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Summary 

One of the tasks of the U.S. Nuclear Regulatory Commission-sponsored project titled “Reliability of 
Nondestructive Examination (NDE) for Nuclear Power Plant (NPP) Inservice Examination (ISI)” is to 
provide collaborative assistance to Commissariat à l’Energie Atomique (CEA) in France through 
theoretical predictions of ultrasonic scattering by grains of cast stainless steels (CASS) components.  
More specifically, a mathematical treatment of ultrasonic scattering in media having duplex micro-
structure is sought because cast stainless steel components often contains larger-scale macrograins that 
are composed of sub-grains/colonies.  

In this report, we present formal mathematical theories for ultrasonic wave propagation in 
polycrystalline aggregates having both simple (composed of grains only) and complex microstructures 
(having macrograins and sub-grains/colonies).  Computations based on these theories are then carried out 
for ultrasonic backscatter power, attenuation due to scattering, and phase velocity dispersions.  
Specifically, numerical results are presented for the backscatter coefficient for a plane longitudinal wave 
propagating in duplex steel containing macrograins and colonies.  Furthermore, the expected propagation 
characteristics (attenuation coefficient and phase velocity) are computed and described in this report for 
plane longitudinal waves propagating in (1) steels composed of randomly oriented grains, (2) [001] 
aligned grains encountered in austenitic stainless steel welds and castings, and (3) duplex steels.  Our 
analysis shows that both backscatter and attenuation are dominated by scattering from macrograin 
boundaries for the low non-dimensional frequency, mka .  Colonies do not cause noticeable additional 

backscatter and attenuation for 2mka  in the case of equiaxed macrograins and colonies.  This threshold 

frequency at which contributions from colonies is visible is reduced ( 1mka ) for elongated macrograins 

and colonies. 
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Acronyms and Abbreviations 

CASS cast stainless steels 

CEA Commissariat à l’Energie Atomique 

ISI inservice inspection 

NDE nondestructive examination 

NPP nuclear power plant 
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1.1 

1.0 Theory of Ultrasonic Backscattering from 
Duplex Microstructures 

Many metallic alloys exhibit internal structure on several length scales.  On the smallest scale are 
individual micrograins; that is, single crystals of metal with atoms arranged in a regular lattice.  
Neighboring micrograins with aligned or partially aligned lattices can form larger entities, such as 
platelets, colonies, or macrograins.  The largest structures, macrograins, are often visible without 
magnification when polished metal surfaces are properly etched. 

Electrical signals received by an ultrasonic NDT system from defects occupying region VF generated 
by time-harmonic acoustic waves of angular frequency  can be modeled using the Thompson-Gray 

measurement model (1993) as follows.Equation Section 1 
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Here, P represents the electrical power propagating the cables, superscript “o” represents field 
variables without defects,   denotes the density difference between a host medium and defect, and 

 ijklc  refers to similar differences in elastic constants.  If scatterer density fluctuations can be neglected, 

then 
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Using Rose’s notation (Rose 1992), we observe that 
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Invoking weak scattering (Born) approximation, that is,  o
i iu u , and considering plane waves of the 

form  
 o ik r

i o iu U u e  (

iu , oU ,


r , and 

 
k kk  representing particle polarization, amplitude, position 

vector, and propagation vector, respectively) 
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where 3  
d d r  is a differential volume at 


r . 

Hence, the expected (denoted by .. ) scattered ultrasonic power at the receiver is 
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The evaluation of the integral is simplified by the following coordinate transformation 

,
2
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p s r r  yielding together with the assumption of statistical homogeneity 
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For a statistically homogeneous medium, we can write 

 ( / 2) ( / 2) ( ) ( ) ( )
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Here ( )
MP s  is the probability that the line segment 


s  lies in the same macrograin and   is the Euler 

angle of the macrograin with the subscript   referring to the set of possible Euler angles. 

Rose (1992) has shown that the foregoing equation is equivalent to 
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where 

2

 
g

g

v
N

v
 with gv  representing the volume of one macrograin out of N different macrograins 

affected by a given ultrasonic beam and ..  representing ensemble averages. 

