%	nprovement s at Higher DODs Life (cycle) 379208	High End Bre (\$/M 0% Profit 15.22	akeven Price Wh) 8% Profit 23.12	Low End Bre Price (\$/M 0% Profit 7.61	akeven Wh) 7% Profit 11.84
Tec Prolonged Life 20 20	hnology In d Lifecycle DOD 5% 10%	nprovement s at Higher DODs Life (cycle) 379208 125092	High End Bre (\$/M 0% Profit 15.22 23.08	akeven Price Wh) 8% Profit 23.12 35.04	Low End Bre Price (\$/M 0% Profit 7.61 11.54	akeven Wh) 7% Profit 11.84 17.94
Tec Prolonged 20 20 20	hnology In d Lifecycle DOD 5% 10% 20%	hprovement s at Higher DODs Life (cycle) 379208 125092 53645	High End Bre (\$/M 0% Profit 15.22 23.08 26.91	akeven Price Wh) 8% Profit 23.12 35.04 40.86	Low End Bre Price (\$/M 0% Profit 7.61 11.54 13.45	akeven Wh) 7% Profit 11.84 17.94 20.92
Life 20 20 20 20 20 20	hnology In d Lifecycle 5% 10% 20% 30%	Improvement sat Higher DODs Life (cycle) 379208 125092 53645 32354	High End Bre (\$/M 0% Profit 15.22 23.08 26.91 29.74	akeven Price Wh) 8% Profit 23.12 35.04 40.86 45.16	Low End Bre Price (\$/M 0% Profit 7.61 11.54 13.45 14.87	akeven Wh) 7% Profit 11.84 17.94 20.92 23.12
Life 20 20 20 20 20 20 20	hnology In d Lifecycle 5% 10% 20% 30% 40%	nprovement s at Higher DODs Life (cycle) 379208 125092 53645 32354 27224	High End Bre (\$/M 0% Profit 15.22 23.08 26.91 29.74 26.51	akeven Price Wh) 8% Profit 23.12 35.04 40.86 45.16 40.25	Low End Bre Price (\$/M 0% Profit 7.61 11.54 13.45 14.87 13.25	akeven Wh) 7% Profit 11.84 17.94 20.92 23.12 20.61
Life 20 20 20 20 20 20 20 20 20 20 20 20 20	hnology In d Lifecycle 5% 10% 20% 30% 40% 50%	nprovement s at Higher DODs Life (cycle) 379208 125092 53645 32354 27224 23813	High End Bre (\$/M 0% Profit 15.22 23.08 26.91 29.74 26.51 24.24	akeven Price Wh) 8% Profit 23.12 35.04 40.86 45.16 40.25 36.82	Low End Bre Price (\$/M 0% Profit 7.61 11.54 13.45 14.87 13.25 12.12	akeven Wh) 7% Profit 11.84 17.94 20.92 23.12 20.61 18.85
Tec Prolonged 20	bnology In d Lifecycle 5% 10% 20% 30% 40% 50% 60%	nprovement s at Higher DODs Life (cycle) 379208 125092 53645 32354 27224 23813 21345	High End Bre (\$/M 0% Profit 15.22 23.08 26.91 29.74 26.51 24.24 22.54	akeven Price Wh) 8% Profit 23.12 35.04 40.86 45.16 40.25 36.82 34.23	Low End Bre Price (\$/M 0% Profit 7.61 11.54 13.45 14.87 13.25 12.12 11.27	akeven Wh) 7% Profit 11.84 17.94 20.92 23.12 20.61 18.85 17.52
Tec Prolonged 20	hnology In d Lifecycle 5% 10% 20% 30% 40% 50% 60% 70%	nprovement es at Higher DODs Life (cycle) 379208 125092 53645 32354 27224 23813 21345 19460	High End Bre (\$/M 0% Profit 15.22 23.08 26.91 29.74 26.51 24.24 22.54 21.19	akeven Price Wh) 8% Profit 23.12 35.04 40.86 45.16 40.25 36.82 34.23 32.18	Low End Bre Price (\$/M 0% Profit 7.61 11.54 13.45 14.87 13.25 12.12 11.27 10.60	akeven Wh) 7% Profit 11.84 17.94 20.92 23.12 20.61 18.85 17.52 16.48
Tec Prolonged 20	bnology In d Lifecycle 5% 10% 20% 30% 40% 50% 60% 70% 80%	Improvement s at Higher DODs Life (cycle) 379208 125092 53645 32354 27224 23813 21345 19460 17960	High End Bre (\$/M 0% Profit 15.22 23.08 26.91 29.74 26.51 24.24 22.54 21.19 20.09	akeven Price Wh) 8% Profit 23.12 35.04 40.86 45.16 40.25 36.82 34.23 32.18 30.51	Low End Bre Price (\$/M 0% Profit 7.61 11.54 13.45 14.87 13.25 12.12 11.27 10.60 10.05	akeven Wh) 7% Profit 11.84 17.94 20.92 23.12 20.61 18.85 17.52 16.48 15.62
Tec Prolonged 20	bnology In d Lifecycle 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%	Improvement s at Higher DODs Life (cycle) 379208 125092 53645 32354 27224 23813 21345 19460 17960 16736	High End Bre (\$/M 0% Profit 15.22 23.08 26.91 29.74 26.51 24.24 22.54 21.19 20.09 19.17	akeven Price Wh) 8% Profit 23.12 35.04 40.86 45.16 40.25 36.82 34.23 32.18 30.51 29.10	Low End Bre Price (\$/M 0% Profit 7.61 11.54 13.45 14.87 13.25 12.12 11.27 10.60 10.05 9.58	akeven Wh) 7% Profit 11.84 17.94 20.92 23.12 20.61 18.85 17.52 16.48 15.62 14.90

Table 1: The breakeven prices of two lifecycle-DOD curves

Breakeven Price (8% Profit) (\$MWh)									Utilization Rate (Pave/Prated) Adjusted LifeTime (Year)									ear)
	Prated			DOD						DOD						DOD		-
		1	0.8	0.6	0.4	0.2		1	0.8	0.6	0.4	0.2		1	0.8	0.6	0.4	0.2
Regulation	4	197	206	204	198	238		0.18	0.17	0.17	0.18	0.15		20	20	20	20	20
-	8	112	106	103	119	124		0.18	0.18	0.17	0.15	0.14		14	16	20	20	20
20% Renewables	12	89	89	86	80	87		0.18	0.16	0.15	0.15	0.13		10	12	15	20	20
	16	84	79	73	67	68		0.15	0.15	0.15	0.14	0.13		8	10	12	15	20
	20	77	71	65	60	57		0.15	0.15	0.15	0.14	0.12		7	8	9	13	20
Real-time	4	164	169	183	203	270		0.15	0.15	0.14	0.12	0.09		20	20	20	20	20
Dispatch	8	97	101	114	135	189		0.13	0.12	0.11	0.09	0.07		19	20	20	20	20
000/	12	82	83	90	108	148		0.11	0.10	0.09	0.08	0.06		15	19	20	20	20
20% Renewables	16	74	73	77	95	125		0.10	0.09	0.08	0.07	0.05		13	16	20	20	20
	20	68	68	70	83	110		0.09	0.08	0.07	0.06	0.05		11	14	19	20	20
Regulation	4	135	137	137	135	144		0.18	0.18	0.18	0.18	0.17		20	20	20	20	20
No-wind	8	77	73	71	72	79		0.18	0.18	0.18	0.17	0.16		14	16	19	20	20
	12	63	60	55	52	55		0.18	0.17	0.17	0.16	0.15		9	11	13	18	20
	16	56	52	48	45	43		0.17	0.17	0.17	0.16	0.14		7	8	10	14	20
	20	52	48	44	40	37		0.17	0.17	0.16	0.16	0.14		6	7	8	11	19
Real-time	4	177	179	201	229	303		0.14	0.14	0.12	0.11	0.08		20	20	20	20	20
Dispatch	8	108	115	128	151	219		0.12	0.11	0.10	0.08	0.06		20	20	20	20	20
No-wind	12	86	90	101	121	172		0.10	0.09	0.08	0.07	0.05		16	20	20	20	20
	16	77	79	87	109	147		0.09	0.08	0.07	0.06	0.04		14	17	20	20	20
	20	72	74	78	96	129		0.08	0.07	0.06	0.05	0.04		12	16	20	20	20

Table 2: The breakeven prices, utilization rates, and battery lifetimes (Pay-by-energy)

		High	n-end F (Pay-by \$/MW	-Capa)	city	Low	-end P (ay-by- \$/MW)	Capad	city	Adjusted Life Time (Year)							
	Р.,	DOD							DOD			DOD							
	rated	1	0.8	0.6	04	0.2	1	0.8	0.6	0.4	0.2	1	0.8	0.6	0.4	0.2			
Regulation	4	26	26	26	26	26	16	16	16	16	16	20	20	20	20	20			
Regulation	8	15	14	13	13	13	9	9	8	8	8	14	16	20	20	20			
	12	12	10	10	9	9	8	7	6	5	5	10	12	15	20	20			
20% Renew ables	16	10	9	8	7	7	6	6	5	4	4	8	10	12	15	20			
	20	9	8	7	6	5	6	5	5	4	3	7	8	9	13	20			
		-	-					-	-										
Regulation	4	26	26	26	26	26	16	16	16	16	16	20	20	20	20	20			
No-wind	8	15	14	13	13	13	9	9	8	8	8	14	16	19	20	20			
	12	12	11	10	9	9	8	7	6	6	5	9	11	13	18	20			
	16	10	10	9	7	7	7	6	6	5	4	7	8	10	14	20			
	20	9	9	8	7	5	6	6	5	4	3	6	7	8	11	19			
			-	-							-								
		Hig	h-end	Pay-b /MW	y-Enei 1)	rgy	Lov	v-end F (\$	Pay-by ∕ MWh	-Energ	gу	Adju	sted L	ife Ti	me (Y	ear)			
	P _{rated}	Hig	h-end (۹	Pay-b /MWI	y-Eneı ı)	rgy	Lov	v-end F (\$	^D ay-by /MWh DOD	-Energ)	gу	Adju	sted L	ife Ti	me (Y	ear)			
	P _{rated} (MW)	Hig 1	h-end (\$	Pay-b /MWI DOD 0.6	y-Ene ו) 0.4	r gy 0.2	Lov	v-end F (\$ 0.8	^D ay-by / MWh DOD 0.6	- Ener () 0.4	ду 0.2	Adju	sted L	ife Tin DOD	m e (Y e	ear) 0.2			
Regulation	P _{rated} (MW) 4	Hig 1 197	h-end (\$ 0.8 206	Pay-b / MWI 0.6 204	y- Ene i n) 0.4 198	0.2 238	Low 1 86	v-end F (\$ 0.8 90	Pay-by / MWh 0.6 89	-Energ) 0.4 86	gy 0.2 104	Adju	sted L 0.8 20	ife Tin DOD 0.6 20	me (Yo 0.4 20	ear) 0.2 20			
Regulation	P _{rated} (MW) 4 8	Hig 1 197 112	0.8 206 106	Pay-b /MWI DOD 0.6 204 103	y- Ene) 0.4 198 119	0.2 238 124	Low 1 86 50	v-end F (\$ 0.8 90 47	ay-by / MWh 0.6 89 45	-Energ) 0.4 86 52	9y 0.2 104 54	Adju 1 20 14	sted L 0.8 20 16	ife Tin DOD 0.6 20 20	me (Yo 0.4 20 20	ear) 0.2 20 20			
Regulation	P _{rated} (MW) 4 8 12	Hig 1 197 112 89	0.8 206 106 89	Pay-b DOD 0.6 204 103 86	y-Ener 1) 0.4 198 119 80	0.2 238 124 87	Low 1 86 50 41	v-end F (\$ 0.8 90 47 40	Day-by /MWh 0.6 89 45 38	0.4 86 52 35	gy 0.2 104 54 38	Adju 1 20 14 10	0.8 20 16 12	ife Til DOD 0.6 20 20 15	0.4 20 20 20	ear) 0.2 20 20 20			
Regulation 20% Renew ables	P _{rated} (MW) 4 8 12 16	Hig 1 197 112 89 84	h-end (\$ 0.8 206 106 89 79	Pay-b; /MWF 0.6 204 103 86 73	y-Ener 1) 0.4 198 119 80 67	rgy 0.2 238 124 87 68	Low 1 86 50 41 39	v-end F (\$ 0.8 90 47 40 37	Pay-by /MWh 0.6 89 45 38 33	-Energ) 0.4 86 52 35 30	0.2 104 54 38 30	Adju 1 20 14 10 8	sted L 0.8 20 16 12 10	ife Tin DOD 0.6 20 20 15 12	me (Yo 0.4 20 20 15	ear) 0.2 20 20 20 20 20			
Regulation 20% Renew ables	P _{rated} (MW) 4 8 12 16 20	Hig 1 197 112 89 84 77	0.8 206 106 89 79 71	Pay-b DOD 0.6 204 103 86 73 65	y-Ener) 0.4 198 119 80 67 60	rgy 0.2 238 124 87 68 57	Low 1 86 50 41 39 37	v-end F (\$ 0.8 90 47 40 37 33	Pay-by /MWh 0.6 89 45 38 33 30	-Energy 0.4 86 52 35 30 27	0.2 104 54 38 30 25	Adju 1 20 14 10 8 7	sted L 0.8 20 16 12 10 8	ife Tin DOD 0.6 20 20 15 12 9	me (Y 0.4 20 20 15 13	ear) 0.2 20 20 20 20 20 20			
Regulation 20% Renew ables	P _{rated} (MW) 4 8 12 16 20	Hig 1 197 112 89 84 77	0.8 206 106 89 79 71	Pay-b 5/MWF 0.6 204 103 86 73 65	y-Ener) 0.4 198 119 80 67 60	 Gy 0.2 238 124 87 68 57 	Low 1 86 50 41 39 37	v-end F (\$ 0.8 90 47 40 37 33	Pay-by /MWh 0.6 89 45 38 33 30	-Energy 0.4 86 52 35 30 27	0.2 104 54 38 30 25	Adju 1 20 14 10 8 7	sted L 0.8 20 16 12 10 8	ife Til DOD 0.6 20 20 15 12 9	me (Y 0.4 20 20 15 13	ear) 0.2 20 20 20 20 20			
Regulation 20% Renew ables Regulation	P _{rated} (MW) 4 8 12 16 20 4	Hig 1 197 112 89 84 77 135	h-end (\$ 206 106 89 79 71 137	Pay-b DOD 0.6 204 103 86 73 65 137	y-Ener) 0.4 198 119 80 67 60 135	0.2 238 124 87 68 57 144	Low 1 86 50 41 39 37 83	v-end F (\$ 0.8 90 47 40 37 33 84	Pay-by /MWh 0.6 89 45 38 33 30 84	-Energ) 0.4 86 52 35 30 27 83	0.2 104 54 38 30 25 88	Adju 1 20 14 10 8 7	sted L 0.8 20 16 12 10 8	ife Til DOD 0.6 20 20 15 12 9 20	me (Y 0.4 20 20 15 13 20	ear) 0.2 20 20 20 20 20 20 20			
Regulation 20% Renew ables Regulation No-w ind	P _{rated} (MW) 4 8 12 16 20 4 8	Hig 1 197 112 89 84 77 135 77	h-end (\$ 206 106 89 79 71 137 73	Pay-by DOD 0.6 204 103 86 73 65 137 71	y-Ener 0.4 198 119 80 67 60 135 72	 'gy 0.2 238 124 87 68 57 144 79 	Low 1 86 50 41 39 37 83 49	v-end F (\$ 0.8 90 47 40 37 33 84 46	A sy-by /MWh 0.6 89 45 38 33 30 84 44	-Energ) 0.4 86 52 35 30 27 83 44	0.2 104 54 38 30 25 88 48	Adju 1 20 14 10 8 7 20 14	sted L 0.8 20 16 12 10 8 20 20 16	ife Til DOD 0.6 20 20 15 12 9 20 19	me (Ye 0.4 20 20 15 13 20 20	ear) 0.2 20 20 20 20 20 20 20 20 20 20 20 20 20			
Regulation 20% Renew ables Regulation No-w ind	P _{rated} (MW) 4 8 12 16 20 4 4 8 12	Hig 1 197 112 89 84 77 135 77 63	h-end (\$ 0.8 206 106 89 79 71 137 73 60	Pay-b DOD 0.6 204 103 86 73 65 137 71 55	y-Ener) 0.4 198 119 80 67 60 135 72 52	0.2 238 124 87 68 57 144 79 55	Low 1 86 50 41 39 37 83 49 41	v-end F (\$ 0.8 90 47 40 37 33 33 84 46 39	A sy-by /MWh 0.6 89 45 38 33 30 84 44 44 35	-Energ) 0.4 86 52 35 30 27 27 83 44 32	0.2 104 54 38 30 25 88 48 34	Adju 1 20 14 10 8 7 20 14 9	sted L 0.8 20 16 12 10 8 20 16 11	ife Til 0.6 20 15 12 9 20 19 13	me (Ya 0.4 20 20 15 13 20 20 20 18	ear) 0.2 20 20 20 20 20 20 20 20 20 20 20 20 20			
Regulation 20% Renew ables Regulation No-w ind	P _{rated} (MW) 4 8 12 16 20 4 4 8 12 16	Hig 1 197 112 89 84 77 135 77 63 56	h-end (\$ 206 106 89 79 71 137 73 60 52	Pay-b; /MWI 0.6 204 103 86 73 65 137 71 55 48	y-Ener) 0.4 198 119 80 67 60 135 72 52 45	0.2 238 124 87 68 57 144 79 55 43	Low 1 86 50 41 39 37 83 49 41 37	v-end F (\$ 0.8 90 47 40 37 33 84 46 39 34	A standard and and a standard and a standard and a standard and a standard and an	-Energ) 0.4 86 52 35 30 27 83 44 32 28	0.2 104 54 38 30 25 88 88 48 34 34 27	Adju 1 20 14 10 8 7 20 14 9 7	sted L 0.8 20 16 12 10 8 20 16 11 8	ife Til 0.6 20 15 12 9 20 15 12 9 13 10	me (Ye 0.4 20 20 15 13 20 20 20 18 14	ear) 0.2 20 20 20 20 20 20 20 20 20 20 20 20 20			