Therefore, the backscattered power generated by an ultrasonic beam propagating in the 3-direction is 
given by 
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One can define the following backscatter coefficient, which depends only on the material 
microstructure. 
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Difficulties in predicting backscattering coefficient  for multiphase materials with complex 
microstructures having different length scales (macrograins, colonies, and micrograins) arise through the 

evaluation of the two-point correlation function 3333 3333( ) ( )


   M Mc c , especially when there exists 

crystallographic orientation relationships between macrograins and colonies. 

Utilizing the arguments presented by Han and Thompson (1997), the two-point correlation function is 
written as 

 3333 3333 3333 3333 3333 3333( ) ( ) ( ) ( )
 

         
 QM M P P P

P Q
c c c c PP s c c PQ s  (1.11) 

where P and Q are colony indices.  The first term represents the case when two points separated by 

s  are 

in an elastically equivalent variant, which occurs with probability ( )


PP s .  The second term addresses the 
case when the two points in question are an elastically distinct variant, which occurs with probability 

( )


PQ s .  For large

s , ( )


PQ s  would approach zero in the case of macrograins with random orientation.  

However, if only distinctN  variants are allowed, it would have a limiting value of 1 / distinctN . 

1.1 Special Cases for Calculations 

For equiaxed macrograins/colonies, we have employed the following geometric autocorrelation 
function (Stanke and Kino 1984). 

 / | |/( ) 
M C s aP s e . (1.12) 

Generalizing on this, the geometric autocorrelation function ( )


W s  for elongated (spheroid) 
macrograins (Ahmed and Thompson 1991) is taken to have the form (schematic shown in Figure 1.1). 

 
2 2 2| | 1 ( / 1)cos ( )) // ( )    

 s a c aM CP s e . (1.13) 

In the aforementioned equations, a  represents the semi-axis perpendicular to the incident wave, c 
represents the semi-axis parallel to the incident wave, and θ is the angle that the position vector 


s  makes 

with respect to the propagation direction of the incident ultrasonic wave. 

1.1.1 Results for Duplex Stainless Steel 

In this report, we show numerical predictions for backscatter coefficients for a complex 
microstructure possessed by duplex stainless steel.  In our calculations, the crystallographic orientation 
relationship between austenite (fcc) and ferrite (bcc), described by the well-known Kurdjumov-Sachs 

(K-S) description (Kurdjumov and Sachs 1930), {111} {110}fcc bcc  and 1 10 111   fcc bcc , is 

assumed to describe the crystallographic relationship between a macrograin and the associated colony.  It 
is also assumed that there are only two elastically distinct variants of colonies (i.e., Ndistinct = 2).  The two-
point averages required in Eq. (1.10) are computed from Eq. (1.11).  The same description of the 
orientation relationship between macrograin and colony will also be utilized later when expected 
propagation constants of plane longitudinal elastic waves in duplex steel are computed. 
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Figure 1.1.  Schematic Representation of Macrograin/Colony 

The fluctuations in elastic constants are measured related to unweighted Voigt (1928) averaged elastic 

constant; that is, ( )  
 o

ijkl ijkl ijklc c r c .  The single crystal elastic constants and material density employed 

in the calculations are listed in Table 1.1 (Kupperman and Reimann 1978).  
 
 

Table 1.1.  Austenitic Elastic Constants and Reported Density 
 

Single Crystal Elastic Constants  
Polycrystalline Stainless 

Steel Density 

12
11 10
  
 

dynes
c

cm
 12

12 10
  
 

dynes
c

cm
 12

44 10
  
 

dynes
c

cm
 

 
3


gm

cm
 

0.216 0.145 0.129  7.86 
 

Before proceeding with the presentation of numerical results, it is worthwhile to point out that the 
presence of two scales in the microstructure contributes to the scattering process by two mechanisms.  
First, preferential orientation of colonies associated with a macrograin influences the two-point 
correlation functions significantly.  Second, colonies themselves act as secondary scatterers of ultrasonic 
waves. 

Figure 1.2 shows absolute backscatter coefficients for an incident ultrasonic wave propagating in the 
3-direction of the laboratory (sample) coordinate system when both macrograins and colonies are 
equiaxed.  Our numerical predictions suggest that with the presence of very small colonies (diameter ratio 
of up to 0.001), there is no appreciable effect of their presence for non-dimensional frequencies 2mka  

when the macrograins/colonies are equiaxed.  It should be noted here that for the idealized duplex 
microstructure chosen in this calculation, 2mka  refers to a frequency of 6.06 MHz for a transverse 

macrograin diameter of 1 mm. 
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Figure 1.2. Normalized and Absolute Backscatter Coefficients for Ultrasonic Wave Propagating in the 

3-Direction of the Sample Coordinate System for Equiaxed Macrograins and Colonies 
 

Next we consider both macrograins and colonies to have spheroidal shapes.  Figure 1.3 describes the 
results in this case for a macrograin aspect ratio ( /m mc a ) of 2.0.  We assumed the colonies to have the 

same aspect ratio.  For elongated macrograins/colonies, additional colony contributions to the backscatter 
become noticeable for 1.0mka .  This corresponds to a frequency of approximately 3 MHz for a 

macrograin transverse diameter of 1 mm. 
 
 

 
 
Figure 1.3. Normalized and Absolute Backscatter Coefficients for Ultrasonic Wave Propagating in the 

3-Direction of the Sample Coordinate System for Spheroidal Macrograins and Colonies 
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The implication of the Born approximation utilized in Eq. (1.4) is that multiple scattering events are 
ignored in the calculation of backscatter power.  The formulation of backscatter power given by Eq. (1.9) 
would include some degree of multiple scattering if  ijklc  would be taken as the fluctuation of local 

elastic constants measured relative to complex effective elastic constants constructed from wave 

propagation theory that includes multiple scattering.  For example, one can define ( )  
 eff

ijkl ijkl ijklc c r c  

where eff
ijklc  is calculated from the unified theory of Stanke and Kino (1984). 

 



 

2.1 

2.0 Theory of Ultrasonic Scattering Attenuation in 
Single-Phase and Duplex Microstructures 

2.1 Mean Wave Propagation 

The displacement field due to an ultrasonic wave propagating in a polycrystalline material can be 

described by the stochastic wave equationEquation Section 2 

 2
,[ ( ) ( )] ( ) ( ) 0      

   
ijkl kl j ic r u r r u r , (2.1) 

where ( ) 
ijklc r  is the actual local elastic tensor, ( )


r  is the actual local density, and ( ) 

iu r  is the actual 

displacement field in the medium ξ.  The set of elastic tensors and the probability density function ( )p , 

which is the probability of choosing any particular medium, form a stochastic process.  In a medium with 
no density variation, the application of the unified theory of Stanke and Kino (1984) to the wave equation 
yields the general formula following Christoffel’s equation for the expected propagation constant k 
(Ahmed and Thompson 1996). 
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 o

ijkl ijkl ijklc c r c , ( )


G s  is a Green’s function taken from the work of Lifshits and Parkhamovski 

(1950), o
ijklc  are the Voigt (1928) averaged elastic constants, and ( )


W s  represents the geometric 

autocorrelation function (the probability that two points, placed randomly in the material and separated by 
a displacement 


s , fall in the same crystallite).  As mentioned earlier, the expected values are denoted by 

the symbol pair <>.  This equation describes the expected propagation constant k of plane waves of the 

form 
ˆ.ˆ    


ikk r i t
iu aue , where ω is the angular frequency and ˆ


k kk  is the propagation vector in the 

direction of propagation k̂ .  k is related to phase velocity pv  and attenuation coefficient α through the 

relationship /   pk v i . 