Table 3: The breakeven price comparison between pay-by-energy and pay-by-capacity

Depth of Discharge

Figure 2: The battery lifetime with respect to the depth of discharge

Figure 3: A comparison of high-end and low-end breakeven prices of the improved battery lifecycle case (dash-lines) and the base case (solid lines)

• As shown in Table 2 and Table 3, if the battery rated power can be increased (as shown in Figure 4), the breakeven price will drop significantly because the battery is able to handle a broader range of signals. However, a fter 12 MW, the price drop is not significant, but the battery life is shortened dramatically. Therefore, based on the current lifecycle-DOD curve, it is beneficial for the battery manufacturer to increase the battery rated power output up to 8 or 12 MW, which will result in a breakeven price drop of 1/2 to 1/3.

Figure 4: The 28 MWh NaS battery capacity to power ratio

- As also shown in Table 2 and Table 3, at higher-rated power, there is a tradeoff between the DOD and battery life. At 4 MW, the DOD does not result in a shortened battery life because the 28 MWh battery is underused when providing the regulation service. At 20 MW, however, the battery lives are significantly shorter at higher DODs.
- The NaS battery provides almost the same amount of regulation or real-time dispatch services for the "with 20% renewables" and "without wind" cases. Thus, the breakeven prices were similar. More batteries contribute greater ancillary service capacity and therefore, allow more intermittent generation resources to connect to the power grid. However, the amount of regulation and real-time dispatch services that an individual battery provides depends mainly on its power rating. For the "with 20% renewables" and "without wind" cases, signals sent to the NaS battery ar e all within its rated power output ±4 MW. For example, although 193 MW are needed for regulation without wind, and 248 MW are needed for regulation with 20% renewable, for the 4 M W NaS battery, it provides services within ±4 MW in both cases; therefore, the amounts of e nergy provided in both cases are similar.
- The regulation and real-time dispatch signals sent to the NaS battery are scaled total regulation and real-time dispatch signals, so that the signals are within the battery rated power output, for example, ±4 MW. As shown in Figure 5, for the case in which 50% of the time, the normalized signal is outside ±4MW, the battery average power output is much higher than that of the 5% case, resulting in more economical services, as shown in Table 4. For the 50% of signals outside the battery's c apability, s torage de vices w ith high pow er out puts but less e nergy s torage capacities, such as a flywheel, would be better suited to provide the regulation and r eal-time dispatch signals.

Future research should focus on the economics of the combined services of batteries. By providing services to the energy, regulation, real-time dispatch, and reserve markets, the battery owner can collect revenue from different markets, resulting in a more economical operation than bidding in a single market. However, providing multiple services requires an optimization of the battery's commitment schedule. To address these optimal operation strategies, a battery commitment problem needs to be well defined and solved.

В	reakever	Breakeven Price (Low End)											
	Signal			DOD			DOD						
	Outliers	1	0.8	0.6	0.4	0.2		1	0.8	0.6	0.4	0.2	
Regulation	5%	197	206	204	198	238		101	105	104	101	122	
	10%	175	177	176	171	203		90	90	90	87	104	
20%	20%	138	140	135	148	160		71	72	69	76	82	
Renewables	30%	131	129	127	143	146		67	66	65	73	75	
	50%	112	105	101	112	116		59	-55	52	57	60	
Realtime	5%	231	238	257	285	381		118	122	132	146	195	
Dispatch	10%	205	217	228	270	355		105	111	117	138	182	
	20%	174	181	195	231	308		89	93	100	118	158	
20%	30%	151	159	177	204	278		77	82	91	104	142	
Renewables	50%	135	142	155	180	239		70	73	79	92	123	
Regulation	5%	191	193	193	190	202		98	99	99	97	104	
No-wind	10%	175	172	175	172	185		90	88	89	88	95	
	20%	144	144	143	149	156		74	74	73	76	80	
	30%	132	131	129	140	144		68	67	66	72	74	
	50%	117	112	108	113	119		61	58	-55	58	61	
Realtime	5%	249	251	283	322	426		128	129	145	165	218	
Dispatch	10%	217	226	254	285	387		111	116	130	146	198	
No-wind	20%	183	201	219	250	339		94	103	112	128	174	
	30%	167	183	193	224	312		86	94	99	115	160	
	50%	143	147	161	192	267		73	75	82	98	137	

L	'a l	าไ	0	Λ۰		۱.	com	nor	ICO.	nc	\f '	hroa	ZOVON	nr	1000	tor	dı	1 H	toront	norma	1700	ciono	10
I	a	л	U.	+.	Γ	J	COIII	ipai.	150	пc	1	UICa	KC VCII	pi	ICCS	101	u	ш	i ci ci i	. norma	nzcu	signa	12

Acknowledgment

This work has been funded by the California Energy Commission and supported by the California Institute for Energy and Environment (CIEE). The preparation of this report was conducted with support from the California Independent System Operator (CAISO).

The authors would like t o t hank Mike G ravely, California E nergy C ommission (CEC); Merwin Brown, Larry Miller and Jim Cole, California Institute for Energy and Environment (CIEE); and David L. Hawkins, California I ndependent S ystem O perator, for p roviding the p roject team with advice and guidance essential to this work.

The authors would also like to thank Ross Guttromson, Carl Imhoff, Evan Jones, Mark Morgan, Suresh Baskaran, and Sheena Kanyid, Pacific Northwest National Laboratory, for providing the project team with advice and support to this work.

Nishtha Ghosh, a PNNL Undergraduate Summer Intern, has provided the project team with literature reviews. We thank her for her efforts.

The authors would like to express their sincere thanks to S usan Arey and Susan E nnor, P acific Northwest National Laboratory, for providing editorial reviews to the report.

Nomenclature

ACE	Area control error (MW)
I_a	Net interchange (MW)
I_s	Scheduled net interchange (MW)
В	Area frequency bias constant
F_a	Actual frequency (Hz)
F_s	Scheduled frequency (Hz)
$G_{_{ha}}$	Hour-ahead generation schedule (MW)
G_{s}	Scheduled generation (MW)
G_{a}	Actual generation (MW)
$G^{\scriptscriptstyle W}_{\scriptscriptstyle ha}$	Hour-ahead wind generation (MW)
G^{r}	Regulation (MW)
$G^{{}^{l\!f}}$	Load following (MW)
$G^{\scriptscriptstyle W}$	Wind generation (MW)
$\Delta G^{^{ud}}$	Total deviation of generation from the dispatched instructions (MW)
$\Delta G^{\scriptscriptstyle W}$	Wind generation real-time schedule forecast error (MW)
ΔG^{lf}	The deviation of the load following unit from its base point (MW)
ΔG^r	The deviation of the regulation unit from its base point (MW)
L_{ha}	Hour-ahead load (MW)
L_a	Actual load (MW)
$G^{w,y}_{rtf,5\min}$	5-minute short-term forecasts of wind generation (MW)
$L^{y}_{rtf,5\min}$	5-minute short-term forecasts of load (MW)
P_{rated}	Battery rated power (MW)
P_{ave}	Battery average power output (MW)
$E_{\scriptscriptstyle B}$	Battery rated capacity (MWh)
L_{c}	Life (cycle)
L_y	Life (year)
n_y	Number of cycles in a year
n_h	Number of cycles in an hour
k _{DOD}	Depth of discharge (DOD)
K_{u}	Utilization factor

η	Efficiency
$E_{\it life}$	Lifetime energy (MWh)
E_{Annual}	Annual energy (MWh)
$B_{\scriptscriptstyle BE}$	Breakeven price (\$/MW)
R	Revenue (\$)
$C_{install}$	Installation cost (\$/kW)
C_{cap}	Capital cost (\$)
$k_{_{op}}$	Operation cost factor
C_{op}	Operation cost (\$)
С	Total op+cap
π	Profit
NPV	Net present value (\$)
R_{yr}	Annual benefit (\$)
C_{yr}	Annual levelized cost (\$)
i	Discount rate
n	Plant life in years

Abs	tract.		iii
Exe	cutive	e Summary	v
Ack	nowl	edgment	xiv
Non	nencla	ature	XV
1.0	Intro	oduction	1
	1.1	Background	1
	1.2	Objectives	2
	1.3	Scope of Work	3
2.0	Mod	deling Approach	5
	2.1	Regulation and Real-time Dispatch Signal Generation	6
		2.1.1 Area Control Error	6
		2.1.2 Separating Regulation and Real-time Dispatch	7
	2.2	The Modeling of the NaS Battery Performance	8
		2.2.1 Assumptions	8
		2.2.2 Normalization of the Regulation and Real-time Signals	12
		2.2.3 Bi-directional and One-directional Services	15
		2.2.4 The Depth of Discharge (DOD)	18
	2.3	Economic Analysis	20
		2.3.1 Assumptions	20
		2.3.2 Breakeven Calculation	20
		2.3.3 NPV Calculation	21
3.0	Mod	deling Results	22
	3.1	Assumptions	22
	3.2	Fixed Battery Lifetime with Different DODs	23
		3.2.1 Base Case	23
		3.2.2 Impact of improved lifecycle-DOD characteristics	27
	3.3	Different Regulation and Real-time Dispatch Signals	
	3.4	Different Battery Power Ratings	34
	3.5	Different Market Pricing Schemes	43
4.0	Con	clusions	45
5.0	Refe	erences	51

Contents

List of Tables

Table 1: The breakeven prices of two lifecycle-DOD curves	viii
Table 2: The breakeven prices, utilization rates, and battery lifetimes (Pay-by-energy)	ix
Table 3: The breakeven price comparison between pay-by-energy and pay-by-capacity	X
Table 4: A comparison of breakeven prices for different normalized signals	xiii
Table 5: NaS battery characteristics	11
Table 6: The values to normalize the regulation and real-time dispatch signals	14
Table 7: The utilization rates of the NaS Battery when providing bi-directional ancillary service	es 15:
Table 8: The lifecycles of the NaS battery with respect to the DODs	22
Table 9: The inputs of the model	23
Table 10: The breakdown of the total O&M cost	23
Table 11: The cost calculations – base case (fixed lifetime at 20 years)	25
Table 12: The NaS battery performance characteristics (fixed lifetime at 20 years)	26
Table 13: A cost comparison of the base case and the improved lifecycle case	28
Table 14: The values used to normalize the regulation and real-time dispatch signals to 4 MW.	30
Table 15: Number of charge/discharge cycles per year	31
Table 16: The breakeven prices, utilization rates, and battery lifetimes	32
Table 17: A comparison of breakeven prices	33
Table 18: The annual charge and discharge cycles	36
Table 19: The breakeven prices, utilization rates, and battery lifetimes (different rated battery outputs)	
Table 20: A comparison of breakeven prices	38
Table 21: The breakeven price comparison between pay-by-energy and pay-by-capacity	44
Table 22: The breakeven prices, utilization rates, and battery lifetimes (Pay-by-energy)	46
Table 23: The breakeven price comparison between pay-by-energy and pay-by-capacity	47
Table 24: A comparison of breakeven prices for different normalized signals	49