Equation 2.7 allows solutions for û  only if the determinant of the matrix in brackets on the left-hand 

side vanishes.  In the absence of scattering, these occur for three distinct real values of 2 2/ k ; one for 
each of the two quasi-shear waves and one for the quasi-longitudinal wave.  In the presence of scattering, 
requiring the determinant to vanish defines a transcendental equation which may support many roots.  
The correct root was selected by seeking the real part of the root closest to the root in the absence of 
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scattering and requiring that the imaginary part 0  .  The wave polarizations are given by the 
corresponding eigenvectors. 

2.2 Particular Cases for Calculations 

In this report, we only consider polycrystals that are statistically homogeneous; that is, the ensemble 
averages are independent of position.  For such media, the two-point averages appearing in Eq. 2.7 can be 
taken outside the integration sign.  First, we present our results for two simple microstructures; one 
without and the other with macroscopic texture.  We then present results for an example duplex 
microstructure having macrograins and colonies. 

2.3 Single-Phase Microstructure 

2.3.1 Randomly Oriented Grains: 

We first present our calculations for expected propagation constants in polycrystalline materials 
without macroscopic texture.  The generalized Christoffel equation in this becomes 
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( )


P s  represents the geometric autocorrelation function (the probability that two points, placed randomly 

in the material and separated by a displacement 

s , fall in the same grain).  If ( , , )   f f , where 

( , , )    are the Euler angles, the ensemble average for all random values of Euler angles is given by 
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2.3.2 [001] Aligned Polycrystals 

For simple microstructure with macroscopic texture, the generalized Christoffel equation in this 
becomes 
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The particular texture considered here is where the [001] crystallographic axes of all grains parallel to 
the z-axis of the laboratory coordinate system while the [100] and the [010] axes are randomly oriented 
about this direction.  This simplifies the averaging procedure.  Thus, if φ is the rotation of the [100] axis 
from the x-axis in the laboratory system, 
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Following the general procedure to obtain the complex propagation constants and polarizations as 
described before, we were able to develop an integral equation for the expected propagation constant for 
elastic waves propagating along arbitrary directions in the yz-plane.  In order to do this, it was found 
convenient to rotate the laboratory coordinate system (x, y, z) by an angle θ about the x-axis resulting in a 
primed (x'=x, y', z') coordinate system and choose the z -axis (direction 3) as the propagation direction.  
Waves with arbitrary propagation direction are, in general, not purely longitudinal or shear in a medium 
with macroscopic texture.  However, for cubic crystals with small single crystal anisotropy 

11 12 442  A c c c  compared to o
ijklc , the deviations of the polarizations from those of pure modes are 

not expected to be large.  Therefore, we have neglected the deviation of the polarizations from the pure 
mode values in the polycrystalline aggregate under consideration.  With this assumption, we only need 

the averages 3333   c  and 2
33 33 33 33[ ]          kl mn kl mnc c c c . 

2.3.3 Duplex Microstructure 

For duplex microstructures composed of randomly oriented macrograins, using the notations 
employed earlier in the discussions of backscatter, the Christoffel equation can be written as 
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Here 
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2.4 Results and Discussions:  Expected Wave Propagation 
Constants 

We present numerical results for three different idealized polycrystalline aggregates:  (1) equiaxed/ 
elongated grains with random crystallographic orientation, (2) equiaxed/elongated grains with preferential 
[001] alignment, and (3) randomly oriented equiaxed/elongated macrograins encountered in duplex 
stainless steel.  In presenting our results, we have used 2h c  (macrograin/colony longer dimension) and 

2d a  (transverse diameter).  The schematic diagram of an ellipsoidal grain was shown in Figure 1.1.  In 
all our calculations, the crystallites are considered to possess cubic symmetry.  Table 1.1 lists single 
crystal elastic constants and density of the polycrystals (Kupperman and Reimann 1978). 



 

2.4 

2.4.1 Randomly Oriented Grains 

The frequency dependence of the normalized attenuation coefficient (attenuation per wavelength) of 
plane longitudinal waves in steel with randomly oriented grains is shown in Figure 2.1.  The direction of 
the plane ultrasonic wave makes 45° with respect to the z-axis of the laboratory coordinate system.  The 
major axis of the ellipsoidal grain coincides with the z-axis.  The grain aspect ratio d / h = 1 corresponds 
to equiaxed grains.  For a fixed value of olk d , we see that grain elongation (indicated by d / h < 1) causes 

larger attenuation in all the frequency regimes (Rayleigh, stochastic, and geometric).  The transitions 
between these regimes are also clearly affected by increasing grain elongation.  Figure 2.2 shows the 
phase velocity dispersion over a wide frequency range.  At low frequencies, the phase velocity of the 
mean longitudinal wave is predicted to be smaller than that obtained by the unweighted Voigt averaged 
elastic constant of a polycrystal.  However, at higher frequencies, the unified theory of Stanke and Kino 
(1984) over predicts phase velocities.  The grain shape is also seen to affect the expected phase velocity.  
Figure 2.3 and Figure 2.4, showing absolute attenuation coefficient and phase velocity, are constructed 
from the results shown in Figure 2.1 and Figure 2.2 by choosing average grain diameter d. 
 
 

 
 
Figure 2.1. Frequency Dependence of Normalized Attenuation Coefficient of Plane Longitudinal Waves 

in Steel with Randomly Oriented Grains (propagation direction makes 45° with respect to 
the z-axis) 
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Figure 2.2. Frequency Dependence of Normalized Phase Velocity of Plane Longitudinal Waves in Steel 

with Randomly Oriented Grains (propagation direction makes 45° with respect to the z-axis) 
 
 

 
 
Figure 2.3. Frequency Dependence of Attenuation Coefficient of Plane Longitudinal Waves in Steel 

with Randomly Oriented Grains (propagation direction makes 45° with respect to the z-axis) 
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Figure 2.4. Frequency Dependence of Phase Velocity of Plane Longitudinal Waves in Steel with 

Randomly Oriented Grains (propagation direction makes 45° with respect to the z-axis) 
 

2.4.2 [001] Aligned Stainless Steel 

In Figure 2.5, we describe the frequency dependence of the normalized attenuation coefficient of 
plane longitudinal waves propagating in steel with perfectly aligned [001] crystallographic axes; the wave 
vector making 45° with the z-axis.  Both the major axis of the ellipsoidal grain and [001] the 
crystallographic axis coincide with the z-axis in this case.  Similar to the case observed for randomly 
oriented grains, larger grain elongation (indicated by smaller d/h ratio) causes a somewhat larger 
attenuation for a given non-dimensional frequency.  Phase velocity dispersion is described next in 
Figure 2.6.  The phase velocity predicted by the unweighted Voigt averaged elastic constant is seen to 
under predict at all frequencies shown.  Figure 2.7 and Figure 2.8 show the absolute attenuation 
coefficient and phase velocity when the mean transverse grain diameter is 500 µm.  Figures 2.9–2.12 
describe the case when the mean ultrasonic wave makes 90° with the z-axis.  The difference in 
magnitudes between these cases is the result of two factors:  the difference in two-point elastic constant 
correlation and the difference in the mean path crossed by the ultrasonic wave across a grain. 
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Figure 2.5. Frequency Dependence of Normalized Attenuation Coefficient (attenuation per wavelength) 

of Plane Longitudinal Waves in Steel with [001] Aligned Grains (propagation direction 
makes 45° with respect to the z-axis) 

 
 

 
 
Figure 2.6. Frequency Dependence of Normalized Phase Velocity of Plane Longitudinal Waves in Steel 

with [001] Aligned Grains (propagation direction makes 45° with respect to the z-axis) 
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Figure 2.7. Frequency Dependence of Attenuation Coefficient of Plane Longitudinal Waves in Steel 

with [001] Aligned Grains (propagation direction makes 45 with respect to the z-axis) 
 
 

 
 
Figure 2.8. Frequency Dependence of Phase Velocity of Plane Longitudinal Waves in Steel with [001] 

Aligned Grains (propagation direction makes 45° with respect to the z-axis) 
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Figure 2.9. Frequency Dependence of Normalized Attenuation Coefficient (attenuation per wavelength) 

of Plane Longitudinal Waves in Steel with [001] Aligned Grains (propagation direction 
makes 90° with respect to the z-axis) 