List of Figures

Figure 1: The modeling framework	vii
Figure 2: The battery lifetime with respect to the depth of discharge	xi
Figure 3: A comparison of high-end and low-end breakeven prices of the improved battery lifecycle case (dash-lines) and the base case (solid lines)	xi
Figure 4: The 28 MWh NaS battery capacity to power ratio	xii
Figure 5: The probability distribution functions of the regulation signals	xiii
Figure 6: The modeling framework	5
Figure 7. Separation of regulation from real-time dispatch based on simulated hour-ahead schedule	8
Figure 8: The battery lifetime with respect to the depth of discharge [7]	9
Figure 9: Battery output powers	9
Figure 10: The charging/discharge profiles of an NaS battery	10
Figure 11: The regulation signals and their PDFs	13
Figure 12: The real-time dispatch signals and their PDFs	13
Figure 13: The CDFs of regulation signals	13
Figure 14: The CDFs of real-time dispatch signals	14
Figure 15: The bi-directional regulation services provided by the 28 MWh/4 MW NaS battery. (Green: the regulation signals normalized to ±4 MW)	16
Figure 16: The one-directional service provided by the NaS battery	17
Figure 17: The regulation "up" (black lines) and "down" (red lines) signals	17
Figure 18: A comparison of bi-directional services and one-directional services provided by the NaS battery (Dotted lines: without wind; Solid lines: with wind)	e 18
Figure 19: The battery charging and discharging profiles (DOD: 20% - 100%)	19
Figure 20: The battery lifetime energy (DOD: 5% - 100%)	19
Figure 21: The breakeven prices (fixed lifetime at 20 years)	25
Figure 22: The battery lifecycle curves	27
Figure 23: A comparison of high-end and low-end breakeven prices of the improved battery lifecycle case (dashed lines) and the Base case (solid lines)	27
Figure 24: The breakdown of the breakeven price	29
Figure 25: The CDFs of regulation signals	30
Figure 26: The regulation signals for different NaS battery output ratings	34
Figure 27: The battery charge/discharge profiles for different NaS battery output ratings	34
Figure 28: The annual regulation energy provided by battery (dash: without wind, solid: with 20% renewables)	39
Figure 29: The calculated lifetimes of the NaS battery (solid: with 20% renewables; dash: with wind)	out 39
Figure 30: Battery charging/discharging profiles when providing regulation service	40
Figure 31: Battery charging/discharging profiles when providing real-time dispatch service	40

Figure 32: The box plot of battery charging time at different rated power outputs and DODs (regulation)	41
Figure 33: The box plot of battery discharging time at different rated power outputs and DODs (regulation)	41
Figure 34: The box plot of battery charging time at different rated power outputs and DODs (real- time dispatch)	42
Figure 35: The box plot of battery discharging time at different rated power outputs and DODs (real-time dispatch)	42
Figure 36: The battery lifetime with respect to the depth of discharge	45
Figure 37: A comparison of high-end and low-end breakeven prices of the improved battery lifecycle case (dashed lines) and the base case (solid lines)	45
Figure 38: The 28 MWh NaS battery capacity to power ratio	48
Figure 39: The probability distribution functions of the regulation signals	49

1.0 Introduction

This doc ument de scribes t he a pproach a nd r esults developed by t he P acific Northwest N ational Laboratory (PNNL) and u sed in evaluating the 4 MW, 28 M Wh s odium s ulfur (NaS) battery under a contract with the California Institution for Energy and Environment (CIEE). The project has been funded by the California Energy Commission (CEC). In this report, the motivation, objectives, and benefits of the research are discussed. Next, the scope of the project is outlined, and finally, results and conclusions are provided.

1.1 Background

California has set the goal of reaching 20% renewable energy by 2012. Moving quickly towards this goal, the California Independent System Operator (CAISO) needs to find possible means to mitigate the intermittence and fast-ramp that occurs at higher penetration levels of intermittent resources, the majority of w hich a re w ind and s olar pow er. P umped-hydro pow er pl ants, ba tteries, f lywheels, distributed generation resources, and de mand side m anagement are f lexible ene rgy st orage opt ions that could potentially prov ide t he ne eded fast r esponsive anc illary ser vice r esources. Pacific G as and Electric (PG&E) is planning to build a 4 MW, 28 MWh NaS battery storage. To evaluate operational, market, and regulatory opportunities and limitations concerning the use of the PG&E Battery Storage Facility, PNNL proposed this research to CIEE and CEC.

Ford Motor Company pioneered the NaS battery in the 1960s to power early-model electric cars; NGK and Tokyo Electric refined it for the power grid. The benefits of the NaS battery are its high energy density, efficiency, and long-term durability [1][2]. For example, its energy density is approximately three times larger than lead-acid batteries. Furthermore, the battery can be charged and discharged over periods of 7 hours or stored indefinitely if the temperature is maintained at 600 degrees Fahrenheit. The cycle life of NaS batteries is based on depth of discharge and environmental factors. However, when a battery is providing regulation or real-time dispatch services, the battery capacity may not be fully used, resulting in a low utilization factor. Whether or not the services are economical is unknown. We expect that this research will lay a solid foundation for an extensive energy storage evaluation study, which will include the economics of all energy storage options for both the energy and ancillary services.

To accept and accommodate the ancillary services provided by those devices in the CAISO market, CAISO needs answers to the following questions:

- What is the quantity (in terms of the downward and upward power capacity and energy) and quality (in terms of the availability, flexibility, ramping capability, ramp duration capability, etc.) of the ancillary service that an energy storage device can provide?
- Will the services provided be economically justified? What needs to be done to make them economical?
- What are the existing market opportunities for energy storage providers in the California market? Is there a need to introduce changes to the existing market rules and/or to the operating procedures in California to make the use of energy storage resources more cost effective and beneficial to grid reliability?

• What a re the desired device performance characteristics for energy storage devices ne eded to provide more valuable ancillary services to the grid? The answer to this question could provide design guidance for the battery manufacturers and designers.

Motivated by CAISO's needs, CEC (Mike Gravely) proposed this battery storage evaluation study. Because of funding limitations, the scope was limited to evaluating the economics and performance of an existing 4 MW NaS battery energy storage device while performing regulation and real-time dispatch services in the electricity markets operated by CAISO.

1.2 Objectives

The goal of this research is to investigate technical characteristics and economics of the NaS battery energy st orage us ed for regulation and real-time di spatch (also called *load following*) services in the electricity market operated by the California Independent System Operator (CAISO). This report is part of the deliverables for Phase II of the Wide Area Energy Storage and Management System (WAEMS) project.

The tasks addressed in Phase I are as follow:

- Evaluate and compare available energy storage options. Review the world experience. Identify top three technologies that can meet the needs of this project.
- Design and evaluate configurations and integration schemes of t he energy storage, generation resources, their combinations, and other options. Identify the most promising configurations and their benefits.
- Analyze technical and market compatibility of the proposed integration schemes with the existing regulation and load following systems at BPA and CAISO.
- Collect data needed for experiments at BPA and CAISO.
- Develop a lgorithms f or the en ergy st orage and generation control. Implement t hem as MATLABTM codes.
- Conduct experiments using the MATLABTM model and collected data.
- Carry out the cost benefit analysis based on simulation results.
- Provide a summary of results and recommendations for possible continuation of the project.

The tasks addressed in Phase II are as follow:

- Study the value of the ancillary services that can be provided by the NaS battery for the following two wind energy penetration scenarios: (1) a hypothetical scenario without wind energy resource and (2) a scenario with 20% of CAISO's energy supply being provided by renewable resources including the wind energy resource. Scenario (1) was analyzed to compare the incremental effects of wind power production.
- Evaluate technical and economical characteristics of the NaS battery when it is used to provide regulation and real-time dispatch services.
- Consider di fferent op erational conditions, f ind limitations, a nd recommend additional opportunities for the NaS battery arising in the California energy market.

• Suggest design improvements for the following NaS battery physical characteristics helping to increase the value and expand market opportunities in California: energy capacity, power output, and lifetime.

1.3 Scope of Work

The original scope of work is listed as follows:

- Evaluate operational, market, and regulatory opportunities and limitations concerning the use of the Pacific Gas and Electric (PG&E) Battery Storage Facility.
- Identify and analyze potential uses of the sodium sulfur energy storage facility that include peak shaving, intraday energy storage, black start applications, wind and solar generation intermittency mitigation, regulation, real-time dispatch, voltage support, stability enhancement, frequency response, and other potential uses.
- Analyze market and operational conditions, limitations, and opportunities associated with each potential application for NaS battery storage. Determine whether the battery's physical characteristics such as the size, energy capacity, cycling capacity, lifetime, and others can appropriately support (economically, etc.) the intended application.
- Identify what changes might be needed in CAISO's market (operating procedures and practices, control systems) Federal Energy Regulatory Commission (FERC) regulations or North American Reliability Corporation (NERC)/Western Electricity Coordinating Council (WECC) standards to create feasible, economic applications for the NaS battery storage.
- Provide a summary report addressing each of the above bulleted points.

On April 10, 200 9, a discussion with Mike Gravely (CEC) was followed by a number of phone interviews with Dave H awkins (CAISO) and Jon Eric Thalman (PG&E). Based on Mike G ravely's recommendations and a consensus from the CIEE project managers, to address changes in research needs, the scope of work was revised slightly as follows:

Evaluate operational and market opportunities and limitations concerning the use of PG&E Battery Storage Facility (4 MW, 28 MWh).

- Analyze t he m arket a nd operational c onditions, l imitations, and oppo rtunities f or real-time dispatch for NaS battery storage in conjunction with w ind and solar generation intermittency. Determine lifecycle costs and NPV under CAISO conditions associated with renewable energy penetration at 33% of total supply.
- Determine whether the battery's performance envelope (physical) characteristics such as the size, energy capa city, cycling capa city, lifetime, and o thers, can a ppropriately support (based on economics and technical characteristics) the intended application.
- Update Phase I NaS battery evaluation with regard to regulation within the market redesign and technology upg rade (MRTU) pricing s chedule. Update P hase I NPV methodology to evaluate CAISO regulation with CAISO simulation data.
- Identify w hat changes m ight be needed in C alifornia's m arket (operating procedures a nd practices, control sy stems) F ERC r egulations or N ERC/WECC standards t o create f easible, economic application associated real-time dispatch and regulation for the NaS battery storage. If time and money permit, evaluate changes required for regulation using the NaS battery.

There were three minor changes to the revised scope when we conducted this study:

- Because there was no active non-disclosure agreement (NDA) with CAISO in place, we couldn't obtain planning data for 33% renewable penetration from CAISO. Therefore, in this study, we used r egulation a nd r eal-time d ispatch si gnals generated i n P hase I for 20% r enewables penetration.
- Net present value (NPV) was not calculated because this study only evaluated the battery for each service separately, and neither of the service's breakeven prices (costs) were low e nough to provide a pos itive net present value given assumed CAISO prices for regulation and real-time dispatch services.
- Market r ules f or b attery st orage de vices t o bid into ancillary ser vice m arkets w ere unde r development at t he t ime w hen this r esearch was c onducted. Therefore, s uggestions f or r ule changes are not provided.

2.0 Modeling Approach

The modeling framework is shown in Figure 6. The regulation and real-time dispatch signals were simulated us ing 2006 C AISO hi storical data sets. The battery model was developed based on battery depth of discharge characteristics. The methodology us ed in P hase I of this project was improved by considering the physical characteristics of the NaS battery storage so that the number of battery lifecycles and annual energy provided are realistic. The battery performance was simulated by feeding the simulated minute-to-minute r egulation a nd r eal-time di spatch signals i nto t he battery model. To ev aluate t he efficacy of the N as battery st orage i n mitigating t he i intermittence br ought by t he h igher l evels of penetration of renewable energy, a scenario was studied with 20% of the CAISO load being supplied by renewable energy resources including wind generation, and compared it against a scenario with zero wind generation.

Figure 6: The modeling framework

To provide regulation or real-time dispatch service, an NaS battery can run at either the bi-directional or one -directional m ode. I n t he bi-directional m ode, t he battery r esponds to both " up" a nd " down" signals. In the one-directional mode, the battery responds to the "up" signal when it is discharging and the "down" signal when charging. The one-directional operation scheme was selected and modeled in detail in this study. This is because the one-directional operation allows the NaS battery to have a longer service life and is easier to implement compared with bi-directional operation schemes.

In the benefit study, the economics of the four services in terms of breakeven¹ costs were evaluated and compared for different device performance characteristics and operation mechanisms to find the best options. Net present value $(NPV)^2$ was not calculated because the service's breakeven prices were not low enough t o pr ovide a positive N PV g iven a ssumed CAISO market pr ices for regulation and r eal-time dispatch services. There were two sets of breakeven prices considered: the high-end cost and the low-end cost. The high-end cost was obtained by applying pessimistic estimations of input variables, and the lowend cost was obtained by applying the optimistic ones.

Two payment methods were studied for the regulation service: pay-by-capacity and pay-by-energy³. For the real-time dispatch service, we only considered the pay-by-energy method.

2.1 Regulation and Real-time Dispatch Signal Generation

The algorithm used to generate regulation and real-time dispatch signals was developed in previous research. For detailed information, please refer to [5] and [6].

2.1.1 Area Control Error

The CAISO's operations control objective is to minimize its area control error (ACE) [5] to the extent sufficient to comply with the NERC Control P erformance Standards. T herefore, t he " ideal" regulation/real-time di spatch signal is t he s ignal t hat opp oses de viations of ACE f rom z ero when it exceeds a certain threshold:

$$-ACE = -(I_a - I_s) + \underbrace{10B(F_a - F_s)}_{Neglected}$$
$$\approx G_s - L_s - G_a + L_a \rightarrow \min$$
(1)

where I_a denotes net i nterchange (MW f low out o f t he c ontrol a rea); I_s refers t o scheduled net interchange; *B* is area frequency bias constant; F_a and F_s are actual and scheduled frequency, respectively. Impacts of wind generation on the interconnection frequency are not modeled. This is a valid assumption given the large interconnection (>140GW peak load) whose frequency deviates very slightly with normal imbalances and that is maintained by several balancing authorities. The generation component of the ACE equation can be represented as follows:

$$G_s = G_{ha} + G_{ha}^{w} \tag{2}$$

$$G_a = G_s + \Delta G^{lf} + \Delta G^r + \Delta G^w + \Delta G^{ud}$$
⁽³⁾

where *ha* denotes the hour-ahead generation schedule; *lf* denotes instructed deviations from the hourahead schedule caused by generators involved in the real-time dispatch process; *r* denotes instructed deviations caused by generators involved in the regulation process, ΔG^{lf} and ΔG^{r} are the deviations of the

¹ The break-even point [4] for a product is the point where total revenue received equals the total costs associated with the sale of the product.

² Net present value (NPV) or net present worth (NPW) [1] is defined as the total present value (PV) of a time series of revenues - costs.

³ Pay-by-capacity means that a unit is paid by the capacity that it bids into the market regardless of the actual energy that it provides to the grid. Pay-by-energy means that a unit is paid by the actual energy that it provides to the grid.

regulation and real-time dispatch units from their base points, ΔG^{w} is the deviation of the wind generators from their schedule (wind generation real-time schedule forecast error), and ΔG^{ud} is the total deviation of generators from the dispatched instructions. ΔG^{ud} is simulated similarly to the load forecast error (random number generator based on truncated normal distribution).

The to tal de viation of g enerators f rom di spatch in structions f or c onventional un its th at are no t involved in regulation and real-time dispatch can be represented as follows:

$$\Delta G^{ud} = G_a - G_{ha} \tag{4}$$

$$\Delta G^{w} = G_{a}^{w} - G_{ha}^{w} \tag{5}$$

$$\Delta L = L_a - L_{ha} \,. \tag{6}$$

Because the control objective is $ACE \rightarrow 0$, Equation (1) can be rewritten as:

$$\Delta G^{lf} + \Delta G^{r} = \Delta L - \Delta G^{w} - \Delta G^{ud} \tag{7}$$

where ΔL is the deviation of the actual load from its real-time scheduled value (load forecast error).