 
 

 
 
Figure 2.10. Frequency Dependence of Normalized Phase Velocity of Plane Longitudinal Waves in 

Steel with [001] Aligned Grains (propagation direction makes 90 with respect to the 
z-axis) 
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Figure 2.11. Frequency Dependence of Attenuation Coefficient of Plane Longitudinal Waves in Steel 

with [001] Aligned Grains (propagation direction makes 90 with respect to the z-axis) 
 
 

 
 
Figure 2.12. Frequency Dependence of Attenuation Coefficient of Plane Longitudinal Waves in Steel 

with [001] Aligned Grains (propagation direction makes 90 with respect to the z-axis) 
 

2.5 Duplex Microstructure 

2.5.1 Duplex Steel 

We next present theoretical predictions of the expected attenuation coefficient and phase velocity of 
ultrasonic waves propagating in our realization of the duplex steel.  In our calculations, we have assumed 
the macrograins to have random orientation.  First, we assume the macrograins and colonies to be 
equiaxed; the relative sizes of the colonies are allowed to vary.  As one would expect, Figure 2.13 shows 
that as the colony size increases, the attenuation due to scattering also increases.  When the colony sizes 
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are smaller than 1% of that of a macrograin, their contribution to attenuation is negligible.  Noticeable 
amplification in attenuation is observed when the ratio of colony diameter to macrograin diameter is 0.1 
at frequencies corresponding to normalized frequencies 2olk d .  Phase velocity dispersion is shown 

next in Figure 2.14.  The colony size is seen to have a negligible effect on phase velocity.  Figure 2.15 
and Figure 2.16 illustrate the effect of macrograin/colony shape on attenuation and velocity dispersion, 
respectively.  In this case, however, the additional contribution of colonies due to their sizes becomes 
noticeable for normalized frequencies 1olk d . 

Comparing results for duplex steel with those of the single-phase randomly oriented grains, it is seen 
that the attenuation is considerably higher in duplex steel.  In addition, if the colonies themselves are of 
sizes comparable to their parent macrograin, their contribution to the scattered field become more 
pronounced. 
 
 

 
 
Figure 2.13. Frequency Dependence of Normalized Attenuation Coefficient of Plane Longitudinal 

Waves in Duplex Steel with Randomly Oriented Equiaxed Macrograins and Colonies 
(propagation direction makes 45o with respect to the z-axis) 
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Figure 2.14. Frequency Dependence of Normalized Phase Velocity of Plane Longitudinal Waves in 

Duplex Steel with Randomly Oriented Equiaxed Macrograins and Colonies (propagation 
direction makes 45° with respect to the z-axis) 

 
 

 
 
Figure 2.15. Frequency Dependence of Normalized Attenuation Coefficient (attenuation per 

wavelength) of Plane Longitudinal Waves in Duplex Steel with Randomly Oriented 
Elongated Macrograins and Colonies (propagation direction makes 45° with respect to the 
z-axis) 
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Figure 2.16. Frequency Dependence of Normalized Phase Velocity of Plane Longitudinal Waves in 

Duplex Steel with Randomly Oriented Elongated Macrograins and Colonies (propagation 
direction makes 45° with respect to the z-axis) 

 

 



  



 

3.1 

3.0 Conclusions 

Numerical predictions presented here suggest that backscatter is dominated by scattering from 
macrograin boundaries for low non-dimensional frequencies, mka .  Colonies do not cause noticeable 

additional backscatter for 2mka  in the case of equiaxed macrograins and colonies.  This threshold 

frequency at which contributions from colonies are visible is reduced ( 1mka ) for elongated 

macrograins and colonies.  Attenuation of plane longitudinal waves in duplex steel with randomly 
oriented macrograins is seen to be considerably higher than that in single-phase polycrystals with 
randomly oriented grains.  The effect of colony size on attenuation follows the same pattern as that of 
backscatter power. 
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