Equation (7) is written for instantaneous values of ΔL , ΔG^w , and ΔG^{ud} . Therefore, the statistical interaction between the load forecast error and the wind generation forecast error is fully preserved in Equation (7). The load and wind generation errors can vary depending on the wind generation penetration level within the CAISO control area and the accuracy of the load forecast error is more significant than the percent load forecast error, the former may have a considerable impact on $\Delta G^{lf} + \Delta G^r$.

Wind generation would have no impact on regulation and real-time dispatch requirements if

$$\Delta G^{w} = 0 \,. \tag{8}$$

By substituting Equation (8) into (7), we have

$$\Delta G^{rlf} = \Delta G^{lf} + \Delta G^{r} = \Delta L - \Delta G^{ud} \tag{9}$$

2.1.2 Separating Regulation and Real-time Dispatch

Real-time dispatch is understood as the difference between the hourly energy schedule including 20minute ramps (shown as the red line) and the short-term 5-minute forecast/schedule and applied "limited ramping capability" function (blue line). This difference is also shown as the blue area below the curves. *Regulation* is interpreted as the difference between the actual CAISO generation requirement and the short-term 5-minute dispatch shown in Figure 7, as the red area between the blue and green lines.

Figure 7. Separation of regulation from real-time dispatch based on simulated hour-ahead schedule

By s imulating hour -ahead and 5-minute s chedules for l oad and hour -ahead schedules f or w ind generation, regulation c an be separated from real-time dispatch. The schedule/forecast based approach uses the short-term forecasts of wind generation and load, $G_{rf,5min}^{w,y}$ and $L_{rff,5min}^{y}$. In this case, the following formulas can be used:

$$\Delta G^{r}(m) = L_{a}^{y}(m) - G_{a}^{w,y}(m) - L_{rf,5\min}^{y}(m) + G_{rf,5\min}^{w,y}(m)$$
(10)

$$\Delta G^{lf}(m) = L^{y}_{rff,5\min}(m) - G^{w,y}_{rff,5\min}(m) - L^{y}_{rff,1hr}(m) + G^{w,y}_{ha,1hr}(m)$$
(11)

2.2 The Modeling of the NaS Battery Performance

2.2.1 Assumptions

The following assumptions have been made:

- Because this study focuses on the regulation and real-time dispatch services, it is assumed that the N aS battery is a lways in a n "on" state, either charging or discharging. Therefore, neither start-up nor shut-down costs are considered in this cost calculation.
- Within the battery rated power output, the battery is able to ramp up and ramp down to any power output in milliseconds as often as required without shortening its lifecycles. There are two implications from this assumption. First, the battery can provide perfect regulation and real-time dispatch services without ramp rate concerns. Second, as long as the battery power output is within its rating, the only factor that drives the battery lifetime is the depth of discharge (DOD), as shown in Figure 8.

• It is also assumed that variation of power outputs will not negatively influence the battery life. For example, the life of an NaS battery charging/discharging at a constant power output of 2 MW (Figure 9: blue line) and the life of another NaS battery charging/discharging at variable power outputs with an average of 2 MW (Figure 9: purple line) will have the same lifetime. This is an optimistic assumption be cause there will be more wear and tear of the battery and its pow er el ectronics when batteries are frequently charging or di scharging at variable pow er outputs than when they are charging/discharging at c onstant po wer output. However, the statistics for such lifetime reduction are not available. Because all cases in this study have been modeled under the same assumption, the results should be comparable.

Figure 9: Battery output powers

• The speed of completing a charging and discharging cycle has no ne gative impact on the battery life. As shown in Figure 10, the wear and tear of a cycle completed in 14 hours is equivalent to a cycle completed in 30 hours. Because the battery life is counted by number of cycles, the longer a cycle is completed, the longer the battery life is. This optimistic assumption m ay r esult in a non-realistic battery life, such as 100 years. For example, as shown in Figure 8, the battery life is determined by the number of cycles with r espect to different DODs. Assume that a battery is used for 100 cycles per year at 100% DOD. By

calculation, the battery lifetime is 31.42 years, which is much longer than the 12 to 20 years service life documented so far. Therefore, we have capped the maximum service life of a battery to be 20 years to make our economic analysis realistic.

Figure 10: The charging/discharge profiles of an NaS battery

- The maximum service life of a battery is assumed to be 20 years to make our economic analysis realistic. In our simulation, the calculated lifetime may exceed 20 years.
- To address the influence of different power-capacity ratios, it is assumed that the rated power outputs of the NaS battery can reach 20 MW. The NaS battery that PG&E plans to install has a capacity of 28 MWh and rated power output at 4 MW. A 20 MW may not be achievable for current ba ttery t echnology. However, we want the sen sitivity st udy t o provide ba ttery manufacturers a reasonable estimate on how much improvement in the battery is required to provide the regulation and real-time dispatch services.

NaS Ba	attery Characteristics	Assumptions	Note
Battery Capac	city (MWh)	28	
Battery Powe	r (MW)	4	
Battery Life (y	vear)	No more than 20	Varies between 12~20
	Self Discharging	None	
Gonoral	Efficiency	75-90%	75-90%
General	Weight (MWh/kg)	110 MWh/kg	
	Depth of Discharge (DOD)	20% - 100%	
	Installation Cost (\$/kWh)	200	150 - 300
Cost	Start-up Cost	Not included in the study	
Cost	Shut-down Cost	Not included in the study	
	Operation Cost (\$)	3% of capital cost	
	UP (Discharge)	Ramp-up time in ms	May be limited
Oneration	DOWN (Charge)	Ramp-down time in ms	May be limited
	Cold Start (sec)	Always on (No cold start)	
	Shut-down Time	Always on (No shut-down)	

Table 5: NaS battery characteristics

2.2.2 Normalization of the Regulation and Real-time Signals

The 2012 r egulation and r eal-time di spatch signals f or 20% renewables and no wind cases a re generated from 2006 C AISO data sets using methodology described in Section 2.1. As shown in Figure 11 and Figure 12, the regulation and real-time signals of the 20% renewables case have larger magnitudes than those of the no wind case. The generated signals are total CAISO regulation or real-time dispatch signals and are too big for the NaS battery. Therefore, these signals need to be normalized first, so that the normalized control signals sent to the battery will be mostly within the battery rated power output, P_{rated} .

Based on the probability distribution functions (PDFs) shown in Figure 11 and Figure 12, assuming the battery is required to respond to 95%, 90%, 80%, and 50% control signals, values to normalize the total regulation and real-time dispatch signals to 1 MW are calculated, as shown in Table 6. To give a better illustration, c umulative de nsity f unctions (CDFs) of the r egulation and r eal-time di spatch are plotted in Figure 13 and Figure 14. As illustrated in these two figures, if we normalized the total control signals by the values highlighted in red in Table 6, then 80% signals are in the boxes and 20% signals are outside the boxes. Note that there may be more outliers on one side than another.

The average battery power output P_{ave} can be calculated by

$$P_{ave} = \frac{\sum_{t=1}^{N} \frac{P_{gs}}{P_{norm}}}{N}$$
(12)

where

 P_{ave} The average battery power output (MW)

 P_{gs} The generated signal magnitude (MW)

 P_{norm} The value used to normalize the generated signals (MWh)

- *t* Time (minute)
- N The number of minutes that the battery operates in 1 year

Equation (12) indicates that a smaller P_{norm} results in a greater P_{ave} . This implies that if the battery does not respond to extreme regulation and real-time signals, it will run at a higher average output than otherwise.

Figure 13: The CDFs of regulation signals

Figure 14: The CDFs of real-time dispatch signals

Table 6: The values to normalize the regulation and real-time dispatch signals

Signals within ±1 MW	9	95%	9	0%	8	80%	5	50%
Signals outside ±1 MW		5%	1	0%	2	20%	5	0%
Case Description	No Wind	20% Renewables						
Regulation (MW)	193	248	174	211	137	156	83	83
Real-time Dispatch (MW)	1542	1903	1271	1619	1000	1258	535	716

2.2.3 Bi-directional and One-directional Services

To provide regulation or real-time dispatch service, an NaS battery can run in either the bi-directional or one -directional m ode. I n t he b i-directional m ode, t he battery r esponds to both "up" a nd "down" signals. I n t he one -directional m ode, t he battery r esponds to "up" s ignals when it is discharging a nd "down" signals when charging.

Define the battery utilization rate K_u as:

$$K_{u} = \frac{P_{ave}}{P_{rated}}$$
(13)

or

$$K_{u} = \frac{E_{annual}^{actual}}{E_{annual}^{max}} = \frac{P_{ave} \times 24 \times 365}{P_{rated} \times 24 \times 365}$$
(14)

where

 P_{ave} is the average output of the NaS battery (MW)

 P_{rated} is the rated power (MW)

 E_{annual}^{\max} is the maximum annual energy provided by the battery (MWh)

 E_{annual}^{actual} is the actual annual energy provided by the battery (MWh).

Then, the battery has a 100% utilization rate if charging or discharging at its rated power. If the regulation and real-time dispatch signals vary within the battery rated power, the utilization rates are normally 30-40%, as shown in Table 7.

Table 7:	: The utilization	n rates of the N	NaS Batt	erv when	providing	bi-directional	ancillary	services
					F			

	Regulation with Wind	Real-time with Wind	Regulation without Wind	Real-time without Wind
Annual Energy (MWh) (At battery rated power 4 MW)	35040	35040	35040	35040
Annual Energy (MWh) (Bi-directional ancillary services)	13245	10893	12948	10376
Maximum Utilization	0.38	0.31	0.37	0.30

There are a few disadvantages to operating the battery to respond to bi-directional signals:

- The battery needs to switch from the charging to discharging mode frequently. This requires complicated control schemes and shortens battery life.
- Because signals are biased in nature, the battery capacity may be depleted from time to time, as shown in Figure 15.

• Because the battery constantly charges and discharges, it is impossible to estimate the battery life from the relationship between the DODs and battery lifecycles.

This study focused on the one-directional service provided by the NaS battery, as shown in Figure 16. The advantages of the one-directional service are:

- The battery is either charging or discharging, so the control mechanism is simple.
- No operation point correction is needed. For example, the battery will switch from providing regulation up services to regulation down services when it reaches the discharging threshold.
- Lifecycles are relatively easy to estimate based on the DODs.

The disadvantages are:

- Lost opportunities. As shown in Figure 17, the battery can only provide either the "up" or "down" service in the one-direction mode but not both at the same time. This results in a revenue loss.
- A reduced utilization rate. At least half of the signals were not responded to. Therefore, the battery sells less energy in the one-direction mode than the bi-directional mode. For example, as shown in Figure 18, a 28 MWh/4MW battery at 100% DOD in the one-directional mode provides 48% regulation energy than it provides in the bi-directional mode. Note that if a battery's cost depends on the capacity but not by the actual energy it supplied, then a reduced utilization rate will not result in revenue losses.

Figure 15: The bi-directional regulation services provided by the 28 MWh/4 MW NaS battery. (Green: the regulation signals normalized to ±4 MW)

Figure 16: The one-directional service provided by the NaS battery

Figure 17: The regulation "up" (black lines) and "down" (red lines) signals

Figure 18: A comparison of bi-directional services and one-directional services provided by the NaS battery (Dotted lines: without wind; Solid lines: with wind)

2.2.4 The Depth of Discharge (DOD)

Operating at different depths of discharge, the NaS battery has different lifecycles. Figure 19 illustrates the charging and discharging profiles of an NaS battery in response to 4 MW regulation signals. Note that the energy the NaS battery provides in a cycle is calculated as:

$$E_{cycle} = 2E_r \times DOD \times \eta \tag{15}$$

The battery lifetime energy is calculated as:

$$E_{lifetime} = E_{cycle} \times L_c \tag{16}$$

The battery lifetime is calculated as:

$$L_{y} = \frac{L_{c}}{n_{c}} \tag{17}$$

where

 E_{cycle} Cycling energy of the battery (MWh)

 E_{life} Lifetime energy (MWh)

 E_r The NaS battery rated capacity (MWh)

 L_c Life (cycle)

DOD Depth of discharge (DOD)

 n_c Number of charge/discharge cycles in a year

- η Efficiency
- L_{y} Life (years)

The lifetime energy provided by an NaS battery at different DODs is plotted out in Figure 20.

Figure 19: The battery charging and discharging profiles (DOD: 20% - 100%)

Figure 20: The battery lifetime energy (DOD: 5% - 100%)

2.3 Economic Analysis

In this study, the regulation and real-time dispatch ancillary services were evaluated separately to calculate the price required to breakeven for each service. NPV needs to be evaluated based on all revenue streams available to the battery. This analysis only evaluated the breakeven costs associated with individual services. If f uture work scope is funded, an analysis that evaluates the multiple services simultaneously will be undertaken and a net present value analysis can be undertaken. Investors primarily look for the NPV of the after-tax cash flows from the investment over its life.

2.3.1 Assumptions

A 4 MW N aS battery bank with a 28 MWh capacity was evaluated. Each ancillary service was evaluated against a simulated CAISO signal and a simulated CAISO signal with 20% of supply being provided by renewable energy resources. In addition, the same battery bank was evaluated at MW power ratings of 8 to 20 MW in 4 MW increments adjusting the capacity for each power rating to maintain the same battery bank. Evaluating the battery bank at different power ratings provides an evaluation of whether higher power ratings could be efficacious under certain circumstances. Thus, four basic analyses were performed- regulation with current C AISO s ignal and a simulated CAISO with 20 percent renewables, and the same was performed for the real-time dispatch ancillary service.

Regardless of the DOD, it was assumed that the maximum service life of the battery was 20 years. However, at some DODs, primarily 80 and 100 percent with higher MW power ratings, a reduced service life can occur. The analysis used the minimum of the calculated battery life or 20 years [8].

We assumed that the real discount rate was 8 percent, a real rate of return appropriate for a utility. In addition, 7 pe rcent, a discount rate the Office of Management and Budget requires for market analysis was us ed [9]. The battery bank was assumed to cost \$200/kWh based on Walawalker and Apt [8]. A sensitivity case was evaluated based on \$150/kWh. At \$200/kWh, the 4 MW, 28 MWh battery bank cost \$5.6 m illion. In a ddition, California s ales t ax of 8.2 5% was a dded to the c ost of the battery c apital, increasing i ts total c ost t o m ore t han \$6 m illion. Operations a nd m aintenance (O&M) co sts w ere estimated at 3 percent of capital costs [8]. A sensitivity case I owered the O&M cost to 1 percent. In addition, the total annual operations costs included a charge of 1% each for property taxes and insurance. Potentially, the efficiency of charge and recharge could affect the O&M cost. However, the cost of energy to the battery was assumed to be \$0/kWh as the ancillary service is to provide regulation and real-time dispatch, each of which occur as the battery charges and discharges. If a cost for charging the battery existed, the efficiency of t he c ycle w ould ha ve b een i ncluded. Walawalker and A pt indicated that efficiency of the NaS battery was 75% [8][8]. In our sensitivity study, efficiency was analyzed at 90%, as indicated in Phase I report by Makarov et al [6].

2.3.2 Breakeven Calculation

The breakeven cost assumes that the annualized cost of capital provides an adequate rate of return to the investor. Thus, an 8 percent real rate of return is usually comparable to a nominal 10 to 11 percent rate of return before taxes. The discount rate is usually representative of the entity's weighted cost of capital. Breakeven costs include the annualized cost of capital plus the annual operations and maintenance costs.

Thus the annualized cost of capital including profit before taxes is as follows

$$C_{cap} = \frac{(C_{install} \times (1+i)^n \times i)}{(1+i)^n - 1}$$
(18)

where: C_{cap} is the annualized cost of capital

 $C_{install}$ is the installed capital cost including sales taxes *i* is the discount rate *n* is the life of the asset.

$$C_{O\&M} = (k_{op} + k_{pt} + k_{pi}) \times C_{install} + (1 - \eta) \times P$$
⁽¹⁹⁾

where: $C_{O\&M}$ is the annual operation and maintenance cost

 $C_{install}$ is the installed capital cost

 k_{op} is the percent of the installed capital associated with annual O&M

 k_{pt} is the percent of the installed capital associated with property tax

 k_{pi} is the percent of the installed capital associated with insurance

 η is the efficiency of recharge

P is the price of energy in kWh.

$$P_{BE} = C_{cap} + C_{O\&M} \tag{20}$$

where: P_{BE} is the breakeven price in \$/kWh

2.3.3 NPV Calculation

The NPV calculation evaluates the stream of cash flows from a project using the company's hurdle rate as the discount rate. The hurdle rate is the company's required rate of return on projects. Investments with an NPV greater than 0 indicate that the project has a higher rate of return than the company's hurdle rate.

$$NPV = \sum_{1}^{n} \frac{NCF}{(1+r)^{(n-1)}}$$
(21)

where:

NPV is net present value*NCF* is the annualized net cash flow*r* is the entities discount rate*n* is life in years of the battery

3.0 Modeling Results

This section presents the modeling results.

3.1 Assumptions

The assumptions are as follows:

- At t = 0, the NaS battery is fully charged.
- The battery is always online (charging, discharging, or idling)..
- To provide one-directional services, the NaS battery responds to "**up**" signals when it is **discharging** and "**down**" signals when it is **charging**.
- Battery lifecycles are determined by the DODs, as shown in Table 8.

DOD	5%	10%	20.0%	30.0%	40.0%	50.0%	60.0%	70.0%	80.0%	90.0%	100.0%
Life (Cycles)	379208	125092	41265	21569	13612	9525	7115	5560	4490	3719	3142

Table 8: The lifecycles of the NaS battery with respect to the DODs

- The maximum battery life is 20 years.
- Regulation signals are generated based on 2006 CAISO data. Two cases were considered: 2010 without wind and 2010 with 20% renewables.
- The NaS battery capacity is 28 MWH.
- In the base case, the battery rated power output is 4 MW. Rated power outputs at 8, 12, 16, and 20 MW were also studied to compare the influence of the NaS battery power to capacity ratio.
- The start-up or shut-down costs were not considered.
- Two pairs of parameters were considered in the economic analysis. The high-end and lowend costs are calculated based on Table 9. The breakdown of O&M costs is shown in Table 10. Those costs highlighted in red are the parameters that have different high-end and lowend values.

Variables	High-end Values	Low-end Values
Maximum Battery Life (yr)	20	20
Discount Rate	0.08	0.07
Capacity (MWh)	28	28
Cost (\$/kWh)	200	150
Sales Tax	0.0825	0.0825
Capital Cost (\$)	6,062,000	4,546,500
Efficiency	0.75	0.9
Total O&M (% of Capital)	0.05	0.03

Table 9: The inputs of the model

Table 10: The breakdown of the total O&M cost

Variables	Values (High End)	Values (Low Ends)
Insurance	0.01	0.01
Property Tax	0.01	0.01
Annual fixed O&M	0.03	0.01
Total O&M (% of Capital)	0.05	0.03

3.2 Fixed Battery Lifetime with Different DODs

The first scenario is the fixed battery lifetime (20 years) study for a 28 MWh battery with rated power output of 4 MW. This study is purely a cost study to show how many cycles a battery needs to run each year at different DODs and how much energy it can provide to the grid if the battery runs for 20 years. It also shows, assuming that the battery is *paid-by-energy*, at what cost the battery owner can breakeven.

3.2.1 Base Case

Note that in this calculation, we do not consider the cost of the energy lost in the charging and discharging process. Therefore, the O&M cost is calculated by letting price P = 0 in Equation (19):

$$C_{O\&M} = (k_{op} + k_{pt} + k_{pi}) \times C_{install} + (1 - \eta) \times P = (k_{op} + k_{pt} + k_{pi}) \times C_{install}$$
(22)

Two breakeven prices are calculated for the high-end and low-end cases: the breakeven prices of 0% and 8% profits with high-end cases and 0% and 7% profits with low-end cases. The DODs are varied from 5% to 100%. The input parameters are shown in Table 9. The costs are calculated based on the method discussed in Section 2.3.2. The breakeven prices are shown in Table 11 and plotted in Figure 21. The battery performance characteristics are calculated by:

$$n_y = \frac{L_c}{L_y} = \frac{L_c}{20} \tag{23}$$

$$n_{h} = \frac{L_{c}}{L_{y} \times 24 \times 365} = \frac{L_{c}}{20 \times 24 \times 365}$$
(24)

$$P_{ave} = 2E_B n_h = 2E_B \frac{L_c}{20 \times 24 \times 365}$$

$$\tag{25}$$

$$E_{annual} = L_y \times 2E_B \times \eta \tag{26}$$

$$E_{life} = L_c \times 2E_B \times \eta \tag{27}$$

$$K_u = \frac{P_{ave}}{P_{rated}}$$
(28)

where

P_{rated}	is the battery rated power (MW)
P_{ave}	is the battery average power output (MW)
E_{B}	is the battery rated capacity (MWh)
L_c	is the battery life in cycle
L_y	is the battery life in year
n_y	is the number of cycles in 1 year
n_h	is the number of cycles in an hour
k _u	is the utilization factor
η	is the battery efficiency
$E_{\it life}$	is the battery lifetime energy (MWh)
EAnnua	<i>d</i> is the annual energy (MWh).

The calculated battery performance characteristics are shown in Table 12.

Base Case With current technology		High End Bre (\$/M	akeven Price Wh)	Low End Breakeven Price (\$/MWh)		
Life	DOD	Life (cycle)	0% Profit	8% Profit	0% Profit	7% Profit
20	5%	379208	15.22	23.12	7.61	11.84
20	10%	125092	23.08	35.04	11.54	17.94
20	20%	41265	34.98	53.11	17.49	27.19
20	30%	21569	44.61	67.74	22.31	34.68
20	40%	13612	53.02	80.51	26.51	41.22
20	50%	9525	60.61	92.04	30.31	47.12
20	60%	7115	67.62	102.68	33.81	52.57
20	70%	5560	74.17	112.63	37.08	57.66
20	80%	4490	80.36	122.03	40.18	62.48
20	90%	3719	86.24	130.96	43.12	67.05
20	100%	3142	91.87	139.51	45.94	71.43

Table 11: The cost calculations – base case (fixed lifetime at 20 years)

Figure 21: The breakeven prices (fixed lifetime at 20 years)

Life (year)	E _B (MWh)	P _{rated} (MW)	DOD	Life (cycle)	cycle/yr	cycle/hr	P _{ave} (MW)	Ku
20.00	28	4	0.05	379208	18960	2.1644	4.00	1.00
20.00	28	4	0.10	125092	6255	0.714	4.00	1.00
20.00	28	4	0.20	41265	2063	0.236	2.64	0.66
20.00	28	4	0.30	21569	1078	0.123	2.07	0.52
20.00	28	4	0.40	13612	681	0.078	1.74	0.44
20.00	28	4	0.50	9525	476	0.054	1.52	0.38
20.00	28	4	0.60	7115	356	0.041	1.36	0.34
20.00	28	4	0.70	5560	278	0.032	1.24	0.31
20.00	28	4	0.80	4490	225	0.026	1.15	0.29
20.00	28	4	0.90	3719	186	0.021	1.07	0.27
20.00	28	4	1.00	3142	157	0.018	1.00	0.25

Table 12: The NaS battery performance characteristics (fixed lifetime at 20 years)

Below are a few observations:

- The breakeven price calculation indicates that the energy price has to be higher than the 0% profit breakeven price for the owner to make a profit. As shown in Table 11, we also studied the case with 7% and 8% profit for the low-end and high-end cases, respectively. Most companies would require at least the 7% return to consider the investment.
- Table 11 and Figure 21 show that if an NaS battery is operated for 20 years at its rated output, operating at a lower DOD results in less cost with the current lifecycle-DOD curve.
- Table 12 shows that at higher DODs, maintaining a fixed battery lifetime of 20 years, the NaS battery must be operated less frequently. As a result, the average power output of the battery is lower. F or e xample, i f a n N aS battery operates at 1 0% D OD, it can r un at 4 M W and 625 5 cycles/year. However, at 100% DOD, the battery can only run at an average output of 1 MW and 157 cycle/year. Thus, if the battery runs at 4 MW and 100% DOD, it will not last 20 years.

3.2.2 Impact of improved lifecycle-DOD characteristics

If lifecycles at higher DODs can be significantly increased (the red line in Figure 22), the breakeven prices will drop significantly when running at higher DODs because more energy will be provided during the 20-year service life. As shown in the dashed lines in Figure 23 and the lower portion of Table 13, running at higher DODs may become cheaper than at lower DODs. As shown in Figure 24, the annual capital cost will drop below \$20/MWh, and the annual O&M will drop below \$10/MWh at 100% DOD.

Note that when the battery is providing energy services, it can run at a selected constant power output. However, when it responds to ancillary service signals, the signals vary within a range. As shown in Table 7, when providing regulation and real-time dispatch services, an NaS battery runs at 30% to 40% of its rated power output. Therefore, it is only realistic to model the battery performance with regulation and real-time dispatch services.

Depth of Discharge

Figure 22: The battery lifecycle curves

Figure 23: A comparison of high-end and low-end breakeven prices of the improved battery lifecycle case (dashed lines) and the Base case (solid lines)

	Table 15: A cost comparison of the base case and the improved intecycle case										
w	Base (ith current	Case technology	High End Bre (\$/M	akeven Price Wh)	Low End Breakeven Price (\$/MWh)						
Life	DOD	Life (cycle)	0% Profit	8% Profit	0% Profit	7% Profit					
20	5%	379208	15.22	23.12	7.61	11.84					
20	10%	125092	23.08	35.04	11.54	17.94					
20	20%	41265	34.98	53.11	17.49	27.19					
20	30%	21569	44.61	67.74	22.31	34.68					
20	40%	13612	53.02	80.51	26.51	41.22					
20	50%	9525	60.61	92.04	30.31	47.12					
20	60%	7115	67.62	102.68	33.81	52.57					
20	70%	5560	74.17	112.63	37.08	57.66					
20	80%	4490	80.36	122.03	40.18	62.48					
20	90%	3719	86.24	130.96	43.12	67.05					
20	100%	3142	91.87	139.51	45.94	71.43					
Te Prolonge	chnology Ir ed Lifecycle	nprovement es at Higher DODs	High End Bre (\$/M	akeven Price Wh)	Low End Bre Price (\$/N	akeven IWh)					
Life	DOD	Life (cycle)	0% Profit	8% Profit	0% Profit	7% Profit					
20	5%	379208	15.22	23.12	7.61	11.84					
20	10%	125092	23.08	35.04	11.54	17.94					
20	20%	53645	26.91	40.86	13.45	20.92					
20	30%	32354	29.74	45.16	14.87	23.12					
20	40%	27224	26.51	40.25	13.25	20.61					
20	50%	23813	24.24	36.82	12.12	18.85					
20	60%	21345	22.54	34.23	11.27	17.52					
20	70%	19460	21.19	32.18	10.60	16.48					
20	80%	17960	20.09	30.51	10.05	15.62					
20	000/	10-00	4.0.4.			44.00					
20	90%	16736	19.17	29.10	9.58	14.90					

Table 13: A cost comp	parison of the base case	and the improved lifecy	cle case
	1	11	

(a) Base case: Break-even cost break down

(b) The technology advancement case for prolonged lifecycles

Figure 24: The breakdown of the breakeven price

3.3 Different Regulation and Real-time Dispatch Signals

The second scenario is the different regulation and real-time dispatch signal study. In this case, the total regulation and real-time dispatch signals were normalized with different values, as shown in Table 14, so that there are 5%, 10%, 20%, 30%, and 50% chances for the signal to be outside the range of P_{rated} (±4 MW), as shown in Figure 25. We assume that if the NaS battery receives a regulation signal that is outside ±4 MW, its maximum output will be set at ±4 MW.

The inputs are shown in Table 9. The modeling results are summarized in Table 15 and Table 17, which are color scaled for better visualization. The greener the color is, the better the value. Note that two pairs of values for four inputs have been compared: the discount rate (profits), installation cost, battery efficiency, and the total operation and maintenance (O&M) cost. The high-end and low-end costs of the energy provided for regulation and real-time dispatch services are calculated and presented in Table 16 and Table 17.

Table 14: The values used to normalize the regulation and real-time dispatch signals to 4 MW

Probability of Outliers	5	%	10	1%	20)%	30	%	50)%
Case Description	No Wind	20%Wind								
Regulation (MW)	48	62	44	53	34	39	30	34	21	21
Real-time Dispatch (MW)	385	476	318	405	250	314	202	250	134	179

Regulation Signals

Figure 25: The CDFs of regulation signals

Below are a few observations:

- If the battery does not respond to extreme regulation or real-time dispatch signals, the battery average power output P_{ave} will increase. Normally, the higher P_{ave} is, the more economical the battery service is.
- The study shows that there is no significant difference between "with" and "without" wind cases, when the N aS battery provides the regulation and real-time dispatch services. The annual charge and discharge cycles are similar, as shown in Table 15.
- As shown in Table 16, the breakeven price is positively correlated with the battery utilization rate K_{μ} . A higher utilization results in a lower breakeven price.
- As shown in Table 16, there is a tradeoff between the battery utilization rate K_u and battery lifetime. A higher utilization may result in a shortened battery life. This shortened life occurs because of the limited number of cycles that a battery can run in its lifetime. However, if the battery r uns l ess often at low er D ODs, the battery life limitation is not the num ber of lifecycles but mainly wear-and-tear. In Table 16, the 20 y ears in green cells are limited by wear-and-tear. In those cases, finding ways to run the battery at a higher utilization rate (a higher average output) would increase profits.
- In Table 17, two cases are compared: high-end cost and low-end cost. If the installation and O&M costs can be reduced, then the breakeven price can be brought down significantly.

			4	Annua	l charg	je/disc	harge cycl	es				
	Signal			DOD						DOD		
	Outliers	1	0.8	0.6	0.4	0.2		1	0.8	0.6	0.4	0.2
Regulation	5%	111	133	179	277	460	Regulation	115	142	189	288	542
20% wind	10%	125	155	207	321	541	No wind	125	159	209	319	591
	20%	159	195	270	369	686		152	190	256	367	701
	30%	172	212	288	383	750		169	209	283	391	763
	50%	219	280	363	491	942		203	255	339	484	921
Realtime	5%	95	115	142	192	288	Realtime	88	109	129	170	257
Dispatch	10%	107	126	160	203	309	Dispatch	101	121	144	192	283
20% Wind	20%	126	151	187	237	356	No Wind	120	136	167	219	323
	30%	145	172	206	269	394		131	150	189	245	351
	50%	164	193	236	305	458		153	187	227	285	411

Table 15: Number of charge/discharge cycles per year

Break	keven Pri	ce (8º	% Pro	fit) (\$I	MWh)	Â	Uti	lizatio	on Ra	te (Pa	ve/P	rated	 Adjus	ted L	ifetim	ie (Ye	ar)
	Signal			DOD						DOD					DOD		
	Outliers	1	0.8	0.6	0.4	0.2		1	0.8	0.6	0.4	0.2	1	0.8	0.6	0.4	0.2
Regulation	5%	197	206	204	198	238		0.18	0.17	0.17	0.18	0.15	20	20	20	20	20
	10%	175	177	176	171	203		0.20	0.20	0.20	0.21	0.17	20	20	20	20	20
20%	20%	138	140	135	148	160		0.25	0.25	0.26	0.24	0.22	20	20	20	20	20
Renew ables	30%	131	129	127	143	146		0.27	0.27	0.28	0.24	0.24	18	20	20	20	20
	50%	112	105	101	112	116		0.35	0.36	0.35	0.31	0.30	14	16	20	20	20
Real-time	5%	231	238	257	285	381		0.15	0.15	0.14	0.12	0.09	20	20	20	20	20
Dispatch	10%	205	217	228	270	355		0.17	0.16	0.15	0.13	0.10	20	20	20	20	20
	20%	174	181	195	231	308		0.20	0.19	0.18	0.15	0.11	20	20	20	20	20
20%	30%	151	159	177	204	278		0.23	0.22	0.20	0.17	0.13	20	20	20	20	20
renew albes	50%	135	142	155	180	239		0.26	0.25	0.23	0.19	0.15	19	20	20	20	20
Regulation	5%	191	193	193	190	202		0.18	0.18	0.18	0.18	0.17	20	20	20	20	20
No-wind	10%	175	172	175	172	185		0.20	0.20	0.20	0.20	0.19	20	20	20	20	20
	20%	144	144	143	149	156		0.24	0.24	0.25	0.23	0.22	20	20	20	20	20
	30%	132	131	129	140	144		0.27	0.27	0.27	0.25	0.24	19	20	20	20	20
	50%	117	112	108	113	119		0.32	0.33	0.33	0.31	0.29	15	18	20	20	20
Real-time	5%	249	251	283	322	426		0.14	0.14	0.12	0.11	0.08	20	20	20	20	20
Dispatch	10%	217	226	254	285	387		0.16	0.15	0.14	0.12	0.09	20	20	20	20	20
No-wind	20%	183	201	219	250	339		0.19	0.17	0.16	0.14	0.10	20	20	20	20	20
	30%	167	183	193	224	312		0.21	0.19	0.18	0.16	0.11	20	20	20	20	20
	50%	143	147	161	192	267		0.24	0.24	0.22	0.18	0.13	20	20	20	20	20

Table 16: The breakeven prices, utilization rates, and battery lifetimes

Bre	akeven Pr	ice (I	High	End)				Break	even	Price	(Low	End)
	Signal			DOD						DOD		
	Outliers	1	0.8	0.6	0.4	0.2		1	0.8	0.6	0.4	0.2
Regulation	5%	197	206	204	198	238		101	105	104	101	122
	10%	175	177	176	171	203		90	90	90	87	104
20%	20%	138	140	135	148	160		71	72	69	76	82
Renewables	30%	131	129	127	143	146		67	66	65	73	75
	50%	112	105	101	112	116		59	55	52	57	60
							ĺ					
Real-time	5%	231	238	257	285	381		118	122	132	146	195
Dispatch	10%	205	217	228	270	355		105	111	117	138	182
	20%	174	181	195	231	308		89	93	100	118	158
20%	30%	151	159	177	204	278		77	82	91	104	142
Renewables	50%	135	142	155	180	239		70	73	79	92	123
Regulation	5%	191	193	193	190	202		98	99	99	97	104
No-wind	10%	175	172	175	172	185		90	88	89	88	95
	20%	144	144	143	149	156		74	74	73	76	80
	30%	132	131	129	140	144		68	67	66	72	74
	50%	117	112	108	113	119		61	58	55	58	61
Real-time	5%	249	251	283	322	426		128	129	145	165	218
Dispatch	10%	217	226	254	285	387		111	116	130	146	198
No-wind	20%	183	201	219	250	339		94	103	112	128	174
	30%	167	183	193	224	312		86	94	99	115	160
	50%	143	147	161	192	267		73	75	82	98	137

Table 17: A comparison of breakeven prices

3.4 Different Battery Power Ratings

In this scenario, the battery rated power output P_{rated} is assumed to range from 4 t o 20 M W. This study evaluates whether or not the operation is more economical when the battery output power is increased. The inputs are shown in Table 9. The regulation and real-time dispatch signals are normalized so that there are 5% signals outside $\pm P_{rated}$, as shown in Figure 26. As shown in Figure 27, at a higher rated power output, the battery can complete more cycles in a fixed time period. The modeling results are summarized in Table 18 and Table 20, which are color scaled for better visualization. The greener the color is, the better the value is.

Figure 26: The regulation signals for different NaS battery output ratings

Figure 27: The battery charge/discharge profiles for different NaS battery output ratings

Below are a few observations:

- Increasing the battery's rated power output helps the battery provide regulation services more economically at a lower DOD. As shown in Table 19, the higher the battery's rated power is, the more economical it is for the battery to provide the regulation service at 20% DOD. At a higher rated power output, the battery can complete more cycles in a year, as shown in Table 18. Therefore, more energy will be provided annually, as shown in Figure 28.
- The higher the battery's rated power output, the shorter the battery life is (see Table 19 and Figure 29). Note that the calculated battery lives may exceed 20 years. For those cases, the battery life was limited to be 20 years.
- As shown in Table 19, the higher the battery rated power, the lower the utilization rate K_u . However, the utilization rates and the breakeven prices are no longer positively correlated.
- When considering both the battery lifetime and the economics, the best choice is to run the battery at 20% DOD and 20 MW for regulation and at 60% DOD and 20 MW for real-time dispatch.
- We compared two cases: high-end and low-end costs (see Table 20). As shown in the table, if the installation and O&M cost can be reduced, the breakeven price will drop significantly.
- The battery charging and discharging profiles when providing regulation and real-time dispatch services are shown in Figure 30 and Figure 31. The box plot portrays the battery charging and discharging times at different battery rated-power outputs and DODs when providing regulation and real-time dispatch services (Figure 32 to Figure 35).
- At 4 MW, the DOD does not result in a shortened battery life because the 28 MWh battery is underused w hen providing r egulation services. However, at higher-rated power, there is a tradeoff b etween D OD and battery life. Therefore, based on the c urrent D OD-lifecycle relationship, if battery manufacturers could increase the battery's rated-power output to 8 or 12 MW, breakeven prices could decline by 1/2 to 2/3. Above 12 MW, the price drop is not significant and the battery life is also shortened dramatically.

				Annua	charg	e/disc	harge cycl	es				
	P _{rated}			DOD						DOD		
	(MW)	1	0.8	0.6	0.4	0.2		1	0.8	0.6	0.4	0.2
Regulation	4	111	133	179	277	460	Regulation	115	142	189	288	542
	8	220	277	355	460	883	No wind	231	288	366	542	989
20%	12	329	368	460	684	1262		337	403	542	772	1416
Renew ables	16	380	460	616	883	1619		432	542	702	989	1790
	20	460	588	762	1076	1933		542	670	853	1230	2132
Real-time	4	95	115	142	192	288	Real-time	88	109	129	170	257
Dispatch	8	163	192	227	288	411	Dispatch	144	170	203	257	356
	12	209	238	288	359	525	No Wind	192	216	257	321	453
20% Renew ables	16	248	288	338	411	623		229	257	298	356	530
	20	288	324	375	467	710		257	285	332	406	602

Table 18: The annual charge and discharge cycles

Break	keven Pri	ce (89	% Pro	fit) (\$I	WWh)		Utiliza	tion I	Rate (Pave/F	P _{rated})	Adju	sted L	.ifeTir	ne (Y	ear)
	P _{rated}			DOD					DOD					DOD		
	(MW)	1	0.8	0.6	0.4	0.2	1	0.8	0.6	0.4	0.2	1	0.8	0.6	0.4	0.2
Regulation	4	197	206	204	198	238	0.18	0.17	0.17	0.18	0.15	20	20	20	20	20
000/	8	112	106	103	119	124	0.18	0.18	0.17	0.15	0.14	14	16	20	20	20
20% Renew ables	12	89	89	86	80	87	0.18	0.16	0.15	0.15	0.13	10	12	15	20	20
	16	84	79	73	67	68	0.15	0.15	0.15	0.14	0.13	8	10	12	15	20
	20	77	71	65	60	57	0.15	0.15	0.15	0.14	0.12	7	8	9	13	20
Real-time	4	164	169	183	203	270	0.15	0.15	0.14	0.12	0.09	20	20	20	20	20
Dispatch	8	97	101	114	135	189	0.13	0.12	0.11	0.09	0.07	19	20	20	20	20
20%	12	82	83	90	108	148	0.11	0.10	0.09	0.08	0.06	15	19	20	20	20
Renew ables	16	74	73	77	95	125	0.10	0.09	0.08	0.07	0.05	13	16	20	20	20
	20	68	68	70	83	110	0.09	0.08	0.07	0.06	0.05	11	14	19	20	20
Regulation	4	135	137	137	135	144	0.18	0.18	0.18	0.18	0.17	20	20	20	20	20
No-wind	8	77	73	71	72	79	0.18	0.18	0.18	0.17	0.16	14	16	19	20	20
	12	63	60	55	52	55	0.18	0.17	0.17	0.16	0.15	9	11	13	18	20
	16	56	52	48	45	43	0.17	0.17	0.17	0.16	0.14	7	8	10	14	20
	20	52	48	44	40	37	0.17	0.17	0.16	0.16	0.14	6	7	8	11	19
							_									
Real-time	4	177	179	201	229	303	0.14	0.14	0.12	0.11	0.08	20	20	20	20	20
Dispatch	8	108	115	128	151	219	0.12	0.11	0.10	0.08	0.06	20	20	20	20	20
No-wind	12	86	90	101	121	172	0.10	0.09	0.08	0.07	0.05	16	20	20	20	20
	16	77	79	87	109	147	0.09	0.08	0.07	0.06	0.04	14	17	20	20	20
	20	72	74	78	96	129	0.08	0.07	0.06	0.05	0.04	12	16	20	20	20

Table 19: The breakeven prices, utilization rates, and battery lifetimes (different rated battery outputs)

	High	-end (Break \$/MW	æven ′h)	Price	9	l	_ow-e	nd B (\$/	reake /MWh	ven F)	Price
	Puntod			DOD						DOD		
	(MW)	1	0.8	0.6	0.4	0.2		1	0.8	0.6	0.4	0.2
Regulation	4	197	206	204	198	238		86	90	89	86	104
	8	112	106	103	119	124		50	47	45	52	54
20%	12	89	89	86	80	87		41	40	38	35	38
Renew ables	16	84	79	73	67	68		39	37	33	30	30
	20	77	71	65	60	57		37	33	30	27	25
Real-time	4	164	169	183	203	270		101	104	112	125	166
Dispatch	8	97	101	114	135	189		59	62	70	83	116
	12	82	83	90	108	148		51	51	55	67	91
20%	16	74	73	77	95	125		47	46	47	58	77
Renew ables	20	68	68	70	83	110		44	43	43	51	67
Regulation	4	135	137	137	135	144		83	84	84	83	88
No-wind	8	77	73	71	72	79		49	46	44	44	48
	12	63	60	55	52	55		41	39	35	32	34
	16	56	52	48	45	43		37	34	31	28	27
	20	52	48	44	40	37		35	32	29	25	23
Real-time	4	177	179	201	229	303		109	110	124	141	186
Dispatch	8	108	115	128	151	219		66	70	79	93	134
No-wind	12	86	90	101	121	172		54	55	62	75	106
	16	77	79	87	109	147		49	49	54	67	90
	20	72	74	78	96	129		46	46	48	59	79

Table 20: A comparison of breakeven prices

Figure 28: The annual regulation energy provided by battery (dash: without wind, solid: with 20% renewables)

Figure 29: The calculated lifetimes of the NaS battery (solid: with 20% renewables; dash: without wind)

Figure 30: Battery charging/discharging profiles when providing regulation service

Figure 31: Battery charging/discharging profiles when providing real-time dispatch service

Figure 32: The box plot of battery charging time at different rated power outputs and DODs (regulation)

Figure 33: The box plot of battery discharging time at different rated power outputs and DODs (regulation)

Figure 34: The box plot of battery charging time at different rated power outputs and DODs (real-time dispatch)

Figure 35: The box plot of battery discharging time at different rated power outputs and DODs (real-time dispatch)

3.5 Different Market Pricing Schemes

So far, the economic study for the regulation and real-time dispatch services provided by the NaS battery is fundamentally a cost-based study. The breakeven price indicates to the battery owner the cost for 1 MWh energy that the battery provides for the regulation and real-time dispatch services. If a battery is *paid-by-energy* provided to the grid, the owner needs to bid into the market with a price equal to or greater than the breakeven price to make expected profits.

In the CAISO market, the real-time dispatch is *paid-by-energy*. However, the regulation service is *paid-by-capacity*. If one bids in 4 MW to the regulation market, then he is paid for 4 MW for the hours that are bid for the service. Even if the battery actually runs at a lower power output during the hour, it still collects the revenue as if it ran at 4 MW for the whole hour.

In this section, the two pricing s chemes for regulation are c ompared for the r egulation service provided by the NaS battery: pay-by-energy and pay-by-capacity. Using the simulation results obtained in Section 3.4, an economic analysis was performed on the pay-by-capacity pricing scheme. Note that in the pay-by-energy pricing scheme, the energy is actual energy provided to the grid; in the pay-by-capacity pricing scheme, the energy is the total capacity the battery provides to the grid.

$$E_{life}^{actual} = L_y P_{ave} \times 24 \times 365$$

$$E_{life}^{Cap} = L_y P_{rated} \times 24 \times 365$$
(29)

where:

 E_{life}^{actual} is the actual energy provided in a battery lifetime (MWh) E_{life}^{Cap} is total capacity the battery provides to the grid in it lifetime (MWh).

With current technology, the battery's rated-power output is 4 M W. As shown in Table 21, if the battery is *paid-by-capacity* in the regulation market, the high-end cost will be \$26/MW and the low-end cost will be \$16/MW. In the California market, this means that the regulation service provided by the NaS battery may become profitable.

		High	n-end F	Pay-by \$/MW	-Capa)	city	Low	-end P (ay-by- \$/MW)	Capao)	city	Adju	sted L	.ife Ti	me (Y	ear)
	Р.,			DOD					DOD					DOD		
	rated (MW)	1	0.8	0.6	0.4	0.2	1	0.8	0.6	0.4	0.2	1	0.8	0.6	0.4	0.2
Regulation	4	26	26	26	26	26	16	16	16	16	16	20	20	20	20	20
Ū	8	15	14	13	13	13	9	9	8	8	8	14	16	20	20	20
20%	12	12	10	10	9	9	8	7	6	5	5	10	12	15	20	20
Renew ables	16	10	9	8	7	7	6	6	5	4	4	8	10	12	15	20
	20	9	8	7	6	5	6	5	5	4	3	7	8	9	13	20
Regulation	4	26	26	26	26	26	16	16	16	16	16	20	20	20	20	20
No-w ind	8	15	14	13	13	13	9	9	8	8	8	14	16	19	20	20
	12	12	11	10	9	9	8	7	6	6	5	9	11	13	18	20
	16	10	10	9	7	7	7	6	6	5	4	7	8	10	14	20
	20	9	9	8	7	5	6	6	5	4	3	6	7	8	11	19
		Hig	h-end	Pay-b /MW	y-Enei n)	rgy	Lov	v-end F (\$	⊃ay-by ∕ /MWh	/-Energ	gу	Adju	sted L	ife Ti	me (Y	ear)
	P _{rated}	Hig	h-end (Pay-b MWI DOD	y-Eneເ າ)	rgy	Lov	v-end F (\$	⊃ay-by /MWh DOD	/-Ener()	gy	Adju	sted L	ife Ti	me (Y	ear)
	P _{rated} (MW)	Hig 1	h-end (\$ 0.8	Pay-b /MW DOD 0.6	y- Ene ו ו) 0.4	0.2	Lov 1	v-end F (\$ 0.8	Pay-by /MWh DOD 0.6	7- Ener () 0.4	gy 0.2	Adju	sted L	.ife Ti DOD 0.6	me (Yo	ear) 0.2
Regulation	P _{rated} (MW) 4	Hig 1 197	h-end (\$ 0.8 206	Pay-b / MW 0.6 204	y- Ene i n) 0.4 198	0.2 238	Lov 1 86	v-end F (\$ 0.8 90	Pay-by /MWh DOD 0.6 89	-Ener() 0.4 86	gy 0.2 104	Adju 1 20	sted L 0.8 20	DOD 0.6 20	me (Ye 0.4 20	ear) 0.2 20
Regulation	P _{rated} (MW) 4 8	Hig 1 197 112	h-end (\$ 0.8 206 106	Pay-by /MWI DOD 0.6 204 103	y- Ene i n) 0.4 198 119	0.2 238 124	Low 1 86 50	v-end F (\$ 0.8 90 47	Pay-by /MWh DOD 0.6 89 45	-Energ) 0.4 86 52	0.2 104 54	Adju 1 20 14	sted L 0.8 20 16	DOD 0.6 20 20	0.4 20	ear) 0.2 20 20
Regulation 20%	P _{rated} (MW) 4 8 12	Hig 1 197 112 89	h-end (\$ 0.8 206 106 89	Pay-b MWI 0.6 204 103 86	y-Ener) 0.4 198 119 80	9y 0.2 238 124 87	Low 1 86 50 41	v-end F (\$ 0.8 90 47 40	ay-by /MWh 0.6 89 45 38	-Energ) 0.4 86 52 35	0.2 104 54 38	Adju 1 20 14 10	sted L 0.8 20 16 12	ife Ti DOD 0.6 20 20 15	0.4 20 20 20	ear) 0.2 20 20 20
Regulation 20% Renew ables	P _{rated} (MW) 4 8 12 16	Hig 1 197 112 89 84	h-end (\$ 0.8 206 106 89 79	Pay-b //WWF DOD 0.6 204 103 86 73	y-Ener) 0.4 198 119 80 67	(gy) 0.2 238 124 87 68	Low 1 86 50 41 39	v-end F (\$ 0.8 90 47 40 37	Pay-by /MWh DOD 0.6 89 45 38 33	-Energy) 0.4 86 52 35 30	gy 0.2 104 54 38 30	Adju 1 20 14 10 8	sted L 0.8 20 16 12 10	ife Til DOD 0.6 20 20 15 12	0.4 20 20 20 15	ear) 0.2 20 20 20 20
Regulation 20% Renew ables	P _{rated} (MW) 4 8 12 16 20	Hig 1 197 112 89 84 77	h-end (\$ 0.8 206 106 89 79 71	Pay-b MWI 0.6 204 103 86 73 65	y-Ener) 0.4 198 119 80 67 60	gy 0.2 238 124 87 68 57	Low 1 86 50 41 39 37	v-end F (\$ 0.8 90 47 40 37 33	A ay-by ////////////////////////////////////	-Energ) 0.4 86 52 35 30 27	9y 0.2 104 54 38 30 25	Adju 1 20 14 10 8 7	sted L 0.8 20 16 12 10 8	ife Til DOD 0.6 20 20 15 12 9	0.4 20 20 15 13	ear) 0.2 20 20 20 20 20 20
Regulation 20% Renew ables	P _{rated} (MW) 4 8 12 16 20	Hig 1 197 112 89 84 77	h-end (\$ 0.8 206 106 89 79 71	Pay-b DOD 0.6 204 103 86 73 65	y-Ener) 0.4 198 119 80 67 60	9y 0.2 238 124 87 68 57	Low 1 86 50 41 39 37	v-end F (\$ 0.8 90 47 40 37 33	A state of the sta	0.4 86 52 35 30 27	0.2 104 54 38 30 25	Adju 1 20 14 10 8 7	sted L 0.8 20 16 12 10 8	ife Til 0.6 20 20 15 12 9	0.4 20 20 15 13	0.2 20 20 20 20 20 20
Regulation 20% Renew ables Regulation	P _{rated} (MW) 4 8 12 16 20 4	Hig 1 197 112 89 84 77 135	h-end (\$ 0.8 206 106 89 79 71 71	Pay-b MWF 0.6 204 103 86 73 65 137	y-Ener) 0.4 198 119 80 67 60 135	 Gy 0.2 238 124 87 68 57 144 	Low 1 86 50 41 39 37 83	v-end F (\$ 0.8 90 47 40 37 33 84	ay-by MWh 0.6 89 45 38 33 30 84	-Energ) 0.4 86 52 35 30 27 83	9y 0.2 104 54 38 30 25 888	Adju 1 20 14 10 8 7 20	0.8 20 16 12 10 8 20	ife Til DOD 0.6 20 20 15 12 9	0.4 20 20 15 13 20	0.2 20 20 20 20 20 20 20
Regulation 20% Renew ables Regulation No-w ind	P _{rated} (MW) 4 8 12 16 20 4 8	Hig 1 197 112 89 84 77 135 77	h-end (\$ 0.8 206 106 89 79 71 71 137 73	Pay-b; /MWI 0.6 204 103 86 73 65 137 71	y-Ener 0.4 198 119 80 67 60 135 72	gy 0.2 238 124 87 68 57 144 79	Low 1 86 50 41 39 37 83 49	v-end F (\$ 0.8 90 47 40 37 33 84 46	ay-by MWh 0.6 89 45 38 33 30 84 44	-Energ) 0.4 86 52 35 30 27 83 44	999 0.2 104 54 38 30 25 88 88 48	Adju 1 200 14 10 8 7 20 14	sted L 0.8 20 16 12 10 8 20 16	ife Til DOD 0.6 20 15 12 9 20 19	me (Ya 0.4 20 20 15 13 20 20 20	ear) 0.2 20 20 20 20 20 20 20 20 20 20
Regulation 20% Renew ables Regulation No-w ind	P _{rated} (MW) 4 8 12 16 20 4 4 8 12	Hig 1 197 112 89 84 77 135 77 63	h-end (\$ 0.8 206 106 89 79 71 137 73 60	Pay-b; /MWF DOD 0.6 204 103 86 73 65 137 71 55	y-Ener 0.4 198 119 80 67 60 135 72 52	rgy 0.2 238 124 87 68 57 144 79 144	Low 1 86 50 41 39 37 83 49 41	v-end F (\$ 0.8 90 47 40 37 33 33 84 46 39	ay-by JWWh DOD 0.6 89 45 38 33 30 84 44 35	-Energy 0.4 86 52 35 30 27 83 44 32	9y 0.2 104 54 38 30 25 88 88 48 34	Adju 1 20 14 10 8 7 20 14 9	sted L 0.8 20 16 12 10 8 20 16 11	ife Til DOD 0.6 20 20 15 12 9 20 19 20 19	me (Ya 0.4 20 20 15 13 20 20 20 18	ear) 0.2 20 20 20 20 20 20 20 20 20 20 20
Regulation 20% Renew ables Regulation No-w ind	P _{rated} (MW) 4 8 12 16 20 4 4 8 12 12 16	Hig 1 197 112 89 84 77 135 77 63 56	h-end (\$ 0.8 206 106 89 79 71 137 137 73 60 52	Pay-b /MWF DOD 0.6 204 103 86 73 65 137 71 55 48	y-Ener 0.4 198 119 80 67 60 135 72 52 45	gy 0.2 238 124 87 68 57 144 79 55 43	Low 1 86 50 41 39 37 83 49 41 37	v-end F (\$ 0.8 90 47 40 37 33 33 84 46 39 34	ay-by MWh 0.6 89 45 38 33 30 84 44 35 31	-Energ) 0.4 86 52 35 30 27 83 44 42 32 28	9y 0.2 104 54 38 30 25 88 88 48 48 34 27	Adju 1 20 14 10 8 7 7 20 14 9 7	sted L 0.8 20 16 12 10 8 20 16 11 8	ife Til 0.6 20 20 15 12 9 20 19 13 10	0.4 20 20 15 13 20 20 18 18 14	ear) 0.2 20 20 20 20 20 20 20 20 20 20 20 20

Table 21: The breakeven price comparison between pay-by-energy and pay-by-capacity

4.0 Conclusions

The conclusions of the study are summarized as follows:

• If manufacturers can improve the NaS battery lifecycles at high DODs, as shown by the red line in Figure 36, the breakeven price will drop significantly for high DOD cases. The results are compared in Figure 36.

	1000000 -											
(e)					_	-Now	- E ide	eal				
Š	100000 -											
)e											_	
⊒.	10000 -											
et	10000											
Ē												
	1000 -											
	2000	0.05	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
	Now	379208	125092	41265	21569	13612	9525	7115	5560	4490	3719	3142
	ideal	379208	125092	53645	32354	27224	23813	21345	19460	17960	16736	15710

Depth of Discharge

Figure 36: The battery lifetime with respect to the depth of discharge

Figure 37: A comparison of high-end and low-end breakeven prices of the improved battery lifecycle case (dashed lines) and the base case (solid lines)

• Under the *pay-by-energy* scheme for regulation and real-time dispatch services breakeven prices are above \$100/MWh, making the op eration not e conomical in the C alifornia market, for a 4 MW, 28 MWh NaS battery (see Table 22).

Break	keven Pri	ce (89	% Pro	fit) (\$I	MWh)		U	Itiliza	tion F	Rate (Pave/F	P _{rated})	Adj	usted I	.ife Ti	me (Y	′ear)
	P _{rated}			DOD						DOD					DOD		
	(MW)	1	0.8	0.6	0.4	0.2		1	0.8	0.6	0.4	0.2	1	0.8	0.6	0.4	0.2
Regulation	4	197	206	204	198	238		0.18	0.17	0.17	0.18	0.15	20	20	20	20	20
2001	8	112	106	103	119	124		0.18	0.18	0.17	0.15	0.14	14	16	20	20	20
20% Renew ables	12	89	89	86	80	87		0.18	0.16	0.15	0.15	0.13	10	12	15	20	20
	16	84	79	73	67	68		0.15	0.15	0.15	0.14	0.13	8	10	12	15	20
	20	77	71	65	60	57		0.15	0.15	0.15	0.14	0.12	7	8	9	13	20
Real-time	4	164	169	183	203	270		0.15	0.15	0.14	0.12	0.09	20	20	20	20	20
Dispatch	8	97	101	114	135	189		0.13	0.12	0.11	0.09	0.07	19	20	20	20	20
20%	12	82	83	90	108	148		0.11	0.10	0.09	0.08	0.06	15	19	20	20	20
Renew ables	16	74	73	77	95	125		0.10	0.09	0.08	0.07	0.05	13	16	20	20	20
	20	68	68	70	83	110		0.09	0.08	0.07	0.06	0.05	11	14	19	20	20
Regulation	4	135	137	137	135	144		0.18	0.18	0.18	0.18	0.17	20	20	20	20	20
No-wind	8	77	73	71	72	79		0.18	0.18	0.18	0.17	0.16	14	16	19	20	20
	12	63	60	55	52	55		0.18	0.17	0.17	0.16	0.15	9	11	13	18	20
	16	56	52	48	45	43		0.17	0.17	0.17	0.16	0.14	7	8	10	14	20
	20	52	48	44	40	37		0.17	0.17	0.16	0.16	0.14	6	7	8	11	19
Real-time	4	177	179	201	229	303		0.14	0.14	0.12	0.11	0.08	20	20	20	20	20
Dispatch	8	108	115	128	151	219		0.12	0.11	0.10	0.08	0.06	20	20	20	20	20
No-wind	12	86	90	101	121	172		0.10	0.09	0.08	0.07	0.05	16	20	20	20	20
	16	77	79	87	109	147		0.09	0.08	0.07	0.06	0.04	14	17	20	20	20
	20	72	74	78	96	129		0.08	0.07	0.06	0.05	0.04	12	16	20	20	20

Table 22: The breakeven prices, utilization rates, and battery lifetimes (Pay-by-energy)

• Under the *pay-by-capacity* scheme for regulation services, the battery has a longer life and a lower cost when it runs at lower DODs (see Table 23). With current technology, the battery's rated power output is 4 M W. The results indicate that if the 4 MW battery provides on e-directional regulation service, the high-end cost will be \$26/MW and the low-end cost will be \$16/MW. In the California market, this means the NaS battery may become marginally profitable.

		High	n-end F (Pay-by (\$/MW	-Capa)	city	Low	end P-	ay-by- \$/MW)	Capao	city	Adju	sted L	ife Ti	me (Y	ear)
	Pertod			DOD					DOD					DOD		
	(MW)	1	0.8	0.6	0.4	0.2	1	0.8	0.6	0.4	0.2	1	0.8	0.6	0.4	0.2
Regulation	4	26	26	26	26	26	16	16	16	16	16	20	20	20	20	20
	8	15	14	13	13	13	9	9	8	8	8	14	16	20	20	20
20%	12	12	10	10	9	9	8	7	6	5	5	10	12	15	20	20
Renew ables	16	10	9	8	7	7	6	6	5	4	4	8	10	12	15	20
	20	9	8	7	6	5	6	5	5	4	3	7	8	9	13	20
Regulation	4	26	26	26	26	26	16	16	16	16	16	20	20	20	20	20
No-w ind	8	15	14	13	13	13	9	9	8	8	8	14	16	19	20	20
	12	12	11	10	9	9	8	7	6	6	5	9	11	13	18	20
	16	10	10	9	7	7	7	6	6	5	4	7	8	10	14	20
	20	9	9	8	7	5	6	6	5	4	3	6	7	8	11	19
		Hig	h-end (۹	Pay-b \$/ MW	y-Ene ı)	rgy	Lov	v-end F (\$	^p ay-by /MWh	-Energ	gу	Adju	sted L	ife Ti	me (Y	ear)
	P _{rated}	Hig	h-end (۹	Pay-b /MW	y-Ene n)	rgy	Lov	v-end F (\$	^o ay-by /MWh DOD	-Energ	gy	Adju	sted L	ife Ti	me (Y	ear)
	P _{rated} (MW)	Hig 1	h-end (: 0.8	Pay-b 5/MWI DOD 0.6	y- Ene ו) 0.4	0.2	Lov	v-end F (\$ 0.8	Pay-by /MWh DOD 0.6	7- Ener) 0.4	gy 0.2	Adju	sted L	.ife Ti DOD 0.6	me (Y o	ear) 0.2
Regulation	P _{rated} (MW) 4	Hig 1 197	0.8	Pay-b MWI DOD 0.6 204	y- Ene n) 0.4 198	0.2 238	Low	v-end F (\$ 0.8 90	^D ay-by /MWh DOD 0.6 89	- Ener ()) 0.4 <u>86</u>	gy 0.2 104	Adju 1 20	sted L 0.8 20	ife Tin DOD 0.6 20	me (Ye 0.4 20	ear) 0.2 20
Regulation	P _{rated} (MW) 4 8	Hig 1 197 112	h-end (\$ 0.8 206 106	Pay-b /MWI 0.6 204 103	y-Ene) 0.4 198 119	0.2 238 124	Low 1 86 50	v-end F (\$ 0.8 90 47	² ay-by /MWh 0.6 89 45	-Energ	gy 0.2 104 54	Adju 1 20 14	sted L 0.8 20 16	ife Ti DOD 0.6 20 20	me (Ye 0.4 20 20	ear) 0.2 20 20
Regulation 20%	P _{rated} (MW) 4 8 12	Hig 1 197 112 89	0.8 0.8 206 106 89	Pay-b MWF 0.6 204 103 86	y-Ene) 0.4 198 119 80	0.2 238 124 87	Low 1 86 50 41	v-end F (\$ 0.8 90 47 40	ay-by /MWh 0.6 89 45 38	-Energ) 0.4 86 52 35	9y 0.2 104 54 38	Adju 1 20 14 10	sted L 0.8 20 16 12	ife Til DOD 0.6 20 20 15	0.4 20 20 20	ear) 0.2 20 20 20
Regulation 20% Renew ables	P _{rated} (MW) 4 8 12 16	Hig 1 197 112 89 84	h-end (\$ 0.8 206 106 89 79	Pay-b MWF 0.6 204 103 86 73	y-Ene) 0.4 198 119 80 67	0.2 238 124 87 68	Low 1 86 50 41 39	v-end F (\$ 0.8 90 47 40 37	Pay-by /MWh 0.6 89 45 38 33	0.4 86 52 35 30	gy 0.2 104 54 38 30	Adju 1 20 14 10 8	sted L 0.8 20 16 12 10	ife Til DOD 0.6 20 20 15 12	0.4 20 20 20 15	ear) 0.2 20 20 20 20
Regulation 20% Renew ables	P _{rated} (MW) 4 8 12 16 20	Hig 1 197 112 89 84 77	h-end (\$ 0.8 206 106 89 79 71	Pay-b MWI 0.6 204 103 86 73 65	y-Ener) 0.4 198 119 80 67 60	rgy 0.2 238 124 87 68 57	Low 1 86 50 41 39 37	v-end F (\$ 0.8 90 47 40 37 33	Pay-by /MWh DOD 0.6 89 45 38 33 30	-Energ) 0.4 86 52 35 30 27	gy 0.2 104 54 38 30 25	Adju 1 20 14 10 8 7	sted L 0.8 20 16 12 10 8	ife Til DOD 0.6 20 20 15 12 9	0.4 20 20 15 13	ear) 0.2 20 20 20 20 20 20
Regulation 20% Renew ables	P _{rated} (MW) 4 8 12 16 20	Hig 1 197 112 89 84 77	h-end (\$ 0.8 206 106 89 79 71	Pay-b (MW) 0.6 204 103 86 73 65	0.4 198 119 80 67 60	rgy 0.2 238 124 87 68 57	Low 1 86 50 41 39 37	v-end F (\$ 0.8 90 47 40 37 33	Pay-by /MWh DOD 0.6 89 45 38 33 30	0.4 86 52 35 30 27	0.2 104 54 38 30 25	Adju 1 20 14 10 8 7	sted L 0.8 20 16 12 10 8	ife Til DOD 0.6 20 20 15 12 9	me (Ye 0.4 20 20 15 13	ear) 0.2 20 20 20 20 20 20
Regulation 20% Renew ables Regulation	P _{rated} (MW) 4 8 12 16 20 4	Hig 1 197 112 89 84 77 135	0.8 206 106 89 79 71 137	Pay-b MWF 0.6 204 103 86 73 65 137	0.4 198 119 80 67 60 135	0.2 238 124 87 68 57 144	Low 1 86 50 41 39 37 83	v-end F (\$ 0.8 90 47 40 37 33 84	Pay-by /MWh DOD 0.6 89 45 38 33 30 30	0.4 86 52 35 30 27 83	0.2 104 54 38 30 25 88	Adju 1 20 14 10 8 7 20	0.8 20 16 12 10 8 20	ife Til DOD 0.6 20 20 15 12 9 20	0.4 20 20 15 13 20	ear) 0.2 20 20 20 20 20 20 20
Regulation 20% Renew ables Regulation No-w ind	P _{rated} (MW) 4 8 12 16 20 4 8	Hig 1 197 112 89 84 77 135 77	0.8 206 106 89 79 71 137 73	Pay-b MWF 0.6 204 103 86 73 65 137 71	0.4 198 119 80 67 60 135 72	0.2 238 124 87 68 57 144 79	Low 1 86 50 41 39 37 83 49	0.8 90 47 40 37 33 84 46	Pay-by /MWh DOD 0.6 89 45 38 33 30 30 84 44	0.4 86 52 35 30 27 83 44	0.2 104 54 38 30 25 88 48	Adju 1 20 14 10 8 7 20 14	0.8 20 16 12 10 8 20 16	ife Til DOD 0.6 20 20 15 12 9 20 20	0.4 20 20 15 13 20 20	ear) 0.2 20 20 20 20 20 20 20 20 20 20 20 20 20
Regulation 20% Renew ables Regulation No-w ind	P _{rated} (MW) 4 8 12 16 20 4 8 8 12	Hig 1 197 112 89 84 77 135 77 63	0.8 206 106 89 79 71 137 73 60	Pay-b MWF 0.6 204 103 86 73 65 137 71 55	9-Ener 0.4 198 119 80 67 60 135 72 52	0.2 238 124 87 68 57 144 79 55	Low 1 86 50 41 39 37 83 49 41	0.8 90 47 40 37 33 84 46 39	Pay-by /MWh DOD 0.6 89 45 38 33 30 30 84 44 44 35	0.4 86 52 35 30 27 83 44 32	9y 0.2 104 54 38 30 25 88 88 48 34	Adju 1 20 14 10 8 7 20 14 9	0.8 20 16 12 10 8 20 16 11	ife Til DOD 0.6 20 20 15 12 9 20 19 20 19	0.4 20 20 20 15 13 20 20 20 20 18	ear) 0.2 20 20 20 20 20 20 20 20 20 20 20 20 20
Regulation 20% Renew ables Regulation No-w ind	P _{rated} (MW) 4 8 12 16 20 4 4 8 12 16	Hig 1 197 112 89 84 77 135 77 63 56	0.8 206 106 89 79 71 137 73 60 52	Pay-b MWF 0.6 204 103 86 73 65 137 71 55 48	y-Ene) 0.4 198 119 80 67 60 135 72 52 45	 (9) (1) (2) (2)	Low 1 86 50 41 39 37 83 49 41 37	v-end F (\$ 0.8 90 47 40 37 33 84 46 39 34	Pay-by /MWh 0.6 89 45 38 33 30 84 84 44 35 31	-Energ) 0.4 86 52 35 30 27 83 44 32 28	9y 0.2 104 54 38 30 25 88 88 48 34 34 27	Adju 1 20 14 10 8 7 20 14 9 7	sted L 0.8 20 16 12 10 8 20 16 11 8	ife Til DOD 0.6 20 20 15 12 9 20 19 20 19 13 10	0.4 20 20 15 13 20 20 18 14	ear) 0.2 20 20 20 20 20 20 20 20 20 2

Table 23: The breakeven price comparison between *pay-by-energy* and *pay-by-capacity*

• The breakeven price will drop significantly if the battery's rated-power output can be increased (Table 22, Table 23 and Figure 38) because the battery is able to handle a b roader range of signals. However, above 12 M W, the price de cline is not significant, but the battery life is shortened dramatically. Therefore, if battery manufacturers i ncrease the battery's rated-power output up to 8 or 12 MW breakeven price could decline 1/2 to 2/3 based on the current lifecycle-DOD curve.

Figure 38: The 28 MWh NaS battery capacity to power ratio

- At higher-rated power, there is a tradeoff between the depth of discharge (DOD) and battery life (see Table 22 and Table 23). At 4 M W, the DOD does not result in a shortened battery life because the 28 M Wh battery is underused when providing the regulation. At 20 MW, however, the battery lives are significantly shorter at higher DODs.
- The NaS battery provides almost the same amount of regulation or real-time dispatch services for the "with 20% renewables" and "without wind" cases. Thus, the breakeven prices were similar. More batteries contribute greater ancillary service capacity and therefore, allow more intermittent generation resources to connect to the power grid. However, the amount of regulation and real-time dispatch services that an individual battery provides depends mainly on its power rating. For the "with 20% renewables" and "without wind" cases, signals sent to the NaS battery are all within its rated power output ±4 MW. For example, although 193 MW are needed for regulation without wind, and 248 MW are needed for regulation with 20% renewable, for the 4 MW NaS battery, it provides services within ±4 MW in both cases; therefore, the amounts of e nergy provided in both cases are similar.
- The regulation and real-time dispatch signals sent to the NaS battery are scaled total regulation and real-time dispatch signals, so that the signals are within the battery rated power output, for example, ±4 MW. As shown in Figure 39, for the case in which 50% of the time, the normalized signal is outside ±4MW, the battery average power output is much higher than that of the 5% case, resulting in more economical services (see Table 24). For the 50% of signals outside the battery's capability, the regulation and real-time signals c an be provided m ore efficiently by storage devices that have high power outputs but less energy storage capacities, for example, flywheels.

Breakeven Price (High End)							Breakeven Price (Low End)					
	Signal		DOD					DOD				
	Outliers	1	0.8	0.6	0.4	0.2		1	0.8	0.6	0.4	0.2
Regulation	5%	197	206	204	198	238		101	105	104	101	122
_	10%	175	177	176	171	203		90	90	90	87	104
20%	20%	138	140	135	148	160		71	72	69	76	82
Renewables	30%	131	129	127	143	146		67	66	65	73	75
	50%	112	105	101	112	116		-59	-55	52	57	60
Realtime	5%	231	238	257	285	381		118	122	132	146	195
Dispatch	10%	205	217	228	270	355		105	111	117	138	182
-	20%	174	181	195	231	308		89	93	100	118	158
20%	30%	151	159	177	204	278		77	82	91	104	142
Renewables	50%	135	142	155	180	239		70	73	79	92	123
Regulation	5%	191	193	193	190	202		98	99	99	97	104
No-wind	10%	175	172	175	172	185		90	88	89	88	95
	20%	144	144	143	149	156		74	74	73	76	80
	30%	132	131	129	140	144		68	67	66	72	74
	50%	117	112	108	113	119		61	-58	-55	58	61
Realtime	5%	249	251	283	322	426		128	129	145	165	218
Dispatch	10%	217	226	254	285	387		111	116	130	146	198
No-wind	20%	183	201	219	250	339		94	103	112	128	174
	30%	167	183	193	224	312		86	94	99	115	160
	50%	143	147	161	192	267		73	75	82	98	137

Table 24. A co	mparison of	breakeven	prices for	different r	ormalized	signals
1 4010 2 1. 11 00	inpui ison oi	or cure ven	prices for	unificient	Ionnanzea	Signais

Future research should focus on the economics of the combined services of batteries. By bidding into the energy, regulation, real-time di spatch, and reserve markets, the battery owner can collect revenue from different markets, likely resulting in a more economical operation than bidding in a single market. However, providing multiple services requires an optimization on the battery's commitment schedule. To address these optimal operation strategies, a battery commitment problem needs to be well defined and solved.

5.0 References

- J. Waters. 2001. News Release: AEP Tests Sodium Sulfur Battery's Electric Storage Capabilities. American Electric Power Co, Inc: 22 March, 2001. Columbus, Ohio. Available online: <u>http://www.aep.com/newsroom/newsreleases/?id=790</u>
- [2] P. Davidson. 2007. "New battery packs powerful punch." USA TODAY. Available online: http://www.usatoday.com/money/industries/energy/2007-07-04-sodium-battery N.htm
- [3] Wikipedia, 2009. "Net present value." Available online: http://en.wikipedia.org/wiki/Net present value.
- [4] C.T. Horngren, G.L. Sundem, W.O. Stratton. 2002. "Introduction to Management Accounting." Prentice Hall.
- [5] Y.V. Makarov, C. Loutan, J. Ma, and P. de Mello. 2009. "Operational impacts of wind generation in California power system." *IEEE Transactions on Power Systems*. 24(2): 1039-1050.
- [6] Y.V. Makarov, P. Nyeng, B. Yang, J. Ma, J.G. DeSteese, D.J. Hammerstrom, S. Lu, V.V. Viswanathan, and C.H. Miller. 2008. Wide-Area Energy Storage and Management System to Balance Intermittent Resources in the Bonneville Power Administration and California ISO Control Areas. PNNL-17574. Pacific Northwest National Laboratory, Richland, WA.
- [7] Viswanathan V.V. October 2007. "Cycle life DOD.xls." Pacific Northwest National Laboratory. Available on request.
- [8] R. Walawalkar and J Apt. 2008. Market Analysis of Emerging Electric Storage Systems. DOE/NETL-2008/1330. U.S. Department of Energy, National Energy Technology Laboratory, Morgantown WV.
- [9] Office and Management and Budget. October 1992. "Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs." Circular A-94. Washington, D.C.
- [10] Office of Management and Budget. December 2008. "Appendix C Discount Rates for Cost-Effectiveness, Lease Purchase, and Related Analyses, OMB Circular No. A-94." Washington, D.C.
- [11] California Independent System Operator Renewables Workgroup. 2007. "Methodology to Evaluate the Impacts of Wind Generation on California ISO's Regulation and Load Following Requirements Under MRTU," in *Integration of Renewable Resources Report – Transmission and Operating Issues* and Recommendations for Integrating Renewable Resources on the California ISO-Controlled Grid, California Independent System Operator (CAISO) Report. Available online: <u>http://www.caiso.com/1ca5/1ca5a7a026270.pdf</u>.